
This electronic thesis or dissertation has been

downloaded from the King’s Research Portal at

https://kclpure.kcl.ac.uk/portal/

Take down policy

If you believe that this document breaches copyright please contact librarypure@kcl.ac.uk providing

details, and we will remove access to the work immediately and investigate your claim.

END USER LICENCE AGREEMENT

Unless another licence is stated on the immediately following page this work is licensed

under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International

licence. https://creativecommons.org/licenses/by-nc-nd/4.0/

You are free to copy, distribute and transmit the work

Under the following conditions:

 Attribution: You must attribute the work in the manner specified by the author (but not in any
way that suggests that they endorse you or your use of the work).

 Non Commercial: You may not use this work for commercial purposes.

 No Derivative Works - You may not alter, transform, or build upon this work.

Any of these conditions can be waived if you receive permission from the author. Your fair dealings and

other rights are in no way affected by the above.

The copyright of this thesis rests with the author and no quotation from it or information derived from it

may be published without proper acknowledgement.

Synthesis of Model Transformations from Metamodels and Examples

Fang, Shichao

Awarding institution:
King's College London

Download date: 25. Dec. 2024

Synthesis of Model Transformations from

Metamodels and Examples

Shichao Fang

Department of Informatics

King’s College London

Supervisors

Dr. Kevin Lano

Dr. Steffen Zschaler

This Thesis is Submitted for the Degree of Doctor of Philosophy

December 2022

ACKNOWLEDGEMENTS

I would like to express my deepest gratitude to my supervisor, Dr Kevin Lano,

for his invaluable guidance, advice, unwavering support, and continuous assistance

throughout the completion of this thesis. Without his mentorship, I would not have

been able to accomplish this significant milestone. Dr Lano’s expertise, encourage-

ment, and constructive feedback have been instrumental in shaping the quality and

direction of my work.

I would also like to extend my sincere appreciation to my second supervisor,

Dr Steffen Zschaler. His insightful recommendations, stimulating discussions, and

scholarly insights have greatly enriched the depth and rigor of my research.

In addition to my supervisors, I would like to acknowledge the entire faculty and

staff of the Department of Informatics at King’s College London. Their contribu-

tions, resources, and academic environment have played a crucial role in fostering

my academic growth.

I am profoundly thankful to my beloved parents for their years of unwavering

support, encouragement, and belief in my potential. I take immense pride in making

them proud. I will continue to be a son who brings them happiness and joy.

Finally, I would like to dedicate this thesis in loving memory of my dear grand-

mother, who sadly passed away during the COVID-19 pandemic. Although she was

not able to witness this moment, I am sure she would have been proud of me. I will

always miss her.

ABSTRACT

Model transformations are central elements of model-driven engineering (MDE).

However, model transformation development requires a high level of expertise in

particular model transformation languages, and model transformation specifications

are often difficult to manually construct, due to the lack of tool support, and the

dependencies involved in transformation rules.

In this thesis, we describe techniques for automatically or semi-automatically

synthesising transformations from metamodels and examples, in order to reduce

model transformation development costs and time, and improve model transforma-

tion quality.

We proposed two approaches for synthesising transformations from metamod-

els. The first approach is the Data Structure Similarity Approach, an exhaustive

metamodel matching approach, which extracts correspondences between metamod-

els by only focusing on the type of features. The other approach is the Search-based

Optimisation Approach, which uses an optimisation algorithm to extract correspon-

dences from metamodels by data structure similarity, name syntax similarity, and

name semantic similarity. The correspondence patterns between the classes and

features of two metamodels are extracted by either of these two methods. To en-

able the production of specifications in multiple model transformation languages

from correspondences, we introduced an intermediate language which uses a simpli-

fied transformation notation to express transformation specifications in a language-

independent manner, and defined the mapping rules from this intermediate language

to different transformation languages.

We also investigated Model Transformation by Examples Approach. We used

machine learning techniques to learn model transformation rules from datasets of

examples, so that the trained model could generate target model from source model

directly.

We evaluated our approaches on a range of cases of different kinds of transforma-

tion, and compared the model transformation accuracy and quality of our versions

to the previously-developed manual versions of these cases.

Key words: model transformation, model-driven engineering, transformation syn-

thesis, metamodel matching, model transformation by examples

4

Contents

1 Introduction 13

1.1 Motivation . 13

1.2 Overall Aim of the Thesis . 15

1.3 Research Questions . 16

1.4 Contributions . 18

1.5 Structure . 22

1.6 Publications . 23

2 Background 26

2.1 Model-Driven Engineering . 26

2.1.1 Model in MDE . 27

2.1.2 Metamodel in MDE . 28

2.1.3 Model Transformation in MDE 29

2.1.4 Model-Driven Development 30

2.1.5 Model-Driven Architecture . 30

5

2.2 Model Transformation Taxonomy . 31

2.3 Model Transformation Languages . 33

2.3.1 Query View Transformation Language 33

2.3.2 UML Reactive System Development Support 34

2.3.3 Atlas Transformation Language 34

2.3.4 Epsilon Transformation Language 38

2.4 Model Transformation Categories . 40

2.5 Scope of the Research . 42

3 Related Work 43

3.1 Metamodel Matching Approaches . 43

3.1.1 Matching Approaches based on Similarity Flooding 44

3.1.2 Matching Approaches based on Customised Rules 45

3.1.3 Matching Approaches based on Search-based Algorithms . . . 48

3.1.4 Schema Matching . 49

3.2 Transformation Synthesis Approaches 50

3.3 Conclusion . 51

4 Data-structure Similarity Approach for Metamodel Matching 54

4.1 Introduction . 54

4.2 Flattening Metamodel . 56

4.3 Data Structure Similarity Measure 58

6

4.4 Other Similarity Measures . 60

4.4.1 Graph Structure Similarity . 61

4.4.2 Graph Edit Similarity . 61

4.4.3 Name Syntactic Similarity . 62

4.4.4 Name Semantic Similarity . 62

4.4.5 Semantic Context Similarity 63

4.5 DSS Approach . 63

4.6 Evaluation . 65

4.7 Conclusion . 69

5 Search-based Optimisation Approach for Metamodel Matching 71

5.1 Introduction . 71

5.2 Transforming Metamodel Matching Problem into An Optimisation

Problem . 73

5.3 Search Space Construction . 74

5.4 Objective Function Construction . 75

5.4.1 Similarity Measures for Objective Function 76

5.4.2 Objective Functions . 77

5.5 Selecting One Solution Using Machine Learning 79

5.6 Evaluation . 81

5.7 Conclusion . 85

7

6 Synthesis of Model Transformations from Metamodel Matching 87

6.1 Introduction . 87

6.2 T L Specification . 89

6.3 Generating ATL Specifications from T L 92

6.4 Generating ETL Specifications from T L 100

6.5 Evaluation . 110

6.5.1 Generating ATL Transformations 112

6.5.2 Generating ETL Transformations 113

6.6 Conclusion . 116

7 Model Transformation by Examples Approach 117

7.1 Introduction . 117

7.2 Background . 119

7.2.1 Regression Analysis . 119

7.2.2 Decision Tree . 120

7.2.3 Bag-of-Words Model . 121

7.3 Methodology . 122

7.3.1 Class and Feature Transformation 122

7.3.2 Value Transformation . 123

7.4 Framework . 126

7.4.1 Framework Overview . 126

7.4.2 Training and Validation . 126

8

7.5 Evaluation . 127

7.6 Conclusion . 129

8 Conclusion and Future work 131

8.1 Conclusion . 131

8.2 Future Work . 133

9

List of Figures

2.1 Port metamodels . 36

4.1 Connection between MDE elements 55

4.2 Tree metamodel . 56

4.3 Graph metamodel . 56

4.4 Flattened tree metamodel . 58

4.5 Flattened graph metamodel . 58

6.1 Synthesising multiple model transformation language specifications

by metamodel matching . 88

7.1 MTBE framework overview . 127

7.2 Variation of accuracy during training 128

7.3 Training time for different number of models 129

7.4 Impact of the size of the models when transforming 130

10

List of Tables

3.1 Comparison of metamodel matching and transformation synthesis ap-

proaches . 52

3.2 Comparison of MTBE approaches . 52

4.1 Feature types of r .a for a : T . 57

4.2 Exact type matching similarity . 59

4.3 Fuzzy type matching similarity . 60

4.4 Similarity measures . 60

4.5 DSS metamodel matching F-measure results for benchmark cases [20] 65

4.6 DSS metamodel matching F-measure results for benchmark cases [18] 67

4.7 DSS metamodel matching results for ATL cases [22] 68

4.8 DSS metamodel matching results for ETL cases [21] 69

5.1 The accuracy of the trained regression analysis models 82

5.2 Evaluation of multi-objective and single-objective optimization ap-

proaches on cases of GAMMA [18] 83

11

5.3 Vargha-Delaney effect size comparison of multi-objective and single-

objective optimization approaches . 83

5.4 Execution time for population size 100 with 10 generations for multi-

objective optimisation . 84

5.5 Execution time for population size 100 with 10 generations for single-

objective optimisation . 85

6.1 Consistency and completeness checks [133] 91

6.2 Generated ATL for composite target feature mappings f 7−→ r .g of

E 7−→ F (for different multiplicity situations) 98

6.3 Generated ETL for composite target feature mappings f 7−→ r .g of

E 7−→ F (for different multiplicity situations) 109

6.4 Evaluation on ATL zoo cases [22] . 113

6.5 Effort of manual/automated versions of ATL cases [22] 114

6.6 Evaluation on ETL cases [21] . 115

6.7 Effort of manual versus automated versions of ETL cases [21] 116

12

Chapter 1

Introduction

1.1 Motivation

Model-Driven Engineering (MDE) has emerged as a foundational approach in con-

temporary software engineering, highlighting the utilization of models as primary

assets across the software development lifecycle [1]. Central to the essence of MDE

is the core concept of Model Transformation (MT), a process that provides the capa-

bility to migrate, refine, abstract and analyse models [2]. One prominent example of

MT is the Statechart to Petri Net transformation [3]. This transformation involves

transforming a Statechart diagram, which represents the behavior of a system in

terms of states and transitions, into a Petri Net, a mathematical model used to

describe concurrent and distributed systems. This example highlights how model

transformations can facilitate the translation of a high-level behavioral model into a

13

formal mathematical representation, allowing for rigorous analysis and verification

of system properties. [3], [4].

A MT specification defines the intended effect of the transformation in precise

terms, but does not give an implementation. A MT language is specialised for im-

plementing MT by defining a set of rules that identify how to transform between

models. In principle MT can be produced from these specifications in different

transformation languages. MT are often difficult to construct manually, and the

definition of MT requires a high level of expertise in particular MT languages [5].

Large transformations are expensive to develop manually and can become unman-

ageably complex [6], [7]. These issues are due to the complex syntax and semantics

of MT languages, and the lack of tool support for MT development (in contrast

to facilities such as IDEs and user support forums for programming languages). In

addition, transformations involve dependencies between MT rules, because of de-

pendencies in the metamodels (eg., a Table depends on Attributes , in the relational

data model). These dependencies are time-consuming to manually manage. Only

a few works implement MT language synthesis [8], and these can only synthesise a

single MT language [9]–[12]. However, different MT languages have different prop-

erties, therefore developers may need to produce more than one MT language in

different situations. Due to the significant difference between MT languages, the

learning cost is high.

Therefore, the difficulty of manual transformation development can be a signif-

14

icant barrier to the wider use of MDE, especially in an agile development context,

where development effort needs to be focused on rapid delivery of functionality to

customers, rather than on the production of development support tooling.

1.2 Overall Aim of the Thesis

The overall aim of this research is to reduce the development time and effort needed

to develop model transformations, and improve model transformation quality. In

practice, diverse application scenarios arise for the synthesis of model transforma-

tions. These encompass situations wherein a developer’s available resources consist

solely of metamodels, exclusively models, or metamodels of varying sizes. In this

thesis, we propose three approaches for automated or semi-automated model trans-

formation synthesis. Each of these three approaches pursues the objective from

different perspectives, playing to the strengths of each situation. To achieve the

aim, all these approaches should:

• accelerate transformation production by automatically deriving the main struc-

ture of a transformation from metamodels, reducing the amount of transfor-

mation code that needs to be manually written.

• produce transformations in multiple languages without additional effort, which

can address different properties of MT languages.

• ensure that transformations use correct language structures and appropriate

15

design patterns.

• ensure that transformations satisfy quality criteria, such as low cyclomatic

complexity and low redundancy [13], [14], and avoid deprecated features, such

as ATL iterative target patterns, which are deprecated since ATL 2.0 as they

break internal traceability links. It is better to use unique lazy rules instead.

1.3 Research Questions

The overall research questions investigated in this thesis are:

RQ1: Can the F-measure of the DSS approach exceed 0.8, which is higher than ex-

isting approaches [15]–[17], in small and medium-sized metamodel matching?

RQ2: Can the search-based approach in this thesis outperform the performance of

the state-of-the-art approach [18] in terms of effectiveness, while maintaining

acceptable execution times on large metamodels?

RQ3: Can this method substantially reduce developer effort (with less than 10%

of matchings requiring modifications and significantly faster execution times

compared to manual development), while simultaneously enhancing the quality

of generated model transformation (with a Flaw/LOC ratio lower than that

of the manual development version)?

RQ4: Does the proposed machine learning framework require less data and less

16

time for transformation compared to the state-of-the-art approach [19]?

We answer the research questions by evaluating our approach with regard to

its effectiveness in recognising appropriate metamodel matchings (with respect to

the matchings implied by the original manually-developed versions of cases) and in

producing transformations with appropriate correspondence. We also evaluated the

generated different model transformations with quality measures.

For the evaluation, we use 16 benchmark cases [18], [20] of metamodel matching,

10 ETL cases from Epsilon [21], and 8 ATL cases selected from ATL Zoo [22].

The evaluation cases cover a range of transformation categories. We define the

metamodels containing 10 or fewer classes as small-sized metamodels, metamodels

containing between 10 and 25 classes as medium-sized metamodels, and metamodels

containing 25 or more classes as large-sized metamodels.

The effectiveness of solutions is measured in terms of the closeness of the match-

ings to the original manual version of the transformations:

Precision = (number of correct class and feature mappings identified)/(total

number of class and feature mappings identified)

Recall = (number of correct class and feature mappings identified)/(total number

of class and feature mappings in original version)

F-measure = (2*Recall*Precision)/(Recall + Precision)

Correct means that our approach identifies the same class or feature matching

as in the original version (mannual version). The higher the recall, the less effort is

17

needed to add missing matchings to correct our version. The higher the precision,

the less work is needed to delete additional incorrect matchings from our version.

To address RQ1 and RQ2, as we expect the DSS and search-based optimisa-

tion approach can be used to extract correspondences from metamodels, evaluation

needs to include the different size metamodels from established benchmark, and the

effectiveness should be higher than existing works [18], [23].

To answer RQ3, we will evaluate our approach on a range of cases of differ-

ent kinds of transformation (refinements, abstractions, evolutions, migrations and

semantic mappings), which have previously-developed manual versions. As these

manual versions are from published papers or official websites (such as ATL Zoo

[22]), their quality and accuracy can be considered the higher standard among all

manual versions.

To answer RQ4, we will use our MTBE approach to generate transformations

and evaluate efficiency on different cases. We will also compare the performance of

our machine learning model with the state-of-the-art approach [19].

1.4 Contributions

We first propose an approach that uses metamodel matching to produce transfor-

mations. We extract correspondences from metamodels by metamodel matching,

and synthesise transformations from correspondences. Most work on metamodel

matching has focused on model migration for metamodel evolution. In such cases

18

(‘homogeneous metamodels’) there is usually a common vocabulary (names of classes

and features) in the two metamodels, and relatively small structural differences be-

tween them, because one metamodel has been produced by incremental changes to

the other metamodel. Our contribution is to define an exhaustive-search match-

ing approach based on data-structure similarity (DSS) of classes, using a flattening

process of classes to combine all of their owned, inherited and composed features.

DSS takes into account the essential structure of the data associated with a class,

regardless of class or feature names. DSS should be appropriate for cases where

there are substantial differences between the structure of the metamodels, and be-

tween the terminology of classes and features in these metamodels (‘heterogeneous

metamodels’).

However, exhaustive search for possible matches becomes infeasible even for cases

of moderate size (around 25 to 30 metaclasses in the combined metamodels). To

address this issue, we propose another metamodel matching approach based on

search-based optimisation to obtain the optimal metamodel matchings by max-

imising three measures, Data structure similarity (DSS), Name syntactic similarity

(NSS), and Name semantic similarity (NMS).

After extracting correspondences from metamodel matching, we introduce an in-

termediate language T L that provides a formal MT definition language independent

of specific transformation languages. T L is able to generate multiple MT languages,

including Query View Transformation Relations (QVTr), Query View Transforma-

19

tion Operations (QVTo), Atlas Transformation Language (ATL), Epsilon Transfor-

mation Language (ETL) and UML Reactive System Development Support (UML-

RSDS).

Model transformation synthesis from metamodels can only detect direct feature

value mapping, rather than detailed functional relationships between source and

target data, such as applications of specific numeric or string functions. To solve

this issue, we propose an approach based on Model Transformation by Examples

(MTBE), which uses machine learning technique to learn model transformation

examples and implement automated model transformation.

Our approaches are appropriate for refinements (mapping from a higher abstrac-

tion level model to a lower-level model), abstractions (the inverse of refinement) and

semantic mappings (maps a model m in one language to a formal representation in

a language with a formal semantics, to support semantic analysis of m), in addi-

tion to migrations (mapping models from one metamodel to another at the same

level of abstraction) between evolved or non-evolved metamodels. We restrict our

scope to out-place transformations, instead of in-place transformations which oper-

ate to restructure a single model (such as refactorings). We also do not consider

model-to-text transformations such as code generators [2], [24].

To conclude, the main contributions of this thesis are as follows:

• Data structure similarity approach for metamodel matching (Chapter 4).

• Search-based optimisation approach for metamodel matching (Chapter 5).

20

• Defining an intermediate language T L to enable the production of specifica-

tions in multiple MT languages from correspondences (Chapter 6).

• A framework based on machine learning for model transformation by examples

(Chapter 7).

In response to RQ1, our DSS approach has demonstrated the capability to sur-

pass an F-measure threshold of 0.8, an achievement that surpasses the performance

benchmarks set by existing approaches [15]–[17]. This accomplishment has been

realized within the domain of small and medium-sized metamodel matching.

Addressing RQ2, our novel search-based approach has exhibited superior effec-

tiveness when compared to the state-of-the-art approach presented by Kessentini et

al. [18]. Importantly, this enhanced effectiveness has been maintained while ensur-

ing that execution times remain at acceptable levels even in the context of large

metamodels.

In the context of RQ3, our approach has offered a substantial reduction in de-

veloper effort, as fewer than 10% of matchings have required modifications. This

efficiency gain has been accompanied by significantly faster execution times in com-

parison to manual development. Furthermore, the quality of generated model trans-

formations, as measured by the Flaw/LOC ratio, has shown improvement, outper-

forming the manual development version.

Lastly, addressing RQ4, our proposed machine learning framework has demon-

strated efficiency by requiring less data and less time for transformation in compar-

21

ison to the state-of-the-art approach proposed by Burgueño et al. [19].

In summary, our contributions encompass advancements not only in metamodel

matching but also in the quality and efficiency of model transformation generation.

These achievements demonstrate the efficacy and innovation of our approach in

addressing pivotal research questions and surpassing the state-of-the-art within the

field.

1.5 Structure

In Chapter 2 we present background on MDE and model transformations.

Chapter 3 reviews existing work in metamodel matching and model transformation

synthesis.

Chapter 4 presents our DSS approach for metamodel matching. This addresses

RQ1.

Chapter 5 shows how to extract correspondences from metamodels using search-

based optimisation approach. This addresses RQ2.

Chapter 6 introduces T L specifications and how to generate different model trans-

formation languages from correspondences. This addresses RQ3.

Chapter 7 describes the MTBE framework for model transformation. This answers

RQ4.

Chapter 8 concludes the thesis and gives future work plans.

22

1.6 Publications

The following publications have resulted from the work presented in this thesis:

• S. Fang and K. Lano, ”Extracting Correspondences from Metamodels Using

Metamodel Matching,” in STAF (Co-Located Events), pp. 3-8, 2019.

This paper corresponds to Chapter 4 in this thesis.

Contributor roles: Conceptualization, Methodology, Validation, Writing –

original draft, Writing – review and editing.

• S. Fang and K. Lano, ”Search-based metamodel matching: an approach com-

bining multi-objective optimisation and machine learning,” submitted to In-

formation Systems Frontiers, 2022.

This paper corresponds to Chapter 5 in this thesis.

Contributor roles: Conceptualization, Methodology, Validation, Writing –

original draft, Writing – review and editing.

• S. Fang and K. Lano, ”Model transformation by examples using a machine

learning framework,” submitted to Applied Intelligence, 2022.

This paper corresponds to Chapter 7 in this thesis.

Contributor roles: Conceptualization, Methodology, Validation, Writing –

original draft, Writing – review and editing.

23

• K. Lano, S. Fang and S. Kolahdouz-Rahimi, ”TL an abstract specification lan-

guage for bidirectional transformations,” in Proceedings of the 23rd ACM/IEEE

International Conference on Model Driven Engineering Languages and Sys-

tems: Companion Proceedings, pp. 1-10, 2020.

This paper corresponds to Chapter 6 in this thesis.

Contributor roles: Conceptualization, Methodology, Validation, Writing – re-

view and editing.

• K. Lano and S. Fang, ”Automated Synthesis of ATL Transformations from

Metamodel Correspondences,” in 8th International Conference on Model-Driven

Engineering and Software Development (MODELSWARD 2020), pp. 263-270,

2020.

This paper corresponds to Chapter 6 in this thesis.

Contributor roles: Conceptualization, Methodology, Validation, Writing – re-

view and editing.

• K. Lano, S. Kolahdouz-Rahimi and S. Fang, ”Model transformation devel-

opment using automated requirements analysis, metamodel matching, and

transformation by example,” in ACM Transactions on Software Engineering

and Methodology (TOSEM), vol 31, no. 2, pp. 1-77, 2022.

This paper consists some content of Chapter 4 in this thesis.

24

Contributor roles: Conceptualization, Methodology, Validation, Writing – re-

view and editing.

25

Chapter 2

Background

2.1 Model-Driven Engineering

Model-Driven Engineering (MDE) [1] is a discipline in software engineering [25]

that aims to raise the level of abstraction of program specification and increasing

automation of program development [26], [27]. This can improve the maintainability,

interoperability, portability, and productivity of software systems [28]. Compared to

pure software system development activities, it focuses on the engineering processes

[29]. To make the benefits of MDE in the development of software systems clearer,

the nature and fundamental elements of MDE should be introduced first.

There are different fundamental elements in MDE. MDE relies on models as first

class entities and that aims to develop, maintain and evolve software by performing

model transformations. Model-Driven Development (MDD) [26], [30]–[32] is the

26

most common instance of MDE. It is a software engineering framework that aims to

simplify and formalise the different activities and tasks that comprise the software

life cycle by using models and model technologies to raise the level of abstraction at

which developers create and evolve software [33]. Model-Driven Architecture (MDA)

[34], [35] is a subset of MDD proposed by the Object Management Group (OMG)

[36]. The MDA paradigm uses OMG standards for the purpose of development [29].

2.1.1 Model in MDE

In different research areas, models have different definitions [28], [35], [37]–[40]. To

conclude, a model uses a language to define a system in an abstract level without the

details of the system, enabling a more focused analysis of its structural and behav-

ioral aspects. In the MDE paradigm, software systems are specified and maintained

as models, which represent the main elements of the systems.

Models can be expressed by different modelling languages, such as Unified Mod-

elling Language (UML) [41], B [42], Z [43], etc. Modelling languages can be di-

vided into two categories, Domain-Specific Languages (DSLs) [44], [45] and General-

Purpose Modelling Languages (GPMLs) [46]. DSLs are tailored to particular appli-

cation domains, while GPMLs can be applied to any domain [45].

UML [47], [48] is a standardised modelling language consisting of an integrated

set of diagrams to build software models effectively. It has been adopted as the

standard by OMG since 1997. From then on, UML has been used to help software

27

developers clarify, demonstrate, build and document the output of software systems,

which makes it become a very important part of software system modelling [49].

Object Constraint Language (OCL) [47], [48] is a declarative language describing

constraints applying to UML models [50]. OCL includes two main parts: invariants

that have to be respected by software elements; specification of operations on the

software elements through pre and post- conditions [51]. A pre-condition defines the

conditions that must be met before an operation is executed, ensuring it’s invoked in

the right system state. Post-conditions must be true after an operation’s execution,

verifying if the behavior aligns with expectations. Together, they provide clear

specifications and verification for the execution and behavior of operations.

2.1.2 Metamodel in MDE

A metamodel defines the structure of the models and is specified with sets of syn-

tactic and semantic constraints in a modelling language [52]. A metamodel is the

higher abstraction of a model, therefore the hierarchical process is applicable to

them. Having a consistent and precise metamodel is a prerequisite for representa-

tion of a model [2]. In addition, a valid model must conform to its metamodel and

satisfy the constraints of the metamodel [53].

The Meta Object Facility (MOF) [54] is a metamodelling framework and meta-

data repository standard proposed by OMG. In order to generate metamodels, the

MOF framework was described by UML. There are four layers in the framework to

28

represent the abstraction of the model, and each layer is an instance of the layer

above it [55]. XMI [56] is a standard proposed by OMG, which is used to save UML

models in XML format [57]. Therefore, XMI is used to exchange data between

different layers by the MOF framework [58]. The advent of MOF not only pro-

vides consistency between modelling, but also makes it possible to interact between

different tools of MDE.

2.1.3 Model Transformation in MDE

Since the model is the most important element in MDE, the model transformation

plays a key role in MDE [24]. In MDE paradigm, to reach different aims, models

are often transformed from one representation to another one. The source models

should conform to the source metamodels, and the target model should conform to

the target metamodels [59].

The model transformation specifications are a set of rules defining how to trans-

form the source model to the target model. Different transformation specifications

are used to deal with different model transformations. Some transformation ap-

proaches have been proposed and some tools have been developed on the basis of

these approaches. These approaches and tools are aimed at using transformation

specifications to generate a target model from a source model.

29

2.1.4 Model-Driven Development

As an instance of MDE, MDD focuses on software development. Specifically, the

defining characteristic of MDD is concentrating on models, not on software pro-

gramming. Compared to programming languages, models bring fewer technical

constraints and a more intuitive representation of the problem to be solved. This

also makes it possible to allow software developers to complete software develop-

ment with only a modelling language, without the need to be familiar with specific

programming languages [26], [32].

However, two important prerequisites for the widespread use of MDD are that

mature automation transformation technologies and industry-wide standards have

emerged [26].

2.1.5 Model-Driven Architecture

Model-Driven Architecture (MDA) [28], [60], [61] is a framework proposed by OMG.

The framework meets several OMG standards and is used to support software de-

velopment in MDE. Specifically, the aim of MDA is to decrease the amount of

implementation detail required in system development by utilizing patterns of im-

plementation and raise the level of abstraction and integration at which system

developers work [62].

MDA includes three levels of abstraction for models, which are Computational

Independent Model (CIM), Platform Independent Model (PIM) and Platform Spe-

30

cific Model PSM).

CIM is an informational view point model which represents system and software

knowledge from the business perspective, rather than the details of the software

system. It may contain business knowledge about system organisation, roles, func-

tions, processes and activities, documentation, constraints, etc. [63]. Therefore, a

CIM does not require a specific modelling language [64].

A PIM is a model that focuses on the structure and function of a system, rather

than the details of technologies. To be more specific, the PIM takes into account

the parts of the software system that need to be developed, but does not determine

the technological platform that will be supported by the implementation [65].

A PSM is a model that is related to a specific technical platform, such as a specific

programming language or operating system. It is essential for the implementation

of system development [66].

Model transformation plays an important role in MDA. After building a CIM

from the problem domain, model transformation is applied to generate a PIM from

the CIM. Similarly, a PSM is generated from a PIM by model transformation as

well. Finally, the specific technical details (such as code) are generated by PSM.

2.2 Model Transformation Taxonomy

Model transformation can be distinguished between Model-to-Model (M2M) and

Model-to-Text (M2T) transformations [29]. In the Model-to-Model transformation,

31

both input and output parameters are models. While in the Model-to-Text transfor-

mation, the input parameter is a model and the output parameter is a text string.

Similarly, Text-to-Model (T2M) transformations have a text string as input and a

model as output, and such transformations are typically applied in reverse engineer-

ing [67].

Based on the language in which the source and target models of a transforma-

tion are expressed, a distinction can be made between endogenous and exogenous

transformations. Endogenous transformations are transformations between models

expressed in the same language. Exogenous transformations are transformations

between models expressed using different languages [39].

A further taxonomy is in-place versus out-place (separate-model) transforma-

tions, which is based on the number of models involved. If the number is only one,

the source and target model are the same, and all changes are made in-place. If the

transformations create model elements in one model based on properties of another

model, such transformations are called out-place. Note that exogenous transforma-

tions are always out-place [2].

In addition, a horizontal transformation is a transformation where the source

and target models reside at the same abstraction level. A vertical transformation is

a transformation where the source and target models reside at different abstraction

levels [68], [69].

32

2.3 Model Transformation Languages

Model transformations are supported by different dedicated transformation lan-

guages [70], [71]. Model transformation languages are domain-specific languages,

have ever since been associated with advantages in areas like productivity, expres-

siveness and comprehensibility [71]–[73]. In our research, we implement the trans-

formation derivation for several transformation languages. This section introduces

several common model transformation languages.

2.3.1 Query View Transformation Language

Query View Transformation Relations (QVTr) [74] is a standard transformation

language developed by OMG for supporting complex object pattern matching, and

implicitly creating trace classes and their instances to record what occurred during

a transformation execution. Query View Transformation Operations (QVTo) [74]

is a standard transformation language that can be regarded as a way of providing

imperative implementations, which is populated with the same trace models as

the QVTr. OCL extensions are used in QVTr, making it very user-friendly. In the

situation that there is challenge on providing a purely declarative specification of how

a Relation is to be populated, more than one Relation from a Relation specification

can be implemented by Mappings Operations. To create a trace between model

elements, the intercall between Mappings Operations will always involve Relation.

A transformation entirely written using Mapping Operations is called an operational

33

transformation [74].

2.3.2 UML Reactive System Development Support

UML Reactive System Development Support (UML-RSDS) [75] is based on UML.

For different levels of abstraction, necessary specification notations are provided for

MT definition. Precise axiomatic semantics are also provided which allows UML-

RSDS to generate executable code.

UML-RSDS can be used to define model transformations in two alternative ways:

(i) declaratively and abstractly using constraints, which express implicitly how two

(or more) models are related, and what changes to one model need to be made (to

preserve the truth of the constraints) when a change in another model takes place,

or (ii) by using operations of metamodel classes to explicitly define how a target

model is produced from a source model [75].

2.3.3 Atlas Transformation Language

Atlas Transformation Language (ATL) [76], [77] is a hybrid transformation language.

Both declarative and imperative constructs can be found in ATL. Declarative style

is encouraged. ATL transformations are unidirectional. It transforms read-only

source models to write-only target models. A bidirectional transformation can be

implemented by dividing it into several transformations. The source model can be

navigated when a transformation is executed, however, due to the source model

34

being read-only, it cannot be changed. In contrast, navigating is not allowed for a

target model.

ATL has two particular features: rule and helper.

The ATL matched rule mechanism provides a convenient way to specify how to

generate source model elements to target model elements for model transformation

developers. For this purpose, a matched rule enables to specify 1) which source

model element must be matched, 2) the number and the type of the generated target

model elements, and 3) the way these target model elements must be initialised

from the matched source elements. Matched rules are declarative rules that are

not explicitly called anywhere in the transformation, but are matched by the ATL

engine. However, the elements created in some matched rules may reference some

elements created by other matched rules. Lazy rules and Unique lazy rules are used

for creating new elements in the target model. They are called from matched rules

or from another unique lazy rule or lazy rule. The difference between lazy rules and

unique lazy rules is that the former always create new elements when they are called,

independently from the parameters with which they are called. The behaviour of

unique lazy rules is different. They do create new elements when they are first

called with any parameter. However, if a unique lazy rule is ever called again with

a specific parameter used before to call the same unique lazy rule, it does not create

again the same elements, but it returns a pointer to the elements previously created.

ATL also defines an additional kind of rules, called rule, which is used in situation

35

that requiring to generate target model elements explicitly by using imperative code

[78].

ATL enables developers to define methods to respond to different requirements.

These methods are called helpers. The helpers make it possible to define factorised

ATL code which can then be called from different points of an ATL program. There

are two kinds of helpers: the functional helper and the attribute helper. A given data

type is required for defining both functional helper and attribute helper. However,

a functional helper can accept parameters, but an attribute helper cannot accept

parameters [78].

Here is an example of ATL, which is from the Port case of ATL Zoo [22]:

(a) Type A

(b) Type B

Figure 2.1: Port metamodels

1 module TypeA2TypeB;

2 create inB : TypeB from inA : TypeA;

36

3

4 rule BlkA2BlkB {

5 from

6 blkA : TypeA!BlockA

7 to

8 blkB : TypeB!BlockB (

9 inputPorts <- blkA.inputPorts ->

collect(e | thisModule.

PortA2InPortB(e)),

10 outputPorts <- blkA.outputPorts ->

collect(e | thisModule.

PortA2OutPortB(e))

11)

12 }

13

14 lazy rule PortA2InPortB {

15 from

16 s : TypeA!PortA

17 to

18 t : TypeB!InPortB (

19 name <- s.name

20)

37

21 }

22

23 lazy rule PortA2OutPortB {

24 from

25 s : TypeA!PortA

26 to

27 t : TypeB!OutPortB (

28 name <- s.name

29)

30 }

2.3.4 Epsilon Transformation Language

The Epsilon Transformation Language (ETL), a hybrid model transformation lan-

guage, was proposed by Epsilon [79]. It has been built on top of the infrastructure

provided by the Epsilon Eclipse GMT component. ETL provides a task-specific rule

execution scheme, but also allows for the imperative features within EOL [80] to be

used for transformation rules.

An ETL file consists of a module which contains transformation rules, each rule

must have a unique name (with respect to the module) and operates on one source

element that can be transformed into many target elements. A transformation rule

is defined as one of three keyword rules: abstract, lazy and primary. A rule can

38

also extend another, using the extends attribute. Transformation rules may also

contain guards, which are defined in EOL, that restrict the rules applicability to

the source model elements. The structure of each transformation rule requires a

keyword to aid in its definition, as well as a transform keyword which must list the

source keyword and the to keyword that declares one or more targets. The extends

keyword can then be used if necessary to define a comma-separated list of rules to

which the current rule extends, enabling further detail to be given to pre-defined

rules, or abstract rules. (This is similar to the extends functionality in Java). If

required, a guard can then be used which defines an EOL block, and finally the body

of the rule is specified as a sequence of EOL statements. ETL also offers the ability

to define operations, which are imperative blocks of EOL that can be written to aid

in the model transformation process. These operations can take multiple inputs as

well as provide return values, furthermore they are able to create new instances of

model elements. This provides the freedom to choose between imperative operations

and the more declarative lazy rules when defining a transformation module. As

previously mentioned EOL is the basis for the Epsilon suite, and as such different

aspects of the Epsilon suite can build upon this. A key addition to EOL within

ETL, which enhances its transformational powers, is the equivalent() operator. The

equivalent() or equivalents() operators automatically resolve the source elements to

their transformed counterparts in the target model; equivalent() returning a single

element and equivalents() returning a bag [80].

39

Here is an example of ETL, which is from the Epsilon [79]:

1 rule Tree2Node

2 transform t : Tree!Tree

3 to n : Graph!Node {

4 n.label := t.label;

5

6 if (t.parent.isDefined ()) {

7 var edge := new Graph!Edge; edge.source := n;

8 edge.target := t.parent.equivalent ();}

9 }

2.4 Model Transformation Categories

To precisely define the scope of the approaches elucidated in this thesis, specifically,

the range of different model transformation categories they should encompass, we

classify the category of a transformation based on the transformation intent defini-

tions of Lucio et al. [81]:

1. Migration – mapping models from one metamodel to another at the same

level of abstraction. This can be subdivided into:

(a) Copy transformations where the source and target metamodels are the

same or isomorphic

40

(b) Evolution cases where one metamodel is an evolved version of the other

(c) Heterogeneous migration, where the metamodels are unrelated by evolu-

tion.

2. Analysis – extracting information from a model as a view or other analysis

result.

3. Refinement – mapping from a higher abstraction level model to a lower-level

model.

4. Abstraction – the inverse of refinement.

5. Code generation – mapping from a model to text or executable code.

6. Refactoring – Update-in-place transformations that restructure a model, re-

taining its conformance to the same metamodel or a closely related metamodel.

7. Semantic mapping – maps a model m in one language to a formal repre-

sentation in a language with a formal semantics, to support semantic analysis

of m.

8. Bidirectional (Bx) – transformations which can be applied in either source-

to-target or target-to-source directions, supporting model synchronisation and

change-propagation, which ensure the source and target models are kept con-

sistent with each other by the bx.

41

In general, we would expect copy transformations to be simpler to synthesise

than evolution cases, evolution to be simpler than heterogeneous migration cases,

etc.

For refinements and semantic mappings, where the target metamodel is more

detailed than the source, we could look for feature matchings of direct source features

to composite target features: f 7−→ g .h. Abstraction would work in the other way:

g .h 7−→ f .

Evolution cases are more likely to have direct-to-direct matchings f 7−→ g .

But general migrations could involve both refinement and abstraction aspects.

2.5 Scope of the Research

In terms of scope, we not only consider the metamodel matching between one source

class and one target class, but also consider many-to-one, one-to-many, and many-

to-many matching.

We consider both model-to-model (M2M) transformations between two homoge-

neous metamodels (such as migration transformations to support metamodel evo-

lution, where one metamodel is an evolved version of the other), and general M2M

transformations relating two heterogeneous metamodels of different languages. In

this thesis, we focus on the separate-models case, including refinements, abstrac-

tions, semantic mappings and migrations. We do not cover model-to-text (M2T),

text-to-model (T2M), or text-to-text (T2T) cases.

42

Chapter 3

Related Work

In this chapter, we survey related work in metamodel matching and transformation

synthesis. We summarise the gaps and limitations in existing approaches. Addi-

tionally, we illustrate how our approaches address these shortcomings through a

comparative analysis, thereby highlighting the novelty of our approach.

3.1 Metamodel Matching Approaches

In this section, we classify some metamodel matching approaches in the literature

by the matching algorithm on which it is based. Some of these approaches reuse

algorithms that have already been applied for database schema matching, such as

similarity flooding, or search-based algorithms. While others are based on cus-

tomised rules that are specifically developed for metamodels.

43

3.1.1 Matching Approaches based on Similarity Flooding

An approach based on similarity flooding (SF) [82] is proposed by Falleri et al. [16],

which automatically detects mappings between two metamodels and uses them to

generate an alignment between those metamodels. However, this approach requires

manual specification of the initial ‘seed’, and the quality of the ‘seed’ directly impacts

the final matching results. In addition, this alignment needs to be manually checked

and can then be used to generate a model transformation manually, which our

approaches check and generate automatically.

Atlas Model Weaver (AMW) [10] is an approach that uses matching transfor-

mations and weaving models to semi-automate the development of transformations.

Weaving models are models that contain different kinds of relationships between

model elements. These relationships capture different transformation patterns.

Matching transformations are a special kind of transformations that implement

methods that create weaving models. The first phase of matching transformation is

to create weaving models. The second phase is calculating element similarity, which

computes a similarity value between the elements referred by the source and target

references, for every link of a weaving model. This similarity value is used to evaluate

the semantic proximity between the linked elements. A link with a high similarity

value indicates that there is a good probability that the source element must be

translated into the target element. The third phase is selecting best links, which

selects only the links that satisfy a set of conditions. The selected links are included

44

in the final weaving model. In the fourth phase, a graphical approach is used to

easily chain and customise different matching transformations. Finally, the weaving

model produced by the matching transformations is translated into a transformation

model. However, AMW [10] can only handle particular source and target metamod-

els, however we define general-purpose patterns and consistency and completeness

checks to identify and refine correspondences for arbitrary metamodel pairs. For

example, the mutual consistency of feature mappings of the two directions of a bidi-

rectional association is a logical property which must hold for any semantically-valid

transformation, and hence a proposed matching cm (class matching), fm (feature

matching) must satisfy this property or be modified to satisfy it

3.1.2 Matching Approaches based on Customised Rules

COPE [12] is an integrated approach to specify the coupled evolution of meta-

models and models to reduce migration effort. COPE is based on a language that

provides means to combine metamodel adaptation and model migration into so-

called coupled transactions. Two central requirements for adequate tool support,

reuse and expressiveness, are fulfilled by two kinds of coupled transactions: reusable

and custom coupled transactions. A reusable coupled transaction allows the reuse

of recurring coupled transformations across metamodels. A custom coupled trans-

action can be manually defined by the metamodel developer for complex migrations

that are specific to a metamodel. Reuse is provided by reusable coupled transac-

45

tions that encapsulate recurring migration knowledge. Expressiveness is provided

by a complete set of primitives embedded into a Turing-complete language, which

can be used to specify custom coupled transactions. Our concept of DSS metamodel

matching is related to the concept of metamodel-independent coupled changes in the

COPE system [12], however metamodel matchings are defined as logical relations

between metamodel structures, whilst COPE coupled changes are operationally de-

fined. Adopting a more abstract and general formalism for expressing metamodel

relationships gives us the capability to automatically produce transformations in

multiple languages, whilst the COPE transformations are manually coded in a spe-

cific language. We consider arbitrary pairs of metamodels, whilst COPE is focused

on the case of metamodel evolution.

AtlanMod Matching Language (AML) [9] provides a notation for the construc-

tion of metamodel matching using heuristics. The process of matching is divided

into three steps. The first step calculates the equivalence and changes between a

metamodel and its previous version metamodel. The second step transforms the

equivalence and changes into an adaptation transformation. In the third step, this

adaptation transformation can be adapted to the new version of any model that

conforms to the previous version. However, the AML [9] requires more substantial

intervention from the developer than our approach, which is primarily automated

and requires relatively low manual intervention.

A metamodel matching approach based on the planar graph edit distance (PGED)

46

is proposed [83], which requires a planarization algorithm for metamodel graphs.

This approach proposes to apply an efficient approximate graph edit distance algo-

rithm and presents the necessary adjustments and extensions of the general algo-

rithm as well as an optimisation with ranked partial seed mappings. However, they

rely on an initial manually-constructed ‘seed’ matching of classes, and on planariza-

tion of metamodel graphs, which our approaches do not need.

A class matching algorithm based on ontology is introduced [11], which is not

limited to a certain ontology language or to a certain domain of interest, rather

any kind of ontologies can be used as long as they classify their concepts in a tax-

onomy. In particular, the algorithm can access common knowledge ontologies like

the linguistic resource WordNet [84], the DB-pedia ontology [85], and further Web

Ontology Language (OWL) ontologies. From the obtained class model mappings,

a QVT script is generated automatically, whose particular relations reflect identi-

fied correspondences between classes of any cardinality. Another approach based

on semantic matching with EMFCompare [86] is proposed [23], which presents a

custom matching engine extending the default one of EMFCompare. In addition to

the syntactical and structural correlations, the proposed extension compares model

elements with respect to their semantic meaning using the WordNet lexical database

[84].

The ontology approach [11] and the EMFCompare approach [23] use ontology-

based matching for class and attribute names. This may however require access to

47

substantial background knowledge and extension of the metamodels. In addition,

the EMFCompare approach [23] is probably only effective when considering different

versions of the same models, and may tend to create inefficiencies whenever applied

to models conforming to different metamodels, while our approaches faces both situ-

ations. Ontology approach [11] may require manual intervention and improvement,

and there are limitations on the forms of association that can be handled. Quality

measures of the generated QVTr are not assessed.

3.1.3 Matching Approaches based on Search-based Algo-

rithms

GAMMA [18] is an approach that considers metamodel matching as an optimisation

problem. The approach uses a global search, namely genetic algorithm, to generate

an initial solution and, subsequently, a local search, namely simulated annealing, to

refine the initial solution generated by the genetic algorithm. The approach starts by

generating randomly a set of possible matching solutions between source and target

metamodels. Then, these solutions are evaluated using a fitness function based on

structural and syntactic measures. However, they do not consider DSS or composed

features in their matchings, but only non-composed (directly owned) and inherited

features. In addition, a general limitation of genetic algorithm approaches is that

they are probabilistic, which means that they could produce different results in

different executions. Also, it usually requires some initial population to be defined.

48

Transformation synthesis is not addressed in GAMMA [18].

3.1.4 Schema Matching

Schema matching is a fundamental challenge in various domains of database appli-

cations, including data integration, schema evolution, schema migration, and so on

[87]. Despite its primary application in the database field, this problem also involves

establishing associations between different abstraction levels. Additionally, schema

matching encounters the need for automation due to the time and effort involved

in manual matching, paralleling the requirements found in metamodel matching

[87]. Several approaches to automate schema matching have already been devel-

oped. SKAT [88], [89] and TranScm [90] employ implicit rules for schema matching,

while DIKE [91], [92] uses algorithms to calculate synonyms, homonyms to get sim-

ilarity for matching. ARTEMIS [93] relies on a computer software tool [94] for

schema matching. CUPID [95] focuses on tree-like data schemas (XML) and per-

forms matching based on similarity, utilizing techniques like matching subtrees and

weighted leaves. These approaches primarily rely on name similarity criteria such

as name equality, synonyms, homonyms, and hypernyms. SemInt [96], [97] employs

pattern schema through neural network training.

However, a common limitation among these approaches is the need for manual

intervention. SKAT [88], [89] and TranScm [90] rquire developer to add matching

and mismatching rules. DIKE [91], [92] necessitates manual resolution of structural

49

conflicts, and ARTEMIS [93] and CUPID [95] allows users to adjust weights or

threshold values, requiring user intervention. SemInt [96], [97] requires developers

to select matching attributes from attribute clusters. In contrast, our approaches in

this thesis minimizes the need for manual intervention and supports n-m matching,

distinguishing it from these existing approaches.

3.2 Transformation Synthesis Approaches

There are several approaches for transformations synthesis from correspondences

[9], [10].

AMW [10] defines case-specific patterns to create transformations for particular

source and target metamodels, and its ATL generation approach does not appear to

address the issue of composed target features, which considerably complicates ATL

production. Compared to our approaches in this thesis, AMW does not consider

the quality of generated transformations, and its ATL generation approach does

not appear to address the issue of composed target features, which considerably

complicates ATL production.

The AML [9] provides a means to define customised matching criteria and tech-

niques. This requires more substantial intervention from the developer. It is unclear

if AML is able to generate complex ATL for cases of composed target features, while

our approaches can hanldel this.

Model transformation by example (MTBE) is an approach initially introduced

50

by Varro et al. [98]. An automated approach [99] is proposed by using inductive

logic programming (ILP) [100]. An initial tool support for MTBE using ILP [101]

is presented to infer explicit transformation rules from example models. The ap-

proach was only demonstrated on small examples. An approach for programming

by examples (PBE) [102], [103] is technically related to MTBE, but focusing on

programming languages.

Other approaches to MT synthesis are MTBE using machine learning [19], [104]

or search-based model matching using optimisation algorithms [105]. While these

approaches achieve complete automation, large numbers of examples are needed,

and the transformation is derived as a ‘black box’. Existing ML approaches [19],

[104] cannot recognise numeric relationships.

Compared with the existing MTBE approaches [19], [101], [104], [105], our

MTBE approach can implement several common feature value transformations. In

addition, due to the decision tree technique, our approach has some interpretability.

3.3 Conclusion

Table 3.1 summarises the different approaches that have been taken for metamodel

matching and transformation synthesis. Table 3.2 summarises different MTBE ap-

proaches.

To conclude, existing approaches mainly consider name syntactic similarity or

name semantic similarity, or graph structure similarity, rather than data-structure

51

Table 3.1: Comparison of metamodel matching and transformation synthesis ap-
proaches

Approach Scope
Matching
measures

Matching
algorithms

Consistency/
completeness

Synthesised
transformations

Transfo-
rmation
quality

SF [16] general graph structure
similarity
flooding

X none X

AML [9] evolution
name syntactic,
name semantic,
customised

customised X ATL X

AMW [10]
evolution,
migration

name syntactic,
name semantic

similarity
flooding

X ATL X

COPE [12]
evolution,
migration

name syntactic
customised;
manual

X COPE X

PGED [83] general graph structure customised X none X

SBSE [18] general
name syntactic,
name semantic,
structure

search-based X none X

Ontology [11] general
name semantic,
ontology

customised X QVTr X

EMF Compare [23] general
name semantic,
customised

similarity
flooding

X none X

Table 3.2: Comparison of MTBE approaches

Approach Scope
MTBE
algorithms

Complex
feature value
transformation

Interpretability

ILP [101] general ILP No Yes
Search-based [105] general Genetic No No
LSTM [19], [104] general Neural networks No No

similarity. Name complexity, potential semantic ambiguity, and differences in nam-

ing conventions can hinder similarity assessment. Graph structures are often intri-

cate, involving nested elements, multi-level relationships, and possible inconsisten-

cies. These makes it more difficult to derive transformations from the correspon-

dences [8]. Genetic algorithms have the problem of probabilistic behaviour, which

is due to several stochastic components inherent in their operation, such as the

initial population is randomly generated, and the processes of crossover and muta-

52

tion introduce randomness in the generation of new individuals. These stochastic

operations collectively contribute to the probabilistic nature of genetic algorithms,

and may fail to achieve an optimal mapping [106]. Deterministic approaches have

problems of scalability.

Some approaches do generate transformations, however, the generated transfor-

mation is only in one language (ATL [9]; QVTr [11]; COPE transformation [12]).

The existing MTBE approach cannot handle complex feature value transforma-

tions, such as numerical or String transformation.

There are gaps in current work for approaches which generate transformations

in multiple languages, also for approaches which effectively combine data-structure

and name similarity techniques. There is a lack of MTBE approaches focused on

complex feature value transformation.

53

Chapter 4

Data-structure Similarity

Approach for Metamodel

Matching

4.1 Introduction

A correspondence of two metamodels defines a class matching between classes of

the metamodels, and a feature matching between features in the source classes and

target classes. These correspondences can be used to define transformations directly.

Figure 4.1 shows the connection between these elements.

In cases where it is difficult to perform model transformation directly at the

model level, it is a simpler choice to operate from the upper level, that is, between

54

Figure 4.1: Connection between MDE elements

metamodels. In this chapter, we introduce the concept that correspondences can be

extracted from metamodels by using metamodel matching.

We propose a Data-structure similarity (DSS) approach for metamodel match-

ing. To better demonstrate our approach, we introduce a pair of metamodels, Tree

metamodel (Figure 4.2) and Graph metamodel (Figure 4.3) as an illustrative exam-

ple. We will use this illustrative example to show in detail how to use DSS approach

for metamodel matching in the following sections. The modeling language used for

presenting model diagrams in this thesis is UML.

55

Figure 4.2: Tree metamodel

Figure 4.3: Graph metamodel

4.2 Flattening Metamodel

To make the class information completely be expressed, we need to flatten all classes

in the source and target metamodels first. Flattening a class is the process of

representing the class in a form which represents all of its recursively inherited and

composed features [107]. The process of flattening inheritance is as follows: for

each class C , if C has a superclass D , copy all features of D to C if they are not

already in C . To flatten navigation, the process is: for each class C , if it has an

association r to another class D , add features r .a (for each feature a : T of D) to

56

C . Specifically, due to the existence of multiplicity, there may be three cases of a

type T: T , Set(T), and Sequence(T), Table 4.1 summarises the types of r .a under

different conditions.

Table 4.1: Feature types of r .a for a : T

Feature type Condition

T if r has 1-multiplicity
Set(T) if r has *-multiplicity and T is not a collection type

Sequence(T) if r has * ordered-multiplicity and T is not a collection type
Set(S) if r has *-multiplicity and T is a collection type Set(S)

or Sequence(S)
Sequence(S) if r has * ordered-multiplicity and T is Sequence(S)

The associations are also represented as features in the flattened representation,

and the type of these features is the target class to which the association refers. This

ensures that the structure of the metamodel is fully expressed in the flat version.

The flattening process terminates when the flattened association of a class redirects

to the same class. For example, class ‘Edge’ has an association to ‘Node’, and there

is also an association ‘outgoing’ from ‘Node’ to ‘Edge’, so ‘Edge’ has an association

‘target.outgoing’ to itself, as the multiplicity of ‘outgoing’ is many (*), therefore,

the type of ‘target.outgoing’ is ‘Set(Edge)’.

These steps are repeated until there is no change in the metamodel. The flattened

metamodels of the illustrative case are shown in Figure 4.4 and Figure 4.5.

57

Figure 4.4: Flattened tree metamodel

Figure 4.5: Flattened graph metamodel

4.3 Data Structure Similarity Measure

Data structure similarity (DSS) approach only measures similarity of the types of

the class features. For a class in a metamodel, in addition to its directly owned

features, its other features are derived from inheritance and navigation.

For two features with the same type, their DSS should be 1, otherwise it is

0. The DSS for 2 classes should be 1 if neither class has any features. For the

types of associations, if we assume that class E1 matches class E2, then type E1 is

considered fully similar (value 1 equivalent) to type E2.

An interesting question is whether features with different multiplicity should

58

be regarded as the same type. We give two alternatives: exact matching and fuzzy

matching. In the exact matching, the similarity between these different types should

be 0 (Table 4.2). However, for the fuzzy matching, we performed a regression

analysis on a number of metamodel matching cases to obtain the most reasonable

type similarity with different multiplicity (Table 4.3) [108]. Sequence(T) could be

considered 0.8 similar to Set(T), because the data structures are quite similar (they

both allow for multiple elements, and differ only in terms of ordering). T is only

partly similar (0.5) to Set(T) or Sequence(T) because the type of elements is the

same, but the multiplicities are different. This allows more flexible matches than

strict equality of the types.

Exact type matching is appropriate for homogeneous metamodel matching cases,

e.g., evolution cases. If exact type matching is used for heterogeneous metamodel

matching cases, then many matchings have 0 similarity, due to the different vocab-

ulary (names of classes and features) in the two metamodels. Hence, fuzzy type

matching is more appropriate for other cases, where more differences between the

metamodels can be expected.

Table 4.2: Exact type matching similarity

Similarity a : T a : Set(T) a : Sequence(T)

b : T 1 0 0
b : Set(T) 0 1 0

b : Sequence(T) 0 0 1

59

Table 4.3: Fuzzy type matching similarity

Similarity a : T a : Set(T) a : Sequence(T)

b : T 1 0.5 0.5
b : Set(T) 0.5 1 0.8

b : Sequence(T) 0.5 0.8 1

4.4 Other Similarity Measures

In addition to DSS, we also investigated several different alternatives (Table 4.4),

driven by our intention to assess and contrast diverse methods for measuring simi-

larity in order to pinpoint the most appropriate similarity measure for our research.

Table 4.4: Similarity measures

Measure Definition of similarity

Graph structural Class neighbourhoods in MM1, MM2

similarity (GSS) have similar graph structure metrics [109]
Graph edit Class reachability graphs in MM1, MM2

similarity (GES) have low graph edit distance [83]
Name syntactic Names with low
similarity (NSS) string edit distances [110]
Name semantic Names are synonymous terms
similarity (NMS) or in the same/linked term

families according to a thesaurus [111]
Semantic context Classes play similar semantic roles
similarity (SCS) in the 2 metamodels [112].

60

4.4.1 Graph Structure Similarity

Graph similarity measures treat a metamodel as a graph of nodes (classes) and edges

(associations, aggregations and inheritances). GSS involves three separate measures

of graph structure: leadership (L), bonding (B) and diversity (D) [109]. Leadership

measures how dominant one vertex v is in the graph, ie., by how much the number

of v -incident edges dv exceeds that of other verticies. From the viewpoint of one

vertex e the L measure is defined as
n∗de − Σx ̸=edx
(n−2)∗(n−1)

, where n is the number of verticies.

Bonding measures the number of triples e1, e2, e3 of distinct nodes connected in a

triangle, as a proportion of the triples that only have two connecting edges. For

a specific class e, we restrict the considered nodes to the immediate neighbours of

e. Diversity measures the number of disjoint edges in the graph (edges with no

common end points). The proportion of edges adjacent to e or a neighbour of e

which are pairwise disjoint is taken as the D measure.

4.4.2 Graph Edit Similarity

GES is based on the concept of graph edit distance d(g1, g2): the minimum number

of basic graph rewrites needed to transform one graph g1 into another g2, modulo the

matching cm of nodes (classes are the graph nodes in this analysis) [83]. We compute

the subgraph Re of nodes reachable from source class e in MM1 and the subgraph

Re′ of nodes reachable from a potential matching class e ′ in MM2 and evaluate the

similarity of e and e ′ as 1/(1 + d(Re ,Re′)). The basic edit steps permitted are

61

splitting an edge with a new node, removing a node and joining incident edges, and

introducing/removing edges.

4.4.3 Name Syntactic Similarity

Name syntactic similarity (NSS) measures the string edit distances [110] of the

names of two features. String edit distance measures the minimum number of op-

erations (insertions, deletions, substitutions) which change one string into another

one. For example, the edit distance, ed, between the two lexical entries “TopHotel”

and “Top Hotel” equals 1, ed(“TopHotel”, “Top Hotel”)=1, because one insertion

operation changes the string “TopHotel” into “Top Hotel”.

For two strings A and B , the NSS is:

NSS =
A.size + B .size − ed(A,B)

A.size + B .size

4.4.4 Name Semantic Similarity

For NMS a suitable thesaurus (in XML format) is used. A thesaurus has data

consisting of concepts each of which has a set of preferred and alternative terms [111].

A term may be in the term sets of several concepts. Terms have a semantic distance

of 0 if they are identical or are both preferred terms of one concept, a distance of 1

if they are other alternatives for the same concept, and a distance of 2 if they are in

the term sets of two concepts linked by a common term. Otherwise the distance is 3.

62

NMS similarity of terms nmsterm(s1, s2) is then 3−distance
3

. We decompose class and

feature names using camel-case splitting [113] and common prefix/suffix removal,

and apply NMS to the resulting substrings if they have length ≥ 2. nms(c, d)

for classes c, d is 1
K∗L∗ the sum of the NMS similarities nmsterm(cc, dd) of the

substrings cc of c.name and dd of d .name, where K , L are the number of c.name,

d .name substrings.

4.4.5 Semantic Context Similarity

For SCS we use measures of ontology similarity [112]. The semantic cotopy SC (e)

of a class in a metamodel is the set of all classes related directly or indirectly to

e by inheritance. The upwards cotopy UC (e) of a class e is the set of ancestors

of e, including e. Given a matching cm of classes of MM1 to the classes of MM2,

a semantic similarity measure based on UC is CM (e, e ′) = #(UC (e) ∩ cm−1(|UC (e′)|))
#(UC (e) ∪ cm−1(|UC (e′)|)) .

The similarity of reference features of e and e ′ is also incorporated in the SCS

measure, using the UC similarity of the class types or element types of the features.

4.5 DSS Approach

As our approach is to use similarity measures to extract correspondences from meta-

model matching, we compared the effectiveness of different similarity, the result is

shown in Section 4.6. We found that the DSS performed best, so our metamodel

63

matching was based primarily on the DSS.

The DSS measures mentioned in Section 4.3 is feature-based, for two flattened

classes A$ and B$, the similarity for class mapping is DSSclass :

DSSclass =
max (SumOfTypeSimilarities)

max (A$.features .size,B$.features .size)

We sum the individual DSSclass for two metamodels to obtain a mapping score

for two metamodels, as DSS approach can handle one-to-one, one-to-many, many-

to-one matchings, the mapping score should be divided by the number of matchings

between the metamodels, and the matchings corresponding to the largest result are

the optimal correspondences obtained by DSS approach. However, sometimes there

are multiple matching situations with the same highest mapping score, we therefore

use exhaustive DSS as the principal matching technique, with NSS/NMS used to

distinguish matchings that have the same score.

In the Tree to Graph example (Figure 4.4 and Figure 4.5), the source metamodel

contains 1 class, and the target metamodel contains 2 classes, meaning there are 3

potential class mappings. After calculating these 3 mappings, the mapping score for

Tree$ to Edge$ is 0.42, for Tree$ to Node$ is 0.5, and for Tree$ to Edge$&Node$ is

0.46. Therefore, the appropriate matching is Tree$ to Node$, with the correspon-

dences: Tree$ [label, parent] to Node$ [name, incoming source].

64

4.6 Evaluation

First, we compare the effectiveness of different similarity measures for metamodel

matching on benchmark examples. In Table 4.5 we give the F -measure results for

metamodel matching using the different similarity measures, on the 6 benchmark

cases [20]. Each of these examples is quite small (with no more than 11 classes in

total between the source and target metamodels), however they illustrate a range

of situations in which source and target metamodels can differ structurally, linguis-

tically and semantically.

Table 4.5: DSS metamodel matching F-measure results for benchmark cases [20]

Cases number DSS NSS NMS GSS GES SCS

1 (evolution) 0.86 0.86 0.86 0.25 0.44 0.71
2 (abstraction) 0.5 0.75 0.5 0 0.39 0.5
3 (refinement) 1.0 1.0 1.0 0 0.33 1.0
4 (refinement) 1.0 1.0 1.0 0 0.28 1.0
5 (abstraction) 0.71 0.92 0.71 0.09 0.28 0.85
6 (refinement) 1.0 0.75 0.25 0 0.25 0.75
Averages 0.85 0.88 0.72 0.06 0.33 0.8

As can be seen from these results, GSS has generally poor accuracy, and GES has

variable accuracy. It also has exponential time complexity for general metamodel

graphs [83]. NMS and NSS depend upon linguistic similarities between MM1 and

MM2. SCS is suitable when the metamodels have similar terminologies and tax-

onomies [114]. These techniques perform less well than DSS in case 6, where there

is substantial change in class names and taxonomies. DSS is the most consistently

65

accurate similarity measure for metamodel matching, and relatively independent of

metamodel terminologies. It is also insensitive to alternative inheritance arrange-

ments, because inheritance hierarchies are flattened in computing all features of a

class. Therefore, we base our combined measure on DSS as the primary factor, with

NSS and NMS as secondary factors.

In Table 4.6 we show the results of our DSS metamodel matching approach on

the large benchmark examples of GAMMA [18]. For each pair of metamodels we

indicate the category of transformation and size, which is the numbers of class and

feature mappings in original versions. We compare the F-measure achieved by our

approach and that reported in GAMMA [18]. We also give the execution time of

our metamodel matching approach.

Our F-measure results on these cases are similar to those of GAMMA [18],

however the the search procedure is deterministic.

We also evaluated DSS metamodel matching using 10 published ATL cases and

10 published ETL cases, from papers and from the Epsilon example set [21], [22].

These include a range of cases from copy transformations to refinement cases with

substantial metamodel differences (OO2DB; uml2Simulink). In Table4.7 and Table

4.8 we quantify the recall, precision and F -measure of our matching result with

respect to the mappings of the original versions. For ATL cases, the average F -

measure score of our solutions is 0.871, and the average F -measure score for ETL

cases of our solutions is 0.882, indicating high accuracy in recapturing the original

66

Table 4.6: DSS metamodel matching F-measure results for benchmark cases [18]

Case F-measure F-measure Execution
(category; size) (DSS) (GAMMA [18]) time (s)

EER-WebML 0.88 0.70 0.9
(migration; 13)
Ecore-EER 0.75 0.52 0.188
(refinement; 22)
Ecore-WebML 0.72 0.74 0.125
(refinement; 21)
UML1.4-EER 0.83 0.71 0.172
(refinement; 31)
UML2.0-EER 0.64 0.68 0.422
(refinement; 35)
UML1.4-WebML 0.63 0.91 0.865
(refinement; 30)
UML2.0-WebML 0.77 0.81 0.219
(refinement; 34)
UML1.4-Ecore 0.69 0.79 104.5
(migration; 39)
Ecore-UML2.0 0.77 0.75 510
(migration; 43)
UML1.4-UML2.0 0.63 0.8 393
(evolution; 52)
Averages 0.73 0.74 101

intent of the transformation cases.

Overall for RQ1, our findings indicate that metamodel matching through the

DSS approach effectively identifies the majority of transformation mappings in ho-

mogeneous metamodel scenarios. In terms of F-measure, our DSS approacha consis-

tently achieves values exceeding 0.8, surpassing the performance reported in existing

literature [15]–[17].

67

Table 4.7: DSS metamodel matching results for ATL cases [22]

Case Recall Precision F-
(category; size) measure

Ports 1.0 1.0 1.0
(evolution; 7)
PetriNet2PathExp 0.78 1.0 0.875
(semantic mapping; 11)
Class2Relational 1.0 0.88 0.94
(migration; 10)
PathExp2PetriNet 0.94 1.0 0.97
(semantic mapping; 11)
SimpleClass2SimpleRDB 1.0 0.87 0.93
(migration; 13)
Ant2Maven 0.84 0.99 0.91
(evolution; 109)
Maven2Ant 0.92 0.91 0.91
(evolution; 109)
MOF2UML 0.69 0.78 0.73
(evolution; 71)
MySQL2KM3 0.79 0.81 0.8
(abstraction; 24)
UML2MOF 0.53 0.8 0.64
(evolution; 71)
Averages 0.849 0.904 0.871

However, there are practical barriers to its application in large cases due to the

large numbers of possible matchings to be searched. In addition, accuracy can be

low in cases where there is high heterogenity between metamodels.

68

Table 4.8: DSS metamodel matching results for ETL cases [21]

Case Recall Precision F-
(category; size) measure

Tree2Graph 1.0 1.0 1.0
(refinement; 3)
Competition2TVApp 0.56 1.0 0.72
(refinement; 14)
Flowchart2Html 1.0 1.0 1.0
(code generation; 12)
CopyTVApp 1.0 1.0 1.0
(evolution; 11)
CopyFlowchart 1.0 1.0 1.0
(evolution; 14)
RSS2Atom 0.79 0.86 0.82
(migration; 20)
ArgoUML2Ecore 0.89 0.64 0.74
(migration; 56)
CopyOO 1.0 1.0 1.0
(evolution; 14)
OO2DB 0.49 0.8 0.61
(refinement; 21)
uml2Simulink 0.93 0.94 0.93
(refinement; 52)
Averages 0.866 0.924 0.882

4.7 Conclusion

The sections above of this chapter present our DSS approach. The approach handles

1-1, 1-n and n-1 matchings, however, it cannot handle n-m matchings yet, because

this causes a lot of calculations and thus increases the matching time.

In addition, there is a scalability problem for large metamodels: explicit enu-

meration of all possible class-class matchings becomes too time-consuming for meta-

models with 20 or more classes.

69

Regarding n-m and scalability limitations, some search-based technique such as

genetic algorithms (GA) could be used, instead of explicit enumeration of matchings.

We will introduce this approach in the next chapter.

70

Chapter 5

Search-based Optimisation

Approach for Metamodel

Matching

5.1 Introduction

For metamodel matching, an exhaustive search algorithm has been applied, which

lists and calculates all possible matchings and chooses the best matchings among

them. However, matching between metamodels is not only in the form of one-

to-one, but also one-to-many, many-to-one, and many-to-many. In this case, it

is almost impossible to use the exhaustive search algorithm, especially when the

metamodels are large-scale. In addition, most work on metamodel matching has

71

focused on homogeneous metamodels, which is relatively simple because in such

cases there is usually a common vocabulary (names of classes and features) in the

two metamodels, and relatively small structural differences between them. However,

metamodel matching cases in practice are often with heterogeneous metamodels,

where there are substantial differences between the structure of the metamodels,

and between the terminology of classes and features, which undoubtedly increases

the difficulty of matching.

Search-based software engineering (SBSE) [115] uses heuristic search algorithms

in the solution space to search for the near optimal solutions by using the fitness

functions of the specific problem as a guide. In other words, SBSE expresses activ-

ities in software engineering as optimisation problems. The most powerful search-

based optimisation algorithms are the genetic algorithm (GA) and is variants [116].

Using SBSE approach with appropriate measures seems to be able to address the

challenges (the large-scale problem and the heterogeneity) mentioned above.

In this chapter, we propose a search-based metamodel matching approach. We

transform metamodel matching into an optimisation problem, obtainning the opti-

mal metamodel matchings by maximising three measures, Data structure similarity

(DSS), Name syntactic similarity (NSS), and Name semantic similarity (NMS), or

the combination of these three measures. Our approach focuses on heterogeneous

metamodel matching, and can handle one-to-one, one-to-many, many-to-one, and

many-to-many matchings.

72

5.2 Transforming Metamodel Matching Problem

into An Optimisation Problem

An optimisation problem attempts to find the optimal solution from all feasible so-

lutions which can maximise or minimise one or more objectives subject to certain

constraints. Optimisation problems are usually divided into single-objective opti-

misation problem and multi-objective optimisation problem. The single-objective

problem typically has one objective function. The objective functions of a multi-

objective optimisation problem may be mutually exclusive, i.e. when one solution

maximises or minimises one objective, the opposite may be true for the other ob-

jective. Therefore, in order to satisfy multiple objectives simultaneously, multi-

objective optimisation problems often result in a set of non-dominated solutions for

which none of the corresponding objective value can be improved without sacrificing

at least one of the other objectives, referred to as a Pareto optimal solution set [117].

Compared to some popular single-objective optimization algorithms, such as

Simulated Annealing [118] and Particle Swarm Optimization [119], Differential Evo-

lution (DE) algorithm [120] exhibits exceptional performance in global optimization

problems, particularly when the objective function presents multiple local optima,

making the quest for a global optimum challenging. Furthermore, DE algorithm

often converges relatively quickly, making it well-suited for problems that require

finding solutions close to the optimum within a limited time frame. These charac-

73

teristics align well with our requirements for metamodel matching. Deb and Jain

proposed a multi-objective optimisation algorithm, NSGA-III [121], which is able

to generate Pareto frontiers quickly and find solutions more efficiently compared to

other recently suggested algorithms (MOEA/D [122], NSGA-II [123]) by introducing

a hierarchical structure as well as a reference point strategy [121], [124].

In this approach, we employ both single-objective and multi-objective optimiza-

tion approaches to select the results with the highest similarity measures for meta-

model matching. For single-objective optimization, we utilize the DE algorithm to

combine the three similarity measures into a single objective function. Conversely,

for multi-objective optimization, we employ the NSGA-III to independently com-

pute the three similarity measures as separate objectives.

5.3 Search Space Construction

A two-step search was performed, where the first step was on class matching level,

when calculating the similarity between source class and target class, the second-step

search was executed to calculate the source features and target features matching

according to the three measures (DSS, NSS, NMS) respectively.

We employed the metamodel matching situations as individuals. For each class

in the source metamodel, we constructed all its matching situations, including empty

matching (1-0), only one target class/feature (1-1), and multiple target classes/fea-

tures matched by it (1-n). Similarly, a target class/feature that had been matched

74

by a source class/feature may also be matched by other source classes/features, thus

constituting n-1 as well as n-m possibilities.

Each metamodel matching situation was encoded as a unique integer. When a

source metamodel contained n classes(first-step search)/features(second-step search)

and a target metamodel contains m classes (first-step search) / features (second-

step search), the lower limit of the search space lower boundary was 0 (the situation

with no matching), the search space upper boundary was the species diversity (SD),

which was also the total number of all possible matchings for a source class (first-step

search)/feature(second-step search):

SD =
m∑
i=0

C i
m

where C i
m is the combinatorial operator.

The search space varied with steps, and an individual was a size n set with

random integer range in [0, SD].

5.4 Objective Function Construction

The objective functions are the functions that to measure similarity between meta-

models, the higher result for objective functions, the higher similarity for two meta-

models in the specific measure. Here, we introduce three similarity measures DSS,

NSS and NMS, for this approach.

75

5.4.1 Similarity Measures for Objective Function

The DSS and NSS were described in above chapters, however, the NMS in this ap-

proach is different. Previous NMS requires a thesaurus, which needs to be provided

by users. The advent of Word2Vec [125] has opened up opportunities for calculating

NMS without a thesaurus. Word2Vec is a technique for natural language processing,

which can convert a series of words into high-dimensional vectors by training, and

these vectors have some semantic connection in the vector space in which they are

located. Similarity is defined by the frequency of the two words used in the same

context. For example, when a Word2Vec model always learns that there is ‘ID’ in

the context of ‘Student’ (e.g. ‘Student ID’) and that there is always ‘Name’ in the

context of ‘Student’ (e.g. ‘Student Name’), a certain similarity arises between ‘ID’

and ‘Name’, it can then generate a similarity value between ‘Name’ and ‘ID’.

The names of features were tokenised by a Camel Case Splitter [113] first. After

that, we used a pre-trained Word2Vec model, which was trained on Google News

dataset (about 100 billion words), to calculate NMS between source and target

metamodels. The Google News dataset covers a large number of news texts on a

variety of topics and domains. Therefore, rich semantic relations and concepts can

be captured by semantic similarity models trained on this dataset. On the other

hand, models are often named according to real-life terminology, for example, when

we create a class to describe a person, we usually name the class ’Person’, instead

of the name of the animal. Finally, if the names of the elements in the model do

76

not exist in the dataset, it will not be possible to compute the NMS, whereas the

Google News dataset contains a huge amount of text and avoids missing names.

Word2Vec can directly calculate similarity for two sets of strings, which happens to

help us directly calculate the NMS of two tokenised feature names. The similarity of

Word2Vec contains negative values, indicating that the two words present negative

semantic correlation, for example NMS(label,outgoing)=-0.051, which helps us to

better exclude irrelevant matchings. Similarly, for two empty classes, NMS is 1.

5.4.2 Objective Functions

Optimization algorithms typically aim to minimize or maximize objective functions.

In our specific problem, the objective is clearly to maximize the objective function.

Although the majority of common optimization algorithms are designed with a focus

on achieving optima close to zero, they often provide interfaces to facilitate the

maximization of objective functions. Thus, we can easily utilize these algorithms

without significant modifications. In more detail, it involves simply negating the

original minimization objective function within its specified value range, effectively

transforming it into a maximization problem.

The similarity measures for this task are feature-based, so for the similarity of

two metamodels, an overall similarity can be derived by summing the similarities

of the matched features between metamodels. However, in a search-based method

scenario, this poses a problem in that the more matchings there are, the higher the

77

sum of similarities would be, eventually leading to a situation that there is a match-

ing between any features in the source and target metamodels, which is obviously

unreasonable. Therefore, the sum of each feature similarity need to be divided by

the number of matchings between source metamodel and target metamodel, this

will effectively exclude matches with low similarity.

When there are k matchings between two metamodels, pi (i ∈ {1, 2, ...k}) is

a pair of source feature and target feature for one of these matchings, the three

objective functions OFDSS , OFDSS and OFDSS are:

OFDSS =

∑k
i=1 DSS (pi)

k

OFNSS =

∑k
i=1NSS (pi)

k

OFNMS =

∑k
i=1NMS (pi)

k

These three three objective functions can be used for multi-objective optimisa-

tion directly. However, for single-objective optimisation, the single-objective func-

tion S OF needs to combine the three measures of similarity equi-weightedly:

S OF =
OFDSS +OFNSS +OFNMS

3

78

One important thing to note is that a reasonable value for 1-0 matching needs to

be set. Although in theory it should be 0, this would lead to a higher similarity for

matching any class/feature than for matching an empty class/feature, resulting in

no empty matching occurring at all, but empty matching is very common in practice.

We matched a number of metamodels from previous studies [20]–[22], [126], averaged

the DSS, NSS and NMS for correct and incorrect matchings respectively, and then

used the median of the correct and incorrect averages as the similarity of the matches

to an empty class.

5.5 Selecting One Solution Using Machine Learn-

ing

For both single-objective and multi-objective optimisation problems, the results may

not be unique. In practice, these results may all be considered as correct results, as

there may genuinely exist multiple valid transformations between two metamodels.

An example is UML to ER transformation [127], which have several valid and differ-

ent transformations that could be defined from UML model to ER model.The choice

between these transformations would need to be made by a user. An automated

search procedure could produce all these solutions. However, developers often need

to select one that aligns more closely with their specific requirements. The challenge

is how to select one solution from these multiple solutions. When specific require-

79

ments are known, such as prioritizing DSS similarity, developers can easily choose

the one with the highest DSS similarity from multiple optimal solutions. However,

when these requirements are not well-defined, in addition to manual selection by the

user, a more efficient and feasible approach is summarising preferences from past

matchings, similar approach using machine learning for solution-selection has been

proposed and proven to be feasible in other fields [128].

We proposed a machine learning-based approach to select one solution from mul-

tiple optimal solutions. We built a model for regression analysis and trained it with

a number of metamodels with manually matched from previous studies [20]–[22],

[126]. The purposed regression analysis model is to learn from previous matchings

and summarise developers’ preferences, enabling the selection of the solution that

aligns most closely with developers’ preference from multiple optimal solutions.

The four most popular regression analysis methods, Linear Regression (LR) [129],

Support Vector Machine (SVM) [130], Automatic Relevance Determination Regres-

sion (ARD) [131], and Multilayer Perceptron (MLP) [132] were used to construct

the models as well as for comparison. LR is a fundamental statistical technique,

which seeks to establish linear relationships between dependent and one or more in-

dependent variables. Its objective is to predict the value of the dependent variable

by fitting the best-fitting straight line. Linear regression is primarily employed when

dealing with continuous dependent variables [129]. While commonly associated with

classification, SVM’s utility extends to regression tasks as well. SVM regression aims

80

to find a function that optimally fits the data while minimizing prediction errors.

It relies on the concepts of support vectors and kernel functions, making it suitable

for nonlinear regression problems [130]. ARD regression belongs to the Bayesian re-

gression family and focuses on identifying the relevant independent variables within

a model. It automatically determines which predictors influence the target variable,

enhancing model interpretability [131]. MLP, an artificial neural network model, is

frequently employed for nonlinear regression problems. Comprising multiple layers

of neurons, each connected to the previous layer, MLP learns complex nonlinear

relationships between inputs and outputs through training. It excels in capturing

intricate data patterns [132].

5.6 Evaluation

The state-of-the-art approach for metamodel matching is GAMMA [18], which is

also an SBSE method. It outperforms some previous work on ten pairs of meta-

model matching cases [18]. We evaluated our approach on these ten cases as well to

demonstrate our performance and compare it with the state-of-the-art. To avoid the

bias caused by random search, we performed twenty searches and took the average

value as our final result.

We first verified the accuracy of the trained regression analysis models. Because

our model is designed to select the best fit solution from multiple optimal solutions

that match past metamodel matching requirements, we conducted a comparison

81

against manual selection and calculated accuracy. Table 5.1 shows the accuracy of

the trained regression analysis models. After validation, we chose the MLP-based

model for subsequent evaluation.

Table 5.1: The accuracy of the trained regression analysis models

Regression Algorithms Accuracy

LR [129] 69.3%
SVM [130] 72.2%
ARD [131] 70.2%
MLP [132] 82.4%

In addition, we evaluated the effectiveness of the matchings obtained by our

multi-objective optimisation approach and single-objective optimisation approach

(Table 5.2). We also utilized the Vargha-Delaney effect size comparison, a non-

parametric measure for comparing the magnitude of differences between two inde-

pendent groups across various metrics, to assess the performance differences between

our multi-objective optimization approach and the single-objective optimization ap-

proach, particularly focusing on precision, recall, and F-score (Table 5.3). The

results demonstrated that the multi-objective approach was better in terms of pre-

cision. Conversely, in terms of recall, the single-objective approach outperformed.

The F-score comparison showed a more balanced performance between the two ap-

proaches, slightly leaning towards the multi-objective approach.

We also counted the running time for multi-objective optimisation (Table 5.4)

and single-objective optimisation (Table 5.5), since the initial population size and

82

Table 5.2: Evaluation of multi-objective and single-objective optimization ap-
proaches on cases of GAMMA [18]

Case
Precision
(GAMMA)

Recall
(GAMMA)

F-measure
(GAMMA)

Precision
(MOO)

Recall
(MOO)

F-measure
(MOO)

Precision
(SOO)

Recall
(SOO)

F-measure
(SOO)

EER 0.69 0.72 0.70 0.86 0.63 0.73 0.76 1.00 0.86
2
WebML
UML1.4 1.00 0.67 0.80 0.95 0.76 0.84 0.91 0.92 0.92
2
UML2.0
UML1.4 0.71 0.72 0.71 0.89 0.65 0.76 0.64 0.84 0.72
2
EER
UML1.4 1.00 0.84 0.91 0.86 0.96 0.91 0.68 0.79 0.73
2
WebML
UML1.4 1.00 0.66 0.79 0.91 0.69 0.79 0.88 0.97 0.92
2
Ecore
Ecore 0.82 0.69 0.74 0.88 1.00 0.93 0.91 0.89 0.90
2
WebML
Ecore 0.64 0.89 0.75 0.93 0.67 0.78 0.80 0.89 0.84
2
UML2.0
Ecore 0.48 0.59 0.52 0.88 1.00 0.94 0.76 0.96 0.85
2
EER
UML2.0 0.67 0.72 0.68 0.56 0.50 0.53 0.32 0.90 0.47
2
EER
UML2.0 0.91 0.73 0.81 0.82 0.92 0.87 0.71 0.92 0.80
2
WebML
Average 0.79 0.72 0.74 0.85 0.78 0.81 0.74 0.83 0.78

Table 5.3: Vargha-Delaney effect size comparison of multi-objective and single-
objective optimization approaches

Evaluation metrics Vargha-Delaney effect size

Precision 0.74
Recall 0.325
F-score 0.52

the maximum number of evolutionary generations were set to vary for different

metamodel pairs as the population diversity was different. Here, we counted the

execution time for a population size of 100 and a maximum number of generations

83

to evolve of 10. The search time is proportional to both the initial population size

and the number of generations, which means that when the initial population size

becomes 200 and the maximum number of generations evolves to 100, the time

required is approximately 20 times the time in the table.

Table 5.4: Execution time for population size 100 with 10 generations for multi-
objective optimisation

Case
Time
(s)

Case
Time
(s)

EER
2
WebML

22.45s
Ecore
2
WebML

24.74s

UML1.4
2
UML2.0

1521.15s
Ecore
2
UML2.0

814.61s

UML1.4
2
EER

37.00s
Ecore
2
EER

41.11s

UML1.4
2
WebML

27.96s
UML2.0
2
EER

58.86s

UML1.4
2
Ecore

395.79s
UML2.0
2
WebML

52.27s

In summary, with respect to RQ2, our results suggest that the metamodel match-

ing approach utilizing a search-based optimization method exhibits the capability to

not only accommodate large-scale metamodels but also enhance matching accuracy

when compared to the Decision Support System (DSS) approach and GAMMA [18].

Regarding the time aspect, both single-objective and multi-objective optimiza-

84

Table 5.5: Execution time for population size 100 with 10 generations for single-
objective optimisation

Case
Time
(s)

Case
Time
(s)

EER
2
WebML

3.13s
Ecore
2
WebML

5.94s

UML1.4
2
UML2.0

202.02s
Ecore
2
UML2.0

133.31s

UML1.4
2
EER

4.07s
Ecore
2
EER

8.32s

UML1.4
2
WebML

6.08s
UML2.0
2
EER

10.26s

UML1.4
2
Ecore

65.88s
UML2.0
2
WebML

8.66s

tion approaches demonstrate acceptable performance. It is evident that single-

objective optimization is notably faster, but the multi-objective optimization out-

performs it in terms of average F-measure. Notably, both single-objective and

multi-objective optimization approaches achieve F-measure values surpassing those

of GAMMA.

5.7 Conclusion

In this chapter, we proposed an approach to address the challenge of automated or

semi-automated metamodel matching. To address the issue, we defined a search-

85

based metamodel matching approach combining single-objective or multi-objective

optimisation and machine learning (MLP). The approach handles one-to-one, one-

to-many, many-to-one, many-to-many matchings, which allows it to be applied to

various metamodel matching. This approach also addresses the scalability limitation

which cannot be addressed by DSS approach in Chapter 4

However, this study has its limitations. The Word2Vec model used in this study

was trained on Google News dataset, and in the future we will investigate on building

a model exclusively for MDE to obtain more accurate NMS. Both approaches for

metamodel matching have a limitation that is precise mapping of feature values

cannot be identified: different possible mappings of one integer value to another are

not distinguished, also mappings of one string value to another are not distinguished.

Only direct value mapping can be performed.

86

Chapter 6

Synthesis of Model

Transformations from Metamodel

Matching

6.1 Introduction

In this chapter, we will introduce the process of synthesis of model transformations

after extracting correspondences by metamodel matching. The first step is using

an intermediate language T L to formalise the extracted correspondences, including

consistency and completeness checks. The second step is synthesising multiple MT

language specifications from T L. Figure 6.1 shows the process of the approach.

87

Figure 6.1: Synthesising multiple model transformation language specifications by
metamodel matching

88

6.2 T L Specification

To enable the production of specifications in multiple MT languages from correspon-

dences, we introduce an intermediate language T L that uses a simplified transfor-

mation notation to express transformation specifications in a language-independent

manner, avoiding having separate mappings from correspondences to many lan-

guages, there is only one mapping to T L.

The notation expresses class correspondences of E to F by the notation E 7−→ F ,

and feature correspondences of f to g by the notation f 7−→ g .

A T L specification consists of a set of rules of the form

{PreCond} E 7−→ F
p1 7−→ q1
...
pn 7−→ qn

where the pi are features (owned, inherited or composed) of E or OCL expres-

sions in such features, and the qi are distinct features of F . The optional PreCond

is a Boolean-valued OCL expression in the pi .

The meaning of a class mapping {C} E 7−→ F as a model transformation rule

is that for every instance e of E that satisfies C , there is a corresponding instance

e ′ of F . Distinct instances of E map to distinct instances of F . A feature mapping

p 7−→ q of {C} E 7−→ F means that for corresponding instances e : E , e ′ : F , the

value of e ′.q is the interpretation (e.p)′ of e.p via the class mappings.

89

For example, based on the correspondences in the illustrative example, the T L

notation for the transformation from Tree to Graph is:

Tree 7−→ Node
label 7−→ name
parent 7−→ incoming .source

Having obtained such possible correspondences, the next step is typically to

examine them for incompleteness or inconsistency. For example, a measure of in-

completeness of the T L specification is the proportion of source classes in its class

matchings, as a proportion of the total number of source classes. For example, if

there are 10 source classes but only 5 appear in the matchings, we could infer that

our matchings are likely to be incomplete and that some matchings are missing,

in this case, we may need to check or modify the T L specification. Similarly, the

proportion of source features that are matched by the specification. The proportion

of target classes and features which are used by the matchings could also be mea-

sured. Our approach partially automates the completeness measure by recognising

cases of incompleteness and proposing mapping strategies (additional mappings) to

resolve them, and asking the user to confirm these solutions. Table 6.1 summarises

the different checks which we defined in our previous work [133].

By using the intermediate T L representation, we facilitate production of trans-

formation code in multiple MT languages, which is an improvement on existing ap-

90

Table 6.1: Consistency and completeness checks [133]

Issue Correction

Class mapping Retarget Sub mapping,
Sub 7−→ T or introduce additional
for Sub subclass of E , target splitting map
has T not subclass/or Sub 7−→ F
equal to F , where
E 7−→ F
Two directions of Modify one
bidirectional association r feature mapping
not mapped to mutually to ensure
reverse target features consistency
Source, target have Propose modified
different multiplicities mappings

Unused target subclasses Introduce discriminator
FSub of F , where condition FSubC
E 7−→ F and mapping

{FSubC}E 7−→ FSub
Unused source Suggest class or
or target feature mapping
feature f that uses f
Feature mapping Propose concrete
f 7−→ r .g subclass RSub of
with r : R of abstract R for this
type/element type instantiation

proaches. The developer effort goes into refining and improving the T L matchings,

once this is completed, transformations in specific languages can be automatically

generated without additional effort.

91

6.3 Generating ATL Specifications from T L

Once a complete and consistent T L specification is obtained, the next step is to

generate an implementation of this in a particular MT language. Different MT lan-

guages have different properties in different situations (ATL is the most popular in

industry [134], ETL uses more program-like constructs[21]; ATL is effective for sep-

arate models transformations but poorly supports update-in-place transformations,

for which ETL is more suitable; ATL is more declarative, whilst ETL is more imper-

ative in style), developers may need to produce different transformations. On the

other hand, integration of different languages into the same approach can increase

the applicability of the approach. In this section we describe the steps of generating

ATL specifications from T L.

For each T L rule {Cond} E 7−→ F , with F a concrete class, there is an ATL

matched rule of the schematic form

1 rule E2F

2 { from ex : MM1!E (ex.Cond)

3 to fx : MM2!F

4 (...)

5 }

In the case that there are two or more T L rules for E with overlapping (non

disjoint) conditions Cond , these must be combined into a single ATL rule with

92

multiple output pattern elements.

For example, rules E 7−→ F1 and E 7−→ F2 with concrete F1, F2 would be

implemented by:

1 rule E2F1F2

2 { from ex : MM1!E

3 to f1x : MM2!F1

4 (...),

5 f2x : MM2!F2

6 (...)

7 }

This means also that source expressions e of element type E must be disam-

biguated when used on the RHS of bindings: t ← e refers to e converted to F1

elements via E2F1F2, whilst t ← thisModule.resolveTemp(e, ‘f 2x ’) refers to e con-

verted to F2 elements via the rule.

A feature mapping f 7−→ g is represented by an ATL binding g ← ex .f in cases

where f and g are not composed. Source compositions r .f for f of 1 multiplicity, r

not of 1 multiplicity, are evaluated as ex .r→collect(x | x .f).

In the case of a feature mapping f 7−→ r .g , where r is of 1-multiplicity or

0..1 multiplicity, of concrete class element type R, a new output pattern element

rx : MM 2!R is defined:

1 rule E2F

93

2 { from ex : MM1!E (ex.Cond)

3 to fx : MM2!F

4 (r <- rx),

5 rx : MM2!R

6 (...)

7 }

The bindings for rx implement the feature mappings for f 7−→ g , and for other

mappings k 7−→ l , for each k 7−→ r .l which is a feature mapping of the E 7−→ F

mapping.

In the case that there is a direct mapping f 7−→ r and also composed mappings

g 7−→ r .h, a do clause is needed for the composed mappings:

1 rule E2F

2 { from ex : MM1!E (ex.Cond)

3 to fx : MM2!F

4 (r <- ex.f)

5 do

6 { fx.r.h <- ex.g; }

7 }

where r is of 1 multiplicity.

For 0..1 and for *-multiplicity r , a do clause implementation of g 7−→ r .h instead

has the form

94

1 for (rx in fx.r)

2 { rx.h <- ex.g; }

If there is no direct mapping f 7−→ r , r is of ∗ multiplicity, and the only feature

mappings f 7−→ r .g of E 7−→ F are such that f ’s upper multiplicity is 11, then r

can be defined by an output pattern rx : MM 2!R which has bindings g ← ex .f for

each f 7−→ r .g .

If there are cases of mappings f 7−→ r .g where f and r are of *-multiplicity, then

instead sets of R elements are created using unique lazy or called rules. In this case,

if f has a class element type E1, the mapping f 7−→ r .g in cases where r and f have

* multiplicity can be implemented by introducing a new unique lazy rule:

1 rule E2F

2 { from ex : MM1!E (ex.Cond)

3 to fx : MM2!F

4 (r <- ex.f->collect(e1x |

5 thisModule.MapE12Rg(e1x)))

6 }

7

8 unique lazy rule MapE12Rg

9 { from e1x : MM1!E1

10 to rx : MM2!R

1ie., f is of 1 or 0..1 multiplicity

95

11 (g <- e1x)

12 }

The effect of this approach is to produce a set of R objects, one for each element e1x

of ex .f . Again, R must be a concrete class for this to be valid. An example of this

situation is the supertypes 7−→ generalization.parent mapping in the MOF2UML

case.

Further updates to the r with additional mappings k 7−→ r .l with l of higher or

equal upper multiplicity to k must be handled in the do clause of the E2F rule, via

a statement

1 for (rx in fx.r)

2 { rx.l <- ex.k; }

Further updates to the r with additional mappings k 7−→ r .l with l of smaller

upper multiplicity than k require the creation of additional R objects:

1 (r <- ex.k->collect(e2x |

2 thisModule.MapE22Rl(e2x)))

If instead f has a value element type T , the mapping f 7−→ r .g can be imple-

mented by introducing a new called rule:

1 rule E2F

2 { from ex : MM1!E (ex.Cond)

3 to fx : MM2!F

96

4 (r <- ex.f->collect(tx |

5 thisModule.MapT2Rg(tx)))

6 }

7

8 rule MapT2Rg(tx : T) : MM2!R

9 { to rx : MM2!R

10 (g <- tx)

11 }

Table 6.2 summarises the translation from T L to ATL for composed target

feature mappings f 7−→ r .g , where there is no direct mapping h 7−→ r .

Regarding ATL limitations, ATL does not currently support operators→closure,

→unionAll ,→before or→after , which are used by the correspondence construction

and enhancement process, as detailed in Section 6.2. Thus these must be imple-

mented by appropriate library operations in terms of OCL operators supported by

ATL.

The synthesised ATL satisfies the quality recommendations of ATL manual [134]:

• Use standard and unique lazy rules in preference to lazy rules – lazy rules are

not needed by our translation.

• Avoid imperative constructs and the use of resolveTemp – imperative code and

called rules are only needed in cases of composite target features. resolveTemp

97

Table 6.2: Generated ATL for composite target feature mappings f 7−→ r .g of
E 7−→ F (for different multiplicity situations)

r f g ATL implementation

1 or 0..1 any any r ← rx for new OutPatternElement rx : MM 2!R (...)
rx binding is
g ← ex .f for g upper multiplicity ≥ f upper multiplicity,
g ← if ex .f→notEmpty() then ex .f→any() else null endif
otherwise.
All bindings due to E 7−→ F mappings k 7−→ r .l
are defined in the rx pattern.

* 1 or 0..1 any r ← rx for new OutPatternElement rx : MM 2!R (...)

rx binding is g ← ex .f

* * any r ← ex .f→collect(e1x | thisModule.MapE12Rg(e1x))

Additional k 7−→ r .l with
upper multiplicity k ≤ upper multiplicity l :
for (rx in fx .r) { rx .l ← ex .k ; }
Additional k 7−→ r .l with
upper multiplicity k > upper multiplicity l :
r ← ex .k→collect(e2x | thisModule.MapE22Rl(e2x))

is only needed in cases of vertical entity splitting.

• Use collect in preference to iterate – iterate is only needed to define the closure

operator, otherwise collect is used.

More precisely, the situation with regard to the quality flaws [13] is that cycles

of calling dependencies (CBR2 > 0) are not possible, while errors of excessive fan-in,

fan-out and calling dependencies can arise only because of calls to data conversion

operators or to auxiliary unique lazy/called rules in the case of composite target

features. Duplicate code may arise if two subclasses E1, E2 of a source class E have

common feature mappings – this duplication could be removed by using ATL rule

98

inheritance. Excessive rule and transformation size may occur due to the size of the

metamodels.

We use the case study of transformation between Tree and Graph to illustrate

the approach:

1 rule Tree2Node

2 transform tree_x : MM1!Tree

3 to node_x : MM2!Node

4 {

5 if (tree_x.parent.isDefined ()) {

6 node_x.incoming= Set{tree_x.parent.equivalent(‘

MapTree2Edgesource ’)

7 }; }

8 node_x.name = tree_x.label;

9 }

10

11 @lazy

12 rule MapTree2Edgesource

13 transform tree_x : MM1!Tree

14 to incoming_edge_x : MM2!Edge

15 {

16 incoming_edge_x.source = (tree_x).equivalent(‘Tree2Node ’);

}

99

6.4 Generating ETL Specifications from T L

ETL is a widely-used hybrid transformation language within a general MDE and

MT framework, Epsilon [80]. However it lacks a formal semantics, and published

ETL specifications seem to have a high frequency of flaws or code ‘smells’ [13], [135],

in particular due to the use of implicit rule invocation (the equivalent() operator).

Examining ETL cases, we find that the powerful hybrid nature of the language

sometimes leads specifiers to (i) overuse imperative coding, which makes code more

complex and increases the error probability; (ii) use complex ad-hoc navigations in

the target model to link target elements, with cycles of mutually-dependent rules,

which make it difficult to understand; (iii) overuse implicit invocation, which makes

logic unclear, and brings uncertain problem. For example, the uml2Simulink trans-

formation (https://git.eclipse.org/c/epsilon/org.eclipse.epsilon.git/tree/examples/or

g.eclipse.epsilon.examples.uml2simulink).

An automated synthesis procedure for ETL could help to reduce such problems

by (i) using declarative constructs where possible; (ii) using standard strategies for

navigating the target model; (iii) always using the version of equivalent parame-

terised by an explicitly-named rule to be invoked.

We assume that the essential and additional constraints of Section 6.2 hold. For

each T L rule {Cond} E 7−→ F , with E a concrete class, we generate an ETL

concrete rule of the schematic form

1 rule E2F

100

2 transform ex : MM1!E

3 to fx : MM2!F {

4 guard: (ex.Cond)

5 ...

6 }

A rule for abstract E is instead defined as an abstract ETL rule:

1 @abstract

2 rule E2F

3 transform ex : MM1!E

4 to fx : MM2!F {

5 guard: (ex.Cond)

6 ...

7 }

When these ETL rules are used to convert the data of an E -typed MM1 feature

r to data of an F -typed MM2 feature rr , the conversion of data is referred to as

r .equivalent(′E2F ′). Because of the construction process of the T L specification τ ,

distinct rules of τ always either have distinct source classes or (for class-splitting

cases) distinct target classes. Hence, there can only be one ETL rule with the given

name.

ETL supports rule inheritance, this can be used in cases where both a general

rule {Cond} E 7−→ F and a specialised rule {Cond1} ESub 7−→ F1 are present in

101

the T L specification τ , with ESub a subclass of E and F1 equal to F or a descendant

of F . The specialised rule is implemented as:

1 rule ESub2F1

2 transform esubx : MM1!ESub

3 to f1x : MM2!F1

4 extends E2F {

5 guard: (esubx.Cond1)

6 ...

7 }

Feature mappings which are common to the generalised and specialised rules do not

need to be explicitly implemented in ESub2F1. If Cond1 is the same as Cond , the

guard of ESub2F1 can be omitted.

A feature mapping f 7−→ g of class mapping {Cond} E 7−→ F is represented by

an ETL assignment fx .g = ex .f ; in cases where f and g are of value types and are

not composed. Source compositions r .f are evaluated as ex .r .f . If f and g are of

class types, then f 7−→ g is implemented by

1 fx.g = ex.f.equivalent(’ERef2FRef ’);

where f and g are not composed, and ERef is the class type of f , and FRef the

class type of g2. Likewise for composed source features r .f of class type:

2If there is no class mapping ERef 7−→ FRef then the most specific mapping with source class
equal to or an ancestor of ERef and target equal to or a descendant of FRef is quoted. Such a
mapping must exist because of the Metamodel matching constraints of Section 6.2.

102

1 fx.g = ex.r.f.equivalent(’ERef2FRef ’);

If f or r .f is of 0..1 multiplicity, the assignments are guarded:

1 if (ex.f.isDefined ())

2 { fx.g = ex.f.equivalent(’ERef2FRef ’); }

and

1 if (ex.r.f.isDefined ())

2 { fx.g = ex.r.f.equivalent(’ERef2FRef ’); }

In the case of a feature mapping f 7−→ r .g , where r is of 1-multiplicity or 0..1

multiplicity, of concrete class type R, a new variable rx of type MM 2!R is defined:

1 rule E2F

2 transform ex : MM1!E

3 to fx : MM2!F {

4 guard: (ex.Cond)

5 if (ex.f.isDefined ())

6 { var rx = new MM2!R;

7 fx.r = rx;

8 rx.g = ex.f.equivalent(’ERef2G ’);

9 ...

10 }

11 }

103

The conditional test is included if f is of 0..1 multiplicity. Assignments to rx features

implement the feature mapping f 7−→ g , and other mappings k 7−→ l , for each

k 7−→ r .l which is a feature mapping of the E 7−→ F mapping.

If there is a direct mapping f 7−→ r and also composed mappings g 7−→ r .h,

assignments are needed for the composed mappings:

1 rule E2F

2 transform ex : MM1!E

3 to fx : MM2!F {

4 guard: (ex.Cond)

5 fx.r = ex.f.equivalent(’ERef2R ’);

6 fx.r.h = ex.g.equivalent(’G2H ’);

7 }

where r is of 1 multiplicity and f is of type ERef .

For other multiplicity r , a for loop implementation of g 7−→ r .h is used:

1 for (rx in fx.r)

2 { rx.h = ex.g.equivalent(’G2H ’); }

If there is no direct mapping f 7−→ r , r is of ∗ multiplicity, and the only fea-

ture mappings f 7−→ r .g of E 7−→ F are such that f ’s upper multiplicity is 13,

then r can be defined by an additional variable var rx = new MM 2!R; rx .g =

ex .f .equivalent(′ERef 2G ′); which has additional assignments rx .l = ex .k .equivalent(′K2L′);

3ie., f is of 1 or 0..1 multiplicity

104

for each k 7−→ r .l , k of type K , l of type L. The rx creation is conditional on

ex .f .isDefined() if f is 0..1 multiplicity. Likewise, additional assignments are condi-

tional if k is of 0..1 multiplicity.

If there are cases of mappings f 7−→ r .g where f and r are of *-multiplicity, then

instead sets of R elements are created using lazy rules or operations. In this case, if

f has a class type ERef , and r .g has class type G , the mapping f 7−→ r .g in cases

where r and f have * multiplicity can be implemented by introducing a new lazy

rule:

1 rule E2F

2 transform ex : MM1!E

3 to fx : MM2!F {

4 guard: (ex.Cond)

5 fx.r = ex.f.equivalent(’MapERef2Rg ’);

6 }

7

8 @lazy

9 rule MapERef2Rg

10 transform erefx : MM1!ERef

11 to rx : MM2!R {

12 rx.g = erefx.equivalent(’ERef2G ’);

13 }

105

The effect of this approach is to produce a set of R objects, one for each element

erefx of ex .f . R must be a concrete class for this to be valid.

Further updates to the r with additional E 7−→ F mappings k 7−→ r .l with

l .upper = 0 or l .upper ≥ k .upper must be handled in further for loops of the E2F

rule:

1 for (rx in fx.r)

2 { rx.l = ex.k.equivalent(’K2L ’); }

Further updates to the r with additional E 7−→ F mappings k 7−→ r .l with

l .upper ̸= 0 and k .upper = 0 require the creation of additional R objects via a new

lazy rule MapE22R1:

1 fx.r.addAll(ex.k.equivalent(’MapE22Rl ’));

If instead f has a value type T , the mapping f 7−→ r .g can be implemented by

introducing a new called operation:

1 rule E2F

2 transform ex : MM1!E

3 to fx : MM2!F {

4 guard: (ex.Cond)

5 fx.r.addAll(f.MapT2Rg ());

6 }

7

8 operation T MapT2Rg ()

106

9 { var rx = new MM2!R;

10 rx.g = self;

11 return rx;

12 }

The generated code has a systematic structure, and all calls of rules via equivalent

have been made explicit. Duplication of code due to common feature mappings of

inheritance related T L rules is avoided by using ETL rule inheritance. However,

excessive rule and transformation size may occur due to the size of the metamodels.

Theorem 1. Assuming all constraints of Section 6.2, the generated ETL specifica-

tion is consistent with the semantics of the T L specification [133].

Proof. As noted above, ETL semantics is only informally defined in Epsilon [80],

so we will only be able to provide an informal argument for correctness in terms of

that semantics.

For each T L rule {Cond} E 7−→ F , there is a corresponding generated ETL rule

which maps E to F under condition Cond . The ETL rule is abstract iff the T L rule

is, and the same structure of rule inheritance is used in both specifications. Feature

mappings f 7−→ g of class mapping {Cond} E 7−→ F with f and g of value types are

directly implemented by corresponding assignments in the ETL rule. As described

above, feature mappings of class-typed f and g , with g direct, are implemented by

107

1 fx.g = ex.f.equivalent(’ERef2FRef ’);

where f .type = ERef , g .type = FRef , or by a conditional assignment in the case f

is of 0..1 multiplicity. In ETL, the element(s) erefx of ex .f are converted to corre-

sponding FRef elements frefx by looking erefx up in the traces of rule ERef 2FRef

or (if ERef 2FRef is abstract) of its concrete specialisations [80]. If a trace exists,

the corresponding frefx element(s) are returned. Otherwise, the most specific ap-

plicable concrete rule (lazy or non-lazy) for erefx is executed to obtain frefx . This

corresponds to the T L object resolution semantics, provided that the rule execution

in ETL terminates. For our generated ETL this property is ensured.

In the case of feature mappings f 7−→ r .g with composed target features,

r .type = R, g .type = G , the ETL code defines a particular strategy for ensur-

ing that fx .r .g = (ex .f)′ for corresponding instances ex : E , fx : F , fx = ex ′. There

are several cases to consider, depending on the multiplicities of r , g and f (Table

6.3). For simplicity we only consider multiplicities with upper bound either 0 (*) or

1.

In the first two cases the creation of a single R instance rx and the assignments

to its features ensure that fx .r .g = (ex .f)′ in terms of the T L semantics (Section

6.2). In the third case, the strategy for combining multiple mappings f 7−→ r .g ,

k 7−→ r .l with l of 1 or 0..1 multiplicity and k of * multiplicity, is to create a new set

108

Table 6.3: Generated ETL for composite target feature mappings f 7−→ r .g of
E 7−→ F (for different multiplicity situations)

r f g ETL implementation

1 or 0..1 1 or * any var rx = new MM 2!R; fx .r = rx ;
rx .g = ex .f .equivalent(′ERef 2G ′);

1 or 0..1 0..1 any if (ex .f .isDefined()) {
var rx = new MM 2!R; fx .r = rx ;
rx .g = ex .f .equivalent(′ERef 2G ′); ... }

* 1 any var rx = new MM 2!R; fx .r = rx ;
rx .g = ex .f .equivalent(′ERef 2G ′);

* 0..1 any if (ex .f .isDefined()) {
var rx = new MM 2!R; fx .r = rx ;
rx .g = ex .f .equivalent(′ERef 2G ′); ...}

* * any fx .r .addAll(ex .f .equivalent(′MapERef 2Rg ′));

Additional k 7−→ r .l with k .upper = 1:
for (rx in fx .r) { rx .l = ex .k .equivalent(′K2L′); }
Additional k 7−→ r .l with
k .upper = 0, l .upper = 1:
fx .r .addAll(ex .k .equivalent(′MapERef 2Rl ′));
Additional k 7−→ r .l with
k .upper = 0, l .upper = 0:
for (rx in fx .r) { rx .l = ex .k .equivalent(′K2L′); }

of r elements rx for each x ∈ ex .k , with rx .l set to x ′. This ensures that the equation

fx .r .l = (ex .k)′ holds, provided that other fx .r elements (created for f 7−→ r .g or

other mappings to r features) have an null value for their l feature (equivalent to

an empty collection [136]), so do not contribute to the fx .r .l collection.

Similarly, we use the case study of transformation between Tree and Graph to

verify the approach. The ETL transformation from Tree to Graph is an example of

case 10 in Table 4.5:

109

1 rule Tree2Node

2 transform t : Tree!Tree

3 to n : Graph!Node {

4 n.label := t.label;

5

6 if (t.parent.isDefined ()) {

7 var edge := new Graph!Edge; edge.source := n;

8 edge.target := t.parent.equivalent ();}

9 }

6.5 Evaluation

To evaluate the quality of model transformation, it is necessary to find an align-

ment of quality measures to MT quality, i.e., whether a lower/higher value of a

measure improves/worsens MT quality. Previous works [13], [14] have proposed a

number of effective quality measures, as they found widespread quality flaws in MT

specifications based on investigating the characteristics of technical debt in model

transformations, analysing a range of MT cases in different MT languages. Quality

measures defined in previous work [13] will be evaluated on the generated code,

these measures include:

ETS: Excessive transformation size (c(τ) > 1000, or length > 500 LOC), where c

110

is the syntactic complexity measure defined in previous work [13].

ENR: Excessive number of rules (nrules > 10).

ENO: Excessive number of helpers/operations (nops > 10).

ERS: Excessive rule size (c(r) > 100 or length greater than 50 LOC).

EHS: Excessive helper size (c(h) > 100 or length > 50 LOC).

EPL: Excessive parameter list (for transformations, rules, and helpers): > 10 pa-

rameters including auxiliary rule/operation variables.

EFO: Excessive fan-out of a rule/operation (> 5 different rules/operations called

from one rule/operation).

EFI: Excessive fan-in of a rule/operation (> 5 different rules/operations call one

rule/operation).

CC: Excessive cyclomatic complexity (of rule logic or of procedural code), taken as

1 + the number of elementary Boolean conditions in the control flow/logic of

the specification (> 10).

CBR1: Excessive coupling between rules (the number of rule/operation explicit or

implicit calling relations is greater than nrules + nops).

CBR2: Excessive self/mutual dependency between rules (the number of rules/ op-

erations involved in cycles of dependencies in the rule/operation call graph).

111

DC: Duplicate expressions/code (duplicate expressions or statements x with token

count t(x) > 10).

UEX: Excessive use of undefined execution orders/priorities between rules (> 10

undefined orderings).

To compute the number of flaws in a transformation, we count 1 for each of ETS,

ENR, ENO, UEX, CBR1 over the thresholds, plus ERS + EHS + CC + EPL +

EFO + DC + CBR2 [13].

6.5.1 Generating ATL Transformations

We evaluated the approach using several cases from the ATL transformation zoo

[22]. The procedure detailed in Chapter 6 was followed with interactive enhancement

of the initially derived metamodel correspondences. In Table 6.4 we compare our

solutions to the manual solutions of the zoo cases, in terms of their size (LOC) and

the number of technical debt flaws in the transformation according to the quality

flaw categories [13]. In terms of quality, the synthesised transformations have lower

numbers of flaws, and lower flaw density (the average flaw density of the generated

transformation versions is 0.008 flaws/LOC, compared to 0.0172 for the original

versions).

Table 6.5 shows some estimates of the relative amount of work involved in the

manual and automated construction of the ATL zoo case versions. We estimate effort

in terms of how many manual changes are necessary to the automatically-synthesised

112

Table 6.4: Evaluation on ATL zoo cases [22]

Case Original F-measure New New
size (LOC) flaws size (LOC) flaws

Ports 31 0 28 0
PetriNet2PathExp 70 1 27 0
Class2Relational 97 2 35 0
PathExp2PetriNet 104 0 40 0
SimpleClass2 302 10 38 0
SimpleRDB
Ant2Maven 324 4 317 2
Maven2Ant 360 3 332 2
MOF2UML 585 8 255 3
MySQL2KM3 613 13 48 1
UML2MOF 935 18 220 3

versions (additional to changes identified by the interactive improvement process),

and the size of the original versions, as numbers of class and feature mappings. The

execution time of the automated synthesis is also shown (times are the same for a

transformation and its inverse because our tool generates these together).

These results show that a relatively small amount (less than 10%) of transfor-

mation content needs to be manually modified or created, for the versions produced

by our transformation synthesis process.

6.5.2 Generating ETL Transformations

We evaluated the approach using several published ETL cases [21]. The proce-

dure detailed in Section 6 was followed with interactive enhancement of the initially

derived metamodel correspondences. In Table 6.6 we compare transformations gen-

113

Table 6.5: Effort of manual/automated versions of ATL cases [22]

Case Execution Changed/ Changed/ Original Original
time (ms) deleted deleted feature class

feature maps class maps maps maps

Ports 70 0 0 4 3
PetriNet2PathExp 133 0 0 8 3
Class2Relational 60 0 0 22 6
PathExp2PetriNet 133 0 0 16 3
SimpleClass2 285 2 0 12 4
SimpleRDB
Ant2Maven 326,769 1 0 99 37
Maven2Ant 326,769 1 6 82 30
MOF2UML 66,953 30 2 173 11
MySQL2KM3 859 3 2 117 11
UML2MOF 66,953 30 1 152 13

erated by our approach to the manual transformations of the cases, in terms of their

LOC and the number of technical debt flaws in the transformation according to the

quality flaw categories and data of previous work [13]. On average, code size has

been reduced by 27%, and the number of flaws reduced by a factor of 3.9.

Flaw density has been reduced from 0.108 flaws/LOC to 0.038 (a improvement

factor of 2.8). Our solutions for copy transformations such as CopyTVApp and

CopyOO have significantly fewer flaws than the original versions because we utilise

rule inheritance, thus avoiding duplicated subclass rule code mapping superclass

features. The number of rule-rule dependences has also in general been reduced to

the minimum necessary for type-correct element mapping. The average f -measure

score of our generated solutions is 0.883, indicating high accuracy in recapturing the

114

original intent of the transformation cases.

Table 6.6: Evaluation on ETL cases [21]

Case Original Original New New
size (LOC) flaws [13] size (LOC) flaws

Tree2Graph 15 1 12 2
Competition2TVApp 30 1 22 0
Flowchart2Html 31 1 25 0
CopyTVApp 48 14 67 2
CopyFlowchart 57 7 48 3
RSS2Atom 88 6 70 2
ArgoUML2Ecore 96 13 55 1
CopyOO 110 23 127 6
OO2DB 142 6 80 3
uml2Simulink 148 11 52 2

Average 76.5 8.3 55.8 2.1

Table 6.7 shows some estimates of the relative amount of work involved in the

manual and automated construction of the ETL case versions. We estimate effort in

terms of how many manual changes are necessary to the automatically-synthesised

versions (additional to changes identified by the interactive improvement process),

and the size of the original versions, as numbers of class and feature mappings. The

execution time of the automated matching synthesis is also shown.

These results show that a relatively small amount (6.5% with respect to the

original feature mappings and 8% with respect to original class mappings) of trans-

formation content needs to be manually modified, for the case versions produced

by our transformation synthesis process. Execution time is also within a practical

range, for the relatively small cases considered here.

115

Table 6.7: Effort of manual versus automated versions of ETL cases [21]

Case Execution Changed/ Changed/ Original Original
time (ms) deleted deleted feature class

feature maps class maps maps maps

Tree2Graph 157 0 0 3 1
Competition2TVApp 219 0 0 5 4
Flowchart2Html 258 0 0 4 4
CopyTVApp 156 0 0 13 7
CopyFlowchart 115 0 0 16 5
RSS2Atom 10,667 0 1 10 9
ArgoUML2Ecore 199,214 5 3 20 7
CopyOO 410 0 0 49 10
OO2DB 3,494 5 1 39 10
uml2Simulink 290 1 0 9 5

6.6 Conclusion

We have described a process for synthesizing ATL and ETL transformations from

metamodel correspondences, based on an analysis of the consistency and complete-

ness of these correspondences. The correspondences are formalised through an in-

termediary language denoted as T L. The synthesis approach is novel in attempting

to formally emulate the processes which a software engineer would informally un-

dertake when creating a transformation. In addition, it is definetly worth to exlpore

inverse transformations from tranformations to T L, however implementing inverse

transformations would involve substantial new work which is outside of the main

scope of the thesis. Nonetheless, we will try to implement this in the future work.

116

Chapter 7

Model Transformation by

Examples Approach

7.1 Introduction

With the rapid development of machine learning, more and more problems can be

solved by this advanced technology. Machine learning is a process that learns from

multiple ‘input-output’ pairs to identify patterns. for example, machine translation.

Models are defined by metamodels, and there are correspondences between meta-

models which also define model transformations. Therefore, there may be mapping

relationships between the source model and the target model, and these mapping

relationships include source class to the target class mappings (CM) and source

feature to target feature mapping (FM).

117

Model transformation by-example (MTBE) is an approach for the automated

or semi-automated construction of transformations based on examples of expected

input and output models. We found that this is also in line with the idea of machine

learning, that is, when suitable examples are available, a machine learning model

can be constructed with the source models as input and the target models as output,

and the machine learning model can be trained so that it can implement automated

model transformation.

For homogeneous models, mappings can be identified by similar terminology

easily. However, for two models that are heterogeneous, it is difficult to identify

mappings by terminology. Although some mappings could be identified by source

and target features having the same values, some feature values in the model trans-

formation will also change during the transformation.

In the literature, there is only one related research using the machine learning

technique for MTBE [19], however, their approach is based on LSTM and is com-

pletely black-box without any interpretability and does not support feature value

transformation.

In this study, we propose a framework for automating model transformation.

Our framework includes three parts, the first part is a parser, which is used to

pre-process the model, and the second part is a class and feature transformation

model, which is for transforming the source class/feature (SC/SF) to the target

class/feature (TC/TF). The third part is a set of feature value transformation

118

models for identifying different feature value transformation. Decision tree and

multiple linear regression analysis techniques are mainly applied in this framework.

7.2 Background

7.2.1 Regression Analysis

Regression analysis examines the relationship between the dependent variable and

the independent variable. This technique is commonly used in predictive analysis.

Regression analysis is divided into simple regression analysis and multiple regression

analysis according to the number of variables involved; and linear regression analysis

and non-linear regression analysis according to the type of relationship between the

independent and dependent variables.

In this study, we use the elements of the source model as independent variables

and the elements of the target model as dependent variables. Since each model

has multiple elements, the regression analysis of model transformation is a kind of

multiple regression analysis.

Multiple linear regression is a type of regression analysis which mathematically

models the independent and dependent variables as linear equations like:

Yi = β0 + β1Xi1 + β2Xi2 + . . .+ βpXip i = 1, . . . , n

119

where Yi is dependent variable, Xi is independent variable, and βi is coefficient.

In the model transformation, there is often a linear model, e.g. fatherage =

age+25. We have also tried to use neural networks to regress non-linear relationships

between the feature values, however the results were poor, due to the complexity of

the non-linear relationship and the fact that there are few relevant examples.

7.2.2 Decision Tree

Decision tree is a machine learning method. A decision tree is a tree-structure pre-

diction model that uses layers of reasoning to achieve the final outcome prediction.

The decision tree is made up of the following elements: Root node: contains the full

set of examples. Internal nodes: corresponding to the feature analysis. Leaf nodes:

represent the outcome of the decision.

When predicting, a judgement is made at an internal node of the tree with a

certain attribute value, and depending on the result of the judgement, a decision

is made as to which branch node to enter until the leaf node is reached and the

prediction result is obtained. It is therefore a supervised learning algorithm based

on ‘if-then-else’ rules, and these rules for the decision tree are obtained through

training, rather than being formulated manually.

The advantages of decision tree method include the ease of extracting rules

and the rule extraction process is interpretable and can be analysed visually. The

decision tree model structure is simple and relatively fast to execute, producing

120

feasible and effective results in a short time for large-scale data. All of this is in line

with our expectations for MTBE.

7.2.3 Bag-of-Words Model

Machine learning cannot directly process raw text; it needs to be transformed into

a numerical vector representation. The Bag-of-Words (Bow) model is a method of

extracting features from text by transforming it into a fixed-dimensional vector. It

does not consider the order of words in a sentence, but only the number of occur-

rences of words in the corpus in that sentence. The dimensions of the transformed

vector are the total number of different words in the corpus, where the value of each

dimension represents the number of occurrences of a word in the sentence. The dis-

advantage of this model is that when the corpus is large, the dimension of the vector

becomes high as well. And because it does not take contextual relationships into

account, it leads to a lack of word association and location information. However,

for model transformation, proper partitioning of the model elements can effectively

control the size of the vocabulary list. Also, the same-level elements in the model

are unordered, which would instead reduce the quality of feature extraction if a se-

quential correlation feature extraction method is used. Therefore, the BoW model

is suitable to be used as a model for feature extraction.

121

7.3 Methodology

We divide the model transformation by example process into two steps. The first

step is the class and feature transformation, followed by value transformation after

the mapping relationships between source features (SF) and target features (TF)

obtained.

7.3.1 Class and Feature Transformation

The model transformation is mainly based on mapping of features, although classes

may be related by one-to-one, one-to-many, many-to-one, many-to-many transfor-

mations, this is also because the SF in different source classes (SC) are mapped to

the TF of different target classes (TC).

Therefore, in this study, we define the basic unit of transformation as a feature,

and to distinguish between features in different classes, we combine the class with

each of its features to form unique transformation elements:

SourceElement = SCi fk

TargetElement = TCj fk

where i ∈ {1, 2, ...,m}, j ∈ {1, 2, ..., n}, k ∈ {1, 2, ..., q}, n and m are the number

of SC and TC in each model respectively, and q is the number of features in each

122

class.

Due to the existence of mapping relationships, when a SourceElement appears

in the source model, its corresponding TargetElement must be in the target model.

Therefore, after BoW counting the number of occurrences of each class and fea-

ture, the mapping relationship between SourceElement and TargetElement can be

concluded according to the regression analysis by decision tree model for class and

feature transformation. The decision tree model can identify one-to-one, one-to-

many, many-to-one, many-to-many relationships very well.

7.3.2 Value Transformation

For each SourceElement and TargetElement , there is a feature value. Feature values

can be of various types, such as String, Boolean, int, etc. In addition, there are

different feature value transformation modes for different types.

The most common feature value transformation is a direct transformation, which

means that the values remain the same before and after the transformation, eg:

SC1 f1 = X 7−→ TC1 f1 = X

For Boolean type values, different Boolean values may result in different TC and

TF being mapped to, eg:

SC2 f1 = True 7−→ TC2 f1 =
′′

123

SC2 f1 = False 7−→ TC3 f1 =
′′

For numerical values, the mathematical transformation always appears, eg:

SC4 f1 = 1 7−→ TC4 f1 = 2

where the transformation could be either by multiplying the SF value by two or

possibly by adding 1 to the SF value, or by other mathematical functions. Therefore,

more examples are needed to figure out what the exact mathematical function is.

For the transformation of String values, in addition to direct mapping, the map-

ping of string transformations, such as prefixing, also always appears, eg:

SC5 f1 = good 7−→ TC5 f1 = verygood

where a prefix ‘very’ is added during the transformation.

The scope of our approach is restricted to the direct transformation of all value

types. In addition, for the mathematical transformation, multiple linear transfor-

mation can be performed. We have experimented with techniques such as neural

networks to implement non-linear model transformations, but as the non-linear re-

lationships are too complex to be generalisable even for neural networks, our study

only focuses on multiple linear model transformation. For String value transforma-

tion, prefixing, suffixing, combination and decomposition have been implemented.

124

A separate decision tree model is constructed for each Source Element, which

can easily learn direct transformation. Since there are only two types of Boolean

value, True and False, we connected them directly with features as two separate

features, thus turning the value relationship of Boolean into a direct transformation.

For example, the decision tree can generate two rules: if ‘SC2 f1True ’, then ‘TC2 f1’;

if ‘SC2 f1False ’, then ‘TC3 f1’.

For String value transformation, a substitution value δ was introduced, which

replaces the same part of the source String and the target String. For example,

SC5 f1 = good 7−→ TC5 f1 = verygood would be replaced by SC5 f1 = δ 7−→

TC5 f1 = veryδ, then the decision model can generate a rule that: if ‘SC5 f1’ and

‘δ’, then ‘TC5 f1’ and ‘veryδ’.

Instead of using a decision tree, the mathematical transformation directly em-

ploys multiple linear regression. For example, for two models:

SC6 f1 = 1, SC6 f2 = 5 7−→ TC6 f1 = 23

SC6 f1 = 3, SC6 f2 = 11 7−→ TC6 f1 = 53

the multiple linear regression can generate a rule: if ‘SC6 f1 = a, SC6 f2 = b’, then

‘TC6 f1 = 3a + 4b’.

125

7.4 Framework

7.4.1 Framework Overview

Figure. 7.1 shows the overview of our proposed framework. SourceModelParser

is used for transforming model file to the SourceElement form we defined earlier.

It also transforms the source model to a SourceElement : Values version. The

Classandfeaturetransformationmodel identifies the mapping relationships between

SE and TE. An individual Featurevaluetransformationmodel is constructed and

trained for each SE. Each SourceElement : Values is input into Featurevaluetransformationmodels

one by one, then the corresponding TargetElement : Values is output to revert to

the target model.

7.4.2 Training and Validation

We constructed the dataset with pairs of source model and target model examples.

80% of the dataset was used for training and the remaining 20% for validation.

During the training process, the target model examples were presented in the same

processing sequence as the source model and used as output to train the individual

models in the framework. After the models were trained, the source models from

the validation set are fed into the framework, and the output of the framework is

compared with the target models in the validation set to check the accuracy of the

model transformation.

126

Figure 7.1: MTBE framework overview

7.5 Evaluation

We validated our MTBE approach on different sizes of model transformation ex-

amples of the benchmark cases [18]. We only considered the types of feature value

transformations that can be recognised in this approach. With the number of mod-

els in the training set changes, the average accuracy of the validation set and the

length of training time changes as shown in the Figure 7.2 and Figure 7.3. The

state-of-the-art approach using machine learning for MTBE [19] requires around

127

800 examples to reach 100% accuracy, while our approach requires fewer examples

to reach this. In addition, the training time of our approach is significantly reduced.

To avoid the discrepancy caused by different model size, we calculated the av-

erage transformation time for different numbers of SourceElement2TargetElement

(Figure 7.4).

Figure 7.2: Variation of accuracy during training

Overall for RQ4, we can conclude that after training with sufficient examples, the

machine learning framework for MTBE in this approach can not only provide model

transformation with high accuracy, but is also quite fast in training and transforma-

tion. Compared to the state-of-the-art approach [19], our approach outperforms in

terms of the number of required examples, training time and transformation time.

128

Figure 7.3: Training time for different number of models

7.6 Conclusion

In this chapter, we proposed a novel framework for model transformation by exam-

ples using machine learning technique. Decision tree and multiple linear regression

analysis techniques are mainly applied in this framework. This approach can han-

dle feature value transformations including direct mapping, linear numeric mapping

and changeable String mapping. The introduction of decision trees ensures that

all mappings that occur in examples can be correctly transformed, but brings the

disadvantage that it is difficult to predict the correct result for types values that do

not occur in examples. When the variability of the examples is obvious and most of

the mapping relationships are covered, a very high accuracy can be achieved with

only a few examples. However, when the variability of the examples is not obvious

129

Figure 7.4: Impact of the size of the models when transforming

enough, a large number of examples are needed to achieve a high transformation

accuracy.

130

Chapter 8

Conclusion and Future work

8.1 Conclusion

This thesis has proposed novel approaches to address the challenge of reducing the

development time and effort needed to develop model transformation, and improve

model transformation quality. To address the issue, this thesis has defined several

approaches for synthesis of model transformations from metamodels and examples.

DSS approach for metamodel matching has first been introduced. DSS approach

is an exhaustive-search approach, which has handled one-to-one, one-to-many and

many-to-one matchings by calculating data structure similarity between source and

target metamodel elements. However, the proposed DSS approach cannot handle

n-m matchings yet. In addition, there is a scalability problem for large metamod-

els. These are due to a lot of calculations, and thus increase the matching time.

131

These disadvantages are unavoidable with the adaptation of the exhaustive-search

approach.

To solve the disadvantages, we proposed another metamodel matching approach

based on search-based approach. To be more specific, the approach has combined

single-objective optimisation or multi-objective optimisation and machine learning

(MLP) techniques. The approach has handles one-to-one, one-to-many, many-to-

one, many-to-many matchings, which allows it to be applied to various metamodel

matching. This approach also addresses the scalability limitation which cannot be

addressed by DSS approach.

After extracting correspondences from metamodels using metamodel match-

ing, we have investigated how to synthesise model transformations from correspon-

dences automatically. We have introduced an intermediate language T L which

uses a simplified transformation notation to express transformation specifications

in a language-independent manner. We have described a process for synthesising

ATL and ETL transformations from the correspondences formalised by T L. The

evaluation has shown that our approach can generate different kinds of out-place

transformations, including migration, evolution, refinement, abstraction and seman-

tic mapping automatically.

With the development of machine learning, more and more problems can be

solved by this intelligent technology. We have combined model transformation prob-

lem with machine learning in our research. A novel framework for model transforma-

132

tion by examples using machine learning technique has been proposed in this thesis.

Decision tree and multiple linear regression analysis techniques have been mainly

applied in this framework. This approach can handle feature value transformations

including direct mapping, linear numeric mapping and changeable String mapping.

Compared with related works in Chapter 3, the approaches in this thesis signif-

icantly distinguish themselves by conscientiously addressing the inherent shortcom-

ings. Our DSS approach is the only approach to prioritise DSS. The search-based

optimisation approach introduced in this thesis pioneers the adoption of multi-

objective optimisation for metamodel matching. Our model transformation syn-

thesis approach is the only one which includes consistency and completeness checks

of matchings using correspondence patterns. The MTBE approach in this thesis is

the first to implement precise feature value transformations using machine learning

techniques. The evaluation results have shown that the approaches proposed in this

thesis can significantly reduce the development time and effort needed to develop

model transformations. Moreover, compared to manually constructed transforma-

tions, the quality of the automated synthesised transformations with our approaches

has been improved.

8.2 Future Work

In terms of metamodel matching approaches, although our multi-objective optimi-

sation approach has addressed the shortcomings of DSS approach, multi-objective

133

optimisation approach still needs to be improved. The existing multi-objective op-

timisation approach only employs three similarity measures, and more similarity

measures are needed. We have trained an MLP model for selecting the best solution

from Pareto optimal solution set, however, due to the limited available resources,

the number of data for training MLP model and Word2Vec model is still not large

enough. In addition, the Word2Vec model used in this study was trained on the

Google News dataset.

Future work will continue to focus on using multi-objective optimisation ap-

proach for extracting correspondences from large-scale metamodels. More objec-

tives, including graph-related similarity, will be introduced in the future. We will

also explore more multi-objective optimisation algorithms, such as MOPSO [137],

DMOPSO [138], SMPSO [139], MOEA/D [122], SPEA2[140], PESA2 [141], to im-

prove the efficiency of the search. More metamodels will be mined and used to train

the MLP model for selecting the best solution from Pareto optimal solution set. In

the future, we will investigate on building a Word2Vec model exclusively for MDE

to obtain more accurate NMS.

Both approaches for metamodel matching have a limitation that is precise map-

ping of feature values cannot be identified: different possible mappings of one integer

value to another are not distinguished, also mappings of one string value to another

are not distinguished. Only direct value mapping can be performed. Although the

MTBE approach proposed in this thesis has addressed this partially, there are still

134

several kinds of feature value mappings that need to be addressed. In addition, the

approach still requires a large number of examples for machine learning.

In the future, we will also continue to investigate on precise mapping of feature

values. In addition to the existing Numeric, String and Boolean types, we will ex-

plore more feature value types, including Collections, Enumerations, etc. We will

also explore how to accomplish precise feature value transformations with fewer ex-

amples in the future. More artificial intelligence techniques, such as Convolutional

Neural Network (CNN) [142], Transformer-based models [143], [144], Natural Lan-

guage Processing (NLP) [145], [146], will be used to facilitate better learning of

these complex feature value transformations.

Currently, we have only implemented transformation from T L to MT in different

languages. In the future we will implement reverse tranformation from MT to T L,

thus providing more transformation possibilities.

After improving the multi-objective optimisation approach and MTBE approach,

we will fuse these approaches into a formal model transformation synthesis approach.

We expect that given a source metamodel, a target metamodel, and a small number

of examples, the fusion approach will automatically generate high-quality model

transformations with precise feature value mappings.

135

Bibliography

[1] S. Kent, “Model driven engineering,” in International Conference on Inte-

grated Formal Methods, Springer, 2002, pp. 286–298.

[2] T. Mens and P. Van Gorp, “A taxonomy of model transformation,” Electronic

Notes in Theoretical Computer Science, vol. 152, pp. 125–142, 2006.

[3] X. Hei, L. Chang, W. Ma, J. Gao, and G. Xie, “Automatic transformation

from uml statechart to petri nets for safety analysis and verification,” in

2011 International Conference on Quality, Reliability, Risk, Maintenance,

and Safety Engineering, IEEE, 2011, pp. 948–951.

[4] M. Wang and L. Lu, “A transformation method from uml statechartto petri

nets,” in 2012 IEEE International Conference on Computer Science and Au-

tomation Engineering (CSAE), IEEE, vol. 2, 2012, pp. 89–92.

[5] R. Hebig, D. E. Khelladi, and R. Bendraou, “Approaches to co-evolution of

metamodels and models: A survey,” IEEE Transactions on Software Engi-

neering, vol. 43, no. 5, pp. 396–414, 2016.

136

[6] L. Burgueño, J. Cabot, and S. Gérard, “The future of model transformation

languages: An open community,” Journal of Object Technology, vol. 18, no. 3,

2019.

[7] K. Lano, Q. Xue, and S. Kolahdouz-Rahimi, “Agile specification of code

generators for model-driven engineering,” Proceedings of ICSEA 2020, pp. 9–

15, 2020.

[8] K. Lano, S. Kolahdouz-Rahimi, and S. Fang, “Model transformation devel-

opment using automated requirements analysis, metamodel matching, and

transformation by example,” ACM Transactions on Software Engineering

and Methodology (TOSEM), vol. 31, no. 2, pp. 1–71, 2021.

[9] K. Garcés, F. Jouault, P. Cointe, and J. Bézivin, “Managing model adap-

tation by precise detection of metamodel changes,” in European Conference

on Model Driven Architecture-Foundations and Applications, Springer, 2009,

pp. 34–49.

[10] M. D. Del Fabro and P. Valduriez, “Towards the efficient development of

model transformations using model weaving and matching transformations,”

Software & Systems Modeling, vol. 8, no. 3, pp. 305–324, 2009.

[11] S. Schwichtenberg, C. Gerth, Z. Huma, and G. Engels, “Normalizing hetero-

geneous service description models with generated qvt transformations,” in

137

European Conference on Modelling Foundations and Applications, Springer,

2014, pp. 180–195.

[12] M. Herrmannsdoerfer, S. Benz, and E. Juergens, “Cope-automating coupled

evolution of metamodels and models,” in European Conference on Object-

Oriented Programming, Springer, 2009, pp. 52–76.

[13] K. Lano, S. Kolahdouz-Rahimi, M. Sharbaf, and H. Alfraihi, “Technical debt

in model transformation specifications,” in International Conference on The-

ory and Practice of Model Transformations, Springer, 2018, pp. 127–141.

[14] M. Wimmer, S. M. Perez, F. Jouault, and J. Cabot, “A catalogue of refac-

torings for model-to-model transformations.,” Journal of Object Technology,

vol. 11, no. 2, pp. 2–1, 2012.

[15] D. Lopes, S. Hammoudi, J. De Souza, and A. Bontempo, “Metamodel match-

ing: Experiments and comparison,” in 2006 International Conference on Soft-

ware Engineering Advances (ICSEA’06), IEEE, 2006, pp. 2–2.

[16] J.-R. Falleri, M. Huchard, M. Lafourcade, and C. Nebut, “Metamodel match-

ing for automatic model transformation generation,” in International Confer-

ence on Model Driven Engineering Languages and Systems, Springer, 2008,

pp. 326–340.

[17] L. Lafi, S. Hammoudi, and J. Feki, “Metamodel matching techniques in mda:

Challenge, issues and comparison,” in Model and Data Engineering: First

138

International Conference, MEDI 2011, Óbidos, Portugal, September 28-30,

2011. Proceedings 1, Springer, 2011, pp. 278–286.

[18] M. Kessentini, A. Ouni, P. Langer, M. Wimmer, and S. Bechikh, “Search-

based metamodel matching with structural and syntactic measures,” Journal

of Systems and Software, vol. 97, pp. 1–14, 2014.

[19] L. Burgueño, J. Cabot, S. Li, and S. Gérard, “A generic lstm neural network

architecture to infer heterogeneous model transformations,” Software and

Systems Modeling, vol. 21, no. 1, pp. 139–156, 2022.

[20] M. Wimmer, G. Kappel, A. Kusel, W. Retschitzegger, J. Schönböck, and

W. Schwinger, “Towards an expressivity benchmark for mappings based on

a systematic classification of heterogeneities,” in Proceedings of the First In-

ternational Workshop on Model-Driven Interoperability, 2010, pp. 32–41.

[21] Epsilon, Website, https://www.eclipse.org/epsilon/examples/, 2020.

[22] EclipseATLZoo, Website, www . eclipse . org / atl / atlTransformations,

2020.

[23] L. Addazi, A. Cicchetti, J. Di Rocco, D. Di Ruscio, L. Iovino, and A. Pieranto-

nio, “Semantic-based model matching with emfcompare,” inME@ MODELS,

2016, pp. 40–49.

[24] K. Czarnecki and S. Helsen, “Feature-based survey of model transformation

approaches,” IBM Systems Journal, vol. 45, no. 3, pp. 621–645, 2006.

139

https://www.eclipse.org/epsilon/examples/
www.eclipse.org/atl/ atlTransformations

[25] S. R. Schach, Software Engineering. Aksen associates, 1990.

[26] B. Selic, “The pragmatics of model-driven development,” IEEE Software,

vol. 20, no. 5, pp. 19–25, 2003.

[27] D. S. Frankel, “Model driven architecture: Applying mda to enterprise com-

puting,” Google Scholar Google Scholar Digital Library Digital Library, 2003.

[28] A. Kleppe, J. Warmer, and W. Bast, “Mda explained: The model driven

architecture (tm): Practice and promise,” Addison-Wesley Professional. Re-

trieved November, vol. 5, p. 2010, 2003.

[29] M. Brambilla, J. Cabot, and M.Wimmer, “Model-driven software engineering

in practice,” Synthesis Lectures on Software Engineering, vol. 3, no. 1, pp. 1–

207, 2017.

[30] C. Atkinson and T. Kuhne, “Model-driven development: A metamodeling

foundation,” IEEE Software, vol. 20, no. 5, pp. 36–41, 2003.

[31] R. France and B. Rumpe, “Model-driven development of complex software:

A research roadmap,” in Future of Software Engineering (FOSE’07), IEEE,

2007, pp. 37–54.

[32] O. Pastor, S. España, J. I. Panach, and N. Aquino, “Model-driven develop-

ment,” Informatik-Spektrum, vol. 31, no. 5, pp. 394–407, 2008.

[33] B. Hailpern and P. Tarr, “Model-driven development: The good, the bad,

and the ugly,” IBM Systems Journal, vol. 45, no. 3, pp. 451–461, 2006.

140

[34] R. Soley et al., “Model driven architecture,” OMG White Paper, vol. 308,

no. 308, p. 5, 2000.

[35] A. W. Brown, “Model driven architecture: Principles and practice,” Software

and Systems Modeling, vol. 3, no. 4, pp. 314–327, 2004.

[36] F. N. Place, “Object management group,” Mars, vol. 2005, pp. 06–12, 2000.

[37] E. Seidewitz, “What models mean,” IEEE Software, vol. 20, no. 5, pp. 26–32,

2003.

[38] A. M. Starfield, K. A. Smith, and A. L. Bleloch, How to model it: Problem

solving for the computer age. Interaction Book Company, 1994.

[39] J. Bézivin and O. Gerbé, “Towards a precise definition of the omg/mda frame-

work,” in Proceedings 16th Annual International Conference on Automated

Software Engineering (ASE 2001), IEEE, 2001, pp. 273–280.

[40] K. Lano, Model-driven software development with UML and Java. Course

Technology Press, 2009.

[41] R. Pooley and P. King, “The unified modelling language and performance

engineering,” IEE Proceedings-Software, vol. 146, no. 1, pp. 2–10, 1999.

[42] K. Lano, The B language and method: a guide to practical formal develop-

ment. Springer Science & Business Media, 2012.

[43] J. M. Spivey and J. Abrial, The Z notation. Prentice Hall Hemel Hempstead,

1992, vol. 29.

141

[44] M. Fowler, Domain-specific languages. Pearson Education, 2010.

[45] P. Hudak, “Domain-specific languages,” Handbook of Programming Languages,

vol. 3, no. 39-60, p. 21, 1997.

[46] B. Henderson-Sellers, C. Gonzalez-Perez, O. Eriksson, P. J. Ågerfalk, and G.

Walkerden, “Software modelling languages: A wish list,” in 2015 IEEE/ACM

7th International Workshop on Modeling in Software Engineering, IEEE,

2015, pp. 72–77.

[47] M. Richters and M. Gogolla, “On formalizing the uml object constraint lan-

guage ocl,” in International Conference on Conceptual Modeling, Springer,

1998, pp. 449–464.

[48] J. Cabot and M. Gogolla, “Object constraint language (ocl): A definitive

guide,” in International School on Formal Methods for the Design of Com-

puter, Communication and Software Systems, Springer, 2012, pp. 58–90.

[49] OMG, Unified modeling language, 2001.

[50] OMG, Object constraint language, Website, https://www.omg.org/spec/

OCL, 2014.

[51] E. Cariou, C. Ballagny, A. Feugas, and F. Barbier, “Contracts for model

execution verification,” in European Conference on Modelling Foundations

and Applications, Springer, 2011, pp. 3–18.

142

https://www.omg.org/spec/OCL
https://www.omg.org/spec/OCL

[52] J.-M. Favre, “Towards a basic theory to model model driven engineering,”

in 3rd Workshop in Software Model Engineering, WiSME, Citeseer, 2004,

pp. 262–271.

[53] R. F. Paige, P. J. Brooke, and J. S. Ostroff, “Metamodel-based model confor-

mance and multiview consistency checking,” ACM Transactions on Software

Engineering and Methodology (TOSEM), vol. 16, no. 3, 11–es, 2007.

[54] J. Overbeek, “Meta object facility (mof): Investigation of the state of the

art,” M.S. thesis, University of Twente, 2006.

[55] I. Poernomo, “The meta-object facility typed,” in Proceedings of the 2006

ACM Symposium on Applied Computing, 2006, pp. 1845–1849.

[56] H. A. Handley, W. Khallouli, J. Huang, W. Edmonson, and N. Kibret, “Main-

taining the consistency of sysml model exports to xml metadata interchange

(xmi),” in 2021 IEEE International Systems Conference (SysCon), IEEE,

2021, pp. 1–8.

[57] W3C, Extensible markup language (xml), Website, http://www.w3.org/

XML/, 2016.

[58] OMG, Mof 2 xmi mapping, Website, http://www.omg.org/spec/XMI/2.4.

1/, 2011.

143

http://www.w3.org/XML/
http://www.w3.org/XML/
http://www.omg.org/spec/XMI/2.4.1/
http://www.omg.org/spec/XMI/2.4.1/

[59] S. Sendall and W. Kozaczynski, “Model transformation: The heart and soul

of model-driven software development,” IEEE Software, vol. 20, no. 5, pp. 42–

45, 2003.

[60] M. Belaunde, C. Casanave, D. DSouza, et al., Mda guide version 1.0.1, 2003.

[61] M. Kempa and Z. A. Mann, “Model driven architecture,” Informatik-Spektrum,

vol. 28, no. 4, pp. 298–302, 2005.

[62] T. Clark, A. Evans, and R. France, “Object-oriented theories for model driven

architecture,” in International Conference on Object-Oriented Information

Systems, Springer, 2002, pp. 235–244.

[63] J. Osis, E. Asnina, and A. Grave, “Computation independent modeling within

the mda,” in IEEE International Conference on Software-Science, Technol-

ogy & Engineering (SwSTE’07), IEEE, 2007, pp. 22–34.

[64] J. L. Garrido, M. Noguera, M. González, M. V. Hurtado, and M. L. Rodŕıguez,

“Definition and use of computation independent models in an mda-based

groupware development process,” Science of Computer Programming, vol. 66,

no. 1, pp. 25–43, 2007.

[65] G. Benguria, X. Larrucea, B. Elvesæter, T. Neple, A. Beardsmore, and M.

Friess, “A platform independent model for service oriented architectures,” in

Enterprise Interoperability, Springer, 2007, pp. 23–32.

144

[66] J. Criado, L. Iribarne, and N. Padilla, “Resolving platform specific models

at runtime using an mde-based trading approach,” in OTM Confederated

International Conferences” On the Move to Meaningful Internet Systems”,

Springer, 2013, pp. 274–283.

[67] E. J. Chikofsky and J. H. Cross, “Reverse engineering and design recovery:

A taxonomy,” IEEE Software, vol. 7, no. 1, pp. 13–17, 1990.

[68] R.-J. Back and J. Wright, Refinement calculus: a systematic introduction.

Springer Science & Business Media, 2012.

[69] N. Wirth, “Program development by stepwise refinement,” in Pioneers and

Their Contributions to Software Engineering, Springer, 2001, pp. 545–569.

[70] G. Hinkel, “An approach to maintainable model transformations with an

internal dsl,” Ph.D. dissertation, PhD thesis. National Research Center, 2013.

[71] S. Götz, M. Tichy, and R. Groner, “Claimed advantages and disadvantages of

(dedicated) model transformation languages: A systematic literature review,”

Software and Systems Modeling, vol. 20, no. 2, pp. 469–503, 2021.

[72] L. Tratt, “Model transformations and tool integration,” Software & Systems

Modeling, vol. 4, no. 2, pp. 112–122, 2005.

[73] M. Mernik, J. Heering, and A. M. Sloane, “When and how to develop domain-

specific languages,”ACM Computing Surveys (CSUR), vol. 37, no. 4, pp. 316–

344, 2005.

145

[74] OMG, Meta Object Facility (MOF) 2.0 Query/View/ Transformation Spec-

ification, http://www.omg.org/spec/QVT/1.1, Last accessed 17 Feb 2019.

[75] K. Lano and S. Kolahdouz-Rahimi, “Specification and verification of model

transformations using uml-rsds,” in International Conference on Integrated

Formal Methods, Springer, 2010, pp. 199–214.

[76] F. Jouault, F. Allilaire, J. Bézivin, I. Kurtev, and P. Valduriez, “ATL: a

QVT-like transformation language,” in Companion to the 21st ACM SIG-

PLAN symposium on Object-oriented programming systems, languages, and

applications, ACM, 2006, pp. 719–720.

[77] F. Jouault, F. Allilaire, J. Bézivin, and I. Kurtev, “Atl: A model transfor-

mation tool,” Science of Computer Programming, vol. 72, no. 1-2, pp. 31–39,

2008.

[78] F. Jouault and W. Piers, Atl user guide, https://wiki.eclipse.org/ATL/

User_Guide_-_The_ATL_Language, 2009.

[79] D. S. Kolovos, R. F. Paige, and F. A. Polack, “The epsilon transformation lan-

guage,” in International Conference on Theory and Practice of Model Trans-

formations, Springer, 2008, pp. 46–60.

[80] D. Kolovos, L. Rose, R. Paige, and A. Garcıa-Domınguez, “The epsilon

book,” Structure, vol. 178, pp. 1–10, 2010.

146

http://www.omg.org/spec/QVT/1.1
https://wiki.eclipse.org/ATL/User_Guide_-_The_ATL_Language
https://wiki.eclipse.org/ATL/User_Guide_-_The_ATL_Language

[81] L. Lúcio, M. Amrani, J. Dingel, et al., “Model transformation intents and

their properties,” Software & Systems Modeling, vol. 15, no. 3, pp. 647–684,

2016.

[82] S. Melnik, H. Garcia-Molina, and E. Rahm, “Similarity flooding: A versa-

tile graph matching algorithm and its application to schema matching,” in

Proceedings 18th International Conference on Data Engineering, IEEE, 2002,

pp. 117–128.

[83] K. Voigt and T. Heinze, “Metamodel matching based on planar graph edit

distance,” in International Conference on Theory and Practice of Model

Transformations, Springer, 2010, pp. 245–259.

[84] G. A. Miller, “Wordnet: A lexical database for english,” Communications of

the ACM, vol. 38, no. 11, pp. 39–41, 1995.

[85] P. N. Mendes, M. Jakob, and C. Bizer, “Dbpedia: A multilingual cross-

domain knowledge base.,” in LREC, Citeseer, 2012, pp. 1813–1817.

[86] C. Brun and A. Pierantonio, “Model differences in the eclipse modeling frame-

work,” UPGRADE, The European Journal for the Informatics Professional,

vol. 9, no. 2, pp. 29–34, 2008.

[87] E. Rahm and P. A. Bernstein, “A survey of approaches to automatic schema

matching,” the VLDB Journal, vol. 10, pp. 334–350, 2001.

147

[88] P. Mitra, G. Wiederhold, and J. Jannink, “Semi-automatic integration of

knowledge sources,” in Proceedings of Fusion, vol. 99, 1999, pp. 1–9.

[89] P. Mitra, G. Wiederhold, and M. Kersten, “A graph-oriented model for artic-

ulation of ontology interdependencies,” in International Conference on Ex-

tending Database Technology, Springer, 2000, pp. 86–100.

[90] T. Milo and S. Zohar, “Using schema matching to simplify heterogeneous

data translation,” in Vldb, vol. 98, 1998, pp. 24–27.

[91] L. Palopoli, D. Sacca, and D. Ursino, “An automatic technique for detecting

type conflicts in database schemes,” in Proceedings of the seventh interna-

tional conference on Information and knowledge management, 1998, pp. 306–

313.

[92] L. Palopoli, D. Saccá, G. Terracina, and D. Ursino, “A unified graph-based

framework for deriving nominal interscheme properties, type conflicts and

object cluster similarities,” in Proceedings Fourth IFCIS International Con-

ference on Cooperative Information Systems. CoopIS 99 (Cat. No. PR00384),

IEEE, 1999, pp. 34–45.

[93] S. Castano and V. De Antonellis, “Global viewing of heterogeneous data

sources,” IEEE Transactions on Knowledge and Data Engineering, vol. 13,

no. 2, pp. 277–297, 2001.

148

[94] D. Beneventano, S. Bergamaschi, S. Castano, et al., “Information integration:

The momis project demonstration,” in Vldb, 2000, pp. 611–614.

[95] J. Madhavan, P. A. Bernstein, and E. Rahm, “Generic schema matching with

cupid,” in vldb, vol. 1, 2001, pp. 49–58.

[96] W.-S. Li and C. Clifton, “Semint: A tool for identifying attribute correspon-

dences in heterogeneous databases using neural networks,” Data & Knowl-

edge Engineering, vol. 33, no. 1, pp. 49–84, 2000.

[97] W.-S. Li, C. Clifton, and S.-Y. Liu, “Database integration using neural net-

works: Implementation and experiences,” Knowledge and information sys-

tems, vol. 2, pp. 73–96, 2000.

[98] D. Varró, “Model transformation by example,” in International Conference

on Model Driven Engineering Languages and Systems, Springer, 2006, pp. 410–

424.

[99] D. Varró and Z. Balogh, “Automating model transformation by example

using inductive logic programming,” in Proceedings of the 2007 ACM Sym-

posium on Applied Computing, 2007, pp. 978–984.

[100] S. Muggleton and L. De Raedt, “Inductive logic programming: Theory and

methods,” The Journal of Logic Programming, vol. 19, pp. 629–679, 1994.

149

[101] Z. Balogh and D. Varró, “Model transformation by example using inductive

logic programming,” Software & Systems Modeling, vol. 8, no. 3, pp. 347–364,

2009.

[102] S. Gulwani, “Programming by examples,” Dependable Software Systems En-

gineering, vol. 45, no. 137, pp. 3–15, 2016.

[103] S. Gulwani, “Programming by examples: Applications, algorithms and am-

biguity resolution,” in Principles and Practice of Declarative Programming,

2017.

[104] L. Burgueño, J. Cabot, and S. Gérard, “An lstm-based neural network archi-

tecture for model transformations,” in 2019 ACM/IEEE 22nd International

Conference on Model Driven Engineering Languages and Systems (MOD-

ELS), IEEE, 2019, pp. 294–299.

[105] M. Kessentini, H. Sahraoui, M. Boukadoum, and O. B. Omar, “Search-based

model transformation by example,” Software & Systems Modeling, vol. 11,

no. 2, pp. 209–226, 2012.

[106] D. Whitley, “A genetic algorithm tutorial,” Statistics and computing, vol. 4,

pp. 65–85, 1994.

[107] D. Beyer, C. Lewerentz, and F. Simon, “Impact of inheritance on metrics

for size, coupling, and cohesion in object-oriented systems,” in International

Workshop on Software Measurement, Springer, 2000, pp. 1–17.

150

[108] S. Fang and K. Lano, “Extracting correspondences from metamodels using

metamodel matching,” in STAF-JRC 2019, ser. CEUR Workshop Proceed-

ings, vol. 2405, 2019, pp. 3–8.

[109] O. Macindoe and W. Richards, “Graph comparison using fine structure anal-

ysis,” in 2010 IEEE Second International Conference on Social Computing,

IEEE, 2010, pp. 193–200.

[110] V. I. Levenshtein, “Binary codes capable of correcting deletions, insertions,

and reversals,” in Soviet physics doklady, vol. 10, 1966, pp. 707–710.

[111] D. Kless and S. Milton, “Comparison of thesauri and ontologies from a semi-

otic perspective,” in Proc. of the 6th Australian Ontology Workshop (AOW

2010), T. Meyer, MA Orgun and K. Taylor (eds.) Adelaide, AU: Australian

Computer Society, Citeseer, 2010, pp. 35–44.

[112] A. Maedche and S. Staab, Comparing ontologies-similarity measures and a

comparison study. AIFB, 2001.

[113] A. Corazza, S. Di Martino, and V. Maggio, “Linsen: An efficient approach to

split identifiers and expand abbreviations,” in 2012 28th IEEE International

Conference on Software Maintenance (ICSM), IEEE, 2012, pp. 233–242.

[114] G. Kappel, H. Kargl, G. Kramler, et al., “Matching metamodels with se-

mantic systems-an experience report.,” in BTW Workshops, 2007, pp. 38–

52.

151

[115] M. Harman and B. F. Jones, “Search-based software engineering,” Informa-

tion and Software Technology, vol. 43, no. 14, pp. 833–839, 2001.

[116] J. H. Holland, Adaptation in natural and artificial systems: an introductory

analysis with applications to biology, control, and artificial intelligence. MIT

press, 1992.

[117] Y. Censor, “Pareto optimality in multiobjective problems,” Applied Mathe-

matics and Optimization, vol. 4, no. 1, pp. 41–59, 1977.

[118] R. A. Rutenbar, “Simulated annealing algorithms: An overview,” IEEE Cir-

cuits and Devices magazine, vol. 5, no. 1, pp. 19–26, 1989.

[119] J. Kennedy and R. Eberhart, “Particle swarm optimization,” in Proceedings

of ICNN’95-international conference on neural networks, IEEE, vol. 4, 1995,

pp. 1942–1948.

[120] R. Storn and K. Price, “Differential evolution–a simple and efficient heuristic

for global optimization over continuous spaces,” Journal of global optimiza-

tion, vol. 11, pp. 341–359, 1997.

[121] K. Deb and H. Jain, “An evolutionary many-objective optimization algo-

rithm using reference-point-based nondominated sorting approach, part i:

Solving problems with box constraints,” IEEE Transactions on Evolutionary

Computation, vol. 18, no. 4, pp. 577–601, 2013.

152

[122] Q. Zhang and H. Li, “Moea/d: A multiobjective evolutionary algorithm

based on decomposition,” IEEE Transactions on Evolutionary Computation,

vol. 11, no. 6, pp. 712–731, 2007.

[123] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, “A fast and elitist mul-

tiobjective genetic algorithm: Nsga-ii,” IEEE transactions on evolutionary

computation, vol. 6, no. 2, pp. 182–197, 2002.

[124] Z. Fan, Y. Fang, W. Li, J. Lu, X. Cai, and C. Wei, “A comparative study

of constrained multi-objective evolutionary algorithms on constrained multi-

objective optimization problems,” in 2017 IEEE congress on evolutionary

computation (CEC), IEEE, 2017, pp. 209–216.

[125] T. Mikolov, K. Chen, G. Corrado, and J. Dean, “Efficient estimation of word

representations in vector space,” arXiv preprint arXiv:1301.3781, 2013.

[126] K. Lano and S. Fang, “Automated synthesis of atl transformations from meta-

model correspondences,” in 8th International Conference on Model-Driven

Engineering and Software Development (MODELSWARD), SCITEPRESS,

2020, pp. 263–270.

[127] Y. Ou, “On mapping between uml and entity-relationship model,” in The

Unified Modeling Language: Technical Aspects and Applications, Springer,

1998, pp. 45–57.

153

[128] E. Hancer, B. Xue, M. Zhang, D. Karaboga, and B. Akay, “Pareto front

feature selection based on artificial bee colony optimization,” Information

Sciences, vol. 422, pp. 462–479, 2018.

[129] X. Yan and X. G. Su, “Linear regression analysis,” Theory and Computing,

2003.

[130] N. Cristianini, J. Shawe-Taylor, et al., An introduction to support vector ma-

chines and other kernel-based learning methods. Cambridge University Press,

2000.

[131] D. Wipf and S. Nagarajan, “A new view of automatic relevance determina-

tion,” Advances in Neural Information Processing Systems, vol. 20, 2007.

[132] M. W. Gardner and S. Dorling, “Artificial neural networks (the multilayer

perceptron)—a review of applications in the atmospheric sciences,” Atmo-

spheric Environment, vol. 32, no. 14-15, pp. 2627–2636, 1998.

[133] K. Lano, S. Fang, and S. Kolahdouz-Rahimi, “Tl: An abstract specifica-

tion language for bidirectional transformations,” in Proceedings of the 23rd

ACM/IEEE International Conference on Model Driven Engineering Lan-

guages and Systems: Companion Proceedings, 2020, pp. 1–10.

[134] Eclipse, Atl user guide, Website, https://wiki.eclipse.org/ATL/User_

Guide_-_The_ATL_Language, 2019.

154

https://wiki.eclipse.org/ATL/User_Guide_-_The_ATL_Language
https://wiki.eclipse.org/ATL/User_Guide_-_The_ATL_Language

[135] N. Bonet, K. Garcés, R. Casallas, M. E. Correal, and R. Wei, “Influence of

programming style in transformation bad smells: Mining of etl repositories,”

Computer Science Education, vol. 28, no. 1, pp. 87–108, 2018.

[136] OMG, Object constraint language specification v2.4, Website, https://www.

omg.org/spec/OCL/2.4/PDF, 2014.

[137] C. C. Coello and M. S. Lechuga, “Mopso: A proposal for multiple objective

particle swarm optimization,” in Proceedings of the 2002 Congress on Evo-

lutionary Computation. CEC’02 (Cat. No. 02TH8600), IEEE, vol. 2, 2002,

pp. 1051–1056.

[138] K.-B. Lee and J.-H. Kim, “Dmopso: Dual multi-objective particle swarm

optimization,” in 2014 IEEE Congress on Evolutionary Computation (CEC),

IEEE, 2014, pp. 3096–3102.

[139] A. J. Nebro, J. J. Durillo, J. Garcia-Nieto, C. C. Coello, F. Luna, and E. Alba,

“Smpso: A new pso-based metaheuristic for multi-objective optimization,”

in 2009 IEEE Symposium on Computational Intelligence in Multi-criteria

Decision-making (MCDM), IEEE, 2009, pp. 66–73.

[140] E. Zitzler, M. Laumanns, and L. Thiele, “Spea2: Improving the strength

pareto evolutionary algorithm,” TIK-Report, vol. 103, 2001.

[141] D. W. Corne, N. R. Jerram, J. D. Knowles, and M. J. Oates, “Pesa-ii: Region-

based selection in evolutionary multiobjective optimization,” in Proceedings

155

https://www.omg.org/spec/OCL/2.4/PDF
https://www.omg.org/spec/OCL/2.4/PDF

of the 3rd annual conference on genetic and evolutionary computation, 2001,

pp. 283–290.

[142] K. O’Shea and R. Nash, “An introduction to convolutional neural networks,”

arXiv preprint arXiv:1511.08458, 2015.

[143] A. Vaswani, N. Shazeer, N. Parmar, et al., “Attention is all you need,” Ad-

vances in Neural Information Processing Systems, vol. 30, 2017.

[144] F. A. Acheampong, H. Nunoo-Mensah, and W. Chen, “Transformer mod-

els for text-based emotion detection: A review of bert-based approaches,”

Artificial Intelligence Review, vol. 54, no. 8, pp. 5789–5829, 2021.

[145] K. Chowdhary, “Natural language processing,” Fundamentals of Artificial

Intelligence, pp. 603–649, 2020.

[146] J. Hirschberg and C. D. Manning, “Advances in natural language processing,”

Science, vol. 349, no. 6245, pp. 261–266, 2015.

156

	Introduction
	Motivation
	Overall Aim of the Thesis
	Research Questions
	Contributions
	Structure
	Publications

	Background
	Model-Driven Engineering
	Model in MDE
	Metamodel in MDE
	Model Transformation in MDE
	Model-Driven Development
	Model-Driven Architecture

	Model Transformation Taxonomy
	Model Transformation Languages
	Query View Transformation Language
	UML Reactive System Development Support
	Atlas Transformation Language
	Epsilon Transformation Language

	Model Transformation Categories
	Scope of the Research

	Related Work
	Metamodel Matching Approaches
	Matching Approaches based on Similarity Flooding
	Matching Approaches based on Customised Rules
	Matching Approaches based on Search-based Algorithms
	Schema Matching

	Transformation Synthesis Approaches
	Conclusion

	Data-structure Similarity Approach for Metamodel Matching
	Introduction
	Flattening Metamodel
	Data Structure Similarity Measure
	Other Similarity Measures
	Graph Structure Similarity
	Graph Edit Similarity
	Name Syntactic Similarity
	Name Semantic Similarity
	Semantic Context Similarity

	DSS Approach
	Evaluation
	Conclusion

	Search-based Optimisation Approach for Metamodel Matching
	Introduction
	Transforming Metamodel Matching Problem into An Optimisation Problem
	Search Space Construction
	Objective Function Construction
	Similarity Measures for Objective Function
	Objective Functions

	Selecting One Solution Using Machine Learning
	Evaluation
	Conclusion

	Synthesis of Model Transformations from Metamodel Matching
	Introduction
	TL Specification
	Generating ATL Specifications from TL
	Generating ETL Specifications from TL
	Evaluation
	Generating ATL Transformations
	Generating ETL Transformations

	Conclusion

	Model Transformation by Examples Approach
	Introduction
	Background
	Regression Analysis
	Decision Tree
	Bag-of-Words Model

	Methodology
	Class and Feature Transformation
	Value Transformation

	Framework
	Framework Overview
	Training and Validation

	Evaluation
	Conclusion

	Conclusion and Future work
	Conclusion
	Future Work

