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Abstract. People are increasingly interacting with machines embedded with intel-
ligent decision aids, sometimes in high-stakes environments. When a human user
comes into contact with a decision-making agent for the first time, it is likely that
the agent’s behaviour or decisions do not precisely align with the human user’s
goals. This phenomenon, known as goal alignment, has been recognised as a crit-
ical concern for human-machine teams. Prior work has focused on the effect of
automation’s behavioural properties, such as predictability and reliability, on trust
in human-machine interaction scenarios. However, little is known about situations
where automation’s capabilities are misaligned with humans’ expectations and its
impact on trust. Even less is known about the effect of environmental factors on
trust. We study the relationship between intervention behaviours and trust in a
simulated navigation task where the human user collaborates with an agent with
misaligned goals. We evaluate trust quantitatively using intervention frequency as
a behavioural measure and qualitatively using self-reports. By advancing the un-
derstanding and measurement of trust in collaborative settings, this research con-
tributes to the development of trustworthy and symbiotic human-AI systems.

Keywords. interventions, trust, uncertainty, human-agent interaction, goal alignment

1. Introduction

People increasingly interact with machines embedded with intelligent decision aids,
sometimes in high-stakes environments. Investors use trading agents to manage trades
and make their money work smartly. Vehicles embedded with intelligent technologies
process and communicate real-time information to the driver. When a human user ini-
tially comes into contact with a decision-making agent, most likely programmed by
someone else with a different understanding of how the agent should function, the agent’s
behaviour or decisions may not fully align with what the user wants to accomplish. This
problem, known as goal (mis)alignment, has been recognised as a critical concern for
human-machine teams [1]. An example of goal misalignment is when Google Maps sug-
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gests an alternative shorter route while driving along a longer but scenic route. When
the human recognises the goal misalignment, for instance, by noticing the agent mak-
ing recommendations that are not fully aligned with the human’s interests, human in-
terventions occur. Considering the Google Maps-assisted driving example, such an act
of intervention is when the human, preferring to experience the scenic drive, rejects the
alternative shorter route. In the scope of this paper, we define interventions as a human-
initiated action to alter the agent’s behaviour, specifically, rejecting the decision and
suggesting an alternative to modifying the decision-making process to better align with
the human’s goals. In automated driving, intervention behaviour is commonly phrased
as “takeover behaviour” and is a widely researched topic [2–4]. Considering the be-
havioural opposite of intervention—compliance, where the human accepts the agent’s
decisions—misaligned goals can have disastrous outcomes, especially in safety-critical
situations. For instance, in a recent incident, tourists following GPS directions were led
straight into a harbour in Kailua-Kona, Hawaii [5]. Although the drivers were unharmed,
tow crews had to pull the fully submerged SUV out of the water. The “flash crash” in-
cident in 2010 [6], where humans relied on complex autonomous systems consisting of
agents responsible for trading decisions, led to large monetary losses and has signifi-
cantly affected regulations for US equity markets.

Compliance is often used as a behavioural demonstration of trust in human-machine
interactions [7–9]. Muir [10] laid the foundation for understanding the relationship be-
tween trust and interventions in a supervisory control setting, arguing that human inter-
actions with automation should not be viewed as a “once and for all” activity but rather
a “dynamic process” where the human decides to either intervene or leave the system
running under automation. The study found that automation’s unreliability affects perfor-
mance, trust, and self-confidence, impacting the human operator’s decision to switch be-
tween automatic and manual modes. Prior work has focused on the automation’s proper-
ties, such as predictability [11,12] and reliability [13,14]. However, little is known about
situations where automation’s capabilities are misaligned with humans’ expectations and
its impact on trust. For example, while on a trip, the driver uses a GPS-enabled system to
find places of interest nearby. The system, programmed to present the closest locations
first, will give the driver some options. If the driver chooses the closest attraction, it is
not guaranteed that they will enjoy the attraction. If the user frequently rejects a system’s
suggestions because the results are not exactly what the user wants, this can lead to a
loss of trust. Even less is known about the impact of environmental factors, which we
define as external events occurring outside the control of the agent and the human. Envi-
ronmental factors are important to consider in systems deployed in real-life conditions.
For example, an unplanned road closure may happen while finding the places of interest
using the GPS-enabled navigation system. We argue that such events may further im-
pact the trust when working with agents with misaligned goals. Stated differently, our
study finds evidence for miscalibrated trust [15] in environments where the human’s and
agent’s goals are misaligned, evidenced through interventions. Because miscalibrated
trust leads to systems’ misuse and disuse, our study warrants further investigation into
trust calibration when the human’s and the agent’s goals are misaligned. Meta-reviews
on the trust in human-automation interaction literature [16, 17] highlighted the limited
number of studies exploring environmental factors in trust development. In this paper,
we address that gap and aim to understand how the agent’s capability to act as a decision
aid and the uncertainty in the environment impact trust.
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We designed the human-agent interaction use case to allow the researcher to sample
trust at regular intervals during the task while carefully balancing the workload of the
human user Past studies have shown that a high workload may force a human user to rely
on automation [18], creating an illusion of trustworthy behaviour. This poses a challenge
to capturing trust using behavioural measures. In particular, it is recommended that for
a measurement like an intervention to be feasible, the workload must be low [19]. Our
interaction use case involves the human completing a navigation task travelling from
point A to B with the help of an automated route planning agent. The agent finds a path
to the destination and reveals only the next direction from the current position. When the
human intervenes and proposes a new direction, the agent automatically recalculates a
new path, including the human’s suggestion, and the task continues until the destination
is reached or the budgets have run out. Route planning tasks have commonly been used
to evaluate trust with respect to automation reliance behaviours in human-robot [20–22]
and human-agent interactions [23, 24].

1.1. Contributions

We explore how the number and frequency of interventions as a behavioural measure
of trust vary according to an agent-related factor, i.e., the agent’s capability to act as a
decision aid, and an environment-related factor, i.e., the uncertainty.

We model capability in our route planning use case by assuming that the human
needs can be modelled by a set of criteria (e.g., distance and time) in the route planning
task. Specifically, the human wants to drive the shortest distance as quickly as possible.
In our design, the agent can only optimise for one criterion (either distance or time),
defined as the agent’s capability. Thus, the capability is a partial alignment of what the
agent optimises for and the goal of the human. Note that this differs from the agent giving
faulty advice, as is much evaluated in past works on reliability and trust in human-agent
interactions. The agent’s suggestions are “correct” based on the agent’s understanding
of the world model, and the agent always proposes a direction from the optimal route
considering the current state.

We model uncertainty as a non-determinism in the environment, where the move-
ment of the placement marker indicating the vehicle’s current position does not solely
depend on the agent’s or the human’s choices. In the GPS-assisted driving example, our
uncertainty modelling is similar to a situation where the driver turns into a by-road, a
traffic officer approaches, informs about a sudden road closure and forces the driver to
take a direction different from the one suggested by the agent or intended by the human.
We display this visually in the interactive interface, where the moving action does not
always take the placement marker in the intended direction. Note that this is different
from the uncertainty arising from the agent itself, such as failures or mistakes. Given this
setup, we answer the following research questions:

RQ1: What effect do the agent’s capability and the uncertainty in the environment
have on the intervention frequency measured at regular intervals during the task?

RQ2: What is the relationship between intervention frequency measured during the
task and the user’s confidence in agent capability and environment uncertainty?

We hypothesise that the agent’s capability and uncertainty in the environment affect in-
tervention frequency and self-reported trust and that users’ confidence in automation is
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lower when there is environmental uncertainty. Further, we expect a human to intervene
more and have less confidence in an agent where the consequences of goal misalignment
are more severe. Our study departs from providing a snapshot view of trust measured at
a specific point (e.g., at the end of the interaction). It provides evidence for its variability
during the task.

2. Literature Review

The navigation task we designed aligns with the collaboration principles advanced in
[25]. The agent is available throughout the task and provides direction suggestions to
the human (responsiveness). Whenever the human suggests an alternative direction, the
agent reruns the path planning algorithm and generates a new path that includes the di-
rection the human suggested (joint activity). The human can freely decide to use the
agent’s recommendation. Trust can lead to cooperative behaviour in human-agent col-
laborations [11, 26] in situations where the human trustor will be at risk if not for the
cooperation.

Antecedents of Trust. We adopt the trust definition advanced by Lee and See [27] for
this work. Antecedents of trust are classified as automation-related, operator-related and
environment-related [16]. Automation-related covers automated machines as well as em-
bodied and virtual agents. We present capability as automation-related and uncertainty
as environment-related factors.

Automation-related. In interpersonal settings, the trustee’s ability signals trustworthy
perceptions to the trustor [15]. In human-automation interaction contexts, the automa-
tion’s ability is reflected in reliability, faults, predictability, transparency and automation
level, which have been shown to impact trust. Reliability has been shown to positively
affect trust [13, 14, 26]. Closely related to reliability, automation faults negatively affect
trust. Fault occurrence frequency [28], timing of the occurrence [29], and the magni-
tude [30] impact trust in different ways. Automation predictability [11] positively im-
pacts trust. Similarly, transparency (i.e., explaining the reasoning process) [31] positively
impacts trust. The level of automation, mostly evaluated in automated driving scenar-
ios [32], impacts human trust.

The automation-related factor we introduce in this study, i.e. capability, is a con-
struct related to the agent’s ability as defined by Mayer et al. [15]. However, we ad-
vance a nuanced take on the grounded definition of the ability, which asks whether or
not the agent is capable of fulfilling its commitment [33]. Capability is derived from goal
alignment definition in [34]; the degree to which the human’s goal matches the AI’s pro-
grammed goal. Specifically, the agent can only plan the route by optimising for one of the
two criteria the human needs. The agent’s suggestions are “correct” by its understanding
of the world model, and it always provides the best recommendation given the current
state and the goal that the agent optimises; the agent is neither faulty nor unreliable. A
different representation of goal misalignment is presented in [35], where they consider
the alignment of reward functions between collaborating agents.

Environment-related. Hancock et al. identified team collaboration and tasking as envi-
ronmental factors [17]. Team collaboration refer to in-group membership, culture, com-
munication and shared mental models. Tasking consider task type, complexity, multi-
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tasking requirement and physical environment. The study found moderate effects of en-
vironmental factors on trust development. They highlight a strong need for future empir-
ical work to study the relationships between environmental factors and trust, citing the
limited number of studies available.

Hoff and Bashir’s trust model [36] classified environmental factors as an antecedent
to situational trust in human-automation interactions. They define risk and benefits of us-
ing automation as environmental factors. A similar link has been established in [37], sug-
gesting that risk impacts trust and reliance behaviours in human-automation interactions.
In a high-risk driving scenario, the participants trusted and used the GPS driving advice
less [38]. A study by Hoesterey and Onnasch manipulated risk by altitude and measured
trust attitude and behaviour in a decision automation task [39]. Results showed that trust
attitude was not affected by risk. However, trust behaviour was higher and increased dur-
ing the experiment for the automation-supported group. Conflicting results reported in
these prior studies further highlight the empirical necessity to improve the understand-
ing of the relationship between trust and environmental factors. Our study takes a step
towards addressing this gap.

Adopting the definition advanced by Hoff and Bashir [36], in our study, we use the
uncertainty factor to manipulate the risk in the environment. Our definition of uncer-
tainty differs from the agent-related factor predictability in Mayer’s trust model [15]. We
model uncertainty as non-determinism in the environment, where external elements pre-
vent movement in a direction suggested by the agent or human. Uncertainty in the envi-
ronment does not cause the agent to replan. The agent perceives the unexpected landing
position and recommends the best direction to take from that position based on the policy
it has already generated.

2.1. Measuring Trust

Trust is typically measured as behavioural measurements, self-reports, and physiological
measurements. We focus our literature review on behavioural measurements and self-
reports because, in this study, we use interventions as a behavioural measure and self-
reported trust as a post hoc measurement.

While Muir’s study affirmed intervention as a behavioural indicator for trust (or lack
thereof), a recent review on measurement of trust in automation [19] recognises that be-
havioural measures are capable of sampling trust at a much higher rate than self-reports,
which are typically administered before and after the interaction in experimental condi-
tions. Frequent sampling generates a more accurate measure of trust because it allows the
researcher to capture “the area under the trust curve” as defined in [40]. Frequent sam-
pling allows the researchers to capture the temporal nature of trust, yet another under-
explored antecedent to trust [41]. In [34], to measure the temporal trust dynamic, tra-
jectory epistemic network analysis is used to show the evolution of trust in human-AI
conversations. We demonstrate the dynamic variation of trust, measured quantitatively
with interventions using a higher rate of sampling measured periodically during the task.

Behavioural measures can be active (e.g., compliance with instructions or recom-
mendations issued by automation, operator intervenes by taking control over from au-
tomation), passive (e.g., reliance) or engaging in risk-taking in the relationship [19]. An
advantage of using a behavioural measurement is that it generates a continuous metric
instead of a one-time measurement at the end of the task [37]. Our study uses interven-
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tion frequency during the task as an active behavioural measurement. A model predicting
the trust in automated parking features consisted of the proportion of trials in which the
driver intervened in addition to operator-related and automation-related constructs [2].

Prior work has recognised the contentious relationship between behavioural mea-
surements and trust, claiming that behavioural measurements can be influenced by fac-
tors other than trust, such as workload [42] and risk [39]. Kohn et al. recommended that
experiments be designed to confirm that behavioural trust measures correlate with other
trust measures, such as using validated self-reported trust measurements [19]. In [43],
self-reported trust (using a validated trust in automation scale in [44]) was measured
periodically during the task alongside task performance-related metrics.

3. Methods

We now describe the navigation use case, how the independent variables, capability and
uncertainty were operationalised, and the experimental setup.

3.1. The Navigation Simulator

We created a web-based interactive simulator where a virtual agent assisted a human user
in planning a route. A valid route took the user from a starting location (home) to the
destination (hospital), passing through three locations identified as landmarks (a grocery
store, a construction site and a school). Although a human could enforce their own or-
der of visiting the landmarks, the plans generated by the algorithms enforced an implicit
temporal ordering for landmark visits: starting from the grocery store to the school, to
the construction site, and finally the hospital. The agent used two route planning algo-
rithms: the A∗ search algorithm with the admissible heuristic landmark-cut [45] and Q-
Learning [46] to generate a route to the destination, going through all un-visited land-
marks. The generated route was incrementally revealed to the user one action at a time
as direction suggestions. The location map is laid on a grid. Therefore, the direction sug-
gestions were UP, DOWN, LEFT and RIGHT. We introduced risk and vulnerability to
the user by constraining the route planning task to be within a time (t) and distance (d)
budgets. We ensured that the budgets were sufficient to complete the route planning task
in pilot studies. We also simulated critical events during the route planning task. An ac-
cident occurred halfway through the trip (i.e., less than half of the distance budget was
remaining) where two cells on the grid became inaccessible, and the agent had to replan
as its position was pushed to an adjacent cell. The interaction scenario was presented as
a cover story where the participant was asked to imagine a situation where they were
driving a friend to the hospital.

We designed a 10×10 grid world to keep the participants’ workload at a minimum
to reduce over-relying on the agent and encourage collaborative behaviour. Every trip
started from the home position (bottom left of the grid) and ended at the hospital, the final
position (top right). Each cell was associated with two costs: distance and time. Distance
cost was uniformly distributed (cost=1) and indicated at the top-right corner of the cell.
The default time cost was 1. However, some areas have a higher time cost (cost=3), indi-
cated in red and described as “unsafe” in the cover story. The remaining budgets, visited
milestones and the agent’s suggested direction were displayed to the participant. Click-
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ing the Go button indicated that the participant accepted the suggestion, thus moving the
placement marker in that direction and updating the budgets. The participant could inter-
vene by clicking the Interrupt button, at which point a web pop-up screen was displayed
requesting the participant to input a new direction. Then the agent replans the route with
the user’s suggestion and incrementally reveals it as before2.

Modelling Agent Capability. We model agent capability as the partial alignment of
what the agent optimises for and what the participant was required to accomplish in the
route planning task. The participant was instructed to complete the route-planning task
without overrunning both the time and the distance budgets, that is, travel the shortest dis-
tance while avoiding unsafe areas. However, the agent can only plan a route to travel the
shortest distance or avoid unsafe areas, but not both. The agent’s capability was clearly
described to the participant before the task. The distance-optimising agent aimed to take
the shortest path, even if this involved passing through red cells with a higher time cost.
The time-optimising agent aimed to avoid red cells as much as possible, which resulted
in a lengthier route.

The task introduces Assistant Dede, which optimises for distance, and the Assis-
tant Cece, which optimises for time. We hereafter refer to ad and at for the distance-
optimising (Dede) and time-optimising (Cece) agents, respectively. The two agents differ
in the consequence of goal misalignment to the human. If the agent-human collabora-
tion results in a distance budget overrun, more likely when working with Cece, the route
planning task immediately terminates. If the time budget overruns, more likely when
working with Dede, the task does not terminate; however, alert messages indicating the
passenger’s deteriorating health condition (as per the cover story) will be displayed re-
peatedly. The goal alignment problem and the respective consequences were explained
to the participant before the experiment.

Modelling Environment Uncertainty. We model uncertainty as non-determinism in the
environment, where the moving action does not land the placement marker in the in-
tended direction at all times; the direction of the movement itself is uncertain and does
not solely rely on the agent’s choice. This takes a similar form to Open AI’s FrozenLake-
v0 environment [47]. We consider two levels: with and without non-determinism. With-
out uncertainty, the moving action lands the marker in the expected direction. With un-
certainty, we assume an 80% probability of moving in the intended direction and a 10%
probability of moving in either of the directions perpendicular to that intended. These
two levels are referred to here as a deterministic environment without uncertainty and a
non-deterministic environment with uncertainty. We use a planner that implements the
A∗ algorithm for the deterministic environment and reinforcement learning (RL) for the
non-deterministic environment.

3.2. Experimental Design

We adopted a between-group mixed design described in [48] to resolve RQ1 and RQ2.
The study received approval from the university’s Ethics Review Board. The participants
were recruited via Prolific [49]. After completing informed consent online, participants
were randomly assigned to the deterministic or non-deterministic group. We ensured that

2The source code for the web-based navigation simulator is publicly available with the Creative Commons
Universal License at https://github.com/sachinisw/HHAI24-Navigation-Simulator.git

https://github.com/sachinisw/HHAI24-Navigation-Simulator.git


February 2024

participants who took part in one uncertainty condition were excluded from the other.
Before the tasks, participants were asked to read the cover story carefully. Instructions
to use the web application were provided in writing and via a tutorial video. Then, the
participants in each group completed the route planning task once with the distance-
optimising agent and once with the time-optimising agent. The agents were presented in
random order.

For each landmark visited, we collected the number of times the participant rejected
the agent’s suggestion. We use the number of rejections as a measure of intervention fre-
quency. Further, similar to the process followed in [43], the user was periodically polled
at each landmark point to rate their confidence in the agent’s ability to help complete the
route planning task on a 10-point Likert scale. When the trip was forcibly terminated by
distance budget run out, or when the participant successfully reached the hospital, they
filled out a 4-question survey commonly used to measure trust in automation and has
been empirically validated developed by Muir [30].

3.3. Participants

The non-deterministic group consisted of 44 participants (52% female, 42% age 44 or
above). The majority had completed either a Bachelor’s degree or school-level compul-
sory education (32% each). The deterministic group consisted of 47 participants (35%
ages 20-25, 67% female), with a 33% being college-educated with Bachelor’s degrees.

4. Evaluation

In this section, we discuss the experiments we conducted through user studies to answer
the research questions (RQs) outlined in Section 1.

4.1. RQ1: Effect of Agent Capability and Environment Uncertainty on Intervention
Frequency

We use the frequency of the participants rejecting the suggestions by the navigation
agent to answer RQ1. We refer to this quantity as interrupts, a measure of interven-
tion frequency. We hereafter refer to the case of a deterministic environment with an
agent optimising for distance and time as DET-ad and DET-at respectively, and for a
non-deterministic environment, NONDET-ad and NONDET-at respectively.

We report both the raw (non-cumulative) number of interrupts observed for each
milestone in isolation and the cumulative number of interrupts, which for each milestone
is the sum of the total number of interrupts for previous milestones reached and the num-
ber of interrupts at the current milestone. When observing the cumulative number of in-
terrupts, there appears to be a greater amount in the non-deterministic environment than
that of the deterministic one. Interrupts appeared to happen initially for the determin-
istic environment and then stop thereafter. In contrast, more interrupts appear to occur
for all milestones travelled through for the non-deterministic environment, hence the in-
creasing trend seen in Figure 2. More interrupts were observed overall for the distance-
optimising agent than the time-optimising agent, which we identify the cause being due
to the distance-optimising agent passing through red blocks and the participants recog-
nising and responding to the goal misalignment.
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Figure 1. Distribution of the raw interrupt frequencies for each landmark visited. TIME-OPT and DIS-
TANCE-OPT refer to the time-optimising (at ) and distance-optimising (ad ) agents, respectively.
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Figure 2. Distribution of the cumulative number of interrupts for each landmark visited. TIME-OPT and
DISTANCE-OPT refer to the time-optimising (at ) and distance-optimising (ad ) agents, respectively.

The median (mean) cumulative number of interrupts observed at the last landmark
for the distance- and time-optimising agents, respectively, were 4 and 2 (4.53 and 2.71);
the distributions of the cumulative number of interrupts between the groups differed sig-
nificantly (Wilcoxon rank sum test3 (W = 67790, p < 0.01, one-tailed)). The median cu-
mulative number of interrupts overall in the non-deterministic and deterministic settings
observed at the last landmark were 5 and 2 (5.29 and 2.41), respectively; the distribu-
tions in the two groups also differed significantly (Wilcoxon rank sum test (W = 60771,
p < 0.01, one-tailed)). The distribution of the raw interrupt data throughout the visited
landmarks is displayed in Figure 1. The median number of raw interrupts observed over-
all (across all landmarks) for the distance- and time-optimising agents were 1.22 and
0.75 respectively. The median raw number of interrupts observed overall in the non-
deterministic and deterministic settings were 1.38 and 0.67 respectively. The median
number of raw interrupts was 1 overall for the non-deterministic setting. The medians
for all other settings were zero due to the zero-skewed data.

4.2. RQ2: Relationship Between Confidence Ratings and Intervention Frequency

At each milestone, participants were repeatedly asked to rate their confidence in the
agent’s ability to help complete the navigation task on a 1 (not at all) – 10 (extremely)

3We remark that non-parametric tests were used in our analyses where the data followed a non-normal
distribution.
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Figure 3. Distribution of confidence ratings for each landmark visited. TIME-OPT and DISTANCE-OPT refer
to the time-optimising (at ) and distance-optimising (ad ) agents respectively.

Likert scale. The agents’ planning algorithms imposed a strict ordering of the milestones
visited: grocery first, followed by the school, followed by the construction site and finally,
the hospital. This allows us to observe the temporal dynamics of interventions. We find
that the DET-at case has consistently the highest median confidence rating, NONDET-ad
has the lowest ratings, which decrease at a rate faster than NONDET-at over time. That
for DET-ad increases over time to the level of DET-at . Using a Kruskal-Wallis rank sum
test, we found that there was not a statistically significant difference in confidence scores
between the visited landmarks overall (χ2 = 0.204, p = 0.9), although there was a sta-
tistically significant difference between the number of cumulative number of interrupts
between the landmarks (χ2 = 125.36, p < 0.01). A summary of the confidence ratings
for each agent-environment setting is illustrated in Figure 3.

When looking at the confidence ratings overall, however, we are able to find that
the median confidence rating for ad and at respectively were 6 and 7, suggesting that
participants were less confident in the distance-optimising agent; the distributions in
the two groups differed significantly (Wilcoxon rank sum test (W = 32229, p = 0.011,
one-tailed)). The median confidence rating in the non-deterministic and deterministic
settings were also 6 and 7 respectively, suggesting that participants were less confident
in agents operating in the non-deterministic setting; the distributions in the two groups
also differed significantly (Wilcoxon rank sum test (W = 26138, p < 0.01, one-tailed)).
From this, we can deduce that overall, a higher number of interventions is linked to
lower confidence in an agent.

4.3. Posthoc Evaluation

We administered the validated questionnaire in [30] after the participants completed the
navigation task to measure trust qualitatively.

The summary statistics (mean, median and standard deviation) of the four questions
overall (O) and for ad and at for the deterministic (D) and non-deterministic (N) settings
are displayed in Table 4.3. Here we see a similar pattern in the post-hoc trust scores as we
saw previously in the confidence ratings collected during the task. The median posthoc
trust score for ad and at respectively were 5 and 7, suggesting that participants had
less trust in the distance-optimising agent; the distribution of scores between ad and at
differed significantly (Wilcoxon rank sum test (W = 3445.5, p < 0.01, one-tailed). The
median trust score rating in the non-deterministic and deterministic setting were 4 and
7 respectively (highlighted in bold in Table 4.3, suggesting that participants had less
trust in goal misaligned agents operating in the non-deterministic setting; the distri-
bution of scores between the non-deterministic and deterministic settings differed signif-
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Setting Question 1 Question 2 Question 3 Question 4
D-ad 6.92 7.00 1.84 6.65 7.00 2.00 6.04 7.00 2.27 6.04 6.00 2.02

D-at 7.52 8.00 1.72 7.62 8.00 1.79 6.98 7.00 1.81 7.16 7.50 1.79

D-O 7.22 8.00 1.79 7.14 7.00 1.95 6.52 7.00 2.09 6.61 7.00 1.98

ND-ad 4.76 4.00 2.04 4.37 4.00 2.40 4.11 4.00 2.36 4.11 5.00 2.24

ND-at 5.27 5.00 2.09 5.06 5.00 2.32 4.43 5.00 2.34 4.64 5.00 2.45

ND-O 5.01 5.00 2.07 4.71 5.00 2.36 4.27 4.00 2.34 4.37 4.00 2.35

Table 1. Summary statistics for post-hoc questionnaire responses overall (O), for distance-optimising (ad ) and
time-optimising (at ) agents under deterministic (D) and non-deterministic (ND) settings. For each question–
setting combination, the mean, median and standard deviations are reported.

icantly (Wilcoxon rank sum test (W = 2101, p < 0.01, one-tailed). Through a Kruskal-
Wallis rank sum test, there was a statistically significant difference (at the 5% level only)
between the different posthoc survey questions (χ2 = 10.90, p = 0.012), confirming the
validity of the Trust in Automation questionnaire [30] we used for this experiment.

5. Discussion

The quantitative results show that during the task the agent’s capability and the un-
certainty in the environment had an impact on intervention frequency and confidence.
Specifically, participants intervened more frequently for the distance-optimising agent,
and when there was uncertainty in the environment. When confidence ratings were
looked at, participants had a pattern of lower confidence in the distance-optimising agent
compared to the time-optimising agent, and lower confidence when there is uncertainty
in the environment compared to when there is a lack thereof. The self-reported trust,
measured after the task, was higher on average in the deterministic setting for both agents
than in the non-deterministic setting. The time-optimising agent was associated with
higher trust scores on average compared to the distance-optimising agent, within the de-
terministic and non-deterministic settings. Our observations support the hypothesis that
humans would intervene more, have less confidence in, and consequently have less trust
in an agent with goal misalignment when the misalignment can be quickly recognised
from its behaviour during the task (e.g., distance optimising agent travelling through
red zones). The consequence of goal misalignment when working with the distance-
optimising agent was less severe compared to the time-optimising agent, which may also
explain the inclination to interrupt more. Further, the results show evidence that inter-
vention frequency (when used as a behavioural measurement for trust) is indicative of
self-reported trust, thus agreeing with Muir et al. findings [30].

Since we collected data for each milestone visited in a specific order, we were also
able to observe temporal trends in the number of interventions. The changes in the num-
ber of interventions between different landmarks were statistically significant.

There appeared to be a sharper increase in the number of interrupts over time for
the non-deterministic environment compared to that for the deterministic environment.
In other words, participants tend to interrupt more as the task progresses in the non-
deterministic environment. We note that our data is limited in the sense that we only have
four temporal points for interrupts and three for confidence ratings, so we do not perform
a correlation test here.
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Working with agents programmed by others, who may not necessarily take the
present user’s objectives in mind, leads to goal misalignment, which impacts interven-
tions. We see that more uncertainty in the environment further exacerbates the problem,
impacting confidence in the agent and trust. Combining the qualitative and quantitative
data, we see a more detailed picture of trust dynamics in HAI. This supports Kohn et
al. [19] recommendation to have both kinds of measurements in trust experiments.

Our results suggest that the goal misalignment in human-agent interaction scenarios
negatively impacts trust. We observe that being aware of the goal misalignment at the
start of the interaction did not maintain trust. This finding implies that such situations
require the agent/automation to be built with mechanisms to build and foster trust con-
tinuously throughout the interaction, such as providing explanations or utilising design
characteristics that signal trustworthy perceptions.

Further, Kohn et al. [19] suggest that behavioural metrics are affected by external
aspects such as workload and risk, motivating the need to confirm that behavioural trust
measures correlate with other trust measures. Using validated self-reported measures
is one solution. We measured self-reported trust only at the end of the task. We can
measure trust between the milestones and wish to perform this comparison in the future.
Considering the limitations of our study, it would be ideal to have a finer-grained notion
of the temporal dynamics of trust, as we only consider four milestones during the task
and collect intervention frequencies and confidence scores. There may be human factors-
related causes for the observed trends, which cannot be explained with our data.

6. Conclusion & Future Work

In this work, we examined what interventions reveal as a behavioural measure of trust in
an agent-assisted collaborative environment. We show that the agent’s capability and the
uncertainty in the environment had an impact on intervention frequency and the human’s
confidence in the agent during the task. We also found that the goal misalignment be-
tween a human and an agent impacts trust. Similarly, trust decreases even further in non-
deterministic settings. In real-life settings where it is infeasible for the human to avoid
uncertainty or goal misalignment, the agent/automation needs to be embedded with fea-
tures or capabilities that reinforce trust. Our study assumed that the human’s need are
to optimise for distance and time, while the agent can optimise only for one, which re-
mains static throughout the interaction. In the future, we aim to explore how trust evolves
when the agent can adapt to human preferences. We also wish to expand the analysis
into other human factors, such as self-confidence and affinity for technology, which have
been shown to impact trust in automation [50].
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