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Abstract 

Background: Amygdala and dorsal anterior cingulate cortex responses to facial emotions have 

shown promise in predicting treatment response in medication-free major depressive disorder 

(MDD). Here, we examined their role in the pathophysiology of clinical outcomes in more 

chronic, difficult-to-treat forms of MDD.   

Methods: Forty-five people with current MDD who had not responded to ≥2 serotonergic 

antidepressants (n=42, meeting pre-defined fMRI minimum quality thresholds) were enrolled 

and followed up over four months of standard primary care. Prior to medication review, 

subliminal facial emotion fMRI was used to extract blood-oxygen level-dependent effects for 

sad vs. happy faces from two pre-registered a priori defined regions: bilateral amygdala and 

dorsal/pregenual anterior cingulate cortex. Clinical outcome was the percentage change on the 

self-reported Quick Inventory of Depressive Symptomatology (16-item). 

Results: We corroborated our pre-registered hypothesis (NCT04342299) that lower bilateral 

amygdala activation for sad vs. happy faces predicted favourable clinical outcomes (rs[38]=.40, 

p=.01). In contrast, there was no effect for dorsal/pregenual anterior cingulate cortex activation 

(rs[38]=.18, p=.29), nor when using voxel-based whole-brain analyses (voxel-based Family-

Wise Error-corrected p<.05). Predictive effects were mainly driven by the right amygdala 

whose response to happy faces was reduced in patients with higher anxiety levels.  

Conclusions:  We confirmed the prediction that a lower amygdala response to negative vs. 

positive facial expressions might be an adaptive neural signature, which predicts subsequent 

symptom improvement also in difficult-to-treat MDD. Anxiety reduced adaptive amygdala 

responses. 
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Background 

Only half of patients with major depressive disorder (MDD) respond to their initial treatment 

and remission rates are even lower (Rush et al., 2006; Souery et al., 2007; Thomas et al., 2013). 

Identifying prognostic markers of poor clinical outcomes could facilitate personalised 

treatment algorithms and pathways, improving time to remission. In order to develop such 

markers, a deeper understanding of the pathophysiology of MDD is required.  

As proposed by the tripartite model of anxiety and depression (Clark & Watson, 1991; 

Watson, Clark, & Carey, 1988), MDD patients exhibit a proneness to experience negative 

rather than positive emotions, which can be observed in aspects of memory, emotional 

perception and emotional processing (Bourke, Douglas, & Porter, 2010; Disner, Beevers, 

Haigh, & Beck, 2011; Krause, Linardatos, Fresco, & Moore, 2021; Roiser, Elliott, & Sahakian, 

2012; Stuhrmann, Suslow, & Dannlowski, 2011). For example, people with depression tend to 

respond more strongly to negative facial expressions than to positive ones, i.e. show a negative 

perceptual bias (Bourke et al., 2010; Krause et al., 2021; Stuhrmann et al., 2011). These 

perceptual biases have often been linked with hyper-activation of brain regions thought to 

underpin initial stimulus appraisal, such as the amygdala, and hypo-activation of cortical parts 

of the limbic system, such as the dorsal and pregenual anterior cingulate cortex (Beck, 2008; 

Disner et al., 2011; Phillips, Drevets, Rauch, & Lane, 2003; Phillips, Ladouceur, & Drevets, 

2008; Pizzagalli, 2011). 

Antidepressant treatment and psychotherapy are thought to introduce a positive 

emotional processing bias, potentially through effects on the fronto-limbic neural network and 

modulation of initial appraisal and attentional processing of affective stimuli (Browning, 

Holmes, & Harmer, 2010; Harmer, 2008; Roiser et al., 2012). As both treatment approaches 

ameliorate distorted emotional perception, neural response at baseline may predict treatment 

outcome. Indeed, neural signatures of these negative biases have been associated with 
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prognosis and response to treatment (Dichter, Gibbs, & Smoski, 2015; Dunlop & Mayberg, 

2014; Fonseka, MacQueen, & Kennedy, 2018; Fu, Steiner, & Costafreda, 2013). More 

specifically, baseline dorsal anterior cingulate cortex and amygdala activation, two regions 

thought to underpin the emotional perception biases often observed in MDD, were relatively 

consistently associated with clinical response across emotional processing tasks and imaging 

modalities (Fu et al., 2013; Pizzagalli, 2011). However, most studies investigating imaging 

biomarkers related to emotional perception biases have been conducted in untreated patients or 

in a secondary care setting. 

In this pre-registered study (NCT04342299), we sought to determine whether facial 

emotion perception fMRI measures are prospectively associated with clinical outcomes after 

four months of standard treatment in difficult-to-treat depression in a primary care setting. 

Here, we defined difficult-to-treat depression as “depression that continues to cause significant 

burden despite usual treatment efforts” (McAllister-Williams et al., 2020), to reflect the 

absence of formal episode and treatment response metrics in primary care, as well as the more 

chronic nature. Of particular interest were the neural signatures of pregenual anterior cingulate 

cortex and amygdala activation, which have previously been shown to predict response to 

treatment at the individual level in medication-naïve and medication-free MDD patients 

(Godlewska et al., 2018; Williams et al., 2015). More specifically, we examined whether these 

neural signatures generalise to more chronic, difficult-to-treat forms of MDD.  

Williams et al. (2015) examined whether pre-treatment amygdala activation could 

predict response to a range of commonly prescribed antidepressants at an individual level. 

Participants were shown a series of facial emotion expressions, presented either subliminally 

or supraliminally. While the latter did not show any prediction effects, subliminal presentation 

of happy faces was associated with lower activation of the bilateral amygdala in responders 

relative to non-responders at baseline. Moreover, they found that responders to venlafaxine had 
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lower activation of the left amygdala to subliminal presentation of sad faces at baseline. These 

findings were in keeping with a meta-analysis that linked decreased amygdala activation to 

more favourable clinical response (Fu et al., 2013). Therefore, we predicted (pre-registered 

Hypothesis 1) that decreased activation of the amygdala for subliminal sad vs. happy faces 

would be prospectively associated with favourable clinical outcomes after receiving four 

months of standard care.  

Similarly, Godlewska et al. (2018) investigated whether pre-treatment pregenual 

anterior cingulate cortex activation could predict response after six weeks of treatment with 

escitalopram. Using an fMRI paradigm consisting of brief, masked presentations of facial 

expressions, the authors reported that responders showed increased pre-treatment pregenual 

anterior cingulate cortex activation to sad vs. happy faces compared with non-responders. 

Meta-analyses by Pizzagalli (2011) and Fu et al. (2013), which included studies that 

investigated implicit and explicit emotion processing and a range of neuroimaging modalities, 

corroborated the finding that increased pre-treatment anterior cingulate cortex activity is 

relatively consistently associated with a higher likelihood of treatment response to commonly 

used pharmacological and psychological therapies. Therefore, we predicted (pre-registered 

Hypothesis 2) that increased activation in the pregenual anterior cingulate cortex to subliminal 

sad vs. happy faces would be prospectively associated with favourable clinical outcomes after 

receiving four months of standard care. 

Lastly, we predicted (pre-registered Hypothesis 3) that patients with anxious distress, 

commonly encountered in treatment-resistant and chronic MDD populations and associated 

with a poor prognosis (Dold et al., 2017; Domschke, Deckert, Arolt, & Baune, 2010; Fava et 

al., 2004; Gaspersz et al., 2017), would show increased activation of the amygdala for 

subliminal sad vs. happy faces. The neural response to subliminal emotional faces can be 

modulated by anxiety (Etkin et al., 2004; Etkin & Wager, 2007; Stein, Simmons, Feinstein, & 
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Paulus, 2007). Anxiety is often accompanied by irritability (Brown, DiBenedetti, Danchenko, 

Weiller, & Fava, 2016) and feelings of anger (Jaeckle, 2018; Jaeckle et al., 2021). Both anxiety 

and anger are characterised by increased arousal (Alia-Klein et al., 2020; Steimer, 2002), which 

can be observed as increased amygdala activation during emotion processing (Alia-Klein et al., 

2018; Etkin & Wager, 2007; Stein et al., 2007). The amygdala, heavily linked to sensory 

perception, is thought to assess the biological significance of emotional faces and coordinate 

subsequent actions through its connectivity with frontal areas, like the dorsal/pregenual anterior 

cingulate cortex (Adolphs, 2010; Browning et al., 2010; Pessoa, 2010; Pessoa & Adolphs, 

2010). Conversely, heightened arousal may predispose an individual to anxiety and/or feelings 

of irritability and anger, which has been associated with poorer treatment outcome (Dold et al., 

2017; Domschke et al., 2010; Fava et al., 2008; Gaspersz et al., 2017; Jaeckle et al., 2021; Jha, 

Minhajuddin, South, Rush, & Trivedi, 2019). 

Methods  

Studies 

This study was linked with a cluster-randomised trial, the Antidepressant Advisor trial 

(ADeSS; NCT03628027), whose design and clinical results have been published elsewhere 

(Harrison et al., 2020; Harrison et al., 2023). In short, the ADeSS trial assessed the feasibility 

of a novel computerised decision support algorithm to facilitate antidepressant medication 

choices in MDD patients in primary care. Participants enrolled in the trial were assigned to 

either i) use of a computerised decision-support tool by their general practitioner (GP) to assist 

with antidepressant choices, or ii) treatment-as-usual. Both arms involved standard care as the 

decision-support tool prompted GPs to follow National Institute for Health and Care 

Excellence guidelines.  

Most participants for the current observational prospective pre-registered study 
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(NCT04342299), however, were recruited outside of the ADeSS main trial through online 

advertising and participants received standard primary care (see Supplemental Information). 

As part of the current study, participants were invited to attend an optional MRI scan to 

examine candidate biomarkers predictive of clinical outcomes after four months in primary 

care. We have published task-based and resting-state functional imaging results from the same 

cohort previously (Fennema et al., 2023, 2024), but here, we report on the facial emotion 

perception fMRI data for the first time. The study was approved by the NHS Health Research 

Authority and National Research Ethics Service London – Camberwell St Giles Committee 

(REC reference: 17/LO/2074). All participants provided written, informed consent and 

received compensation for their time and for their travel expenses. The authors assert that all 

procedures contributing to this work comply with the ethical standards of the relevant national 

and institutional committees on human experimentation and with the Helsinki Declaration of 

1975, as revised in 2008. 

Participants 

As previously described in Fennema et al. (2023), participants aged ≥ 18 were eligible if they 

had a current major depressive episode (MDE) and MDD according to the Structured Clinical 

Interview (SCID) for the Diagnostic and Statistical Manual of Mental Disorders, Fifth Edition 

(DSM-5) (First, Williams, Karg, & Spitzer, 2015) and had Patient Health Questionnaire (PHQ-

9) scores ≥15 (moderately severe, (Spitzer, Kroenke, Williams, & 1999)). Additionally, they 

had not to have benefitted from at least two serotonergic antidepressants from the following 

list in current or previous episodes to be consistent with the ADeSS trial: citalopram, 

fluoxetine, sertraline, escitalopram, paroxetine, venlafaxine, or duloxetine  (Harrison et al., 

2020). All participants were encouraged to book an appointment with their GP to review their 

treatment and were followed-up after four months in primary care. Before their GP visit, 

participants completed an fMRI paradigm. 
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Age- and gender-matched control participants without a definite first-degree family 

history of mood disorders and without a history of major depressive episodes, with PHQ-9 

scores <10, but otherwise meeting the same exclusion criteria as the MDD group were recruited 

through online advertising. After the initial assessment, control participants completed the 

same fMRI paradigm, allowing further interpretation and exploratory cross-sectional 

comparisons with the MDD group (not pre-registered). For more information about 

inclusion/exclusion criteria, recruitment, clinical assessment, and measures collected, please 

see Supplementary Methods. 

We considered three samples for analysis. For the primary imaging analysis, we 

included 38 participants with current MDD. All met strict criteria for signal dropout (sufficient 

coverage of the bilateral amygdala, bilateral subgenual cingulate and frontopolar cortex) and 

pragmatic maximum movement thresholds as in our previous paper (Fennema et al., 2023) 

(translation <6mm; rotation <2 degrees; less than 10% censored volumes). For the secondary 

imaging analysis, we additionally included four participants who did not meet the strictest 

fMRI quality control threshold (“reserve list”) to assess how results generalise to a more 

pragmatic sample including those with lower fMRI quality on the findings, giving a total of 42 

participants. Finally, for exploratory cross-sectional analyses to help with interpretation, we 

compared the MDD group with 19 control participants (15 of whom met the strict criteria and 

four additional control participants who did not meet the strictest criteria [“reserve list”]; 

Supplementary Table 1). 

Primary outcome 

As stated in our pre-registered protocol (NCT04342299), we used a continuous measure of 

clinical outcome rather than categorising participants into responders and non-responders using 

the standard definition of a 50% reduction (Nierenberg & DeCecco, 2001) in Quick Inventory 

of Depressive Symptomatology – self-rated (16-item; QIDS-SR16) (Rush et al., 2003) scores, 
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due to an unbalanced split between the resulting groups (responders n=10; non-responders 

n=32). The outcome was defined as the percentage change from baseline to follow-up on our 

pre-registered primary outcome measure, QIDS-SR16, where negative percentages 

corresponded to a reduction in depressive symptoms.  

fMRI acquisition  

Image acquisition was carried out on an MR750 3T MR system (GE Healthcare, Chicago, 

USA), using a Nova Medical 32-channel head coil. Functional image acquisition was obtained 

parallel to the anterior commissure – posterior commissure plane, with slices running top to 

bottom, using a standard T2*-weighted echo-planar imaging (blood-oxygen level-dependent; 

BOLD) sequence (repetition time=2000ms; echo time=30ms; matrix=64x64; field-of-

view=240mm; flip angle=75 degrees; slice thickness=3mm, slice gap=0.3mm, inter-slice 

distance=3.3mm, 41 slices, 267 volumes). Shimming was automatically applied as part of the 

scanner’s “pre-scan” procedures, and four additional volumes were acquired and automatically 

discarded at the start of each fMRI run, allowing for T1 equilibration effects.  

As demonstrated by measurements of the temporal signal-to-noise, i.e. “the mean of a 

voxel’s BOLD signal over time divided by its standard deviation over time” (Welvaert & 

Rosseel, 2013), overall signal quality was very good (Supplementary Figure 1; Supplementary 

Table 2). For more details on image acquisition, please see Supplementary Methods. 

fMRI paradigm  

During fMRI scanning, participants completed a backward masking task based on the fMRI 

paradigm outlined by Godlewska et al. (2018). Participants were shown pairs of faces, with a 

first “target” face (expressing a sad, happy, or neutral emotion), displayed for 34 milliseconds, 

and then immediately “masked” by a face of neutral expression, displayed for 66 milliseconds. 

This set-up has been shown to interfere with the explicit perception of the first “target” face, 
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thus ensuring subliminal perception (Victor, Furey, Fromm, Ohman, & Drevets, 2010).  

 The task followed a block design, with each participant being shown four blocks with 

sad faces, four blocks with happy faces and nine blocks with neutral faces. Each block cycled 

through ten target-mask pairs of faces, with the order varying for each block. The neutral (N) 

blocks were interleaved with sad (S) and happy (H) blocks, in one of two orders: N-S-N-H-N-

S-H-N or N-H-N-S-N-H-N-S-N. The order of blocks was determined by pseudo-

randomisation, with an even split within the MDD and control groups and across the total 

sample. After each block, there was a 10-second block of baseline fixation. The total task time 

was 8 minutes and 47 seconds. For more details, please see Supplementary Methods. 

Image analysis 

Following standard Statistical Parametric Mapping (SPM12; 

http://www.fil.ion.ucl.ac.uk/spm12) pre-processing steps, additional motion correction was 

applied in the form of censoring, i.e. identifying outliers based on framewise displacement and 

regressing them from the fMRI timeseries (Power, Barnes, Snyder, Schlaggar, & Petersen, 

2012; Power et al., 2014), to compensate for using fairly lenient translation and rotation cut-

offs given our patient population. To limit the impact of physiological noise on the BOLD 

signal, functional images were denoised using the MATLAB PhysIO toolbox ((Kasper et al., 

2017); version R2021a-v8.0.0, open-source code available as part of the Translational 

Algorithms for Psychiatry-Advancing Science [TAPAS] software collection (Frassle et al., 

2021): https://www.translationalneuromodeling.org/tapas). For more details, please see 

Supplementary Methods. Voxel-based analyses were thresholded at an uncorrected p = .005 

for displaying our results and we subsequently used peak-voxel-level-based Family-Wise Error 

(FWE) correction at p=.05 over the whole brain as well as using small-volume correction over 

our two pre-registered a priori defined regions-of-interest (ROIs; further described below). 

 To test our pre-registered hypotheses, BOLD effects were modelled for each of the 
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emotion blocks, i.e. sad, happy, and neutral. Baseline fixation was not modelled to avoid 

overspecification of the model. Nuisance regressors created by the PhysIO toolbox, i.e. 

physiological noise regressors and motion-related regressors, were included as covariates. 

Contrasts were created to examine the relative activation to sad faces (sad vs. neutral faces), 

happy faces (happy vs. neutral faces) and the subtraction-based difference between sad and 

happy faces (sad vs. happy).  

We conducted a one-sample t-test at the second level on the sad vs. happy faces contrast 

maps to test whether the regression coefficient for QIDS-SR16 change, modelled as a covariate, 

differed from zero. The question of prognosis was restricted to the sad vs. happy contrast only, 

as this relative difference was thought to be more selective and relevant to the negative 

emotional bias observed in MDD and to avoid multiple comparisons. The two pre-registered a 

priori defined ROIs were used for extracting average regression coefficients for each individual 

using the MarsBaR toolbox (Brett, Anton, Valabregue, & Poline, 2002) and for small volume 

correction, i.e. bilateral amygdala (based on the Automated Anatomical Labelling [AAL] atlas 

(Rolls, Joliot, & Tzourio-Mazoyer, 2015) and used by Williams et al. (2015)), and 

dorsal/pregenual anterior cingulate cortex1, kindly shared by Godlewska et al. (2018). In 

addition, regression coefficient averages were extracted for left and right amygdala separately, 

based on the AAL atlas (Rolls et al., 2015), to help with the interpretation of amygdala findings. 

These were further analysed in IBM SPSS Statistics 27. 

 Lastly, exploratory second-level BOLD analyses were conducted to examine 

differences in emotional facial expression processing between participants with MDD and 

controls, using small volume correction over our pre-registered a priori defined ROIs to 

support the interpretation of prognostic effects. For more details, please see Supplementary 

 
1 Upon visual inspection, the shared ROI contained both dorsal and pregenual regions of the anterior cingulate 

cortex. 
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Methods. All analyses were inclusively masked with a grey matter mask as previously 

described in Green, Lambon Ralph, Moll, Deakin, and Zahn (2012). 

Behavioural data analysis 

All data analyses were carried out using IBM SPSS Statistics 27, using a significance threshold 

of p=.05, two-tailed. Correlation analysis (Spearman’s rho) was used to investigate the 

association between the pre-registered neural signatures and QIDS-SR16 percentage change, 

as well as standard clinical variables to investigate their role as potential confounders.  

Results 

Subgroup characteristics  

MDD and control groups were matched on demographic variables (Supplementary Table 3), 

movement during fMRI, response times, and accuracy (Supplementary Table 4). Clinical 

characteristics of participants with MDD are shown in Table 1 (for control participants, see 

Supplementary Table 5). As part of the study, participants were encouraged to book an 

appointment with their GP to review their antidepressant medication, which often was a 

selective serotonin reuptake inhibitor (SSRI; 81%; Supplementary Table 6). Even though UK 

care guidelines would recommend changing antidepressant medications in non-responders, 

unexpectedly, more than half (52%) did not change their medication and some even stopped 

their medication (14%; Supplementary Table 7). On average, participants showed a reduction 

in depressive symptoms from baseline to follow-up, both self- and observer-rated (Table 2). 

The percentage change in QIDS-SR16 was consistent regardless of medication status (i.e., no 

change in medication, minimal change, or relevant change; F[2,35]=1.11, p=.34), or any of the 

other clinical measures at baseline (Supplementary Table 8). However, there was a positive 

association between current MDE duration and percentage change in QIDS-SR16 (rs[38]=.39, 

p=.02), showing that those with a longer current MDE duration had less favourable clinical 
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outcomes. Despite using rigorous exclusion of bipolar spectrum diagnoses at baseline, two 

patients had developed a hypomanic episode during follow-up and so the diagnosis was 

switched to a bipolar II disorder. 

fMRI findings 

As predicted, the extracted cluster averages for the a priori defined bilateral amygdala ROI 

fMRI responses to subliminal sad vs. happy faces (Hypothesis 1) showed a positive association 

with QIDS-SR16 percentage change (rs[38]=.40, p=.01; Figure 1; Supplementary Figure 2; 

Supplementary Findings). This effect of negative biases in amygdala response predicting poor 

subsequent outcomes remained when excluding potential outliers (rs[37]=.37, p=.02) as well 

as when including the reserve list (rs[42]=.45, p=.003). Additional exploratory analyses showed 

that there was only a trend-wise association between QIDS-SR16 percentage change and the a 

priori defined bilateral amygdala ROI fMRI responses to subliminal happy vs. neutral (rs[38]=-

.27, p=.10) and no association for subliminal sad vs. neutral faces (rs[38]=.21, p=.20). 

However, using a group comparison, patients with favourable outcomes had a stronger 

amygdala response to subliminal perception of happy faces vs. neutral faces, when compared 

with patients with unfavourable outcomes (Supplementary Figure 2, Supplementary Findings). 

There was a significant association between the potential clinical confounder, current MDE 

duration, and the neural signature (rs[38]=-.35, p=.03). However, whilst controlling for current 

MDE duration, the association between a priori bilateral amygdala ROI fMRI responses to 

subliminal sad vs. happy faces and QIDS-SR16 percentage change remained (rs[35]=.35, 

p=.03). 

Notably, the association between amygdala BOLD activation for subliminal sad vs. 

happy faces and QIDS-SR16 percentage change was mostly driven by the right amygdala 

(rs[38]=.46, p=.003; Supplementary Figure 3; Supplementary Findings) rather than the left 

amygdala (rs[38]=.27, p=.10). There was no effect for our other pre-registered ROI (Hypothesis 
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2), i.e. dorsal/pregenual anterior cingulate cortex (rs[38]=.18, p=.29). A supporting voxel-based 

analysis over the volume of the whole brain revealed no significant associations with QIDS-

SR16 percentage change (voxel-based FWE-corrected p=.05). 

We were unable to determine whether patients with anxious distress showed a more 

pronounced increased amygdala response, and thus less favourable clinical outcomes 

(Hypothesis 3), due to recruiting a predominantly anxious MDD sample. However, 

interestingly, participants with higher baseline anxiety levels, as measured on the Generalised 

Anxiety Disorder (7 items) (Spitzer, Kroenke, Williams, & Lowe, 2006), displayed lower right 

amygdala (rs[38]=-.32, p=.05) and dorsal/pregenual anterior cingulate cortex (rs[38]=-.42, 

p=.01) responses to subliminal happy faces vs. neutral faces. Our main contrast of interest, sad 

vs. happy faces, did not show an association between anxiety levels and bilateral amygdala 

activation (rs[38]=.11, p=.53), although there was an association between anxiety levels and 

dorsal/pregenual anterior cingulate cortex activation (rs[38]=.38, p=.02; Supplementary Table 

9). 

  The exploratory cross-sectional BOLD analysis probing group (MDD vs. control) and 

emotion condition effects (sad vs. happy) did not show main effects or interaction effects of 

group or emotion condition within our a priori defined ROIs or at the whole-brain level 

(Supplementary Findings). 

Discussion 

We corroborated our first pre-registered hypothesis (Hypothesis 1) that decreased activation of 

the amygdala for sad vs. happy faces may be prospectively associated with favourable clinical 

outcomes. Additional exploratory analyses suggest that this may be driven by an increased 

response to subliminal perception of happy faces in patients with favourable outcomes, which 

could point to a positive perceptual bias. It has been proposed that treatment introduces such a 
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positive emotional processing bias, which allows individuals to re-tune how they process 

socially relevant information and have a more positive day-to-day emotional perspective 

(Browning et al., 2010; Harmer, 2008). We speculate that traces of a positive perceptual bias 

while taking antidepressant medication imply that the treatment had an implicit effect and could 

signal a higher likelihood of subsequent symptom improvement. In contrast, the absence of a 

positive perceptual bias in subsequent non-responders might indicate that antidepressant 

treatment was less effective in restoring function, and thus predicts less favourable clinical 

outcomes. Moreover, chronicity of depressive episode reduced the adaptive response of the 

amygdala to positive faces. 

Even though similar patterns of activation were observed for the right and left amygdala 

in response to subliminal facial emotions, the association between amygdala activation and 

change in depressive symptoms appeared to be mostly driven by the right amygdala. It has 

been proposed that amygdala function is lateralised: while the left amygdala is thought to be 

more active in the processing of language-related stimuli, the right amygdala appears to be 

more involved in the processing of non-conscious stimuli (Costafreda, Brammer, David, & Fu, 

2008; Gläscher & Adolphs, 2003). Thus, subliminal presentation would be likely to result in a 

more prominent neural response in the right amygdala relative to the left amygdala, which 

might explain why the left amygdala separately was not significantly associated with clinical 

outcomes. 

 Contrary to our second pre-registered hypothesis (Hypothesis 2), we found no 

association between dorsal/pregenual anterior cingulate cortex activation in response to 

subliminal facial emotions and clinical outcomes in current MDD. The lack of association with 

symptom change might be explained by differences in study set-up from that of Godlewska et 

al. (2018), who conducted a controlled trial with treatment-free MDD participants who 

underwent a six-week period of escitalopram treatment. In contrast, our study was designed as 
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an observational study, with participants taking a range of antidepressant medications and 

followed up after four months. As a result, the neural signature described by Godlewska et al. 

(2018) may be more relevant for prognosis in early treatment-resistant MDD rather than the 

more chronic forms of MDD seen in our sample. 

 We were unable to investigate our third pre-registered hypothesis (Hypothesis 3) that 

patients with anxious distress showed a more pronounced increased amygdala response, and 

thus poorer clinical outcomes, because our sample predominantly consisted of anxious MDD. 

However, exploratory analyses showed that participants with higher baseline anxiety levels 

displayed lower amygdala reactivity to subliminal presentation of happy vs. neutral faces, but 

there was no effect for our main contrast of interest sad vs. happy faces, thus requiring further 

replication. We speculate that this reduced amygdala reactivity to subliminal facial expressions 

of happiness implies a reduced positive perceptual bias, which was also associated with poorer 

clinical outcomes. It has been suggested that anxiety symptoms might contribute more strongly 

to patterns of amygdala responses to facial emotions, compared with depressive symptoms (van 

den Bulk et al., 2014). More research is needed to determine what role (co-morbid) anxiety 

plays in modulating response to subliminal emotional faces and how this might inform clinical 

outcomes by allowing stratification of patients.  

 Supporting voxel-based analyses showed no significant effects between neural 

responses to subliminal facial emotions and symptom change. This is likely due to the reduced 

statistical power of voxel-based analyses because of the need for multiple comparison 

correction for the number of voxels within an ROI or across the whole-brain. If the activation 

is relatively homogeneous across the ROI, likely with small ROIs such as the amygdala, 

extracting the average effect from the ROI increases the statistical power of one’s analysis, 

which is why our primary analysis approach is preferable for clinical applications and 

reproducibility studies. 



17 

 

Lastly, we found no evidence of differences in neural responses to subliminal facial 

expressions between the MDD group and the control group. The lack of cross-sectional 

findings might be explained by our small, heterogenous control group which allowed for mild 

anxiety or depressive symptoms, as well as anxiety disorders and subthreshold levels of PTSD. 

Even though this approach may have limited cross-sectional comparisons, it provides a more 

representative reference group for the prognostic findings in MDD. Moreover, the null finding 

is in keeping with other studies reporting no amygdala activation differences between MDD 

patients taking antidepressant medications compared with healthy controls (Almeida, Versace, 

Hassel, Kupfer, & Phillips, 2010; Demenescu et al., 2011; Gotlib et al., 2005). 

Limitations 

As expected in difficult-to-treat MDD, a high proportion of our participants had co-morbid 

anxiety and trauma-related disorders. It is important to note that negative emotion perception 

biases are not unique to MDD and are commonly reported in anxiety and trauma-related 

disorders (Etkin & Wager, 2007; Killgore et al., 2014; Lee, Kim, & Lee, 2016; Stein et al., 

2007). Notably, some studies have reported that depression groups with and without early-life 

trauma may differ in their neural response to sad and neutral faces (Grant, Cannistraci, Hollon, 

Gore, & Shelton, 2011), as did MDD patients with or without co-morbid anxiety (Demenescu 

et al., 2011), which could be suggestive of distinct subtypes of depression with regard to facial 

emotion perception. Therefore, it is possible that the observed negative perceptual biases could 

have resulted from co-morbid anxiety or trauma-related disorders rather than being specific to 

MDD. 

 Another limitation is our relatively modest sample size, which limits our power for 

identifying significant effects, but is nevertheless sufficient for estimating effect sizes (Teare 

et al., 2014; Turner, Paul, Miller, & Barbey, 2018). Moreover, treatment in our observational 

study was not standardised and included a range of treatment approaches, which means that 
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treatment effects may have introduced variability in the observed neural responses. However, 

this reflects standard care in a primary care setting, and it allowed to test whether the previously 

identified neural signatures would generalise to a pragmatic sample of patients encountered in 

clinical settings. Non-specific beneficial effects of being enrolled in our study could in theory 

have improved clinical outcomes, but we think that these are unlikely to have played a 

significant role, given the absence of psychiatric or psychosocial advice provided. 

Conclusion 

Here, we confirmed the prediction that neural correlates of positive emotional perception biases 

may be prospectively associated with favourable clinical outcomes in difficult-to-treat MDD. 

We speculate that those patients with favourable clinical outcomes showed neural correlates of 

an antidepressant medication-mediated restoration of positive perceptual biases, potentially 

through implicit stimulus appraisal by the amygdala, preceding their subsequent symptom 

improvement. This indicates that enhancing amygdala responses to positive stimuli should be 

further investigated as neuromodulation treatment targets in difficult-to-treat MDD. Initial 

fMRI neurofeedback evidence for reinforcing amygdala responses to positive memories in 

MDD are promising (K. D. Young et al., 2019).   
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Tables 

Table 1 | Clinical characteristics MDD (n=42). 

MDD modified DSM-5 subtype No. (%) 

Anxious distress only 8 (19%) 

Melancholic features only 0 (0%) 

Melancholic features + anxious distress 7 (17%) 

Atypical features only 2 (5%) 

Atypical features + anxious distress 18 (43%) 

No specific subtype 7 (17%) 

Age of depression onset (in years), M ± SD; min-max 18.2 ± 9.0; 4 – 42 

Current MDE duration (in months), M ± SD; min-max 25.0 ± 44.1; 1 – 176 

Number of MDEs, M ± SD; min-max 6.4 ± 4.8; 1 – 20 

Illness duration (in years), M ± SD; min-max 24.0 ± 15.9; 2 – 56 

Number of suicide attempts, M ± SD; min-max 0.5 ± 1.3; 0 – 6  

Maudsley Staging Method  

Mild 19 (45%) 

Moderate 23 (55%) 

Severe 0 (0%) 

Life-time axis-I co-morbidity   

Posttraumatic stress disorder 18 (43%) 

Other anxiety disorder 17 (40%) 

Obsessive-compulsive disorder 4 (10%) 

Eating disorder 14 (33%) 

None  5 (12%) 

Family history  

First degree relative with MDD 14 (33%) 

First degree relative with bipolar disorder 2 (5%) 

No family history of MDD 21 (50%) 

Outcomes  

Respondera 10 (24%) 

a Responder was defined as participants who showed at least a 50% reduction in depressive symptoms as measured on the 
QIDS-SR16. 
Percentages may not add up to 100 due to rounding. QIDS-SR16 = Quick Inventory of Depressive Symptomatology – self-rated 
(16-item); MDD = major depressive disorder; DSM-5 = Diagnostic and Statistical Manual for Mental Disorders 5th edition; MDE 
= major depressive episode; M = mean; SD = standard deviation; min = minimum; max = maximum. 
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Table 2 | Descriptive statistics for clinical symptom measures at baseline and 
follow-up MDD (n=42). 

 Baseline  
(mean ± SD; min – max)  

Follow-up 
(mean ± SD; min – max) 

Difference [95% CI] 

QIDS-SR16 17.3 ± 3.5; 10 – 23 13.0 ± 5.7; 2 – 24 -4.3 [-6.1, -2.5] 

MM-PHQ-9 18.7 ± 4.5; 8 – 27 13.7 ± 8.0; 0 – 27 -5.0 [-7.2, -2.7] 

GAD-7 a 11.7 ± 4.2; 1 – 21 10.1 ± 5.9; 0 – 21 -1.6 [-3.5, 0.4] 

MADRS 31.6 ± 4.8; 22 – 42 23.4 ± 11.3; 3 – 44 -8.2 [-11.3, -5.1] 

SOFAS a 53.6 ± 5.3; 33 – 61 58.3 ± 11.0; 33 – 85 4.8 [2.0, 7.5] 

YMRS b 1.3 ± 1.3; 0 – 5 1.1 ± 1.5; 0 – 5  -0.3 [-0.7, 0.2] 

a Missing follow-up data for one participant. b Missing baseline and follow-up data for eight participants. 
MDD = major depressive disorder; CI = confidence interval; QIDS-SR16 = Quick Inventory of Depressive Symptomatology – 
self-rated, 16 items; MM-PHQ-9 = Maudsley Modified Personal Health Questionnaire, 9 items; GAD-7 = Generalised Anxiety 
Disorder, 7 items; MADRS = Montgomery-Åsberg Depression Rating Scale; SOFAS = Social and Occupational Functioning 
Assessment Scale; YMRS = Young Mania Rating Scale; M = mean; SD = standard deviation; min = minimum; max = 
maximum. 
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Figure Legends 

 

Figure 1 | Association between amygdala responses to facial emotions and change in depressive symptoms. Panel A) 

shows the a priori AAL bilateral amygdala ROI, from which the averages were extracted. Panel B) shows that there was a positive 

association between bilateral amygdala BOLD activation for sad vs. happy faces and QIDS-SR16 percentage change from 

baseline to follow-up, using the extracted a priori defined bilateral amygdala ROI averages (i.e. stronger amygdala-responses to 

sad vs. happy faces predicting poorer subsequent outcomes). AAL = Automated Anatomical Labelling; BOLD = blood-oxygen 

level-dependent; QIDS-SR16 = Quick Inventory of Depressive Symptomatology - self-rated, 16-items; rs = Spearman correlation; 

ROI = region-of-interest. 
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Parts of this Supplementary Online Content have been adapted from a previously 

published one in Neuroimage:Clinical (doi: 10.1016/j.nicl.2023.103453).  

Supplementary Methods 

Exclusion criteria 

In addition to the criteria mentioned in the main manuscript, participants were excluded if they 

met any of the following:  previous prescription of mirtazapine or vortioxetine at therapeutic 

dose, MRI contraindications, currently receiving specialist psychiatric treatment, high suicide 

risk on the Mini International Neuropsychiatric Interview (MINI) suicidality screen (Sheehan 

et al., 1998), past diagnosis of schizophrenia or schizo-affective disorder, psychotic symptoms 

using clinical screening questions, bipolar disorder (including otherwise specified) using the 

World Health Organisation Composite International Diagnostic Interview screening scale 

(Kessler et al., 2006) at pre-screening or Structured Clinical Interview (SCID) for the 

Diagnostic and Statistical Manual of Mental Disorders, Fifth Edition (DSM-5) (First et al., 

2015) at baseline, at risk of being violent, drug or alcohol abuse over the last six months, 

suspected neurological condition, pregnancy or insufficient contraception in women of 

childbearing age and breastfeeding or within six months of giving birth.  

Recruitment and clinical assessment 

We recruited participants from September 2018 to March 2020 partly through a cluster-

randomised feasibility clinical trial, the Antidepressant Advisor Study (ADeSS; 

NCT03628027). Recruitment was halted due to the COVID-19 pandemic and recommenced in 

October 2020, using online advertising only, and was completed in August 2021.  

As described in the trial protocol (Harrison et al., 2020), GP practices screened for 

patients with a history of treatment-resistance to antidepressant medications within their 

practice, i.e. non-responders to at least two serotonergic antidepressants in the current or 
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previous episodes. Potential participants were approached for consent and, if given, asked to 

fill in a pre-screening questionnaire. Potentially eligible participants were invited for an in-

depth assessment by the study team, which included a clinical assessment using the SCID 

(DSM-5) to establish a current major depressive disorder (MDD) (First et al., 2015), a history 

of participants’ depressive episodes, their current and past antidepressant medications, and 

completing various clinical, behavioural and experimental measures.  

A follow-up assessment was conducted to establish whether any changes in baseline 

measures had occurred. This visit took place around 14-18 weeks after enrolling in the study, 

which should allow observation of any treatment effect if there is one. The assessment included 

questions related to medications taken in the study period as well as various clinical and 

behavioural measures. The main clinical measures collected at baseline and follow-up were the 

Quick Inventory of Depressive Symptomology (16 items, self-rated; QIDS-SR16) (Rush et al., 

2003), Maudsley Modified Patient Health Questionnaire (9 items; MM-PHQ-9) (Harrison et 

al., 2021), Generalised Anxiety Disorder (7 items; GAD-7) (Spitzer et al., 2006), Montgomery-

Åsberg Depression Rating Scale (MADRS) (Montgomery & Asberg, 1979), Social and 

Occupational Functioning Assessment Scale (SOFAS, part of SCID) (First et al., 2015), and 

the Young Mania Rating Score (YMRS) (R. C. Young, Biggs, Ziegler, & Meyer, 1978). Please 

refer to the ADeSS trial protocol for more details regarding these procedures (Fennema, 2022; 

Harrison et al., 2020).  

 As the ADeSS trial was stopped due to the COVID-19 pandemic, an alternative 

recruitment route was employed to continue recruitment for the observational fMRI study. Trial 

adverts were posted online, with further dissemination of study adverts via university and 

institutional recruitment circulars. Interested participants were asked to complete a similar pre-

screening questionnaire as those approached for the ADeSS trial. If potentially eligible, 

participants were invited for an in-depth assessment to confirm their eligibility. For more 



32 

 

details, please see Fennema (2022). 

 A total of 1,755 participants with a history of MDD showed interest in participating and 

completed a pre-screening questionnaire. Potentially eligible MDD participants (n = 89) for 

the ADeSS trial and the fMRI study were invited to attend an in-depth assessment. Of those, 

45 participants enrolled in the fMRI study, attended their MRI session and completed the study. 

Of those 45 participants, ten participants were also part of the ADeSS trial (support tool arm: 

n = 4; treatment-as-usual arm: n = 6). 

Upon study completion, participants in the MDD group were asked to refer partners or 

friends who might be interested in serving as control participants. Moreover, trial adverts were 

posted online, with further dissemination of study adverts via university and institutional 

recruitment circulars. Interested participants were asked to complete a pre-screening 

questionnaire targeted to control participants. If potentially eligible, participants were invited 

for an in-depth assessment to confirm their eligibility and they completed a similar battery of 

clinical, behavioural and experimental measures as the MDD group.  

 A total of 350 control participants completed a pre-screening questionnaire, with n = 

113 meeting the initial eligibility criteria. Twenty-four control participants were invited for the 

initial baseline. Following the assessment, n = 22 control participants were enrolled in the study 

(n = 3 referred by a participant in the MDD group) and n = 20 control participants attended 

their MRI session.  

Sample size 

A formal power calculation was difficult, with no previous study from which effect sizes could 

be drawn. As such, this study should be considered as a proof-of-concept for using fMRI to 

prospectively predict prognosis in MDD. If the neural signatures have at least 70% accuracy, 

a minimum of n = 44 MDD patients is required to achieve 85% power for a significant 

prediction of response (p = .05) compared to chance (50%) using a binomial test. Even though 
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a clinically relevant biomarker should show at least 80% accuracy (Savitz, Rauch, & Drevets, 

2013), the proposed sample size is sufficient to determine the feasibility in a subsequent larger 

sample.  

Temporal signal-to-noise ratio 

Temporal signal-to-noise ratio (tSNR) was calculated using the following formula [1]: 

[1]     
𝑆̅

𝜎𝑁
 

where 𝑆̅ is the mean activation signal of the fMRI time series and 𝜎𝑁 the standard deviation of 

the noise in the time series. Raw values were extracted using the MarsBaR toolbox (Brett et 

al., 2002) for our pre-registered a priori regions-of-interest (ROI): 

1. Bilateral amygdala, as defined by the Automated Anatomical Labelling (AAL) atlas 

(Rolls et al., 2015) and used in Williams et al. (2015). Raw values were also extracted 

separately for the right and left amygdala.  

2. Dorsal / pregenual anterior cingulate cortex, kindly provided by Godlewska et al. 

(2018) and based on the AAL atlas (Rolls et al., 2015). Please note the change in 

terminology for the latter ROI relative to that originally used at pre-registration: upon 

visual inspection, the ROI contained both dorsal and pregenual regions of the anterior 

cingulate cortex. 

Image acquisition 

High-resolution anatomical images were acquired with a 3D Inversion Recovery prepared 

Spoiled Gradient Echo (IR-SPGR) sequence (repetition time (TR) = 7.3 ms; echo time (TE) = 

3.02 ms; inversion time (TI) = 400 ms; matrix = 256 x 256; excitation flip angle = 11 degrees; 

field-of-view (FOV) = 270 mm; slice thickness = 1.2 mm, 196 slices). Images for incidental 

findings review were acquired using a 2D Fast-Recovery Fast Spin-Echo (FRFSE; TR = 4380 
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ms; TE = 64.85 ms; matrix = 320 x 256; refocusing flip angle = 111 degrees; FOV = 240; 2 

mm contiguous slices, 72 slices) and 2D Fluid Attenuated Inversion Recovery (FLAIR) 

sequence (TR = 8000 ms; TE = 128.41 ms; matrix = 256 x 128; refocusing flip angle = 111 

degrees; FOV = 220; 4 mm continuous slices, 36 slices) and checked for brain abnormalities 

by a neuroradiologist at King’s College London Hospital, independent of additional, internal 

checks by the study team. 

 While in the MRI scanner, the participant’s head motion was restricted using padding, 

and heart rate and respiration rate measurements were recorded via a manufacturer-supplied 

finger pulse sensor (peripheral plethysmograph) and respiratory belt, respectively. A mirror 

fitted to the head coil allowed participants to view visual stimuli presented during image 

acquisition, as stimuli were projected onto a screen located behind the participant’s head. 

Verbal instructions were communicated via the MRI intercom, using a pre-defined script to 

ensure consistency between participants. 

fMRI paradigm 

The subliminal faces fMRI paradigm was based on the methodology outlined by Godlewska et 

al. (2018). However, we used different timings as initial testing of the fMRI paradigm revealed 

that the very short timings resulted in monitors dropping frames, i.e. no guarantee that the 

monitor would display the image and therefore no guarantee that there was in fact a stimulus. 

To account for this, we chose to display the target faces for longer (34 vs. 30 ms) and, to keep 

the total duration of each pair of faces at 100 ms, we shortened the masked face time by a 

corresponding amount (66 vs. 70 ms). 

 Participants were asked to report the gender as fast as possible, via a button box, with 

the target and mask faces within the pair being of the same gender. Participants were debriefed 

after the fMRI session to explain the concept of subliminal presentation of emotional faces and 

how it can be used to detect emotional perception bias. 
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Image analysis 

Statistical Parametric Mapping (SPM12; http://www.fil.ion.ucl.ac.uk/spm12) was used for pre-

processing steps and standard blood-oxygen level-dependent (BOLD) effect analysis. 

Functional images were realigned, unwarped and co-registered to the participant’s T1 images. 

These images were normalised to the co-registered T1 image and resliced at a voxel size of 3 

x 3 x 3 mm. A smoothing kernel of full-width half-maximum equal to 6 mm was used. No slice 

timing correction was applied.  

 Following the pre-processing steps, framewise displacement was calculated using Brain 

and Mind Lab (BRAMILA) tools (https://github.com/spunt/bspm/blob/master 

/thirdparty/bramila/bramila_framewiseDisplacement.m) to identify outliers regarding motion. 

Any framewise displacement of ≥ 1 mm was marked as a spike in movement and participants 

with spikes in more than 10% of the functional images were deemed to have moved too much 

and were excluded from all analyses. There is no fixed rule for proportion of spikes, but the 

combination of a relatively high movement threshold of ≥ 1 mm and a lower proportion of 

images affected by spikes, allowed for a trade-off between retaining patient data with 

reasonable quality and avoiding overfitting with too many scan-nulling regressors.  

In addition, the MATLAB PhysIO toolbox was used to partially mitigate the impact of 

physiological noise (Kasper et al., 2017) (version R2021a-v8.0.0, open-source code available 

as part of the Translational Algorithms for Psychiatry-Advancing Science [TAPAS] software 

collection (Frassle et al., 2021): https://www. translationalneuromodeling.org/tapas). Heart rate 

and respiration rate measurements were used in a retrospective image correction 

(RETROICOR) model, using Fourier expansions of different orders for the estimated phases 

of cardiac pulsation (third order), respiration (fourth order) and cardio-respiratory interactions 

(first order) (Harvey et al., 2008). Moreover, the PhysIO toolbox created nuisance regressors 

related to motion, i.e. the standard six motion parameters describing movement by rotation and 



36 

 

translation, and scan nulling regressors based on a framewise displacement threshold of ≥ 1 

mm (Power, Barnes, Snyder, Schlaggar, & Petersen, 2012; Power et al., 2014; Siegel et al., 

2014). 

Exploratory image analysis 

Exploratory analyses were conducted to examine differences in facial emotion perception 

processing between participants with MDD and controls, using a factorial model with two 

factors: group (MDD vs. control) and emotion (sad vs. happy). Within the model set-up, no 

assumption of independence was made for emotion, because both sad and happy faces were 

measured within the same participant. F-contrasts for main effects of group, emotion and their 

interaction were thresholded at p = .001 (uncorrected voxel-level) and corrected for Family-

Wise Error (FWE) at the voxel-level at p = .05 over the a priori defined ROIs, i.e. bilateral 

amygdala and dorsal/pregenual anterior cingulate cortex, and the volume of the whole brain.  

Behavioural data analysis 

Data were checked for outliers using standardised scores (outside z = ± 2 standard deviations 

from the mean) for the MDD group and the control group separately. Results with outliers were 

confirmed by supplementary analyses replacing the outlying value by the nearest occurring 

value in the rest of the sample that was not an outlier. Moreover, data were screened for normal 

distribution within each group with Kolmogorov-Smirnov tests and if the assumption of 

normality was violated, non-parametric Mann-Whitney-U tests instead of independent sample 

t-tests were used to investigate between-group differences (MDD vs. controls). 

Supplementary Results 

Exploratory cross-sectional fMRI findings   

The two-way factorial SPM model probing group (MDD vs. controls) and emotion effects (sad 

vs. happy) on fMRI activation (BOLD) did not show any main effect of group or emotion or 
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an interaction effect at the whole brain level. Small-volume correction with the a priori defined 

ROIs also did not uncover any effects. These null findings were confirmed for the extracted 

cluster averages for the a priori dorsal/pregenual anterior cingulate cortex ROI (main effect of 

group: F[1,51] = .90, p = .35; main effect of emotion: F[1,51] = 1.06, p = .31; interaction effect: 

F[1,51] = .05, p = .83) and the a priori bilateral amygdala ROI (main effect of group: F[1,51] 

= .08, p = .77; main effect of emotion: F[1,51] = .001, p = .98; interaction effect: F[1,51] = .02, 

p = .88). The findings did not change when including the reserve list, i.e. those participants 

who did not meet the strictest quality threshold criteria.  

Exploratory prognostic fMRI findings   

When categorising the participants into partial responders (i.e. participants who showed at least 

a 25% reduction in depressive symptoms as measured on the QIDS-SR16, n = 15) and non-

responders (n = 23), there was a trend-wise interaction effect for the extracted a priori bilateral 

amygdala ROI cluster averages between emotion (sad vs happy faces) and group (partial 

responders vs. non-responders; F[1,36] = 3.94, p = .06), but no main effect of emotion (F[1,36] 

= .35, p = .56) or group (F[1,36] = .70, p = .41). This trend-wise interaction effect was driven 

by partial responders showing higher bilateral amygdala activation during happy vs. neutral 

faces (M = .01, SD = .12) relative to sad vs. neutral faces (M = -.04, SD = .11), resulting in a 

negative difference for sad vs. happy faces (M = -.06, SE = .03, t = -1.69, df = 14, p = .11; 

Supplementary Figure 2). In contrast, non-responders did not show a difference in bilateral 

amygdala activation during happy vs. neutral faces (M = -.06, SD = .12) relative to sad vs. 

neutral faces (M = -.03, SD = .09; difference for sad vs. happy faces: M =.03, SE = .03, t = 

1.10, df = 22, p = .29). There was a trend-wise difference between the groups on relative 

activation of sad vs. happy faces (mean difference = -.09, SE = .04, t = -1.99, df = 36, p = .06), 

which was identified by the observed trend-wise interaction effect. With the inclusion of the 

reserve list, the interaction effect was significant (F[1,40] = 5.76, p = .02). 
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The association between amygdala BOLD activation for sad vs. happy faces and QIDS-

SR16 percentage change was mostly driven by the right amygdala (rs[38] = .46, p = .003; 

Supplementary Figure 3) rather than the left amygdala (rs[38] = .27, p = .10). The extracted 

cluster averages for the a priori defined right amygdala ROI showed an interaction effect 

between emotion (sad vs. happy faces) and group (partial responders vs. non-responders; 

F[1,36] = 6.34, p = .02), but not a main effect of emotion (F[1,36] = .49, p = .49) or group 

(F[1,36] = 1.85, p = .18). In contrast, the extracted cluster averages for the a priori left 

amygdala ROI did not show a main effect of emotion (F[1,36] = .15, p = .70), a main effect of 

group (F[1,36] = .08, p = .78) or an interaction effect (F[1,36] = 1.37, p = .25). 

 Similar to bilateral amygdala BOLD activation, the observed interaction effect for the 

right amygdala was driven by partial responders showing higher BOLD activation during 

happy vs. neutral faces (M = .02, SD = .14) relative to sad vs. neutral faces (M = -.05, SD = 

.11), resulting in a negative difference for sad vs. happy faces (M = -.07, SE = .04, t = -1.93, 

df = 14, p = .08; Supplementary Figure 3). Non-responders, on the other hand, did not show a 

significant difference in right amygdala activation during happy vs. neutral faces (M = -.08, 

SD = .11) relative to sad vs. neutral faces (M = -.04, SD = .09; difference for sad vs. happy 

faces: M =.04, SE = .03, t = 1.53, df = 22, p = .14). As a result, the groups differed on relative 

activation for sad vs. happy faces (mean difference = -.11, SE = .04, t = -2.52, df = 36, p = .02), 

which was identified by the observed interaction effect.  

 When including the reserve list, the positive association between the right amygdala 

and QIDS-SR16 percentage change remained (rs[42] = .49, p = .001) as did the interaction 

effect (F[1,40] = 8.21, p = .007). However, it did not change the null findings for the left 

amygdala. 
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Supplementary Tables 

 

Supplementary Table 1 | Overview of inclusion / exclusion for imaging analysis. 
 MDD Control Total 

Total: 45 20 65 

Included in main analysis: 38 15 53 

• Reserve list, applying less stringent movement criteria 
(translation < 8 mm; rotation < 6 degrees) and 
suboptimal physiological input 

4 4 8 

Excluded: 3 1 4 

• Excluded – abnormal images with functional implications 0 0 0 

• Excluded – excessive movement, but OK coverage 3 0 3 

• Excluded – excessive dropout, but OK movement 0 1 1 

MDD = major depressive disorder.  
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Supplementary Table 2 | Mean tSNR for regions-of-interest (n=61). 

Bilateral amygdala Left amygdala Right amygdala Dorsal/pregenual anterior 

cingulate cortex 

132.0 123.2 139.7 133.9 

tSNR = temporal signal-to-noise ratio. 
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Supplementary Table 3 | Baseline demographic characteristics by group. 
This table has been adapted from a previously published one in Neuroimage:Clinical (doi: 
10.1016/j.nicl.2023.103453) 
 

 MDD Control Comparison 

 n = 42 n = 19  

Age 41.5 ± 14.5; 19 - 66 40.2 ± 13.2; 20 - 66 t(59) = .34, p = .74 

Gender   χ2 (2,61) = .47, p = .79 

Female n = 35 (83%) n = 16 (84%)  

Male n = 6 (14%) n = 3 (16%)  

Other n = 1 (2%) n = 0 (0%)  

Ethnicitya   χ2 (1,60) = 2.60, p = .11 

Asian n = 5 (12%) n = 0 (0%)  

Black n = 2 (5%) n = 0 (0%)  

Other n = 2 (5%) n = 1 (5%)  

White n = 32 (78%) n = 18 (95%)  

Native first language    χ2 (1,61) = 3.59, p = .06 

English n = 34 (81%) n = 11 (58%)  

Non-English n = 8 (19%) n = 8 (42%)  

Years of education 16.8 ± 3.5; 10 - 24 16.6 ± 3.1; 9 - 22 t(59) = .21, p = .83 
a Missing data for one MDD; categories have been merged into White vs. non-White for chi-square test.  
Means, standard deviations and range are reported (M ± SD; minimum – maximum). Percentages may not add up to 100 due to 
rounding. * significant at p < .05, two-tailed. MDD = major depressive disorder. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



42 

 

Supplementary Table 4 | Movement parameters and response times for sad, 
happy, and neutral blocks by group. 

 MDD Control Comparison 

 n = 42 n = 19  

Movement parameters    

RMS translation .07 ± .03 .10 ± .09 U(61) = 383.0, z = -.25, p = .80 

RMS rotation .07 ± .03 .08 ± .05 U(61) = 359.0, z = -.62, p = .53 

Response timesa (ms)    

Sad faces 596 ± 81 617 ± 72 t(58) = -.96, p = .34 

Happy faces 594 ± 77 613 ± 69 t(58) = -.92, p = .36 

Neutral faces 590 ± 81 615 ± 72 t(58) = -1.13, p = .26 

Accuracy (%)b 92.3 ± 10.8 93.6 ± 5.0 t(58) = -.51, p = .61 

a One MDD participant had a faulty button box, so no behavioural measures were recorded. 
b Accuracy was defined as percentage of correctly identifying the gender of the pair of faces.  

Means and standard deviations are reported (M ± SD). * significant at p < .05 threshold, two-tailed. MDD = major depressive disorder; 
RMS = root mean square. 
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Supplementary Table 5 | Baseline clinical characteristics control participants 
(n=19). 
This table has been adapted from a previously published one in Neuroimage:Clinical (doi: 
10.1016/j.nicl.2023.103453) 
 

Past depressive symptoms not meeting MDE criteria 4 (21%) 

Life-time axis-I disorder using DSM-5 criteria  

Anxiety disorder 6 (32%) 

Subthreshold past posttraumatic stress disorder 2 (11%) 

None 12 (63%) 

Family history  

First degree relative with probable MDD 2 (11%) 

No family history of MDD 17 (90%) 

Percentages may not add up to 100 due to rounding. MDD = major depressive disorder; MDE = major depressive episode; DSM-5 
= Diagnostic and Statistical Manual for Mental Disorders 5th edition. 
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Supplementary Table 6 | Current and past MDD treatment (n=42). 
This table has been adapted from a previously published one in Neuroimage:Clinical (doi: 
10.1016/j.nicl.2023.103453) 

 

Treatment at baseline  

SSRI 34 (81%) 

Sertraline 12 (29%) 

Citalopram 9 (21%) 

Escitalopram 3 (7%) 

Fluoxetine 5 (12%) 

Venlafaxine (≤ 150mg) 5 (12%) 

SNRI 5 (12%) 

Duloxetine 2 (5%) 

Venlafaxine (> 150mg) 3 (7%) 

Tricyclic antidepressant 2 (5%) 

Other antidepressant 1 (2%) 

Add-on treatment 4 (10%) 

Non-pharmacological treatment 12 (29%) 

Past treatment  

1 – 2 medications 29 (69%) 

3 – 4 medications  9 (21%) 

5 – 6 medications  4 (10%) 

SSRI  

Sertraline 13 (31%) 

Citalopram 21 (50%) 

Escitalopram 5 (12%) 

Fluoxetine 23 (55%) 

Paroxetine 5 (12%) 

Venlafaxine (≤ 150mg) 5 (12%) 

SNRI  

Duloxetine 2 (5%) 

Venlafaxine (> 150mg) 1 (2%) 

Tricyclic antidepressant 4 (10%) 

Other antidepressant 8 (19%) 

Add-on treatment 6 (14%) 

Lifetime mental health/psychotherapy service use 40 (95%) 

Of which past secondary care use 9 (21%) 

Percentages may not add up to 100 due to rounding. MDD = major depressive disorder; SSRI = selective serotonin reuptake 
inhibitor; SNRI = selective norepinephrine reuptake inhibitor. 
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Supplementary Table 7 | MDD treatment during follow-up period (n=42). 
This table has been adapted from a previously published one in Neuroimage:Clinical (doi: 
10.1016/j.nicl.2023.103453) 

 

Main change  

No change in antidepressant 22 (52%) 

Stopped antidepressant  6 (14%) 

Lowered dose of antidepressant 0 (0%) 

Increase from effective dose to higher effective dose 8 (19%) 

Increase from ineffective dose to effective dose 0 (0%) 

Change to another antidepressant at effective dose 4 (10%) 

Change to another antidepressant at ineffective dose 2 (5%) 

Main antidepressant  

SSRI 28 (67%) 

Sertraline 9 (21%) 

Citalopram 6 (14%) 

Escitalopram 4 (10%) 

Fluoxetine 3 (7%) 

Venlafaxine (≤ 150mg) 6 (14%) 

SNRI 5 (12%) 

Duloxetine 2 (5%) 

Venlafaxine (> 150mg) 3 (7%) 

Mirtazapine 3 (7%) 

Tricyclic antidepressant 1 (2%) 

Other antidepressant 0 (%) 

Add-on treatment 5 (12%) 

Change in mental health service use  

Started accessing mental health service 8 (19%) 

Continued care in mental health service  9 (21%) 

Stopped mental health treatment  2 (5%) 

Type of mental health service use  

CBT 3 (7%) 

Psychotherapy 5 (12%) 

Psychoanalysis 2 (5%) 

Counselling 2 (5%) 

Other 5 (12%) 

GP appointments related to mental healtha  

None 10 (24%) 

1 9 (21%) 

2 11 (26%) 

3 8 (19%) 

More than 3 3 (7%) 
a Missing data for one participant. 
Percentages may not add up to 100 due to rounding. MDD = major depressive disorder; SSRI = selective serotonin reuptake 
inhibitor; SNRI = selective norepinephrine reuptake inhibitor; CBT = cognitive behavioural therapy; GP = general practitioner. 
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Supplementary Table 8 | Association between potential clinical confounders 
and percentage change for primary analysis MDD group (n=38). 
This table has been adapted from a previously published one in Neuroimage:Clinical (doi: 
10.1016/j.nicl.2023.103453) 

 

  QIDS-SR16 percentage change 

MM-PHQ-9 (baseline) rho .15 

p-value .38 

GAD-7 (baseline) rho .08 

p-value .63 

Current MDE duration (months) rho .39* 

p-value .02 

Age of onset first MDE (years) rho -.15 

p-value .36 

Number of MDE in lifetime rho -.12 

p-value .47 

Total duration depression from onset (years) rho .05 

p-value .79 

Number of suicide attempts rho .11 

 p-value .53 

* significant at p < .05 threshold, two-tailed. MDD = major depressive disorder; QIDS-SR16 = Quick Inventory of Depressive 

Symptomatology – self-rated, 16 items; MM-PHQ-9 = Maudsley Modified Patient Health Questionnaire, 9 items; GAD-7 = 

Generalised Anxiety Disorder, 7 items; MDE = major depressive episode. 
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Supplementary Table 9 | Association between baseline anxiety and neural measures for primary analysis MDD group 
(n=38). 
 

  Dorsal/pregenual ACC Left amygdala Right amygdala Bilateral amygdala 

  Happy Sad Sad vs. 

happy 

Happy Sad Sad vs. 

happy 

Happy Sad Sad vs. 

happy 

Happy Sad Sad vs. 

happy 

GAD-7 

(baseline) 

rho -.42* .10 .38* -.18 -.16 .04 -.32* -.06 .24 -.27 -.09 .11 

p-value .01 .54 .02 .28 .34 .81 .05 .71 .15 .10 .59 .53 

* significant at p < .05 threshold, two-tailed. MDD = major depressive disorder; ACC = anterior cingulate cortex; GAD-7 = Generalised Anxiety Disorder, 7 items. 
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Supplementary Figures 
 

 

Supplementary Figure 1 | Overall mean tSNR map across participants for facial emotions fMRI paradigm. 

Mean tSNR values for each participant (n = 61) were combined into one overall mean tSNR across participants. The tSNR 

exceeds the minimum threshold of 40, as proposed by Murphy, Bodurka, and Bandettini (2007), for most regions. Displayed 

using MRIcron (Rorden & Brett, 2000). tSNR = temporal signal-to-noise ratio. 
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Supplementary Figure 2 | Comparison between partial responders and non-responders for bilateral amygdala neural 

responses to facial emotions.  

There was a trend-wise interaction effect between group (partial responders vs. non-responders, where partial responder was 

defined as participants who showed at least a 25% reduction in depressive symptoms as measured on the QIDS-SR16) and 

emotion (sad vs. happy) for bilateral amygdala activation, using the extracted a priori defined bilateral amygdala ROI averages. 

This interaction effect was driven by higher bilateral amygdala activation during happy faces in the partial response group 

compared to the non-response group, and lower bilateral amygdala activation during sad faces in the partial response group 

compared to the non-response group. There was a trend-wise significant difference between groups on relative activation of sad 

vs. happy faces, which was identified by the observed interaction effect. QIDS-SR16 = Quick Inventory of Depressive 

Symptomatology - self-rated, 16-items; ROI = region-of-interest. 
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Supplementary Figure 3 | Association between right amygdala neural responses to facial emotions and change in 

depressive symptoms. 

Panel A) shows a cropped section through the right amygdala, displayed using MRIcron (Rorden & Brett, 2000) at an uncorrected 

voxel-level threshold of p = .005, with no cluster-size threshold (the color bar represents t values; the numbers above the brain 

slices stand for coordinates of the Montreal Neurological Institute coordinate system). Panel B) shows that there was a positive 

association between right amygdala BOLD activation for sad vs. happy faces and QIDS-SR16 percentage change from baseline 

to follow-up, using the extracted a priori right amygdala ROI averages. Panel C) shows that there was an interaction effect 

between group (partial responders vs. non-responders, where partial responder was defined as participants who showed at least 

a 25% reduction in depressive symptoms as measured on the QIDS-SR16) and emotion (sad vs. happy) for right amygdala 

activation, using the extracted a priori right amygdala ROI averages. This interaction effect was driven by higher right amygdala 

activation during happy faces in the partial response group compared to the non-response group, and lower right amygdala 

activation during sad faces in the partial response group compared to the non-response group. There was a significant difference 

between groups on relative activation of sad vs. happy faces, which was identified by the observed interaction effect. BOLD = 

blood-oxygen level-dependent; QIDS-SR16 = Quick Inventory of Depressive Symptomatology - self-rated, 16-items; rs = 

Spearman correlation; ROI = region-of-interest. 
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