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ABSTRACT

Tactile sensing plays an irreplaceable role in robotic material recognition. It enables robots to
distinguish material properties such as their local geometry and textures, especially for materials like
textiles. However, most tactile recognition methods can only classify known materials that have been
touched and trained with tactile data, yet cannot classify unknown materials that are not trained with
tactile data. To solve this problem, we propose a tactile Zero-Shot Learning framework to recognise
materials when they are touched for the first time, using their visual and semantic information,
without requiring tactile training samples. The biggest challenge in tactile Zero-Shot Learning is
to recognise disjoint classes between training and test materials, i.e., the test materials that are not
among the training ones. To bridge this gap, the visual modality, providing tactile cues from sight,
and semantic attributes, giving high-level characteristics, are combined together and act as a link to
expose the model to these disjoint classes. Specifically, a generative model is learnt to synthesise tactile
features according to corresponding visual images and semantic embeddings, and then a classifier
can be trained using the synthesised tactile features for zero-shot recognition. Extensive experiments
demonstrate that our proposed multimodal generative model can achieve a high recognition accuracy
of 83.06% in classifying materials that were not touched before. The robotic experiment demo and the

FabricVST dataset are available at https://sites.google.com/view/multimodalzsl

1. Introduction

The material properties of the object’s surface, such
as roughness, texture, and hardness, are key information
for robots to interact with their surroundings. As such,
recognising the surface materials, which allows robots to be
aware of the object categories and properties, is fundamental
to many manipulation tasks, such as grasping [1], labware
handling [2], and material sorting for recycling [3].

The most widely used methods for material recognition
are based on vision as it provides shapes, colours, and
appearances to perceive properties of different materials [4].
Vision-based methods, however, are subject to lighting and
occlusion [5, 6]. Moreover, due to the enormous range of
appearances that a single material might exhibit, it is diffi-
cult to establish distinguishable representations from vision
alone. To address this problem, the semantic attributes, e.g.,
“knitted” and “fibrous” to describe the wool, have been
introduced as complimentary information to assist visual
material recognition [7, 8].

Unlike vision and semantic attributes, tactile sensing can
measure the micro-structures of the object’s surface even
if the appearance and shape are changed, which allows the
robot to recognise different materials effectively [9, 10].
Furthermore, many exclusive physical properties that cannot
be obtained in other sensory modalities, such as friction and
compressibility, can be measured by tactile sensing through
rich physical interaction, giving a good understanding of
different materials.

*This work was funded in part by the EPSRC project “ViTac: Visual-
Tactile Synergy for Handling Flexible Materials” (EP/T033517/2).
*Corresponding author
%9 shan. luo@kel.ac. uk (S. Luo)
ORCID(S): 0000-0002-3462-2567 (G. Cao)

In recent studies on material recognition by tactile sens-
ing, a large amount of tactile data need to be collected first,
and then a projection function between the collected tactile
data and material classes is learnt with optimisation algo-
rithms or machine learning methods [11, 12]. By using the
learnt projection function, robots can predict the classes of
the contacted material. However, there are two main issues
limiting the application of such methods: 1) The material to
be recognised must be known and included in the classes
of the training dataset, which is hard to be met due to the
continuous development of new materials. 2) The collection
of a large amount of tactile data is costly as the delicate
tactile sensors are easily damaged after numerous physical
contacts and data collection could be time-consuming.

As a result, the lack of tactile samples for training and
the absence of annotations pose challenges to recognise the
materials never touched by robots before. Hence, Zero-Shot
Learning (ZSL) for tactile recognition is desired. It aims
to identify the unknown (untouched) materials using tactile
sensing upon the first contact, for which there are no training
tactile samples, by applying the knowledge learnt from tac-
tile data of known (touched) materials. This capability can
be acquired by obtaining a shared subspace (e.g., with the
visual domain) to transfer the knowledge learnt from touched
materials to untouched materials.

A good example of tactile ZSL is the recognition of daily
fabrics, which provide a variety of appearances, physical
properties, and tactile feelings. For humans, it is an easy task
to recognise a new material by the sense of touch based on
our prior knowledge and descriptions. For example, if we
are given a description of silk “the silk material is usually
very smooth, soft and cool”, we can recognise a fabric made
of silk even when it is the first time for us to touch a piece
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of silk. This capability to recognise new materials that were
never touched before is due to that our brain is able to transfer
the knowledge gained in one sensory modality to another,
i.e., cross-modal transfer [13]. Similarly, humans can also
imagine a tactile feeling when observing the materials [14].

Inspired by the above, we propose a multimodal Zero-
Shot Learning approach for tactile textures recognition that
employs both visual information and semantic attributes
from fabrics to synthesise corresponding tactile features.
As shown in Fig. 1, firstly, a generative model is trained
to synthesise tactile features with touched materials. After
training, the generative model is used to synthesise tactile
features of untouched materials using corresponding visual
information and semantic attributes. Then, a classifier is
trained on the synthesised tactile features of untouched ma-
terials. Finally, the robot can recognise these untouched ma-
terials by tactile sensing. Our proposed tactile ZSL method
addresses a practical problem in material recognition using
robots: even if tactile data is not available to train the robot
for new materials, they can still be recognised and sorted
when being touched for the first time.

The contributions of this paper can be summarised as
follows:

1. We propose a multimodal ZSL framework to recog-
nise materials that have not been touched before;

2. We develop a generative model to synthesise tactile
features from visual images and semantic attributes to
achieve a synergistic effect in tactile ZSL, which is the
first of its kind;

3. We collect a new dataset, named as FabricVST, from
50 pieces of fabrics to train the model, including
visual images, semantic attributes and tactile data,
and validate our proposed method on the untouched
materials.

The remainder of this paper is structured as follows:
Section 2 reviews the related works; Section 3 introduces
the problem formulation of tactile ZSL; Section 4 details
the multimodal framework for ZSL of tactile recognition;
Section 5 introduces the experimental setup; Section 6 shows
the experimental results; Section 7 discusses several aspects
of tactile ZSL; Finally, Section 8 summarises the paper and
gives conclusions.

2. Related Works

In this section, we will first review works on material
recognition with tactile textures, followed by discussions
of Zero-Shot Learning for visual recognition and tactile
recognition, respectively.

2.1. Material Recognition with Tactile Textures
Tactile textures are crucial in understanding the prop-
erties of materials since they convey important informa-
tion of local geometry and micro-structures of the object’s
surface. With the development of tactile sensing, various
tactile sensors based on different sensing technologies, such
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Figure 1: Tactile Zero-Shot Learning for material recognition.
Training stage: Step 1: Given visual images, semantic attributes
and tactile textures of known (touched) materials, a generative
model is trained to synthesise tactile features by minimising
the distance between the distributions of real tactile features
and synthesised tactile features. Step 2: A classifier is trained
by the synthesised tactile features of unknown (untouched)
materials. Testing stage: By using the classifier, the robot is
able to recognise and sort unknown materials by tactile sensing.

as microphones [15, 16], strain gauges [17], MEMS [18,
19], capacitive [20, 21], and piezoresistive [3], have been
implemented in the tactile texture recognition. Recently,
thanks to their high resolution and low cost, camera-based
optical tactile sensors, such as the GelSight sensor [22]
and the TacTip sensor [23], have been implemented in
the material perception. In [24], the GelSight is applied in
an autonomous tactile exploration that enables the robots
to perceive material properties. In [10], a spatio-temporal
attention mechanism is proposed to emphasise the salient
features to recognise textures present in the tactile image
sequences collected by a GelSight sensor. In [25], a joint
latent space of vision and touch sensing for sharing features
is learnt to improve the cloth material recognition. However,
these methods are limited to classifying known materials and
cannot recognise unknown materials that are not included in
the training classes. In [26], a generative model is proposed
to generate textures to be rendered on a haptic display from
visual images, which can be touched by human participants.
In this work, we also utilise a generative model to synthe-
sise tactile features from other modalities including visual
images. However, in contrast to [26] for haptic rendering to
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human users, our method is designed for a robot to identify
novel materials through tactile sensing.

2.2. Zero-Shot Learning for Visual Recognition

An increasing interest has been shown in recognising
unseen objects based on visual images without any training
examples, i.e., visual Zero-Shot Learning. The use of seman-
tic embeddings learnt from semantic attributes is common
to bridge the gap between the seen classes and the unseen
classes. A projection function can be learnt, for instance,
from visual to semantic space [27, 28], from semantic to
visual space [29, 30], or a shared latent space [31, 32], to
connect vision and semantic information for the recognition.
However, as the classes of the seen data and unseen data can
be unrelated, the data distributions may be different. If the
projection function that is learnt from seen data is applied
to the unseen data directly, it may generate unknown bias,
known as the domain shift problem [33]. Another popular
method is based on the generative model [34, 35], where
the visual features of unseen classes are synthesised using
semantic information, and synthesised visual features are
used to train a classifier to recognise unseen data, which
alleviates the domain shift problem significantly. However,
these studies focus on the visual ZSL problem and there have
been no works on tactile ZSL based on generative models
that use visual images and semantic attributes together to
synthesise tactile features.

2.3. Zero-Shot Learning for Tactile Recognition

Due to the difficulty of the tactile data collection and
annotation, a great demand exists for tactile ZSL. However,
compared with the visual ZSL, the ZSL problem for tactile
recognition has been much less investigated. In [36], visual
images are used as the auxiliary information to connect
the touched objects and untouched objects with dictionary
learning. In [37], the semantic attributes are predicted using
tactile data with Direct Attributes Prediction (DAP), and
the corresponding categories of untouched materials can be
determined by the predicted attributes. In [38], semantic
attributes are learnt from both visual data and tactile data
using DAP. In [39], a generative model is developed to
synthesise tactile features with semantic attribute inputs for
tactile ZSL. Although many studies have demonstrated the
superiority of the generative model-based method in visual
ZSL [40, 41] and the visual modality is able to provide
an objective measurement for the target object, there has
been no work using the generative model-based method
conditioned on visual images in tactile ZSL. Moreover, to the
best of the authors’ knowledge, the multimodal generative
framework, conditioned on both visual images and semantic
attributes, has not been attempted before for tactile ZSL. In
this work, we employ the GelSight sensor [22], a camera-
based tactile sensor, and explore how to use the GelSight
sensor for tactile ZSL. Specifically, we propose a multimodal
generative model that integrates visual images and semantic
attributes to synthesise features of GelSight images of un-
touched objects for zero-shot tactile recognition, for the first
time.
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Figure 2: The different configurations between conventional
ZSL and GZSL. In the training, visual features, semantic
embeddings and tactile features are available for touched
classes, whereas only visual features and semantic embeddings
are available for untouched classes; in the testing stage, in
conventional ZSL, only the tactile features from untouched
classes will be tested. In GZSL, the tactile features from both
touched classes and untouched classes will be tested.

3. Problem Formulation

The tactile ZSL aims to use tactile sensing to recog-
nise new materials that have no tactile samples during the
training process, when they are touched for the first time.
Specifically, tactile ZSL can be divided into two stages: the
training stage and the inference (testing) stage. The materials
to be recognised can also be split into two sets: the touched
classes that are touched by the robot during training and the
untouched classes that are not touched in training and will
be used in the test. To satisfy the zero-shot assumption that
there are no tactile training samples from untouched classes,
the tactile ZSL requires training a model only on the touched
classes, and classifying the tactile data of untouched classes.

An essential component of the tactile ZSL is to use
auxiliary information, which can provide additional charac-
teristics of the target object (such as semantic attributes),
to bridge the gap between touched and untouched classes.
In our multimodal ZSL framework, we use visual images
and semantic attributes from both touched materials and
untouched materials as auxiliary information and recognise
the tactile data of untouched classes based on the knowledge
learnt from the touched classes.

Let x € R%, p € R%, 5 € R% represent the tactile
features, the visual features, and the semantic embeddings
learnt from tactile data X, visual images V' and semantic
attributes S, respectively. ¥ = {y',)?, ...,)"} denotes
the corresponding label set. We use subscripts ¢ and u to
represent the touched materials and the untouched materials,
respectively. The data of touched set can be denoted as D; =
{(x,, vy, Sy y,)}. The data of untouched set can be denoted as
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Figure 3: lllustration of the proposed VS2T-ZSL generative model. Our generative framework is composed of five key components:
(1) a feature extraction module; (2) an encoder module, denoted as E; (3) a module visual-semantic fusion, labelled VS-F; (4) a
generator module, G; and (5) a discriminator module, D. In our model, E encodes the input features to a continuous latent space
while VS-F highlights salient features across the visual domain and the semantic domain. The generator module, G, is used to
reconstruct tactile features, whereas D discriminates synthesised tactile features from real features. After training, the generator
G is used to synthesise the tactile features of untouched materials based on corresponding visual images and semantic attributes.

D, = {(x,, V4> 84> ¥,) }- In tactile ZSL, the touched classes
and the untouched classes are disjoint, which means that
Y,nY, =0

Following [42], we formalise our tactile ZSL in two
different settings: one in conventional ZSL and the other
in Generalised Zero-Shot Learning (GZSL). As an example
shown in Fig. 2, there are two touched materials and two
untouched materials, and we use the subscripts a, b, c,
d to represent them respectively. In the training stage of
conventional ZSL, visual features, semantic embeddings and
tactile features are available for materials a and b, while only
visual features and semantic embeddings are available for
materials ¢ and d. The tactile features of materials ¢ and d
are not available in the training stage. In GZSL, the data
availability is the same with the ZSL setting in the training
stage. The main difference between the conventional ZSL
and GZSL comes from the testing stage: In conventional
ZSL, tactile features from materials ¢ and d will be tested.
In GZSL, the tactile features from all materials a, b, ¢ and d
will be tested.

To summarise, given D, and D, in conventional ZSL,
a classifier f,¢; : X, — Y, will be learnt to recognise
the tactile data of untouched materials, and GZSL requires
learning a classifier f;,g; : X — Y, UY, to classify
the tactile data from both touched and untouched materials.
Note that in both cases X, is not available during training,
and is only used in the test. The reasons why we employ
two settings for ZSL are as follows: When provided with
prior knowledge about which material is unknown, we focus
solely on recognising materials that have never been touched
before, representing a ZSL setting. However, in real-world
applications, unknown materials might mix with previously
recognised materials, exemplifying a typical GZSL setting.

4. Methodologies

Our proposed multimodal tactile ZSL framework that
learns tactile features from visual images and semantic at-
tributes, i.e., VS2T-ZSL, consists of two main components: a
generative model to synthesise tactile features of untouched
materials using auxiliary information, and a recognition
model that is trained with synthesised features to recognise
the untouched materials through corresponding real surface
tactile textures.

As illustrated in Fig. 3, our proposed generative model
is a combination of Variational Autoencoder (VAE) and
Generative Adversarial Network (GAN) [43]. VAE consists
of an encoder and a decoder where an explicit distribution
can be obtained by encoding the data to a multi-dimensional
Gaussian distribution. However, VAE often generates blurry
tactile results due to the limitations of reconstruction loss in
the decoder [44]. GAN usually contains a generator and a
discriminator. In contrast to VAE, GAN learns an implicit
distribution where the discriminator is applied to evaluate
the quality of the synthesised tactile results from the gen-
erator to get sharp and clear features [45]. However, modal
collapse [46] may occur during the training of GAN where
the generator of network produces only specific outputs
regardless of the inputs. To this end, we combine VAE and
GAN in our tactile ZSL framework to perform an efficient
training and clear generated results.

After training our joint generative model, the generator
G is used to synthesise the tactile features of untouched
materials from corresponding visual images and seman-
tic attributes. In conventional ZSL, a classifier CLS, will
be trained on the synthesised untouched tactile features
to recognise the real untouched tactile features. In GZSL
setting, apart from C LS, we train another classifier CL.S,
with the touched set to recognise the touched tactile data.
More details will be discussed in Subsection 4.2.
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4.1. Tactile Feature Generative Model

In this section, our tactile feature generative model will
be introduced. As illustrated in Fig. 3, our generative model
consists of 1) a feature extraction module that extracts the
high dimensional features from visual images, tactile tex-
tures, and semantic attributes; 2) an encoder E that maps
the tactile features and auxiliary information to a continuous
latent space; 3) a visual-semantic fusion module V.S — F
that emphasises the salient features across the visual domain
and the semantic domain for the generation process; 4) a
generator (decoder) G that samples from the latent space
to reconstruct tactile features conditioned on fused features;
5) and a discriminator D that discriminates if the input is a
synthesised tactile feature or a real tactile feature (which is
extracted from the tactile texture).
Feature extraction module. Instead of synthesising the
tactile textures directly, we focus on generating high dimen-
sional tactile features for the tactile recognition task. Firstly,
we extract the features from visual images V, tactile textures
X, and semantic attributes S, to represent the material from
different domains. Specifically, two pretrained ResNet50
models [47] are fine-tuned using the visual images and
the tactile textures from touched materials respectively, and
visual features v, and tactile features x, are extracted from
the last pooling layer of the fine-tuned models. To obtain
semantic representations, we use the one-hot encoding [48]
with semantic attributes to get semantic embeddings s;.
Encoder module. Similar to VAE, the encoder E en-
codes input features and outputs the mean vector and the
variance vector of latent space. We minimise the Kull-
back-Leibler (KL) divergence between the output latent
distribution ¢ (z | x;,v;,5;;¢) and the standard normal
distribution p(z) to ensure a continuous latent space for the
generation process:

Lxr =KL (q(z|x.05:08) p(2). (1)

where ¢ is the parameters of the encoder, and KL (-)
represents the KL divergence. Compared with a single GAN,
the encoder in our joint model makes a continuous space
for generation, which enables a better generalisation ability
to the untouched materials while synthesising their tactile
features.

Visual-semantic fusion module. As the generator has mul-
timodal input of heterogeneous sources for the generation
of tactile features, a simple concatenation of visual features
and semantic features is not sufficient in practice. Inspired
by [49], we design a visual-semantic fusion function to em-
phasise the task-relevant features across different modalities.
The fused features can be given by:

m, ;= f ® (o (Wss (Was (Wi f)))), )

where f = [v,,s,], and [.,.] represents the concatenation
operation. W, W,, Wj are learnable matrices, which are im-
plemented by Fully Connected (FC) layers. 6 and o represent
a ReLU and a Sigmoid activation function, respectively, and
® denotes element-wise product. Compared with a simple

concatenation, our visual-semantic fusion module is able to
highlight salient features and suppress redundant features
across visual and semantic modalities, by assigning different
weights to the feature vector.

Generator module. The generator G tries to reconstruct the
tactile features using latent vectors with fused features. For
the generator G, we minimise ¢, reconstruction loss and
pairwise feature matching loss [43] for feature reconstruc-
tion:

Lroe =Ey o %= x5+ Ey . |1/ 0G) = fGx|5-
3)

where x, = G(z,,m, ;) € R represents the synthesised
tactile features, and z, ~ ¢ (z | x;, 0,8 d)E) denotes the la-
tent vectors sampled from the latent distribution. f, denotes
the outputs of the last hidden layer from the discriminator.
Discriminator module. The discriminator D is used to
identify synthesised tactile features from real tactile features.
Concretely, the discriminator is learnt by minimising the
loss:

Lp =—-E, [log D(x)] - E, [log(l — D(x,))]
— E, [log(1 = D(x,))],

where x, = G(z..m, ;) € R denotes the synthesised
tactile features using random noise z, ~ WN'(0,1) and
fused features m,, ; . At the same time, the generator G tries
to fool the discriminator, such as by minimising £{,, =
—[Exe [log D(x,)] — [Exr[log D(x,)] from a normal GAN’s
objective [45]. Through the competition between the dis-
criminator and the generator, the generator is encouraged to
synthesise more clear and realistic tactile features.
However, during the training of a GAN, it is found that
the real tactile features and the synthesised tactile features
are distant between each other, which means that the dis-
criminator can always classify real and synthesised features
correctly, i.e., D(x,) — 1, D(x,) — 0 and D(x,) —
0, particularly in the beginning of training. As a result, it
is undesirable for the generator to fool the discriminator
and a gradient vanishing problem may occur because of
oL, /oD (x,) — —oo and 0L /0D (x,) — —oo. To
address this issue, in addition to L,,., we optimise the
generator by minimising the mean feature matching loss [43]
between real tactile features and synthesised features:

2
:
2

‘2 '
The centre of synthesised tactile features and the centre of
real tactile features should be as close as possible to meet
this objective. It solves the gradient vanishing problem when
the synthesised feature and the real feature do not overlap

with each other, which allows a more stable training and a
faster convergence speed, thus assisting the zero-shot tactile

Lep = ||Ey, [fplx)] = E, [fp(x,)]
&)

+|

E, Lfp(xp)l = E, [fp(x,)]
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textures recognition. To summarise, the overall generator
loss can be given as:

‘CG = ﬁlﬁrec + A2£GD’ (6)

where A, and A, are hyperparameters weighting the losses
of the generator, and are set to 1,20 respectively in our
experiments through a grid search with a validation set.

For the training process of our proposed generative
model, we optimise the encoder E, the generator G and
the discriminator D iteratively, with the parameters in fea-
ture extraction module frozen. During training, the visual-
semantic fusion module is considered as a component of
the generator and updated with the generator as a whole.
An Adam optimiser [50] is applied to optimise the model
and the learning rates are set to le—4, le—4, le—5 for E, G
and D, respectively. The training pipeline of our generative
model is described in Algorithm 1.

4.2. Tactile Zero-Shot Recognition

After training the generative model using touched ma-
terials, we can use the generator to synthesise the tactile
features of untouched materials, with semantic features and
visual features. The synthesised tactile features can be rep-
resented as x;,,, = G(z,, mvu,su)’ where z, ~ N'(0, I).

In the conventional ZSL, a Softmax classifier CL.S), is
trained using the synthesised tactile features of untouched

materials. The classifier minimises the following loss:

Lclsu = _% Z

7 log (p (v | Xsyni ) (D

syn (xsyn’yu)ersyn
where ¢, is the parameters of the classifier CLS,, and
Teyn = {(X;yn¥,) }- Then, we can use the learnt classifier
to classify the tactile features of untouched materials. The

label of the test data can be predicted by:

y= arglyléayfp(y | X ) - ®)

Algorithm 1 Training pipeline of our proposed method
Input: The tactile features; the visual features; the semantic
embeddings; the number of iterations K
Output: The parameters of encoder ¢ ; the parameters of
generator ¢; the parameters of discriminator ¢ p.
1: fori=1toKdo
2: Sample {x,,v;,s,,y,} from the touched set;
3 Sample z, ~q(z | x,,v,,s,;d;E);
4 Synthesise tactile features x, = G(z,,m, ;);
5. Sample a batch of random noise z, ~ N'(0, I);
6
7
8

Synthesise tactile features x, = G(z,,m,,  );
bp < P —Vy, (ﬁKL + £rec)
¢ < ¢ — Vy,Lc (The visual-semantic fusion
module is considered as a part of the generator)
9: ¢D(—¢D—V¢D£D
10: end for

In GZSL, the key is to understand if the input is from
touched classes or untouched classes. Considering the math-
ematical simplicity and tractability, we apply a Gaussian
distribution to model the data and measure the distribution
of probability density of touched tactile features [28]. An
input sample is categorised as touched if it is located in a
high-density region, and as untouched if it is not. Concretely,
we use the touched set {x/,x?, ..., x"} to determine the
parameters ¢o,, = (4, ) of the distribution by maximum
likelihood estimation:

n

(i;gau =arg I})laX log HP (-x;; d)gau) ’ ®)

gau i=1

then if log p(x; ¢g,,) is greater than a selected threshold
p, x is from the touched classes, otherwise, it is from the
untouched classes.

Apart from the classifier CLS,,, we train another Soft-
max classifier C LS, with touched set to recognise the data
from touched materials. Accordingly, the test tactile features
can be fed into different classifiers for recognition. The label
of the test data can be predicted by:

arg max p(yIxi¢,) iflogp(x:gn) > P

p= el 10
Y arg m%/x p ( v x; qﬁu) otherwise. (10)
yeY,

4.3. Network Implementation

Table 1 demonstrates the network structures of different
components. The encoder E consists of three Fully Con-
nected (FC) layers, where the second and the third layers
are both connected to the first layer to produce the mean
vector and the variance vector respectively, and each layer
is followed by a LeakyReLu activation function. The visual-
semantic fusion module includes three FC layers where the
first two layers are each followed by a ReLU activation
function, and the last layer is followed by a Sigmoid acti-
vation function. The generator G is a network with two FC
layers, and each layer is followed by a LeakyReLU activation
function. For the discriminator D, we use a network with
two FC layers followed by a LeakyReLU and a Sigmoid
activation functions respectively for binary classification.
The networks of CLS, and CLS, are both implemented
by three FC layers, where first two layers are each followed
by a LeakyReLU activation function, and the last layer is
followed by a Softmax activation function. The hyperpa-
rameters, such as the number of nodes, are tuned by using
the validation set so as to achieve a balance between the
complexity of the model and the ZSL performance.

All of the networks in our framework are implemented
by the Keras using TensorFlow backend with Python. The
scikit-learn is also implemented to calculate the parameters
of the Gaussian distribution. Our models are trained on a PC
with an AMD Ryzen 7 3700X 8-Core Processor, an Nvidia
2080Ti graphic card and 16 GB RAM.
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Figure 4: Examples in our FabricVST dataset. The first row: categories of different fabrics. The second row: visual images
recorded by a digital camera. The third row: tactile textures collected from fabrics by a GelSight sensor. The fourth row: semantic

attributes measured by human observations. Left five columns: samples of five example training classes from the training set (we
have 40 different fabrics in the training set in total). Right five columns: samples from the test classes (we have 5 unknown fabrics

for the test in total).

Table 1
Network implementation in our framework.

Table 2
Comparison with other dataset. We compare our collected
dataset with other datasets with triple modalities.

Network | Layers Parameters
Number of layers ~ Number of Nodes Dataset PHAC-2 [51] [52] FabricVST
E FC 3 2048 — 2048 — 2048 (Ours)
VS-—-F FC 3 512 — 256 — 2072 Objects Household |t<.-:ms Fabrics Fabrics
G FC 2 2048 — 2048 /Raw materials
D FC 2 512 -1 Tactile sensor BioTac GelSight GelSight
CcLS FC 3 512 =512 — 40 Number of objects 60 118 50
CLS; FC 3 5125125 Nu'\rlnbeLof afttri.bLIJtes 24 4 24
umber O trials 10 o5 205
per object
Camera Visual Image
fabrics are from daily clothing, and an 8cm X 8cm area from
each daily clothing is selected to collect the data. In addition,
the fabrics are similar in thickness, ranging from 1mm to
2mm. Specifically, the fabrics are divided randomly with a
ratio of 8:1:1, i.e., 40 fabrics are used to collect the training
Ro;ﬁi’\rm Tactile Texture set D,; 5 fabrics are used to collect the validation set D, to

Figure 5: lllustration of data collection. A digital camera is
used to take the visual image of the fabric, whereas a GelSight
sensor, mounted on the UR5 robot arm, is pressed against the
fabric to collect the tactile textures. The pressing locations
are recorded, and each tactile texture can be paired with a
certain location on the visual image. The example texture is
corresponding to the red rectangle region of the visual image.

5. Experimental Setup

Fabric materials. There are 50 different fabrics used in
our collected FabricVST dataset. The fabrics include pure
materials like cotton, silk, polyester, linen, etc., as well as
some mixtures of different materials, such as cotton mixed
with wool. Around 30% of the fabrics have different coloured
patterns while the rest come in single colours. Most of the
fabrics are cloth pieces of 8cm X 8cm, whereas some of the

tune the model; and 5 fabrics are used as untouched materials
for testing. Some examples are shown in Fig. 4. To scale
the model for additional test classes, we can increase the
number of neurons in the final layer of the classifier. After
this adjustment, the classifier can then be trained with the
newly synthesised features.

Data acquisition for training. To train and tune the model
with multimodal data, a new dataset, named FabricVST, has
been collected, including visual images, tactile textures and
semantic attributes from fabrics that are used for training
and validation. The test fabrics are only visually inspected
and semantically annotated without collecting tactile data.
To collect visual data, we use a digital camera Canon 4000D
to record the target areas from a fixed distance of 30cm. The
fabric is laid flat on a horizontal plane, while the image plane
is parallel with the fabric as well. As shown in the visual
images of Fig. 4, we crop the main body of the fabric, and
remove the extra background. The resolution after cropping
is 1000 x 1000.
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As shown in Fig. 5, a GelSight sensor is applied to record
tactile textures by pressing against the fabrics. To collect
the data automatically, a Universal Robots URS equipped
with the GelSight sensor [22] is applied to collect data using
Robot Operating System (ROS). The GelSight sensor is typ-
ically made up of an internal camera, an elastomer layer on
the surface, as well as LEDs with R, G, B colours to provide
illumination. When the sensor contacts an object, the camera
captures the RGB images of the elastomer’s deformation.
The sensor has around 1.5¢m X 1.1cm perception field with
a resolution of 640 X 480. The surface properties of the
object in contact with the sensor’s elastomer, such as surface
roughness and texture, can be extracted by analysing the
tactile images generated by the sensor. The elastomer layer is
designed to be soft and sensitive to capture the indentation
caused by the interacting object, but the elastomer may be
delicate and susceptible to wear and tear, especially with
frequent use.

Different from the visual images taken from a distance,
the tactile texture is captured only locally by physical con-
tact. As a result, there exists a scale gap between vision
and tactile sensing. To reduce the large scale gap between
the visual and tactile sensing, we expect that each tactile
texture has a paired visual image at the same location of
the fabric. Given the size of the fabrics and the perception
area of the GelSight sensor, it is possible for us to record the
contact location and match the tactile images with certain
regions of the fabric. Particularly, the sensor is directed
to initiate contact with the fabrics starting from a corner,
moving along the horizontal and vertical directions with a
step length of 4.9mm and 4.6mm respectively, until covering
an 8cm X 8cm area. As a result, each tactile texture in our
dataset is corresponding to a certain location in a visual
image, reducing the scale gap significantly. Finally, each
fabric is contacted by the sensor 225 times for tactile data
collection. To pair with each tactile texture, each visual
image is cropped into 225 parts according to the contact
locations as well.

The robot arm is controlled to press against fabrics
by about 15N with the GelSight sensor. During the data
collection, using a small force during contact might result
in blurred textures due to the slight deformation, while ex-
cessive force might damage the elastomer. After preliminary
experiments, 15N is determined as an appropriate force to
collect clear and distinct tactile images.

To collect semantic attributes, each fabric is labelled
by humans according to its physical characteristics through
visual observation, including stiff, soft, rough, smooth, thick,
thin, cool, warm, fluffy, heavy, delicate, durable, stretch-
able, absorbent, holey, flat, bumpy, patterned, striped, shiny,
hairy, embroidered, jacquard, pigment printed, to charac-
terise the high-level features of fabrics [53]. Each attribute
was given a True or False value according to their properties.
The first six paired attributes are exclusive, and only one
attribute can be given True from each pair. For example,
if stiff is given True value, attribute soft must be False.
The attributes are measured by 5 researchers who work on

tactile sensing, and we compute the final attribute values by
majority voting. Then, we use the one-hot encoding to get
the semantic representation. For example, if the attributes of
one piece of fabric is {True, False, False, ..., True, True},
the semantic vector would be [1, 0, 0, ..., 1, 1]. Though our
fabric semantic attributes may not encompass all aspects of
fabric characteristics and are subject to human bias, they can
still give us valid and appropriate information to describe the
properties of fabrics.

By comparing our FabricVST dataset against other tac-
tile datasets (as shown in Table 2), there are several advan-
tages of our dataset: (1) compared with the datasets in [51,
52], the scale gap between the visual data and the tactile
data is reduced significantly as the visual image is cropped
according to the contact location; (2) a URS robot arm is
applied to collect the data automatically, which is more
stable and alleviates human error compared to collecting
data manually in [52]; (3) each object is explored by the
tactile sensor for 225 times, which results in a larger dataset
than existing datasets [51, 52] with triple modalities (i.e.,
vision, touch and semantic attributes).

The dataset also has some potential limitations. The
elastomer of the GelSight sensor is very soft and sensitive
to capture the indentation caused by the physical contact.
However, it is fragile and prone to damage with frequent use.
Even though the sensor can be calibrated after changing the
elastomer, the response to the stimulus might vary slightly
among tactile sensors due to manufacturing inaccuracies.
Different information embeddings of visual data and
tactile data. The visual data are captured from a distance by
the digital camera where the global information such as ap-
pearance, shapes and colours of materials will be recorded.
Different from visual data, tactile data are collected by physi-
cal contact between objects and an optical tactile sensor, i.e.,
the GelSight sensor. When the GelSight sensor interacts with
the objects, the elastomer on the sensor will be deformed in
response to the contact force, and the surface geometry will
be mapped into the deformation, which is captured by the
camera inside the sensor. In [22], it is demonstrated that the
tactile images from the GelSight have the ability to indicate
tactile textures, contact force, surface height, hardness, etc.
Though the visual data and tactile data are of the same format
(i.e., images), they reflect different properties of the objects.
Tactile zero-shot recognition task. After training the model
with the training set D, and validation set D,,;, we enable the
robot to press against the untouched test materials to collect
tactile textures with the GelSight sensor for zero-shot recog-
nition. Concretely, each test material is pressed by the sensor
to collect tactile textures 225 times at different locations,
with the same tactile data sampling method described in data
acquisition, which are then recognised by the trained model.
Some robotic experiment demos are shown on our website!.

Thttps://sites.google.com/view/multimodalzs]
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6. Experimental Results and Analysis

In this section, a series of experiments are conducted to
evaluate our proposed VS2T-ZSL method for the tactile ZSL
problem. The goal of the experiments is three-fold: 1) To
learn how different components in our proposed structure
improve the ZSL results; 2) To investigate the synergistic
effects of multimodal input; 3) To evaluate the effectiveness
of our proposed method against other methods in both ZSL
and GZSL settings.

6.1. Results of VS2T-ZSL

To investigate how different components work in syn-
thesising tactile features in ZSL, we conduct an ablation
study for our proposed VS2T-ZSL structure. Due to the fact
that G and D are necessary components to synthesise tactile
features, we explore the effect of removing E and VS-F
individually, as well as removing them together. To ensure
that our results are determined by the proposed method
rather than the chosen objects, we repeat the aforementioned
process of dividing materials randomly for five times and
calculate the average results over all splits to validate the
robustness of our proposed method.

As shown in Table 3, the recognition accuracy of un-
touched materials is given to evaluate the performance in
ZSL. Our proposed VS2T-ZSL is able to achieve a higher
recognition accuracy of 83.06% to recognise the unknown
materials, compared to the results when a certain component
is removed. In particular, there is an obvious drop by 4.85%
when E is removed, which demonstrates that the contin-
uous latent space generated by the encoder makes a great
contribution to synthesising untouched tactile features. The
absence of the VS-F produces inferior recognition results,
decreased by 3.56%, compared to the result of VS2T-ZSL..
This indicates that the visual-semantic fusion module is able
to select the salient features across different modalities for
the generation task. Moreover, there is a decrease of 8.45%
when both E and VS-F are removed, compared to the result
of VS2T-ZSL.

Furthermore, the Wasserstein distance is implemented
to measure the distance between the distributions of the
real tactile features and synthesised features of untouched
materials. As shown in Table 3, it is observed that the
Wasserstein distance between synthesised tactile features
and real tactile features is 1,165 by using the VS2T-ZSL,
which are hundreds less than the results from the ablated
structures. It means that the distribution of the generated
features with the VS2T-ZSL method are closest to the real
distribution.

The cosine similarity is also given to evaluate the similar-
ity between each synthesised tactile features and real tactile
features, and the average scores are shown in Table 3. It can
be seen that the proposed VS2T-ZSL achieves the highest
similarity score, i.e., 0.51, among all the structures, which
demonstrates that the synthesised features are more similar
to the real features by using our proposed structures. It can
be concluded that our proposed VS2T-ZSL method, which

Table 3
Recognition accuracy of untouched materials using various
network structures.

Network structure Average Warsserstein Cosine
E VS-F G* D* | Accuracy t Distance | Similarity 1
v v 74.61% 1788 0.41
v v v 78.21% 1571 0.43
v v / 79.50% 1320 0.47
v v v o/ 83.06% 1165 0.51
Table 4

Recognition accuracy of untouched materials using different
input modalities.

Inout Modalit Average Warsserstein Cosine
put Modality Accuracy 1 Distance | Similarity 1
S2T-ZSL 55.07% 1458 0.31
V2T-ZSL 72.71% 1364 0.46
VS2T-ZSL 83.06% 1165 0.51

consists of a feature extraction module, an encoder, a visual-
semantic fusion module, a generator and a discriminator,
allows the generated features of untouched material to be
more realistic, thus providing a better performance in tactile
ZSL.

6.2. Multimodal vs. Unimodal Input

To investigate the synergistic effect of multimodal in-
put, we compare our VS2T-ZSL with the methods using
unimodal inputs on our FabricVST dataset. Firstly, we only
apply semantic attributes to generate the tactile features of
untouched materials in ZSL (S2T-ZSL). Secondly, we only
use the visual images to synthesise the tactile features (V2T-
ZSL).

As shown in Table 4, the recognition accuracy is only
55.07% from S2T-ZSL, while it is 72.71% from V2T-ZSL,
which are much lower than the 83.06% recognition accu-
racy from VS2T-ZSL. The Wasserstein distance and the
cosine similarity also show that the generated features with
multimodal input are much closer to the real features than
with unimodal inputs. The results indicate that multimodal
input enables us to produce more realistic tactile features
from different perspectives with multiple sources, which is
beneficial to zero-shot recognition.

Particularly, it can be observed that the recognition ac-
curacy has an obvious drop, by 17.64% and 27.99% respec-
tively, while using semantic attributes only compared to the
results by using visual input only or multimodal input. A
possible reason causes this difference is due to the limited
number of semantic attributes used in our approach. There
are only 24 attributes used to describe fabric characteristics.
The semantic attributes cannot encompass all of the fabric’s
characteristics and may have many overlapping values be-
tween different materials. As shown in Fig. 6 (a) (b) (c), we
take the data from the first materials split as an example and
compute the cosine similarity between the mean values of
the input features of each untouched class for multimodal
input and unimodal input respectively. It can be seen that
the semantic input of each class is more similar to each
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True label

3 a
Predicted label

Figure 6: Cosine similarities: (a) similarity of multimodal input
between each class, (b) similarity of visual input between each
class, (c) similarity of semantic input between each class.
Normalised confusion matrices: (d) results of the model with
multimodal input; (e) results of the model with the visual
input; (f) results of the model with the semantic input.

Table 5

The recognition accuracy, Wasserstein distance and Cosine
similarity of untouched materials using different numbers of
semantic attributes (1 indicating the higher the values are,
the better performance or the features are more similar; |
indicating that the lower the values are, the features are more
similar).

Number of Accuracy 1 Warsserstein Cosine
Attributes Distance | Similarity 1
6 24.36% 1231 0.32
12 38.94% 1230 0.32
18 43.35% 1223 0.36
24 57.16% 1194 0.39

other compared to the visual input and multimodal input.
Since the input of each class is similar, it will be difficult
to generate recognisable tactile features from semantic in-
formation, which results in a lower recognition accuracy in
ZSL. Compared with semantic attributes, visual input and
multimodal input (as can be seen in Fig. 6 (a) (b)) have
a smaller similarity between each class, which enables us
to synthesise discriminative tactile features for tactile ZSL
tasks.

Mean value Mean value
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Figure 7: The spectrograms of synthesised tactile features.
(a) The spectrogram of the synthesised tactile features of the
material Jacquard Polyester (shown in Fig. 4 column 6). (b)
The spectrogram of synthesised tactile features of the material
100% Cotton with Rubber Print (shown in Fig. 4 column
7). The zoomed-in regions are extracted from the highest
frequency, specifically 682.5 Hz in our case. The zoomed-in
areas span from 0.6 to 1.0 on the distance axis and the colour
displayed corresponds to the intensity of the signals.

Additionally, we investigate the impact of the number
of semantic attributes on the performance of tactile ZSL.
As shown in Table 5, in the experiments with S2T-ZSL,
we test different numbers of attributes, specifically 6, 12,
18, and 24, and these attributes are randomly selected from
the pool of 24 attributes. It can be seen that when the
number of attributes increases, there is an upward trend in
the recognition results. Specifically, there is a 32.8% increase
in recognition accuracy when the number of attributes rises
from 6 to 24. Furthermore, both Wasserstein distance and the
cosine similarity results indicate that the generated features
are more similar to the real features when provided with a
greater number of semantic attributes.

To visualise the synthesised tactile features of our pro-
posed method, we use the method from [26] to showcase the
spectrograms of the synthesised tactile features. Fig. 7(a) is
the spectrogram of the synthesised tactile features of the ma-
terial Jacquard Polyester (shown in Fig. 4 column 6), while
Fig. 7 (b) is the spectrogram of synthesised tactile features
of the material 100% Cotton with Rubber Print (shown in
Fig. 4 column 7). In more detail, we have provided zoomed-
in visualisations for two different fabric textures. These
zoomed-in views give a compact quantitative representation
of the differences in the two textures. Furthermore, we have
added the average frequency values for these zoomed-in
areas to highlight distinctions in the frequency signals of
synthesised features: the smoother material exhibits a higher
frequency of signals (100% Cotton with Rubber Print, right
in the figure), indicating a smoother surface; in contrast,
the rougher material exhibits a lower frequency of signals
(Jacquard Polyester, left in the figure), indicating a rougher
surface. This illustrates the effectiveness of our generative
model in capturing distinct tactile features from the other
modalities.
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Figure 8: Tactile feature distributions. (a) real tactile features
of untouched materials; (b) synthesised tactile features with
multimodal input; (c) synthesised tactile features with visual
input; (d) synthesised tactile features with semantic input.

To further analyse the synergistic effect of the multi-
modal input, we illustrate the normalised confusion matrices
using different input modalities in Fig. 6 (d) (e) (f). Specif-
ically, we can see that only 5% and 11% tactile features of
class 3 (Natural Jute Hessian, see the 8th column in Fig. 4)
are classified correctly using the visual input and semantic
input, respectively (as shown in Fig. 6 (e) (f)), whereas 35%
tactile features are classified correctly with the multimodal
input (as shown in Fig. 6 (d)). It indicates that by combining
visual and semantic information, we can represent the char-
acteristics of materials from different domains and mitigate
biases in a single domain, resulting in a synergistic effect
where the result cannot be achieved with a single modality.

What is more, it is worth noting that most tactile data
of class 3 (Natural Jute Hessian) are misclassified with both
multimodal input and unimodal input. To better understand
the reason, we analyse it in terms of both the output dis-
tribution and the input similarity. The distributions of real
tactile features and synthesised tactile features of untouched
materials are shown in Fig. 8, by using Principal Component
Analysis (PCA) where we reduce the data dimension to
visualise high dimensional tactile features in 2D. If the
classifier CL.S,, is trained with the synthesised features (e.g.,
features in Fig. 8 (b)) and is used to predict the categories of
real tactile features (in Fig. 8 (a)), the testing tactile features
of class 3 (Natural Jute Hessain marked in green) have a
higher probability to be misclassified to a closer cluster in
synthesised features of class 4 (Natural Monkswool marked
in red) due to the bias in the synthesised data. With respect
to input similarity, as shown in Fig. 6, class 3 (Natural Jute
Hessian) and category that is incorrectly predicted, such as
class 4 (Natural Monkswool) have relatively higher input
similarity than other classes which could potentially lead to
a mix-up for recognition.
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Figure 9: The yellow line represents how much validation data
is identified as untouched classes when the threshold is tuned.
The blue line represents how much touched data is identified
as touched classes when the threshold is tuned. The green line
denotes the average value of the two percentages above.

It should be noted that apart from the inaccuracies in
the synthetic phase, the classifier is another source that
potentially introduces errors in ZSL. To validate this, we use
the real tactile features to train the classifier rather than syn-
thetic tactile features, aiming to assess if it can identify the
materials correctly. Consequently, the recognition accuracy
i$ 99.6%, falling short of a complete 100%, which means that
the classifier also introduces additional errors in the ZSL.

6.3. Comparison with Other Methods

Here, we first compare our method against other gen-
erative model-based methods for the tactile ZSL [39, 54].
Particularly, we would like to compare our multimodal gen-
erative methods with methods based on semantic input [39]
or visual input. Since there is no prior work using generative
models conditioned on visual input, the generative model
from [54] is implemented as an alternative, in which the
visual images are used to generate the tactile textures. In
addition to the comparison of generative methods, we also
compare our results to those using projection (or mapping)
methods, i.e., DAP [37] and VT-FC-ZSL [38]. The DAP
employs the touched materials to train a projection model
to project tactile data to attribute embedding space, then
the model is applied on the untouched materials directly
for prediction. The VT-FC-ZSL shares a similar mechanism
with DAP, but it uses multimodal input (visual data and
tactile data) to train the model and prediction. To make the
model suitable for our tactile textures, a fine-tuned ResNet50
is applied to extract the tactile features from the last pooling
layer for the methods in [37, 38, 39]. Note that the methods
from [37, 38, 54] do not involve the setup for GZSL. We
adapt our proposed settings and train a ResNet50 network as
CLS, to simplify the procedure of GZSL.

As detailed in Section 4.2, in GZSL, we fit the real
tactile features into a Gaussian distribution first. Then, if
log p(x; g4, is greater than a selected threshold f, the input
tactile feature x is from touched classes, otherwise, it is from
untouched classes. Specifically, we use tactile features from
D; and D, to tune the threshold f. As shown in Fig. 9,
taking the data from the first materials split as an example,
we select the threshold f that is able to maximise the average
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Table 6

Comparison results. We compare our results against other methods in both ZSL and GZSL settings. acc, and acc, represent the

accuracy of touched and untouched materials, respectively; H = ZX%*% denotes their harmonic mean.

acc,+ace,

Methods Gene- | Projection Uni- Multi- ZSL GZSL
rative based modal | modal acc 1 ace, 1 ace, 1 H 1
DAP [37] v 43.56% | 94.11% 43.47% 59.47%
VT-FC-ZSL [38] v v 63.20% | 94.11% 62.58% 75.17%
Abderrahmane et al. [39] v 47.20% | 83.44% 47.11% 60.22%
Lee et al. [54] v 51.29% | 89.00% 51.20% 65.00%
VS2T-ZSL v v 76.36% | 94.56% 76.00% 84.27%

accuracy of classifying x, € D; as touched and x,,; € D,
as untouched.

As shown in Table 6, the recognition accuracy of our pro-
posed VS2T-ZSL is 76.36%, which is 25.07% and 29.16%
higher than the results of other generative methods from [54,
39] in the ZSL setting, respectively. A similar trend can
be found in the GZSL for both the touched and untouched
classes. Our proposed VS2T-ZSL method has the highest
harmonic mean accuracy of 84.27%, which shows the su-
periority of our VS2T-ZSL over other generative methods.

In the results of projection methods, the use of seman-
tic and visual modalities together in VT-FC-ZSL improves
the tactile recognition result largely by 19.64%, compared
to the result by using semantic attributes only in DAP in
ZSL setting. In GZSL setting, the harmonic mean of the
method VT-FC-ZSL is 15.7% higher than the results of DAP.
However, VS2T-ZSL performs better than both of these
projection methods, which demonstrates the effectiveness of
our generative model.

7. Discussion

In this section, we discuss several aspects that affect the
results of the tactile ZSL.

7.1. Unimodal vs. multimodal input for Tactile
ZSL

The application of the multimodal input allows us to
measure the objects from different domains, increasing the
dimensions to reflect the properties of different objects. As
shown in Fig. 8, the generated features with multimodal
input are closer to the real distribution compared to the
generated features with unimodal input, and the boundaries
of each class are clearer than the others. As a result, the
prediction of real tactile features will be more accurate using
the model trained on the synthesised tactile features with
multimodal input.

However, due to the implementation of multiple modal-
ities, the computational efficiency decreases compared with
the model using single modality. For example, 14.36 mil-
lions parameters are trained in the generator for VS2T-ZSL
method, while 8.44 millions parameters are trained for S2T-
ZSL method. Therefore, there is a trade-off between the
amount of computation and the accuracy.

7.2. Visual input vs. semantic input for tactile ZSL

Compared to multimodal input, unimodal data is much
easier to be collected. Here, we discuss which modality is
more effective in tactile ZSL using unimodal input. While
visual images provide an objective measurement that in-
cludes fine details of fabrics, semantic attributes offer a
high-level description. Both of them are able to measure the
characteristics of target objects from different perspectives.
However, different from visual images that provide objective
measurement with high resolution, the semantic attributes
are constrained to a limited number of attributes and are
subject to human bias. From Table 4, we can observe that the
recognition results using visual input are better than those
using semantic input. It also explains why the visual-based
approaches [38, 54] achieve better results than the baseline
approaches [37, 39] that rely only on semantic attributes in
Table 6.

Consequently, the visual input is a more objective and ac-
curate auxiliary information to measure the object for tactile
ZSL. A possible way to improve the results of semantic input
is to use continuous-valued attributes. Compared to binary
attributes, continuous-valued attributes can demonstrate the
level of properties to improve the recognition results. More-
over, a larger number of attributes are expected to increase
the dimension of representation.

7.3. Projection-based vs. generative model-based
approaches

As shown in Table 6, we apply two projection meth-
ods [37, 38], two generative model-based methods [39, 54],
as well as our proposed multimodal generative method for
comparison. We can see that the performance of the gen-
erative methods is better than the projection methods with
the same input. Concretely, the recognition accuracy of our
VS2T-ZSL is 13.16% higher than the result from VT-FC-
ZSL with multimodal input in ZSL. The accuracy of [39] is
3.64% higher than the result from DAP with unimodal input.
It demonstrates the effectiveness of the generative method in
tactile ZSL.

For the projection-based method in tactile ZSL, a pro-
jection function is learnt between the tactile features and
semantic embeddings. However, if the projection function
is only learnt from touched classes and is applied to the
untouched classes directly, the projected features and se-
mantic embeddings may be kept away due to the bias in
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touched classes, which is a domain shift problem [55, 56].
In contrast, the generative model-based method tries to
reconstruct the tactile features using the available auxiliary
information, e.g., tactile cues embedded in visual images or
semantic attributes. By reconstructing the tactile features,
one constraint is met: tactile cues from the visual/semantic
domain have to be preserved in the tactile feature generation.
Moreover, due to the fact that the auxiliary information is
from the same latent space and is conceptually interlinked,
the generator can generate meaningful tactile features for
untouched materials, which is able to alleviate the domain
shift problem [40, 57].

7.4. Limitations of the proposed approach

The proposed method, while promising, does come with
certain potential limitations that may constrain its perfor-
mance in tactile ZSL.

Firstly, extensive effort is required from annotators to
label the semantic attributes of fabric textures for our dataset
FabricVST, making the process both resource-intensive and
susceptible to human bias. An alternative approach could
be to leverage the material compositions typically listed by
fabric manufacturers for garments or fabric samples. These
compositions could serve as a valuable source of semantic
information, such as identifying that a fabric made of silk
typically exhibits the semantic attribute of “smooth”. It
presents an intriguing avenue for exploration to determine
if tactile ZSL Learning can be enhanced by incorporating
visual data and material compositions derived from fabric
labels.

Secondly, in our approach tactile data is collected using
an optical tactile sensor that uses a camera to capture the
deformation of a silicone layer above it. This methodology
results in tactile images that share the same format as visual
images captured by conventional digital cameras. While this
provides valuable tactile information, the tactile data col-
lected via this approach may primarily capture tactile infor-
mation that aligns with the visual appearance of materials.
This could differ from the physical signals obtained through
other tactile sensors, such as MEMS based tactile sensors
[18]. An interesting avenue for future research would be to
explore how tactile ZSL performs when utilising different
types of tactile sensors, thus enriching our understanding of
cross-modal transfer capabilities.

Thirdly, while the incorporation of multimodal input
does enhance the performance of tactile ZSL, it also comes
at the cost of increased computational resources due to larger
data volume. Therefore, a key area for future work could
focus on optimising the efficiency of utilising multimodal in-
put, thus addressing the associated computational overhead.

8. Conclusions

In this work, we propose a novel multimodal gener-
ative framework to address the tactile ZSL problem. A
new dataset, FabricVST, including visual images, semantic
attributes and tactile data, is collected from different kinds
of fabrics. This dataset is larger than any other existing

datasets in the field with these triple modalities. A joint
generative model, which integrates the VAE and GAN, is
proposed to synthesise the tactile features of untouched
materials from visual images and semantic attributes. It is
the first work that uses multimodal input to generate tactile
features for tactile ZSL in robotic perception. In the ablation
study, the results demonstrate that our multimodal approach
which combines semantic attributes, representing high-level
characteristics, and visual images, providing tactile cues
from sight, can achieve a synergistic effect, compared to
using a single modality. The extensive experimental results
show that the proposed method enables a high recognition
accuracy of 83.06% in classifying unknown materials using
tactile sensing. Our proposed VS2T-ZSL method allows the
robots to recognise the materials never touched before.

In the future, we will apply the VS2T-ZSL method to
different unstructured scenarios where the tactile informa-
tion is more robust and cannot be easily changed, even if
appearance or colour has been altered, e.g., folded clothes.
Additionally, different tactile sensors will be evaluated in
our experiments, such as the GelTip sensor [58, 59], the
GelFinger sensor [60] or the MEMS based tactile sensors.
Compared with the GelSight sensor, there are significant
disparities in data types, scales, and modalities between
the features obtained from a vision camera and those from
MEMS. Although this gap could present potential chal-
lenges in achieving cross-modal transfer for tactile zero-shot
recognition, we plan to employ these differences to validate
our proposed method. We will also test our methods in other
tasks, for example, zero-shot tactile learning for grasping
and manipulation of objects with auxiliary information of
visual and semantic attributes, to generalise our methods on
different tasks.

Furthermore, in our proposed framework, we use visual
images and semantic attributes to generate the data of in-
accessible tactile domain. Likewise, it is possible to switch
the input and output domains, such as using visual and
tactile data to synthesise semantic attributes, or using tactile
and semantic attributes to synthesise visual data using our
framework, which is promising to solve the semantic/visual
ZSL problem in a multimodal manner in the future.
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