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Abstract 

Background- Several factors shape the neurodevelopmental trajectory. A key area of focus in 

neurodevelopmental research is to estimate the factors that have maximal influence on the brain 

and can tip the balance from typical to atypical development.  

Methods- Utilizing a dissimilarity maximization algorithm on the dynamic mode 

decomposition (DMD) of the resting state functional MRI data, we classified subjects from the 

cVEDA neurodevelopmental cohort (n=987, aged 6-23 years) into homogeneously patterned 

DMD (representing typical development in 809 subjects) and heterogeneously patterned DMD 

(indicative of atypical development in 178 subjects).   

Results- Significant DMD differences were primarily identified in the default mode network 

(DMN) regions across these groups (p < 0.05, Bonferroni corrected). While the groups were 

comparable in cognitive performance, the atypical group had more frequent exposure to 

adversities and faced higher abuses (p < 0.05, Bonferroni corrected). Upon evaluating brain-

behavior correlations, we found that correlation patterns between adversity and DMN dynamic 

modes exhibited age-dependent variations for atypical subjects, hinting at differential 

utilization of the DMN due to chronic adversities.  

Conclusion- Adversities (particularly abuse) maximally influence the DMN during 

neurodevelopment and lead to the failure in the development of a coherent DMN system. While 

DMN's integrity is preserved in typical development, the age-dependent variability in 

atypically developing individuals is contrasting. The flexibility of DMN might be a 

compensatory mechanism to protect an individual in an abusive environment. However, such 

adaptability might deprive the neural system of the faculties of normal functioning and may 

incur long-term effects on the psyche. 

Keywords: Neurodevelopment, functional MRI, Default mode network, Adverse Childhood 

Experiences (ACE), Abuse, Brain-behaviour correlation 

 

 

 

 

 

 

 

 

 



Introduction 

The period spanning childhood, adolescence, and young adulthood is crucial since the 

intrinsic architecture of the brain is shaped by a wide repertoire of factors, including those that 

are strongly dependent on the caregiver (e.g., parents, family, guardian), experiences within 

educational and community settings, as well as overarching societal and cultural norms. A 

plethora of studies have suggested psychiatric disorders to be linked to the experiences 

encountered during neurodevelopment (Kim-Cohen et al., 2003; Rothbart, 2011; Shevlin, 

McElroy, & Murphy, 2017). There are several factors like unstable caregiving, socioeconomic 

situations, social disparity, stress and frequent exposure to adversities that can lead to 

maladapted development (Gee, 2021; Holz et al., 2022; McLaughlin, Weissman, & Bitrán, 

2019; Rakesh & Whittle, 2021; Rebello, Moura, Pinaya, Rohde, & Sato, 2018). During the 

developmental phase, synaptic pruning and white matter myelination play an important role in 

configuring the neural architecture (McLaughlin et al., 2019). These processes adapt the neural 

system such that the system is maximally efficient for the environment in which it is developed. 

These processes are required for the healthy development of the brain, and a faultily 

programmed process can alter the functionality and lead to neurodevelopmental disorders 

(Cardozo et al., 2019; Feinberg, 1982; Germann, Brederoo, & Sommer, 2021). Studies attempt 

to understand these processes from a cohort of categorized healthy and diseased populations. 

This distinction (healthy vs diseased) obscures the state of transition from healthy to disease, 

and the understanding of the influences that tip the balance from typical to atypical 

development remains limited. When population-based big neurodevelopmental data is 

collected without any preconceived distribution of subjects, it can be expected that brain 

signatures of both typical and atypical population are present in the data in the latent form. 

Using advance analysis techniques, these patterns can be extracted and the factors that lead to 

atypicality can be comprehended. In this work we attempted to understand the point of 

bifurcation in the neurodevelopmental trajectory, by categorizing the neural pattern of typical 

and atypical development coexisting within the cohort of healthy individuals. We eventually 

investigated the factors that have maximal influence in altering the typical pattern of 

neurodevelopment, and can drive the normal pattern of development towards atypicality. At 

the same time, we also explored how the factor shapes the brain organization in both typical 

and atypical populations, and if there was any change in the pattern over the course of 

development (period spanning childhood, adolescence, and young adulthood). 

In this aspect, resting state functional magnetic resonance imaging (rsfMRI) has the 

potential to reveal underlying neural organization  (Biswal, Yetkin, Haughton, & Hyde, 1995; 



Buckner, Krienen, & Yeo, 2013; Fox & Raichle, 2007) and provide information regarding brain 

functions and cognitive abilities (Finn et al., 2015; Kashyap, Bhattacharjee, Yeo, & Chen, 

2019; Kashyap et al., 2021; Kashyap et al., 2019; Kong et al., 2018; Smith et al., 2015). The 

information latent in the rsfMRI brain signatures can reflect our lifestyle habits, mental health 

conditions, and the environment we live in (Finn et al., 2015; Ikeda, Kawano, Watanabe, 

Yamashita, & Kawahara, 2022; Kashyap et al., 2021; Kashyap,  et al., 2019; Lake et al., 2019; 

Smith et al., 2015). Strategies to identify subtypes from rsfMRI by dissecting heterogeneity in 

the rsfMRI pattern from a large cohort and then associating the subtypes with behaviours have 

gained momentum (Drysdale et al., 2017; Feczko & Fair, 2020; Mattoni, Smith, & Olino, 

2023). Such brain-behaviour associations with subtype identification have enabled the 

identification of the factors that have a significant effect on mental health (Dias et al., 2015; 

Drysdale et al., 2017; Feczko & Fair, 2020; Mattoni et al., 2023; Zhu et al., 2022).  For example, 

in a dataset of healthy subjects (n = 500) from the human connectome project (HCP, age range 

of 36-100 years),  Smith and colleagues (Smith et al., 2015) identified a positive and negative 

mode of variation in rsfMRI that was associated with positive (e.g., high performance on 

memory and cognitive test, life satisfaction) and negative (like substance use, anger, rule-

breaking behavior) spectrum of behaviors.  In our previous work (Kashyap, Bhattacharjee, et 

al., 2019), we investigated rsfMRI subtypes from 788 HCP subjects to identify behaviours that 

maximise the rsfMRI variance. We found that the deviations in rsfMRI pattern were associated 

with higher usage of marijuana, illicit drugs, alcohol, tobacco, and predisposition towards 

antisocial personality. These findings have enriched our understanding of the factors that can 

bifurcate the mental health trajectory in healthy adults. However,  approximately 63% of 

mental illnesses begin prior to age 25, and 37% of them start before the age of 14 (McGrath et 

al., 2023; Solmi et al., 2022). These statistics clearly indicate that there is a need to understand 

the factors that dichotomize the neurodevelopmental trajectory and contribute to atypical brain 

development. In this aspect, leveraging the potential of previous computational techniques 

(applied to ageing datasets) on large neurodevelopmental datasets is useful, and several studies 

have applied similar strategies to associate variations in the pattern of rsfMRI with behavior 

(Chen et al., 2022; Evans et al., 2015; Kebets et al., 2023; Lake et al., 2019; Qu et al., 2023; 

Sripada et al., 2020; Uddin et al., 2013).  The subtle advantage of extending such techniques to 

early phases of development is also to map a continuum of mental health across the lifespan. 

In this exploratory study, we have used our previous hypothesis-free approach (Kashyap, 

et al., 2019) to investigate factors that have maximal influence on variation of rsfMRI during 

neurodevelopment. We used rsfMRI of 987 healthy subjects, within specified age bands – 



children (6–11 years), adolescents (12–17 years), and young adults (18–23 years), from the 

Consortium on Vulnerability to Externalizing Disorders and Addictions (c-VEDA): an 

accelerated longitudinal cohort of children and adolescents in India (Fernandes et al., 2021; 

Holla et al., 2020; Sharma et al., 2023, 2020; Vaidya et al., 2023; Zhang et al., 2020). We 

estimated features from rsfMRIs, and classified subjects using a dissimilarity maximisation 

algorithm that is based on the similarity/dissimilarity of their rsfMRI pattern (Kashyap, et al., 

2019; Kong et al., 2018).  The rsfMRI features were extracted using dynamic mode 

decomposition (DMD) technique (Brunton, Johnson, Ojemann, & Kutz, 2016; Rowley, Mezić, 

Bagheri, Schlatter, & Henningson, 2009; Schmid, 2010). Since rsfMRI contains information 

about the brain’s static (spatial) and dynamic (time-evolving) properties, the DMD algorithm’s 

capacity to retain the spatial- and frequency-based data characteristics has proven 

advantageous. Previous studies have applied this technique to rsfMRI and found spatio-

temporal patterns (dynamic modes, DMs) to have enhanced associations with behaviours 

(Casorso et al., 2019; Ikeda et al., 2022). Here, we have used these DMs to classify subjects 

into two groups-  one with high similarity and another with high dissimilarity between rsfMRI-

features (Kashyap et al., 2019; Kong et al., 2018). We did not formulate any directional 

hypothesis regarding the behavioural manifestation of rsfMRI features. So, we compared a 

wide range of cohort characteristics that includes scores of psychopathology, socio-economic 

status, social cognition, environment of home, community and school, behavioural tasks (e.g., 

working memory, visual attention), demographic (age and sex), and anthropometric parameters 

(e.g., height, weight) between the two groups. Subsequently, we explored how the behavioural 

measures that distinguished the two groups were related to differences in neural organization 

by correlating the behavioural scores with the DM of the brain areas. We then investigated how 

the correlational pattern evolved in the three age groups (childhood, adolescence, and young 

adulthood). Altogether, we aimed to understand the factors that differentiate typical and 

atypical development by capitalizing on the heterogeneity of rsfMRIs and investigating how 

the neural pattern is shaped in both developmental groups. 

 

Methods 

 

Study Protocol 

The cVEDA study is a cohort of about 9,000 individuals (aged 6 to 23 years) covering 

a diverse population (e.g., regions with socio-political conflicts, migratory workers with high 

substance use, slum, high familial risk, urban and rural) from five geo-spatial regions of India. 



The Institutional Ethics Review Boards of National Institute of Mental Health and 

Neurosciences (NIMHANS) Bangalore, India (Item No. VII, SI. No. 7.08, Behavioural 

Sciences) and all other collaborating institutions approved the data collection protocol setup in 

accordance with the Declaration of Helsinki (1964 and later versions).  A subset of 1140 

subjects underwent an intensive assessment in which multiple modalities of data pertaining to 

(i) Neuroimaging (structural-, functional, and diffusion-MRI), (ii) Behavioural- phenotypic 

characterization (with special emphasis on externalizing behaviours), iii) environmental 

exposures (psychosocial stressors, societal discrimination, nutrition and asset security, 

environmental toxins), and (iv) Genomics (blood/buccal swab and urine) were collected. 

Details of the data collection procedure are available elsewhere (Fernandes et al., 2021; Sharma 

et al., 2023, 2020; Vaidya et al., 2023; Zhang et al., 2020). The rsfMRI’s used in this study 

were obtained from 5 different 3T MRI scanners (for details, please refer Vaidya et al., 2023) 

with scanning duration kept at 6 min across the sites. The cVEDA team followed a standard 

protocol (with structural scans based on a protocol defined by the ADNI consortium 

http://www.loni.ucla.edu/ADNI/Cores/index.shtml) to ensure the comparability of image-

acquisition techniques and the ability to pool the multi-site MRI data. The MRI scanners 

engaged in the data collection for cVEDA were from Siemens and Philips. Emphasis was 

placed to maintain the key parameters that influence image contrast and signal to noise ratio 

uniform across the scanners. For rsfMRI aquisition, a gradient echoplanar imaging (EPI) 

sequence was utilized. To facilitate the signal equilibration, three initial dummy scans were 

conducted and excluded from subsequent analysis. The uniform imaging parameters across 

sites were as follows: voxel size set at 3.4 × 3.4 mm2, slice thickness at 2.4 mm, interslice gap 

of 1 mm, descending slice acquisition order,  repetition time (TR) of 2200 ms, echo time (TE) 

of 30 ms, and a flip angle set at 75 degrees. The imaging matrix was standardised at 64 × 64 

mm covering 40 axial slices to ensure full brain coverage. Full technical specifications are 

available at http://cveda-project.org/standard-operating-procedures/. 

 

RsfMRI Preprocessing  

The pre-processed rsfMRI data were obtained from cVEDA’s previous study (Vaidya 

et al., 2023). They have performed rigid body registration of each functional volume to the 

middle volume (FSL MCFLIRT) and applied slice-time correction (Jenkinson, Beckmann, 

Behrens, Woolrich, & Smith, 2012). Non-brain tissues were removed using FSLBET, and 

images were co-registered to high-resolution T1 image (FSL FLIRT using the BBR algorithm) 

(Jenkinson, Bannister, Brady, & Smith, 2002). As a part of motion correcting transformations, 

http://cveda-project.org/standard-operating-procedures/


BOLD-to-T1w transformation and T1w-to-MNI template (MNI) warp were applied in a single 

step using Advanced Normalization Toolbox (ANTs v2.1.0) (Avants, Tustison, & Song, 2009). 

Frame-wise displacement was calculated for each functional run, and ICA-based Automatic 

Removal Of Motion Artifacts (AROMA) was used to generate non-aggressively denoised data 

(Pruim et al., 2015).  A high-pass filter with a cutoff period of 125 seconds (< 0.008 Hz) was 

used to remove the slow drifts and conserve high frequency bands in the signal (Gohel & 

Biswal, 2015). Lastly, the denoised data were resampled to 2mm isotropic and smoothed using 

a 4mm non-linear filter using FSL SUSAN (Jenkinson et al., 2002). The rsfMRI time series 

(165 volumes) were then extracted from 116 regions using the Automated Anatomical Labeling 

(AAL) atlas that consists of 90 cortical (45 for each hemisphere) and 26 cerebellar regions 

(Tzourio-Mazoyer et al., 2002). Therefore, the rsfMRI of a subject was 116 x 165 matrix. 

 

Primary Behavioral measures 

The cVEDA study collected several measures for the three age bands- children, 

adolescents, and young adults. In this study, we considered those parameters for which data 

was available across the three age bands, as some questionnaires, for example, were applicable 

to only specific age bands (Sharma et al., 2020; Zhang et al., 2020). The parameters included 

data on (A) Socio-economic status, (B) Psychopathological condition, (C) Environmental 

exposure at (i) Home & neighborhood- using questionnaires from adverse childhood 

experiences (ACE), which includes the exposure to abuse, neglect, adversities from family and 

community (Felitti et al., 2019), and (ii) School-  using school climate questionnaires (SCQ) 

(Bochaver, Korneev, & Khlomov, 2022); and (D) Executive abilities tasks that measured - (i) 

Risk taking propensity- using the balloon analogue risk task (BART) (Lejuez et al., 2002), (ii) 

Response-Inhibition using stop signal task (SST) (Logan & Cowan, 1984), (iii) Visual attention 

using trail making test (TMT) (Piper et al., 2012), (iv) Cognitive flexibility-  using card sorting 

test (Berg, 1948), (v) Visuospatial-attention and working memory- using CORSI block 

Tapping task (Corsi, 1972; Kessels, van den Berg, Ruis, & Brands, 2008), (vi) Short-term 

memory- using the Digit Span test (DST) (Croschere, Dupey, Hilliard, Koehn, & Mayra, 2012), 

(vii) Theory-of-mind and social perception- using  Social Cognition Rating Tools in the Indian 

Setting (SOCRATIS) (Mehta et al., 2011). The list of behavioural measures with a brief 

explanation is available in Table1 (also see supplement). The anthropometric parameters 

include height (in cm), weight (in Kg), body mass index, leg length (in cm), and circumference 

of head and mid-arm (in cm). The demographic measures included the age and sex of the 

subjects. Altogether, 43 cohort characteristics (measuring socio-economic status-1, 



psychopathology-1, environmental experiences-11, cognition & task performance-22, 

anthropometry-6, and demography-2) that were available across a total of 987 subjects were 

analyzed. 

 

Table 1- Primary cohort characteristics considered in the present study.  

 

Measure Number 
of 
Variables 

Description 

Wealth Index 

 

1 

 

Measures of standard of living, which incorporate 

variables such as consumer goods ownership and 

key housing characteristics like water source and 

toilet facilities, were calculated using Principal 

Component Analysis coefficients from the National 

Family Health Survey-4. 

General 

psychopathology 

factor 

1 Screening questions from the Mini International 

Neuropsychiatric Interview version 5, which 

correspond to the primary diagnostic criteria of 

psychiatric disorders, were used to derive a general 

latent measure of psychopathology via bifactor 

Confirmatory Factor Analysis (Sharma et al., 2020; 

Y. Zhang et al., 2020) 

Adverse Childhood 

Experiences (ACE) 

 

6 

Measures the frequency of adversity experiences, 

and level of family cohesion. Scores for abuse, 

neglect and adversities faced in the family and 

community are included. 

School Climate 

Questionnaire (SCQ) 

5 Evaluates perceived safety, order, support, 

acceptance, equity, fairness, and encouragement of 

autonomy in school. 

Balloon Analogue 

Risk Task (BART) 

9 Tracks the number of pumps made on collected and 

popped trials and total balloon burst in three colors 

(blue, orange, yellow) with increasing mean 

breaking point. 

Stop Signal Task 

(SST) 

1 Monitors the final rate of successful stops in the 

task. Measures the ability to stop a response that has 

already been initiated. 

Trail Making Test 

(TMT) 

3 Measures reaction times for different segments of 

the task: 'test', 'letters', and 'numbers and letters'. 

Card Sorting Test 2 Captures the total of correct and perseverative 

responses. 

CORSI Block 

Tapping Task 

2 Measures spatial working memory with forward and 

backward span. 

Digit Span Task 

(DST) 

2 Measures auditory working memory forward and 

backward span. 

Social Cognition 

Rating in the Indian 

Setting (SOCRATIS) 

3 Involves recognition of faux pas in social situations 

and first and second order theory of mind. 



 

Extraction of rsfMRI features/Dynamic Modes (DMs)  

The DMD algorithm was originally developed to understand fluid dynamics, and the 

details are described in the methodological papers (Brunton et al., 2016; Kutz, Brunton, 

Brunton, & Proctor, 2016; Rowley et al., 2009; Schmid, 2010). It has also been applied to 

rsfMRI to extract features for biomarker development (Casorso et al., 2019; Ikeda et al., 2022).  

DMD is a dimensionality reduction approach that builds on the power of singular value 

decomposition to provide the spatio-temporal features of the multidimensional data (see 

supplement). The  low-rank eigen-decomposition technique in DMD  computed eigenvectors 

and corresponding eigenvalues from rsfMRI data (Casorso et al., 2019; Ikeda et al., 2022). 

Eigenvectors (i.e., spatial characteristics) represent dynamic modes (DMs), which are coherent 

spatial structures, and the corresponding eigenvalues (i.e., temporal characteristics) represent 

the frequency. Studies have shown that DM obtained with all the frequency bands combined 

have higher associations with the behaviors (Ikeda et al., 2022), and the complementary 

information about individual differences leads to improved classification accuracy (Huang et 

al., 2019). Therefore, the DM (116 x 1 matrix) was obtained for each individual across the 

complete range of frequency.  

 

Determining subjects with atypical DM pattern  

 Initially, all the subjects (n = 987) were considered as one group and the DM of every 

subject  was obtained. The subjects were then classified based on the similarity/dissimilarity in 

the pattern of the DM (Kashyap et al., 2019; Kong et al., 2018).  To determine this, we 

correlated DMs across subjects using Pearson’s correlation and obtained a 987 x 987 DM-

correlation matrix. To select a subset of subjects with dissimilar patterns, we randomly picked 

an entry in the DM-correlation matrix (representing a pair of subjects) whose absolute 

correlation was less than a threshold of 0.80 (see supplement for other thresholds). We 

continued adding new random subjects, such that each newly added subject was minimally 

correlated (absolute |r| < 0.80) with the current set of subjects. The procedure terminated when 

no more subjects could be added. The procedure was repeated 5000 times, resulting in 5000 

sets with varied numbers of subjects per set. Of these 5000 sets, we chose the set containing 

subjects with the smallest maximum absolute correlation. This subset of subjects formed the 

dissimilar-rsfMRI-pattern group, and the remaining subjects constructed the similar-rsfMRI-

pattern group. 

 



Brain-Behavior Associations 

 The present study employs a data-driven, bottom-up approach, where we begin by 

investigating variations in brain feature patterns and subsequently explore how these 

differences might be manifested in behavior. Therefore, after classifying the subjects with 

similar and dissimilar patterns of rsfMRI we identified traits that distinguished the groups by 

performing two tailed t-test with Bonferroni correction across the 43 parameters (measuring 

socioeconomic status, psychopathology, environmental exposure at home/school/society, 

cognition & task performance, demography, and anthropometry).  

We then analyzed the potential influence of the differentiating factors on the resting brain 

features in both similar- and dissimilar-rsfMRI-groups. To this, we correlated (|r|) the DMs of 

the brain areas (that are different between the two groups) with the scores of the behavioral 

measure that differentiated the two groups. To trace how these relationships evolved with age, 

we conducted separate correlations for children (6-11 years), adolescents (12-17 years), and 

young adults (18-23 years). The procedure was repeated for both sexes as well. 

 

Exploratory and Additional Behavioural measures 

With a similar approach, in our previous work on HCP adults, we found the subjects in 

the dissimilar group to have higher usage of marijuana, illicit drugs, alcohol, and tobacco, with 

problems of antisocial personality (Kashyap et al., 2019). Interestingly, the c-VEDA team have 

also provided similar estimates related to clinical assessment (using the Mini-International 

Neuropsychiatric Interview, and Strengths and Difficulties Questionnaire), externalizing 

behaviour and psychopathology including substance use behavioural addictions (a total of 41 

measures, see supplement) (Sharma et al., 2020; Zhang et al., 2020). Naturally, it became 

interesting to explore whether these behaviours are also significant in neurodevelopment. To 

this, for each behavioural measure we removed the subjects with missing data from both the 

groups (Similar- and dissimilar-rsfMRI) and performed two-tail t test with Bonferroni's 

correction. 

 

Data and Code availability 

The public dataset cVEDA is available at https://cveda-project.org/. The code of DMD 

can be downloaded at https://faculty.washington.edu/kutz/page26/. The code for classification 

is also available at https://github.com/suklamaa/Maximizing_Dissimilarity_in_fMRI. 

https://faculty.washington.edu/kutz/page26/


 

Results 

DM Spatial maps 

The spatial map of averaged DM across subjects (n= 987) is shown in Figure 1A. We 

extracted subjects with a dissimilar pattern of rsfMRI from the DM correlation matrix.  A total 

of 178 subjects formed the dissimilar-rsfMRI-pattern group (max |r| = 0.79), and the remaining 

809 subjects formed the similar-rsfMRI-pattern group (max |r| = 0.99). For the dissimilar-

rsfMRI-pattern group, the number of subjects in the three age bands were- children = 50, 

adolescents = 59, and young adults = 69. Similarly for the similar-rsfMRI-pattern group, 

number of children, adolescents, and young adults were 173, 342, and 294 respectively. The 

two groups differed in the distribution of the DM  (p < 0.05, Bonferroni corrected)  across a set 

of  18 brain areas located bilaterally in the (i) Frontal Regions that comprises of Frontal Supra 

Orbital (FSO), Frontal Mid Orbital (FMO), and Frontal Inferior Orbital (FIO); (ii) Parietal 

regions that include Mid Cingulate (MC), Cuneus (Cun), and Precuneus (PreCun); and (iii) 

Temporal regions with three areas Temporal Pole Superior (TPSup), Temporal Pole Mid 

(TPMid), and Inferior Temporal Lobe (ITL). The location of these areas in the brain is shown 

in red, pink, and blue colored dots, each representing the areas specific to frontal, parietal and 

temporal regions (Figure 1). For the similar-rsfMRI-pattern group, the DMs (Mean ± Std) 

across the subjects for the 18 bilateral areas were (i) Left-FSO (-0.04 ± 0.00), Right-FSO (-

0.04 ± 0.00); (ii) Left-FMO (-0.06 ± 0.00), Right-FMO (-0.06 ± 0.00); (iii) Left-FIO (-0.06 ± 

0.00), Right-FIO (-0.06 ± 0.00); (iv) Left-MC (-0.10 ± 0.00), Right-MC (-0.10 ± 0.00); (v) 

Left-Cun (-0.11 ± 0.01), Right-Cun (-0.12 ± 0.01); (vi) Left-PreCun (-0.11 ± 0.01), Right-

PreCun (-0.11 ± 0.00); (vii) Left-TPSup (-0.06 ± 0.00), Right-TPSup (-0.06 ± 0.00); (viii) Left-

TPMid (-0.05 ± 0.01), Right-TPMid (-0.05 ± 0.01); and (ix) Left-ITL (-0.05 ± 0.00), Right-

ITL (-0.05 ± 0.01). Similarly, for the dissimilar-rsfMRI-pattern group, the DMs (Mean ± Std) 

for 18 bilateral areas were (i) Left-FSO (-0.05 ± 0.01), Right-FSO (-0.04 ± 0.01); (ii) Left-

FMO (-0.06 ± 0.01), Right-FMO (-0.06 ± 0.01); (iii) Left-FIO (-0.07 ± 0.00), Right-FIO (-0.06 

± 0.00); (iv) Left-MC (-0.09 ± 0.00), Right-MC (-0.09 ± 0.00); (v) Left-Cun (-0.11 ± 0.01), 

Right-Cun (-0.11 ± 0.01); (vi) Left-PreCun (-0.11 ± 0.01), Right-PreCun (-0.10 ± 0.00); (vii) 

Left-TPSup (-0.06 ± 0.00), Right-TPSup (-0.06 ± 0.00); (viii) Left-TPMid (-0.05 ± 0.00), 

Right-TPMid (-0.05 ± 0.01); and (ix) Left-ITL (-0.06 ± 0.00), Right-ITL (-0.06 ± 0.01).  This 

has been shown in Figure 1B (i and ii) for the areas in the left and right hemispheres, 



respectively. These areas are a part of the default mode network of the brain (Buckner, 

Andrews-Hanna, & Schacter, 2008). 

 

 
Figure 1. (A) Spatial distribution of the DMs averaged across the subjects (n = 987) (B) The 

areas showing significant differences (p < 0.05, Bonferroni corrected) in DMs across the three 

bilateral brain regions (Frontal, Parietal and Temporal) of the (i) Left Hemisphere, and (ii) 

Right Hemisphere. Each region comprises of three brain areas and are shown in colored dots 

representing their spatial location. The Frontal regions (in red dots) comprised of areas- Frontal 

Supra Orbital (FSO), Frontal Mid Orbital (FMO), and Frontal Inferior Orbital (FIO). The 

parietal regions (in pink dots) consisted of Cuneus (Cun), PreCuneus (PreCun), and Mid 

Cingulum (MC). The temporal regions (blue dots) include the Temporal Pole Superior 

(TPSup), Temporal Pole Mid (TPMid) and Inferior Temporal Lobe (ITL).  

 



Behavioral Association 

The scores of 43 cohort characteristics were compared between the dissimilar and similar-

rsfMRI pattern groups (see supplement). We found two behavioral measures (Adversity 

Frequency, and Abuse) to survive the significance level with Bonferroni’s correction (p < 

0.05). This suggested that frequent adversities encountered during the developmental phase 

significantly influence the resting state pattern as evaluated from the rsfMRI (Figure 1a). The 

similar-rsfMRI pattern group representing the typical neurodevelopment comprised subjects 

that had less (1.07 ± 1.23) frequent encounters with adversities compared to the dissimilar-

rsfMRI pattern group (2.26 ± 2.35). The effect size, as measured by Cohen’s d, was d = 0.80, 

indicating a large effect of frequent exposure to adversities on the differences in the rsfMRI 

pattern between the two groups during neurodevelopment. Interestingly, only the scores of 

abuse (that constitutes adversity) differentiated the two groups, with individuals in the similar-

rsfMRI pattern group facing less abuse (-0.13 ± 1.07) compared to the dissimilar-rsfMRI 

pattern group (1.58 ± 1.40). The cohen’s d of 1.18 suggested the large impact abuse holds on 

the development of the functional architecture of the brain during growth. Statistical analysis 

of the additional behaviors related to externalizing and substance use was not significant (see 

Table 2S in supplement). 

The similar-rsfMRI pattern group had 194 children, 323 adolescents, and 292 young 

adults. For the similar-rsfMRI pattern group, the correlation of the DMs with the frequency of 

adversities was significant (p < 0.05, Bonferroni corrected) for 2 frontal regions (FMO, and 

FIO), 2 parietal regions (Cun and PreCun), and 1 temporal region (ITL) across both 

hemispheres. For the children, the correlation values for the brain areas were (i) Left-FMO = 

0.27, Right-FMO |r| = 0.25; (ii) Left-FIO |r| = 0.22, Right-FIO = 0.23; (iii) Left-Cun |r| = 0.23, 

Right-Cun |r| = 0.25; (iv) Left- and Right-PreCun |r| = 0.21; and (v) Left- and Right-ITL |r| = 

0.23. For the adolescents, the correlation values for the brain areas were (i) Left-FMO |r| = 

0.28, Right-FMO |r| = 0.27; (ii) Left-FIO |r| = 0.24, Right-FIO |r| = 0.21; (iii) Left-Cun |r| = 

0.27, Right-Cun |r| = 0.26; (iv) Left-PreCun |r| = 0.22, Right-PreCun = 0.24; and (v) Left-ITL 

|r| = 0.28, Right-ITL |r| = 0.26. For the young adults, the correlation values for the brain areas 

were (i) Left-FMO |r| = 0.22, Right-FMO |r| = 0.27; (ii) Left-FIO |r| = 0.21, Right-FIO |r| = 

0.20; (iii) Left- and Right-Cun |r| = 0.22; (iv) Left- and Right-PreCun |r| = 0.21; and (v) Left-

ITL |r| = 0.24, Right-ITL = 0.26. Interestingly, the correlational pattern remained consistent 

across the three age bands (Figure 1B). For the ease of visualization, the spatial location of the 

areas is mapped in Figure 2A. The correlational pattern was also observed between the scores 

of abuse and the DMs. The correlation pattern remained similar as observed for frequency of 



adversity (so the values are not repeated) owing to high (|r| = 0.60) and significant (p < 0.00001) 

correlation between scores of abuse and frequency of adversities.  

 

 
Figure 2. (A) Distribution of the frequency of exposure to adversities in the similar and 

dissimilar-rsfMRI pattern groups. The frequency of adversities faced by subjects in the 

dissimilar-rsfMRI pattern group was significantly higher (p < 0.001 Bonferroni corrected) 

than in the similar-rsfMRI pattern group. (B) The differences in the scores of abuses 

encountered by the two groups. The subjects in the dissimilar-rsfMRI pattern group faced 

significantly (p < 0.001 Bonferroni corrected) higher abuses. (C) The frequency of adversity 

was correlated with the DMs of the areas from three brain regions (Frontal, Parietal, and 

Temporal). The correlational pattern is shown for both groups across the three age bands – 

C1 representing children (6-11 years), C2 representing adolescents (12-17 years), and C3 

representing young adults (18-22 years). The correlation was significant (p < 0.05, 

Bonferroni corrected) in both hemispheres at FMO, FIO, Cun, PreCun, and ITL across the 

three age bands. The significant areas have been highlighted with white and red colour star 

(*) across the two groups. 

 

Correspondingly, the dissimilar-rsfMRI pattern group consisted of 30 children, 77 

adolescents, and 71 young adults.  Significant correlations (p < 0.05, Bonferroni corrected) of 

DM with adversity were observed in (i) Parietal regions (MC, Cun, and PrCun) for Children, 

(ii) Frontal regions (FSO, FMO, and FIO) for adolescents, and (iii) Parieto-temporal regions 

(MC, Cun, and PrCun; TPSup, TPMid, and ITL) for the young adults (Figure 1C). For the 



children, the correlation values for the brain areas in parietal regions were (i) Left-MC |r| = 

0.32, Right-MC |r| = 0.34; (ii) Left-Cun |r| = 0.51, Right-Cun |r| = 0.52; and (iii) Left-PreCun 

|r| = 0.33, Right-PreCun = 0.36. For the adolescents, the correlation values for the brain areas 

in frontal regions were (i) Left-FSO |r| = 0.36, Right-FSO |r| = 0.34; (ii) Left-FMO |r| = 0.45, 

Right-FMO |r| = 0.47; and (iii) Left-FIO |r| = 0.34, Right-FIO |r| = 0.37. For the young adults, 

the correlation values for the brain areas in parieto-temporal regions were (i) Left-MC |r| = 

0.37, Right-MC |r| = 0.33; (ii) Left-Cun |r| = 0.36, Right-Cun |r| = 0.34; (iii) Left-PreCun |r| = 

0.35, Right-PreCun |r| = 0.37; (iv) Left-TPSup |r| = 0.38, Right-TPSup = 0.34; (v) Left-TPSup 

= 0.35, Right-TPSup |r| =0.36; and (vi) Left-ITL |r| = 0.36, Right-ITL |r| = 0.38.  The 

correlational pattern was also observed between the scores of abuse and the DMs. The 

correlation pattern trended similarly as observed for frequency of adversity (so the values are 

not repeated) owing to high (|r| = 0.58) and significant (p < 0.00001) correlation between scores 

of abuse and frequency of adversities. Moreover, for the two groups, there was no sex-specific 

signature differences in the correlational pattern of DMs and frequency of adversities.  

 In contrast to the similar-rsfMRI pattern group, the dissimilar-rsfMRI pattern group 

displayed shifts in correlational patterns across the three age bands. As illustrated in Figure 3B, 

these shifts emphasize the age-related changes in neural organization resulting from ongoing 

exposure to adversities in different developmental windows. Specifically, the involvement of 

parietal region was most evident in children, the frontal region in adolescents, and both parieto-

temporal regions in young adults.   

 



 
Figure 3- Shows the brain areas highlighting the correlational pattern between the DMs and 

frequency of adversities for the (A) similar-rsfMRI pattern group where the spatial pattern was 

consistent across the three age bands, and (B) dissimilar-rsfMRI pattern group where in the 

significant areas shifted from parietal in children, to temporal in adolescents, and parieto-

temporal in young adults. 

 

 

 

Discussion 

The purpose of this study was to identify the atypical signature of brain development 

latent within the general population, investigate the cohort characteristics associated with the 

atypicality, and understand how the neural system is shaped by aberrant characteristics. To this, 

we adopted our previous approach (Kashyap et al., 2019) to classify the rsfMRI features 

(obtained from the DMD technique) of 987 subjects from the cVEDA neurodevelopmental 

cohort (6 to 23 years). Two groups with similar- and dissimilar-rsfMRI patterns (n = 809 and 

178) emerged. The similar-rsfMRI-pattern group with a more homogenous resting state brain 



pattern represented typical development, and the other represented an atypical pattern of 

neurodevelopment. The pattern showed significant differences in the 18 bilateral areas from 

the frontal (FSO, FMO, and FIO), parietal (MC, Cun, and PreCun), and temporal (TPSup, 

TPMid, and ITL) regions representing the default mode network (DMN) (Andrews-Hanna, 

Reidler, Sepulcre, Poulin, & Buckner, 2010; Buckner et al., 2008). Frequent encounters with 

life adversities distinguished the two groups, with atypicality being associated with higher 

frequency (seen in the dissimilar-rsfMRI pattern group). Within the parameters that constitute 

adversity, abuses faced during the neurodevelopmental period were of primary concern. The 

study is in support of the ongoing effort aimed to embrace neural heterogeneity in the 

population (Drysdale et al., 2017; Mattoni et al., 2023; Smith et al., 2015; Zhu et al., 2022). 

These studies have suggested that the hypothesis-free bottom-up approach (as adopted in our 

study) - wherein biological subgroups with more homogenous brain patterns across individuals 

are first identified, and then behavioural differences between them are examined - can provide 

new insights into mental health-related research and clinical practice (Fair, Dosenbach, Moore, 

Satterthwaite, & Milham, 2021; Feczko & Fair, 2020; Mattoni et al., 2023). Adding on, we 

further evaluated how the neural system has been restructured by the frequent adversities 

encountered by individuals of the two groups (Similar and dissimilar-rsfMRI pattern group). 

For this, the DMs of the DMN areas were correlated with the adversity frequency scores. While 

the correlational pattern in typical subjects (similar-rsfMRI pattern group) was found in frontal 

(FMO and FIO), parietal (Cun and PrCun), and temporal (ITL) regions, an interesting variation 

in the pattern with age was seen for atypical subjects (dissimilar-rsfMRI pattern group). The 

pattern in atypical children was clustered in parietal (MC, Cun and PrCun) regions, 

subsequently shifting to frontal regions (FSO, FMO and FIO) in adolescents, and finally 

simmering to parieto-temporal (MC, Cun and PrCun; and TPSup, TPMid, and ITL) regions in 

young adults. The instability in the pattern provided an essence of how the brain might have 

adapted to adversity across the three developmental windows. 

 

Significance of DMN and childhood adversity 

Both good and bad experiences shape the human brain during development (Tost, 

Champagne, & Meyer-Lindenberg, 2015). The DMN involved in self-referential mental 

activity plays a vital role in accounting for these experiences during the early phase (Buckner 

et al., 2008; Davis, Hirsch, Gee, Andover, & Roy, 2022; Rebello et al., 2018). Several studies 

using the conventional top-down approach have reported adverse childhood experiences to be 



associated with structural and functional abnormalities of DMN and its interconnections with 

other brain areas (Hair, Hanson, Wolfe, & Pollak, 2015; Hanson et al., 2013; Sripada et al., 

2020; Tottenham, 2014). There is enough support showing childhood trauma and adversities 

to alter DMN activity (Barch, Belden, Tillman, Whalen, & Luby, 2018; Davis et al., 2022; 

Holz et al., 2022; McLaughlin & Lambert, 2017; McLaughlin, Peverill, Gold, Alves, & 

Sheridan, 2015; McLaughlin et al., 2019; Rebello et al., 2018; Zeev-Wolf, Levy, Goldstein, 

Zagoory-Sharon, & Feldman, 2019) and positive parenting to buffer the DMN development 

against environmental disturbances (Dégeilh, Bernier, Leblanc, Daneault, & Beauchamp, 

2018; Whittle et al., 2017). Though a study has reported different dimensions of adversity 

(experiences of unpredictability, threat, and deprivation) to be related to DMN and other resting 

state brain networks (fronto-parietal network and salience network) (Chahal, Miller, Yuan, 

Buthmann, & Gotlib, 2022), in our study, only abuse emerged as a significant contributor of 

DMN heterogeneity. Higher adversity and abuse affect mental and physical health throughout 

life (Nelson, Bhutta, Harris, Danese, & Samara, 2020). As our exploratory approach also finds 

distinct differences in the resting state pattern to be associated with the frequency of adverse 

experiences and abuse, alteration of DMN can be considered as an objective marker of atypical 

neurodevelopment. 

A similar approach, when applied to the rsfMRI dataset of ageing subjects from HCP 

(late adulthood to old age), revealed the differences in the DMN pattern to be associated with 

antisocial personality, substance use, and higher consumption of alcohol and tobacco (Kashyap 

et al., 2019). A similar trend can also be observed in this study (see supplementary table 2S for 

the p values), though we did not observe any statistically significant difference in consumption 

habits and personality between the groups. This may be because of the (i) stringent criteria for 

statistical significance (Bonferroni’s correction) adopted in the study, (ii) majority of the 

cVEDA subjects with imaging measures are minors and have reported no use (or minimal use) 

of alcohol, tobacco, and illicit drugs, and (iii) it may be too early for the manifestation of these 

behaviours in the features of rsfMRI. We say this because another study that considered only 

the young adults of cVEDA with a large sample size (n = 9010) found associations between 

adversity and predisposition towards externalizing disorders, including substance use 

(Fernandes et al., 2021).   Similarly, several behavioral studies (using large sample sizes) have 

also reported significant associations between adversities of early life and antisocial 

personality, consumption of illicit drugs, alcohol and tobacco in later stages of life (Acheson, 

Vincent, Cohoon, & Lovallo, 2021; He et al., 2022; Krinner, Warren-Findlow, & Bowling, 

2020; Lui et al., 2023; Whitesell, Beals, Mitchell, Manson, & Turner, 2009; Yazgan et al., 



2021), and it can be inferred that alterations to the DMN during the early stage can have long-

lasting effects on the mental health. This was also reported in a recent meta-analysis study that 

the neurodevelopmental period (6–25 years) is a seed time for neuropsychiatric disorders 

(Meredith, 2015; Solmi et al., 2022). Knotting the current findings with our previous research 

(Kashyap, et al., 2019), a nexus map emerges, suggesting that the neural basis of atypical 

behaviors is in DMN, and the environment prunes this system from early childhood. This is 

inline with the recent structural imaging study that investigated the neural correlates of 

adversity over a longitudinal period and found areas in frontal, cingulate and limbic regions to 

be stable (Holz et al., 2023). Since cross-sectional data poses some limitations, future studies 

should apply such methodologies to longitudinal datasets to establish the continuum of mental 

health and illness by investigating the cumulative effect of protective- and risk-factors (e.g., 

education, diet, genetics, and environment) (Walhovd, Lövden, & Fjell, 2023) that fabricate 

the DMN from infancy (Gao, Lin, Grewen, & Gilmore, 2017; Gao et al., 2009) to maturity 

(Rebello et al., 2018; Washington & VanMeter, 2015) to the old age (Buckner et al., 2008; 

Jones et al., 2011). Altogether, the study suggests that the failure to develop a coherent DMN 

system due to childhood adversities might have cascading effects on an individual’s trajectory 

of growth and ageing. 

 

The differential utilization of DMN 

The sensitive period from childhood to young adulthood is where neural systems mature, 

including those involved in the regulation of threat, stress, and reward (Uhlhaas et al., 2023).  

The regions of DMN that regulate these functions undergo developmental changes over this 

period (Rebello et al., 2018). The network adapts according to the environment and matures 

accordingly (Menon, 2013). However, the knowledge about how environmental demands 

affect DMN maturation and how this could be related to an atypical developmental pattern is 

limited (Fair et al., 2010; Rebello et al., 2018). Our study finds that in typical development, 

there is consistency in the correlational pattern across the three age bands. This suggests that 

the integrity of the DMN over the developmental trajectory is crucial for efficient processing 

of neural information (Sporns, 2013). The integrity of the DMN plays an important role in 

normal development (Raichle, 2015; Sonuga-Barke & Castellanos, 2007), and its alteration has 

been associated with neurocognitive disorders (Dajani et al., 2019; Fair et al., 2010; Nair, 

Jolliffe, Lograsso, & Bearden, 2020; Uddin et al., 2008). Several measures from graph theory 

(e.g., small-world topology and modularity) have found that though the neural system of 



typically developing children undergoes radical changes, the fundamental network 

characteristics seen in the brains of older children and adults get established during childhood 

(Menon, 2013).  

In an atypical population, the correlational pattern fluctuates from parietal to frontal to 

parieto-temporal regions of DMN over the course of development (childhood, adolescence, 

and young adulthood). This is in support to a recent review article that found that exposure to 

stress/adversity at different sensitive periods might perturb different brain areas and affect 

different behaviours with different psychopathological outcomes (Andersen, 2022). It might 

be possible that cumulative adversity leads to the failure in the development of a coherent DMN 

system – a key network contributing to the emergence of efficient social information processing 

in the youth (Blakemore & Mills, 2014). Studies have suggested that abnormal synaptic 

pruning in the local circuit leads to heterogeneity in the pattern of brain functioning, a feature 

commonly seen in atypical development (Chattopadhyaya & Christo, 2012.; Germann et al., 

2021; Gogolla et al., 2009; Patel, Leathem, Currin, & Karlsgodt, 2021). This experience-

dependent plasticity, particularly during sensitive periods, may contribute to functional and 

structural differences in the developing brain. This can lead to differences in a variety of 

complex social and cognitive abilities (Barch et al., 2018; McLaughlin & Lambert, 2017; 

McLaughlin et al., 2015, 2019; Milbocker et al., 2021; Rebello et al., 2018). Though it is 

difficult to underpin the exact reason behind such a shift in the pattern with age, an 

underdeveloped DMN may deprive the neural system of the faculties of normal functioning. 

On the other hand, recent studies found the DMN and associated areas to have a protective role 

in coping with stress (Liu et al., 2023; Sinha, Lacadie, Constable, & Seo, 2016), though acute 

stress alters its processing (Zeev-Wolf et al., 2019; Zhang et al., 2019). Differential activation 

of these areas has also been found depending on the stress level (Sinha et al., 2016). Therefore, 

it cannot be denied that adversity-related neuroplasticity could also be a protective mechanism 

that provides the flexibility to cope with adverse environmental conditions (Sinha et al., 2016).  

Altogether, the differential utilization of DMN areas emphasises that adversity 

(particularly abuse) that has maximal influence in bifurcating the trajectory of development 

can drive the neurodevelopmental pattern towards atypicality. While typical development 

follows a constant pattern of utilization of DMN areas, the pattern fluctuates with age in 

atypical neurodevelopment. This highlights that DMN that is known to imprint the 

environmental cues (Rebello, Moura, Pinaya, Rohde, & Sato, 2018) is  malleable to the 

situation where it develops. The adaptable nature of DMN might be a compensatory 



mechanism to protect an individual in an abusive environment, though such benefits are 

incurred at the cost of normal functioning and may have long-term effects on the psyche. 

Our findings are to be interpreted within the recently proposed youth mental health 

paradigm (Uhlhaas et al., 2023), that emphasizes a shift from studying individuals with fully 

established disorders to studying emerging mental disorders or their behavioral substrates 

during youth. First, using a hypothesis free bottom-up approach, we identified groups of 

individuals within a diverse developmental cohort that are characterized by similar or 

dissimilar rsfMRI patterns; these groups differed primarily on properties of brain nodes that 

traditionally comprise the default mode network (DMN). Second, using a statistically stringent 

measure, we identified a significantly greater frequency of adversities experienced, particularly 

that of abuse, by individuals in the dissimilar group. Lastly, we observed age-band dependent 

associations between functional brain features within the DMN regions - critical for social 

information processing, particularly in a developmental context (Blakemore & Mills, 2014) 

and cumulative adversity in the atypical/dissimilar group, but age-band independent 

associations in the typical/similar group. We did not find significant differences in cognition 

or psychopathology between these groups. This indicates that the evolution of DMN is an 

allostatic feature of environmental conditions experienced during neurodevelopment (Rebello 

et al., 2018). Longitudinal studies in the future will be able to reveal if adversity experiences 

and their neural correlates, as identified in this study can have cascading or domino effects in 

the emergence of fully established mental disorders. Together, it can be inferred that our bottom 

up approach helps stratify a potentially vulnerable youth group (with greater adversity 

experiences) where more targeted and systematic intervention can be provided. 

 

Conclusions 

In this exploratory work, we intended to find those factors that drive neurodevelopment 

in India's children, adolescents, and young adults towards atypicality. Leveraging the potential 

of large rsfMRI datasets (n = 987) from the cVEDA neurodevelopmental cohort (6-23 years) 

we explored the heterogeneity in the brain pattern. We classified subjects based on the rsfMRI 

features, separating a subset with divergent patterns indicative of atypical development, while 

the others exhibiting similar rsfMRI patterns represented typical development. Significant 

contrasts emerged in regions pertaining to the DMN across these groups. 

Interestingly, those exhibiting atypical rsfMRI patterns were exposed more frequently to 

adversities and faced higher abuses. While typically developing subjects maintained a 

consistent association of DMN areas with adversity across all ages, atypically developing 



individuals displayed variable and age-band-dependent patterns across parietal, frontal, and 

parieto-temporal regions, stratified by children, adolescents, and young adults. Collectively, 

these insights suggest that DMN's integrity is maintained during typical development, whereas 

recurring adversities may instigate differential utilization of the DMN, resulting in an altered 

pattern across different developmental stages in atypical development. 
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Childhood Adversities Characterize the Heterogeneity in the Brain Pattern of Individuals 
During Neurodevelopment 

 

Supplemental Results 

 

Dynamic mode Decomposition (DMD) 

The rs-fMRI is a high dimensional data that exhibits multiscale phenomena in both 

space and time. The DMD algorithm is an equation-free data-driven method that decomposes 

the rsfMRI in terms of its spatial structure and associated temporal responses. The fMRI time 

series of a subject from 𝑛 nodes (= 116) sampled every 𝑘Δ𝑡 can be represented as: (𝒙1, 𝒙2, …, 

𝒙𝑚 ∈ ℝ𝑛), where Δ𝑡 represents the temporal resolution of rs-fMRI (= 2200 ms) and 𝑚 

represents the number of frames (= 165).  

For each subject, two data matrices X1 and X2 are created from the rsfMRI such that 

𝑿1 = [ 𝒙1 𝒙2 … 𝒙𝑚−1],  

𝑿2 = [ 𝒙2 𝒙3 … 𝒙𝑚], 

And 𝑿2 = A𝑿1 

 

DMD computes the leading eigendecomposition of the best-fit linear operator A using 

singular value decomposition. The DM are the eigen vector (𝝓𝑖) of A, and each DM 

corresponds to a eigen value (𝜆𝑖) associated with A. Each 𝝓𝑖 represents a coherent spatial 

structure whose elements are complex-valued with a magnitude (i.e., Euclidean norm) and a 

phase (i.e., phase shifting information). The corresponding 𝜆𝑖 represents its temporal 

characteristics (i.e., frequency and growth/decay).  

Consequently, the rsfMRI data can be approximated as an underlying dynamic model:  

 

x(t)  ≈  ∑ 𝝓𝒊

𝑴

𝒊=𝟏

𝐞𝐱𝐩(𝝎𝒊𝒕)𝒃𝒊 

where 𝑀 is the number of eigenvectors, ωi =
ln(λi)

Δt
 , 𝑡 is time, and 𝑏 = ¥𝑥𝑖 with ¥  

 representing the Moore-Penrose pseudoinverse. 

 

Determination of Optimal Threshold 

We tested a range of thresholds to determine the subset of subjects whose rsfMRI pattern 

were dissimilar in the DM-correlation matrix. The thresholds were 0.70, 0.75, 0.80 (as used 

in the study), 0.85, 0.90 and 0.95. We repeated the dissimilarity maximization procedure to 

obtain the DMs across the subjects for the 116 brain regions (refer to methods section) across 

all the thresholded groups of subjects. The number of subjects in the subset of each threshold 

was 66, 106, 178 (as in the analysis), 376, 583, and 762. Threshold ≤ 0.70 were not 

considered because that included only 28 subjects in the dissimilar rsfMRI pattern group. On 

average, 92% of the total number of subjects included in a given threshold were also included 

in the higher thresholds. Figure S1 (A and B) illustrates the DMs of  dissimilar rsfMRI 

pattern group across the nine (Frontal, parietal and temporal) regions of both hemispheres of 

DMN corresponding to a threshold. It is clear that the subset of subjects obtained with a 

threshold of 0.70 has non-significant (p > 0.05) difference in DMs as obtained with a 

threshold of 0.80 across all the regions of both hemispheres. Similarly, the subset of subjects 



with threshold more than 0.80 also had similar DMs like the set of subjects found with a 

threshold of 0.95. The threshold of 0.80 acted like a saddle point and led us to opt for this 

value as the optimal threshold for further behavioural evaluation. 

 

Figure S2. Distribution of DMs across the 9 brain regions of the DMN in both hemispheres 

(shown in different colors). DMs distribution for threshold 0.70 is similar to 0.80 (p > 0.05). 

Similarly, DM distribution for thresholds above 0.80 are also similar (p > 0.05). A shift in 

DM distribution is significant at threshold of 0.80. So, the threshold of 0.80 was considered 

as an optimal choice in the study.  

Moreover, the subgroups that were formed for thresholds below 0.80 manifested similar 

differences in the scores of behavioral measures. For example, 66 subjects formed the group 

when the threshold was 0.70. The subjects in this group also faced higher adversity. 

Interestingly, we found these subjects to be a part of dissimilar rsfMRI pattern group obtained 

with threshold of 0.80. Similarly, a subset of subjects with higher thresholds (≥ 0. 85) had no 

significant differences in the scores of behavioral measures. Altogether, the two analysis 

suggested for 0.80 to be considered as an optimal threshold in our study. 

 

 

A 

B 



Influence of head motion on the two groups 

 

It is important to acknowledge that head motion and physiological noise (e.g., cardiac 

and respiratory pulsation) can affect the interpretation of neuroimaging studies (Makowski et 

al, 2019). Like other studies, our artifact removal process also had certain limitations, including 

the absence of physiological data capture and reliance on ICA-AROMA for automatic noise 

identification and removal. Though we ensured through group-level ICA verification that no 

noise residuals remained in the data, we did not inspect individual ICs. To ensure that the 

interpretation of our study is not due to inherent noise in the rsfMRI data, we calculated the 

framewise displacement (FD) from the rsfMRI of all the subjects. We performed a two tail ttest 

between the similar and dissimilar rsfMRI groups. The mean ± std of FD for the similar and 

dissimilar rsfMRI group was 0.065 ± 0.032, and 0.067 ± 0.035 respectively, with p value = 

0.460. The non-significant (p > 0.05) difference in head motion between the two groups 

ensured that the findings of the study were not influenced by motion-related artifacts. 

 

Primary Measures Across Two Groups 

The scores of the primary measures considered in the study are provided. The 

description of the parameters is elaborated in the main manuscript. 

 

Table S1. Averaged scores of CVEDA measures for the Dissimilar (n = 178) and the Similar-

rsfMRI pattern group (n = 809).  

 
S.No Behavior 

Category 

Behavior 

Name 

Mean ± Standard Deviation p-

value    
Dissimilar 

rsfMRI pattern  

Group 

Similar rsfMRI  

Pattern Group 

1 Socioeconomic 

condition 

Wealth Index 0.29 ± 0.93 0.29 ± 0.91 0.91 

2 

 

General 

psychopathology 

factor 

Factor Analysis of 

psychopathological 

variables 

0.26 ± 1.18 0.17 ± 0.91 0.03 

3 Adverse 

Childhood 

Experiences 

(ACE) 

Frequency** 2.26 ± 2.35 1.07 ± 1.23 0.000 

4 Family cohesion 8.14 ± 57.67 11.84 ± 41.42 0.05 

5 Abuse** 1.58 ± 1.40 -0.13 ± 1.07 0.000 

6 Neglect  0.26 ± 0.48 0.17 ± 0.38 0.009 

7 Adversities in Family 3.05 ± 1.16 2.29 ± 0.91 0.04 

8 Adversities in 

Community 

1.40 ± 1.23 1.12 ± 0.93 0.07 

9 School Climate 

Questionnaire 

(SCQ)  

Safety 1.11 ± 101 -1.28 ± 115 0.06 

10 Order 1.11 ± 101 -1.28 ± 115 0.06 

11 Acceptance 13.69 ± 51.3 9.46 ± 82.8 0.29 

12 Fairness 18.85 ± 2.84 14.46 ± 3.8 0.37 

13 Autonomy 18 ± 3.93 10 ± 8.30 0.17 

14 Balloon 

Analogue Risk 

Task (BART) 

Number of Pumps 

collected on trials with 

Blue Balloons 

271 ± 200 270 ± 196 0.95 



15 Number of Pumps 

collected on trials with 

Orange Balloons  

32 ± 18 29 ± 18 0.65 

16 Number of Pumps 

collected on trials with 

Yellow Balloons  

119 ± 46 124 ± 50 0.61 

17 Number of Pumps 

popped on trials with 

Blue Balloons 

83 ± 216 76 ± 174 0.70 

18 Number of Pumps 

popped on trials with 

Orange Balloons 

76 ± 35 78 ± 38 0.56 

19 Number of Pumps 

popped on trials with 

Yellow Balloons 

73 ± 100 77 ± 96 0.63 

20 Total Blue Balloons 

Burst 

3.5 ± 4.25 3.21 ± 3.86 0.37 

21 Total Orange Balloons 

Burst 

19.6 ± 6.48 20.5 ± 6.78 0.42 

22 Total Yellow Balloons 

Burst 

8 ± 6.1 8.2 ± 6.1 0.55 

23 
 Stop Signal task Total Successful stops  

 81.8 ± 20.68  82.29 ± 21.37 
  0.78 

24 Trail Making 

test 

Reaction time for 

Numbers 

1496 ± 622.8  1501 ± 546 0.91 

25 Reaction time for 

Letters 

4134 ± 3316 4067 ± 3310 0.80 

26 Reaction time for both 

Numbers and Letters  

58107 ± 

38934 

55810 ± 

35784 

0.44 

27 Card Sorting 

Test 

Correct 2315 ± 1143 2283 ± 1106 0.73 

28 Perseverative 

Response 

3404 ± 4438 3307 ± 5244 0.93 

29 CORSI Block 

Tapping Task 

Forward -8.47 ± 

100.91 

-14.51 ± 121.4 0.53 

  30 
Backward -21.52 ± 

141.5 

-27.98 ± 156.9 0.61 

31 Digit Span Task 

(DST) 

Forward -13 ± 116 -15.7 ± 124.3 0.78 

  32 
Backward -48.92 ± 

196.3 

-78.31 ± 239.5 0.12 

33 Social Cognition 

Rating in the 

Indian Setting 

(SOCRATIS) 

Faux Pas 0.55 ± 0.26 0.60 ± 0.29 0.05 

34 First order-Theory of 

Mind 

0.92 ± 0.18 0.93 ± 0.17 0.73 

35 Second order-Theory 

of Mind 

0.46 ± 0.36 0.49 ± 0.39 0.23 

36 Demography Age 16.43 ± 4.37 15.62 ± 4.37 0.04 



37 Sex(
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑀𝑎𝑙𝑒𝑠

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐹𝑒𝑚𝑎𝑙𝑒𝑠
) 1.29 1.31 NS 

38 Anthropometry Height (in cm) 154 ± 15.56 266 ± 32.0 0.63 

39 Weight (in Kg) 47.03 ± 15.24 46.47 ± 16.57 0.53 

40 Body Mass Index -0.24 ± 1.15 -0.14 ± 1.12 0.26 

41 Leg Length (in cm) 52.98 ± 6.30 52.44 ± 4.87 0.20 

42 head circumference 

(in cm) 

52.98 ± 6.30 52.44 ± 4.87 0.65 

43 mid-arm 

circumference (in cm) 

23.72 ± 4.86 23.50 ± 6.01 0.65 

**represents significant differences after Bonferroni’s correction. 

NS represents non-significant differences 

 

Exploratory Additional Measures across two groups 

 

The scores of the exploratory additional behaviours that were considered in the study. 

The description is provided in the boxes below. 

 

Table 2S- Averaged scores of CVEDA measures for the Dissimilar and the Similar-rsfMRI 

pattern group. Number of subjects (n) in each group is provided below the scores. 

 
S.No Behavior Category Behavior 

Name 

Mean ± Standard error p-

value    
Dissimilar 

rsfMRI 

pattern Group 

Similar 

rsfMRI pattern 

Group 

1 Substance Use 

(measures the amount 

of alcohol, tobacco 

and illicit drugs 

consumed by the 

participant)  

Alcohol 2.43 ± 7.69 

(n = 177) 

1.41 ± 4.70 

(n = 808) 

0.03 

2 Tobacco 3.05 ± 9.33 

(n = 177) 

2.09 ± 5.06 

(n = 808) 

0.01 

3 Cannabis 2.29 ± 8.07 

(n = 177) 

1.81 ± 5.91 

(n = 808) 

0.06 

4 Opioids 0.30 ± 2.59 

(n = 177) 

0.18 ± 1.47 

(n = 808) 

0.07 

5 Inhalants 0.85 ± 4.99 

(n = 177) 

0.55 ± 3.11 

(n = 808) 

0.06 

7 Prescription 0.25 ± 2.03 

(n = 177) 

0.10 ± 1.20 

(n = 808) 

0.06 

8 Sleeping Pills 0.24 ± 0.93 

(n = 177) 

0.19 ± 0.91 

(n = 808) 

0.16 

9  ATS 0.05 ± 0.47 

(n = 177) 

0.03 ± 0.23 

(n = 808) 

0.06 

Cocaine  0.33 ± 3.11 

(n = 177) 

0.14 ± 1.59 

(n = 808) 

0.07 

10 Strength and difficulty 

questionnaires 

(measure of 

behavioural and 

emotional difficulties 

Emotional Problem 3.54 ± 2.53 

(n = 177) 

2.84 ± 2.33 

(n = 800) 

0.13 

11 Conditional 

Problem 

3.01 ± 2.16 

(n = 177) 

1.60 ± 1.96 

(n = 801) 

0.05 

12 Hyper 3.79 ± 2.30 3.29 ± 2.20 0.17 



to access mental health 

problems)  

(n = 177) (n = 801) 

13 Peer 2.35 ± 2.01 

(n = 177) 

2.57 ± 1.96 

(n = 801) 

0.61 

14 Prosocial 8.53 ± 2.10 

(n = 177) 

8.39 ± 2.31 

(n = 799) 

0.42 

15 Total Difficulties 12.7 ± 6.33 

(n = 177) 

11.22 ± 5.99 

(n = 798) 

0.10 

16 

Mini-International 

Neuropsychiatric 

Interview 

(short structured 

diagnostic interview for 

major psychiatric 

disorders). The values 

are represented as in 

ratio defined as 

(
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑑𝑖𝑎𝑔𝑛𝑜𝑠𝑒𝑑

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑢𝑏𝑗𝑒𝑐𝑡𝑠
) 

 

Attention Deficit 

Hyper Activity 

Disorder  

0.03 

(n = 106) 

0.01 

(n = 515) 

NS 

17 Dysthymia 0.05  

(n = 176) 

0.01  

(n = 804) 

NS 

18 Hypomanic 

Episode (Current) 

0.00 

(n = 176) 

0.00 

(n = 804) 

NS 

19 Hypomanic 

Episode (Past) 

0.02  

(n = 176) 

0.00  

(n = 804) 

NS 

20 

21 Manic Episode 

(current) 

0.01  

(n = 176) 

0.00 

(n = 804) 

NS 

22 Manic Episode 

(Past) 

0.01 

(n = 176) 

0.00  

(n = 804) 

NS 

23 Agoraphobia and 

Panic Disorder 

0.05 

(n = 176) 

0.03 

(n = 804) 

NS 

 24 
Social Phobia 0.00         

(n = 172) 

0.00  

(n = 804) 

NS 

25 Obsessive 

Compulsive 

disorder 

0.02  

(n = 173) 

0.00  

(n = 801) 

NS 

26 Post traumatic 

Stress Disorder 

0.00  

(n = 173) 

0.00  

(n = 801) 

NS 

27 Alcohol abuse and 

Dependence 

0.00 

(n = 177) 

0.00 

(n = 804) 

NS 

28 

  

Non-alcohol 

psychoactive 

substance use 

disorder 

0.02 

(n = 177) 

0.00 

(n = 804) 

NS 

29 Mood Disorder  0.01 

(n = 177) 

0.00 

(n = 804) 

NS 

30 Psychotic 

Disorders  

0.01  

(n = 177) 

0.00  

(n = 804) 

NS 

31 Anorexia Nervosa 0.00  

(n = 177) 

0.00  

(n = 804) 

NS 

32 Bulimia Nervosa  0.00  

(n = 177) 

0.00  

(n = 804) 

NS 



33 Generalised 

Anxiety Disorder 

0.00 

(n = 177) 

0.00  

(n = 804) 

NS 

34 Antisocial 

Personality 

Disorder 

0.00  

(n = 177) 

0.00  

(n = 804) 

NS 

35 Separation Anxiety 

Disorder  

0.01 

(n = 106) 

0.00  

(n = 515) 

NS 

36 Tic Disorder  0.00 

(n = 106) 

0.00 

(n = 106) 

NS 

37 Conduct Disorder 0.04 

(n = 106) 

0.00 

(n = 515) 

NS 

38 Oppositional 

Defiant Disorder 

0.03 

(n = 106) 

0.00 

(n = 515) 

NS 

39 Adjustment 

Disorder 

0.03 

(n = 106) 

0.01 

(n = 515) 

NS 

40 Pervasive 

Development 

Disorder 

0 

(n = 106) 

0 

(n = 515) 

NS 

41 Any Diagnosis 0.28 

(n = 177) 

0.19 

(n = 803) 

NS 

NS represents non-significant differences. 

 

All behaviours (primary and exploratory) that the cVEDA team used to access the 

neurodevelopmental pattern were carefully selected for age-appropriateness across the children 

and teenagers. However, norms tailored to the Indian population, which c-VEDA cohort 

represents, were not available. With the cVEDA project, the team’s futuristic intentions are 

also to establish cultural-specific norms for the Indian demography. The absence of established 

norms necessitated the use of raw scores for behavioural assessment, allowing us to explore 

the nuanced relationships between brain patterns, cognitive performance, environmental 

influences and more, using a hypothesis free bottom-up approach. Since, age and sex 

differences between the two groups were not significant (Table 1S), regressing them also 

fetched similar results.  

With that said, there are some interesting observations that are worth investigating in 

future. In Table 1S, abuse significantly differentiated the two groups. Though neglect could 

not survive the stringent Bonferroni’s correction, its impact on neurodevelopmental trajectory 

is well established. Similarly, in Table 2S, the measures in the substance use category could 

not pass the stringent significance test, the trend shows that the subjects in the dissimilar 

rsfMRI group have higher consumption. Likewise, psychiatric disorder diagnoses under the 

Mini-International Neuropsychiatric Interview also show a similar trend for subjects in 

dissimilar rsfMRI group (column 41, Any diagnosis). 

 These differences between the groups correspond to the differences in the rsfMRI 

features of DMN. In our previous study on ageing, behavioural differences in substance use 

and personality in two groups were also associated with the differences in rsfMRI features of 

the DMN (Kashyap et al, 2019). The present analysis strengthens our understanding that DMN, 

which accounts for daily habits and lifestyle, plays a vital role in neurodevelopment as well as 

in ageing. The interplay of several behaviours and brain mechanism underlying their imprint 

is complex and future research are focusing on the mental health trajectory. Since, there is a 

consensus towards the development of therapeutic interventions to maintain sound mental 

health throughout the life span (Uhlhaas et al, 2023), care needs to be taken from childhood 



onwards for healthy development of DMN. As environment plays a crucial role, interventional 

programs within families and society are necessary to immune future generations from 

vulnerability towards adversity. 
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