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ABSTRACT 

Background: Mechanical ventilation in prematurely born infants, particularly if prolonged, can cause long term complications including bronchopulmonary dysplasia. Timely extubation then is essential, yet predicting its success remains challenging. Artificial intelligence (AI) may provide a potential solution.

Content: A narrative review was undertaken to explore AI's role in predicting extubation success in prematurely born infants. Across the eleven studies analysed, the range of reported area under the receiver operator characteristic curve (AUC) for the selected prediction models was between 0.7 and 0.87. Only two studies implemented an external validation procedure. Comparison to the results of clincial predictors was made in two studies. One group reported a logistic regression model that outperformed clinical predictors on decision tree analysis, while another group reported clinical predictors outperformed their artifical neural network model (AUCs: ANN 0.68 versus clinical predictors 0.86).  Amongst the studies there was an heterogenous selection of variables for inclusion in prediction models, as well as variations in definitions of extubation failure.

Summary: Although there is potential for AI to enhance extubation success, no model’s performance has yet surpassed that  of clinical predictors. 
Outlook: Future studies should incorporate external validation to increase the applicability of the models to clinical settings.
Key words: prematurity; extubation; artificial intelligence; machine learning; deep learning
INTRODUCTION
Mechanical ventilation can be life saving but has complications including bronchopulmonary dysplasia (BPD) and its sequelae [1]. The duration of mechanical ventilation is a predictor for BPD development with each additional increase in week of mechanical ventilation increasing the risk for BPD developmnet 
 ADDIN EN.CITE 
[2]
.  Reducing the duration of invasive ventilation is dependent on successful extubation, however, this can be difficult to predict with certainty. Weaning a patient too early exposes them to the risks of respiratory decompenation and reintubation. Weaning a patient too late exposes them to prolonged  volutrauma and possible ventilator associated  infection. 

In clinical practice,  extubation readiness is often assessed by a spontaneous breathing trial (SBT) in which an infant undergoes a brief period of spontaneous breathing via the endotracheal tube while on continuous positive airway pressure [3].  A systematic review of extubation readiness tests using a SBT in prematurely born infants, however, found a lack of strong evidence to support the use of SBT in clinical practice [4]. Combining an SBT with measurement of the electrical activity of the diaphragm activity (electromyography) pre extubation improved the predictive ability, but there was only moderate accuracy with an area under the receiver operator characteristic curve (AUC) of 0.74 
 ADDIN EN.CITE 
[5]
. 

The neonatal intensive care unit (NICU)  is considered a big data environment as patients are under constant respiratory, cardiovascular, neurological and biochemical monitoring [6]. Growing computational methodologies have resulted in a recent focus on artificial intelligence (AI) in healthcare to harness those data and improve detection of clinical deterioration, develop clinical decision-making algorithms and predictive tools 
 ADDIN EN.CITE 
[6, 7]
. AI is a field of computer science which is focused on the development of systems which mimic human intelligence [8]. AI systems have the ability to learn, process, reason, assess and predict, but in a manner which is probably more powerful, complex and time efficient than the individual or collective capability of clinicians. [9]
While there has been some practical successes influencing our everyday lives (e.g. voice recognition and self-driving cars), at present there is no widespread use of AI in healthcare 
 ADDIN EN.CITE 
[10, 11]
 There has, however, been an exponential increase in citations in the past 20 years exploring the use of AI in adults, but a smaller rise in publications exploring the use of AI in neonates 
 ADDIN EN.CITE 
[12, 13]
.  

Machine Learning (ML) and Deep Learning (DL) are subfields of AI. Machine learning uses pattern recognition and computational theories to uncover high complexity patterns that exist among independent and dependent variables 
 ADDIN EN.CITE 
[14, 15]
. Machine learning aims to process and reason those data via statistical analysis and computational technologies to predict future events and outcomes [16]. Machine learning methods include logistic regression, decision tress, random forest classifiers, support vector machines and gradient boosting [Table 1]. Deep learning (DL) is an area of ML that focuses on neural networks with many hidden layers. Hanson et al. described neural networks as being like the human brain with multiple layers fully connected next to each other, allowing data to flow and pass on information [8].  Deep learning automates much of the feature extraction part of the process, eliminating some of the manual human intervention required in ML and enabling use of larger data sets. Whereas in ML there are challenges with data that are from different sources, DL allows for larger data sets in high volume and multiple sources [17]. An example of DL methods is artificial neural networks (ANN) [Table 1].
The aim of this narrative review is to determine whether AI might improve extubation success in prematurely born infants.

MATERIALS AND METHODS 
We conducted a literature search in Medline for articles related to the use of AI models as extubation prediction tools in infants born prematurely or very low birthweight. The search strategy was produced from a combination of search terms (airway extubation; artificial intelligence; deep learning; extubation; infant; premature; machine learning; model*; neonat*; neural networks; newborn; predict*; premat*; premature birth; preterm; ventilator weaning; weaning).
The performance of each tool was assessed using area under receiver operator characteristic curves (AUCs) [18]. 

RESULTS
Eleven studies were identified (Table 2). There was a heterogenous group of variables identified through feature selection in each study (Table 3). 

The ML techniques had AUCs between 0.7 and 0.87.  The best reported outcome was for a multiple logistic regression (MLR) technique which used the Multiparameter Intelligent Monitoring in Intensive Care II database (MIMIC-II) which is a freely available database intended to support epidemiologic research as a resource to evaluate new clinical support and monitoring algorithms 
 ADDIN EN.CITE 
[19]
. Following the reported success of an extubation prediction model in adults using the MIMIC-II [20], Mikhno et al developed a ML model using MLR for extubation prediction in prematurely born  infants 
 ADDIN EN.CITE 
[21]
. Within the database of 7800 patient records, 242 patients met the inclusion criteria (being born between 23 to 31 weeks of gestation).  A total of 58, 520 models were produced. The group then examined the performance of each model combining the two top models with six variables (monocyte cell count, rapid shallow breathing index, fraction of inspired oxygen [FiO2], heart rate, partial pressure of arterial oxygen [PaO2]:FiO2 ratio and work of breathing index) to produce a combined model of extubation prediction with an AUC of 0.87. External validation was not performed. 
Mueller et al 
 ADDIN EN.CITE 

 compared logistic regression (LR) prediction models with more modern ML techniques which included support vector machine (SVM), naïve Bayesian classifier (NBC) and boosted decision trees (BDT) [22]. Feature selection variables included birth weight, Apgar score at 5 minutes, maternal betamethasone, FiO2, peak inspiratory pressure, inspiratory time, tidal volume, pH, partial pressure of arterial carbon dioxide (PaCO2), PaO2, oxygen saturation (SpO2), heart rate, blood pressure, minute volume, surfactant and caffeine administration. Logistic regression performance (AUC 0.77) was greater than that of the more modern ML methods (AUCs: BDT 0.5; NBC 0.6; SVM 0.5) [Table 2] [22]. External validation was not performed. 
Song et al. 
 ADDIN EN.CITE 
[23]
 also compared LR algorithms to more modern ML methods including decision trees, random forest classifiers and gradient boosting (extreme gradient boosting [XGB] and gradient boosting machine [GBM]). Features selected included birth weight, gestational age, SpO2, FiO2, blood pressure (mean, diastolic and systolic), respiratory rate and positive end expiratory pressure. In their external validation cohort, LR performance (AUC 0.76) was greater than that of other ML methods (AUC: XGB 0.71; GBM 0.70; RF 0.71; DT 0.70). A decision curve analysis suggested that applying their model to clinical predictors could increase extubation success.  Of note, the external validation cohort used was the MIMIC-II database in which results were collected between 2001 and 2008. 
Mueller et al was the first group to report an extubation prediction tool in preterm infants using automated neural network (ANN) [18]. They developed a fully cross-validated neural network from an initial 51 variables identified by clinicians as potentially predictive. The resulting ANN identified 13 variables as useful for extubation prediction (gestational age, pulse, blood pressure, pH, arterial oxygen saturation, mode, peak inspiratory pressure, peak end expiratory pressure, mean airway pressure, inspiratory time, ratio of inspiratory to expiratory time, tidal volume, partial arterial pressure of CO2). When compared to MLR, the ANN performed favourably (AUC: ANN 0.87; MLR 0.75), while also giving a higher AUC than clinician predictors (reported as a accuracy of 78% in the training data set and 70% in the validation data set) [18]. No external validation was performed. In a subsequent study  by those authors, using a different dataset, the ANN model gave an AUC of 0.68 but found that clinician predictors had an accuracy of 88% [22].
DISCUSSION
We have demonstrated that the performance of current AI models is not greater than clinical predictors of extubation success in prematurely born infants. Furthermore, very few of the models had undergone external validation. Although a predictive model may exhibit strong performance within its training set, its effectiveness may diminish when applied to an external cohort 
 ADDIN EN.CITE 
[24]
. External validation tests original prediction models in a new set of patients to determine the generalisability and applicability of the model [25]. Only two studies reported external validation. Song et al 
 ADDIN EN.CITE 
[23]
 showed a reduced accuracy when compared to their training set, while Chen et al 
 ADDIN EN.CITE 
[26]
 showed a slight improvement in the AUC (Table 2). While Gupta et al [27] did not report an external validation cohort in their original report, a subsequent study by the same authors reported an external validation of their model with an AUC of 0.72 which was less than that of the training cohort 
 ADDIN EN.CITE 
[27, 28]
. 
Logistic regression models outperformed other machine learning methods in this context. Logistic regression is a simple and interpretable model and is thus advantageous in a clinical settings where healthcare providers need to understand the factors contributing to the prediction [29]. In contrast, complex machine learning models like gradient boosting may be harder to understand. The success of logistic regression could be due to the specific characteristics of the data related to prematurely born infants. In particular, logistic regression works well when the relationship between predictors and outcomes is approximately linear and when there are clear decision boundaries. In addition, logistic regression is designed for binary classification tasks, which is the case when predicting extubation success as ‘success’ or ‘failure’. 

There was a heterogenous group of variables identified through feature selection in each study (Table 3). This may reflect that each group used distinct datasets, which themselves displayed heterogeneity in terms of demographic, clinical characteristics and treatment strategies. It may also reflect the different machine learning models studied.  Further research is needed to better understand the factors that drive the selection of specific features in the clinical scenarios that relate to extubation.
The studies varied with regard to the gestational ages included in model development (Table 2). While four studies included gestational age as a feature in their final prediction models [18, 23, 27, 30]
 ADDIN EN.CITE 

, four other studies included birthweight 
 ADDIN EN.CITE 
[22, 26, 31, 32]
 which correlates significantly with gestational age. The only group to look at subsets of patients based on birthweights did not find that performance was enhanced when there was more homogenous groups [22]. 

In addition, studies varied in terms of their definition of extubation failure, although the majority selected reintubation with 72hours (Table 2). While there is no consensus on the optimal observation window post extubation 
 ADDIN EN.CITE 
[33]
, 77% of respiratory reintubations in extremely preterm infants occur within seven days 
 ADDIN EN.CITE 
[34, 35]
. As for AI and extubation prediction, future work requires more clear consensus on the definition of extubation failure. In addition, a narrow focus to more specific gestational age subsets may improve accuracy. A multicentre study involving a larger population than has been studied to date is warranted to develop a more robust predictive model for assessing extubation success. Such a study could enhance model performance and broaden its applicability, provided it is subject to external validation.
CONCLUSIONS
There is as yet no model of artificial intelligence which predicts extubation success better than clinical predictors. Furthermore, few of the models have undergone external validation limiting their application  in the clinical setting. 
.

REFERENCES
1.
Miller JD, Carlo WA. Pulmonary complications of mechanical ventilation in neonates. Clin Perinatol 2008;35:273-81.

2.
Laughon MM, Langer JC, Bose CL, Smith PB, Ambalavanan N, Kennedy KA, et al. Prediction of bronchopulmonary dysplasia by postnatal age in extremely premature infants. Am J Respir Crit Care Med 2011;183:1715-22.

3.
Boles JM, Bion J, Connors A, Herridge M, Marsh B, Melot C, et al. Weaning from mechanical ventilation. Eur Respir J 2007;29:1033-56.

4.
Shalish W, Latremouille S, Papenburg J, Sant'Anna GM, et al. Predictors of extubation readiness in preterm infants: a systematic review and meta-analysis. Arch Dis Child- Fetal Neonatal Ed 2019;104:F89-97.

5.
Williams EE, Arattu Thodika FMS, Chappelow I, Chapman-Hatchett N, Dassios T, Greenough A. Diaphragmatic electromyography during a spontaneous breathing trial to predict extubation failure in preterm infants. Pediatr Res 2022;92:1064-9.

6.
Bayne LE. Big data in neonatal health care: Big reach, big reward? Crit Care Nurs Clin North Am 2018;30:481-97.

7.
Davenport T, Kalakota R. The potential for artificial intelligence in healthcare. Future Healthc J 2019;6:94-8.

8.
Hanson CW 3rd, Marshall BE. Artificial intelligence applications in the intensive care unit. Crit Care Med 2001;29:427-35.

9.
Shu LQ, Sun YK, Tan LH, Shu Q, Chang AC. Application of artificial intelligence in pediatrics: past, present and future. World J Pediatr 2019;15:105-8.

10.
Peterson ED. Machine learning, predictive analytics, and clinical practice: can the past inform the present? JAMA 2019;322:2283-4.

11.
He J, Baxter SL, Xu J, Xu J, Zhou X, Zhang K. The practical implementation of artificial intelligence technologies in medicine. Nat Med 2019;25:30-6.

12.
Hong N, Liu C, Gao J, Han L, Chang F, Gong M, Su L. State of the art of machine learning–enabled clinical decision support in intensive care units: literature review. JMIR Med Inform 2022;10:e28781.

13.
Kwok TC, Henry C, Saffaran S, Meeus M, Bates D, Van Laere D, et al. Application and potential of artificial intelligence in neonatal medicine. Semin Fetal Neonatal Med 2022;27:101346.

14.
Matava C, Pankiv E, Ahumada L, Weingarten B, Simpao A. Artificial intelligence, machine learning and the pediatric airway. Paediatr Anaesth 2020;30:264-8.

15.
Topol EJ. High-performance medicine: the convergence of human and artificial intelligence. Nat Med 2019;25:44-56.

16.
Hong N, Liu C, Gao J, Han L, Chang F, Gong M, Su L. State of the art of machine learning-enabled clinical decision support in intensive care units: literature review. JMIR Med Inform, 2022;10:e28781.
17.
Greco M, Caruso PF, Cecconi M. Artificial intelligence in the intensive care unit. Semin Respir Crit Care Med 2021;42:2-9.

18.
Mueller M, Wagner CL, Annibale DJ, Hulsey TC, Knapp RG, Almeida JS. Predicting extubation outcome in preterm newborns: a comparison of neural networks with clinical expertise and statistical modeling. Pediatr Res 2004;56:11-8.

19.
Saeed M, Villarroel M, Reisner AT, Clifford G, Lehman LW, Moody G, et al. Multiparameter intelligent monitoring in intensive care ii: a public-access intensive care unit database. Crit Care Med 2011;39:952-60.

20.
Ennett CM, Lee KP, Eshelman LJ, Gross B, Nielsen L, Frassica JJ, Saeed M. Predicting respiratory instability in the ICU. Annu Int Conf IEEE Eng Med Biol Soc 2008;2008:2848-51.

21.
Mikhno A, Ennett CM. Prediction of extubation failure for neonates with respiratory distress syndrome using the MIMIC-II clinical database. Annu Int Conf IEEE Eng Med Biol Soc 2012;2012:5094-7.

22.
Mueller M, Almeida JS, Stanislaus R, Wagner CL. Can machine learning methods predict extubation outcome in premature infants as well as clinicians? J Neonatal Biol 2013;2:1000118.

23.
Song W, Hwa Jung Y, Cho J, Baek H, Won Choi C, Yoo S. Development and validation of a prediction model for evaluating extubation readiness in preterm infants. Int J Med Inform 2023;178:105192.

24.
Siontis GC, Tzoulaki I, Castaldi PJ, Ioannidis JP. External validation of new risk prediction models is infrequent and reveals worse prognostic discrimination. J Clin Epidemiol 2015;68:25-34.

25.
Ramspek CL, Jager KJ, Dekker FW, Zoccali C, van Diepen M. External validation of prognostic models: what, why, how, when and where? Clin Kidney J 2021;14:49-58.

26.
Chen YH, Lin HL, Sung YH, Hsu JF, Chu SM. Analysis of predictive parameters for extubation in very low birth weight preterm infants. Pediatr Neonatol 2023;64:274-9.

27.
Gupta D, Greenberg RG, Sharma A, Natarajan G, Cotten M, Thomas R, Chawla S. A predictive model for extubation readiness in extremely preterm infants. J Perinatol 2019;39:1663-9.

28.
Dryer RA, Salem A, Saroha V, Greenberg RG, Rysavy MA, Chawla S, Patel RM. Evaluation and validation of a prediction model for extubation success in very preterm infants. J Perinatol 2022;42:1674-9.

29.
Liew BX, Kovacs FM, Rügamer D, Royuela A. Machine learning versus logistic regression for prognostic modelling in individuals with non-specific neck pain. Eur Spine J 2022;31:2082-91.

30.
Natarajan A, Lam G, Liu J, Beam AL, Beam KS, Levin JC. Prediction of extubation failure among low birthweight neonates using machine learning. J Perinatol 2023;43:209-14.

31.
Chakraborty M, Watkins WJ, Tansey K, King WE, Banerjee S. Predicting extubation outcomes using the Heart Rate Characteristics index in preterm infants: a cohort study. Eur Respir J 2020;56:1901755.

32.
Goel N, Chakraborty M, Watkins WJ, Banerjee S. Predicting extubation outcomes-a model incorporating heart rate characteristics index. J Pediatr 2018;195:53-58.e1.

33.
Shalish W, Kanbar LJ, Rao S, Robles-Rubio CA, Kovacs L, Chawla S,  et al. Prediction of extubation readiness in extremely preterm infants by the automated analysis of cardiorespiratory behavior: study protocol. BMC Pediatr 2017;17:167.

34.
Giaccone A, Jensen E, Davis P, Schmidt B. Definitions of extubation success in very premature infants: a systematic review. Arch Dis Child Fetal Neonatal Ed 2014;99:F124-7.

35.
Shalish W, Kanbar L, Keszler M, Chawla S, Kovacs L, Rao S,  et al. Patterns of reintubation in extremely preterm infants: a longitudinal cohort study. Pediatr Res 2018;83:969-75.

36.
Choi RY, Coyner AS, Kalpathy-Cramer J, Chiang MF, Campbell JP. Introduction to machine learning, neural networks, and deep learning. Transl Vis Sci Technol 2020;9:14.

37.
Chen T, Guestrin C. XGBoost: A scalable tree boosting system. Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 2016.

38.
Rakotomamonjy A. Variable selection using svm based criteria. J Mach Learn Res 2003;3:1357–70.

39.
Cheng Z, Dong Z, Zhao Q, Zhang J, Han S, Gong J, Wang Y. A prediction model of extubation failure risk in preterm infants. Front Pediatr 2021;9:693320.

40.
Kanbar LJ, Shalish W, Onu CC, Latremouille S, Kovacs L, Keszler M, et al., Automated prediction of extubation success in extremely preterm infants: the APEX multicenter study. Pediatr Res 2023;93:1041-9.



Table 1. Machine learning and deep learning techniques 

	Logistic Regression
	Logistic Regression is a linear model that leverages the logistic function to estimate the probability of a binary outcome based on a set of independent variables [].

	Decision Trees
	Decision Trees are non-linear models. They construct a tree-like structure by repeatedly splitting the dataset into subsets based on the features that provide the best separation []

	Gradient boosting
	Gradient Boosting sequentially combines multiple weak models, typically decision trees, to create a powerful predictive model []. It works by minimizing a loss function that measures the difference between the predicted and actual outcomes, with each new model focusing on the remaining errors [].

	Random forests 
	Random Forests combine multiple decision trees to form a robust and accurate predictive model. It operates by generating a multitude of decision trees during training, each with a subset of the available data and features. These individual trees vote on the outcome and the most popular choice becomes the final prediction. By aggregating the insights from numerous decision trees, Random Forest enhances the overall accuracy and robustness of medical predictive models []. 

	Support vector machine
	A Support Vector Machine (SVM) is a powerful classification algorithm that identifies an optimal decision boundary, or hyperplane, in a high-dimensional feature space to separate different classes of data points []. SVM aims to maximize the margin between these classes, while also handling the most challenging data points, known as support vectors.

	Naïve Bayesian Classification
	A Naive Bayes classifier is a machine learning algorithm based on Bayes' theorem. It assumes that features are conditionally independent. It calculates the probability of each outcome given a set of features and selects the outcome with the highest probability [].

	Artificial neural network
	Artificial Neural Networks (ANNs) are computational models composed of interconnected processing units, referred to as artificial neurons, organized into multiple layers, including an input layer, one or more hidden layers, and an output layer []. ANNs are designed to approximate complex non-linear functions, making them highly suitable for tasks in medical research. ANNs are trained using iterative algorithms, such as backpropagation, where the network learns to adjust the weights of connections between neurons to minimize the difference between predicted and actual outcomes 


Table 2: Summary of studies
Data presented as mean (±SD) OR median [IQR}
	Author
	Number of infants in training set
	Number of infants in validation set
	GA
	BW
	Definition of Extubation Failure
	Models examined 
	Internal Validation

(AUC)
	External Validation

(AUC)

	Chakraborty 
 ADDIN EN.CITE 
[]

	397
	-
	26.6 (26.5-26.8)
	860 (841-880)
	Reintubation within 72 hours 
	MLR
	0.72
	-

	Song 
 ADDIN EN.CITE 
[]

	481
	197
	28.5 (2.2) weeks*

28.8 (2.2) weeks** (Int validation)

29.2 (2.3)** (ext validation)
	1,117 (358) g*

1,179 (375)g**

1,343 (429) g**
	Reintubation within 72 hours
	MLR
	0.81
	0.71

	
	
	
	
	
	
	XGB
	0.82
	0.71

	
	
	
	
	
	
	GBM
	0.80
	0.70

	
	
	
	
	
	
	RF
	0.82
	0.71

	
	
	
	
	
	
	SGD
	0.78
	0.70

	
	
	
	
	
	
	DT
	0.80
	0.70

	
	
	
	
	
	
	CNB
	0.78
	0.71

	Chen 
 ADDIN EN.CITE 
[]

	432
	183
	27.3 ± 0.9 weeks*

27.7 ± 0.9 weeks**
	1,055.9 ± 177.4 grams*

1,048.4 ± 167.4 grams**
	Reintubation within 48 hours
	MLR
	0.74
	0.82

	Cheng 
 ADDIN EN.CITE 
[]

	128
	58
	28.29 (27.43, 29.29)*
	1,060 (900, 1250)*
	Reintubation with 5 days
	MLR
	0.82
	0.79

	Goel 
 ADDIN EN.CITE 
[]

	66
	-
	30+6 (27+1

, 35+3
	1395 (1028,2420)
	Reintubation within 72 hours
	MLR
	-
	-

	Gupta []
	312
	-
	-
	-
	Reintubation within 5 days
	MLR
	0.77
	-

	Kanbar 
 ADDIN EN.CITE 
[]

	241
	241 
	26.1 [24.9–27.4]
	830 [708–1016]
	Reintubation within 72 hours
	RF
	0.75
	-

	Mikhno 
 ADDIN EN.CITE 
[]

	179
	-
	23-31
	-
	Reintubation within 48 hours
	MLR
	0.87
	

	Mueller []
	130
	53
	29.3 (2)*

29.1(2)**
	1170 (168)

1145 (182)
	Reintubation within 48 hours
	MLR
	0.81
	0.75

	
	
	
	
	
	
	ANN
	0.81
	0.87

	Mueller []
	486
	-
	25-31
	1000-2000
	Reintubation within 72 hours
	MLR
	0.85
	0.776

	
	
	
	
	
	
	ANN
	0.92
	0.68

	
	
	
	
	
	
	BDT
	1.0
	0.5

	
	
	
	
	
	
	NBC
	0.76
	0.6

	
	
	
	
	
	
	SVM
	-
	0.51

	Natarajan 
 ADDIN EN.CITE 
[]

	1348
	631
	-
	<2500
	Reintubation within 7 days
	MLR
	0.81
	-

	
	
	
	
	
	
	GXB
	0.82
	-


*training cohort; **validation cohort; GA: gestational age; BW: birthweight; MLR: multiple logistic regression; XGB: XGBoost; GBM: Gradient Boosting Machine; RF: random decision forest; SGD: Stochastic gradient descent; DT: decision tree; CNB: complement naïve bayes; ANN: automated neural network; BDT: balanced decision tree; SVM: support vector machine;

Table 3: Features selected in final model selection
	
	Chakraborty 
 ADDIN EN.CITE 
[31]

	Song 
 ADDIN EN.CITE 
[23]

	Chen  
 ADDIN EN.CITE 
[26]

	Cheng 
 ADDIN EN.CITE 
[39]

	Goel 
 ADDIN EN.CITE 
[32]

	Gupta [27]
	Kanbar  
 ADDIN EN.CITE 
[40]

	Mikhno 
 ADDIN EN.CITE 
[21]

	Mueller  [18]
	Mueller [22]
	Natarjan 
 ADDIN EN.CITE 
[30]


	Demographics/Clinical 
	
	
	
	
	
	
	^
	
	
	
	

	Birthweight
	*
	*
	*
	
	*
	
	
	
	
	*
	*

	Gestational age 
	
	*
	
	
	
	*
	
	
	*
	
	*

	Postmenstrual age (days) at extubation
	*
	
	*
	
	
	*
	
	
	
	
	

	Gestational age at extubation
	
	
	
	
	*
	
	
	
	
	
	

	APGAR @5mins
	
	
	*
	*
	
	
	
	
	
	*
	

	Weight at extubation
	
	
	
	
	
	*
	
	
	
	
	

	Early onset sepsis 
	
	
	
	*
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	
	

	Vital Signs
	
	
	
	
	
	
	^
	
	
	
	

	HR
	
	*
	
	
	
	
	
	*
	*
	*
	*

	RR
	
	*
	
	
	
	
	
	
	
	*
	

	BP (including MAP, SBP, DBP)
	
	*
	
	
	
	
	
	
	*
	*
	*

	SpO2
	
	*
	
	
	
	
	
	
	
	*
	*

	
	
	
	
	
	
	
	
	
	*
	
	

	Ventilation 
	
	
	
	
	
	
	^
	
	
	
	

	FiO2 pre extubation
	
	*
	
	
	
	*
	
	*
	
	*
	*

	PIP pre extubation
	
	
	
	
	
	
	
	
	*
	*
	

	PEEP pre extubation
	
	*
	
	
	
	
	
	
	*
	
	

	MAP pre extubation
	
	
	
	
	
	
	
	
	*
	
	*

	I:E ratio pre extubation
	
	
	
	
	
	
	
	
	*
	
	

	TV pre extubation
	
	
	
	
	
	
	
	
	*
	*
	

	Minute volume pre extubation
	
	
	
	
	
	
	
	
	
	*
	

	Inspiratory time pre extubation
	
	
	
	
	
	
	
	
	*
	*
	

	Duration of ventilation
	
	
	
	
	*
	
	
	
	
	
	*

	Mode of ventilation
	
	
	
	
	
	
	
	
	*
	
	

	NIV mode after extubation
	
	
	*
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	
	

	Physiological scoring
	
	
	
	
	
	
	
	
	
	
	

	Pre extubation HRCi score
	*
	
	
	
	
	
	
	
	
	
	

	Baseline HRCi score
	
	
	
	
	*
	
	
	
	
	
	

	RSS (Highest)
	
	
	
	
	
	*
	
	
	
	
	

	Rapid Shallow Breathing Index
	
	
	
	
	
	
	
	*
	
	
	

	Work of breathing Index 
	
	
	
	
	
	
	
	*
	
	
	

	RIP
	
	
	
	
	
	
	
	
	
	
	

	PPG
	
	
	
	
	
	
	
	
	
	
	

	ECG
	
	
	
	
	
	
	
	
	
	
	

	SAT
	
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	
	

	Medications
	
	
	
	
	
	
	
	
	
	
	

	Antibiotics
	*
	
	
	
	
	
	
	
	
	
	

	Caffeine
	
	
	
	*
	
	
	
	
	
	
	*

	Maternal Betamethasone
	
	
	
	
	
	
	
	
	
	*
	

	Surfactant 
	
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	
	

	Laboratory / Blood sampling
	
	
	
	
	
	
	
	
	
	
	

	pH pre extubation
	
	
	
	*
	
	*
	
	
	*
	*
	

	PaCO2 pre extubation
	
	
	*
	
	
	
	
	
	*
	
	

	PaO2 preextubation
	
	
	*
	
	
	
	
	*
	
	*
	

	Hb pre extubation
	
	
	
	*
	
	
	
	
	
	
	

	Positive blood culture 
	
	
	
	
	*
	
	
	
	
	
	

	Monocyte cell count
	
	
	
	
	
	
	
	*
	
	
	


^ clinical parameters not listed; HR = Heart rate; BP = blood pressure; RR = respiratory rate; MAP: mean arterial pressure; DBP: diastolic blood pressure; SBP: systolic blood pressure; FiO2: fraction of inspired oxygen; PEEP: positive end expiratory pressure; PIP: peak inspiratory pressure; I:E ratio:  inspiratory expiratory ratio;  TV: tidal volume; HRCi: Heart rate characteristics index;  RSS: respiratory severity score; RIP: respiratory inductance plethysmography; PPG: photoplethysmography; ECG:  electrocardiogram; SAT: saturation monitoring: PaCO2: partial pressure of carbon dioxide in arterial blood; PaO2: partial pressure of oxygen in arterial blood; Hb = haemoglobin
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