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End-to-End Bayesian Segmentation and
Similarity Assessment of Performed Music
Tempo and Dynamics without Score
Information

Corentin Guichaoua1 , Paul Lascabettes1 and Elaine Chew1,2

Abstract
Segmenting continuous sensory input into coherent segments and subsegments is an important part of perception.

Music is no exception. By shaping the acoustic properties of music during performance, musicians can strongly influ-

ence the perceived segmentation. Two main techniques musicians employ are the modulation of tempo and dynamics.

Such variations carry important information for segmentation and lend themselves well to numerical analysis meth-

ods. In this article, based on tempo or loudness modulations alone, we propose a novel end-to-end Bayesian frame-

work using dynamic programming to retrieve a musician’s expressed segmentation. The method computes the

credence of all possible segmentations of the recorded performance. The output is summarized in two forms: as a

beat-by-beat profile revealing the posterior credence of plausible boundaries, and as expanded credence segment

maps, a novel representation that converts readily to a segmentation lattice but retains information about the pos-

terior uncertainty on the exact position of segments’ endpoints. To compare any two segmentation profiles, we intro-

duce a method based on unbalanced optimal transport. Experimental results on the MazurkaBL dataset show that

despite the drastic dimension reduction from the input data, the segmentation recovery is sufficient for deriving musi-

cal insights from comparative examination of recorded performances. This Bayesian segmentation method thus offers

an alternative to binary boundary detection and finds multiple hypotheses fitting information from recorded music

performances.
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Introduction
Music is increasingly viewed as performance (Cook, 2014),
in contrast to the long-held view of music as artifact, as
writing, as score. However, studying the ephemeral medium
of music as it unfolds in time poses significant challenges.
Extracting meaningful musical structures from musical perfor-
mance lacks the constants afforded by the notated score.
Finding musical structures relevant to the act and perception
of performance adds complexity to the undertaking. While
tools exist to extract features and basic musical structures
from recorded performances, turning these extracted parame-
ters into pertinent representations of the music remains an
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important computational challenge. Here, we propose a way to
abstract, in a nuanced way, the performer’s projected structural
understanding of the music s/he is playing, and to compare
any two such structural representations.

When performing a piece, musicians not only have in
mind the notes they are about to play, but also some intui-
tions as to how the musical material such as notes group
together into coherent ideas (Gody et al., 2010), how they
relate one to another (Lewin, 2007), and which ideas
could be made more prominent and others sublimated
(Cadwallader, 1998) during performance (Mazzola,
2011). Some of these intuitions may derive from experi-
ence, some may be formulated in real-time amid perfor-
mance, parts of it may coalesce into some mental
conceptions of the music. All these notions serve to guide
the performer’s expressive choices (Rink, 1995), which in
turn influence how the listener hears the music (Clarke,
2005). Using the tools at their disposal, within the con-
straints of the physical properties of their instrument, the
performance conventions they wish to adopt (or reject),
their own bodily form and technical abilities, performers
manipulate timing, articulation, and dynamics to shape
the music (Leech-Wilkinson, 2017) to convey segmenta-
tion, prominence, and affect (Palmer & Hutchins, 2006)
to the listener. These functional acoustic variations are
referred to as musical prosody.

The varying of tempo (beat rate) and loudness (perceived
sound pressure) form a main focus of performance research
(Chew, 2023; Langner & Goebl, 2003; Kosta et al., 2016,
2018a). A well-documented practice is the arching of
tempo and/or dynamics to mark phrases. Performers tend to
convey phrases through accelerando–deccelerando and cre-
scendo–decrescendo patterns (Todd, 1992; Gabrielsson,
1987), which also serve as cues for how the performer or lis-
tener segments the musical material.

The phrases that performers highlight in this way are
approximately nonoverlapping and cover the whole piece;
hence, defining a segmentation. In this article, we focus on
the problem of recovering such a segmentation from the
prosody in a recorded music performance. The question we
ask is: Given a recorded performance, can we reverse engi-
neer it to uncover the performer’s segmentation of the
piece from the musical prosody alone, without the notes?

Segmentation is an important part of perception (Zacks
& Swallow, 2007), and it is no surprise that it is widely
studied in multimedia research, including for images
(Haralick & Shapiro, 1985), video (Koprinska & Carrato,
2001), and audio (Sakran et al., 2017). In particular,
music segmentation has received a lot of attention (Paulus
et al., 2010; Nieto et al., 2020), with most automatic
approaches partitioning the music according to criteria of
repetition (Guichaoua, 2017; Lascabettes et al., 2022b)
and novelty (Lascabettes et al., 2022a). Relatively few
methods have focused on musical prosody as a source of
algorithmic segmentation cues. Widmer and Tobudic
(Widmer & Tobudic, 2003) fit quadratic models to perfor-
mance features (instantaneous tempo and loudness)1

given a known multilevel segmentation; while their aim
was not to segment the music, this work highlighted the cor-
respondence between phrase arcs and segmentation bound-
aries. Chuan and Chew (2007) turned the approach around
by introducing joint estimation of segmentation boundaries
and parameters for an arc model, which yields a segmenta-
tion solution rather than requiring one. This was later
refined by Stowell and Chew (2013) who added a
Bayesian prior to steer the estimation toward more plausible
solutions. Like Chuan and Chew (2007) and Stowell and
Chew (2013), we choose to focus exclusively on loudness
and instantaneous tempo data, discarding all direct score
information. This represents a deeper conceptual shift
than what might be immediately obvious. By focusing on
musical prosody alone, what is being segmented is no
longer the piece as written in the score, but the acoustic per-
formance as realized by the musician. Although, as we can
observe in our results, the score structure can be partially
carried over through the performance, the extracted struc-
ture is of a different nature, barring direct comparisons
with repetition- and novelty-based methods. Another char-
acteristic which sets this work apart from most of the exist-
ing literature, including that on performance segmentation
is that, unlike previous methodologies, we use an
end-to-end Bayesian approach, aiming for a credence-
based, multiple solution output rather than a single solution.

Indeed, research shows that listeners, when asked to
judge the segmentation of a recorded piece of music, some-
times disagree about the exact placement of the boundaries
and their existence or relevance (Smith et al., 2014; Wang
et al., 2017; Nieto et al., 2020). This indicates that the seg-
mentations that performers project may not be perceived
universally the same way. Since part of the disagreement
can be traced to listeners focusing on different aspects of
the music (Smith et al., 2014; Smith & Chew, 2017) such
as rhythm, melody, harmony, or timbre, it seems illusory
to expect to recover a sole best projected segmentation
based on only one or two features. This calls for a represen-
tation of segmentation results that allows for multiple plau-
sible solutions. In short, prior work on music segmentation
typically attempts to output a final best guess of the segmen-
tation; even those adopting a Bayesian approach ultimately
only output a best answer. In contrast, we aim to provide a
more nuanced representation of the segmentation solution
in which multiple segmentation hypotheses can co-exist.
Such an approach has proven useful in cases where insuffi-
cient data is available, as in Rupprecht et al. (2017) for com-
puter vision. These segmentation hypotheses can then be
refined, either based on a manual complementary analysis
or by using additional sources of data.

To achieve this goal of returning multiple solutions, we
adopt a Bayesian framework. Bayesian approaches have
been applied to problems in music such as beat tracking
(Degara et al., 2011), and key finding and meter induction
(Temperley, 2007). In our Bayesian context, we examine
all possible segmentations and let those that are supported
by the performance features rise to the fore. The total
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number of segmentations is exponential according to the
number of possible segmentation points, which makes a
naïve approach both unusable and computationally intracta-
ble. By focusing on the credence of individual boundaries
or individual segments, we are able to use a new dynamic
programming algorithm to compute these probabilities
efficiently.

Focusing on the credence of individual segments, we
propose a new representation of the multiple segmentation
hypotheses, which we call the expanded segment credence
map. This map provides an overview of the flow of segments
one into another, analogous to a segmentation lattice, a directed
graph where each node represents a plausible segment and is
connected to the other plausible segments that start when it
ends. In contrast to the lattice where each node is a discrete
segment, we do not discard nuance about the endpoints of seg-
ments, such as whether there remains uncertainty about the
existence or exact location of any given boundary.

We also introduce a method based on unbalanced
optimal transport to compare two segmentations resulting
from two performances. The use of unbalanced optimal
transport provides a temporal tolerance between boundaries
and flexibility in the number of boundaries between two
segmentations derived from performances. Therefore, this
distance provides a method of measuring similarity
between two musical performances, taking only the seg-
mentation induced in the performance into account. In addi-
tion to measuring similarity, this distance highlights where
estimates agree or disagree. This allows us to understand
similarities between the ways different performers concep-
tualize the music to produce the recorded performances.

To test the algorithm and demonstrate its use on real data,
we use selected recordings from the MazurkaBL dataset
(Kosta et al., 2018b), which contains about 2000 perfor-
mances across Chopin’s 49 mazurkas and the corresponding
loudness and instantaneous tempo data. As Romantic-era solo
piano pieces, almost all of the performer’s expressiveness lies
in the dynamics, pedal, and timing (including rubato) modu-
lations, which are each sequentially quantifiable.

The remainder of the article is organized as follows: the
first section presents the Bayesian model we use to assign
credence to segmentations, as well as the recursive formulae
which lets us compute these credences efficiently; the next
section shows how this information can be processed to be
accessible to humans and shares a few insights that arise
from direct examination of the outputs; our penultimate
section proposes the use of unbalanced optimal transport to
reveal similarities and differences between segmentations
from different interpretations of the same piece; finally, we
provide some concluding remarks and point to applications
and leads for future developments of this method.

Modeling and Boundary Credence
Estimation
We have assumed that a performance is driven (in part) by the
performer’s segmentation of the piece. However, this

segmentation is not directly accessible, as it resides in the per-
former’s mind: it can only be inferred from the data that it has
influenced, in particular the tempo and loudness of the per-
formed music, which are readily quantifiable. Thus, we use
Bayesian inference to update, using observed data, a model
of the plausible segmentations. For the Bayesian inference,
we also need a model of how segmentation is going to
drive the data. This model we use comprises of two parts:
an overall theory of the behavior of segments, and a model
of how segmentation decisions affect the prosody.

First, we need an overall model (a theory) of which seg-
mentations are likely before observing any data. This is
similar in a broad sense to the method employed in
Sargent et al. (2017). For example, using their overall
model, a segmentation that would divide a piece into a
few very short segments and a very long one seems unlikely
to be correct, whereas a segmentation comprising segments
of similar and phrase-length sizes could be much more
plausible, before even considering the data.

Second, a specific model describing how a given seg-
mentation affects the performance data is also required.
Loudness and/or tempo have been shown to exhibit arch
shapes delineating phrases (Todd, 1992; Gabrielsson,
1987), particularly in romantic era music. Examples of
phrase marking tempo arcs in Artur Schnabel’s recording
of Beethoven’s “Moonlight” Sonata, with accelerations at
the beginnings of phrases and deccelerations near the end,
can been seen in Figure 1. Empirically, while the edges
of some phrases may be clear, others are less obvious. As
a compromise between model complexity and modeling
error,2 a piecewise concave quadratic model has been
chosen as the specific model. This specific model drives
the data and the kinds of arcs that we are likely to see.

In this article, we shall assume that arcs are independent
one from another, that is, that modulations in one arc do not
affect those in others, and that the plausibility of an arc
depends only on its beginning and end. This assumption
is somewhat unrealistic, as a performer may be more
likely to shape a repeated section in the same way (or con-
versely in a contrasting fashion) across all its occurrences,
but it is necessary for our use of dynamic programming
to break down the computations in a tractable way. An
added benefit of this independence assumption is that it
ensures that the overall and specific models are decoupled,
meaning that either model can easily be replaced by an
alternate model without major repercussions.

This two-tiered model mirrors the one used in Stowell
and Chew (2013), with minor changes to the priors. The
main difference is the goal of the computations. In the
current method, our objective is to look for the posterior
credence of all segmentations, summarized through cre-
dence values on the arcs or boundaries, rather than to
seek the segmentation of maximal credence.

In the following subsections, we first describe the input
and output of the method and the underlying assumptions;
we then show how this output can be efficiently computed
from the segmentation prior and the segment-wise data
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likelihood; we conclude by describing the arc model we use
to compute these likelihoods.

Problem Statement and Notations
We view the prosodic feature extracted from the recorded
performance as a sequence of N instantaneous tempo or

loudness values D, each corresponding to the value at a
beat. We denote D[i, j] as the sequence slice from indices
i to and including j (0-indexed).

We consider that the performance segmentation consists
of a succession of nonoverlapping, consecutive intervals
that can only change on the beat. Notation-wise, we represent
this as a set S of integer intervals; if [i, j] ∈ S, there is an arc

Figure 1. (a) Instantaneous tempo in Artur Schnabels performance of Beethoven’s “Moonlight” Sonata with corresponding score (m.

115); and (b) with three levels of tempo arcs at the initial four bars outlined on the plot. Reproduced from Chew (2016a) (Figure 5,

p. 133, and Figure 6, p. 135).
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starting at data index i and ending at j, and the next arc (if
there is one) would start at data index j + 1. We introduce
shorthands [i, ∼] ∈ S and [∼ , j] ∈ S to signify that an arc
starts at index i (respectively ends at j), regardless of its
other end (that is to say, [i, ∼] ∈ Sgt ⇔ gt∃ k:[i, k] ∈ S).3

Our aim is to infer information about the posterior credence
of S, mainly by marginalizing against boundaries to obtain
posterior boundary credences p([∼ , j] ∈ S ∣ D) or against
arcs to obtain posterior arc credences p([i, j] ∈ S ∣ D). We
refer to the sets of these values as the boundary credence
profile and the arc credence matrix of a piece, respectively,
although the matrix will be further transformed for the sake
of visualization.

The assumption of independence across arcs is formal-
ized in two ways, one for the data and one for the prior:

∀n, D[0, n]⊥⊥D[n+ 1, N − 1] ∣ [∼ , n] ∈ S

∀ k, l, i, j s.t. k < l < i < j ,
(1)

p([i, j] ∈ S∣[i, ∼] ∈ S, [k, l] ∈ S) = λ(i, j) (2)

where λ(i, j) = p([i, j] ∈ S∣[i, ∼] ∈ S). In less formal
terms, this means that the data before a boundary has no
effect on the data after that boundary, and that the prior
on the end of a segment does not depend on previous
segments.

Finally, we assume that the first and last beats are respec-
tively the first and the last beats of the first and last arcs, that
is, [0, ∼] ∈ S and [∼ , N − 1] ∈ S. The λ function is then
sufficient to define the entire prior on the segmentations4

and operates as a parameter for the method. We use func-
tions that are translation invariant, meaning they act as a
prior on the length of any segment, but this is not a
requirement.

Adapted Forward–Backward Algorithm
Here we show how the posterior marginals can be com-
puted efficiently by using a similar process to that of the
forward–backward algorithm, which bears resemblance to
some Bayesian changepoint detection algorithms (Rigaill
et al., 2012; Fearnhead & Liu, 2011).

By applying Bayes’ formula, we have the following:

p([∼ , n] ∈ S ∣ D) = p(D ∣[∼ , n] ∈ S)p([∼ , n] ∈ S)

p(D)
.

(3)

None of these terms are trivial to compute. However, using
the assumption that data across arcs are independent, we
can rewrite Equation 3 using the so-called forward and
backward quantities α(n) and β(n), defined as5

α(n) = p(D[0, n], [∼ , n] ∈ S)

∀ n ∈ {0 . . .N − 1},
(4)

β(n) = p(D[n+ 1, N − 1]∣[n+ 1, ∼] ∈ S)

∀ n ∈ {−1 . . .N − 2}, and
(5)

p([∼ , n] ∈ S ∣ D) = α(n)β(n)

α(N − 1)

∀ n ∈ {0 . . .N − 1}.

(6)

where α= joint probability between the prior credence of a
boundary and the joint probability of the data up to that
boundary; and β= probability of observing the data from
a boundary to the end, conditioned on that boundary
being present. Broadly speaking, α and β split the probabil-
ity of observing the overall data according to a hypothetical
boundary at n, and combine to give the credence value
p. Boundaries are not truly random variables. The
Bayesian approach treats such unknowns as distributions.
Since we are not predicting random processes, which
have associated probabilities, the computations work with
credences, which express a belief. For example, p can be
a posterior credence (as in Equation 6) or a prior credence
(as in Equation 3).

Recursive formulae can be derived (see supplementary
material) for these new quantities, using κ(i, j) =
p(D[i, j]∣[i, j] ∈ S) as represented by

α(n) =
∑n−1

i=0

α(i− 1) × λ(i, n) × κ(i, n), and (7)

β(n) =
∑N−1

i=n+2

β(i) × λ(n+ 1, i) × κ(n+ 1, i), (8)

showing that both quantities can be computed respectively
forward and backward by summing, over possible arcs,
their previously computed values, weighted by the prior
on that arc and the likelihood of the corresponding data
slice. This can be done efficiently using dynamic program-
ming, especially if the prior is null for arcs over a
maximum length.6

In addition, we can once again use the independence of
data across arcs to get posterior marginals on each arc using

p([i, j] ∈ S ∣ D) = α(i)κ(i, j)λ(i, j)β(j)
α(N − 1)

. (9)

Provided we have a specific model and algorithm that can
yield the κ(i, j) for all relevant pairs, we can thus compute
efficiently the posterior credences. The next subsection
describes one such model.

Arc Model
The arc-level model is a standard Bayesian polynomial
model, like the one in Bishop (2006), whose notation we
largely borrow. The main difference in the approach is
that we are not ultimately interested in the model parame-
ters, but in the likelihood of the segment’s data.

Throughout this section, we work under the assumption
that there is an arc from index i to index j, with j > i. To
insulate the arc model from the global considerations, set
t = D[i, j] and x as the normalized score time within the

Guichaoua et al. 5



arc, that is,

x = k

j − i

( )
k∈{0,...,j−i}

. (10)

All variables defined in this section are then done so with
respect to i and j, apart from the prior parameters μ, Σ
and η, which are constant across all arcs.

First we assume that there is an ideal tempo series y, rep-
resenting the performer’s intended tempo curve for the
phrase, from which the observed data t deviates by ϵ.
This deviation term is meant to encapsulate a variety of
sources, such as finer-scale modulation (e.g., note-level
rubato, beat annotation/extraction error, and execution
error), and is modeled as independent, centered Gaussian
noise, with a fixed variance η as represented using

t = y+ ϵ,
ϵ ∼ N (0, ηI),

(11)

where I = identity matrix of the appropriate size.
We then model the ideal tempo as a quadratic function of

score time, with independent Gaussian priors on its param-
eters using

y = Φx w, (12)
w ∼ N (μ, Σ), (13)

Φx :=
x20 x0 1

..

. ..
. ..

.

x2N−1 xN−1 1

⎡
⎢⎣

⎤
⎥⎦, (14)

where x0, . . . , xN−1 = individual values of x, μ and Σ,
respectively, holding the means and (diagonal) covariance
matrix of the priors on the quadratic, linear, and constant
coefficients (in that order).

In summary, rewriting Equation 11 using Equation 12,
we have that the distribution of t given w is

p(t∣w) = N (t|Φx w, ηI ) (15)

which, marginalizing against w, yields

p(t∣w) = N t|Φx μ, ηI + Φx

∑
Φx

T
( )

. (16)

Inserting this formula as κ(i, j) into Equations 7 and 8, we
can now proceed with the Bayesian updating of priors.

Output of the Proposed Model
In this section, we start with a brief description of the priors
that we use in the computations for the remainder of this
article and how they were set. We then show how the added
complexity of the nuanced credence output can be handled
through a few transformations and adequate visualizations.
Finally, we comment on a few examples to exhibit how
they can be used to extract knowledge about the performances.

Prior Setup
As always with Bayesian methods, the output is depen-
dent on the priors. For the method, we need to select

priors for likely segment lengths, phrase arc parameters,
and noise.

Tempo and loudness arc priors: in order to set reason-
able priors, tempo and loudness arc boundaries were man-
ually annotated for 37 performances across four pieces
(initially 40, but three were discarded as the corresponding
machine-generated beat annotations proved to be incorrect).
Maximum likelihood estimates were then fitted to each arc
in order to infer the corresponding model parameters,
whose mean and variance were then used to construct the
different priors. The resulting prior parameters were

μtempo =
−181
159
107

⎛
⎝

⎞
⎠, Σtempo =

932 0 0
0 1062 0
0 0 312

⎡
⎣

⎤
⎦ (17)

ηtempo = 18.1, ηloud = 0.039, (18)

μloud =
−0.73
0.68
0.41

⎛
⎝

⎞
⎠, Σloud

=
0.552 0 0
0 0.602 0
0 0 0.192

⎡
⎣

⎤
⎦. (19)

We will demonstrate the model using tempo or loudness
features. It is possible to run the model on both tempo
and loudness features at once. However, as tempo and loud-
ness variations are far from independent of each other, it is
not sufficient to simply append their two priors; doing so
leads to overconfident boundaries. Assuming independence
between tempo and loudness leads to similar patterns in
these features strongly reinforcing each other, whereas the
reinforcement should be weak since the similarity is to be
expected. Fixing this problem likely requires a more
detailed setup of the covariance between features, which
we leave for future work.

Segment length priors: for the prior on segment length,
we have used a discretized Gaussian distribution, cut off
at 30 beats, with mean 14.7 and standard deviation 5.95
(again set according to the 37 manual annotations).

These priors are wide, which is expected as the arcs can
exhibit highly different shapes and expectations; priors that
are too strict would likely result in poor segmentations.
Overall, this means that posterior credences are mainly
driven by the goodness of the arc fits, and that the priors
only have a limited regularization role.

Visual Representations
Boundary credence can be readily visualized. They yield
one real value per beat, similar to the input data, which
can be plotted sequentially on the same graph, such as in
Figure 2. An interesting complement to that information
is to look at a moving window sum of the boundary cre-
dences. If the window is small enough, the corresponding
boundaries are incompatible. For two close boundaries to
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coexist, there would need to be a very short segment
between them, which would either fall below the
minimum segment length or be extremely unlikely a
priori, to the extent of being negligible. This means that
the moving sum represents the posterior credence of
having a boundary within that window.

This windowed sum could be used to reduce the nuanced
output to a more familiar best guess of where boundaries
are; for example, by selecting the peaks, on which the well-
established segmentation evaluation techniques could be
applied. In particular, this enables one to tune the guess
directly to the level of tolerance used for the Boundary
Hit Rate (Turnbull et al., 2007; Levy & Sandler, 2008).

Another use case of the moving sum is to easily distin-
guish boundaries that are almost certain, but for which
there is still uncertainty about the exact location, from
boundaries that are merely plausible, but could be optional
as the two segments it delimits could be merged. Examples
of the latter can be found around the mid-point of both B
sections in Figure 2.

When looking at ambiguous structures, a richer view is
to consider the posterior credences of segments, as they
show how boundaries can chain together according to the
alternative segmentations. However, they are harder to
visualize efficiently and require some additional processing.
In the next paragraphs, we shall introduce representations to
visualize the segment credence outputs of the algorithm.

Segment credence matrix: a naive representation of the
raw credence values for all possible segments is the
segment credence matrix, Ai,j = p([i, j] ∈ S ∣ D).
However, this is simple but inefficient, as all nonzero
values will be located close to the diagonal, with most of
the matrix representing impossible segments [e.g.,
Figure 3(a)].

Segment credence map: the segment credence map is a
first step toward an efficient representation by transforming
the indexing from start and end position to start position and
length of segment, that is

Bi,j = p([i, i+ j] ∈ S ∣ D). (20)

Here, B is essentially the same as A, but instead of indexing
by the start and end positions of the arc, it is indexed by the
start and length. An advantage of this transformation is that
the values need only to be computed for acceptable seg-
ments. However, it may still be hard to see where each
hypothetical segment ends. In addition, many values will
still be practically null [Figure 3(b)].

Expanded segment credence map: we can take advan-
tage of the segment credence map’s sparsity by “spreading”
each data point over its represented length to obtain the
expanded segment credence map using

Ci,j =
∑j

k=0

Bi−j+k,j. (21)

An example of this expanded segment credence map is the
background of the bottom representation in Figure 3. Since

the summed probabilities are disjoint, this matrix has a strict
interpretation, namely, each (i, j) value gives the probability
that beat i is in a segment of length j. However, the insight
from this representation comes not from its admittedly con-
fusing definition but from visual inspection. One can think
of each nonzero region as a possible segment: the greater
the region’s vertical span, the more uncertain its exact
boundaries. Vertical region edges indicate sharp boundar-
ies; sloped region edges mark uncertain boundaries.

Segmentation lattice: the expanded segment credence
map can be manually abstracted as a segmentation lattice,
as shown superimposed on the representation in
Figure 3(c). The lattice links pairs of segments that end
and begin on successive beats. It provides an overview of
the alternative segmentations, but discards information
about the precise location of boundaries. Although the seg-
mentation lattice was manually created in this case, its con-
struction could likely be automated.

Musical Meaning of Outputs
Here, we discuss two sets of results of the segmentation
extraction method. The first shows differences in interpreta-
tions of the same musical piece, and the second highlights
the detection of expressive gestures in recorded
performances.

Differences in Interpretations of the Same Musical Piece.
Figure 4 shows the instantaneous tempo values and their
derived boundary credence for Gbor Csalog’s and Arthur
Schoonderwoerd’s interpretations of Chopin’s Mazurka
06-2. The immediate observation is that, in both cases,
boundaries are recovered where section changes occur;
the remaining boundaries occur in the middle of sections,
where a reference segmentation at a finer scale could have
put boundaries. It is not surprising that the performances’
segmentations align well with a score-based segmentation,
as the score’s structure plays a large role in determining
which patterns or groupings can be emphasized. There are
nonetheless many differences between the segmentations
projected by each performer.

In this instance, based on tempo, the model suggests that
Csalog’s performance mostly emphasizes four-bar group-
ings as seen in Figure 4(a), in contrast for example to
Schoonderwoerd’s performance, for which the four-bar
groupings are visible in the raw data but are overshadowed
by stronger eight-bar tempo arcs as shown in Figure 4(b). In
the broader scheme, Schoonderwoerd also uses dynamics to
demarcate four-bar subsections, as shown in Figure 4(c),
which is picked up by the algorithm when run on loudness.

The output also shows that some boundaries are more
precisely located than others. For instance, the position of
the boundary around beat 168 is sharply defined to within
a beat; whereas the next boundary, while still strongly
detected overall, is spread out with a loosely defined loca-
tion. This difference in boundary sharpness can also be
observed between the tempo-based and loudness-based
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segmentations of Schoonderwoerd’s performance, mainly
due to the smoother nature of the loudness data in
MazurkaBL. With smoother data, the Gaussian noise
accounts for less of the variation, leading to tighter fits
and thus more confident arc boundaries.

Another interesting feature of Csalog’s performance is
the weaker boundaries around beats 84, 132, and 156,
none of which sum close to 1, reflecting some ambiguity
in the structure. Indeed, Csalog weakly marks the four-bar
groupings at these points, but the much higher prominence
of the eight-bar arcs could justify skipping the lower-scale
boundaries. This is very visible in the segmentation lattice
in Figure 3(c), where the predominant path uses short seg-
ments for the A sections (except the one from beats 144 to
168) and long segments for the other sections, while still
showing the alternative long and short sections,
respectively.

Music Expressivity Visualized with Boundary Credence.
Figure 5 shows the tempo-based output for two perfor-
mances of Mazurka Op. 24-3: Rubinstein’s 1966 recording
and Fiorentino’s recording. Interestingly, the resulting seg-
mentations diverge from expert annotations while largely
agreeing with one another.7 The explanation lies in the pres-
ence of tipping points (Chew, 2016b)—elongations of time
for expressive effect—in the A sections. Where boundaries
are detected correspond to mid-phrase fermate in the score.
Indeed, there are tempo arcs starting and ending on these
notes, but they arguably do not constitute phrase boundar-
ies, and are in effect temporal tipping points. This result
shows that the recovery of the interpreter’s segmentation
only works so long as the mapping between tempo (or loud-
ness) arcs and musical groupings is not disrupted by other

expressive effects. In this case, swapping out the arc
model for another that would map correctly to the group-
ings could be envisioned. Nevertheless, it is interesting to
recover expressive gestures such as tipping points, which
are a form of musical thresholds.

Manual comparison of posterior boundary and segment
credences, as we have been doing in this section, is useful
and can be enlightening, but it is unscalable to large data-
bases such as MazurkaBL and its 2000 recordings for
which tens of thousands of pairwise comparisons could
be drawn, before even considering cross-piece and cross-
feature comparisons. In the next section, we show how
we can automatically grade the similarity between per-
formed structures and identify where and how they differ.

Distance Based on Unbalanced Optimal
Transport to Compare Boundary
Credences
In this section, we propose a model to obtain similarities and
differences between boundary credences. More precisely, we
use unbalanced optimal transport to compute the proximity
between the projected segmentations of two performances
of the same piece. We then illustrate this method, first by
applying it to one of the earlier examples, then systematically
to large subsets of the MazurkaBL data set.

Unbalanced Optimal Transport-Based Distance
Model
Motivation. With respect to the boundary credence of a
given performance, a musician creating another

Figure 2. Tempo (red, upper curve), posterior boundary credence (solid blue) and its five-beat moving sum (dashed blue) for Csalog’s
interpretation of Mazurka 6-2. Background colors and letters reflect a reference score annotation by Witkowska-Zaremba (2000) (we

divided their C section into C and C′ to keep segment lengths consistent).
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performance may choose to make boundary credence peaks
at different locations and with different shapes. For
example, compared with Csalog’s interpretation in
Figure 4, Schoonderwoerd chose to create about half as
many boundary credence peaks through tempo modula-
tions, marking eight-bar-long phrases instead of four for
Csalog. In addition, the peaks in Schoonderwoerd’s inter-
pretation have a different shape from those in Csalog’s
interpretation. Therefore, we propose to quantify the dis-
tance between two credence profiles by taking into
account the possibility of having a different number of
peaks and different shapes for each peak. The two different
costs to be accounted for in the distance are:

• Cost of deforming one peak into another: when
peaks from boundary credence of two different inter-
pretations are found at almost the same locations,
they may be of different shapes, eliciting different
perceptions from listeners. For example, the percep-
tion of a peak can change with a longer or shorter
pause between two musical phrases.

• Cost of destroying or creating peaks: when a peak is
not matched in the comparative performance, this
indicates different ways of grouping the music mate-
rial. The presence or absence of peaks changes the
locations and lengths of the musical phrases pro-
jected by the performer.

Consequently, each peak is deformed or destroyed and we
choose to compute the distance between two boundary cre-
dences as the sum of the deformations of the matched peaks
into one another and the unmatched peaks that are
destroyed or created.

Figure 3. Posterior segment credence for Csalog’s
interpretation of Mazurka 6-2: (a) raw segment credence matrix

(A); (b) segment credence map (B, Eq. 20); (c) expanded segment

credence map (C, Eq. 21); superimposed on the expanded

credence map is a manual conversion of the map to a

segmentation lattice, with bolder transitions being more credible.

A candidate segment is highlighted throughout the different

representations.

Figure 4. Computed boundary credence (in blue, lower curves)

for interpretations of Mazurka 6-2 by: (a) Csalog; and (b and c)

Schoonderwoerd. These are based on tempo (a and b) and

loudness (c). The input data is shown in red (upper curves).

Csalog makes more tempo boundaries than Schoonderwoerd.

Csalog’s extra boundaries tend to be in the middle of sections;

Schoonderwoerd also marks these boundaries but through

loudness.
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These deformations are computed based on unbalanced
optimal transport that is a mathematical theory related to
optimal transport (Monge, 1781; Kantorovich, 1942;
Villani et al., 2009). Optimal transport studies how to trans-
form points from a starting set to an ending set, while min-
imizing the total cost of transport, where the quantities of
the starting and ending set are the same. Unbalanced
optimal transport refers to a situation in which the quantities
to be transported and the costs of transport are not balanced
among the different sources and destinations. In our case,
we are interested in moving the area under a boundary cre-
dence to the area under another boundary credence with
minimal effort. However, we add the condition that the
area under each peak can be transformed to at most one
peak. This condition allows us to determine which peaks
are similar or different between two boundary credences,
which indicate the choices in the way the music is seg-
mented through performance. This method based on unbal-
anced optimal transport is illustrated in Figure 6, and we
mathematically formalize this distance in the next
subsection.

Mathematical Formulation. Let f and g be two boundary cre-
dences as represented in Figure 6. Each boundary credence
normally comprises a series of peaks, that is, f = { fi}i∈I
and g = {gj} j∈J , where I and J are indices of a set. We
isolate the peaks within each boundary credence using a
threshold set at 0.01—values above 0.01 are part of some
peak, and those below are not. We have found this value
to be sufficient to isolate distinct peaks while discarding
only negligible parts of the result. Regions above the thresh-
old give the isolated peaks as illustrated in Figure 6 with
f = { f1, f2, f3, f4} and g = {g1, g2, g3}. Given fi a peak
(which is a discrete function), recall that the distribution
function Fi of fi, and the area under the peak ∥fi ∥1 of fi
are defined by

Fi(n) =
∑n
k=−∞

fi(k), ∥ fi ∥1=
∑∞
k=−∞

| fi(k)|. (22)

Let fi and gj be two peaks such that ∥fi ∥1= ∥gj ∥1. The dis-
tance associated with discrete optimal transport8 dOT
(Werman et al., 1985) between fi and gj, in the one-

Figure 5. Temporal tipping points (suspensions of time flow for expressive effect) found in most performances of Mazurka 24-3

detected as peaks. Examples by: (a) Rubinstein 1966; and (b) Fiorentino. Reference sectional annotation by Witkowska-Zaremba (2000)

shown in background (section C is a codetta rather than a proper section).
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dimensional case, is written as

dOT ( fi, gj) =
∑∞
n=−∞

|Fi(n)− Gj(n)|. (23)

From an algorithmic point of view, distribution functions
can be readily computed, so it is straightforward to obtain
the optimal transport distance between two peaks.

The two peaks may be temporally very distant, in which
case it is preferable to destroy the area rather than move it.
To do this, we use the unbalanced optimal transport (Chizat
et al., 2018). Let fi and gj be two peaks such that
∥fi ∥1= ∥gj ∥1, we define the unbalanced optimal transport
distance when peaks have the same area by

dUOT ( fi, gj) = min
2

3
dOT ( fi, gj), ∥ fi ∥1 +∥gj ∥1

{ }
. (24)

According to this definition, if the minimum is 2
3 dOT ( fi, gj),

it means that it is less costly to transform the area of one
peak into another, but if the minimum is ∥fi ∥1 +∥gj ∥1, it
means that it is less costly to destroy the area of both peaks.

We now explain the 2 / 3 factor. Because creating or
removing a peak translates to a larger musical change
than modifying the shape of a peak, we choose to reduce
the modification cost between two peaks by a factor of 2

3.
This factor means that it is as costly to match two identical
peaks three beats apart with optimal transport as it is to
destroy each of the peaks. In other words, the limit for
deforming peaks is three beats, that is, one bar in case of
Mazurkas. Mathematically, if fi = δi′ and gj = δ j′ where δ
is the discrete dirac function (i.e., δi′ (k) = 1 if k = i′ and
0 elsewhere), then dUOT ( fi, gj) = min 2

3 |i′ − j′|, 2( )
.

Therefore, if |i′ − j′| > 3, that is, the two peaks are sepa-
rated by more than three beats, then
dUOT ( fi, gj) = 2 = ∥fi ∥1 +∥gj ∥1, so it costs less to
destroy both peaks than to deform one into the other. On
the other hand, if |i′ − j′| < 3, that is, both peaks are less
than three beats away, then dUOT ( fi, gj) = 2

3 |i′ − j′| =
2
3 dOT ( fi, gj) and the cost of transforming one peak into
the other is lower than destroying the peaks.

Finally, when two peaks, fi and gj, do not have the same
area—for example, with ∥fi ∥1≤∥ gj ∥1—we scale the area
of gj with the factor

∥fi∥1
∥gj∥1

so that the two peaks have the same
area and we add a term to signify the cost of the area lost,
∥gj ∥1 −∥fi ∥1, as already proposed by Gromov for the
optimal transport formula when areas are different
(Gromov et al., 1999, chapter 3 1/2, section B, p. 117).
Suppose fi and gj are such that ∥fi ∥1 ≤ ∥ gj ∥1, we
define the distance associated with the unbalanced
optimal transport between fi and gj by

dUOT ( fi, gj) =min
2

3
dOT fi,

∥ fi ∥1
∥ gj ∥1

gj

( )
, 2 ∥ fi ∥1

{ }

+ (∥ gj ∥1 −∥fi ∥1).
(25)

Referring back to Figure 6, some f peaks are matched and

moved to g peaks (solid red rectangles) and others are
destroyed (dotted blue rectangle). Recall that each peak
can only be matched once. We use a dynamic time
warping algorithm to determine which peaks of f should
be matched, or not, with those of g by allowing peaks to
be matched with the zero-value function, which is equiva-
lent to peak destruction. In Figure 6, the first peak f1 of f
is slightly shifted toward the first peak g1 of g, the second
peak f2 is deformed because it does not have the same
shape as g2, and the third peak f3 is destroyed because it
does not match with any peak of g. In the end, the distance
between two boundary credences is the sum of the cost of
transforming or destroying each peak.

Revealing Similarities and Differences in
Segmentations of Different Interpretations
We illustrate the distance based on unbalanced optimal
transport using the Csalog’s and Schoonderwoerd’s inter-
pretations of the Mazurka 6-2 shown in Figure 4. The com-
parison result is shown in Figure 7.

In this figure, we can see which peaks are matched
(marked by solid red rectangles) between the two perfor-
mances and which peaks are removed (delineated with
dotted blue rectangles). This can be useful for understand-
ing the similarities and differences between two recorded
performances. Because there are peaks between two succes-
sive sections in both performances (i.e., every eight bars),
they are deformed into each other through unbalanced
optimal transport. By contrary, most of the additional
peaks of Csalog compared with Schoonderwoerd are
destroyed. It is also interesting to notice that even if the
second to last peaks of each performance are almost at
the same time, they do not match. The algorithm prefers
destroying them rather than deforming them because their
shapes are too different. In addition, with respect to the
last peak, the two curves are overlapped, so they cannot
be distinguished in the figure and the peaks are matched
with the unbalanced optimal transport-based distance (indi-
cated by a solid red rectangle).

As a gauge of the credibility of our method’s outputs, we
compare the outputs to a known comparative analysis of
recordings of Chopin’s Mazurkas. Cook (2007) investi-
gated the tempo variations of different recordings of the
Mazurka 68-3, using correlations between the raw tempo
curves of the different recordings and manually arranging
them on a network to show the degrees of correlation
between the recorded performances. This has been repro-
duced in Figure 8(a). Cook identified three clusters, thus
three main ways of playing Mazurka 68-3 that he attributed
in part to geographic location or teacher–pupil relationships
between the different pianists. We automated the computa-
tion of a similar map from the same set of recordings of
Mazurka 68-3, except for Fu T’song (not in our database).

We first computed the credence boundaries for each
recording, then the distance between them based on the
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unbalanced optimal transport as described in the previous
section. Finally, we automatically represent the results on
a similarity map using the Python package manifold from
the scikit-learn module (Pedregosa et al., 2011). The
output is shown in Figure 8(b). We assigned a color to
each of Cook’s three clusters to highlight consistencies
between this output and the analysis of Cook (2007). For
example, observe that Rubinstein’s interpretations are far
from the average. In addition, there are other interpretations
that are far from the average, as Cook noted, namely those
of Ashkenazy, Biret, François, and Cortot.

Next, we apply the method to self similarity of interpre-
tations of the Chopin mazurkas across multiple recordings
by a performer. In the MazurkaBL database, Arthur
Rubinstein stands out by far as the performer with the
most recordings. He recorded three sets of mazurka

performances: in 1939, 1952, and 1966. All three covered
most, if not all, of the mazurkas. Although his style
evolved over the years, his performances remained on
average closer to his own than to that of others, according
to our distance measure. Re-scaling the distance such that
the closest performance pair on a piece is 0 and the farthest
is 1, the average distance between Rubinstein’s recordings
of the same piece is 0.28, whereas that between
Rubinstein’s recording and another performer’s is 0.52.

Extending this idea, it would seem reasonable to hypoth-
esize that trends of proximity between artists can persist
across pieces, perhaps due to similar grouping preferences
or other similarities in their structural perception. To test
this hypothesis, we focused on the subset of performers
who recorded all of the mazurkas that Rubinstein recorded
on all of his three sets (overall 30 mazurkas and 10

Figure 6. Illustration of the unbalanced optimal transport-based distance between two boundary credences f and g. Solid red

rectangles indicate matched peaks; dotted blue rectangles mark unmatched peaks.

Figure 7. Unbalanced optimal transport-based distance between the interpretation of the Mazurka 6-2 by Csalog and

Schoonderwoerd. Note that the solid red rectangles indicating agreement tend to align with the annotated section boundaries, while

dotted blue rectangles, the disagreements, typically mark more unusual boundaries. The right-most box contains both lines perfectly

aligned.
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performers in addition to Rubinstein’s three versions). We
then looked at the 30 distance matrices for each mazurka,
and proceeded to perform a Mantel test (Mantel, 1967) on
each pair of mazurkas. However, only 39 of the 435 pairs
showed significant correlation at the 5% level, which is
higher than would be expected by chance, but far below
what might result from a sizeable trend.

Conclusion and Future Work
We have described a method aimed at recovering the
implicit segmentation conveyed through a musical perfor-
mance. To achieve this, we have relied on a Bayesian
framework, which has led to a nuanced output in which
multiple segmentation hypotheses can co-exist. The
method works on extracted prosodic features of an audio
recording of a performance, without the need for score
(note) information. The nuance acknowledges that with
limited features and segmentation ambiguity, it may not
be possible or desirable to have a precise localization of
boundaries, and also that more than one segmentation can
be a valid explanation for the observed data. To address
the complexity introduced by this nuanced output, we
have introduced the expanded segment credence map,
which is a visualization of all plausible segmentations,
including uncertainty about the precise position of seg-
ments’ endpoints.

We have shown on a selection of examples that this
method finds segmentations that can reveal interesting
structural differences between individual performances.
There is some qualitative evidence that the performed struc-
ture could serve as a proxy for the score structure, which
prompts further investigation such as using the algorithm’s
output as priors for estimating music structure (Smith &
Goto, 2016). We have also proposed a comparison

method based on unbalanced optimal transport that yields
a distance between performed structures and highlights
their similarities and dissimilarities. Interestingly, this dis-
tance revealed that Rubinstein’s performed structures
across the years were more similar to each other than
those of other pianists. In contrast, we have found above
chance but no significant correlation between two perform-
ers’ distance in one piece and their distance in another. This
means that agreeing on performed structures in one piece
may not imply agreement in another piece. However, it is
important to recall that the comparisons mentioned have
been based only on segmentations derived from tempo or
loudness. Indeed, two performances can be similar in
these aspects but may differ on other counts such as
overall tempo or timbre.

In future work, it would be desirable to apply this
method to a larger database of performances, preferably
annotated with perceived structures. For example, the
ASAP dataset (Foscarin et al., 2020) has a broader com-
poser and piece range than the MazurkaBL dataset (Kosta
et al., 2018b) we used, at the cost of a shallower range in
performers. This broader range likely includes some
pieces for which conventional interpretations do not
exhibit the arching patterns we rely on, requiring a different
segment model. Unfortunately, it still does not include per-
formance structure annotations, and to our knowledge,
neither does any currently available database, but projects
such as CosmoNote (Fyfe et al., 2022) are in the process
of assembling one.

A promising feature of the approach is that the two parts
of the model are entirely decoupled. This means that the arc
model could be improved—for example, to account for
more features—without having to rework the overall
model and algorithm. In addition, since the algorithm is
agnostic of the recorded performance, the arc model

Figure 8. Similarity maps of interpretations of Chopin’s Mazurka 68-3: (a) tempo-based correlation network manually created by

Cook (2007); (b) automatically generated map based on unbalanced optimal transport distances between boundary credences.
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could be entirely swapped out for a segment model suited to
a different segmentation task.

We believe that, beyond the specifics of the model and
algorithm presented, one of the key takeaways of this
article is the choice of credence on boundaries or segments
as outputs of segmentation. The credence-based approach
has the potential to give deeper insights into music; for
example, the distinction between (almost) certain or slightly
plausible boundaries, and between strongly and weakly
localized boundaries. In order to make full use of this rich
output, new visualizations, tools, and methodologies will
be critical. We have proposed a few, like the use of a
moving sum to help distinguish between types of boundar-
ies, but much remains to be done. Some of the most press-
ing questions in that pertaining to quantitative evaluation. A
first, a relatively easy path would consist of condensing the
nuanced output to best guesses in order to use existing
methods and datasets, but a more rewarding path would
see new methods embracing the uncertainty and ambiguity
surrounding music segmentation.

In conclusion, given a recorded performance, we have
shown how the performer’s segmentation of the music
material could be reverse engineered from the musical
prosody through a computational Bayesian approach. The
nuanced segmentation derived with our method provides
insight into musicians’ understanding of the music, and
the potential structure perceptions that could result from
hearing the performance, thus also increasing the under-
standing of the experience of music. Finally, we have
shown how the resulting boundary credence yields useful
comparisons of musical interpretations using an optimal
transport-based distance measure that compares favorably
to intuition and manual analysis by a noted musicologist.
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Notes
1. Instantaneous tempo being the inverse of the time between two

beats and loudness a perceptually adjusted measure of sound
pressure (Fastl, 2005).

2. In a different context, such as for popular music, using a piece-
wise constant model for loudness would place the approach in
the novelty-based models (although modern production tech-
niques such as dynamic compression might prevent finding
useful information from loudness alone).

3. An easy but fallacious shortcut is to think [i, ∼] ∈ S and
[∼ , j] ∈ S would imply [i, j] ∈ S, but the latter is stricter as
it also requires that the arc starting at i and the arc ending at j
be the same arc.

4. It is possible to go from this λ function to the implied prior cre-
dence on boundaries and segments by applying the same algo-
rithm while neutralizing the data likelihood terms.

5. Note that α(N − 1) = β(−1) = p(D). We also extend the defi-
nitions such that α(−1) = β(N − 1) = 1 to handle boundary
conditions.

6. Specifically, in O(NK) if K is the maximum arc length.
7. This is also the case with other performances of this mazurka.
8. Also known as Wasserstein’s distance or the Earth mover’s

distance.
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