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Abstract

The use of AI planning beyond demonstration examples has proven to be challenging for
expressive problems with numerous components. This happens primarily because the state
space of a problem is prone to exponential expansion the more features are added. In such
problems, current techniques either find poor-quality solutions or none at all.

Our approach, named RALSTP, identifies the agents in a problem and uses them
for decompositions and relaxations that can exponentially increase the scale of solvable
problems. Perhaps surprisingly, our method also increases the quality of the solutions. Our
technique is domain-independent, fully automatic and PDDL compatible.

Our thesis introduces new AI Planning technical concepts along with automated
extraction procedures that output data used as ’advice’ for the recursive decomposition
and abstraction of a planning problem. These concepts consist of formal definitions for the
agents, the agent dependency relationships and classification as well as for the necessary
and unnecessary static environments. A new type of ’relaxed’ landmark based on the
agents it may contain is introduced and used to create a novel goal clustering method based
on the common landmarks found between the individual backchaining of each top-level
goal. We also present a new framework for evaluating the difficulty of a planning problem
according to the quantity and entanglement among the agents and the expressed dynamic
and static environments.

RALSTP is evaluated on International Planning Competition (IPC) benchmark prob-
lems against a broad range of state-of-the-art planners. The evaluation shows huge benefits
in scale and solution quality over the other planners, particularly in the larger, more difficult,
problems.
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Chapter 1

Introduction

Chapter Overview In this chapter, we introduce temporal numeric AI Planning as well
as the use of decompositions for solving large planning problems. We also present an
overview of our domain-independent approach for constructing efficient decompositions
using problem-specific information. Furthermore, we highlight our research contributions
and describe the structure of the thesis.

1.1 AI Planning

AI Planning is a branch of Computer Science that focuses on solving planning and schedul-
ing problems commonly through automated search methods generally referred to as
planners. Planners identify action sequences (called plans) in the problem state space
that represent paths from a specific initial state to a desired goal state (detailed in Chapter
2 Section 2.1.1). The structure of a planning problem can be described as a domain of
actions that can be applied to objects, with some of the objects becoming the active agents
that will be responsible for carrying out the tasks that satisfy the problem goal. Planning
problems usually offer different resource allocations between the actions that have to be
performed and have alternative ways to achieve the goal. True planning problems differ
from scheduling problems, as scheduling problems usually involve a notion of time or an
allocation of resources which are not mandatory in all planning problems (for example in
classical planning problems [56]). Also, the number of actions needed to achieve the goal
of a true planning problem is not known before finding a solution.
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1.2 Temporal Planning

Not all real-world planning problems can be modelled correctly with classical planning.
For example, there are problems that can only be solved in a temporal framework [31]. In
such a framework, the actions take time and each agent is typically constrained to perform
a small collection of actions (as small as one) concurrently (detailed in Chapter 2 Section
2.1.2). The necessity of such a framework can be clearly observed in the MatchCellar
planning problem [63]. This problem tackles the challenge of fixing a broken fuse in a
cellar where the only sources of light are matches that can be lit. A fuse can only be
fixed if there is light illuminating it for the whole duration of the fixing operation. This
situation can not be modelled without a temporal framework, as the fuse must be fixed
during a time interval when a match is lit and a lit match provides light only for a limited
amount of time (until it burns). Modelling such problems using only the classical planning
formalism does not guarantee the required concurrency between having a lit match in the
cellar for illuminating the fuse at the same time and for the whole duration of the fuse
fixing operation.

1.3 Numeric Planning

Classical planning formalism is too inexpressive to facilitate the straightforward modelling
of many interesting problems, such as planning problems that involve numeric state
variables [36]. Nevertheless, numeric planning extends the classical planning formalism
with numerical preconditions, numerical effects and numerical goal conditions (detailed
in Chapter 2 Section 2.1.2). An example of a planning problem where numeric planning
is particularly useful is the Pandora planning problem [15, 18]. In Pandora, Autonomous
Underwater Vehicles (AUVs) are required to travel to multiple underwater structures
situated at distinct geographical locations with varying distances between locations. One of
the goals of Pandora is to operate a minimum number of valves from all valves present in
the underwater structures. Such a goal is easily expressed using the greater than or equal to
formalism (detailed in Chapter 2 Section 2.1.2) present in numeric planning [31]. However,
modelling such a problem using only classical planning formalism, while not impossible,
would require expressing each possible combination of valve operations that satisfies the
goal in a distinct action. This results in a very cumbersome and time-consuming process
that will output a far larger and more unintuitive encoding than the one obtained with
numeric formalism.
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1.4 Decompositions in AI Planning

The use of AI planning for solving problems with a large number of components and
detailed features has proven to be challenging [14, 59, 19, 44, 33] for current planners.
This happens primarily because the state space of such problems is prone to exponential
expansion the more features and components are added.

For example, in the Pandora planning problem [15], the operations are sometimes
expected to last for weeks. In such situations, the state space becomes too large for current
planners to solve as a single problem [15]. Using manual decompositions (detailed in
Chapter 2 Section 2.1.6) in the Pandora planning problem allowed us to create multiple
subproblems that had a state space with a solvable size. This allowed us to use existing
planners to find solutions to the subproblems and merge those solutions into a plan for the
initial problem (which was previously unsolvable due to the large state space).

The Pandora project inspired us to further investigate solving temporal and numeric
planning problems that have a large state space using decompositions – a natural strategy
inspired by humans who decompose everyday life problems into more convenient tasks
on a regular basis. The decomposition strategy usually follows a pattern of dividing the
initial problem into smaller sub-problems while identifying some kind of division of
responsibility for solving the goals between the agents in order to deal with the goals
locally, within smaller, more manageable, sub-problems. The use of decomposition is a
standard attack strategy for solving all sorts of problems throughout most areas of computer
science where solving complex large-scale problems with some kind of divide-and-conquer
[13] decomposition strategy has been explored in detail over the years and always presents
the same challenge: the more you isolate the components of a problem and disregard
global constraints the more you risk obtaining a very poor-quality solution. As we will
show in Chapter 3, past literature clearly shows that it is much easier to find ways to
decompose a problem than it is to find ways to create decompositions that generate good
quality solutions, as the two things are typically hard to achieve together.

However, humans are particularly good at using decompositions to obtain quality solu-
tions for a lot of everyday problem-solving when the problems are formed of components
that interact with each other and are at least effectively separable (even though they might
not necessarily be fully separable). In such cases, it is clear that an optimal solution
requires reasoning about all the component interactions simultaneously as the constraints
that affect a part of the problem can also affect other parts of the problem, so an analysis of
the solution impact on the whole problem space is required for any guarantee of optimality.
In practice, humans split problems into sub-problems which are more convenient and
more manageable to solve while accepting the consequences of a potentially sub-optimal
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solution to the overall structure of the initial problem and are content to obtain good quality
solutions even if not optimal.

1.4.1 Landmarks-based Decompositions

Landmarks [42] are facts or actions that must be true at least once during any possible
valid plan of a given planning problem (detailed in Chapter 2 Sections 2.1.3 and 2.1.4).
Landmarks have been used for decompositions in planning by Hoffmann et al. (2004).
Their approach is to create a sub-problem for every landmark present in an initial planning
problem and to sequentially solve the sub-problems and concatenate their plans into the
plan for the initial planning problem.

In our work, we focus on using landmarks for achieving automatic decompositions that
are powerful in the separation of temporal numeric planning problems into sub-problems
and at the same time lead to an efficient solution after recombination using strategies
inspired by human contextual reasoning.

1.5 Domain Independent vs Domain Specific Planning

AI Planning is generally divided into domain-independent planning and domain-specific
[66, 27] planning. Domain-independent planning focuses on techniques that do not require
prior information about the problems they are solving and that try to use the "physics"
[40] of a problem as much as possible to find a solution while domain-specific planning
techniques support the inclusion of additional solving ’advice’ [40] in the form of problem-
specific modelling aid for finding a solution.

Even though planning problems come in different shapes and sizes, every planning
problem consists of an encoding of the environment where the problem manifests along
with one or more agents that interact with the environment, each other or both. In domain-
independent planning, these interactions are usually modelled assuming the agents and
environment as variables in order to extract and exploit the "physics" of the problem in the
form of variable dependency relationships with techniques such as causal graphs [7] that
are entirely generic. However, these techniques ignore the insights that can be obtained
from the problem-specific interactions between the instantiated agents and the instantiated
environment.
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1.6 Domain Independent Decompositions using Problem-
specific Information

Humans constantly use the specific structure of problems for everyday problem-solving
and are particularly good at identifying the agents and agent-environment interactions in
order to split complex tasks into convenient subtasks via partial or total ordering [21] to
achieve satisfactory solutions. For example, in the Driverlog [63] planning problem, where
drivers must board and drive trucks to transport packages and trucks to specific locations
(detailed in Chapter 2 Section 2.1.5), we can easily deduce that if we have only truck and
driver goals and no package goals, we can first focus on the truck goals and disregard
the driver goals until all truck goals have been achieved and only start searching for the
driver goals from the state where the truck goals have been achieved (while disregarding
the trucks). This intuitive decomposition using partial ordering can exponentially diminish
the size of the state space of the problem by dividing the initial problem into two more
manageable sub-problems. However, the above ’advice’ is not useful if we also have
package goals present in the problem, as focusing first on the truck goals and pursuing the
other goals only from the state where all truck goals have been achieved would yield a
poor-quality solution. The effort of first positioning the trucks in the final state would be
wasted due to trucks being forced to abandon the final state to transport the packages. In
this case, it would make sense to instead first ignore the truck and driver goals and focus on
solving the package goals, then ignore the driver goals and solve the truck goals from the
state where all package goals have been achieved, and lastly, solve the driver goals from
the state where all trucks have been achieved (while disregarding the trucks). However,
such partial orders cannot be extracted from the causal graph of Driverlog, as the graph
only provides variable dependencies without considering the actual instances present in
the problem.

In our thesis, we focus on domain-independent techniques for extracting and exploiting
problem-specific ’advice’ from the "physics" of a temporal problem, when evaluated in
the context of instantiated agent dependency relationships obtained from the interaction
between agents, goals and environment, in order to decompose problems in a way that
yields efficient solutions upon recombination. This is possible because, while we do not
know the instantiated dependencies before attempting to solve a problem, we do know that
the instantiated agents, goals and environment necessary for extracting the dependencies
will be provided at the start of the search operation. Therefore, as we will show throughout
the work presented in this thesis, we can identify generic patterns that occur within the
interactions of instantiated agents, goals and environment in order to create techniques that
exploit these patterns to automatically obtain problem-solving ’advice’. The use of this
’advice’ to create decompositions prior to search not only increases the scale of solvable
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temporal planning problems but also, perhaps surprisingly, increases the quality of the
solutions.

1.7 Research Contributions

The focus of this thesis is on the role of agents and landmarks in a planning problem and
how they can be used to identify and extract key planning problem elements, properties,
and metrics in order to create data-driven algorithmic abstractions and decompositions.
The obtained procedure simulates human intuition and increases the scale and solution
quality of solvable planning problems. The contributions of the work presented in this
thesis can be divided into four parts that are summarised below and will be presented in
detail throughout the thesis:

• The first contribution is in the form of new AI planning technical concepts along with
automated extraction procedures that generate information to be used as ’advice’ for
decomposing and abstracting planning problems. These concepts consist of formal
definitions for the agents, the agent dependency relationships and classifications as
well as for the necessary and unnecessary environments. A new type of landmark
’relaxed’ based on the agents it may contain along with supporting PDDL encodings
is also introduced.

• The second contribution consists of a new framework for evaluating the difficulty of
a planning problem according to object-based difficulty metrics such as the number
of agents and inactive dynamic objects, the number of types of dynamic objects and
the number of static objects entangled in a planning problem.

• The third contribution comprises a detailed description of a new fully automated
data-driven recursive decomposition and abstraction procedure. The procedure is
guided by our difficulty metrics framework and significantly increases the solution
quality of solvable planning problems. The procedure uses a novel goal clustering
method based on the regular and ’relaxed’ landmarks found in common between
the individual backchaining of each top-level goal. The method can exponentially
increase the scale of solvable planning problems that have a large state space due to
numerous interacting components.

• The fourth contribution consists of an evaluation of the agent and landmarks decom-
position and abstraction procedure against benchmark problems from past interna-
tional planning competitions. The evaluation shows the scale and solution quality
benefits of our method in comparison to the solutions obtained by a broad range of
state-of-the-art temporal planners.
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1.8 Thesis Layout

In Chapter 2, we introduce the concepts required for understanding the work presented
in this thesis as well as the motivation behind the thesis. Chapter 3 outlines some of the
previous work related to our thesis and how our work differs from existing techniques.
In Chapter 4, we define and show the extraction procedure for the primary elements that
will be used for constructing the decomposition procedure later used in solving planning
problems. Chapter 5 provides the framework for evaluating the difficulty of a planning
problem using agent-based difficulty metrics. In Chapter 6, we present the full procedure
for automatically decomposing and solving a planning problem using landmarks and agents
both in a high-level format and a detailed format. We then continue with Chapter 7 which
presents an evaluation of the procedure described in Chapter 6. In Chapter 8, we discuss of
the applicability, limitations and potential future areas of research derived from our thesis
and present the conclusions.

Chapters 4, 5 and 6 represent the core of our thesis and each section in these chapters
is written with a similar structure. We begin with the formal definitions of the elements
presented in the respective section. We then continue with a description of the elements
and procedures in the section. Afterwards, we provide an algorithm that illustrates the
exact order of applying and obtaining the elements and procedures in the section. Then,
we conclude with an example in the form of an instantiated description of the elements
and procedures described in the section.
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Chapter 2

Background and Motivation

Chapter Overview In this chapter, we provide the technical information required for a
clear comprehension of the thesis as well as the experimental observations that motivated
us to pursue the work presented in this thesis.

2.1 Background

Section Overview In this section, we provide a formal description of the technical
concepts needed to understand the work presented in this thesis.

2.1.1 PDDL

The Planning Domain Definition Language (PDDL) [40] is an action language that attempts
to standardise the syntax of AI planning languages, in a format that uses preconditions
and effects for describing the applicability and outcomes of the actions in a domain. A
PDDL planning model is separated into two parts: the specification of the domain (which
can be seen as analogous to a class in object-oriented programming) and the problem
configuration (which can be seen as an instance of a class). The domain specification
provides a description of the environment in the form of propositions and actions while the
problem configuration describes a particular instance of the domain for which we want to
obtain the action sequence, called a plan, that transitions the initial state of the instance
into a goal state of the instance.

Definition 2.1. PDDL - Let P be a finite set of propositional variables. A state, S, is a
valuation over P (that is, a function P → {T,F}). An action, a, is a pair { prea, eff a}
where a is applicable in state S if S � prea and the result of applying a to S, a[S], is the
state S updated with the effects of a. The effects make some propositions true (add effects)
and some false (delete effects). A planning problem Π := {P,A, I,G} contains a set of
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propositional variables, P, a set of actions, A, an initial state, I and a goal, G, which is a
propositional formula over P [40].

PDDL is factored into subsets of features named requirements [40] in order to allow
the creation of planners that handle only specific parts of PDDL. Each planning problem
encoding must explicitly contain the requirements it uses. A popular requirement is typing,
which allows the ability to express the objects in a planning problem via a hierarchical type
structure (similar to representing instances via classes with inheritance in Object-Oriented
Programming).

Definition 2.2. The lifted format of a proposition or action is a schema including (typed)
variables as parameters.

Definition 2.3. The grounded format of a proposition or action is a structure of the
corresponding type (proposition or action) in which all the parameters have been replaced
with objects of the appropriate type from the appropriate problem.

Definition 2.4. A macro action is a list of actions together with an equivalence relation
between parameters of those actions in which no two parameters in any equivalence class
are of different types. A grounded macro action is one in which all the actions are grounded
so that the equivalent parameters are grounded with the same object. A macro action is
executed by executing the list of actions in the order they appear in the list [11].

Definition 2.5. A plan π represents a solution to a planning problem Π and is formed of a
sequence of grounded actions created from the actions in the action set A of a planning
problem Π. The result of applying plan π to the initial state I in Π is a state where the goal
G in Π is satisfied while respecting all the imposed conditions.

Definition 2.6. A planner is an algorithm that attempts to compute one or multiple plans
of a given planning problem Π.

Definition 2.7. A procedure is regarded as sound if all outputs can be proved as valid with
respect to considered semantics. For example, a planner is deemed sound if all found plans
for compatible planning problems are valid.

Definition 2.8. A procedure is regarded as complete in reference to a specific property if
all formulas encompassing the property can be obtained using the procedure. For example,
a planner is deemed complete if, given enough time, it can construct all possible plans that
satisfy the goal of compatible planning problems.

Definition 2.9. A Relaxed Planning Problem is a problem derived from a planning problem
Π by replacing all delete lists with empty lists [8, 37].
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Definition 2.10. The Relaxed Planning Graph (RPG) of a planning problem Π is a directed
graph (N,E) in which the nodes in N map facts and actions from Π. The edges in E either
connect nodes that map facts (tail of the edge) to nodes that map actions (head of the edge)
if the mapped facts represent the preconditions of the mapped actions. The edges in E can
also connect nodes that map actions (tail of the edge) to nodes that map facts (head of the
edge) if the mapped facts represent add effects of the mapped actions. The nodes in an
RPG are arranged into alternative fact and action layers, with the first fact layer consisting
of the facts in the initial state of Π. The facts in a fact layer F(n) determine which actions
can appear in an action layer A(n+1) (Algorithm 1 which computes in polynomial time).
If all preconditions of an action a in Π are found in F(n), then a is added to A(n+1) (lines
6 to 8). Fact layer F(n+ 1) will contain all facts in F(n) plus all the add effects of the
actions in A(n+1) that were not present as facts in any of the previous fact layers (line
12). If, after adding a new fact layer to the RPG, the goal state of Π is found in the union
of all fact layers in the RPG, we stop expanding the RPG (line 19). The procedure also
stops when no new facts are found by expanding the graph (lines 21 and 22).

Definition 2.11. A Fully Expanded Relaxed Planning Graph is computed identically to a
relaxed planning graph except we no longer stop the expansion when the goal state of Π is
found in the union of all fact layers. Instead, we stop the expansion when all possible facts
of Π are present within a fact layer.

Definition 2.12. The Relaxed Plan [8, 37] of a planning problem Π consists of all the
actions in the RPG responsible for achieving the goal state of Π in the union of all fact
layers in the RPG. The procedure for extracting the relaxed plan ((Algorithm 2 which
computes in polynomial time) starts by checking if the goal of Π is reached in the RPG. If
the goal was not reached in the RPG, then Π is not solvable and no relaxed plan can be
extracted (lines 2 to 4). However, if the goal is reached in the RPG, the relaxed plan is
computed by working backwards through the RPG. We start by searching if all the facts
from the goal state G in Π, are present in F(n−1) (the next to last fact layer in the RPG,
lines 9 and 10). If a fact f is found in F(n−1), we add f to G(n−1) (line 11). G(n−1)
represents the next target set to be used for checking facts against its corresponding fact
layer, F(n−2). However, if a fact f is not found in F(n−1), we add the action that made
f true in F(n) to the relaxed plan (always at the front of the sequence, line 14) and add the
preconditions of the added action to G(n−1) (line 13). We repeat the process until n = 0
(line 8).

Definition 2.13. Searching for the relaxed plan of a planning problem Π is referred to as
performing a goal Reachability Analysis. Such an analysis is successful if we are able to
find the relaxed plan of Π and unsuccessful if we are not able to find the relaxed plan Π.
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Algorithm 1 Obtaining the Relaxed Planning Graph of a Planning Problem Π.
Input: Π

Output: The RPG of Π

1: if G in Π is not in the initial state I in Π then
2: n = 0
3: F(n) = initial state I in Π

4: add F(n) to RPG
5: while true do
6: for all a ∈ A when A in Π do
7: if prea ∈ F(n) then
8: add a to A(n+1)
9: end if

10: end for
11: for all a ∈ A(n+1) do
12: add all add effects of a to F(n+1) if not present in any of the previous fact

layers
13: end for
14: if F(n+1) not empty then
15: add A(n+1) and F(n+1) to RPG
16: if G in Π not in the union of all fact layers in RPG then
17: n += 1
18: else
19: exit and return RPG
20: end if
21: else
22: exit and return RPG
23: end if
24: end while
25: end if
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Algorithm 2 Reachability Analysis - Extracting the Relaxed Plan of a Planning Problem
Π.

Input: Π

Output: The Relaxed Plan of Π or failure

1: RPG = run Algorithm 1 on Π

2: if G in Π not achieved in RPG then
3: return failure
4: end if
5: relaxed-plan = empty sequence
6: n = (number of fact layers in RPG ) - 1 // counting stars from 0
7: G(n) = G in Π

8: while n ̸= 0 do
9: for all facts f ∈ G(n) do

10: if f ∈ F(n-1) then
11: add f to G(n-1)
12: else
13: add the precondition prea of action a ∈ A(n) that has f ∈ e f fa to G(n-1)
14: add action a ∈ A(n) that has f ∈ e f fa to the front of the relaxed-plan
15: end if
16: end for
17: n -= 1
18: end while
19: return relaxed-plan
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2.1.2 PDDL 2.1

The capacity of planners for solving complex real-world problems that deal with resources
and time is limited in PDDL 1.2. This led to the creation of PDDL 2.1 which extends
the PDDL language with the capacity to model the temporal properties of domains [31]
by using durative and instantaneous actions and allows planners to consider continuous
numeric change [23].

Definition 2.14. PDDL 2.1 - In temporal domains, actions are extended to be represented
by a pair of simple actions (a start and an end action), a duration constraint on the numeric
variable representing the duration of the action, measuring the interval between start and
end in an application of the action, and a propositional formula that must be maintained in
all states between the start and end action applications. In this context, a plan is a mapping
from a finite collection of action instances to a pair of real numbers, representing the start
time and the duration for that action instance. A plan is valid if the duration constraints
are satisfied, no actions applied at time points within epsilon of each other interfere, the
states in which actions are applied satisfy the preconditions, and the resulting states are the
consequences of the application of each of the actions at its appropriate start or end time.

Additional formulations of PDDL 2.1 can be found in the work of Fox and Long
(2003).

Definition 2.15. A PDDL 2.1 planning problem is a tuple Π := {P,V,A, I,G} that inherits
all the elements and properties of a classical PDDL planning problem while also having a
finite set of real variables (named fluents), V. The actions in A can also operate fluents in V.
I also contains an initial assignment of values to V . G also contains numeric constraints
over V that describe the goal.

Definition 2.16. A PDDL 2.1 durative action a ∈ A is described as a tuple a := { prea,
eff a, dura}.

dura defines the duration constraint of a durative action a in the form of a conjunction
of numeric constraints representative of the duration of a.

prea is the condition of action a that must hold for a to be applicable, with prea in the
form of a conjunction of zero or more single conditions each formed either by a single
proposition p ∈ P or the negation of p or by a numeric constraint over V .

prea can be described by three disjoint subsets:

pre⊢a, pre⊣a, pre↔a ⊆ prea.

pre⊢a represents the conditions that must hold at the start of action a, pre↔a represents
the conditions that must hold during the execution of action a and pre⊣a represents the
conditions that must hold the end of action a.
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The numeric constraints in G, dura, pre⊢a, pre⊣a and pre↔a can be formulated as〈
f (V ),op,c

〉
when op ∈ {≤,<,=,>,≥}, f (V ) is a function applied to V and c is an

arbitrary constant [23].
eff a is the effect of applying action a, with eff a in the form of a conjunction of zero

or more single effects each formed either by a single proposition p ∈ P or the negation of
p or by an operation defined as

〈
v,op, f (V )

〉
when op ∈ {×=, +=, =, -=, ÷=}, f (V ) is a

function applied to V and v is a numeric variable in V .
A numeric term is formed by an expression in Linear Normal Form (LNF) [23]. Such

expressions have f (V ) as the weighted sum of variables plus a constant, in the form W *
V + c where W is a vector of constants.

eff a can be described by seven subsets:

eff+⊢a, eff−⊢a, eff num
⊢a ,

eff+⊣a, eff−⊣a, eff num
⊣a ,

eff↔a

The first six sets represent the instantaneous effects that add or remove propositions
or instantaneous numeric effects at the start or at the end of action a. For example, eff+⊣a
contains the propositions that have their truth value set to true at the end of action a. In
PDDL2.1, the instantaneous effects enable the execution of other actions after a very
small amount of time called an epsilon separation [31]. The last set, eff↔a, represents a
conjunction of continuous numeric effects which are applied in a continuous form during
the execution of action a.

Definition 2.17. A PDDL 2.1 instantaneous action a is a special case of durative action
that has its duration dura equal to 0, has prea as the only set of preconditions and has only
three effects sets: eff+⊢a, eff−⊢a and eff num

⊢a .

PDDL 2.1 actions can be concurrently applied only if they are not mutually exclusive.
For example, durative actions a and a′ can only have overlapping execution times only if:

prea ∩ (eff+a′ ∪ eff−a′ ∪ eff num
a′ ) = /0

eff+a ∩ eff−a′ = eff+a′ ∩ eff−a = /0
{v ∈ eff num

a } ∩ {v′ ∈ eff num
a′ }= /0
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2.1.3 Landmarks

Definition 2.18. A landmark [38] L in Π is a fact f achievable in Π with the property
that, ∀ plan π that achieves the goal G in Π when applied to the initial state I in Π, fact f
appears true in at least one of the states between and including the initial state I in Π and
the goal state G in Π.

Definition 2.19. A backchaining operation [50, 42] is a polynomial procedure which
extracts new landmarks from a known landmark L in Π. The procedure marks as landmarks
the intersection of the conditions of all the operators that achieve L in Π. The procedure
usually starts from the facts in the goal of Π and stops either when a fact from the initial
state of Π is identified or no more new landmarks are found. The procedure is sound, but
not complete (some landmarks might not get identified).

2.1.4 Temporal Landmarks

Definition 2.20. An event e [42] is described by a tuple e := { pree, eff e} where pree

represents the condition that must hold right before the execution of event e and eff e

represents the effect of executing event e. Durative actions with a duration larger than zero
triggers two events when executed, one at the start of the action and one at the end of the
action, while instantaneous actions trigger a single event.

The above definition of event should not be confused with other AI Planning concepts
that use the same word for their identification - such as in the work of Coles and Coles
(2014).

Definition 2.21. A temporal action landmark [42] occurs(E) is a set of events E and a
time point t with the property that at least one of the events e ∈ E is executed at time point
t ∀ plans π ∈ A with A in Π when applying plan π to I in Π.

Definition 2.22. A temporal fact landmark [42] holdsts:te(bool) is a boolean formula bool
over P in Π with the property that bool becomes true at time point ts and is no longer
needed to hold true at time point te ∀ plans π ∈ A with A in Π when applying plan π to I in
Π.
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2.1.5 PDDL Running Examples

Section Overview In this section, we provide the running examples used throughout the
thesis and the motivation behind selecting the examples.

2.1.5.1 Driverlog

Domain Description

The temporal version of the Driverlog planning problem [63] was used as a benchmark
in the 2014 International Planning Competition (IPC). The problem consists of packages
that must be delivered to various locations via trucks and involves the sub-problem of
allocating a driver to a truck before the truck can transport a package between locations.
The trucks can perform a package loading or unloading operation irrespective if they are
boarded by a driver. The drivers have a set of paths that they can use to walk between
locations, distinct from the routes used for driving. The PDDL encoding of the domain is
provided in Appendix A.1.1.1.

The Driverlog temporal planning problem was selected as a running example not only
because of its familiarity within the planning community but also because it has a structure
similar to many real-world problems where the efficiency of concurrent task executions
is required. Its main problem (deliver packages) / sub-problem (assign drivers to trucks)
format yields problems very difficult to solve due to the resulting large size of their state
space. Driverlog had the least solved problem instances in the last International Planning
Competition where it was used as a benchmark (Temporal Track 2014) with only 8 of the
20 problem instances solved cumulatively by all temporal planners in the competition.

Thesis Driverlog Running Example 1 The DLOG-5-5-10 problem has five drivers,
five trucks, ten packages and ten locations, with drivers 2,4,5, trucks 2,3,4,5 and packages
2,4,5,6,7,8,9,10 having a corresponding (at locatable location) goal in the goal state. This
problem was chosen as a running example because it is the problem with the least number
of elements, so it is easier to refer to when illustrating the work in this thesis. The PDDL
encoding of this problem is provided in Appendix A.1.1.2.

Thesis Driverlog Running Example 2
The DLOG-7-7-16 problem has seven drivers, seven trucks, sixteen packages and eighteen
locations, with drivers 1,2,3,4,5,6, trucks 1,2,5,7 and all 16 packages having a correspond-
ing (at locatable location) goal in the goal state. This problem was chosen as a running
example because it was not solved by any of the planners in IPC 2014. The PDDL encoding
of this problem is provided in Appendix A.1.1.3.
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Thesis Driverlog Running Example 3
The DLOG-8-8-19 problem has eight drivers, eight trucks, nineteen packages and twenty-
two locations, with drivers 2,3,4,6,7, trucks 2,3,4,5,6 and all 19 packages having a cor-
responding (at locatable location) goal in the goal state. This problem was chosen as a
running example because it was solved in IPC 2014 and it has sufficient elements to apply
and clearly illustrate intended procedures. The PDDL encoding of this problem is provided
in Appendix A.1.1.4.

2.1.5.2 Road Traffic Accident Management (RTAM)

Domain Description

Road Traffic Accident Management (RTAM) is a temporal numeric planning problem
[55] that was used as a benchmark in IPC 2014 and IPC 2018. RTAM simulates a scenario
where multiple simultaneous car accidents happen at distinct locations and need to be
efficiently addressed. The accidents must be managed by multiple ambulances, police
cars, fire brigades and tow trucks that are located at multiple hospitals, police stations, fire
stations and garages. Accidents must be confirmed by the police cars. Fire brigades must
extinguish any existing car fires and untrap any trapped accident victims. Ambulances
must provide first aid and hospital transportation for the accident victims. Tow trucks
must transport the cars involved in accidents to a garage. The numeric part of the problem
consists of the multiple routes with distinct lengths between all existing locations as well
as the various speeds of the rescue vehicles. Time is of the essence in such a situation, so
assigning the right rescue vehicles to the right accidents via the right routes is critical. The
PDDL encoding of the domain is provided in Appendix A.1.2.1.

The RTAM temporal numeric planning problem was selected as a running example not
only due to its numeric component but also due to its complex real-world scenario where
the efficiency of concurrent task executions is required.

Thesis RTAM Running Example 1
The RTAM_5_1_35 problem has one ambulance, one police car, one fire brigade, and three
tow trucks. The problem also has thirty-three cars and thirty-five accident victims spread
across five accidents at distinct locations. This problem was chosen as a running example
because it is the problem with the least number of elements, so it is easier to refer to when
illustrating the work in this thesis. The PDDL encoding of this problem is provided in
Appendix A.1.2.2.
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Thesis RTAM Running Example 2
The RTAM_5_2_35 problem has four ambulances, five police cars, three fire brigades,
and seven tow trucks. The problem also has thirty-three cars and thirty-five accident
victims spread across five accidents at distinct locations. This problem was chosen as a
running example because it has multiple rescue vehicles of the same type, so it provides
the required complexity of some of the examples in the thesis. The PDDL encoding of this
problem is provided in Appendix A.1.2.3.

2.1.6 Manual Strategic Tactical Planning

Strategic-tactical planning (STP) [15] is a manual bottom-up decomposition technique that
potentially increases the scale of solvable temporally expressive planning problems by
dividing the difficulty of a planning problem among multiple sub-problems. STP uses a
hierarchical decomposition with two levels in which the information of the sub-problems
solved at the lower level, called tactical, is used to construct sub-problems at the higher
level, called strategic.

The tactical level consists of a decomposition of the initial problem into sub-problems.
The sub-problems are formed of clusters of top-level goals which are determined by
a domain engineer from analysing the elements of the initial problem. The tactical
decomposition yields sub-problems that allow temporal expressiveness and have a lower
state space than the initial problem.

The information from solving the tactical problems is ported at the strategic level by
encapsulating information from each tactical sub-problem’s initial state, final state and
plan duration as a durative macro action in an abstracted version of the initial problem at
the strategic level. The abstracted version of the initial problem has a lower state space
than the initial problem and is responsible for mitigating any potential constraint violations
among the tactical plans.

The final solution to the initial problem is obtained by solving the abstracted strategic
problem and replacing the macro actions with their corresponding tactical sub-plans
obtained from the previously solved tactical sub-problems at the tactical level.

The manual strategic tactical planning technique is capable of finding solutions for
problems with a state space too large for planners to solve without decompositions due
to the decreased state space of the sub-problems at the tactical level and of the abstracted
strategic problem. A detailed description of STP is provided in Chapter 6 Section 6.4.
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2.2 Motivation: Empirical Observations of Large Scale
Planning in PDDL

Section Description In this Section, we present the tactical decompositions guided by
the manual strategic tactical planning technique that motivated us to pursue the work
presented in this thesis. The decompositions yielded solutions better than the results of
past International Planning Competitions on the tested problems.

2.2.1 Difficulty of Solving Large Scale Planning Problems

Planners have historically struggled to efficiently manage the resources of a planning
problem [59], particularly when attempting to solve planning problems with a large
number of elements. Current state-of-the-art PDDL temporal planners have the same
issues when attempting to solve such problems, particularly if a problem contains one or
more sub-problems. For example, in the Radio Base Stations (RBS) inspection planning
problem [16], drones are required to perform inspection tasks on the antennas present
at each station. Testing showed a correlation between the number of inspection goals
and the capacity of executing the Optic [6] planner without decompositions in finding a
better solution (if a solution was even found) than using Optic with the manual strategic
tactical planning decomposition (Table 2.1). Using the manual strategic tactical planning
decompositions, we were able to find solutions to problems that were unsolvable without
decomposition.

Purley Tactical Strategic Tactical Planning

Radio
Stations

Top-
Level
Goals

Strategic
Goals

Plan
Time
(seconds)

Makespan
States
Evaluated

Plan
Time
(seconds)

Makespan
States
Evaluated

1 4 1 110.08 23.056 1780 8.03 48.363 155
2 8 2 572.15 78.731 5895 16.19 74.889 312
3 12 3 949.78 102.289 8538 24.8 77.785 469
4 16 4 1206.67 352.145 9728 32.96 325.072 639
5 20 5 Failed Failed Failed 41.56 365.684 796
6 24 6 Failed Failed Failed 50.52 392.21 953
7 28 7 Failed Failed Failed 77.11 440.574 7848
8 32 8 Failed Failed Failed 82.37 440.574 7449
9 36 9 Failed Failed Failed 91.56 444.651 7189
10 40 10 Failed Failed Failed 161.2 710.162 27124

Table 2.1 Optic Purely Tactical Vs Optic STP on a set of problems that have from 1
to 10 radio stations, 4 inventory-mapping goals per station and 6 drones with identical
configurations [16]

.

Another example is the Driverlog planning problem, where we can observe that the
planers in IPC 2014 generally stop finding solutions to problems that have an increased
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number of initial state facts and goals relative to the number of initial state facts and goals
in the solved problems.

2.2.2 Reducing the Difficulty and Solving Large Scale Problems Us-
ing Decompositions

The following examples showcase the effects of applying a tactical decomposition guided
by the manual strategic tactical planning approach to the Driverlog planning problem. We
first used the DLOG-7-7-16 benchmark problem, as it was not solved by any of the planners
that participated in IPC 2014. In effect, we decomposed the DLOG-7-7-16 into 7 sub-
problems that each have one distinct driver along with its initial state facts and goals, one
distinct truck along with its initial state facts and goals and among which we evenly split
the 16 packages along with their initial state facts and goals. The resulting subproblems
have smaller state spaces in comparison to the initial problem due to having far fewer
elements than the initial problem. Considering that no trucks, drivers and packages are
present in more than one sub-problem, solving all sub-problems and merging their plans
will provide a valid plan for the DLOG-7-7-16 planning problem.

We attempted to solve the DLOG-7-7-16 sub-problems using four robust and well-
known (battle-tested) temporal numeric planners that employ different solving techniques:
Optic [6], Itsat [49], Temporal Fast Downward (TFD) [26] and Yahsp3 [64] on a Dell XPS
15 9560 laptop with 32GB total and unrestricted RAM and a threshold of 120 seconds
per problem. The results in Table 2.2 show that Optic, Itsat, and Yahsp3 were able to find
solutions to all sub-problems while TFD was able to solve only one of the sub-problems.
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Problem Name Decomposition Makespan Plan Time (seconds)
Optic Itsat TFD Yahsp3 Optic Itsat TFD Yahsp3

Sub-problem 1
driver1 truck1
package1 pack-
age2 package3

292.016 280.24 - 416 0.66 2.23 - 0.002

Sub-problem 2
driver2 truck2
package4 pack-
age5 package6

334.017 354.31 - 672 1.27 3.93 - 0.002

Sub-problem 3
driver3 truck3
package7 pack-
age8

200.011 160.17 - 242 0.11 0.82 - 0.002

Sub-problem 4
driver4 truck4
package9 pack-
age10

150.009 190.21 - 150 12.84 2.5 - 0.002

Sub-problem 5
driver5 truck5
package11 pack-
age12

300.017 300.26 - 444 0.44 1.83 - 0.002

Sub-problem 6
driver6 truck6
package13
package14

175.01 185.14 165.013 245 0.36 1.63 0.008 0.002

Sub-problem 7
driver7 truck7
package15
package16

167.01 147.13 - 137 17.3 0.48 - 0.003

DLOG-7-7-16
All drivers
trucks and
packages

334.017 354.31 - 672 32.98 13.42 - 0.015

Table 2.2 Results of the DLOG-7-7-16 decomposition.

The results show that using tactical decompositions in order to reduce the initial state
facts and goals parsed by the planners allowed us to solve a Driverlog problem that was
previously not solved by any planners during the international planning competition where
it was last used as a benchmark.

If we apply the same decomposition approach to the DLOG-8-8-19 benchmark problem
under the same conditions as in the DLOG-7-7-16 example, we again obtain solutions for
all sub-problems when executed with the Optic, Itsat, and Yahsp3 planners while TFD is
able to solve only one of the sub-problems (Table 2.3).

The DLOG-8-8-19 planning problem is one of the benchmark problems solved in IPC
2014, with 1021.54 being the best makespan achieved in the competition. The results in
Table 2.3 show that using decompositions in order to reduce the initial state facts and goals
parsed by the planners allowed us to obtain a solution with less than half of the cost as the
one obtained in IPC 2014 with three out of the four planners tested on our decomposition.

The individual results in both the DLOG-7-7-16 and DLOG-8-8-19 test problems
(Tables 2.2 and 2.3) show that the Optic and Itsat planners obtained similar makespans
while Yahsp3 obtained considerably inferior makespans in comparison to Optic and Itsat.
TFD was the worst performer by far, as it was able to solve only one sup-problem from
each example, with makespans similar to Optic and Itsat.
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Problem Name Decomposition Makespan Plan Time (seconds)
Optic Itsat TFD Yahsp3 Optic Itsat TFD Yahsp3

Sub-problem 1
driver1 truck1
package1 pack-
age2 package3

253.013 263.25 - 277 0.25 3.5 - 0.006

Sub-problem 2
driver2 truck2
package4 pack-
age5 package6

344.016 324.3 - 398 0.89 1.03 - 0.006

Sub-problem 3
driver3 truck3
package7 pack-
age8 package9

324.018 332.3 - 456 1.12 1.096 - 0.006

Sub-problem 4
driver4 truck4
package10
package11

280.014 276.2 - 432 103.82 1.31 - 0.006

Sub-problem 5
driver5 truck5
package12
package13

97.007 89.12 - 127 0.37 1.416 - 0.004

Sub-problem 6
driver6 truck6
package14
package15

380.02 410.31 - 492 1.12 3.09 - 0.004

Sub-problem 7
driver7 truck7
package16
package17

170.009 170.17 - 194 0.04 1.43 - 0.002

Sub-problem 8
driver8 truck8
package18
package19

145.008 155.11 145.01 165 0.17 0.55 0.008 0.005

DLOG-8-8-19
All drivers
trucks and
packages

380.02 410.31 - 492 107.78 167.982 - 0.039

Table 2.3 Results of the DLOG-8-8-19 decomposition.

Even though the overall results in the examples above are encouraging both in terms of
scale and solution quality, the tactical decompositions were obtained from human intuition
and would require a domain engineer to replicate in other problems. This motivated us to
seek a procedural approach for creating such decompositions which resulted in a novel
method based on reachability analysis for the algorithmic decompositions of the Driverlog
planning problem and other similarly structured problems.

In the next chapters, we will formally define and show the procedure for the automatic
identification and extraction of the elements needed to construct efficient decompositions.
We will also present a procedure that uses the extracted elements to algorithmically
decompose and solve all IPC 2014 Driverlog benchmark planning problems (as well as
other similarly structured problems) without human intervention and with solutions better
than the cumulative results of all planners that participated in the International Planning
Competition.
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2.2.3 Solution Quality Impact of Decompositions Based on Proposi-
tion Similarity

In the Pandora planning problem [15], Autonomous Underwater Vehicles (AUVs) are
required to perform inspection tasks and valve-turning tasks on large sub-sea structures
called manifolds that can be located at large distances from each other. The structure of
the Pandora environment presented an opportunity to manually decompose the planning
problem based on an intuitive observation of the geographical locality of manifolds in
order to efficiently manage the AUVs in achieving their tasks.

However, planners struggle to efficiently identify such strategies on their own, par-
ticularly in large problems. This happens partially because of the previously outlined
difficulty caused by a large number of initial state facts and goals and partially because of
the diminished capacity of planners to extract contextual meaning from the PDDL-encoded
data representation of real-world environments necessary for data clustering decomposition
strategies.

An example of such a scenario can also be observed in the RTAM planning problem.
To highlight the issue, we designed a tactical decomposition strategy similar to the one in
the DLOG-7-7-16 example which we compared with regular solving. The decomposition
strategy consists of creating multiple sub-problems with one ambulance, one tow truck,
one police car and one fire brigade and spreading the cars and accident victims across the
sub-problems according to their locations in the initial state. The test problems have been
created based on the RTAM_5_1_35 IPC 2014 benchmark problem which has simultaneous
accidents happening at five distinct locations. The test consists of how a problem that
contains the car and accident victim facts and goals of any two of the five accident locations
in RTAM_5_1_35 is better solved by two rescue groups each formed of the facts and goals
of a single ambulance, a single tow truck, a single police car and a single fire brigade with
no overlapping rescue vehicles among the two groups. We have limited the test to the facts
and goals of two locations per problem as more would have prevented the majority of the
sample planners from finding a solution.

We first solved the ten possible double-location problems representing all possible
combinations of two out of five locations in the RTAM_5_1_35 planning problem without
any decomposition and with both rescue groups added to them. Each double-location
problem was given a threshold of 900 seconds. We then decomposed each double-location
problem into two sets of single-location sub-problems (Figure 2.1).
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Fig. 2.1 Decomposing a double-location problem into two sets of single-location problems.
The final plan of the decomposition is the master plan with the best makespan.

Each set contains two single-location sub-problems (one for each location in the
double-location initial problem) and each sub-problem in a set was added only one of
the two rescue groups, with no sub-problem having the same rescue group and location
combination as any other sub-problem in any of the two sets. Each single location sub-
problem was given a threshold of 120 seconds. The plans of the sub-problems in a set
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were merged to form a master plan representative of the cars and accident victims at both
locations and both rescue groups in the initial double-location problem. The master plans
of each of the two sets were compared with each other and the one with the best makespan
was marked as the final plan for the decomposition approach.

The overall results show that the decomposition approach yielded better solutions in
73% of cases where the planners solved the double location problem as well as several
orders of magnitude faster planning times in almost all cases. The results when using
the Optic planner (Table 2.4) show that 50% of the problems have better results with
decompositions and 50% of the problems have better results using regular solving.
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Optic - Single Location

Problem ID Location Rescue Group Makespan
Plan time (sec-
onds)

L0_R0 0 0 282.532 1.07
L0_R1 0 1 287.025 1.79
L1_R0 1 0 308.366 1.04
L1_R1 1 1 257.356 1.15
L2_R0 2 0 348.706 0.99
L2_R1 2 1 290.532 1.86
L3_R0 3 0 193.693 0.47
L3_R1 3 1 189.693 0.77
L4_R0 4 0 340.066 1.31
L4_R1 4 1 265.699 3.68

Optic - Double Location

Problem
ID

Location
Rescue
Group

Makespan

Plan
time
(sec-
onds)

Best Option
Best
Option
Makespan

L0_L1 0 & 1 0 & 1 276.697 114.63 L0_L1 276.697
L0_L2 0 & 2 0 & 1 321.705 70.29 L0_R0 & L2_R1 290.532
L0_L3 0 & 3 0 & 1 224.2 35.82 L0_L3 224.2
L0_L4 0 & 4 0 & 1 260.7 107.01 L0_L4 260.7
L1_L2 1 & 2 0 & 1 344.378 56.23 L1_R0 & L2_R1 308.366
L1_L3 1 & 3 0 & 1 269.369 23.17 L1_R1 & L3_R0 257.356
L1_L4 1 & 4 0 & 1 238.362 71.69 L1_L4 238.362
L2_L3 2 & 3 0 & 1 304.549 691.2 L2_R1 & L3_R0 290.532
L2_L4 2 & 4 0 & 1 352.71 318.95 L2_R1 & L4_R0 340.066
L3_L4 3 & 4 0 & 1 226.377 30.93 L3_L4 226.377

Best With Decomposition 50%

Table 2.4 Results of the RTAM_5_1_35 decompositions solved with the Optic planner.

The results using the Itsat planner (Table 2.5) are considerably better when using
decompositions, with 70% of the problems having better solutions when decomposed into
two sub-problems.
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Itsat - Single Location

Problem ID Location Rescue Group Makespan
Plan time (sec-
onds)

L0_R0 0 0 250.25 7.2425
L0_R1 0 1 230.28 5.47627
L1_R0 1 0 210.14 9.40927
L1_R1 1 1 210.18 7.19469
L2_R0 2 0 210.21 5.95224
L2_R1 2 1 200.14 2.15037
L3_R0 3 0 105.15 2.9216
L3_R1 3 1 95.11 2.57688
L4_R0 4 0 185.45 73.6311
L4_R1 4 1 185.41 31.8131

Itsat - Double Location

Problem
ID

Location
Rescue
Group

Makespan

Plan
time
(sec-
onds)

Best Option
Best
Option
Makespan

L0_L1 0 & 1 0 & 1 275.44 363.719 L0_R1 & L1_R0 230.28
L0_L2 0 & 2 0 & 1 245.15 592.741 L0_R1 & L2_R0 230.28
L0_L3 0 & 3 0 & 1 180.18 48.2217 L0_L3 180.18
L0_L4 0 & 4 0 & 1 245.34 411.889 L0_R1 & L4_R0 230.28
L1_L2 1 & 2 0 & 1 225.13 426.214 L1_R0 & L2_R1 210.14
L1_L3 1 & 3 0 & 1 165.12 23.7897 L1_L3 165.12
L1_L4 1 & 4 0 & 1 250.38 240.49 L1_R0 & L4_R1 210.14
L2_L3 2 & 3 0 & 1 190.18 64.2576 L2_L3 190.18
L2_L4 2 & 4 0 & 1 210.13 843.714 L2_R1 & L4_R0 200.14
L3_L4 3 & 4 0 & 1 195.41 438.796 L3_R0 & L4_R1 185.41

Best With Decomposition 70%

Table 2.5 Results of the RTAM_5_1_35 decompositions solved with the Itsat planner.

The results when using the Yahsp3 planner (Table 2.6) show overwhelmingly better
results when using decompositions, with 100% of the problems having better results when
decomposed into two sub-problems.
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Yahsp3 - Single Location

Problem ID Location Rescue Group Makespan
Plan time (sec-
onds)

L0_R0 0 0 378.5 0.005
L0_R1 0 1 375.01 51.4
L1_R0 1 0 324.59 11.787
L1_R1 1 1 267.09 5.986
L2_R0 2 0 488.68 0.004
L2_R1 2 1 595.5 0.004
L3_R0 3 0 277.68 36.243
L3_R1 3 1 344.5 42.09
L4_R0 4 0 438 17.611
L4_R1 4 1 325.68 0.003

Yahsp3 - Double Location

Problem
ID

Location
Rescue
Group

Makespan

Plan
time
(sec-
onds)

Best Option
Best
Option
Makespan

L0_L1 0 & 1 0 & 1 436.67 0.011 L0_R1 & L1_R0 375.01
L0_L2 0 & 2 0 & 1 673.68 0.434 L0_R1 & L2_R0 488.68
L0_L3 0 & 3 0 & 1 450.68 0.386 L0_R1 & L3_R0 375.01
L0_L4 0 & 4 0 & 1 1005.84 0.014 L0_R0 & L4_R1 378.5
L1_L2 1 & 2 0 & 1 630.43 0.011 L1_R1 & L2_R0 488.68
L1_L3 1 & 3 0 & 1 371.68 0.008 L1_R1 & L3_R0 277.68
L1_L4 1 & 4 0 & 1 620.34 131.092 L1_R0 & L4_R1 325.68
L2_L3 2 & 3 0 & 1 772.5 0.262 L2_R0 & L3_R1 488.68
L2_L4 2 & 4 0 & 1 567.68 0.011 L2_R0 & L4_R1 488.68
L3_L4 3 & 4 0 & 1 344.68 0.009 L3_R0 & L4_R1 325.68

Best With Decomposition 100%

Table 2.6 Results of the RTAM_5_1_35 decompositions solved with the Yahsp3 planner.

TFD was able to solve only one single location sub-problem and none of the double
location problems so the results are not providing any insight into the difference in solution
quality between the two solving techniques.
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Temporal Fast Downward - Single Location

Problem ID Location Rescue Group Makespan
Plan time (sec-
onds)

L0_R0 0 0 - -
L0_R1 0 1 - -
L1_R0 1 0 - -
L1_R1 1 1 - -
L2_R0 2 0 - -
L2_R1 2 1 - -
L3_R0 3 0 262.21667 2.883669
L3_R1 3 1 - -
L4_R0 4 0 - -
L4_R1 4 1 - -

Temporal Fast Downward - Double Location

Problem
ID

Location
Rescue
Group

Makespan

Plan
time
(sec-
onds)

Best Option
Best
Option
Makespan

L0_L1 0 & 1 0 & 1 - - - -
L0_L2 0 & 2 0 & 1 - - - -
L0_L3 0 & 3 0 & 1 - - - -
L0_L4 0 & 4 0 & 1 - - - -
L1_L2 1 & 2 0 & 1 - - - -
L1_L3 1 & 3 0 & 1 - - - -
L1_L4 1 & 4 0 & 1 - - - -
L2_L3 2 & 3 0 & 1 - - - -
L2_L4 2 & 4 0 & 1 - - - -
L3_L4 3 & 4 0 & 1 - - - -

Best With Decomposition N/A

Table 2.7 Results of the RTAM_5_1_35 decompositions solved with the TFD planner.

The individual results of the RTAM test problems (Tables 2.4, 2.5, 2.6 and 2.7) show
that the Itsat planner obtained the best makespans, Optic the second-best makespans and
Yahsp3 the third-best makespans. TFD was again the worst performer, as it was able to
solve just one single location sub-problem with a makespan similar to the one obtained by
Yahsp3 in the same sub-problem.
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The overall results show that a tactical decomposition guided by the similarities of
locations of the cars and accident victims clearly outperforms the solutions of the sample
state-of-the-art temporal planners when used without decomposition. However, as in
the case of the Pandora [15] and RBS [16] planning problems, the decomposition in
the above example was only possible due to our intuitive contextual understanding of
the environment. This motivated us to pursue a domain-independent context-extracting
procedure from problem-specific PDDL data which culminated in a novel method for
algorithmically extracting contextual meaning from PDDL-encoded data with no human
input. The method is based on the similarities of landmarks between top-level goals in
order to decompose the goals based on their location or based on other types of meaningful
context in the initial state and beyond the initial state of a planning problem. The method
obtains better results than the cumulative results of the RTAM benchmark problems solved
by all planners that participated in the International Planning Competition and will be
detailed in the following chapters.
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Chapter 3

Related Work

Chapter Overview In this chapter, we present some of the previous decomposition
approaches to AI planning and consider how they relate and compare to the techniques
presented in our thesis.

3.1 Domain Independent Decompositions and Abstractions

Divide-and-conquer approaches have been successfully applied in various areas of com-
puter science [13]. Divide-and-conquer decomposition algorithms vary from simple
binary-search, merge sort and quicksort algorithms to integer and matrix multiplication
algorithms as well as cryptography algorithms. The success and long heritage of decompo-
sitions have led to an interest in creating AI Planning decomposition techniques since the
earliest foundations of the topic.

3.1.1 Abstractions and Macro Actions

Abstractions in planning have been explored by Sacerdoti (1974), who represented a
STRIPS [28] problem domain as an abstraction space hierarchy from higher to lower
level details [52] that provided increased problem-solving capabilities. Tenenberg (1988)
defines the abstraction of a concrete representation r as a construction that keeps only the
properties of the highest importance from r and ignores the lower importance properties of
r [61]. Tenenberg (1988) performed a detailed analysis of abstractions in planning in order
to simplify the action reasoning of agents in a complex environment [61]. His analysis
has two main directions. The first direction looks at ignoring some of the conditions
required for actions when applied at the abstract level (the conditions that are considered
details). Such abstractions imply an upward-solution property [61]: if a concrete (base)
level solution s exists, then an abstraction of s must also exist at a higher (abstracted) level.
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The second direction looks at abstractions from the perspective of analogies. If two or
more objects can be generalised (implied existence of a common abstraction), then the
objects are considered analogies and belong to the same class. Classes are defined by the
common properties of their members, while the distinct properties are what differentiate
the members of the same class from each other. Classes are used to create an inheritance
structure of the relationships between actions and objects. These types of abstractions
imply a downward-solution property [61]: if a higher level (abstract) solution s′ exists,
then a specialisation of s′ must also exist at the lower levels.

Nilsson (1990) uses the structure of triangle arrays [48] to encapsulate pre-computed
plans into triangle tables [48] and tree plans into triangle-table trees. Triangle tables can
be seen as a collection of offline macro-actions where the precondition of an action is
equivalent to a table kernel [48] and the effect of an action is equivalent to the table effects.
If a table kernel is found as the current state during a triangle table scan, then the effects
of the table are instantly triggered without executing any other primitive actions. Our
method does not require pre-computed plans and is capable of handling domains with a
high expressiveness where pre-computed plans are not an option.

Early decomposition strategies relied on human domain engineers who manually
captured decompositions explicitly via hand coding. For example, the Hierarchical Task
Network (HTN) [25] decomposition strategy uses a top-down approach where an initial
planning problem is broken down offline by a domain engineer into compound tasks in
order to use pre-constructed plans for solving the non-primitive tasks. However, manual
decomposition techniques rely on the ability of the domain engineer to understand how
to decompose the problem into components that are at least effectively separable. Our
technique eliminates the need for a domain engineer to identify the decompositions or to
construct the compound tasks.

As domain-independent planning grew in sophistication, there has been an increasing
emphasis on automated approaches for abstracting and decomposing planning problems
with domain-independent techniques. Knockblock (1994) presents a fully automated
domain-independent procedure for generating problem-specific planning abstractions.
Knockblock (1994) also introduces the ordered monotonicity property (OMP) [43] which
states that an efficient hierarchical decomposition solves the problem at the lower levels
(the unabstracted level being the lowest) without affecting the literals obtained at the
higher levels. Our technique respects the OMP as it maintains the structure of the solution
obtained at the abstract level (called strategic in our work) also at the unabstracted level
(called tactical in our work).

Bacchus & Yang (1994) introduce the downward refinement property (DPR) [4, 5]
which states that every abstract solution can be refined to the unabstracted solution without
backtracking across other abstract levels if an unabstracted solution exists. Our technique
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respects the DPR, as once we find a solution π at the abstract level (strategic) we imme-
diately refine π with information obtained from the non-abstract level (tactical) and are
never required to backtrack to the abstract level.

Abstractions have also been used to construct powerful heuristics that had a major
impact on AI Planning [45, 3]. Bonet et al. use the ignore delete lists [8] abstraction
(relaxation) as the heuristic in the Heuristic Search Planner (HSP). HSP obtained second
place in the competition held during the 1998 International Conference on Artificial
Intelligence Planning and Scheduling Systems (AIPS-98). A similar abstraction inspired
by HSP was used by Hoffmann (2001) to create the heuristic in the fast-forward planning
system (FF) [37], the planner which obtained first place in the AIPS-00 [3] competition.

Botea (2006) extended the FF [37] solver with macro actions to create the Macro
FF [11, 10] solver. Macro FF obtained very good results in IPC-4 and made the use of
macro-actions gain popularity. Marvin [22] is another solver that uses macro-actions.
Marvin employs action-sequence-memoisation techniques to generate the macro actions.
Gerevini et al. (2009) use macro actions generated from training problem sets in the
portfolio planner PbP [34]. Chrpa (2010) also introduces a procedure that looks for
actions that can be assembled into a macro-operator [20]. Hoffman et al. (2017) also
introduce a macroplanning database-driven [39] procedure for learning action sequences
that frequently appear in plans. These approaches use sample problems to generate macros
with the hope that the obtained macros would be applicable to future problems. However,
Macro-FF, Marvin and PbP as well as the procedures of Hoffman et al. and Chrpa are
dependent on the samples given and operate only in classical planning.

Botea (2006) also describes a top-down abstraction technique for planning that decom-
poses a Sokoban maze problem into sub-problems based on the rooms and tunnels in the
maze. The maze is solved as a high-level global problem that deals only with the transfer
of rocks between rooms while each room is considered as a distinct local problem where
the local constraints of the abstract actions are mitigated. Our technique uses a bottom-up
approach that encapsulates plans of algorithmically generated sub-problems online into
macro-actions represented at an abstract level where the global constraints are mitigated.

The Component Abstraction Planner [2] uses an algorithm to identify abstract compo-
nents and defines them as sub-problems that have their plans integrated as macro-actions
in the initial problem. The augmented problem is then passed to a regular solver to find a
solution in which the macro-actions are replaced with the corresponding sub-plans. This
technique, however, is limited to classical planning.
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3.1.2 Multi-agent Planning Decompositions

While the focus of our work is not in the area of planners with a distributed architecture
(I.e. multiple planning agents) [60], our technique does identify and exploit the multiple
executive agents present in a planning problem for constructing decompositions. Such
exploitations have been previously utilised in REALPlan [59], a planner that decomposes
an initial problem based on the number of available resources identified within the initial
problem and creates an individual sub-problem for each available executive agent identified
in the initial problem. REALPlan achieves this by separating the causal reasoning and
resource allocations of a problem in order to convert them into constraint satisfaction
problems (CSP) [12] solvable with CSP solver. REALPlan, however, is limited to classical
planning.

Crosby et al. (2013) present the Agent Decomposition Planner (ADP), a planner which
participated in the centralised track of the Competition of Distributed and Multi-Agent
Planners (CoDMAP-15) [60]. ADP performs the decomposition of classical planning
problems that have a ’multi-agent nature’ [24] (I.e. multiple executive agents) by iden-
tifying problem variables that behave as executive agents. The technique is based on
eliminating all two-way cycles from the causal graph of a given problem and marking
the remaining variables that have at least one successor as agent variables. The initial
problem is then decomposed based on the identified agents into multiple agent variable
decompositions. The decompositions are exploited via a heuristic search algorithm based
on the popular ’ignore delete effects’ heuristic [37] in order to obtain a total order for
achieving the propositions required to satisfy the goal state of the initial problem. ADP
obtains competitive results in compatible planning problems, but it is limited to classical
planning. Also, the agents identified via ADP do not directly affect each other and can
only act on the environment. On the other hand, the agent extraction technique in our
thesis identifies agents that directly interact not only with the environment but also with
each other and the agent-to-agent interactions are exploited for creating new efficient
decompositions.

50



3.1.3 Goal Decompositions

The decomposition of a planning problem Π based on the decomposition of its goal into
multiple sub-goals is another previously explored approach. In such techniques, Π is
decomposed into multiple sub-problems, with each sub-problem being responsible for
achieving one of the sub-goals obtained from decomposing the goal of Π. The goal of Π

is then found by merging the solutions of the sub-problems of Π while making sure all
global constraints of Π are satisfied.

An example of such a technique is presented by Yang (2012), who provides a broad
and detailed description of decomposed-based planning [67]. The method described by
Yang (2012) decomposes a planning problem using goal-directed decompositions. The
conflicts between the solutions of individual decompositions are resolved as constraint
satisfaction problems. When multiple solutions exist, Yang either performs a cost analysis
or uses constraint satisfaction to select the best solution. Yang also describes optimal and
sub-optimal plan merger techniques in the form of optimisation problems. In contrast, our
technique employs relaxations and abstractions into the decompositions and solves the
global constraints at the abstract level.

In more recent work, The Automated Cyclic Planner [1] is designed for problems
where multiple instances of the same type of subgoal can be identified in the goal of a
problem in order to separate the solving of the goal into multiple cyclic sub-problems.
However, this approach only tackles problems where a single repetitive subgoal can be
identified.

3.1.3.1 Temporal Goal Decompositions

Manual STP [15] (described in Section 2.1.6 of the previous chapter) decomposes a
temporal problem based on the geographical locality of the goals. However, manual STP
requires a domain engineer for the decomposition of the top-level goals as well as for the
creation of the macro action template and strategic abstraction for each individual planning
domain. On the other hand, our thesis extends STP with fully automatic procedures for
goal decomposition, macro action creation and strategic abstractions which, as we will
show in the Evaluation chapter, yield quality solutions to benchmark planning problems.

Carreno et al. (2020) present the Decentralised Heterogeneous Robot TaskAllocator
(DHRTA) algorithm which enhances goal distribution in temporal planning problems by
considering task spatial distribution, execution time, and the capabilities of the available
robot agents [17]. DHRTA was designed as a response to the poor task allocation strategies
existing planners employ. The DHRTA objective function is formed of two cost functions.
The first function evaluates the total number of goals each robot agent can complete based
on matching the capabilities of each robot to the requirements of each goal. The second
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function evaluates the distance between points of interest and the makespan of completing
each goal. Using DHRTA, an initial problem is effectively split into multiple independent
sub-problems, with one sub-problem per robot agent that has goals based on the output
of the objective function. However, the capabilities of the robot agents in DHRTA are
identified and inputted by a human operator, while in our work, such capabilities are
algorithmically identified using a novel analysis procedure of PDDL-encoded data based
on landmarks. Also, DHRTA is not applicable to problems where the decompositions
violate any of the global constraints of the initial problem (for example problems where
robots must share resources to complete the goal). On the other hand, in our work, any
violated global constraints are mitigated at the abstract (strategic) level which allows
temporal problems with shared resources to also be successfully solved.

3.1.4 Landmarks Decompositions

In classical planning, a landmark [38] is a constraint in the form of a fact that must hold
true at least once during the execution of any possible valid plan of a planning problem.
Landmarks are discovered by first performing a backchaining operation from the top-level
goals in the problem in order to obtain potential landmark candidates. Then, each candidate
L is evaluated by removing all actions that make L true in order to assess if a relaxed
plan can be found without the removed actions. If a relaxed plan is not found, then L is a
landmark. The landmarks of a problem can be used to form a landmarks graph [38] which
represents a skeleton of the final solution of a given problem. The landmarks graph has
been used in classical planning decompositions by Hoffmann et al. (2004) who developed
a decomposition technique that creates a sub-problem for every landmark present in the
graph and solves the sub-problems one by one in a longitudinal "landmark to landmark"
approach that outputs as the final solution the concatenated sub-plans of each sub-problem.

Another decomposition technique that uses landmarks is STELLA [54]. STELLA
decomposes a problem into sub-problems that have as goals clusters of landmarks that are
consistent with each other amounting to all the landmarks in the landmarks graph of the
problem. Our technique, however, uses a novel approach for exploiting landmarks as it
focuses on analysing the similarity of the landmarks as well as an agent-based relaxation
of the landmarks between each individual top-level goal in order to group the top-level
goals into subgoals based on contextual analyses of all similarities between the top level
goals.

52



3.1.4.1 Temporal Landmarks Decompositions

Landmarks have also been used for decompositions in temporal problems. The TEM-
PLM [46] planner is able to extract classical landmarks from temporal problems that
have deadline constraints and creates a landmarks graph that incorporates the temporal
interactions between the extracted landmarks. TEMPLM uses the landmarks graph to
identify unsolvable problem instances and to solve problems in which deadline constraints
are present. However, TEMPLM is limited only to temporal problems that contain deadline
constraints.

Another temporal landmarks extraction technique is described by Karpas et al. (2015)
who propose a method capable of extracting temporal landmarks without the need for dead-
lines to be present in a planning problem. This is achieved by performing a backchaining
operation starting from the top-level goals of a problem and deriving new temporal fact
and action landmarks along with the temporal constraints among them from each newly
identified landmark that is not present in the initial state. Karpas et al. (2015) propose
the usage of temporal landmarks for developing new heuristics in order to help existing
planners find better solutions. However, our technique takes a distinct approach to the use
of landmarks for solving a planning problem by evaluating the similarity of the landmarks
extracted from individual top-level goals in order to decompose the problem based on the
contextual relationships between the top-level goals.

3.1.5 Recursive Decompositions

Decomposing a classical planning problem using recursions has also been previously
explored. Yu Han et al. (2004) decompose the goal of a problem into a set of serializable
subgoals solvable in a total order [47]. This strategy considerably reduces the state space
search effort of a compatible planning problem. However, the technique comes with no
formal definitions or a clear informal guide about compatible problems and is limited to
classical planning.

3.1.6 Temporal Causal Graph Decompositions

Using causal graphs in the decompositions of temporal problems has also been previously
investigated. The TBurton [65] planner creates decompositions by mapping a planning
problem to timed controlled automata in order to obtain a representation of the problem in
the form of an acyclic causal graph with each factor of the graph being used to create a
sub-problem. The sub-problems are individually solved by a heuristic temporal solver and
the resulting sub-plans are combined into a master plan that solves the initial problem. The
necessity of TBurton to convert PDDL to timed controlled automata, however, hinders its
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current ability to handle temporal problems with numeric fluents. On the other hand, our
technique uses a full representation in PDDL 2.1 [31] at every step of the solving procedure
and is compatible with temporal problems with numeric fluents as a consequence.
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Chapter 4

Fundamental Decomposition Elements

Chapter Overview In this chapter, we extract the fundamental elements required for our
decomposition technique. The extracted elements are the agents, the agent dependency re-
lationships, the agent classifications, the landmarks and the relaxed version of propositions,
events and landmarks.

4.1 Agents Identification and Classification

Section Overview We catalogue as agents all objects that have dynamic types [58]
and are active during a goal state search. The dynamic types are extracted from the
first argument of all dynamic predicates present in a specific domain via the approach
described in Simspon et al. 2000 [58] which, even though it has obvious limitations, they
can be overcome by implementing other previous techniques such as the type inference
module (TIM). The agents are extracted from the set of dynamic objects by a procedure
that determines which dynamic object is a potential part of the solution. We then use a
novel method based on reachability analysis [9] to identify the dependency relationships
between the identified agents of a planning problem. We further process the obtained
relationships to obtain an acyclic dependency graph and classify the agents according to
their dependency status and hierarchical position in the obtained graph.
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4.1.1 Dynamic And Static Objects Identification

Section Overview In this section, we present and analyse the technique used for identi-
fying the dynamic and static objects of a planning problem.

Definition 4.1. A predicate is dynamic if it is part of one or more effects belonging to one
or more domain operators. All predicates that are not dynamic are classified as static.

Definition 4.2. A type t is dynamic if t or any of the supertypes of t are found as the first
argument of any dynamic predicate in a given domain. All types that are not dynamic are
classified as static.

Definition 4.3. An object is dynamic if it has a dynamic type or static if it has a static type.

The identification of dynamic and static objects constitutes the building block for the
work presented in this thesis. Our classification method follows the description in Simspon
et al. 2000 [58]. The procedure (Algorithm 3 which computes in polynomial time) starts
with the extraction of dynamic predicates by identifying the domain predicates that are
present in at least one effect of at least one domain operator (lines 1 to 5). We then mark
the type of the first argument of each dynamic predicate as a dynamic type (line 6). All
objects that have a dynamic type will be classified as dynamic objects (lines 11 to 15).
All types not identified as dynamic and their respective objects will be marked as static
(lines 17 to 20). Even though the construction of this procedure seems arbitrary, empirical
evidence shows it is successful [58], as it is similar to human intuition in the way predicates
are generally formulated by domain engineers - usually the state of the first argument of a
predicate is described by the following arguments. The procedure is successful particularly
when the PDDL problem/domain configuration is described in English, as in English an
action verb is generally used to portray the subject of a sentence rather than the other
objects [58].
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Algorithm 3 Algorithm for extracting the dynamic and static types and objects
Input: Π

Output: The dynamic and static types and objects of Π

1: for all predicates p in Π do
2: for all actions a ∈ A when A in Π do
3: for all e f fa ∈ a do
4: if p ∈ e f fa then
5: mark p as a dynamic predicate
6: mark type of the first parameter of p as a dynamic type
7: end if
8: end for
9: end for

10: end for
11: for all objects o in Π do
12: for all types t in Π do
13: if t is a dynamic type then
14: if o has type t then
15: mark o as a dynamic object
16: end if
17: else
18: mark t as a static type
19: if o has type t then
20: mark o as a static object
21: end if
22: end if
23: end for
24: end for

Example 4.4. In the RTAM domain, the predicate (in_city ?L - location ?City - city) is
not found in any of the effects of any domain operator, therefore it will get classified as
a static predicate. The predicate (at ?V - vehicle ?L - location), however, is part of the
effects of the move operator (Fig. 4.1), therefore it will be marked as a dynamic predicate.

In the predicate (at ?V - vehicle ?L - location), the vehicle location can be changed by
the effects (at start ( not (at ?V ?O))) and (at end (at ?V ?L)). ?V is the first argument of
the at predicate, therefore its type, vehicle, and all sub-types will be marked as dynamic.
The location type has not been identified as dynamic, therefore it will get marked as static.

Following the action-subject logic of the English language, the predicate (at ?V -
vehicle ?L - location) describes the location of the vehicle, not the state of the location. If
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a vehicle were to move from one location to another, we would intuitively perceive that
the vehicle has changed its location, not that the state of locations was changed due to
the arrival or departure of the vehicle. Therefore, marking the vehicle type and all its
sub-types as dynamic corresponds with the structure of the domain as well as with the real
environment modelled by the domain.

Fig. 4.1 RTAM domain move action

It is important to note that a bad domain design could interfere with the procedure
used for determining dynamic types. Therefore, Algorithm 3 is not sound nor complete.
However, there are more robust methods which would identify the correct arguments even
in a domain with a bad design for a large number of cases. For example, Simpson et al.
(2002) use the type inference module to extract the "mobile" and "location" generic types
of a given domain. The same procedure could be used in our work to correctly identify the
argument of interest regardless of its position within a predicate. We, however, have not
used the mentioned procedure due to the lack of a working implementation for temporal
domains and building one ourselves would not have constituted novel work. Also, we have
yet to encounter a situation in which a found plan was invalid when using this algorithm as
a component in the overall solving procedure (described in Chapter 6). Additionally, our
solving technique uses VAL [41] to check for validity, so soundness is computationally
cheap and guaranteed.
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4.1.2 Agents and Necessary Static Objects Identification

Section Overview In this section, we present and analyse the technique used for a more
detailed classification of dynamic objects and static objects.

Definition 4.5. The set Td ⊆ T is the subset of the set of types T in Π that has all dynamic
types which exist in T .

Definition 4.6. dot is a dynamic object that has type t ∈ Td .

Definition 4.7. A dynamic object fact fdot is a fact represented by a proposition or function
that has dynamic object dot in Π among one or more of its parameters.

Definition 4.8. A dynamic object goal gdot ∈ G is a top-level goal represented by a
proposition or function that has dynamic object dot in Π among one or more of its
parameters.

Definition 4.9. A single dynamic object per dynamic type planning problem Πdot :=
{P,V,A, I,G} is a planning problem focused on a dynamic object dot in Π which contains
dynamic object dot along with all its initial state dynamic object facts fdot ∈ I when I in
Π and all its dynamic object goals gdot ∈ G when G in Π. Πdot is identical to a planning
problem Π except it does not contain any other dynamic objects, dynamic object facts or
goals with the same type as dynamic object dot . If a dynamic object do′t in Πdot has the
same type as dot , then do′t = dot .

Definition 4.10. Dynamic object dot is an active dynamic object αt if it is a parameter in
at least one condition in apre or in at least one effect in ae f f of at least one action a that is
found in the relaxed plan of the single dynamic object per dynamic type planning problem
Πdot focused on dynamic object dot . The active dynamic objects of a planning problem Π

are the agents of Π.

Definition 4.11. Dynamic object dot is an inactive dynamic object ¬αt if it is not a
parameter in any condition in apre or in any effect in ae f f of any of the actions in the
relaxed plan of the single dynamic object per dynamic type planning problem Πdot focused
on dynamic object dot or if no relaxed plan is found for the single dynamic object per
dynamic type planning problem Πdot focused on dynamic object dot .

Definition 4.12. The set Ts ⊆ T is the subset of the set of types T in Π that has all static
types which exist in T .

Definition 4.13. sot is a static object that has type t ∈ Ts.
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Definition 4.14. Static object sot is a necessary static object Φt if it is a parameter in at
least one condition in apre or in at least one effect in ae f f of at least one action a that is
found in the relaxed plan of at least one single dynamic object per dynamic type planning
problem derived from Π. The necessary static objects of a planning problem Π are the
effective environment of Π.

Definition 4.15. Static object sot is an unnecessary static object ¬Φt if it is not a parameter
in any of the conditions in apre or in any effect in ae f f of any action a that is found in the
relaxed plan of any single dynamic object per dynamic type planning problem derived
from Π.

Even though the dynamic-static classification of elements is sufficient to apply the
solving technique presented in Chapter 6, the classification can be extended to a lower
granularity. We can further differentiate between active and inactive dynamic objects. The
active dynamic objects of a problem are the dynamic objects that have a potential role in
achieving the goal state of a planning problem Π. We will refer to active dynamic objects
as the agents of a problem as they are the potential active participants in finding a solution.
We use the term agents as it will provide a complementary intuitive understanding of the
decomposition procedures described in future sections. The procedure to determine if a
dynamic object dot is an agent (Algorithm 4 which computes in polynomial time) starts
by creating a single dynamic object per dynamic type planning problem Πdot for every
dynamic object in a planning problem Π and attempts to find the relaxed plan of each such
problem (lines 4 to 7). If a relaxed plan is not found for Πdot or if dot is not found in any of
the conditions or effects of any of the actions of the relaxed plan of Πdot we mark dynamic
object dot as an inactive dynamic object ¬Φ(dot) (line 5). If dot , however, is found in at
least one condition or in at least one effect in any of the actions of the relaxed plan of Πdot

then we mark agent dot as an agent of Π (lines 8 to 11).
Similarly to dynamic objects, the static objects of a problem can also be catalogued

into necessary and unnecessary static objects. The necessary static objects have a potential
role in achieving the goal state of a problem while the unnecessary static objects will
never be required for solving a problem. The necessary static objects are identified by
their presence in at least one of the conditions or effects of at least one of the actions of
the relaxed plan of at least one of the single dynamic object per dynamic type planning
problem Πdot created for each dynamic object in a planning problem Π (lines 13 to 15). If
a static object is not found in any of the conditions or effects of any of the actions in the
relaxed plan of any of the Πdot problems, then it is marked as an unnecessary static object
(lines 1 and 2).

Algorithm 4 is a heuristic approach designed to potentially reduce the difficulty of a
planning problem (detailed in Chapter 5) and to potentially increase the accuracy of the
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extracted ’advice’ (detailed in Sections 4.1.3 and 4.1.4). Algorithm 4 is not complete, as it
can be the case that a necessary static object might not be found in the relaxed plan due to
the relaxation heuristic. However, our aim is to find quality solutions to large-scale (hard)
problems, so guaranteeing completeness is not a practical concern, as using other existing
techniques either yields bad solutions or no solutions at all (as showcased in Chapter 7).
Also, a domain could be engineered in such a way that the procedure might incorrectly
classify a necessary static object as an unnecessary one (due to the relaxation heuristic).
However, we have yet to encounter a situation in which a found plan was invalid while
experimenting with benchmark planning problems modified according to the criteria in
this procedure. Additionally, our solving technique uses VAL [41] to check for validity, so
soundness is computationally cheap and guaranteed.

Algorithm 4 Algorithm for Identifying Agents, Inactive Dynamic Objects as well as
Necessary static objects and Unnecessary Static Objects

Input: Π and its dynamic/static object classification
Output: All αt , ¬αt , Φt and ¬Φt in Π

1: for all static objects sot in Π do
2: mark sot as an unnecessary static object ¬Φt

3: end for
4: for all dynamic objects dot in Π do
5: mark dot as an inactive dynamic object ¬αt

6: construct single dynamic object per dynamic type planning problem Πdot (as de-
scribed in Definition 4.9)

7: attempt to obtain relaxed_plan(Πdot )
8: if relaxed_plan(Πdot ) is found then
9: for all actions a ∈ relaxed_plan(Πdot ) do

10: if dot is a parameter in prea or in e f fa then
11: mark dot as an active dynamic object αt

12: end if
13: for all static objects sot in Π do
14: if sot is a parameter in prea or in e f fa then
15: mark sot as an necessary static object Φt

16: end if
17: end for
18: end for
19: end if
20: end for
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Example 4.16. In the DLOG-5-5-10 Driverlog planning problem, we have five dynamic
objects with the truck dynamic type and five dynamic objects with the driver dynamic type.
In the DLOG-5-5-10 Driverlog planning problem, we also have ten dynamic objects with
the package dynamic type: package1, package2, package3, package4, package5, package6,
package7, package8, package9, package10 . DLOG-5-5-10 has an (at package location)
dynamic object goal for each of the package dynamic objects except package1, package3
and the goal for package7 is achieved in the initial state.

If we apply Algorithm 4 to DLOG-5-5-10, the package2, package4, package5, pack-
age6, package8, package9, package10 dynamic objects will get marked as agents as they
will be a parameter in at least a condition of an action in the relaxed plan of their respective
single dynamic object per dynamic type planning problem due to the corresponding (at
package location) goals unachieved in the initial state. However, package1, package3
will get marked as inactive dynamic objects as they have no corresponding (at package
location) goal so they will not be a parameter in any of the actions of the relaxed plan
of their respective single dynamic object per dynamic type planning problem or in any
other action of any other relaxed plan of any other single dynamic object per dynamic
type planning problem. package7 will also get marked as an inactive dynamic object even
though it has a corresponding goal in the goal state. This happens because the goal is
already achieved in the initial state so package7 will not be a parameter in any of the
actions of the relaxed plan of its single dynamic object per dynamic type planning problem
or of any other single dynamic object per dynamic type planning problem.

Applying Algorithm 4 to DLOG-5-5-10 will also mark each truck and driver dynamic
objects as agents as each of the trucks and drivers can be potentially selected by a planner
to achieve a package goal so each truck and driver will be a parameter in at least a condition
of an action in the relaxed plan of their respective single dynamic object per dynamic type
planning problem.

Some of the necessary static objects in DLOG-5-5-10 are the location static objects
that are parameters in the at driver location and at truck location initial state facts, as
each location will be a parameter in at least one condition in the relaxed plan of the
corresponding single dynamic object per dynamic type planning problem Πdot created for
the driver or truck dynamic object that is a parameter in the same at initial state fact as
the location. If, however, we modify DLOG-5-5-10 and add a new location l and connect
it to the existing locations map as a dead-end, l would be an unnecessary static object as
it would not be a parameter in any of the conditions in apre of any effects in ae f f of any
action a that is found in the relaxed plan of any single dynamic object per dynamic type
planning problem derived from DLOG-5-5-10 (a more detailed example is provided in
Section 5.5 of Chapter 5).
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4.1.3 Cleaning Planning Problem

Section Overview In this section, we present a technique for eliminating potentially
redundant elements from a planning problem.

Definition 4.17. A cleaned planning problem is a planning problem Π that has no facts
in I that have inactive dynamic objects or unnecessary static objects among any of their
parameters, no goals in G that have inactive dynamic objects or unnecessary static objects
among any of their parameters and no inactive dynamic objects or unnecessary static
objects.

Definition 4.18. An static object fact fsot is a fact represented by a proposition or function
that has static object sot in Π among one or more of its parameters.

Definition 4.19. An static object goal gsot ∈ G is a top-level goal represented by a propo-
sition or function that has static object sot in Π among one or more of its parameters.

Our thesis uses the instantiated agents and environment in order to extract accurate
decomposition ’advice’ (procedure described in Section 4.1.4). The presence of inactive
dynamic objects or unnecessary static object facts might interfere with the accuracy of
the extracted ’advice’. Therefore, we "clean" the original planning problem Π before
proceeding with extracting the elements required for obtaining the ’advice’. The procedure
for cleaning a planning problem (Algorithm 5 which has a supportive role and computes in
polynomial time) identifies and removes all inactive dynamic objects ¬Φ(dot), all inactive
dynamic object facts f¬Φ(dot) and all inactive dynamic object goals g¬Φ(dot) (lines 2 to 5)
as well as identifies and removes all unnecessary static objects ¬Φ(sot), all unnecessary
static object facts f¬Φ(sot) and all unnecessary static goals g¬Φ(ot) (lines 7 to 10) from a
planning problem Π. Since the cleaning procedure is reliant on the output of Algorithm 4,
it is also not complete and not sound but practically useful for large-scale (hard) problems.
Also, the reliance on Algorithm 4 means that a domain can be engineered in such a way
that the cleaning procedure might remove incorrectly classified objects. However, we have
yet to encounter a situation in which a found plan was invalid while experimenting with
the removal of the elements this algorithm would identify from the sampled benchmark
planning problems. Additionally, VAL is used [41] to check for validity, so soundness is
computationally cheap and guaranteed.
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Algorithm 5 Algorithm for Cleaning a Planning Problem Π

Input: Π, ¬αt in Π and ¬Φt in Π

Output: the cleaned version of Π

1: for all inactive dynamic objects ¬αt in Π do
2: remove inactive dynamic object facts f¬αt from Π

3: remove inactive dynamic object goals g¬αt from Π

4: remove ¬αt from Π

5: end for
6: for all unnecessary static objects ¬Φt in Π do
7: remove unnecessary static object facts f¬Φt from Π

8: remove unnecessary static object goals g¬Φt from Π

9: remove ¬Φt from Π

10: end for
11: return cleaned version of Π

Example 4.20. In the DLOG-5-5-10 Driverlog planning problem, we have ten dynamic
objects with the package dynamic type: package1, package2, package3, package4, pack-
age5, package6, package7, package8, package9, package10 . DLOG-5-5-10 has an (at
package location) dynamic object goal for each of the package dynamic objects except
package1, package3 and the goal for package7 is achieved in the initial state.

The cleaned version of DLOG-5-5-10 Driverlog planning problem no longer has the
package1, package3, package7 dynamic objects, dynamic object facts and dynamic object
goals, as package1, package3, package7 are inactive dynamic objects (as described in
Example 4.16).
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4.1.4 Agents Dependency Relationships

Section Overview In this section, we present and analyse the method for extracting the
dependency relationships between agents (preferred) or between dynamic objects.

Definition 4.21. An agent type tα is a dynamic type t ∈ Td that has at least one agent
instance αt with type t in a planning problem Π.

Definition 4.22. An agent fact fαt is a fact represented by a proposition or function that
has agent αt ∈ Π among one or more of its parameters.

Definition 4.23. An agent goal gαt ∈ G is a top-level goal represented by a proposition or
function that has agent αt ∈ Π among one or more of its parameters.

Definition 4.24. The reachability impact of t onto t′ when t, t ′ ∈ Td and t ̸= t ′ represents
the effect of removing all fαt facts from the initial state I ∈ Π in achieving all fαt′ facts in
all fact layers when conducting the reachability analysis [9] of planning problem Π.

Definition 4.25. Set F(Π) represents the union of all facts from all fact layers obtained
when performing the reachability analysis of planning problem Π.

Definition 4.26. Set Ftα (Π)⊆ F(Π) is the subset of F(Π) that has all fαt facts present in
F(Π).

Definition 4.27. Set I¬tα ⊆ I is the subset of I that contains all facts f ∈ I that are not fαt

facts.

Definition 4.28. Set G¬tα ⊆ G is the subset of G that contains all goals g ∈ G which are
not represented by propositions or functions that have any αt .

Definition 4.29. Planning problem Π¬tα is defined as the tuple {P,V,A, I¬tα ,G¬tα}.

Definition 4.30. Set ¬Ft ′α (Π¬tα ) ⊆ F(Π) is the set of all facts f ∈ Ft ′α (Π) when f /∈
Ft ′α (Π¬tα ) and tα ̸= t ′α (Algorithm 6). ¬Ft ′α (Π¬tα ) represents the set of facts affected by
the reachability impact of tα onto t ′α in the reachability analysis of planning problem Π.

Definition 4.31. We mark tα 7−→ t ′α as a dependency relationship if the size of the facts
affected by the reachability impact of tα onto t ′α (i.e. size of ¬Ft′α (Π¬tα )) is greater then
zero when tα ̸= t ′α and t ′α , tα ∈ Td .

A tα 7−→ t ′α dependency relationship signifies that agents with type t ′α are dependent
and hierarchically inferior to agents with type tα .

Definition 4.32. ∆(Π) is the set of all dependency relationships of planning problem Π.
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The agents dependency relationships are a core component of the work presented in
this thesis. They are required for classifying the agents of a planning problem Π in order to
use the classifications as decomposition ’advice’ (described in Chapter 6). Our method for
determining the agent dependencies of a planning problem (Algorithm 6 which computes
in polynomial time) is based on the relationship between the agents present in a problem,
so it disregards each dynamic type t ∈ Td that does not have any agent instances regardless
if t is the supertype of an existing agent. The method consists of removing all agents with a
particular type from the planning problem in order to observe the reachability impact of the
removal upon the remaining agents when conducting a reachability analysis [9]. As a first
step, we compute the reachability analysis facts, preferably for a planning problem that has
been cleaned (line 1). Then, we iteratively compute the reachability analysis facts for each
planning problem Π¬tα (lines 1 and 2). Every fact that is found in Ft ′α (Π) and is not found
in Ft ′α (Π¬tα ) , when t ̸= t ′, is added to its respective reachability impact set ¬Ft ′α (Π¬tα )

(lines 4 to 7). If ¬Ft ′(Π¬t) > 0, then the removal of fαt facts from the initial state of Π

has impacted the reachability of fαt′ facts in the reachability analysis of planning problem
Π, therefore we mark t 7−→ t ′ as a dependency relationship and add it to the dependency
relationship set ∆(Π) (lines 10 to 13).

Algorithm 6 Algorithm for extracting the dependency relationships
Input: Π as well as all object and type classifications in Π

Output: ∆(tα) in Π

1: compute F(Π)

2: for all agent types tα ∈ Td do
3: compute F(Π¬tα )

4: for all agent types t ′α ∈ Td when t ′α ̸= tα do
5: for all facts f ∈ Ft ′α (Π) do
6: if f /∈ Ft ′α (Π¬tα ) then
7: add fact f to ¬Ft ′α (Π¬tα )

8: end if
9: end for

10: if size of ¬Ft ′α (Π¬tα ) > 0 then
11: mark tα 7−→ t ′α as a dependency relationship;
12: add tα 7−→ t ′α to ∆(Π)

13: end if
14: end for
15: end for
16: return ∆(tα)
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It is important to note that the dynamic types that are not agent types but are supertypes
of existing agents, even though they are not part of the agent dependencies identification
procedure, do have an impact on the final solution and will be addressed in Chapter 5 along
with the creation of the sub-problems. Also, identifying inactive dynamic objects and
eliminating them (cleaning the problem) can potentially provide more accurate dependency
relationships, particularly for problems that have inactive dynamic objects which cause
distinct dependency relationships to the ones caused by the active dynamic objects (agents).
Algorithm 6 is not complete, but rather a heuristic approach to enable an efficient decompo-
sition of large-scale (hard) problems where completeness is not a practical concern (due to
the poor or nonexistent solutions obtained if using other existing techniques). The correct-
ness of the dependency relationships identification procedure relies on the correctness of
the agent identification procedure, so it might be possible to obtain incorrect relationships.
However, we have yet to encounter a situation in which a found plan was invalid when
using this algorithm as a component in the overall solving procedure (described in Chapter
6). Additionally, VAL is used [41] to check for validity, so soundness is computationally
cheap and guaranteed.

Example 4.33. The RTAM_5_1_35 planning problem does not contain any inactive
dynamic objects, so the cleaned version of RTAM_5_1_35 is the same as the original
RTAM_5_1_35 problem. In RTAM_5_1_35, set Td contains the following dynamic types:
{ acc_victim, car, ambulance, fire_brigade, police_car, tow_truck, subject, vehicle }.
RTAM_5_1_35 does not have any agent instances with the subject and vehicle dynamic
types so subject and vehicle do not constitute agent types. RTAM_5_1_35 does have at
least one agent with the acc_victim, car, ambulance, fire_brigade, police_car, tow_truck
} dynamic types so they constitute agent types. When applying Algorithm 6 to planning
problem RTAM_5_1_35, we iterate through all facts with agent types in Td to determine the
reachability impact of tα onto t ′α when tα , t ′α ∈ Td and tα ̸= t ′α . When we are at the iteration
where tα = ambulance, t ′α = accident_victim and Π¬tα = RTAM_5_1_35¬ambulance, fact
(aided acc_victim2) is found in Facc_victim(RTAM_5_1_35). However, (aided acc_victim2)
is not found in Facc_victim(RTAM_5_1_35¬ambulance).

The reason fact (aided acc_victim2) is not found in the above example is that the state
space of the reachability analysis of planning problem RTAM_5_1_35¬ambulance is never
expanded via the operator first_aid (Figure 4.2), and first_aid is the sole operator that
has the (at end (aided ?P)) effect in the RTAM domain. The state space expansion from
first_aid is not possible as the (at start (at ?V ?A)) condition of the operator requires a fact
that can not exist in the fact layers of the reachability analysis of a planning problem that
has no αambulance agents.
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Therefore we add fact (aided acc_victim2) to its respective reachability impact set
¬Faccident_victim(Π¬ambulance), and consequently mark ambulance 7−→ accident_victim as
a dependency relationship and add it to the dependency set ∆(RTAM_5_1_35).

Fig. 4.2 RTAM domain first_aid action
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4.1.5 Conflicting Dependency Relationships and Their Mitigation

Section Overview In this section, we present and analyse the mitigation procedure in
case of conflicting dependency relationships.

Definition 4.34. The directed graph DG(Π) = (N,E) represents the dependency graph of
a planning problem Π. The nodes in N are a mapping of the agent types in Td of a problem
Π. Each edge in set E is a directed path from the node mapping the independent type to
the node mapping the dependent type within each dependency relationship in ∆(Π). A
dependency cycle is a cycle in the dependency graph.

Definition 4.35. The dependency relationships equivalent to the edges that form one or
more cycles in graph DG(Π) are called conflicting dependency relationships. If DG(Π) is
acyclic, then planning problem Π has no conflicting dependency relationships.

Definition 4.36. The weakest link of a dependency cycle is the dependency relationship
tα 7−→ t ′α with no propositions from its respective reachability impact set ¬Ft′α (Π¬tα )

present in the goal state G in Π if and only if it is the single such dependency in an
identified dependency cycle.

There is the possibility of extracting conflicting dependency relationships when using
the procedure described in Algorithm 6. In such a case, both tα 7−→ t ′α and t ′α 7−→ tα could
be identified as dependency relationships when tα ̸= t ′α . However, determining a hierarchy
between agents is not possible if conflicting dependency relationships exist.

To mitigate the conflicts, we exploit the fact that conflicting dependency relationships
form cycles when mapped into a directed graph (similarly to how variable dependencies
can cause cycles in the causal graph[7] of a planning problem) and that the removal of a
single directed edge from a cycle is sufficient to break the cycle and therefore eliminate the
conflicts between the remaining relationship. Our method for determining what tα 7−→ t ′α
dependency relationship should be removed relies on comparing the propositions in the
reachability impact set to the top-level goals from G in Π. We mark a dependency as the
weakest link and remove it from ∆(Π) if and only if it is the single dependency within a
cycle that has a reachability set that does not contain any facts in common with G.
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Algorithm 7 Algorithm for mitigating conflicting dependency relationships

Input: ∆(tα) in Π, Td in Π and G in Π

Output: Acyclic DG(Π) or failure

1: if ∃ DG(Π) then
2: clear DG(Π)

3: end if
4: generate DG(Π) from all tα ∈ Td in Π and ∆(Π)

5: if DG(Π) ̸= acyclic then
6: C = first identified cycle via depth-first search (DFS)
7: depedencies_with_no_facts_in_G = 0
8: for all tα 7−→ t ′α ∈ C do
9: if ¬Ft ′α (Π¬tα )∩G == 0 then

10: weakest-link = tα 7−→ t ′α
11: depedencies_with_no_facts_in_G++
12: end if
13: end for
14: if depedencies_with_no_facts_in_G == 1 then
15: remove weakest-link from ∆(Π)

16: else
17: return procedure failed
18: end if
19: end if
20: repeat
21: Algorithm 7
22: until DG(Π) is acyclic

The procedure for mitigating conflicting dependency relationships is presented in
Algorithm 7, an algorithm which acts as an extension to the procedure for identifying the
agent dependency relationships (described in Algorithm 6). We first generate a new graph
DG(Π) from the agent types in Td of Π and from ∆(Π) (lines 1 to 4). Then, we attempt to
find a cycle within DG(Π) via a depth-first search (lines 5 and 6). If a cycle is detected, we
identify its weakest link by determining if there is a single cycle dependency relationship
that has no propositions from its reachability impact set present in G (lines 7 to 11).

If such a dependency is found we remove it from the dependency relationships set
∆(Π) (lines 14 and 15). The mitigation algorithm fails and stops the whole procedure if
more than one such dependency is found in the same cycle (lines 16 and 17). We repeat
Algorithm 7 until no more cycles are found in DG(Π) (lines 21 and 22).
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Fig. 4.3 Unmitigated dependency relationships graph DG(RTAM_5_1_35)

Example 4.37. Our method for mitigating conflicting dependency relationships lever-
ages the structure formed by the top-level goals of each specific planning problem. For
example, when we apply Algorithm 7 to the ∆(RTAM_5_1_35) dependency relation-
ships set, we obtain the following cycle of conflicting dependency relationships in graph
DG(RTAM_5_1_35) (Figure 4.3):

accident_victim 7−→ ambulance
ambulance 7−→ accident_victim

Reachability impact set ¬Fambulance(Π¬accident_victim) has a single fact:

• (busy ambulance0)

Reachability impact set ¬Faccident_victim(Π¬ambulance) has a total of 175 facts with the
following format:

• (aided ?accident_victim) - 35 facts

• (delivered ?accident_victim) - 35 facts
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• (at ?accident_victim ?location) - 105 facts

None of the facts from ¬Fambulance(Π¬accident_victim) are found in G, but the (deliv-
ered ?accident_victim) facts from ¬Faccident_victim(Π¬ambulance) are found in G. Therefore
accident_victim 7−→ ambulance, the respective dependency relationship of reachability
impact set ¬Fambulance(Π¬accident_victim), is identified as the weakest link (Figure 4.3) and
removed from the dependency relationships set ∆(RTAM_5_1_35).

The conflicting dependency relationships mitigation procedure, however, is not guar-
anteed to remove the minimum number of edges from dependency graph DG(Π). The
procedure is a polynomial problem intended to eliminate all dependency cycles in a timely
manner by removing a sufficient number of edges rather than optimised for keeping the
maximum number of dependencies. A more robust procedure that removes the minimum
number of edges, however, would be NP-Hard, as such a procedure constitutes a search
problem that must parse all the subsets of the graph which would increase the run time
exponentially in the worst-case scenario.

4.1.6 Agent Classification

Section Overview In this section, we use the dependency relationships in the acyclic
graph DG(Π) obtained after eliminating the conflicting dependencies, as well as the agent
occurrence in the actions and the relaxation of a planning problem, to classify the agents
in Π. The classifications will be used in analysing the difficulty of planning problems
(described in Chapter 5) and in the decomposition procedures (Chapter 6).

4.1.6.1 Agent Dependency Status

Section Overview In this section, we present an agent classification based on the depen-
dency status in the agent dependency relationships.

Definition 4.38. A dead-end type is an agent type tα ∈ Td mapped to a node that does not
have any outgoing edges in the acyclic dependency relationships graph DG(Π) and has at
least one incoming edge in the acyclic dependency relationships graph DG(Π).

Definition 4.39. A parent type is an agent type tα ∈ Td mapped to a node that at least one
outgoing edge in the acyclic dependency relationships graph DG(Π).

Definition 4.40. A dead-end agent dαt is an agent that has a dead-end type t ∈ Td when
Td in Π.

Definition 4.41. A parent agent pαt is an agent that has a parent type t ∈ Td when Td in
Π.
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Definition 4.42. A dead-end agent fact fdαt is an agent fact represented by a proposition
or function that has dead-end agent dαt among one or more of its parameters and no parent
agents among its parameters.

Definition 4.43. A parent agent fact fpαt is a fact represented by a proposition or function
that has parent agent pαt among one or more of its parameters.

Definition 4.44. A dead-end agent goal gdαt is an agent goal represented by a proposition
or function that has dead-end agent dαt among one or more of its parameters and no parent
agents among its parameters.

Definition 4.45. A parent agent goal gpαt is an agent goal represented by a proposition or
function that has parent agent pαt among one or more of its parameters and no dead-end
agents among its parameters.

The classification used for constructing the decompositions in our thesis (Chapter 6)
is based on the agent dependency status (Algorithm 8 which has a supportive role and
computes in polynomial time). The classification is used to decompose the problem based
on a two-level hierarchy (detailed in Chapter 6 Sections 6.1, 6.3 and 6.4). We separate the
agents that have no influence on other agents (lines 3 and 4) from the agents that do (lines
6 and 7). We refer to the former as dead-end agents and to the latter as parent agents. We
then classify all objects, facts and goals according to their agent dependency status (line
10).

Algorithm 8 Algorithm for extracting Agent Dependency Status from the Dependency
Relationships

Input: DG(Π)
Output: All dαt , pαt , fdαt , fpαt , gdαt , gpαt and all dead-end/parent types in Π

1: for all nodes N ∈ DG(Π) do
2: tα = mapped to N
3: if N outgoing edges == 0 and N incoming edges >= 1 then
4: mark tα as a dead-end type
5: end if
6: if N outgoing edges >= 1 then
7: mark tα as a parent type
8: end if
9: end for

10: mark all agents, agent facts and agent goals as described in Definitions 4.40 to 4.45
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Fig. 4.4 Agent Dependency Status in acyclic graph DG(RTAM_5_1_35)

Example 4.46. In acyclic graph DG(RTAM_5_1_35), the nodes mapped to the acc_victim
and car agent types each have no outgoing edges and two incoming edges. Therefore,
applying Algorithm 8 to the acyclic graph DG(RTAM_5_1_35) will mark the acc_victim
and car agent types as dead-end types. All acc_victim and car agent facts and agent goals
will be marked as dead-end agent facts and dead-end agent goals.

However, the nodes mapped to the ambulance, police_car, fire_brigade and tow_truck
agent types each have outgoing edges. Therefore, applying Algorithm 8 to the acyclic graph
DG(RTAM_5_1_35) will mark the ambulance, police_car, fire_brigade and tow_truck
agent types as parent types. All ambulance, police_car, fire_brigade and tow_truck agent
facts and agent goals will be marked as parent agent facts and parent agent goals.
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4.1.6.2 Agent Hierarchical Priorities

Section Overview In this section, we present an agent classification based on the hierar-
chical position of agents in the agent dependency relationships.

Definition 4.47. priority(t) represents the hierarchical priority of an agent type tα ∈ Td

when Td in Π, with tα mapped to its corresponding node from DG(Π).

Another possible classification can be made using the distance of the agent types
from each other within DG(Π) in order to potentially decompose the problem based on a
multi-level hierarchy. While the decomposition and solving procedure described and used
in Chapter 6 uses the agent dependency status classification (presented in Section 4.1.6.1),
a multi-level hierarchy classification could also be used for more detailed decompositions.
The hierarchical priorities extraction procedure (Algorithm 9 which computes in polyno-
mial time) starts by first assigning priority(t) = 0 to the PDDL types which correspond to
the nodes in DG(Π) that do not have any incoming edges (lines 1 to 4). The identified
nodes will constitute roots for depth-first search traversals, with one traversal for each
root (line 5). During a traversal, each type corresponding to a newly discovered node gets
assigned a priority equal to its distance from the root of its respective subgraph (line 16).
If a node is reachable via multiple paths with distinct distances from the root in the same
subgraph, the node corresponding type gets assigned the priority of the largest distance
(lines 13 and 14). A type mapped to a node present in multiple subgraphs with distinct root
distances will keep the priority of the largest distance (lines 8 to 10). The dependencies
hierarchy grows proportionally to the max distance between the root and the discovered
nodes.
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Algorithm 9 Algorithm for extracting Agent Hierarchical Priorities from Dependency
Relationships

Input: DG(Π)
Output: priority(tα ) for all tα in Π

1: for all nodes N ∈ DG(Π) do
2: agent type tα = agent type mapped to N
3: if N incoming edges == 0 then
4: priority(tα ) = 0
5: do DFS from root N
6: for all nodes N′ discovered in DFS(N) do
7: agent type t ′α = agent type mapped to N′
8: if priority(t ′α ) != Null then
9: if (distance between N′ and N) > priority(t ′α ) then

10: priority(t ′α ) = distance between N′ and N
11: end if
12: else
13: if multiple paths from N to N′ then
14: priority(t ′α ) = distance of the longest path
15: else
16: priority(t ′α ) = distance between N′ and N
17: end if
18: end if
19: end for
20: end if
21: end for
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Fig. 4.5 Agent priorities in acyclic graph DG(RTAM_5_1_35)

Example 4.48. Applying Algorithm 9 to the acyclic graph DG(RTAM_5_1_35), we first ob-
tain priority(fire_brigade) = 0 and priority(police_car) = 0, as the two nodes have no incom-
ing edges (Figure 4.5). By conducting a depth-first search traversal of DG(RTAM_5_1_35)
starting from root fire_brigade, we obtain a subgraph with the following paths:

fire_brigade - acc_victim
fire_brigade – tow_truck – car
fire_brigade – ambulance – acc_victim

The nodes tow_truck, car and ambulance can be reached via a single path starting from
the root, so they get assigned as priorities their respective distance from the root: prior-
ity(tow_truck) = 1, priority(car) = 2 and priority(ambulance) = 1. However, acc_victim
can be reached via two paths starting from the root, therefore it gets assigned pri-
ority(acc_victim) = 2, the distance of the longest path ( fire_brigade – ambulance –
acc_victim).

By conducting a depth-first search traversal of DG(RTAM_5_1_35) starting from root
police_car, we obain a subgraph with the following paths:

77



police_car - ambulance - acc_victim
police_car – tow_truck – car
police_car – car

Nodes ambulance, acc_victim, tow_truck and car were discovered in both subgraphs,
therefore we have to assign as priorities the max distance from the root among both
subgraphs. However, in this example, all nodes have the same root distances in both
subgraphs, so no changes to the priorities are required.

4.2 Relaxation of Propositions and Events

Section Overview In this section, we describe two relaxations of planning problem
elements which will be used as decomposition heuristics. The relaxed format allows
the extraction of new relevant data from the planning problem which, as we will show
throughout our work, can be used for constructing decomposition heuristics. We will show
how the relaxed formats reflect how humans use environment similarities as a means to
catalogue incomplete information in order to create efficient reasoning models.

4.2.1 Relaxed Propositions and Relaxed Agent Propositions

Definition 4.49. A relaxed proposition is a proposition that has at least one of its parame-
ters in a lifted format.

Definition 4.50. A relaxed agent proposition is a relaxed proposition that has at least one
agent type among its lifted format parameters.

Relaxed propositions are propositions with at least one parameter relaxed to the form
of a type. In our work, we relax only propositions that contain one or more agents and
we call such propositions relaxed agent propositions. Each relaxed agent proposition will
have all parameters that are agents replaced with the corresponding agent type. All other
parameters will be kept in their original format. The final result is a boolean construct that
can encapsulate both objects and types, similarly to a predicate with constants.

Example 4.51. In the RTAM_5_1_35 planning problem, the proposition (at acc_victim0
accident_location2) contains the acc_victim0 agent. To obtain the relaxed agent proposi-
tion, we replace acc_victim0 with its type, acc_victim. The final construct is (at acc_victim
accident_location2). This construct allows us to encode a state in which we know the
location of an accident victim without knowing the exact victim: a state which can exist in
real-world environments.
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4.2.2 Relaxed Events and Relaxed Agent Events

Definition 4.52. A relaxed event is an event that has at least one of its parameters in a
lifted format.

Definition 4.53. A relaxed agent event is a relaxed event that has at least one agent type
among its lifted format parameters.

Similarly to relaxed propositions, relaxed events are events with at least one parameter
relaxed to the form of a type. In our work, we relax only events that contain or more
agents and we call such events relaxed agent events. Each relaxed agent event will have
all parameters that are agents replaced with their corresponding agent type. All other
parameters will be kept in their original format. The final result is a construct capable of
encapsulating both objects and types, similar to a partially grounded action [51]. Relaxed
events, however, are not limited to objects only belonging to connected maps, as opposed
to partially grounded actions where only such objects can be represented.

Example 4.54. In the RTAM_5_1_35 planning problem, a possible event could be
START(confirm_accident police_car0 acc_victim0 accident_location2). To obtain the
relaxed agent event, we replace the acc_victim0 agent with its type, acc_victim; we
also replace the police_car0 agent with its type, police_car. The final construct is
START(confirm_accident police_car acc_victim accident_location2). This construct allows
us to encode a state in which we know that a police car is used for confirming an accident
without knowing the exact victim or the specific police car, a state which can exist in
real-world environments.

The relaxations obtained in the previous examples will aid in determining similarities
between top-level goals based on the location of police cars and of the accident victims.
This in turn will allow us to group the goals in a way that, as we will show in the evaluation
section, generates solutions with efficient makespans.
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4.3 Landmarks Extraction and Relaxation

Section Overview In this section, we show the landmarks extraction procedure and
define the relaxed landmarks. Landmarks will be used in the decomposition procedure of
the dead-end agent goals (detailed in Chapter 6).

4.3.1 Landmarks Extraction

Definition 4.55. Lg is the set of landmarks composed of dead-end agent goal g and all
unique landmarks obtained when backchaining from g while ignoring time points.

Definition 4.56. An agent landmark is a landmark which has at least one agent among its
parameters.

Grouping all landmarks extracted by backchaining from a specific top-level goal is a
core component of the work presented in this thesis. The landmarks are extracted using a
slightly modified version of the backchaining technique described in Karpas et al. 2015
[42]. The procedure (Algorithm 10 which computes in polynomial time) conducts an
individual backchaining operation [50, 42] for each top-level goal present in goal state G
that is a dead-end agent goal gdαt (lines 1 to 4). Each gdαt constitutes the initial landmark
of its corresponding backchaining operation.

Algorithm 10 Algorithm for Landmarks Extraction
Input: Π

Output: A set of landmarks in Π and all Lg sets of each gdαt in Π

1: for all dead-end agent goals gdαt ∈ G when G in Π do
2: create set Lg

3: add gdαt to Lg

4: begin backchaining from gdαt

5: for each new derived landmark l do
6: if l ignoring time points /∈ Lg then
7: add l to Lg

8: else
9: stop backchaining

10: end if
11: end for
12: end for
13: return all found landmarks and all Lg sets
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It is important to note that exploring the duplicate landmarks among all top-level goals
could potentially yield interesting decompositions, but this avenue represents a future
area of research and was not explored in this thesis. In our work, we only backchain
from dead-end agent goals as the landmarks-based decomposition technique (Chapter 6)
aims to decompose only the dead-end agent goals. In Karpas et al. 2015, all discovered
landmarks are stored in the same set and compared against each other during backchaining.
However, our decomposition technique relies on identifying duplicate landmarks between
dead-end agent goals (detailed in Chapter 6 Section 6.4.1.1). Therefore, we create a set Lg

for each dead-end agent goal g ∈ G where we store g and all its derived fact and action
landmarks (lines 5 to 7). Each backchaining operation is halted as soon as a newly derived
landmark is already found in Lg if time points are ignored (lines 8 and 9). If we had
stored all landmarks in the same set (like the original Karpas et al. 2015 technique), then
the landmarks extraction operation would have stopped at the first discovered duplicate
landmark and the required duplicate landmarks between dead-end agent goals needed
for the decomposition procedure would have been missed. Algorithm 10 always outputs
correct landmarks, but it might not identify all landmarks present in a planning problem
(due to the inherited incompleteness of backchaining operations).
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4.3.2 Relaxed Landmarks and Relaxed Agent Landmarks

Section Overview After the completion of the landmarks extraction procedure, we
evaluate all fact and action landmarks to determine which of them are compatible for
relaxations and mark the ones that do as relaxed agent landmarks.

4.3.2.1 Relaxed Agent Fact Landmarks

Definition 4.57. A relaxed fact landmark is a fact landmark formed only of relaxed
propositions.

Definition 4.58. A relaxed agent fact landmark is a relaxed fact landmark formed only of
relaxed agent propositions.

The procedure for relaxing fact landmarks is shown in Algorithm 11, an algorithm with
a supportive role which computes in polynomial time. We parse all fact landmarks (line 1)
identified in the landmarks extraction procedure (Algorithm 10), search their parameters
for agents (line 2) and replace the found agents with their respective agent types (lines 4 to
6).

Example 4.59. During the landmark extraction procedure of the RTAM_5_1_35 planning
problem, we identify the fact landmark (at acc_victim0 accident_location2). Parsing the
parameters of the landmark, we identify acc_victim0 as a agent with the acc_victim agent
type, therefore the landmark is compatible for relaxation. We then replace acc_victim0
with its type, acc_victim to obtain the relaxed agent fact landmark (at acc_victim acci-
dent_location2).

Algorithm 11 Algorithm for Relaxing Fact Landmarks
Input: All αt , tα and all fact landmarks extracted from Π with Algorithm 10
Output: The relaxed agent fact landmarks corresponding to all fact landmarks extracted
from Π with Algorithm 10

1: for all fact landmarks l extracted from Π do
2: if ∃ parameter p ∈ l such that p == agent then
3: l == relaxed agent fact landmark
4: for all parameters p ∈ l do
5: if type of p == agent type then
6: p = type of p
7: end if
8: end for
9: end if

10: end for
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4.3.2.2 Relaxed Agent Action Landmarks

Definition 4.60. A relaxed action landmark is an action landmark formed only of relaxed
events.

Definition 4.61. A relaxed agent action landmark is a relaxed action landmark formed of
only relaxed agent events.

Action landmarks are relaxed via the procedure described in Algorithm 12 (an algorithm
with a supportive role which computes in polynomial time), similar to the relaxation of fact
landmarks. We parse all action landmarks (line 1) identified in the landmarks extraction
procedure (Algorithm 10), search their parameters for agents (line 2) and replace the found
agents with their respective agent types (lines 4 to 6).

Example 4.62. When running the landmark extraction procedure of planning problem
RTAM_5_1_35, we identify the action landmark START(confirm_accident police_car0
acc_victim0 accident_location2). Parsing the parameters of the landmark, we identify
acc_victim0 and police_car0 as agents, therefore the landmark is compatible for relaxation.
We then replace acc_victim0 with its type, acc_victim, and replace police_car0 with its
type, police_car to obtain the relaxed agent action landmark START(confirm_accident
police_car acc_victim accident_location2).

Algorithm 12 Algorithm for Relaxing Action Landmarks
Input: All αt , tα and all action landmarks extracted from Π with Algorithm 10
Output: The relaxed agent action landmarks corresponding to all action landmarks
extracted from Π with Algorithm 10

1: for all action landmarks l extracted from Π do
2: if ∃ parameter p ∈ l such that p == agent then
3: l == relaxed agent action landmark
4: for all parameters p ∈ l do
5: if type of p == agent type then
6: p = type of p
7: end if
8: end for
9: end if

10: end for
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4.3.3 Extracting Relaxed Agent Landmarks in a Connected Map

Section Overview In this section, we present an improved extraction procedure for
relaxed landmarks when a connected map is present in the planning problem.

Definition 4.63. A unique parent agent group µpαt represents a set of parent agents pαt

in Π where µpαt contains only one pαt for each parent type t ∈ Td when t represents the
type of one or more parent agents defined in Π.

Agents provide the option to improve the relaxed agent landmarks extraction process
when a connected map [57] is present in a planning problem Π and when there are no
irreversible state transitions in Π. If the map is connected, then a single unique parent
agent group µpαt is capable of reaching every part of the map and is sufficient to solve
all dead-end agent goals [59] (provided there are no irreversible state transitions in Π).
Therefore, using a unique parent agent group as the only agents in Π is sufficient to extract
at least the same number of landmarks as in the case of using multiple or all parent agents
with the same type when backchaining from the same dead-end agent goals. This is
possible because regardless if we use multiple parent agents per type or a single parent
agent per type when extracting relaxed landmarks, all found agent landmarks based on
the same predicate or the same action and with identical non-agent parameters will get
reduced to a single landmark when relaxed.

The procedure for extracting landmarks when a connected map is present in Π and
when there are no irreversible state transitions in Π(Algorithm 13 which computes in
polynomial time and is an optional component of the thesis) removes all but one of the
parent agents with the same dynamic type from the planning problem (lines 1 to 7). When
removing a parent agent, we remove all propositions, functions and goals which contain one
or more parameters consisting of the target parent agent from the planning problem (line
6). Afterwards, we follow the same steps described in Algorithm 10 (line 11). Similarly to
Algorithm 10, Algorithm 13 always outputs correct landmarks, but it might not identify
all landmarks present in a planning problem (due to the incompleteness of backchaining
operations).
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Algorithm 13 Algorithm for Landmarks Extraction in a Connected Map
Input: Π

Output: A set of landmarks in Π (must be relaxed after) and all Lg sets of each gdαt in
Π

1: if connected_map (Π) == true and no irreversible state transitions in Π then
2: for all types t ∈ Td when Td in Π do
3: nαt = number of αt in Π when αt is a parent agent
4: while nαt > 1 do
5: ¬αt = random parent agent αt in Π

6: remove ¬αt and all elements which contain one or more ¬αt from Π

7: nαt = number of αt in Π when αt is a parent agent
8: end while
9: end for

10: end if
11: run Algorithm 10

Example 4.64. In the RTAM_5_1_35 planning problem, all the tow_truck dynamic type
agents are : tow_truck0, tow_truck1, and tow_truck2. The agents are used to populate the
initial state with facts:

(= (speed tow_truck0) 0.8)
(= (speed tow_truck1) 0.8)
(= (speed tow_truck2) 0.8)
(available tow_truck0)
(available tow_truck1)
(available tow_truck2)
(at tow_truck0 garage_halifax)
(at tow_truck1 garage_huddersfield)
(at tow_truck2 garage_brighouse)

The agents are also used to populate the goal state with goals:

(at tow_truck0 garage_halifax)
(at tow_truck1 garage_huddersfield)
(at tow_truck2 garage_brighouse)

Running the first part of Algorithm 13 on the RTAM_5_1_35 planning problem and
stopping right before running Algorithm 10 will yield a new planning problem with only
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one random agent of the tow_truck parent type: tow_truck0 for the purpose of this example.
All facts with parameters of the tow_truck parent type corresponding to the agents that
were discarded during the random selection have been removed from the new planning
problem. The remaining initial state facts with tow_truck dynamic type parameters are:

(= (speed tow_truck0) 0.8)
(available tow_truck0)
(at tow_truck0 garage_halifax)

All goals with parameters of the tow_truck parent type corresponding to the agents that
were discarded during the random selection have also been removed from the new planning
problem. The remaining goal with tow_truck dynamic type parameters is:

(at tow_truck0 garage_halifax)

Example 4.65. Running Algorithm 10 on the RTAM_5_2_35 planning problem discovers
the ν action landmark which is a disjunction of multiple START events :

ν = OCCURS (START(confirm_accident police_car0 acc_victim0 accident_location2)
START(confirm_accident police_car1 acc_victim0 accident_location2)
START(confirm_accident police_car2 acc_victim0 accident_location2)
START(confirm_accident police_car3 acc_victim0 accident_location2)
START(confirm_accident police_car4 acc_victim0 accident_location2))

Backchaining from ν using the third derivation rule [42] means exploring the conditions
of each of the events to see if they are common among all disjunctive events. Each event in
ν has its conditions corresponding to the parameter format of the confirm_accident action
(Figure 4.6).
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Fig. 4.6 RTAM domain confirm_accident action

The conditions with the predicate (at start (at ?subject ?accident_location)) are the
same in all events, as the acc_victim0 and accident_location2 agents are the condition
parameters for all of the events. Therefore, the fact landmark HOLDS ((at acc_victim0
accident_location2)) gets extracted and a new backchaining operation is started from
it. The conditions with the predicate (at start (uncertified ?subject)) are also the same
in all events, as the acc_victim0 agent is the condition parameter for all of the events.
Therefore, the fact landmark HOLDS ((uncertified acc_victim0)) also gets extracted and a
new backchainig operation is started from it.

However, the conditions with the predicate (at start (at ?police_car ?accident_location))
are not the same in all events, as each event must have its respective police_carX agent
as a condition parameter. Therefore, a fact landmark with the (at start (at police_carX
accident_location2)) format will not get extracted when backchaining from ν .

On the other hand, RTAM_5_2_35 has a connected map, so Algorithm 13 is compatible
for extracting landmarks. Running Algorithm 13 on the RTAM_5_2_35 planning problem
no longer discovers the ν disjunctive action landmark as we no longer have multiple agents
with the police_car dynamic type. Instead, we discover the λ action landmark represented
by the only agent with the police_car dynamic type - police_car0 for the purpose of this
example:

λ = OCCURS (START(confirm_accident police_car0 acc_victim0 accident_location2)

Backchaining from λ using the third derivation rule extracts the HOLDS ((at acc_victim0
accident_location2)) and HOLDS ((uncertified acc_victim0)) fact landmarks as before.
However, the backchaining also extracts the HOLDS ((at police_car0 accident_location2))
fact landmark, as we have only one event in λ and, therefore, only one condition with the
predicate (at start (at ?police_car ?accident_location)) in the derivation of λ . The addi-
tionally discovered HOLDS ((at police_car0 accident_location2)) fact landmark triggers
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its own backchaining operation which adds even more landmarks which in turn will trigger
more backchaining operations (details in the Evaluation chapter).

It is important to note that Algorithm 13 can be applied only when the aim is to relax
all compatible landmarks, as in this case both ν and λ will get relaxed to the identical
OCCURS (START(confirm_accident police_car acc_victim accident_location2) relaxed
agent action landmark. Therefore, using one or multiple agents for the police_car dynamic
type will provide the same contribution to the tactical decomposition process (Chapter 6).
Also, the additionally discovered HOLDS ((at police_car0 accident_location2)) will get
relaxed to the HOLDS ((at police_car accident_location2)) relaxed agent fact landmark,
which is representative for the relaxation of any of the police_car agents, but would not
constitute a valid landmark without relaxation.

4.4 Summary of Chapter Contributions

In this chapter, we introduced new formally defined AI planning technical concepts along
with automated extraction procedures that generate information to be used as ’advice’ for
evaluating the difficulty of a problem (described in Chapter 5) and for decomposing and
abstracting a planning problem (described in Chapter 6).

Specifically, we used dynamic and static objects to identify and formally define the
agents, the inactive dynamic objects, the necessary static objects and the unnecessary
static objects of a planning problem (Sections 4.1.1 and 4.1.2). We presented a problem
’cleaning’ technique for removing potentially redundant elements that can interfere with
the extraction of the ’advice’ and with the solution search (Section 4.1.3).

We illustrated a technique for extracting the dependency relationships among agents
based on the reachability impact observed when removing all agents with the same type
from a planning problem (Section 4.1.4). We also showcased a fast procedure for mitigating
potential conflicting agent dependency relationships (Section 4.1.5). Furthermore, we used
the agent dependency relationships to create techniques that classify the agents according
to dependency status and hierarchical positioning within the dependency graph (Section
4.1.6).

We introduced the ’relaxed proposition’ and ’relaxed event’ PDDL encodings which
support both grounded and lifted parameters in order to allow the representation of partially
complete environment information in PDDL (Section 4.2). The encodings were used to
construct a new type of landmark ’relaxed’ based on the agents it may contain (Section
4.3.2).

Furthermore, we provided a landmarks extraction technique (Section 4.3) that extracts
the landmarks from each specific top-level goal in order to identify the duplicate landmarks
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among top-level goals (which are to be used as criteria for goal clustering from PDDL
encoded data, as described in Chapter 6 Section 6.4.1.1). We also presented a faster
extraction technique for relaxed landmarks in problems that have a connected map and no
irreversible state transitions (Section 4.3.3).
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Chapter 5

Estimating the Difficulty of Planning
Problems

Chapter Overview In this chapter, we use the agent classifications and the agent depen-
dency relationships defined in the previous chapter as well as the entanglement among
objects to identify and formalise potential difficulty metrics for evaluating the difficulty of
a planning problem.

5.1 Entangled Objects

Section Overview The objects in a planning problem can be classified based on their
roles as parameters of the same executable action of a planning problem. Two or more
objects are considered entangled if their instantiated types represent the types of the
parameters of the same action in at least one executable action of the planning problem.
We only consider executable actions, as actions that are not executable will never expand
the state space during a planner solution search.

Definition 5.1. An executable action a ∈ A when A in Π is an action that is present in at
least one action layer of the fully expanded relaxed planning graph of a planning problem
Π.

Definition 5.2. An instantiated type ti is a type t ∈ T that has at least one object instance
with type t in a planning problem Π.

Definition 5.3. Two or more instantiated types ti1, ti2, ... , tin ∈ Td are entangled if there is
at least one executable action a ∈ A when A in Π that has at least a parameter with each of
the types ti1, ti2, ... , tin. An instantiated type ti ∈ Td can be entangled with itself if there is
an action a ∈ A when A in Π that has two or more parameters with type ti.
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Definition 5.4. Two or more objects are entangled if they are parameters in at least one
precondition or at least one effect of at least one executable action a ∈ A when A in Π.

The above usage of the entangled term should not be confused with other AI Planning
concepts that use the same word for their identification - such as in the work of Chapra et
al. (2009).

Example 5.5. In the DLOG-5-5-10 planning problem, all truck and package agents are
entangled objects as they are both parameters in the LOAD-TRUCK and UNLOAD-TRUCK
actions and the two actions are executable actions as they appear in the fully expanded
relaxed planning graph of the planning problem. If, however, we consider a version of
the DLOG-5-5-10 planning problem that has only one truck located at a new location that
has no packages and is disconnected from all other locations that have packages, then the
action LOAD-TRUCK and UNLOAD-TRUCK will not be part of the fully expanded relaxed
planning graph of the modified DLOG-5-5-10 planning problem as the truck will never
be in the same location as any of the packages to be able to perform a loading operation
and will never have a loaded package to perform an unloading operation. In this case, the
truck and package agents are not classified as entangled objects even though they are both
parameters in the LOAD-TRUCK and UNLOAD-TRUCK actions as the actions are not
executable.

5.2 Dynamic Objects Test Problems

Section Overview This section presents the intuition behind the difficulty estimation ap-
proach as well as describes the structure of the test problems used to conduct the difficulty
analysis.

The IPC 2014/2018 planning problems and results show that planners generally stop
finding solutions to problems that have an increased number of initial state facts and goals
relative to the number of initial state facts and goals in the solved problems. However,
identifying generic planning problem difficulty metrics is not straightforward as it is
possible for a problem which is hard to solve by one type of planner to be easily solved by
another planner that uses a different technique. To tackle this issue, we have opted for a
specific, rather than a generic, approach for identifying some of the scalability difficulty
metrics of planning problems. By focusing on a specific planning problem with a structure
similar to many real-world problems when solved by multiple state-of-the-art temporal
planners we obtain difficulty metrics that are potentially compatible with other similar
planning problems. Therefore, we have created a set of Driverlog test problems in which
we systematically modify the number of dynamic objects and attempt to solve the test
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problems with the Optic, Itsat, Temporal Fast Downward (TFD) and Yahsp3 temporal
planners in order to empirically identify some of the difficulty metrics of Driverlog. As
we will show in the next chapters, the difficulty metrics obtained from the Driverlog test
problems also apply to other planning problems with a similar structure to Driverlog.

All dynamic objects test problems have the static environment of the DLOG-5-5-10
IPC 2014 benchmark problem. The test problems are divided into two batches. In the first
batch, we gradually increase the agents and corresponding agent facts in each problem and
add an (at agent location) agent goal (as the goals in the IPC benchmark problems) for
each extra-added agent. In the second batch, we gradually increase the dynamic objects
in each problem without adding any corresponding achievable goals for the extra added
dynamic objects. The dynamic objects, agents and agent goals are added evenly among all
ten locations present in the DLOG-5-5-10 problem with no agent having its initial state
location the same as its goal state location. In both batches, the test problems are divided
into seven sets which cover all possible combinations of Driverlog dynamic types:

1. Set P contains problems focused only on dynamic objects with the package dynamic
type in which we gradually increase the number of packages.

2. Set T contains problems focused only on dynamic objects with the truck dynamic
type in which we gradually increase the number of trucks.

3. Set D contains problems focused only on dynamic objects with the driver dynamic
type in which we gradually increase the number of drivers.

4. Set TP contains problems focused on dynamic objects with the truck dynamic type
and package dynamic type in which we gradually increase the number of trucks and
packages.

5. Set DP contains problems focused on dynamic objects with the driver dynamic type
and package dynamic type in which we gradually increase the number of drivers and
packages.

6. Set DT contains problems focused on dynamic objects with the driver dynamic type
and truck dynamic type in which we gradually increase the number of drivers and
trucks.

7. Set DTP contains problems focused on all three driver, truck and package dynamic
types in which we gradually increase the number of drivers, trucks and packages.

Each test problem is executed on a Dell XPS 15 9560 laptop with 32GB total and
unrestricted RAM and a threshold of 300 seconds. The purpose of the test is to evaluate the
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impact of the number of dynamic objects in each test problem on the capacity of planners
to find a solution in the allocated time.

5.3 Difficulty Impact of Agents Present in the Goal State

Section Overview In this section, we analyse the impact of the number of agents that
are present in the goal state of a planning problem on the difficulty of the problem.

In the first batch, we focused on the impact of adding agents and agent facts together
with a corresponding (at agent location) goal (as the goals in the IPC benchmark problems)
for each added agent. Each test problem will only have the minimum required dynamic
objects for the problem to be solvable. For example, all problems in set T will have a driver
agent with no corresponding goal as a truck needs a driver to travel between locations. In
set D, however, we will have no trucks or packages, as drivers do not need a truck or a
package to travel between locations.

Each of the seven sets has gradually increasing problems with a maximum of 60 added
agents and 60 corresponding achievable goals per problem regardless of the number of
targeted types in the set so we can accurately compare the impact of the type of agents on
the number of solved problems in each of the seven sets.

In sets P, T, and D we focus only on one type so we increase each problem by one
agent with a total of 60 problems per set with each problem having a score of 1 point (one
point per added agent) with a total set score of 60.

In sets TP, DP, and DT we focus on two types so we increase each problem by two
agents, one for each type, with a total of 30 problems per set with each problem having a
score of 2 points (one point per added agent) with a total set score of 60.

In set DTP we focus on three types so we increase each problem by three agents, one
for each type, with a total of 20 problems with each problem having a score of 3 points
(one point per added agent) in order to maintain the same number of total agents and the
same total score of 60 as in the other sets.

All dynamic objects added in the first batch are agents as they have corresponding
achievable goals in the goal state so they will become parameters in the preconditions
of the relaxed plan of their respective single dynamic object per dynamic type planning
problem Πdo. However, the agents in each set might be parent, dead-end, or regular agents
depending on specific dependency relationships in each set.

The results of running the Driverlog Test Problems on the selected planners can be
seen in Figure 5.1, Table 5.1.
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Fig. 5.1 Problems From the First Batch Solved By Each Planner within a Threshold of 300
Seconds. X Axis: Number of Added Agents with corresponding achievable agent goals in
the Problems Solved by Each Planner. Y Axis: Set Id.
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Set Name P T D T P D P D T D T P
No of Sampled
Problems

60 60 60 30 30 30 20

Agent Gradual
Increase

1 1 1 2 2 2 3

Goals Gradual
Increase

1 1 1 2 2 2 3

Score per
Problem

1 1 1 2 2 2 3

Optic Score 60 58 60 32 18 6 9
Itsat Score 60 11 60 12 60 42 51
TFD Score 46 17 60 8 22 2 3
Yahsp3 Score 60 60 60 36 60 20 18
Total Obtained
Score

226 146 240 88 160 70 81

Total Possible
Score

240 240 240 240 240 240 240

% Solved
Problems

94.17% 60.83% 100.00% 36.67% 66.67% 29.17% 33.75%

Table 5.1 Results of the solving attempts of the first batch of test problems for each planner
when the minimum gradual increase is considered.

The package agents in set P are dead-end agents due to the driver 7−→ package and
truck 7−→ package dependency relationships of each test problem in set P. The results
of set P show a minimal decrease in the total possible solved planning problems with a
94.17% success rate. Therefore, increasing the number of dead-end package agents with
corresponding achievable agent goals mildly increases the difficulty of a planning problem.

The driver agents in set D are neither parent nor dead-end agents as there are no
dependency relationships present in any of the test problems in set D. The results of set D
show no decrease in the total possible solved planning problems with a 100.00% success
rate. However, the planning time of the test problems in set D tends to increase along
with the number of agents per problem for all the planners. To accurately compare the
planning time increase among distinct planners, we have normalised the planning times of
each planner so that each entry lies in a range between 0 and 1. This has been achieved by
applying the following formula to each planning time θ obtained by each planner p:

θ = (θ - minp) / (maxp - minp)
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In the above formula, minp is the minimum planning time obtained by p in all test
problems from a specific set and maxp is the maximum planning time obtained by p in
all test problems from the same specific set. The normalised planning times (Figure 5.2)
illustrate a similar rate of increase in all planners at every test problem, which shows that the
difficulty increase is universal irrespective of the employed (distinct) solving technique and
dependent on the number of added elements. Therefore, increasing the number of driver
agents with corresponding achievable agent goals increases the difficulty of a planning
problem even if the agents are not in a dependency relationship. The similarity of the
solving rate between set D and set P is because the agents added in both sets are entangled
only in executable actions with three parameters.

Fig. 5.2 Normalised Planning Time of the Test Problems in Set D. X Axis: Number of
Driver Agents per Problem. Y Axis: Normalised Planning Time

The truck agents in set T are also dead-end agents due to the driver 7−→ truck depen-
dency relationship and due to truck 7−→ package not being present in the test problems of
set T. The results of set T show a significant decrease in the total possible solved planning
problems with only a 60.83% success rate. Therefore, increasing the number of dead-end
truck agents with corresponding achievable agent goals significantly increases the difficulty
in comparison to increasing the number of dead-end package agents with corresponding
achievable goals from set P when the total number of agents is the same. The significant
difference between the success rate of set T and the rate of sets D and P is because in set
T the added truck agents are entangled along three other objects in the DRIVE-TRUCK
executable action which expands the preprocessing and search operation more than the
added package agents in set P and the added driver agents in set D that are only entangled
in executable actions with three parameters.
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In set DP, the driver agents are parent agents and the package agents are dead-end
agents due to the driver 7−→ package dependency relationship of each test problem in
set DP. The results of set DP show a significant decrease in the total possible solved
planning problems with only a 66.67% success rate. Therefore, increasing the driver parent
agents with corresponding achievable goals together with the package dead-end agents
with corresponding achievable goals significantly increases the difficulty.

In set TP, the truck agents are parent agents and the package agents are dead-end agents
due to the truck 7−→ package dependency relationship present in each test problem in set
TP. The results of set TP show a drastic decrease in the total possible solved planning
problems with only a 36.67% success rate. Therefore, increasing the truck parent agents
with corresponding achievable goals together with the package dead-end agents with
corresponding achievable goals drastically increases the difficulty.

The significant difference between the success rate of set DP and set TP, even though
they have the same number of parent types and dead-end types and the same ratio and
quantities of agents is because the truck parent agents and package dead-end agents
increased in set TP are entangled objects as they are both parameters in the LOAD-TRUCK
and UNLOAD-TRUCK executable actions and exponentially expand the preprocessing
and state space during a planner solution search as a consequence. In contrast, the driver
parent agents and package dead-end agents increased in set DP are not entangled objects
as there is no action in Driverlog that has both the driver and package parameters so the
preprocessing and expansion of the state space are not as severe as in set TP.

In set DT, the truck agents are dead-end agents and the driver agents are parent agents
due to the driver 7−→ truck dependency relationship present in each test problem in set DT.
The results of set DT show a drastic decrease in the total possible solved planning problems
with only a 29.17% success rate. The driver parent agents and truck dead-end agents
increased in set DT are entangled objects as they are both parameters in the four-parameter
DRIVE-TRUCK executable action and exponentially expand the preprocessing and state
space during a planner solution search as a consequence. Therefore, even if we have the
same parent to dead-end agent ratio as in sets TP and DP, the difficulty is significantly more
increased when we increase two types of entangled objects in an executable action with
four parameters than when we increase two types of entangled agents when the executable
actions have three parameters when the total number of agents is the same.

In set DTP all three dependency relationships are present, so the packages agents are
dead-end agents and the truck and driver agents are parent agents. The results of set DTP
show a drastic decrease in the total possible solved planning problems with only a 33.75%
success rate. The driver and truck parent agents increased in set DTP are entangled objects
and the truck parent agents and package dead-end agents increased in set DTP are also
entangled objects. The slightly better results in set DTP than in set DT can be attributed to
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having fewer added agents entangled in the four-parameter DRIVE-TRUCK executable
action in set DTP than in set DT.

The overall results in the first batch show that an increase in the number of agents with
corresponding achievable agent goals can lead to a significant decrease in the total possible
solved planning problems particularly when the agents are entangled objects. The overall
results also show that increasing multiple types of agents and achievable corresponding
achievable agent goals can lead to a drastic decrease in the total possible solved planning
problems particularly when the types of the increased agents are entangled types.

5.4 Difficulty Impact of Agents and Inactive Dynamic Ob-
jects not Present in the Goal State

Section Overview In this section, we analyse the impact of the number of agents and
inactive dynamic objects that are not present in the goal state of a planning problem on the
difficulty of the problem.

In the second batch, we focus on the impact of dynamic objects without corresponding
goals on the difficulty of a planning problem. Each test problem has a mandatory agent
per dynamic type with corresponding initial state facts and goals. Then, each test problem
gets added extra dynamic objects and facts without corresponding goals. Not adding
corresponding achievable goals increases the required number of extra added dynamic
objects by one order of magnitude in order to obtain a noticeable impact on the difficulty
of the test problems in comparison to the first batch.

In sets P, T, and D we focus only on one type so we increase each problem by ten
dynamic objects with a total of 60 problems per set with each problem having a score of
10 points (one per extra added agent) with a total set score of 600.

In sets TP, DP, and DT we focus on two types so we increase each problem by two
dynamic objects, one for each type, with a total of 30 problems per set with each problem
having a score of 20 points (one per extra added dynamic object) with a total set score of
600.

In set DTP we focus on three types so we increase each problem by three dynamic
objects, one for each type, with a total of 20 problems with each problem having a score of
30 points (one per extra added dynamic object) in order to maintain the same number of
total dynamic objects and the same total score of 600 as in the other sets.

The extra driver and truck dynamic objects added in the problems of the second
batch are parent agents as their types are parent types and there are no elements in any
of the problems to prevent any of the parent agents from becoming parameters in the
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preconditions of the relaxed plan of their respective single dynamic object per dynamic
type planning problem Πdot . The extra added package dynamic objects, however, are
inactive dynamic objects as they have no corresponding achievable goals in the goal state
of the test problems so they will not become parameters in the preconditions of the relaxed
plan of their respective single dynamic object per dynamic type planning problem Παt .
Each set has a maximum of 600 added dynamic objects per problem regardless of the
number of targeted agent types in the set so we can accurately compare the impact of the
type of agents on the number of solved problems in each of the seven sets.

The results of running the Driverlog Test Problems on the selected planners can be
seen in Figure 5.3, Table 5.2.

Fig. 5.3 Problems From the Second Batch Solved By Each Planner within a Threshold of
300 Seconds. X Axis: Number of Added Agents without corresponding achievable agent
goals in the Problems Solved by Each Planner. Y Axis: Set Id.
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Set Name P T D T P D P D T D T P
No of Sampled
Problems

60 60 60 30 30 30 20

Object Gradual
Increase

10 10 10 20 20 20 30

Goal Gradual
Increase

0 0 0 0 0 0 0

Score per
Problem

10 10 10 20 20 20 30

Optic Score 600 600 600 160 600 20 30
Itsat Score 600 270 100 540 200 40 60
TFD Score 600 30 240 60 480 60 90
Yahsp3 Score 600 600 600 240 600 180 210
Total Obtained
Score

2400 1500 1540 1000 1880 300 390

Total Possible
Score

2400 2400 2400 2400 2400 2400 2400

% Solved
Problems

100% 62.50% 64.17% 41.67% 78.33% 12.50% 16.25%

Table 5.2 Results of the solving attempts of the second batch of test problems for each
planner.

The results of set P show no decrease in the total possible solved planning problems
with a 100% success rate. However, the planning time of the test problems in set P (Figure
5.4) tends to increase along with the number of inactive dynamic objects per problem
for most planners. Therefore, increasing the number of package inactive dynamic types
without corresponding achievable agent goals impacts the difficulty of a planning problem.
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Fig. 5.4 Normalised Planning Time of the Test Problems in Set P. X Axis: Number of
Package Inactive Dynamic Objects per Problem. Y Axis: Normalised Planning Time

The results of sets T and D show a significant decrease in the total possible solved
planning problems with only a 62.5% and a 64.17% success rate. Therefore, increasing
one type of parent agents without corresponding achievable goals significantly increases
the difficulty of a planning problem in comparison to increasing the number of one type of
inactive dynamic objects without corresponding achievable goals when the total number of
dynamic objects is the same. The significant difference between the success rate of sets
T and D to that of set P is because in sets T and D the added truck and driver agents are
entangled along three other objects in the DRIVE-TRUCK executable action which expands
the preprocessing and search operation more than the added package inactive dynamic
objects in set P that are only entangled in executable actions with three parameters.

The results of set DP show a significant decrease in the total possible solved planning
problems with only a 78.3% success rate. Therefore, even if we have a 0.5 ratio of parent
agents in comparison to set D where we have the same parent type but with a ratio of 1,
increasing one type of parent agents without corresponding achievable goals together with
one type of inactive dynamic objects without corresponding achievable goals also impacts
the difficulty of a planning problem.

The results of set TP show a drastic decrease in the total possible solved planning
problems with only a 41.67% success rate. Therefore, even if we have a 0.5 ratio of parent
agents in comparison to set T where we have the same parent type but with a ratio of 1,
increasing one type of parent agents without corresponding achievable goals together with
one type of inactive dynamic objects without corresponding achievable goals also impacts
the difficulty of a planning problem.
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The significant difference between the success rate of set DP and set TP is also present
in the second batch for the same reason as in the first batch. Even though the two sets
have the same number of dynamic types and the same ratio and quantities of agents and
inactive dynamic objects, the truck parent agents and package inactive dynamic objects
increased in set TP are entangled objects as they are both parameters in the LOAD-TRUCK
and UNLOAD-TRUCK executable actions and exponentially expand the preprocessing and
state space during a planner solution search as a consequence. In contrast, the driver parent
agents and package inactive dynamic objects increased in set DP are not entangled objects
as there is no action in Driverlog that has both the driver and package parameters so the
expansion of the preprocessing and state space is not as severe as in set TP. Therefore,
even if the package dynamic objects are inactive, they still contribute to the difficulty of
the problems in TP due to their entanglement with the truck agents.

The results of set DT show a drastic decrease in the total possible solved planning
problems with only a 12.5% success rate. The driver and truck parent agents increased
in set DT are entangled objects as they are both parameters in the BOARD-TRUCK,
DISEMBARK-TRUCK and DRIVE-TRUCK executable actions and exponentially expand
the preprocessing and state space during a planner solution search as a consequence.
Therefore, even if we have the same parent agent ratio of 1 as in sets T and D, the difficulty
is significantly more increased when we increase two types of entangled objects that are
parent agents without corresponding achievable goals in comparison to when we increase
only one type of parent agent without corresponding achievable goals when the total
number of agents is the same.

The results of set DTP show a drastic decrease in the total possible solved planning
problems with only a 16.25% success rate. The driver and truck parent agents increased in
set DTP are entangled objects and the truck parent agents and package inactive dynamic
objects increased in set TP are also entangled objects. Therefore, even if we have only
a 0.66 parent agent ratio in comparison to sets T and D where we have a parent agent
ratio of 1, the difficulty is significantly more increased when we increase all three types
of entangled objects without corresponding achievable goals in comparison to when we
increase only one type of parent agent without corresponding achievable goals when the
total number of objects is the same. Also, the slightly better results in set DTP than in set
DT can be attributed to having fewer added parent agents entangled in the four-parameter
DRIVE-TRUCK executable action in set DTP than in set DT.

The results in the second batch show that an increase in the number of dynamic objects
without corresponding achievable agent goals can lead to a decrease in the total possible
solved planning problems, particularly when the dynamic objects are entangled objects.
The results in the second batch also show that increasing multiple types of dynamic objects
without corresponding achievable agent goals can lead to a decrease in the total possible
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solved planning problems particularly when the types of the increased dynamic objects are
entangled types.

Overall, the results in both batches show that the impact of dynamic objects agents
without corresponding achievable goals is approximately an order of magnitude lower than
the impact of agents with corresponding achievable goals in most of the sets.

5.5 Static Objects Test Problems

Section Overview In this section, we analyse the impact of the number of static objects
in a planning problem on the difficulty of the problem.

We will now evaluate the impact of the number of static objects on the difficulty of
Driverlog. The static objects in Driverlog are the objects with the location static type. We
will start with a base test problem that has two locations, reachable by trucks, that are
connected with each other via both paths and links. The base test problem also has a single
agent with corresponding initial state agent facts and goals for each of the three dynamic
types present in Driverlog (Figure 5.5, goals are highlighted in green and the relaxed plan
is highlighted in red).

Fig. 5.5 The objects, initial state and goal state of the base test problem.

The single dynamic object per dynamic type planning problem for the driver, truck
and package dynamic objects in the base problem will be the same problem as the base
problem (as there is only one object per dynamic type) and will have the same relaxed plan
as the base problem. Each static object in the base problem is a necessary static object as
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it respects the criteria of being a condition in at least one action in the relaxed plan of at
least a single dynamic object per dynamic type planning problem derived from the base
problem.

Fig. 5.6 The relaxed planning graph and relaxed plan (highlighted in red) of the base test
problem and of all single dynamic object per dynamic type planning problems derived
from the base test problem. ’...’ represents facts or actions added in the previous fact or
action layers. The facts highlighted in green represent the goals of the problem.

The optimal plan for the base test problem can be observed in Figure 5.5.

Fig. 5.7 The optimal plan of the base test problem when ε = 0.001.

We then create additional test problems by gradually increasing the number of locations
in the base test problem. Each new test problem gets added two new locations reachable by
trucks, that are connected with each other and every other location in the problem via both
paths and links in order to obtain a set of 20 problems with locations reachable by trucks
ranging from 2 to 40. The single dynamic object per dynamic type planning problems
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derived from each additional test problem will have the same relaxed plan (highlighted
in red in Figure 5.8) as the equivalent problems derived from the base test problem: the
relaxed plan of the based case problem. Also, the optimal plan for each additional test
problem will be the same as the base test problem. This happens because the drive-truck
and move actions in the Driverlog IPC 2014 version have fixed durations and all locations
are connected with each other in every problem so there is an equal transportation cost
among locations. Therefore, adding extra locations brings no benefit to finding a solution,
and all gradually added locations are unnecessary static objects (present in the facts
highlighted in blue in Figure 5.8) as they do not appear in any condition or effect of any
action in the relaxed plan of any single dynamic object per dynamic type planning problem
derived from any additional test problem.

Fig. 5.8 The relaxed planning graph and relaxed plan (highlighted in red) of all test
problems and of all single dynamic object per dynamic type planning problems derived
from all test problems. ’...’ represents facts or actions added in the previous fact or action
layers of the base test problem. Facts and actions in square brackets (highlighted in blue)
represent the facts and actions added for the additional test problems (2 ≤ i,j ≤ max
location of additional test problem; i ̸= j). The facts highlighted in green represent the
goals of the problem.

The test problems are executed with the Optic, Itsat, Temporal Fast Downward (TFD)
and Yahsp3 planners on a Dell XPS 15 9560 laptop with 32GB total and unrestricted RAM
and unlimited time in order to obtain the makespan and planning time of the first plan and
best plan found by each planner for each test problem.
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Fig. 5.9 Normalised Planning Time Comparison of Test Problems. X Axis: Number of
Locations reachable by trucks. Y Axis: Normalised Planning Time

Optic, TFD and Yahsp3 have their first found plan as their respective best plan while
Itsat obtained distinct first and best plans (Table 5.3). The planning time results in all cases
(Figure 5.9) clearly show a similar monotonic growth in the normalised planning time as
we gradually increase the number of locations per additional test problem even though the
locations are unnecessary static objects. The increase in planning time happens because of
the entanglement of the gradually added unnecessary static objects with the agents and with
each other in the WALK and DRIVE-TRUCK executable actions as well as the engagement
with the agents in all other actions (which are all executable actions in all test problems)
from the Driverlog domain. Therefore, increasing the number of unnecessary static objects
that are parameters in executable actions can increase the difficulty of a planning problem.
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Id Loc Optic TFD Yahsp3 Itsat First Itsat Best
- - Cost Cost Cost Cost Time Cost Time
1 2 116.006 116.010 116.120 156.120 0.463 116.100 0.484
2 4 116.006 116.010 156.140 166.130 0.567 116.100 0.761
3 6 116.006 116.010 156.140 176.160 0.755 116.100 1.232
4 8 116.006 116.010 156.140 226.210 0.757 116.100 1.439
5 10 116.006 116.010 156.140 276.180 0.862 116.100 1.752
6 12 116.006 116.010 156.140 396.240 0.965 116.100 2.104
7 14 116.006 116.010 156.140 516.300 1.270 116.100 2.720
8 16 116.006 116.010 156.140 376.360 1.411 116.100 3.178
9 18 116.006 116.010 156.140 186.170 1.674 116.100 3.901

10 20 116.006 116.010 156.140 476.460 2.074 116.100 4.809
11 22 116.006 116.010 156.140 196.160 2.251 116.100 4.972
12 24 116.006 116.010 156.140 546.530 2.746 116.100 5.952
13 26 116.006 116.010 156.140 466.450 3.524 116.100 7.481
14 28 116.006 116.010 156.140 166.150 4.282 116.100 8.761
15 30 116.006 116.010 156.140 406.370 5.681 116.100 11.505
16 32 116.006 116.010 156.140 426.410 7.782 116.100 14.215
17 34 116.006 116.010 156.140 126.110 10.842 116.100 18.716
18 36 116.006 116.010 156.140 196.160 12.258 116.100 21.440
19 38 116.006 116.010 156.140 386.370 15.259 116.100 25.932
20 40 116.006 116.010 156.140 876.860 18.868 116.100 31.825

Table 5.3 The makespan (cost) of the first and best plan found by each planner for each
test problem. Optic, TFD and Yahsp3 have their first found plan as their respective best
plan in all test problems. Itsat has distinct first and best plans found in all test problems so
we added the planning time (in seconds) for each plan for comparison.

Optic and TFD were able to find the optimal plan (considering each planner-specific
epsilon value) as the first found plan (Table 5.3) in all test problems. However, Yahsp3
was able to find the optimal plan (considering its specific epsilon value) only in the base
test problem while in all other problems only found a plan with a 34.45% higher cost than
the optimal plan even though it was able to perform a complete solution search. Therefore,
increasing the number of unnecessary static objects that are parameters in executable
actions can affect the quality of the best plan found by Yahsp3 even when it can perform a
complete solution search.

Itsat was able to find the optimal plan (considering its specific epsilon value) as the
best plan in all test problems (Table 5.3). However, there is a considerable difference
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between the first plans and best plans found by Itsat in almost all test problems. If, for
example, we run the test problem with 40 locations with a solution search threshold of
20 seconds, the outputted solution would have a 655.26% higher cost than the optimal
plan (a similar behaviour is observed in the tests performed in the Evaluation Chapter in
multiple planners). Therefore, the number of unnecessary static objects that are parameters
in executable actions can affect the quality of the solutions found by Itsat when a complete
solution search is not possible.

5.6 Defining the Difficulty of a Planning Problem

Section Overview In this section, we formally define the difficulty metrics obtained
from the analysis of the test results and discuss their applicability.

Definition 5.6. N(α) represents the total number of agents α in Π and N(¬α) represents
the total number of inactive dynamic objects ¬α in Π. N(α) and N(¬α) are a potential
difficulty metrics of planning problem Π.

The results show that the total number of agents N(α) affects the difficulty of a planning
problem. Therefore, N(α) is a potential difficulty metric for planning problems with a
similar structure to Driverlog when solved with the sample planners used in our test or with
other similar planners. The performed tests show that this metric is particularly useful for
problems where the parent agents are present in goal state facts. In such problems, our tests
have shown that a reduced number of parent agents can drastically decrease the difficulty
of a problem. This metric can also be useful even if there are no parent agents present in
the goal state facts, particularly in situations where more subtle difficulty variations are
relevant.

The results of the test problems also show that the total number of inactive dynamic
objects N(¬α) affects the difficulty of a planning problem. Therefore, N(¬α) is a potential
difficulty metric for planning problems with a similar structure to Driverlog when solved
with the sample planners used in our test or with other similar planners. The performed
tests show that this metric is useful in situations where more subtle difficulty variations are
relevant.

The N(α) and N(¬α) metrics cumulatively cover all dynamic objects in a planning
problem. However, considering that our empirical results (Sections 5.3 and 5.4) show that
the number of α in Π has a higher influence on the solving difficulty than the number of
¬α in Π, we defined a separate metric for each.

Definition 5.7. N(Φ) represents the total number of necessary static objects N(Φ) in Π.
N(Φ) is a potential difficulty metric of planning problem Π.
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The results of the test problems also show that the total number of unnecessary static
objects N(¬Φ) affects the difficulty of a planning problem. Therefore, N(¬Φ) is a potential
difficulty metric for planning problems with a similar structure to Driverlog when solved
with the sample planners used in our test or with other similar planners. The performed
tests show that this metric is useful in situations where more subtle difficulty variations are
relevant.

Definition 5.8. N(¬Φ) represents the total number of unnecessary static objects N(¬Φ)

in Π which have their type as a parameter it at least one precondition apre or in at least one
effect ae f f of at least one executable action in Π. N(¬Φ) is a potential difficulty metric of
planning problem Π.

While no tests explicitly show that the total number of necessary static objects N(Φ)

impacts the difficulty of a planning problem, we can presume from the static objects
test problems that N(Φ) can also potentially affect the difficulty of a planning problem
and infer that N(Φ) is a potential difficulty metric for planning problems with a similar
structure to Driverlog when solved with the sample planners used in our test, or with other
similar planners.

It is important to note that definitions 5.7 and 5.8 do not cumulatively cover all possible
static objects in a planning problem, as a problem can have unnecessary static objects
that are never part of operator parameters. Such objects do not influence in any way the
solving difficulty of the problem and have been discarded from the N(¬Φ) metric in order
to preserve the accuracy of the metric. To illustrate this, let us consider a scenario in
which the Driverlog running examples (described in Chapter 2 Section 2.1.5.1) have been
modified to also contain unnecessary static objects that will never become parameters in
any of the operators in Driverlog. In this scenario, the Driverlog running examples also
contain the palm_tree type along with a very large number of objects with the palm_tree
type. However, regardless of the number of added palm_tree objects, the solving difficulty
will always be the same as in the unmodified running examples, as there are no operators
in Driverlog that have parameters with the palm_tree type. Therefore, we constrained the
N(¬Φ) metric to only take into account unnecessary static objects that can become operator
parameters in the considered planning problem, as objects that can not become operator
parameters (such as the Driverlog palm trees) can not influence the solving process.

Definition 5.9. N(ti) represents the total number of entangled types. N(ti) is a potential
difficulty metric of planning problem Π.

The results of the test problems also show that the total number of entangled types
N(ti) affects the difficulty of a planning problem. Therefore, N(ti) is a potential difficulty
metric for planning problems with a similar structure to Driverlog when solved with the
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sample planners used in our test or with other similar planners. The performed tests show
that this metric is particularly useful for problems where we have multiple entangled parent
types. In such problems, our tests have shown that a reduced number of parent agents can
drastically decrease the difficulty of a problem.

It is important to note that the above difficulty metrics may not apply to all possible
temporal planners when solving the Driverlog planning problem. It is also possible that
the difficulty metrics may not apply to the sample planners used in our tests when solving
a problem with a different structure to Driverlog. However, our inductive approach to
empirically identify some of the difficulty elements in a specific planning problem with a
common structure when solved by a specific range of state-of-the-art temporal planners
that have performed well in the past IPCs yields difficulty metrics that are likely very
relevant to other similarly structured problems when solved with the same planners used
for identifying the metrics or with other similar planners. The metrics will serve as an
optimisation guide for constructing the recursive agents and landmarks decomposition
procedure that, as we will show in the Evaluation chapter, increases the scale and improves
the solution quality of the solvable problems.

5.7 Summary of Chapter Contributions

In this chapter, we presented a framework for evaluating the difficulty of a planning
problem.

Specifically, we introduced and formally defined the concept of entanglement among
types and objects.

We utilised a planning problem with a structure similar to many real-world problems
(Driverlog) to construct a series of tests in order to evaluate the impact of the number of
objects, the number of types and the entanglements among them on the difficulty of a
planning problem.

Furthermore, we performed an analysis of the results which showed that the number of
agents, inactive dynamic objects, necessary static objects, unnecessary static objects and
entangled types all affect the difficulty of a planning problem to various degrees and can
be used as metrics for estimating the difficulty of a planning problem.
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Chapter 6

Recursive Agents and Landmarks
Strategic-Tactical Planning

Chapter Overview The difficulty metrics defined in Chapter 5 are used as a guide for
creating a recursive decomposition procedure for temporally expressive numeric planning
problems based on the agents, the agent dependency relationships, the agent classifications,
the landmarks and the relaxed landmarks defined in Chapter 4.

6.1 High-level Description

Section Overview In this section, we will provide a high-level description (Figure 6.1)
of the whole procedure for recursive agents and landmarks strategic-tactical planning
(RALSTP) as an intuitive introduction to the detailed and formal description (Figure 6.26)
provided in the rest of the chapter.

Our recursive agent-based temporal decompositions procedure for solving a large-scale
temporal numeric planning problem Π consists of trying to reduce the total number of
inactive dynamic objects N(¬α), the total number of dead-end agents N(dα), the total
number of parent agents N(pα) and the total number of entangled types N(ti) difficulty
metrics of a planning problem as much as possible, with as few such decompositions as
possible, by recursively increasing the decompositions until we either find a solution or
encounter an error. The solution is formed by recombining the decompositions taking into
account the makespan of temporal plans and durations of durative actions (detailed in Sec-
tion 6.4.3.2) for mitigating any potential constraint violations among the decompositions
while allowing temporal expressiveness and numeric components.

The procedure begins by considering the unmodified original planning problem Π as
the instance planning problem of the base case instance (described in Section 6.2). As the
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dependency relationships allow us to create a partial order between dead-end agent goals
and parent agent goals, we first try to achieve the dead-end agent goals of the instance
planning problem Π without considering the parent agent goals in Π and use the state
where all the dead-end agent goals are solved as the initial state from which we start
searching for a plan which achieves all parent agent goals in Π.

The separation of the dead-end agent goals from the parent agent goals not only reduces
the difficulty of achieving the dead-end agent goals by decreasing or eliminating the parent
agent goals from the search operation of the dead-end agent goals but also reduces the
difficulty of achieving parent agent goals by potentially having a lower total number of
entangled types N(ti) in the parent agent goals problem due to no longer having to consider
the dead-end type of the solved dead-end agent goals.

Fig. 6.1 High-level Flowchart for Solving a Planning Problem using Recursive Agents and
Landmarks Strategic-Tactical Planning
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However, even though decompositions can have a significant impact in decreasing
the difficulty of a planning problem, our procedure aims to efficiently solve a planning
problem with as few decompositions as possible since every decomposition increases
the chance of reducing the quality of the solution. For example, splitting the dead-end
agent goals into multiple sub-problems and solving them individually can potentially
decrease the solution quality as a planner will not be able to consider information that
is not present in the sub-problem it tries to solve. Therefore, to try to minimise the
potential loss in solution quality due to decompositions, we solve all dead-end agent goals
with two types of decompositions. First, we attempt to solve all dead-end agent goals
in Π in a single problem that does not have any parent agent goals (described in Section
6.3). The all dead-end agent goals problem is solved as a stand-alone temporal planning
problem using an off-the-shelf numeric temporally expressive planner, so the problem
can involve temporal expressiveness and numeric components. Then, we also split all
dead-end agent goals in Π among multiple sub-problems using a landmarks and agents
strategic-tactical dead-end agent goals decomposition (described in Section 6.4). The
strategic-tactical decompositions can also involve temporal expressiveness and numeric
components (detailed in Sections 6.4.2.6 and 6.4.3).

After achieving all dead-end agent goals gdαt in Π, either by solving them in a single
problem or by solving them in multiple sub-problems using landmarks [38] and agents
decompositions along with strategic-tactical planning [15], we use each state where all
gdαt have been achieved (from the obtained distinct decompositions) as the initial state of a
new planning problem Π′ with the goal state G in Π′ containing only the parent agent goals
of the instance planning problem Π (described in Section 6.5). Each Π′ corresponding to
each decomposition will become less difficult than Π as all dead-end agents from Π can
be eliminated from each Π′ (therefore potentially reducing the total number of entangled
types N(ti) in Π′) due to the partial order obtained from the dependency relationships of Π

guaranteeing that the dead-end agents of Π are not required for achieving the parent agent
goals of Π. Π′ is solved as a stand-alone numeric temporal planning problem using an
off-the-shelf temporally expressive numeric planner. Therefore, Π′ can involve temporal
expressiveness and numeric components.

If we find a solution for Π′, we merge the corresponding all dead-end agent goals plan
of Π with the plan for Π′ by increasing the start time of each durative action in the plan
for Π′ with the makespan of the corresponding all dead-end agent goals plan of Π and
output a plan that solves all goals in Π for each decomposition that was able to output
a dead-end agent goals plan and a parent agent goals plan (described in Section 6.5.1).
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We then compare all plans that solve all goals in Π obtained from all decompositions and
output as the final plan the plan with the best makespan (described in Section 6.6.

In case we can not find a solution for Π′, we start a recursive step (detailed in Section
6.5.2) with Π′ as the instance planning problem for the recursive step. Π′ does not have
the same dependency relationships as Π because Π′ does not have any of the dead-end
agents or dead-end agent goals of Π. Therefore, we extract the dependency relationships
specific to Π′ and use the new dependency relationships to create the dead-end agent goals
decompositions and corresponding parent agent goals problems specific to Π′ in order to
attempt to solve the newly obtained problems identically to how we solved the previous
dead-end agent goals decompositions and corresponding parent agent goals problems
derived from Π. The capacity for temporal expressiveness and numeric components is
maintained in each recursive step in every individual dead-end agent and parent agent
decomposition (detailed in Section 6.5.2). The recursive steps continue until we find a
solution by concatenating all plans obtained during the procedure. A recursive step will
terminate if all dead-end agent goals in the respective recursive step are not solvable with
any of the decompositions.

Example 6.1. In this example, we will consider Π(drivers,trucks,packages), a planning problem
built using the IPC 2014 Driverlog domain which contains multiple driver, truck and
package (at agent location) goals in its goal state. The dependency relationships of a
Driverlog problem which has at least one driver, one truck and one package goal (such as
Π(drivers,trucks,packages)) are:

driver 7−→ truck
driver 7−→ package
truck 7−→ package

The dependency relationships dictate that the package goals will be dead-end agent
goals in Π(drivers,trucks,packages) while the driver and truck goals will be parent agent goals
in Π(drivers,trucks,packages). The dependency relationships dictate a partial order among
dead-end agent and parent agent goals, which in Π(drivers,trucks,packages) translates to all
package goals must be achieved before starting the search for truck or driver goals.

Therefore, when applying our recursive decomposition procedure, we first attempt to
solve the package goals in a single Π(packages) planning problem that contains all package
goals from Π(drivers,trucks,packages) and no truck or driver goals from Π(drivers,trucks,packages).
Then, we attempt to solve all package goals in Π(drivers,trucks,packages) by splitting them
among multiple Π(packages) sub-problems using a landmarks and agents decomposition
along with strategic-tactical planning [15]. Afterwards, for each successfully obtained
planpackages that when executed on the initial state of Π(drivers,trucks,packages) outputs a state
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that has all package goals solved, we create a new planning problem Π(drivers,trucks) that has
as its initial state a state where all package goals have been achieved and in the goal state all
the driver and truck goals from Π(drivers,trucks,packages). We then remove all package agents
from Π(drivers,trucks) as the dependency relationships of Π(drivers,trucks,packages) guarantee
that package agents are not required for solving driver or truck goals. Afterwards, we
attempt to solve each obtained Π(drivers,trucks) problem, and, if successful, we merge
the corresponding planpackages with the plan for Π(drivers,trucks) by increasing the start
time of each durative action in the plan for Π(drivers,trucks) with the makespan of the
corresponding planpackages in order to obtain a planpackages−drivers−trucks plan that solves
all goals in Π(drivers,trucks,packages) for each successfully obtained planpackages that had
its corresponding Π(drivers,trucks) problem solved. We then output as the final plan for
Π(drivers,trucks,packages) the planpackages−drivers−trucks that has the best makespan among all
the planpackages−drivers−trucks plans obtained from all decompositions.

However, if we can not find a solution for a Π(drivers,trucks) problem corresponding
to a state that has all package goals solved, we start a recursive step with Π(drivers,trucks)

as the instance planning problem for the recursive step (and repeat the same procedure
previously applied to Π(drivers,trucks,packages)). The only dependency relationship of a
Driverlog problem which has at least one driver, one truck goal and no package goals is:

driver 7−→ truck

The other dependency relationships present in Π(drivers,trucks,packages) no longer exist in
Π(drivers,trucks) as all package agents have been eliminated from Π(drivers,trucks). Therefore,
the dependency relationships in Π(drivers,trucks) dictate that the truck goals will be the
dead-end agent goals in Π(drivers,trucks) while the driver goals will be the parent agent goals
in Π(drivers,trucks) and that the partial order between the goals in Π(drivers,trucks) translates
to all truck goals must be achieved before starting the search for the driver goals.

Therefore, we first attempt to solve the truck goals in Π(drivers,trucks) (which are the new
dead-end agent goals) in a single Π(trucks) planning problem that contains all truck goals
from Π(drivers,trucks) and none of the driver goals in Π(drivers,trucks) and then attempt to solve
all truck goals in Π(drivers,trucks) by splitting them among multiple Π(trucks) sub-problems
using a landmarks and agents decomposition along with strategic-tactical planning [15].
Afterwards, for each successfully obtained plantrucks that when executed on the initial
state of Π(drivers,trucks) outputs a state that has all truck goals solved, we create a new
planning problem Π(drivers) that has as its initial state a state where all truck goals have
been achieved and in the goal state all the driver goals from Π(drivers,trucks). We then remove
all truck agents from Π(drivers) as the dependency relationships of Π(drivers,trucks) guarantee
that truck agents are not required for solving driver goals. Afterwards, we attempt to
solve each obtained Π(drivers) problem, and, if successful, we merge the corresponding
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plantrucks plan with the plan for Π(drivers) by increasing the start time of each durative
action in the plan for Π(drivers) with the makespan of the corresponding plantrucks in
order to obtain a plandrivers−trucks plan that solves all goals in Π(drivers,trucks) for each
successfully obtained plantrucks that had its corresponding Π(drivers) problem solved. The
plandrivers−trucks with the best makespan among all obtained plandrivers−trucks plans is
merged with the corresponding planpackages achieved in the previous recursive step by
increasing the start time of each durative action the plan for Π(drivers,trucks) with the
makespan of the planpackages in order to obtain a planpackages−drivers−trucks that solves
all goals in Π(drivers,trucks,packages) for each successfully obtained planpackages that had its
corresponding Π(drivers,trucks) problem solved in the current recursive step. We then output
as the final plan for Π(drivers,trucks,packages) the planpackages−drivers−trucks that has the best
makespan among all the planpackages−drivers−trucks plans obtained from all decompositions.

6.2 Starting a RALSTP Instance

Section Overview In this section, we describe how RALSTP instances are started.

Definition 6.2. Π represents the unmodified original temporally expressive numeric plan-
ning problem we want to solve.

Definition 6.3. An instance planning problem Πi represents a planning problem provided
as the input of a RALSTP instance. An instance planning problem can be the unmodified
original planning problem Π we want to solve or a sub-problem derived from Π.

Definition 6.4. A decomposition arborescence T (Π) = (N,E) represents the arborescence
obtained from applying our recursive agent and landmarks decomposition procedure to
a planning problem Π intended for solving. The root node r ∈ N maps Π. A child node
cn ∈ N maps the instance planning problem Πi at the start of a recursive step (detailed
in Section 6.5.2). A directed edge e ∈ E connects a parent node pn ∈ N (tail of e) with a
child of pn (head of e). A directed edge e maps the plan that achieves all the dead-end
agent goals of the instance problem Πi mapped by the parent node pn at the tail of e.

Having presented a high-level description of the decomposition procedure, our thesis
continues with a detailed description of all components and processes. The procedure be-
gins by creating a decomposition arborescence T (Π) for the unmodified original planning
problem Π we want to solve. Π is mapped to the root of T (Π)

To start a RALSTP instance, we must provide an instance planning problem Πi as input.
Only a single RALSTP instance can run at any given time. If the instance we are starting is
the first initialised instance, the instance planning problem Πi of the RALSTP instance is
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the unmodified original planning problem Π we are trying to solve. Otherwise, the instance
planning problem Πi of a successive RALSTP instance (started by a recursive step, detailed
in Section 6.5.2) will be a sub-problem derived from Π. Therefore, the solving process of
Π begins by starting a RALSTP instance with Π as the instance planning problem Πi.

A RALSTP instance begins by cleaning its instance planning problem Πi with the
procedure in Algorithm 5. Then, we apply the steps in Algorithm 6 to extract the agent
dependency relationships of Πi and the steps in Algorithm 8 to obtain the dependency
status of all agent types, the agents, the agent facts and the agent goals in Πi. If we are
unable to classify the agents according to their agent dependency status (described in
Section 4.1.6.1 from Chapter 4) or there are no dead-end agent goals gdαt in Πi or there
are goals in Πi that contain a dead-end agent as well as a parent agent or the reunion of
the set of all dead-end agent goals gdαt in Πi with the set of all parent agent goals gpαt

in Πi is not equal to G in Πi, then Πi is unsolvable with RALSTP and the instance is
stopped. This is done to prevent the unnecessary algorithmic overhead (detailed in the
evaluation from Chapter 7) that would come with the execution of the entire RALSTP
procedure on an incompatible problem. Only if the agent dependency status classification
is successful and the two compared goal sets are equal do we allow the instance to continue
executing. If allowed to continue, the instance will proceed with the decomposition of Πi

into sub-problems.
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6.3 Creating and Solving the All Dead-end Agent Goals
Planning Problem

Fig. 6.2 Location of Section 6.3 on the High-Level Flow Chart
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Section Overview In this section, we present the procedure for creating and solving the
all dead-end agent goals planning problem derived from the agent dependency relationships
and classifications of an instance planning problem Πi.

Definition 6.5. An all dead-end agent goals planning problem is defined as a tuple
Πd := {P,V,A, I,G} where {P,V,A, I} in Πd are inherited from the instance planning
problem Πi from which Πd is derived and G in Πd contains only all the dead-end agent
goals g in Πi and none of the parent agent goals from Πi.

Definition 6.6. An all dead-end agent goals plan pland is a plan that achieves all the
dead-end agent goals of an instance planning problem Πi when executing the plan from
the initial state of Πi.

After obtaining the agent dependency relationships and classifications specific to in-
stance planning problem Πi (defined in Section 6.2), we focus on achieving the dead-end
agent goals of Πi without considering the parent agent goals of Πi. The dependency
relationships and agent dependency status are used to create a partial order between the
goals of Πi which dictates that all dead-end agent goals in Πi must be achieved before the
parent agent goals in Πi as at least one parent agent from each parent type in Πi is required
for achieving dead-end agent goals in Πi but no dead-end agents in Πi are required for
achieving any of the parent agent goals in Πi.

Fig. 6.3 Flowchart of the Creation And Solving Attempt of the All Dead-end Agent Goals
Planning Problem

The procedure for creating and solving the all dead-end agent goals planning problem Πd

is described in Algorithm 29, which has a time complexity based on the chosen solver (the
creation of Πd is computed in polynomial time). The procedure starts by creating an all
dead-end agent goals planning problem Πd from the instance planning problem Πi with
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Πd identical in every aspect to Πi except for the goal state G in Πd which is populated
only by all the dead-end agent goals in Πi without any of the parent agent goals of Πi (line
1). Then, we attempt to solve Πd (line 5). If successful (Figure 6.3), we proceed to the
parent agent goals-solving procedure (described in section 6.5) to which we will provide
pland as input (line 8). Πd is solved as a stand-alone numeric temporal planning problem
using an off-the-shelf temporally expressive numeric planner. Therefore, Πd can involve
temporal expressiveness and numeric components.

Algorithm 14 Algorithm for creating and solving the All Dead-end Agent Goals Planning
Problem Πd

Input: Πi

Output: pland and final state of solved(Πd) or failure

1: create the all dead-end agent goals planning problem Πd := {P,V,A, I,G} where
{P,V,A, I} are the same as in Πi and G is empty

2: for all dead-end agent goals gdαt in Πi do
3: add gdαt to G
4: end for
5: solved(Πd) = attempt to solve Πd

6: if solved(Πd) == true then
7: all dead-end agent goals plan pland = plan of solved(Πd)
8: return pland)
9: else

10: return failure
11: end if

Example 6.7. In the DLOG-5-5-10 Driverlog planning problem, we have ten dead-end
agents with the package dead-end type: package1, package2, package3, package4, pack-
age5, package6, package7, package8, package9, package10. DLOG-5-5-10 has an (at
package location) dead-end agent goal for each of the package agents except package1,
package3 and the goal for package7 is achieved in the initial state.

When considering the DLOG-5-5-10 Driverlog planning problem as the instance
planning problem Πi, the cleaned version of DLOG-5-5-10 no longer has the package1,
package3, package7 agents, agent facts and agent goals, as package1, package3, package7
are inactive dynamic objects (as described in Example 4.16).

The all dead-end agent goals planning problem Πd derived from the cleaned version of
DLOG-5-5-10 is identical to DLOG-5-5-10 except it has none of the driver parent agent
goals of DLOG-5-5-10 in the goal state G in Πd , none of the truck parent agent goals of
DLOG-5-5-10 in the goal state G in Πd and only all the package dead-end agent goals
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of DLOG-5-5-10 in the goal state G in Πd . If the solving attempt of Πd outputs an all
dead-end agent goals plan pland , we then use pland as input for the parent agent goals
solving procedure in Algorithm 29 (detailed in Section 6.5).
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6.4 Agents and Landmarks Strategic-Tactical Decompo-
sition and Abstraction

Fig. 6.4 Location of Section 6.4 on the High-Level Flow Chart
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Section Overview In this section, we will show the procedure for using agents, land-
marks and strategic-tactical planning to decompose and solve the dead-end agent goals of a
planning problem. We will first provide a higher-level description of the technique, which
will be followed by a more detailed description of each component used in the technique.

Regardless of the solving success of the all dead-end agent goals planning problem Πd

and of the success of the parent agent goals solving procedure when pland for Πd is the
input (described in section 6.5), a RALSTP instance will also attempt to solve the dead-end
agent goals using our modified version of strategic tactical planning [15]. This is done not
only to potentially reduce the difficulty of achieving all the dead-end agent goals in case
Πd is too difficult to solve, but also to potentially obtain better solutions to the instance
planning problem than the solution obtained by using the outputs of a successfully solved
Πd .

STP can increase the scale of solvable planning problems by dividing the difficulty of
Πi among multiple sub-problems. The STP technique described in Buksz et al. (2018) has
been modified from a manual domain-engineer-dependent and time-consuming procedure
into a fast automatic process that requires no human input. STP uses as inputs the same
elements used for creating the all dead-end agent goals planning problem Πd: the cleaned
version of planning problem Πi, the agent dependency relationships of Πi, the dependency
status of all agent types as well as the agents, the agent facts and the agent goals in Πi.
The technique decomposes the dead-end agent goals into multiple smaller sub-problems
(described in Section 6.4.2) that will have a potentially lower difficulty than the all dead-
end agent goals planning problem due to having a smaller total number of dead-end
agents N(dα) and due to having only the minimum total number of parent agents N(pα)

necessary for solving a dead-end agent goal. The dead-end agent goals are arranged using
a two-level hierarchical structure in which the goals are first grouped into dead-end agent
goal sets at the lower level and then the dead-end agent goal sets are further arranged into
one or more contextual decompositions at the higher level (described in Section 6.4.1).
The contextual grouping is based on possible favourable agent configurations (described in
Section 6.4.1.2) as well as on the output of the landmarks contextual sorting procedure
(described in Section 6.4.1.1) which attempts to replicate to how humans catalogue the
specifics of a problem in distinct ways according to different contextual perspectives. A
tactical planning problem (described in Section 6.4.2) will be created for each dead-end
agent goal set in a contextual decomposition. A strategic problem (described in Section
6.4.3) will be created for each contextual decomposition that had all its corresponding
tactical planning problems successfully solved in order to mitigate any eventual constraint
violations among the tactical plans in the respective context. The final state of each
successfully solved strategic problem will contain as facts all the dead-end agent goals of
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the instance planning problem and will become the initial state of the parent agent goals
planning problem.

6.4.1 Decomposing Dead-end Agent Goals into Dead-end Agent Goal
Sets and Contextual Decompositions

Section Overview The dead-end agent goals of a planning problem are grouped into
dead-end agent goal sets based on the duplicate landmarks found between the dead-end
agent goals (described in Section 6.4.1.1) and based on the maximum quantity of unique
parent agent groups with no common agents among them (described in Section 6.4.1.2).
The dead-end agent goal sets will be used to form contextual decompositions.

6.4.1.1 Decomposing Dead-end Agent Goals Using the Landmarks Contextual Sort-
ing Procedure

Section Overview In this section, we describe the dead-end agent goals decomposition
based on the duplicate landmarks found between the dead-end agent goals.

The agents and landmarks strategic tactical decomposition procedure starts with ex-
tracting the landmarks from Πi using the steps described in Section 4.3 from Chapter 4.
The landmark-based decomposition procedure is designed to replicate human contextual
understanding by evaluating the similarities among the dead-end agent goals from the
number of landmarks and relaxed landmarks that are found in common between dead-end
agent goals. The more landmarks are found in common between two or more goals (such
as the common location in the RTAM Introduction example) the bigger the possibility that
there is a contextual connection between the goals.

In effect, the landmark-based decomposition method groups dead-end agent goals
into similarity goal sets based on the landmarks that are found in common between the
Lg sets obtained after the landmarks extraction procedure. The intention is to potentially
obtain contextual decompositions with the highest makespan among all tactically solved
similarity goal sets lower than the highest makespan among the tactically solved random
dead-end agent goal sets in the maximum quantity of unique parent agent groups contextual
decomposition.

Example 6.8. In the RTAM_5_2_35 planning problem, we have the set Ξ = { acc_victim2,
acc_victim3, acc_victim4, acc_victim11, acc_victim22, acc_victim28 } representing dead-
end agents located at the accident_location0 location in the initial state. We also have a
(delivered ?acc_victim) dead-end agent goal in the goal state for each of the agents in Ξ.
In order to achieve the dead-end agent goals of the agents in Ξ we need to execute the
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deliver_victim action (Figure 6.5) for each agent in Ξ. Therefore, we need the condition
(aided ?acc_victim) to be true for each agent in Ξ. If we use a unique parent agent group
as the only agents for achieving the goals, an ambulance agent would have to travel via
the move action (Figure 4.1) to a single location (accident_location0) in order to execute
the first_aid action (Figure 4.2) responsible for making the (aided ?acc_victim) conditions
true for all agents in set Ξ.

Fig. 6.5 RTAM domain deliver_victim action

If, however, we create a set of acc_victim agents which are at different locations in
the initial state, a single ambulance agent would have to travel to multiple locations to
start the first_aid actions and the extra move actions necessary for travelling to multiple
locations could potentially increase the makespan for achieving the respective (delivered
?acc_victim) dead-end agent goals. Therefore, being able to group the dead-end agent
goals into goal sets based on the location of the dead-end agents in the initial state could
potentially result in more efficient makespans for solving the location-based goal sets in
comparison to solving randomly obtained goal sets.
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Identifying and Scoring Similarity Goal Sets

Definition 6.9. A dead-end agent goal set Gd ⊆ G is a set that can contain only dead-end
agent goals.

Definition 6.10. A similarity goal set Simd ⊆ G is a dead-end agent goal set Gd formed
of all dead-end agent goals gdαt ∈ G that have at least one identical landmark or relaxed
landmark l in their respective backchaining Lg sets when the time points of the landmarks
and relaxed landmarks are ignored.

Definition 6.11. score(l) represents the score of a landmark or relaxed landmark l and
is the total number of Lg sets where l ∈ Lg after Algorithm 10 is executed on a planning
problem.

Definition 6.12. Set Λ(Simd) represents the intersection of all Lg sets corresponding to all
goals gdαt in a similarity goal set Simd .

Definition 6.13. score(Simd) represents the score of a similarity goal set Simd and is the
sum of the scores of all landmarks and all relaxed landmarks found in Λ(Simd).

Definition 6.14. Set Γ is the set of all Simd sets.

Definition 6.15. A contextual decomposition Contextd is a set of dead-end agent goal sets
Gd in which no duplicate dead-agent goals gdαt ∈ G are found in any of the dead-end
agent goal sets Gd ∈Contextd and where the union of all dead-end agent goals gdαt in all
Gd ∈Contextd is equal to all dead-end agent goals in G.

Definition 6.16. Set Σ is the set of all contextual decompositions.

The landmark scoring procedure (Algorithm 15 which computes in polynomial time)
starts by first identifying the landmarks and relaxed landmarks that are found in common
between each dead-end agent goal corresponding Lg set (Figure 6.6) in order to determine
potential similarities (such as the location of the dead-end agents in example 6.8) between
dead-end agent goals and group the goals into similarity goal sets (lines 1 to 4).
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Fig. 6.6 Basic Example of Creating Similarity Goal Sets from landmarks found in common
between Lg sets corresponding to dead-end agent goals

We start by scoring each extracted landmark based on the number of Lg sets it was
found in during the landmarks extraction procedure (Algorithm 13). We have chosen
to weight a fact landmark double to an action landmark because a START-END action
landmark pair portrays the same event or the same disjunction of events at the start and
end time points and provides identical information for our decomposition heuristic (lines 5
to 8).

Algorithm 15 Algorithm for Scoring Landmarks
Input: all landmarks l and all Lg sets extracted from Πi

Output: score(l) of each landmark l extracted from Πi

1: for all extracted landmarks l do
2: score(l) = 0
3: for all sets Lg do
4: if l ∈ Lg then
5: if l == fact landmark then
6: score(l) += 2
7: else if l == action landmark then
8: score(l) += 1
9: end if

10: end if
11: end for
12: end for
13: return score(l) of each landmark l extracted from Πi
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We then create a similarity goal set Simd (Algorithm 16 which computes in polynomial
time) for each maximum collection of unique dead-end agent goals that have at least one
identical landmark in their respective backchaining Lg sets (line 10) when the time points
of the landmarks are ignored.

Algorithm 16 Algorithm for creating the Similarity Goal Sets
Input: score(l) of each landmark l extracted from Πi

Output: Γ (the set of all similarity goal sets Simd)

1: for all scored landmarks l do
2: if score(l) > 1 then
3: create similarity goal set Simd

4: for all sets Lg do
5: gdαt = dead-end agent goal responsible for extracting Lg

6: if l ∈ Lg then
7: add gdαt to Simd

8: end if
9: end for

10: if Simd /∈ Γ and size(Simd)≥ 2 then
11: add Simd to Γ

12: end if
13: end if
14: end for
15: return Γ

Afterwards, we compute the score of each Simd set (Algorithm 17 which computes in
polynomial time) by adding the individual score of each fact and action landmarks that are
found in Λ(Simd) (line 2 and 3).

Algorithm 17 Algorithm for Scoring the Similarity Goal Sets
Input: Γ (the set of all similarity goal sets Simd)
Output: scored Γ

1: for all sets Simd ∈ Γ do
2: score(Simd) = 0
3: for all landmarks l ∈ Λ(Simd) do
4: score(Simd) += score(l)
5: end for
6: end for
7: return scored Γ
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Example 6.17. When backchaining from the following nine dead-end agent goals {(de-
livered car0), (delivered car7), (delivered car8), (delivered car10), (delivered car15),
(delivered car18), (delivered car19), (delivered car23), (delivered car28) } during the
execution of Algorithm 13 on the RTAM_5_1_35 planning problem we obtain the following
duplicate landmarks:

HOLDS ((at car accident_location0)) - fact landmark
OCCURS (START(confirm_accident police_car car accident_location0)) - action land-

mark
OCCURS (END(confirm_accident police_car car accident_location0)) - action land-

mark

The landmarks are found in all nine Lg sets corresponding to the nine dead-end agent
goals. Therefore, the score of the fact landmark will be 18 and the score of each action
landmark will be 9 (Algorithm 15). The (delivered ?car) dead-end agent goals meet the
condition of having at least one landmark in common in their respective Lg sets so they
qualify for grouping into a duplicate landmark dead-end agent goal set Simd (Algorithm
16). Since the three landmarks are the only duplicate landmarks between the Lg sets of
the goals in Simd , score(Simd) is 36, the sum of the scores of all three duplicate landmarks
(Algorithm 17). The end result is a goal set with not only all the cars from a specific
location in the initial state (such as the decomposition in the RTAM Introduction example
but algorithmically obtained without human intuition) but also with identical mandatory
confirm_accident operations performed by parent agents onto dead-end agents after the
initial state of RTAM_5_1_35.
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Creating Contextual Decompositions from the Similarity Goal Sets

The aim of our procedure is to arrange the similarity goal sets into multiple contextual
decompositions which are expected to provide better solutions than the contextual decom-
position obtained from the maximum quantity of unique parent agent groups decomposition
(described in Section 6.4.1.2). This is similar to how humans use the available context and
information to generate a variety of alternative solutions to a particular problem.

Fig. 6.7 Basic Example of Creating Distinct Contextual Decompositions from the same
Similarity Goal Sets

The previously obtained similarity goal sets can vary in size and can have common
dead-end agent goals among them depending on the landmarks and relaxed landmarks
identified in the landmarks extraction procedure. Therefore, we combine the similarity
goal sets into all possible contextual decompositions so that each contextual decomposition
contains all the dead-end agent goals of the planning problem and has no duplicate goals
among any of its similarity goal sets (Figure 6.7). The procedure for creating the contextual
decompositions is described in Algorithm 18 (which computes in polynomial time) and
starts by sorting all similarity goal sets into two sorted sets: one based on the score of the
similarity goal sets (line 1) and one based on the size of the similarity goal sets (line 2).
We then create a contextual decomposition starting from each similarity goal set in the two
sorted sets (lines 4 and 5).
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Algorithm 18 Algorithm for Creating the Landmarks-based Contextual Decompositions
Input: scored Γ (the set of all scored similarity goal sets) and G in Πi

Output: Σ (the set of all contextual decompositions)

1: sorted_score(Γ) = sort all Simd ∈ Γ by highest score first
2: sorted_size(Γ) = sort all Simd ∈ Γ by largest size first
3: for all sorted(Γ) ∈ {sorted_score(Γ), sorted_size(Γ)} do
4: for all Simd ∈ sorted(Γ) do
5: create a new contextual decomposition Contextd
6: add Simd to Contextd // (the starting similarity goal set of the contextual decom-

position)
7: for all Simd′ in sorted(Γ) do
8: if Simd′ is after Simd in sorted(Γ) then
9: if Simd and Simd′ do not have any common goals then

10: add Simd′ to Contextd
11: end if
12: end if
13: end for
14: add Contextd to Σ

15: end for
16: end for
17: for all Contextd ∈ Σ do
18: if union of all goals in all Simd ∈ Contextd != all dead-end agent goals gdαt ∈ G

then
19: remove Contextd from Σ

20: end if
21: end for
22: return Σ

Each contextual decomposition will contain the starting similarity goal set it was
initially created from (line 6) along with all following similarity goal sets in the respective
sorted set from which the contextual decomposition was created provided there are no
overlapping dead-end agent goals among any of the sets within a contextual decomposition
(lines 8 to 10). For example, if a goal set Simd1 is part of a contextual decomposition
Contextd and contains one or multiple goals that are also part of a goal set Simd2 and Simd1

is in front of Simd2 in their respective sorted set, we do not add Simd2 to Contextd . The
procedure ends by eliminating each contextual decomposition Contextd that has any of the
instance planning problem dead-end agent goals missing from the union of all similarity
goal sets in Contextd (lines 17 to 19).
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Example 6.18. In the RTAM_5_2_35 planning problem, we have 68 dead-end agent goals
(Figure 18 A). Goals g0 to g34 have dead-end agents with the acc_victim dead-end type
as parameters and goals g35 to g67 have dead-end agents with the car dead-end type as
parameters. Applying algorithm Algorithm 18 on RTAM_5_2_35 yields 15 valid contextual
decompositions. Figures 6.8 B and 6.8 C represent two of the contextual decompositions
of RTAM_5_2_35 that were created using the sorting based on the size of the identified
similarity goal sets. Both contextual decompositions are valid as every dead-end agent
goal in the goal state of RTAM_5_2_35 is found only once within the similarity goal sets
of each contextual decomposition.

Algorithm 18 uses the available contextual information to construct distinct solving
strategies similar to how humans interpret the available information and context of a given
problem to create multiple potential solving strategies. An example is provided in Figure
18 B which contains a straight-forward decomposition based on the similarity of the agents
in the (delivered subject) dead-end agent goals (with the former similarity set containing
all (delivered ?acc_victim) goals and the latter similarity set containing all (delivered ?car)
goals) while Figure 18 C contains a more comprehensive decomposition that takes into
account:

• similarities between the location of the dead-end agents in the initial state - identified
via identical (at ?car ?location) and (at ?acc_victim ?location) relaxed agent fact
landmarks between all dead-end agent goals in RTAM_5_2_35

• similarities between the mandatory rescue operations performed by parent agents
onto dead-end agents at identical locations - identified via identical confirm_accident
and first_aid relaxed agent action landmarks between all dead-end agent goals in
RTAM_5_2_35

• similarities between the paths of the mandatory movement operations of parent
agents for achieving the goals - identified via identical move relaxed agent action
landmarks between all dead-end agent goals in RTAM_5_2_35

An alternative method for decomposing dead-end agent goals can be designed by
identifying the "location" generic type using TIM [57] and decomposing the dead-end
agent goals based on their location parameters in the initial state. However, our relaxed
landmarks method for identifying similarities and creating contexts between dead-end
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Fig. 6.8 Valid Contextual Decompositions of the RTAM_5_2_35 Planning Problem with
distinct Similarity Goal Sets
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agent goals is not limited to agent locations in the initial state and can potentially identify
other types of connections besides a common location (such as the mandatory rescue and
mandatory movement operations in example 6.18), can identify connections both in the
initial state and beyond the initial state of a planning problem and can identify both factual
and operational connections between the dead-end agent goals of a planning problem.

6.4.1.2 Decomposing Dead-end Agent Goals Using the Maximum Quantity of Unique
Parent Agent Groups

Section Overview In this section, we describe the dead-end agent goals decomposition
based on the maximum quantity of unique parent agent groups.

Definition 6.19. total_agents(t) is the total number of agents of a specific parent type
t ∈ Td that are present in a planning problem.

Definition 6.20. M is the set of the maximum quantity of unique parent agent groups µpαt

where an αt is found in only one of the unique parent agent groups µpαt in M. There can be
distinct configurations of M within a planning problem based on all possible configurations
of µpαt but the size of M will always be equal to the minimum among all total_agents(t)
for all parent types t ∈ Td .

The maximum quantity of unique parent agent groups with no common agents among
them in a planning problem is also used as a contextual decomposition criterion. The
intent is to deploy all possible or as close to all possible agents in solving a problem, as
usually the more deployed resources the better the results [59]. The method (Algorithm 19
which computes in polynomial time) uses the size of M (lines 1 to 9) as the total number
of dead-end agent goal sets in a contextual decomposition (line 12). The intent is to utilise
as many unique parent agents groups with no common agents among them as possible (all
µpαt ∈ M) concurrently for solving all dead-end agent goals. The method evenly splits all
dead-end agent goals among all dead-end agent goal sets at random (line 12).
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Algorithm 19 Algorithm for creating the Maximum Quantity of Unique Parent Agent
Groups Contextual Decomposition

Input: Td in Πi, all αt in Πi, G in Πi and Σ (the set of all contextual decompositions)
Output: updated Σ (which now also contains the maximum quantity of unique parent
agent groups contextual decomposition)

1: for all parent types t ∈ Td do
2: total_agents(t) = 0
3: for all αt in Π do

total_agents(t)++
4: end for
5: end for
6: size(M) = ∞

7: for all parent types t ∈ Td do
8: if total_agents(t) < size(M) then
9: size(M) = total_agents(t)

10: end if
11: end for
12: divide all dead-end agent goals gdαt ∈G evenly and randomly among a size(M) number

of Gd sets
13: create a new contextual decomposition Contextd and add to it all Gd sets
14: add Contextd to Σ

Example 6.21. In the RTAM_5_2_35 planning problem, we have the following parent
agents for the dynamic types t ∈ Td:

ambulance0 ambulance1 ambulance2 ambulance3 - ambulance
fire_brigade0 fire_brigade1 fire_brigade2 - fire_brigade
police_car0 police_car1 police_car2 police_car3 police_car4 - police_car
tow_truck0 tow_truck1 tow_truck2 tow_truck3 tow_truck4 tow_truck5 tow_truck6 -

tow_truck

Therefore, the total_score(t) for the above dynamic types are:

total_score(ambulance) = 4
total_score(fire_brigade) = 3
total_score(police_car) = 5
total_score(ambulance) = 7
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The minimum total_score(t) is 3. Therefore, applying Algorithm 19 to the RTAM_5_2_35
planning problem will yield a contextual decomposition Contextd composed of three dead-
end agent goal sets Gd in which all of the 68 dead-end agent goals of the planning problem
are evenly and arbitrarily divided.

6.4.2 Creating and Solving the Dead-end Agents Goals Tactical Plan-
ning Problems

Section Overview A tactical planning problem [15] (described in Section 6.4.2) will be
created for each dead-end agent goal set or similarity goal set in a contextual decomposition
Contextd . The unique parent agent groups (described in Section 6.4.1.2) will be methodi-
cally spread across all tactical problems from Contextd according to an efficiency-focused
agent resource management procedure in order to permit concurrency among the tactical
planning problems of Contextd . The tactical planning problems are created in several steps
that will be described in the following subsections.

6.4.2.1 Initial Creation of the Tactical Planning Problems of a Contextual Decom-
position

Section Overview In this section, we describe the procedure for the initial creation of
the tactical planning problems Πt from the dead-end agent goal sets Gd of a contextual
decomposition Contextd (described in Section 6.4.1) and the reasoning behind the design
choices.

Definition 6.22. An action a is an initial action if there is another action a′ in Πi where
prea′ ⊆ prea and eff a′ = eff a.

Definition 6.23. An tactical planning problem constructed from a corresponding dead-
end agent goal set Gd is defined as a tuple Πt := {P,V,A, I,G} where {P,V,A} in Πt are
initially inherited from an instance planning problem Πi from which Πt is derived. I in
Πt is initially populated by all the facts from I in Πi except for all facts which contain a
parameter formed of a dead-end agent that is not part of any of the parameters of the goals
in Gd . {P,A, I} in Πt are customised to allow only the agents from a single unique parent
agent group µpαt in Πi among the parameters of the initial actions a ∈ A when solving Πt .
The (stp_complete_mission) proposition has been added to P in Πt and represents the only
goal in the goal state G in Πt . The goals in Gd are added as action preconditions necessary
to be achieved in order to satisfy G in Πt .
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Specification 6.24. The (stp_selected_parent_dynamic_type ?parent_dynamic_type - par-
ent_dynamic_type) template is used to create and add a new proposition to P in Πt for
each parent type t in Πi that represents the type or supertype (provided the supertype is a
dynamic type) of a parent agent pαt in Πi. Each proposition will be constructed according
to the parent type it represents.

Specification 6.25. The (stp_not_selected_parent_dynamic_type) template is used to cre-
ate and add a new proposition p to P in Πt for each parent type t in Πi. A (stp_not_selected-
_parent_dynamic_type) fact is created and added to I in Πt for each newly created propo-
sition p. Each proposition and corresponding fact will be constructed according to the
parent type they represent.

Specification 6.26. The stp_select_parent_dynamic_type action name template is used
to create and add a new instantaneous durative action a := {prea, eff a} to the action
set A in Πt for each parent type t in Πi. Each action name, parameter, condition, and
effect will be constructed according to the parent type action a represents. Each action
a will have ?parent_dynamic_type - parent_dynamic_type as the only parameter. Each
action a will have (stp_not_selected_parent_dynamic_type) as a positive condition in
prea and (not (stp_not_selected_parent_dynamic_type)) as negative effect in eff a. Each
action a will also have an (stp_selected_parent_dynamic_type ?parent_dynamic_type -
parent_dynamic_type) positive effect in eff a for the parent type it represents as well as for
each of the supertypes of the parent type it represents provided that the supertypes are also
dynamic types.

Specification 6.27. A (stp_selected_parent_dynamic_type ?parent_dynamic_type - parent-
_dynamic_type) positive condition is created and added to the precondition pre⊢a of every
durative initial action a ∈ A when A in Πt if a has parameters which contain the parent type
or supertype (provided the supertype is also a dynamic type) of a parent agent pαt in Πi,
one condition for each such parameter in a. Each condition will be constructed according
to the parent type of its respective parameter. If a is an instantaneous durative action then
each condition will be added to prea.

A tactical planning problem Πt (Figure 6.9) is constructed for each dead-end agent goal
set Gd in a given contextual decomposition Contextd in order to divide the difficulty
of solving all dead-end agent goals of the instance planning problem derived from the
instance problem among multiple tactical planning problems. By dividing the dead-end
agent goal sets among tactical planning problems we aim to obtain problems less difficult
than the all dead-end agent goals planning problem Πd as the total number of dead-
end agents N(dα) in each tactical planning problem Πt is potentially smaller than the

137



equivalent difficulty metric of Πd . Solving all tactical planning problems corresponding to
a contextual decomposition will cumulatively achieve all the dead-end agent goals of the
instance planning problem (detailed in Section 6.4.2.6).

The procedure for the initial creation of a tactical planning problem is shown in
Algorithm 20, which computes in polynomial time. Each tactical planning problem Πt

is initially created from {P,V,A} in Πi (line 1) and has the initial state I in Πt initially
populated by all the facts from I in Πi except for the facts which contain one or more
parameters formed of a dead-end agent that is not part of any of the parameters of the goals
in Gd (lines 3 to 5). The objects in each Πt will be defined as constants in order to allow
the incorporation of facts and goals from the instance planning problem as conditions to
the actions of the tactical planning problems (line 2).

The goal state of each tactical planning problem Πt is populated only by the (stp_com-
plete_mission) goal, without any of the goals in the dead-end agent goal set Gd correspond-
ing to Πt (lines 8 and 9). The goals in Gd will be added as action preconditions necessary
to be achieved in order to satisfy the goal state of Πt (detailed in Section 6.4.2.2).

Fig. 6.9 Flowchart of Creating a Tactical Planning Problem

The tactical planning problems have no inactive dynamic objects as each Πt was de-
rived from the instance planning problem Πi which had all its inactive dynamic objects
removed when it was cleaned. The difficulty of tactical planning problems is further
decreased by reducing the total number of parent agents N(pα) to the minimum required
for respecting the constraints imposed by the agent dependency relationships for achieving
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dead-end agent goals. This is accomplished by modifying and supplementing the propo-
sitions, facts and actions in Πt to force a planner to consider only the agents in a single
unique parent agent group µpαt among the parameters of the initial actions of Πt and,
in effect, to reduce the total number of parent agents N(pα) in Πt while still allowing
a planner to chose which µpαt it uses for solving Πt . The planner is forced to select a
unique parent agent group µpαt and use only the agents in the selected µpαt when attempt-
ing to solve Πt . This is accomplished by adding new stp_select_parent_dynamic_type
actions and new (stp_not_selected_parent_dynamic_type) facts to each Πt and by adding
(stp_selected_parent_dynamic_type ?parent_dynamic_type - parent_dynamic_type) posi-
tive conditions to all initial actions in each Πt (lines 10 to 15).

Algorithm 20 Algorithm for the Initial Creation of a Tactical Planning Problem
Input: Πi and a dead-end agent goal set Gd ∈Contextd when Contextd in Πi
Output: a tactical planning problem Πt

1: create new tactical planning problem Πt := {P,V,A, I,G} where {P,V,A} in Πi
2: define all objects in Πt as constants
3: for all facts f ∈ I when I in Πi do
4: if f does not contain any parameter formed of a dead-end agent that is part of a

dead-end agent goal outside of Gd then
5: add f to I in Πt
6: end if
7: end for
8: add the (stp_complete_mission) proposition to P in Πt
9: add (stp_complete_mission) as the only goal in G in Πt

10: add the (stp_selected_parent_dynamic_type ?parent_dynamic_type - par-
ent_dynamic_type) propositions to P in Πt (as described in Specification 6.24)

11: add the (stp_not_selected_parent_dynamic_type) propositions to P in Πt (as described
in Specification 6.25)

12: add the (stp_not_selected_parent_dynamic_type) facts to I in Πt (as described in
Specification 6.25)

13: add the stp_select_parent_dynamic_type actions to A in Πt ((as described in Specifica-
tion 6.26)

14: for all initial actions a ∈ A when A in Πt do
15: add the (stp_selected_parent_dynamic_type ?parent_dynamic_type - par-

ent_dynamic_type) positive conditions to prea(as described in Specification 6.27)
16: end for
17: return Πt

Example 6.28. Set {(at package9 s9), (at package10 s7)} represents the dead-end agent
goal set Gd ∈ Contextd(DLOG− 5− 5− 10) used in the creation the tactical planning
problem Πt for this example. Running Algorithm 20 with DLOG-5-5-10 and {(at package9
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s9), (at package10 s7)} as inputs will add all initial state facts in DLOG-5-5-10 to Πt

except for the facts which contain one or more parameters formed of a dead-end agent
distinct from (package9) or (package10).

In the Driverlog DLOG-5-5-10 planning problem, we have only the following parent
types: {driver, truck}. The driver and truck parent types do not have any supertypes that
are dynamic types as well as found in at least one parameter of at least one initial action.
Therefore, when applying Algorithm 20 to the DLOG-5-5-10 planning problem we obtain
and add the following propositions to each tactical planning problem Πt :

(stp_selected_driver ?driver - driver)
(stp_not_selected_driver)
(stp_selected_truck ?truck - truck)
(stp_not_selected_truck)

The initial state I of each Πt will get populated with two extra facts: (stp_not_selected_driver)
and (stp_not_selected_truck).

The actions stp_select_driver and stp_select_truck (Figure 6.10) will be constructed
from the stp_select_parent_dynamic_type template and the {driver, truck} parent types and
added to each action set A of each Πt .

Fig. 6.10 The stp_select_driver and stp_select_truck actions implemented from the
stp_select_parent_dynamic_type template and the {driver, truck} parent types in the Driver-
log Domain

The durative action drive-truck (Figure 6.11) is an initial action as it is found in the
action set of the DLOG-5-5-10 planning problem. The action contains both a driver
parameter and a truck parameter. Therefore, it will get two new positive conditions
added to pre⊢drive−truck: (stp_selected_truck ?truck) and (stp_selected_driver ?driver). All
other initial actions a in Πt that contain any driver parameters or any truck parameters
will also get added a corresponding (stp_selected_driver ?driver) positive condition or
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(stp_selected_truck ?truck) positive condition to their precondition pre⊢a (or to prea if a is
an instantaneous durative action) for every driver or truck parameter in a.

Fig. 6.11 Modified drive_truck initial action that allows only selected agents among its
parameters

The added modifications will force a planner to select and use only one of the existing
parent agents with the driver parent type and only one of the existing parent agents with
the truck parent type when solving the goals of the tactical planning problem derived from
the DLOG-5-5-10 planning problem.

6.4.2.2 Adding Agent Goals to Tactical Planning Problems

Section Overview In this section, we described how the goals in the dead-end agent
goals set Gd corresponding to a particular tactical planning problem Πt and the goals of all
parent agent goals are added as action preconditions in Πt .

Specification 6.29. The (stp_parent_dynamic_type_complete) template is used to create
and add a new proposition to P in Πt for each parent type t in Πi. Each proposition will be
constructed according to the parent type it represents.

Specification 6.30. The stp_case_constant action name template is used to create and
add a new instantaneous durative action a := {prea,eff a} to the action set A in Πt for
each parent agent pαt in Πi. Each action name, condition, and effect will be constructed
according to the parent type and constant action a represents. Each action a will have
no parameters and a (stp_selected_parent_dynamic_type constant) positive condition in
precondition prea. Each action a will have as positive conditions in precondition prea all
goals from the corresponding dead-end agent goal set Gd of Πt .
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Each action a will also have as positive conditions in precondition prea all parent agent
goals gpαt in Πi that have the constant action a represents as the only parent agent pαt in
Πi in the parameters of gpαt if such goals exist. If there are no parent agent goals with
the constant action a represents as the only parent agent, action a will have as conditions
in precondition prea all propositions and functions representing all facts fpαt ∈ I when I
in Πi that have the constant action a represents as the only parent agent pαt in Πi in the
parameters of fpαt .

Each action a will have (not (stp_selected_parent_dynamic_type constant) as a negative
effect in eff a so that only one such action can be executed per parent type. Each action a
will also have (stp_parent_dynamic_type_complete)) as a positive effect in eff a which will
be required for satisfying conditions required for achieving the goal state of Πt .

Specification 6.31. The instantaneous durative action complete_tactical_mission :=
{precomplete_tactical_mission,eff complete_tactical_mission,durcomplete_tactical_mission} is created
and added to A in Πt . The action has no parameters and has all goals from the cor-
responding dead-end agent goal set Gd of Πt as positive conditions in precondition
precomplete_tactical_mission. The action will also have a (stp_parent_dynamic_type_complete)
positive condition in precondition precomplete_tactical_mission for each parent type t in Πi.
The action will have (stp_complete_mission) as a positive effect in eff complete_tactical_mission.

The dead-end agent goals in the goal set Gd corresponding to Πt are added to Πt in the
form of action preconditions necessary to be achieved in order to satisfy the goal state of
Πt . This is accomplished by supplementing the action set A in Πt with stp_case_constant
instantaneous durative actions (Figure 6.12). The actions will have as part of their precon-
ditions all goals in the dead-end agent goal set Gd corresponding to Πt .

Fig. 6.12 The stp_case_truck1 and stp_case_truck5 actions implemented from the
stp_case_constant template and the truck1, truck5 parent agents defined as constants
in a Tactical Planning Problem derived from the DLOG-5-5-10 Planning Problem
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The stp_case_constant actions are designed to take advantage of the mandatory selec-
tion of a unique parent agent group µpαt necessary for solving a tactical planning problem
Πt in order to potentially decrease the solving difficulty of the parent agent goals in the
planning problem from which Πt was derived. This is accomplished by modifying Πt in
a way that forces a planner to achieve the parent agent goals associated with the parent
agents in the selected µpαt in order to reach the goal state of Πt . Achieving parent agent
goals in the solutions of the tactical planning problems will either reduce the number of
remaining parent agent goals to be achieved in the parent agent goals problem or eliminate
the necessity of the parent agent goals planning problem altogether if all parent agent goals
are achieved in the solutions of the tactical planning problems. Therefore, each tactical
planning problem Πt is modified to force a planner to achieve all parent agent goals gpαt

in Πi which contain in their parameters any of the parent agents pαt present in the unique
parent agent group µpαt in Πt selected by the planner when solving Πt . The modifications
are obtained by applying Algorithm 21 (which computes in polynomial time) to a tactical
planning problem Πt .

The procedure adds an stp_case_constant action to A in Πt for each parent agent pαt

in Πi (line 3). The goals in the dead-end agent goal set Gd for which Πt was created are
added as positive conditions in all the stp_case_constant actions added to A in Πt . Each
stp_case_constant action will also have as positive conditions all parent agent goals gpαt

in Πi where pαt is the constant action stp_case_constant represents and is the only parent
agent in gpαt if any such goals exist. If there are no such goals for a specific parent agent
constant pαt , the stp_case_constant action corresponding to pαt will contain all initial
state facts fpαt in Πi where pαt is the constant action stp_case_constant represents and is
the only parent agent in fpαt .
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Fig. 6.13 The complete_tactical_mission action added to a tactical planning problem
derived from dead-end agent goal set {(at package9 s9), (at package10 s7)}

The action set A in Πt has also been supplemented with the complete_tactical_mission
instantaneous durative action (line 3). complete_tactical_mission (Figure 6.13) is the only
action in Πt that has the (stp_complete_mission) goal (the only goal in the goal state of
each Πt) as a positive effect. The complete_tactical_mission action can only be executed if
precomplete_tactical_mission is satisfied. precomplete_tactical_mission is achieved only if a planner
first selects a single parent agent pair µpαt in Πt and executes an stp_case_constant action
for each parent agent in µpαt . µpαt must be selected before executing any stp_case_constant
action as all prest p_case_constant have a (stp_selected_parent_dynamic_type constant) pos-
itive condition which can only be satisfied if a planner first selects µpαt . For executing
the stp_case_constant actions compatible with the selected µpαt , a planner must first pass
through the states where each prest p_case_constant is true, hence achieving all dead-end agent
goals in the Gd corresponding to Πt (defined as positive conditions in prest p_case_constant),
all parent agent goals defined as positive conditions in prest p_case_constant if any such goals
exist and all allowed fpαt facts defined as positive conditions in prest p_case_constant .

The tactical planning problem structure described above will force a planner to solve
all the goals in the dead-end agent goal set Gd for which Πt was created as well as all
parent agent goals associated with the parent agents in the unique parent agent group µpαt

selected by the planner when solving Πt .
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Algorithm 21 Algorithm for Adding Goals to a Tactical Planning Problem
Input: a tactical planning problem Πt

Output: updated Πt (which now contains the goal in the form of action preconditions)

1: add the (stp_parent_dynamic_type_complete) propositions to P in Πt (as described in
Specification 6.29)

2: add the stp_case_constant actions to A in Πt (as described in Specification 6.30)
3: add the complete_tactical_mission action to A in Πt (as described in Specification

6.31)
4: return updated Πt

Example 6.32. In the Driverlog DLOG-5-5-10 planning problem, we have only the fol-
lowing parent types that represent the type of the parent agents: {driver, truck}. Therefore,
when applying Algorithm 21 on the DLOG-5-5-10 planning problem we obtain and add
the following new propositions to each tactical planning problem:

(stp_driver_complete)
(stp_truck_complete)

(stp_complete_mission)

In this example, we will focus only on the truck parent type and only on the truck1,
truck5 parent agents from all parent types and parent agents found in DLOG-5-5-10. The
following facts are all the ftruck1 facts in the initial state of DLOG-5-5-10: {(at truck1
s0), (empty truck1)}. truck1 has no gtruck1 goals in the goal state of DLOG-5-5-10. The
following facts are all the ftruck5 facts in the initial state of DLOG-5-5-10: {(at truck5 s8),
(empty truck5)}. Parent agent goal (at truck5 s3) is the only gtruck5 goal in the goal state of
DLOG-5-5-10. Set {(at package9 s9), (at package10 s7)} represent the dead-end agent
goal set Gd ∈Contextd(DLOG-5-5-10) used in the creation the tactical planning problem
Πt for this example.

When applying Algorithm 21 to Πt we add to A in Πt the action stp_case_truck1 (Figure
6.12), an action which is created by applying the truck1 constant to the stp_case_constant
template. The action has in prest p_case_truck1 the (at truck1 s0) and (empty truck1)} initial
state facts as a positive condition, as the constant truck1 represented by the action is not
part of any of the goals in the goal state of DLOG-5-5-10. When applying Algorithm 21
to Πt we also add to A in Πt the action stp_case_truck5 (Figure 6.12), an action which
is created by applying the truck5 constant to the stp_case_constant template. However,
this action does not have in prest p_case_truck5 any of the ftruck5 initial state facts as positive
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conditions and instead has the (at truck5 s3) parent agent goal as a positive condition, as
the constant truck5 represented by the action is one of the parameters of parent agent goal
(at truck5 s3).

Πt will also get added the complete_tactical_mission action (Figure 6.13) that has the
(at package9 s9) and (at package10 s7) dead-end agent goals in Gd defined as positive
conditions in the precomplete_tactical_mission precondition. The complete_tactical_mission
action also has the stp_truck_complete as a precondition. To achieve the goal state G in Πt ,
a planner will be forced to execute the complete_tactical_mission action, which can only
be executed if stp_truck_complete is first achieved by executing an stp_case_truck action.
Executing an stp_case_truck can only be possible if the (at package9 s9) and (at package10
s7) goals defined as preconditions in each prest p_case_truck are previously achieved.
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6.4.2.3 Adding Parent Agent Availability Constraints To Tactical Planning Prob-
lems

Section Overview In this section, we present an efficient parent agent allocation tech-
nique for tactical planning problems by applying constraints to parent agents in a process
executed outside the solution search.

Definition 6.33. A parent agent constraint, constraint(pαt), is a boolean variable linked
to a parent agent pαt in Πi.

Definition 6.34. available(pαt) is a parent agent constraint assigned to every parent
agent pαt in Πi. All available(pαt) parent agent constraints are initially set to true when
starting the strategic-tactical procedure for all parent agents pαt in Πi. An available(pαt)

parent agent constraint will be set to false if its corresponding parent agent pαt is a
parameter in any initial action present in the plan of the latest successfully solved tactical
planning problem. If all parent agents pαt in Πi of a particular parent type t have had their
available(pαt) constraint set to false after a constraint update we reset the available(pαt)

constraint for all parent agents with parent type t to true before creating the next tactical
planning problem.

Specification 6.35. The (stp_free_parent_dynamic_type ?parent_dynamic_type - par-
ent_dynamic_type) template is used to create and add a new proposition to P in Πt

for each parent type t in Πi. A (stp_free_parent_dynamic_type ?parent_dynamic_type
- parent_dynamic_type) fact is created and added to I in Πt for each pαt that has its
available(pαt) parent agent constraint set to true. Each proposition and corresponding
fact will be constructed according to the parent type and parent agent they represent.

Specification 6.36. A (stp_free_parent_dynamic_type ?parent_dynamic_type - parent_dy-
namic_type) positive condition is created and added to the prest p_select_parent_dynamic_type

precondition of every stp_select_parent_dynamic_type action ∈ A when A in Πt . Each
condition will be constructed according to the parent type represented by the stp_select_pa-
rent_dynamic_type action to which the condition is added.

The union of the initial states of all tactical planning problems in a given contextual
decomposition Contextd in Πi will contain all the facts in the initial state as the all dead-end
agent goals planning problem Πd . The tactical planning problems will be sequentially
executed on a planner based on the size of the corresponding dead-end agent goal sets
(largest sets first) with the result of cumulatively achieving all the dead-end agent goals
of the instance planning problem (details of the solving order and methodology will be
provided in Section 6.4.2.6). Our procedure aims to achieve all dead-end agent goals using
as many parent agents as possible, as usually utilising all the available resources for solving
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a problem produces higher quality solutions [59]. However, if we attempt to solve the
tactical planning problems in the current format, we risk not having an even distribution
of parent agents among the tactical problems, as it is currently possible for a planner to
repeatedly select the same parent agents for solving all tactical planning problems instead
of selecting distinct agents for each problem. This happens because the tactical planning
problems are isolated from each other and do not exchange information about which parent
agents are selected by the planner when solving a tactical planning problem. To mitigate
this issue, we have created a procedure which parses the plan of a tactical planning problem
and determines which parent agents were selected by the planner as initial action parameters
in order to deny those agents from being repetitively used in solving the remaining tactical
planning problems. In effect, we have added the available(pαt) parent agent constraint to
all parent agents pαt in Πi and modified the structure of tactical planning problems to only
allow parent agents that have their available(pαt) parent agent constraint set to true to be
selected by a planner (Algorithm 22 from Section 6.4.2.4 which computes in polynomial
time).

Forcing a planner to select only parent agents with favourable parent agent con-
straints is achieved by adding (stp_free_parent_dynamic_type ?parent_dynamic_type -
parent_dynamic_type) as a positive condition in every prest p_select_parent_dynamic_type agent
selection action (lines 1 to 3).

Expressing the available(pαt) parent agent constraints in a tactical planning problem
Πt is done by adding a (stp_free_parent_dynamic_type ?parent_dynamic_type - par-
ent_dynamic_type) fact to I in Πt for each parent agent pαt that has available(pαt) set to
true (lines 16 to 17).

Example 6.37. In the Driverlog DLOG-5-5-10 planning problem, we have the follow-
ing parent types: {driver, truck}. To be able to implement the available parent agent
constraints in DLOG-5-5-10, we add the (stp_free_driver ?driver) proposition and the
(stp_free_truck ?truck) proposition in all tactical planning problems derived from DLOG-5-
5-10. We also add the (stp_free_driver ?driver) positive condition to prest p_select_driver and
the (stp_free_truck ?truck) positive condition to prest p_select_truck in all tactical planning
problems derived from derived from DLOG-5-5-10 (Figure 6.14).
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Fig. 6.14 The stp_select_driver and stp_select_truck actions equipped with the
(stp_free_parent_dynamic_type ?parent_dynamic_type) parent agent constraint positive
condition

The initial state of DLOG-5-5-10 is populated by the following parent agents with
the driver parent type: {driver1, driver2, driver3, driver4, driver5}. The initial state of
DLOG-5-5-10 is also populated by the following parent agents with the truck parent type:
{truck1,truck2,truck3,truck4,truck5}. At the start of the strategic-tactical procedure, we
mark all available parent agent constraints of all parent agents with the truck and driver
parent type to true. Therefore, when we create the first tactical planning problem Πt , we
will add a (stp_free_truck truckX) fact to I in Πt for all each of the five parent agents with
the truck parent type and a (stp_free_driver driverX) fact I in Πt for each of the five parent
agents with the driver parent type.

6.4.2.4 Adding Parent Agent Goal State Constraints To Tactical Planning Problems

Section Overview In this section, we introduce an additional constraint to the parent
agent selection procedure in order to allow the completion of parent agent goals at the
tactical level.

Definition 6.38. in_goal_state(pαt) is a parent agent constraint assigned to every parent
agent pαt in Πi. All in_goal_state(pαt) parent agent constraints are initially set to true
for all parent agents pαt in Πi that represent at least one parameter of at least one parent
agent goal gpαt in Πi and set to false for all parent agents that are not found among
any of the parameters of any parent agent goal gpαt in Πi when starting the strategic-
tactical procedure. An in_goal_state(pαt) parent agent constraint will be set to false if its
corresponding parent agent pαt was selected by a planner during the successful solving of
a tactical planning problem. An in_goal_state(pαt) parent agent constraint can never be
reset to true if it was previously set to false.

In order to force a planner to select the parent agents that are part of the gpαt ∈ G goals
when G in Πi we have added the in_goal_state(pαt) parent agent constraint to all parent
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agents (Algorithm 22 which computes in polynomial time) and set it to true for all parent
agents pαt that are part of the gpαt parent agent goals. Therefore, when creating a tactical
planning problem Πt we only add (stp_free_parent_dynamic_type ?parent_dynamic_type
- parent_dynamic_type) facts I in Πt for parent agents pαt with type t that have the
in_goal_state(pαt) parent agent constraint set to true provided that there is at least one
such pαt among all parent agents with parent type t (lines 5 to 11). If no such parent agents
exist for a parent type t we will consider the available(pαt) parent agent constraint and
add (stp_free_parent_dynamic_type ?parent_dynamic_type - parent_dynamic_type) facts
for all parent agents pαt with type t that have the available(pαt) parent agent constraint
set to true (lines 14 to 17).

Algorithm 22 Algorithm for adding all Parent Agent Constraints to a Tactical Planning
Problem

Input: all parent agents pαt in Πi, Td in Πi and a tactical planning problem Πt to which the goal
has been added in the form of action preconditions
Output: updated Πt (which now contains the in_goal_state and available parent agent con-
straints)

1: add the (stp_free_parent_dynamic_type ?parent_dynamic_type - parent_dynamic_type) propo-
sitions to P in Πt (as described in Specification 6.35)

2: for all stp_select_parent_dynamic_type actions in A in Πt do
3: add the (stp_free_parent_dynamic_type ?parent_dynamic_type - parent_dynamic_type)

positive conditions to prest p_select_parent_dynamic_type (as described in Specification 6.36)
4: end for
5: for all parent types t ∈ Td do
6: goal_state_parent_agent_added = false
7: end for
8: for all parent agents pαt in Πi do
9: if in_goal_state(pαt) == true then

10: add (stp_free_t pαt) fact to I in Πt

11: goal_state_parent_agent_added = true
12: end if
13: end for
14: if goal_state_parent_agent_added == false then
15: for all parent agents pαt in Πi do
16: if available(pαt) == true then
17: add (stp_free_t pαt) fact to I in Πt

18: end if
19: end for
20: end if
21: return Πt
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Example 6.39. In this example, we will focus on only two parent agents from DLOG-
5-5-10: truck1 and truck5 with parent type truck. When running Algorithm 22 on the
DLOG-5-5-10 planning problem the available(truck1) and available(truck5) parent agent
constraints will be initialised to true. However, the in_goal_state(truck1) parent agent
constraint will be initialised to false as there is no gtruck1 goal in the goal state of DLOG-
5-5-10 and only the in_goal_state(truck5) will be initialised to true as goal (at truck2
s9) is a gtruck5 goal in the goal state of DLOG-5-5-10. When creating a tactical planning
problem Πt obtained from a dead-end agent goal set Gd , fact (stp_free_truck truck5) will
be added to I in Πt as in_goal_state(truck5) parent agent constraint is true. However, no
such fact will get added for truck1 as, even though it has its available(truck1) parent agent
constraint true, there is at least one parent agent with the same parent type as truck1 that
has the in_goal_state parent agent constraint set to true: truck5 with in_goal_state(truck5)
parent agent constraint true. Therefore, a planner will be forced to select truck5 but will
not be able to select truck1 when solving Πt . The same procedure is applied to all other
parent agents in DLOG-5-5-10 which results in a planner being forced to first select only
parent agents that have gpαt in the goal state of DLOG-5-5-10 for solving tactical planning
problems if such agents exist.

6.4.2.5 Relaxed Tactical Planning Problems

Section Overview In this section, we present a relaxation to the tactical planning prob-
lems that can provide an exponential decrease in the solving difficulty in comparison to
tactical problems without relaxation.

Definition 6.40. A mandatory parent agent group ωpαt is the set of all parent agents that
appear as a parameter in at least one initial action present in the relaxed plan of a tactical
planning problem Πt .

Definition 6.41. A relaxed tactical planning problem constructed from a corresponding
tactical planning problem Πt and a mandatory parent agent group ωpαt is defined as a tuple
Πr := {P,V,A, I,G} where {P,V,A} in Πr are initially inherited from an instance planning
problem Πi from which Πt is derived. I in Πr has all the non-parent agent facts from I in
Πi except for all dead-end agent facts which contain a parameter formed of a dead-end
agent that is not part of any of the parameters of the goals in Gd corresponding to Πt . I in
Πr has all parent agent facts fpαt in Πi corresponding to all pαt ∈ ωpαt . G ∈ Πr has all
parent agent goals gpαt in Πi corresponding to all parent agents in ωpαt that have their goal
state constraint in_goal_state(pαt) set to true. If there are no gpαt in Πi corresponding to
a particular parent agent pαt ∈ ωpαt or if in_goal_state(pαt) is false, G ∈ Πr will have as
corresponding goals for pαt all parent agent facts fpαt in Πi corresponding to pαt ∈ ωpαt .
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To further reduce the difficulty of a tactical planning problem Πt , we run a reachability
analysis on Πt and parse the relaxed plan in order to mark the parent agents used in
the relaxed plan as the mandatory parent agent group ωpαt of Πt (Algorithm 23 which
computes in polynomial time). We then create a relaxed tactical planning problem Πr

from ωpαt of Πt and Πi to which we only add as parent agents (with corresponding goals
according to each parent agent goal state constraint) the parent agents from ωpαt (lines 10
to 21).

(described in Sections 6.4.2.1, 6.4.2.2, 6.4.2.3 and 6.4.2.4)

Fig. 6.15 Flowchart of Creating And Solving a Relaxed Tactical Planning Problem

A relaxed tactical planning problem Πr (Figure 6.15) can be much easier to solve in
comparison to the (regular) tactical planning problem it was created from, as selecting a
mandatory parent agent group via the reachability heuristic prior to the solution search
(lines 1 to 9) can exponentially reduce the state space during the solution search by no
longer having multiple parent agents of the same type acting as entangled objects in Πr.
This allows a planner to only search for the dead-end agent goals in Πr, which, as shown
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in the difficulty evaluation of the test problems in set DT at Section 5.4 from Chapter 5,
is a much easier problem to solve than a problem where we also have the parent agent
selection as part of the solution search (as shown in Section 7.1 from Chapter 7). This
is particularly useful in problems where we have numerous entangled parent types with
multiple parent agent instances for each parent type, as such problems could exponentially
increase their difficulty with the addition of every new type and agent if they are solved
without relaxation.

Algorithm 23 Algorithm for Creating a Relaxed Tactical Planning Problem
Input: Πi, a tactical planning problem Πt to which the in_goal_state and available parent agent
constraints have been added and a unique parent agent group µpαt in Πi (can be Null)
Output: a relaxed tactical planning problem Πr or error

1: if µpαt == Null then
2: attempt to get the relaxed plan of Πt

3: if not able to obtain the relaxed plan of Πt then
4: return error "Πt unsolvable with current parent agent constraints" (this error will redirect

RALSTP to Algorithm 24, the parent agent constraints mitigation procedure)
5: else
6: µpαt = the unique parent agent group in the relaxed plan of Πt

7: end if
8: end if
9: mark µpαt as the mandatory parent agent group ωpαt of Πt

10: create new tactical planning problem Πr := {P,V,A, I,G} where {P,V,A} in Πi

11: for all facts f ∈ I when I in Πi do
12: if f is not a parent agent fact and does not contain any parameter formed of a dead-end agent

that is part of a dead-end agent goal outside of Gd corresponding to Πt then
13: add f to I in Πr

14: end if
15: if f is a parent agent fact fpαt and pa is in ωpαt of Πr then
16: add f to I in Πr

17: if in_goal_state(pαt) is true then
18: add all gpαt parent agent goals in Πi to G in Πr

19: end if
20: if there are no gpαt parent agent goals or in_goal_state(pαt) is false then
21: add f to G in Πr

22: end if
23: end if
24: end for
25: return Πr
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Problems Unsolvable due to Parent Agent Constraints

It can be the case that a tactical planning problem Πt is found unsolvable during its
reachability analysis [9] with the parent agents allowed by the parent agent constraints at a
given time but can be solved with the parent agents that are currently restricted, for example
in situations where we don’t have a connected map and the only parent agent pαt that could
be used to solve a specific goal has its in_goal_state(pαt) and available(pαt) parent agent
constraints set to false. Therefore, if Πt is unsolvable, we use the procedure described in
Algorithm 24 to re-create the tactical planning problem with incrementally more relaxed
parent agent constraints and re-attempt to obtain the relaxed plan. The efficient mitigation
of the parent agent constraints procedure cycles through the parent agent constraints in
order to try to remove as few constraints for as few parent types as possible. The procedure
first re-creates and re-attempts to solve a problem found unsolvable during its reachability
analysis by ignoring the in_goal_state(pαt) parent agent constraints of parent agents pαt

in Πi for one or more parent types at a time (lines 2 to 10). The procedure gradually
cycles through all possible parent type combinations until all in_goal_state(pαt) for all
pαt in Πi are ignored. If the problem is found unsolvable during its reachability analysis
with all in_goal_state(pαt) parent agent constraints ignored, we then re-create Πt and
re-attempt to get the relaxed plan while gradually ignoring the available(pαt) parent agent
constraints of parent agents pαt in Πi for one or more parent types at a time (lines 2
to 10). The procedure gradually cycles through all possible parent type combinations
until all available(pαt) for all pαt in Πi are ignored. If a problem is unsolvable with
all parent agent constraints removed we return an error which specifies the problem and
the contextual decomposition the problem was derived from and proceed to the next
decomposition if available (lines 26 and 27). Otherwise, the procedure will use the unique
parent agent group µ pαt in the relaxed plan of the re-created tactical planning problem
(lines 16 to 18) as the mandatory parent agent group ωpαt to be used for relaxing Πt (by
using ωpαt as input in Algorithm 23).
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Algorithm 24 Efficient Mitigation of the Parent Agent Constraints
Input: pαt in Πi, the in_goal_state(pαt) and available(pαt) of all pαt in Πi and a tactical
planning problem Πt to which the in_goal_state and available parent agent constraints have been
added
Output: a unique parent agent group µpαt in Πi

1: solvable(Πt) = False
2: for all constraint(pαt) ∈ {in_goal_state(pαt),available(pαt)} do
3: for current_no_of_types = 0; current_no_of_types < total_no_of_types; cur-

rent_no_of_types++ do
4: for start_type = 0; start_type < total_no_of_types; start_type++ do
5: if start_type + current_no_of_types < total_no_of_types then
6: count = 0
7: for all parent types t ∈ Td when Td in Πt do
8: if count >= start_type and count <= start_type + current_no_of_types then
9: for all parent agents pαt in Πt with type t do

10: ignore constraint(pαt)

11: add (stp_free_t pαt) fact to I in Πt unless available(pαt) is not ignored
and prevents it

12: end for
13: end if
14: count++
15: end for
16: solvable(Πt) = attempt to obtain the relaxed plan of Πt

17: if solvable(Πt == True then
18: return µpαt in the relaxed plan of Πt

19: else
20: delete all (stp_free_t pαt) facts added at line 11 from I in Πt

21: end if
22: end if
23: end for
24: end for
25: end for
26: if solvable(Πt) == False then
27: return error "Πt unsolvable Contextd unsolvable" (this error will redirect RALSTP to the

next decomposition if available)
28: end if

Each individual problem re-creation and relaxed plan extraction attempt is cost-effective
as it has a run time equal to the reachability analysis of each newly created problem.
However, the efficient mitigation of the parent agent constraints procedure is NP-Hard as
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in the worst case would exponentially increase the run time according to the number of
parent types. In case of a planning problem with a large number of parent types, we can
apply a weaker procedure executable in polynomial time which incrementally ignores the
constraints of parent types without cycling through all possible parent type combinations.
The rapid mitigation of the parent agent constraints procedure (detailed in Algorithm
25), however, is not guaranteed to remove the minimum number of constraints for as few
parent agent dynamic types as possible so it might yield poorer quality solutions due to the
potentially more inefficient allocation of unique parent agent groups.

Algorithm 25 Rapid Mitigation of the Parent Agent Constraints
Input: pαt in Πi, the in_goal_state(pαt) and available(pαt) of all pαt in Πi and a tactical
planning problem Πt to which the in_goal_state and available parent agent constraints have been
added
Output: a unique parent agent group µpαt in Πi

1: solvable(Πt) = False
2: for all constraint(pαt) ∈ {in_goal_state(pαt),available(pαt)} do
3: for all parent types t ∈ Td when Td in Πt do
4: for all parent agents pαt in Πt with type t do
5: ignore constraint(pαt)

6: add (stp_free_t pαt) fact to I in Πt unless available(pαt) is not ignored and prevents it
7: end for
8: solvable(Πt) = attempt to obtain the relaxed plan of Πt

9: if solvable(Πt == True then
10: return µpαt in the relaxed plan of Πt

11: end if
12: end for
13: end for
14: if solvable(Πt) == false then
15: return error "Πt unsolvable Contextd unsolvable" (this error will redirect RALSTP to the

next decomposition if available)
16: end if

Example 6.42. In this example, we will showcase the procedure for the rapid mitigation
of the parent agent constraints (Algorithm 25). Some of the agents in the initial state of
DLOG-5-5-10 are: {driver1, driver2, driver4} with the driver parent type and {truck1
truck2, truck4} with the truck parent type. The goal state of DLOG-5-5-10 contains parent
agent goals with the driver2, driver4, truck2 and truck4 parent agents (at driver2 s0), (at
driver4 s1), (at truck2 s9), (at truck4 s7) but does not contain any parent agent goals with
the driver1 and truck1 parent agents.
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At the start of the RALSTP procedure, we set the {available(driver1), available(driver2),
available(driver4),available(truck1), available(truck2), available(truck4) } parent agent
constraints as true. We also set the { in_goal_state(driver2), in_goal_state(driver4),
in_goal_state(truck2), in_goal_state(truck4) } parent agent constraints as true, as the
{driver2, driver4, truck2, truck4} parent agents are found in at least a parameter of at least
one goal in the goal state of DLOG-5-5-10.

The parent agent constraints force the relaxed plan to have a unique parent agent
group only from the {driver2, driver4, truck2, truck4} parent agents for solving a tactical
planning problem Πt , {driver2, truck2} for the purpose of this example, as even though all
agents have their available constraints set to true, only the agents with the in_goal_state
constraints set to true are considered for the parent types that have at least one parent
agent with its in_goal_state constraint set to true. Therefore, the available(driver2), avail-
able(truck2), in_goal_state(driver2) and in_goal_state(truck2) parent agent constraints
will be set to false after solving Πt .

The updated parent agent constraints force the relaxed plan to have a unique parent
agent group only from the { driver4, truck4} parent agents for solving the next tactical
planning problem, Πt ′ , as again only the agents with the in_goal_state constraints set
to true are considered for the parent types that have at least one parent agent with its
in_goal_state constraint set to true. If Πt ′ is unsolvable with only the {driver4,truck4,}
parent agents, the procedure for the rapid mitigation of the parent agent constraints will first
ignore all the in_goal_state(driver) constraints and allow the relaxed plan to have a unique
parent agent group from the { driver1, driver4, truck4} parent agents, as even though
in_goal_state(driver4) is set to false, the in_goal_state(driver) constraints are ignored
and only the available(driver) and in_goal_state(truck) constraints are considered.

If Πt ′ is unsolvable with the { driver1, driver4, truck4} parent agents, the proce-
dure for the rapid mitigation of the parent agent constraints will then also ignore all the
in_goal_state(truck) constraints and allow the relaxed plan to have a unique parent agent
group from the { driver1, driver4, truck1, truck4} parent agents, as all the in_goal_state
constraints are ignored and only the available constraints are considered.

If Πt ′ is unsolvable with the { driver1, driver4, truck1, truck4} parent agents, the
procedure for the rapid mitigation of the parent agent constraints will then also ignore
the available(driver) constraints and allow the relaxed plan to have a unique parent
agent group from the { driver1, driver2, driver4, truck1, truck4} parent agents, as even
though available(driver2) is set to false due to having been used in solving Πt , the
available(driver) are ignored and only the available(truck) constraints are taken into
account.

If Πt ′ is unsolvable with the { driver1, driver2, driver4, truck1, truck4} parent agents,
the procedure for the rapid mitigation of the parent agent constraints will then also ignore
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the available(truck) constraints and allow the relaxed plan to have a unique parent agent
group from all the parent agents (driver1, driver2, driver4, truck1, truck2, truck4), without
taking into account any of the parent agent constraints.

If Πt ′ is unsolvable without taking into account any of the parent agent constraints,
the procedure will exit with an error reporting the unsolved problem and the contextual
decomposition it was derived from. Otherwise, the procedure will return the unique parent
agent group µ pαt in the relaxed plan for Πt ′ as the mandatory parent agent group ωpαt to
be used for relaxing Πt .

Problems that require Multi-Agents with the Same Parent Type

Problems that are designed with a mandatory requirement of more than one parent
agent with the same parent type for achieving the goal state are immediately detected
as unsolvable during a reachability analysis due to our one parent agent per parent type
constraints. For example, a problem that requires two fire_truck parameters for execut-
ing a fire extinguishing action will prevent the reachability analysis from arriving at the
goal state if only one fire truck can be selected by the planner. In such a situation, we
re-create a tactical planning problem and gradually increase the number of parameters
of each stp_select_parent_dynamic_type action to allow multiple parent agents of the
same type to be selectable by a solver during the solution search (Figure 6.16). This is
achieved by adding an extra (stp_selected_parent_dynamic_type ?parent_dynamic_type
- parent_dynamic_type) positive effect to eff stp_select_parent_dynamic_type for each parame-
ter added to the stp_select_parent_dynamic_type action for the parent type the action
represents as well as for each of the supertypes of the parent type the action represents
provided that the supertypes are also dynamic types. The low cost of performing multiple
reachability analyses allows for a rapid identification of the necessary number of parent
agents either through a polynomial or an exponential search similar to the ones described
in the parent agent constraints mitigation procedures.
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Fig. 6.16 The stp_select_driver and stp_select_truck actions implemented for supporting
multiple agents with the same parent type from the stp_select_parent_dynamic_type
template and the {driver, truck} parent types in the Driverlog Domain

6.4.2.6 Solving the Relaxed Tactical Planning Problems of a Contextual Decompo-
sition

Section Overview In this section, we describe the procedure for solving the relaxed
tactical planning problems from a contextual decomposition extracted from a planning
problem.

The complete procedure for creating and solving the relaxed tactical planning problems
of a contextual decomposition is described in Algorithm 26 (which has a time complexity
based on the chosen solver). The procedure starts by setting the available(pαt) constraints
for all parent agents pαt in Πi to true and by setting the in_goal_state(pαt) for all parent
agents that are part of the gpαt ∈ G goals when G in Πi to true (lines 1 to 3).

The relaxed tactical planning problems are created and solved one after the other to
utilise all available computing resources on one problem at a time (as shown in Figure
6.17). Therefore, temporal expressiveness and numeric components are permitted within a
relaxed temporal planning problem, as each problem is solved as a stand-alone numeric
temporal planning problem using an off-the-shelf temporally expressive numeric planner.
Any concurrency violations between two or more relaxed tactical planning problems will
be addressed at the strategic level (described in Section 6.4.3).
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Fig. 6.17 Flowchart for Solving All Relaxed Tactical Planning Problems of a Contextual
Decomposition

If even one relaxed tactical planning problem from a contextual decomposition can’t
be solved or is solved but invalid, then the whole contextual decomposition is regarded
as unsolvable and abandoned (lines 22 to 24). Therefore, we create and solve the relaxed
tactical planning problems starting from the dead-end agent goal set Gd ∈Contextd with
the most number of goals to the goal set Gd′ ∈Contextd with the least number of goals (line
5). This is done to attempt to solve the more difficult relaxed tactical planning problems
(the ones that have the highest total number of dead-end agents N(dα)) before the easier
relaxed tactical planning problems (the ones that have the lowest total number of dead-end
agents N(dα)) derived from Contextd in order to force a fast failure which will potentially
save time by not solving the easier problems first.

After a relaxed tactical planning problem Πr is solved, we validate the obtained plan
with VAL [41] and end the procedure for the current contextual decomposition if the plan
for Πr is invalid (line 22). If the plan for Πr is valid, we set to false the parent agent
constraints of all parent agents pαt from the mandatory parent agent group ωpαt used to
create Πr before creating and solving the next relaxed tactical planning problem Πt ′ for the
next dead-end agent goal set G′

d ∈Contextd (lines 11 to 15). If all available(pαt) parent
agent constraints for all parent agents pαt that have the same parent type t become false
after a constraint update, we reset the available(pαt) constraint for all parent agents with
parent type t to true before creating the next relaxed tactical planning problem (lines 17 to
19).
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The procedure for solving the relaxed tactical planning problems of a contextual
decomposition is successful only if all relaxed tactical planning problems derived from the
contextual decomposition are solved and all resulting plans are valid. If successful, the
procedure will output the initial state, final state and plan of each relaxed tactical planning
problem derived from the contextual decomposition. The same procedure is applicable for
regular (non-relaxed) tactical planning problems (line 27).

Algorithm 26 Algorithm for Solving All Relaxed Tactical Planning Problems derived
from a Contextd in Πi

Input: all pαt and a Contextd from Σ in Πi

Output: initial states, final states and plans of all Πr derived from Contextd or error
1: for all parent agents pαt in Πi do
2: set all available(pαt) parent agent constraints to true
3: set in_goal_state(pαt) parent agent constraints to true (as described in Definition 6.38
4: end for
5: sort dead-end agent goal sets Gd ∈Contextd from largest to smallest
6: for all Gd ∈Contextd do
7: Πt = run Algorithm 22 on Gd
8: Πr = run Algorithm 23 on Πt

9: solved(Πr) = attempt to solve Πr

10: if solved(Πr) == true then
11: if plan of solved(Πr) is valid then
12: store initial state, final state and plan for Πr

13: for all parent agents pαt in ωpαt when ωpαt ∈ Πr) do
14: set available(pαt) to false
15: set in_goal_state(pαt) to false
16: end for
17: for all parent types t ∈ Td do
18: if all pαt ∈ t have available(pαt) == false then
19: set available(pαt) to true for all pαt ∈ t
20: end if
21: end for
22: else

return error "plan of solved(Πr) derived from Contextd is invalid" (this error will
redirect RALSTP to the next decomposition if available)

23: end if
24: else

return error "Πr of Contextd is unsolvable" (this error will redirect RALSTP to the next
decomposition if available)

25: end if
26: end for
27: return stored initial states, final states and plans of all Πr derived from Contextd
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6.4.3 Strategic Abstraction for Mitigating Concurrency Violations in
Temporal Planning

Section Overview In this section, we present the strategic abstraction technique for
mitigating the constraint violations among tactical plans using the duration of durative
actions. This is achieved by creating a strategic problem which contains the abstracted
tactical plans from a contextual decomposition Contextd in the form of durative macro
actions. The solution to the strategic problem provides ordering instructions and potential
additional durative actions to efficiently link all durative actions in all tactical plans from
Contextd in a way that not only eliminates all constraint violations among conflicting tacti-
cal plans but also maintains any temporal expressiveness and numeric computation that
may have occurred in the tactical plans. We will first provide a higher-level description of
the strategic abstraction technique, which will be followed by a more detailed description
of each component used in the technique.

The plans of the relaxed tactical planning problems Πr (described in Section 6.4.2) in a
solved contextual decomposition (described in Section 6.4.1) cumulatively achieve all the
dead-end agent goals of the instance planning problem. However, if we merge the plans of
the relaxed tactical planning problems into a master plan that achieves all the dead-end
agent goals, the master plan might be invalid due to concurrency violations among its
actions. This happens because, even though we use parent agent constraints to attempt
to spread the parent agents efficiently among all relaxed tactical planning problems, it
can still be the case that some parent agents are found in more than one relaxed tactical
planning problem plan. For example, concurrency issues be encountered if the number of
relaxed tactical planning problems is higher than the maximum quantity of unique parent
agent groups. In this case, some or all available parent agent constraints will be reset to
true throughout the solving of the relaxed tactical planning problems so one or more parent
agents will be found in more than one relaxed tactical planning problem plan.

Our procedure for mitigating potential concurrency violations (detailed in Section
6.4.3.2) relies on the start time and duration of durative actions and uses a planner to
determine the merging strategy for the tactical plans. This is achieved by encapsulating the
initial states and final states of the relaxed tactical planning problems of a solved contextual
decomposition into mutually exclusive grounded durative macro actions (detailed in
Section 6.4.3.1). The durative macro actions are combined with the rest of the operators in
the corresponding instance planning problem to form the strategic domain. The mutual
exclusion of all durative actions and durative macro actions in the strategic domain is
achieved by adding preconditions and effects that prevent each parent agent pαt in the
strategic problem from being used as a parameter in more than one action at the same time.
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The durative macro actions and goal state of a strategic problem are designed to force a
planner to execute all durative macro actions in the strategic problem in order to achieve its
goal state. If the strategic problem is solved, we use the start time of the mutually exclusive
durative macro actions in the plan of the solved strategic problem to adjust the start times
of the actions in the tactical plans. Then, we merge the updated tactical plans into a single
plan and add all regular (non-macro) durative actions in the plan of the solved strategic
planning problem to the merged plan. The end result is a valid plan with no concurrency
violations that achieves all the dead-end agent goals in the instance planning problem. The
strategic level permits temporal expressiveness and numeric interaction between durative
actions and durative macro actions, as the strategic problem is solved as a stand-alone
numeric temporal planning problem using an off-the-shelf temporally expressive numeric
planner.

6.4.3.1 Creating and Solving a Strategic Planning Problem

Section Overview In this section, we present a detailed description for creating and solv-
ing a strategic planning problems corresponding to a contextual decomposition extracted.

Definition 6.43. A strategic planning problem is defined as a tuple Πs := {P,V,A, I,G}
where {P,V,A, I} in Πs are initially inherited from the instance planning problem Πi from
which Πs is derived. {P,A, I} in Πs have been modified to prevent each parent agent
pαt in Πs from being used as a parameter in more than one action at the same time. Πs

does not contain any dead-end agents or dead-end agent facts. A in Πs is supplemented
with a durative macro action a(Πr) for each solved relaxed tactical planning problem Πr

derived from a contextual decomposition Contextd . G in Πs contains none of the initial
goals from Πi. Instead, G in Πs contains one goal g for each durative macro action a(Πr)

added in A in Πs where g represents a positive effect achievable only by the completion
of its corresponding durative macro action. All object instances in Πs are defined as
constants. Πs can be created only from a contextual decomposition Contextd that had all
its corresponding relaxed tactical planning problems solved.

Specification 6.44. The stp_mission type is created and added to T in Πs and is used
to create and add the (stp_complete_mission ?stp_mission - stp_mission) proposition to
P in Πs. A goal g ∈ G when G in Πs is constructed from the (stp_complete_mission
?stp_mission - stp_mission) proposition for each solved relaxed tactical planning problem
Πr derived from the contextual decomposition from which Πs is constructed.

Specification 6.45. The (stp_free_parent_dynamic_type ?dynamic_type) template is used
to create and add a new proposition to P in Πs for each dynamic type t in Πi that represents
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the type or supertype (provided the supertype is a dynamic type) of a parent agent pαt

in Πi. A (stp_free_parent_dynamic_type ?dynamic_type) fact is created and added to I
in Πs for each parent agent pαt in Πi. Each proposition and corresponding fact will be
constructed according to the parent type they represent.

Definition 6.46. A durative macro action a(Πr) := {prea(Πr), eff a(Πr) dura(Πr)} corre-
sponding to a solved relaxed tactical planning problem Πr is a grounded durative action
where duration dura(Πr) is the cost of the plan for Πr. pre⊢a(Πr)

contains as positive condi-
tions each fact f ∈ I when I in Πr if f is not a dead-end agent fact and if f had its truth
value changed in the plan for Πr. pre⊢a(Πr)

also contains a (stp_free_parent_dynamic_type
constant) positive condition for each parent agent (defined as a constant) pαt in Πs

that is a parameter in any of the f facts previously added as positive conditions to
pre⊢a(Πr)

. eff ⊣a(Πr)
contains as positive effects each positive fact f from the final state

of Πr if f is not a dead-end agent fact and if f had its truth value changed in the
plan for Πr. eff ⊣a(Πr)

contains as negative effects each fact f ∈ I when I in Πr that
was added as a positive condition to pre⊢a(Πr)

if f is negative in the final state of Πr.
eff ⊢a(Πr)

contains a (not (stp_free_parent_dynamic_type constant)) negative effect for each
(stp_free_parent_dynamic_type constant) positive condition added to pre⊢a(Πr)

. eff ⊣a(Πr)

contains an (stp_free_parent_dynamic_type constant) positive effect for each (not (stp_free-
_parent_dynamic_type constant)) added to eff ⊢a(Πr)

.
eff ⊣a(Πr)

also contains an (stp_complete_mission stp_mission_constant) positive effect
equivalent to the goal in G in Πs added for the same solved relaxed tactical planning
problem Πr from which a(Πr) is created.

Specification 6.47. A (stp_free_parent_dynamic_type ?parent_dynamic_type - parent_dy-
namic_type) positive condition is created and added to the precondition pre⊢a of all regular
(non-macro) durative actions a ∈ A when A in Πs for every parameter in a that is a parent
agent. All regular (non-macro) durative actions a ∈ A when A in Πs will also get added
a (not (stp_free_parent_dynamic_type ?parent_dynamic_type - parent_dynamic_type))
negative effect to eff ⊢a for every parameter in a that is a parent agent and a (stp_free_pa-
rent_dynamic_type ?parent_dynamic_type - parent_dynamic_type) positive effect to eff ⊣a

for every parameter in a that is a parent agent.

The procedure for creating and solving a strategic problem (Figure 6.18) is described in
Algorithm 27, which has a time complexity based on the chosen solver (the creation of Πs

is computed in polynomial time). A strategic planning problem is derived from a contextual
decomposition Contextd (lines 1 to 6) only if all the relaxed tactical planning problems Πr

derived from Contextd have been successfully solved. Πs derived from Contextd is initially
created from {P,V,A, I} in Πi and has all objects defined as constants in order to allow
the incorporation of facts from the initial and final states of the relaxed tactical planning
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problems Πr derived from Contextd as conditions and effects of the durative macro actions
in Πs. A strategic planning problem is stripped of all dead-end agents and dead-end agent
facts to reduce its difficulty, as the dead-end agent goals were processed at the tactical level.
Strategic planning problems have no inactive dynamic objects, as each Πs was derived
from the instance planning problem Πi which had all its inactive dynamic objects removed
when it was cleaned.

Fig. 6.18 Flowchart for Creating and Solving a Strategic Planning Problem

A grounded durative macro action a(Πr) (Figure 6.19) is added to the action set A
in Πs for each relaxed tactical planning problem Πr derived from Contextd (line 11).
Each durative macro action a(Πr) will have the facts in the initial state of Πr that are
not dead-end agent facts and had their truth value change in the plan for Πr as posi-
tive conditions in pre⊢a(Πr)

, the facts in the final state of Πr that are not dead-end agent
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facts and had their truth value changed in the plan for Πr as positive effects in eff ⊣a,
the facts in the initial state of Πr added as positive conditions in pre⊢a(Πr)

which are
negative in the final state of Πr as negative effects in eff ⊣a and the makespan of the
plan for Πr from which a(Πr) is constructed as dura(Πr)

. For each durative macro ac-
tion a(Πr) in Πs we add a constant st p_mission_constant with the st p_mission type to
Πs (line 9), a (stp_complete_mission stp_mission_constant) effect to eff ⊣a(Πr) and a
(stp_complete_mission stp_mission_constant) goal to the goal state of Πs in order to force
a planner to execute all durative macro actions in order to achieve the goal state of Πs (line
10).

Fig. 6.19 DLOG-5-5-10 Durative Macro Action

Each durative macro action a(Πr) in Πs will also have a (stp_free_parent_dynamic_type
constant) positive condition in pre⊢a(Πr)

, an (not (stp_free_parent_dynamic_type constant))
negative effect in eff ⊢a(Πr)

and an (stp_free_parent_dynamic_type constant) positive effect
in eff ⊣a(Πr)

for each parent agent (defined as a constant) pαt in Πs that is a parameter
in any of the parent agent facts fpαt encapsulated in a(Πr) in order to enforce mutual
exclusion among all durative macro actions in Πs. Each regular (non-macro) durative action
a ∈ A when A in Πs will have a (stp_free_parent_dynamic_type ?parent_dynamic_type -
parent_dynamic_type) positive condition in pre⊢a, an (not (stp_free_parent_dynamic_type
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?parent_dynamic_type - parent_dynamic_type)) negative effect in eff ⊢a and an (stp_availa-
ble_parent_dynamic_type ?parent_dynamic_type - parent_dynamic_type) positive effect
in eff ⊣a which combined with the mutual exclusion conditions and effects added to each
durative macro action a(Πr) in Πs enforce mutual exclusion among all durative actions that
have parent agent parameters in Πs.

Fig. 6.20 Example of a Strategic Planning Problem Goal State

The goal state G in Πs (Figure 6.20) has no other goals apart from the (stp_complete_mission
stp_mission_constant) goals (line 10). The only way to achieve the goal state is to execute
all durative macro actions, as only they have (stp_complete_mission stp_mission_constant)
as eff ⊣ positive effects. Executing all durative macro actions guarantees that all dead-end
agent goals in Πi are also achieved, as all dead-end agent goals in Πi are defined as positive
effects eff ⊣ in the durative macro actions of Πs. Therefore, the state space of Πs is greatly
reduced in comparison to the state space of its corresponding all dead-end agent goals
planning problem Πd , as Πs uses only grounded actions for achieving all dead-end agent
goals in comparison to Πd which must use lifted actions for achieving all dead-end agent
goals. The regular (non-macro) durative actions in Πs have a very small impact on the
state space of Πs in comparison to the impact of the equivalent actions in Πd on the state
space of Πd . This happens because, in Πs, the regular (non-macro) durative actions can
only be used to achieve states where the durative macro actions can be executed without
concurrency violations in comparison to Πd where the regular durative actions are used for
achieving the actual goal state of Πd (as shown in Example 6.48).

After a solution is found to a particular Πs, we run the constraints mitigation procedure
on the solution and tactical plans corresponding to Πs to obtain the all dead-end agent
goals plan pland corresponding to Πs (lines 14 to 15, detailed Section 6.4.3.2). Afterwards,
we proceed to the parent agent goals solving procedure (described in section 6.5) to which
we will provide pland for Πs as input (lines 16 to 17). Each Πs is solved as a stand-alone
numeric temporal planning problem using an off-the-shelf temporally expressive numeric
planner. Therefore, each Πs can involve temporal expressiveness and numeric components.

167



Algorithm 27 Algorithm for Creating and Solving a Strategic Planning Problem
Input: Πi, a Contextd from Σ that had all its corresponding Πr solved as well as the initial states,
final states and plans of all Πr derived from Contextd
Output: pland and the final state of solved(Πs) for each solved Πs or error

1: create new strategic planning problem Πs := {P,V,A, I,G} where {P,V,A, I} in Πi

2: define all objects in Πs as constants
3: add the stp_mission type and the (stp_complete_mission ?stp_mission - stp_mission) proposi-

tion to P in Πs (as described in Specification 6.44)
4: add the (stp_free_parent_dynamic_type ?parent_dynamic_type - parent_dynamic_type) propo-

sitions to P in Πr (as described in Specification 6.45)
5: add the (stp_free_parent_dynamic_type ?parent_dynamic_type - parent_dynamic_type) positive

conditions to every regular (non-macro) durative action a ∈ A when A in Πs (as described in
Specification 6.47)

6: add the (not (stp_free_parent_dynamic_type ?parent_dynamic_type - parent_dynamic_type))
effect to every regular (non-macro) durative action a ∈ A when A in Πs (as described in
Specification 6.47)

7: for all Gd ∈Contextd) do
8: index(Gd) = position of set Gd in Contextd
9: add stp_mission_index(Gd) - stp_mission constant to Πs

10: add the (stp_complete_mission stp_mission_index(Gd) goal to G in Πs

11: add durative macro action a(Πr) to A in Πs using the initial state, final state and plan of Πr

corresponding to Gd (as described in Definition 6.46)
12: end for
13: solved(Πs) = attempt to solve Πs

14: if solved(Πs) then
15: all dead-end agent goals plan pland = run the constraints mitigation procedure (Algorithm

28 described in Section 6.4.3.2) on the plan of solved(Πs) and on the plans of all Πr derived
from Contextd

16: if pland is valid then
17: return pland)
18: else
19: return error "pland of Contextd is invalid" (this error will redirect RALSTP to the next

decomposition if available)
20: end if
21: else

return error "Πs of Contextd is unsolvable (this error will redirect RALSTP to the next
decomposition if available)

22: end if
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6.4.3.2 Mitigating Constraint Violations Using Temporal Data

Section Overview In this section, we describe and provide an example of how solving
a strategic problem mitigates the eventual constraint violations among the tactical plans
obtained from a contextual decomposition.

In general, decomposing a planning problem presents the risk of obtaining constraint
violations among the sub-problems [15]. This is also the case for the tactical planning
problems of a contextual decomposition Contextd . For example, two or more tactical
planning problems can use the same parent agents to solve their goal. In such a scenario,
we could have constraint violations among the obtained plans due to the shared (parent
agent) resources among them.

Our constraints mitigation technique (Algorithm 28 which computes in polynomial
time) follows the description in Buksz et al. (2018) in order to resolve all potential con-
straints among all tactical planning problems derived from a contextual decomposition
Contextd . After solving a strategic planning problem Πs derived from a contextual decom-
position Contextd , we create the all dead-end agent goals plan pland for Πs by replacing
each durative macro action a(Πr) in the plan for Πs with the durative actions a′ in the plans
of the relaxed tactical planning problem Πr encapsulated by a(Πr) and adding them to
pland (lines 1 to 6). The start time of each action a′ in the plan of a relaxed tactical plan-
ning problem Πr added to pland will be updated by adding the start time of the durative
macro action a(Πr) which encapsulated Πr in order to eliminate all potential concurrency
violations between any of the a′ actions added to pland (line 5).

The regular (non-macro) durative actions a in the plan for Πs (if such actions exist) are
added without modifying their start time (line 9), as their start time has been specifically
set by the solver during the solution search of Πs to allow actions a to mitigate eventual
constraints violations between any of the a′ actions added to pland .

The above modifications allow all concurrencies that take place locally within each
Πr or globally in Πs to be maintained in pland . If pland is valid, we proceed to solve the
parent agent goals by providing as input for Algorithm 29 the all dead-end agent goals plan
pland for Πs derived from Contextd (lines 12 and 13, detailed in Section 6.5). If pland is
found invalid by VAL [41], we stop and return an invalid error for pland and the contextual
decomposition Contextd from which Πs was derived and continue the procedure with the
next decompositions if available (lines 14 and 15).
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Algorithm 28 Algorithm for Mitigating Constraint Violations
Input: the plan of a solved(Πs) and the plans of all Πr corresponding to Πs

Output: all dead-end agent goals plan pland or error

1: all dead-end agent goals plan pland = empty
2: for all actions a in the plan of solved(Πs) do
3: if a == durative macro action then
4: for all actions a′ in the plan of Πr corresponding to durative macro action a do
5: start_time(a′) = start_time(a′) + start_time(a)
6: add action a′ to all dead-end agent goals plan pland

7: end for
8: else
9: add action a to all dead-end agent goals plan pland

10: end if
11: end for
12: if all dead-end agent goals plan pland is valid then
13: return all dead-end agent goals plan pland

14: else
15: return error "all dead-end agent goals plan pland of Contextd is invalid" (this error

will redirect RALSTP to the next decomposition if available)
16: end if

Example 6.48. The data in this example do not reflect an actual decomposition of a
Driverlog benchmark problem but were created to illustrate how our procedure mitigates
concurrency violations and creates the all dead-end agent goals plan from: the durative
macro actions in a strategic problem Πs, the plan of Πs and the relaxed tactical planning
problem plans corresponding to the durative macro actions in the plan of Πs.

In Figure 6.21a we have an example of a strategic planning problem plan which
contains three durative macro actions. Macro actions 1 and 3 both use the driver1 agent so
the mutual exclusions enforced by the (stp_free_driver driver1) and (not (stp_free_driver
driver1)) conditions and effects prevent the execution time of the two macro-actions to
overlap in the strategic plan. Macro actions 2 and 3 both use the truck2 agent so the
mutual exclusions enforced by the (stp_free_truck truck2) and (not (stp_free_truck truck2))
conditions and effects prevent the execution time of the two macro-actions to overlap in
the strategic plan. Macro actions 1 and 2 do not have parent agents in common so their
execution times can overlap in the strategic plan.

In Figure 6.21b we have the plans of the relaxed tactical planning problems encapsu-
lated in the three durative macro actions present in the strategic planning problem plan
from Figure 6.21a.
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(a)

(b)

(c)

Fig. 6.21 Example of mitigating concurrency violations and creating the all dead-end agent
goals plan (c) from a strategic planning problem plan (a) and the relaxed tactical planning
problem plans (b) corresponding to the durative macro actions in the strategic planning
problem.

When running Algorithm 28 on the strategic planning problem plan, we add to the all
dead-end agent goals plan (Figure 6.21c) all regular (non-macro) durative actions in the
strategic planning problem plan as well as all durative actions from all tactical plans. Each
durative action added to the all dead-end agent goals plan from each tactical plan will have
its start time updated by adding the start time of the corresponding durative macro-action
in the strategic plan in order to avoid concurrency violations. Therefore, the start times of
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the durative actions added from tactical plan 3 to the all dead-end agent goals plan will be
increased by 34 (the start time of durative macro action 3 in the strategic plan) in the all
dead-end agent goals plan.

172



6.5 Achieving the Parent Agent Goals of an Instance Plan-
ning Problem

Fig. 6.22 Location of Section 6.5 on the High-Level Flow Chart
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Section Overview In this section, we present the procedure for creating and solving the
parent agent goals of an instance planning problem. We will also present the recursive
decomposition for situations where the parent agent goals are too difficult to solve without
further decompositions.

6.5.1 Recursive Base Case

Section Overview The base case of the recursive procedure is successful if we are able
to find a plan that achieves all parent agent goals in an instance planning problem Πi.

Definition 6.49. An all parent agent goals planning problem is defined as a tuple Πp :=
{P,V,A, I,G} where {P,V,A} are identical to the instance planning problem Πi from which
Πp is derived, I in Πp is the final state of Πi after executing a valid all dead-end agent
goals plan pland on Πi and G is formed of all parent agent goals in Πi.

Definition 6.50. An all parent agent goals plan planp is a plan that achieves all the parent
agent goals of an instance planning problem Πi when executing the plan from the final
state of Πi after executing a valid all dead-end agent goals plan pland for Πi.

The procedure for achieving the parent agent goals is described in Algorithm 29, which
has a time complexity based on the chosen solver (the creation of Πp is computed in
polynomial time). The procedure takes as input a valid all dead-end agent goals plan pland

for Πi and is the same regardless if pland been obtained by solving the all dead-end agent
goals planning problem Πd (described in Section 6.3) or by using agents and landmarks
strategic tactical planning (described in Section 6.4).

The procedure starts by checking the state where all dead-end agent goals of Πi have
been achieved (final state of Πi after executing pland) to see if it also contains the achieved
parent agent goals (lines 6 and 7). If all parent agent goals have also been achieved, we
return an empty plan as the all parent agent goals plan planp for Πi (line 7).

In case there are still unachieved parent agent goals (i.e. pland is not a valid plan for
Πi), we create an all parent agent goals planning problem Πp that has the initial state I
in Πp the final state of Πi after executing pland and has the goal state G in Πp all parent
agent goals in Πi (lines 8 and 9). The agents in Πp will be different to that of Πi, as the
goal state of Πp no longer has any goals with the dead-end agents dαt in Πi as parameters.
Therefore, our procedure continues by cleaning Πp (re-executing Algorithm 5 with Πp as
input) in order to identify and remove from Πp all new inactive dynamic objects ¬αt , all
new inactive agent facts f¬αt and all new inactive agent goals g¬αt specific to Πp (line 10).
The cleaning process is likely to reduce the difficulty of Πp, as the total number of agents
α , the total number of inactive dynamic objects ¬α and the total number of entangled
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types N(ti) in Πp is potentially reduced by no longer having any of the dead-end agents of
Πi in Πp. We then attempt to solve Πp (line 11). Πp is solved as a stand-alone temporal
planning problem using an off-the-shelf temporally expressive numeric planner. Therefore,
Πp can involve temporal expressiveness and numeric components.

Fig. 6.23 Flowchart for Achieving all Parent Agent Goals of an Instance Planning Problem
or Starting a Recursive Step

If we successfully obtain a parent agent goals plan planp either by solving Πp (line 10)
or from achieving all parent agent goals in Π with pland (case when planp is an empty
plan, lines 6 and 7), we proceed to create a plan that achieves all goals in Πi from pland

and planp (described in Section 6.6.1) and a plan that solves all goals in the unmodified
original planning problem Π (described in section 6.6.2). Afterwards, we proceed to the
remaining contextual decomposition from Σ in Πi if available in order to potentially extract
better plans for Π. If we can not find a plan that achieves all parent agent goals from Πi,
we start a recursive step (described in Section 6.5.2).
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Algorithm 29 Algorithm for Achieving all Parent Agent Goals

Input: Πi, T (Π) and an all dead-end agent goals pland (could be a from a Πd or a Πs)
Output: an all parent agent goals plan planp or the start of a new recursive step or the
start of a new dead-end agent goals decomposition

1: if the all dead-end agent goals pland algorithm input is a recursive dead-end agent
goals planrd then

2: for all actions a in pland do
3: start_time(a) += makespan of the all dead-end agent goals plan mapped to the

incoming edge of the node that maps Πi to arborescence T (Π)

4: end for
5: end if
6: if pland also achieves all parent agent goals of Πi when executed on Πi then
7: return empty plan as the all parent agent goals plan planp of Πi

8: else
9: create all parent agent agent goals planning problem Πp that has the final state of

Πi after executing pland as I in Πp and all gpαt in Πi as G in Πp

10: clean Πp by using Algorithm 5 with Πp as input
11: all parent agent goals plan planp = attempt to solve Πp

12: if not found (all parent agent goals plan planp) then
13: add a new child node cn to decomposition arborescence T (Π) and map Πp to cn
14: add a new edge e to T (Π) that has the node that maps Πi as tail and cn as head

and map pland to e
15: pause the current RALSTP instance
16: initiate and start new RALSTP instance with Πp as input (recursive step)
17: after the instance started at line 16 has stopped, re-start the paused RALSTP

instance at line 15 and attempt the next dead-end agent goals decomposition in
the re-started instance if available

18: else
19: return all parent agent goals plan planp

20: end if
21: end if
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6.5.2 Recursive Step

Section Overview A recursive step begins when we are not able to achieve the parent
agent goals of the instance planning problem during a decomposition in the running
RALSTP instance

Definition 6.51. A recursive dead-end agent goals plan planrd is an all dead-end agent
goals plan pland that achieves all the dead-end agent goals gdαt of an instance planning
problem mapped to a child node cn in T (Π). Every action in a recursive dead-end agent
goals plan planrd has its start time increased with the makespan of the all dead-end agent
goals plan pland mapped to the incoming edge of cn.

The procedure for initiating a recursive step is described in Algorithm 29. If we can
not find a plan that achieves the parent agent goals of an instance planning problem
Πi during a decomposition dec of Πi in the running RALSTP instance, we start
a new recursive step. Starting a recursive step first requires pausing the running
RALSTP instance. Afterwards, a new instance is started with the all parent agent
goals problem Πp from the decomposition dec as input (lines 12 to 16). Πp becomes
the instance planning problem, Π′

i, for the new RALSTP instance. This is done to
gradually decompose and attempt to solve Πp in the same way we decomposed and
attempted to solve the instance planning problem Πi from which Πp was derived
(Figures 6.25 and 6.26).

When starting a recursive step, we add a new node n to the T (Π) decomposition
arborescence (line 13) and map to n the instance planning problem of the new RALSTP
instance (Π′

i, which is the all parent agent goals problem Πp derived from Πi). We also map
to the edge in T (Π) that has node n as head the pland plan executed on Πi for obtaining
the initial state of Π′

i (line 14).
All decomposition elements specific to Π′

i will be extracted when initialising the new
instance of RALSTP with Π′

i as input (Section 6.2). It is important to note that the
dependency relationships in Π′

i and, consequently, the parent and dead-end classification
of agents in Π′

i will be different to that of Πi, as the agents with dead-end type t that were
previously classified as dead-end agents dαt in Πi are no longer dead-end agents in Π′

i due
to the goal state G of Π′

i no longer having any goals g with the dαt of Πi as parameters.
This causes the node mapped to dead-end type t in the acyclic dependency relationships
graph DG(Π′

i) to no longer have an incoming edge. Also, agents previously classified
as parent agents in Πi might get classified as dead-end agents in Π′

i if their type is no
longer mapped to a node that has at least one outgoing edge in the acyclic dependency
relationships graph DG(Π′

i). Therefore, Π′
i will have its own specific dead-end agent and

parent agent goals as well as specific maximum quantity of unique parent agent groups M
in Π′

i and corresponding contextual decomposition constructed from M in Π′
i. Π′

i will also
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have its own specific landmarks and relaxed landmarks which in turn will lead to specific
similarity sets and contextual decompositions due to having new backchaining starting
goals when extracting the landmarks from Π′

i (as the dead-end agent goals of Πi are no
longer backchaining starting goals in Π′

i).
After extracting all decomposition elements specific to Π′

i (Section 6.2), we attempt to
solve Π′

i following the same steps and processes utilised for the solving attempt of Πi. We
first try to achieve the dead-end agent goals in Π′

i by creating and solving the all dead-end
agent goals planning problem derived from Π′

i (described in Section 6.3) and by applying
the agent and landmarks strategic-tactical planning to Π′

i (described in Section 6.4). If
none of the dead-end agent goals decompositions of Π′

i yield an all dead-end agent goals
plan for the dead-end agent goals in Π′

i, we end the recursive step by stopping the running
(child) RALSTP instance and re-starting the last paused (parent) RALSTP instance. The
re-started instance will proceed to its next dead-end agent goals decomposition if available
(line 17). If we do find a valid all dead-end agent goals plan in a decomposition of Π′

i,
we try to solve the parent agent goals in Π′

i by running Algorithm 29 with the found all
dead-end agent goals plan for Π′

i as input (same approach as in the base case). The found
all dead-end agent goals plan for Π′

i is a recursive dead-end agent goals plan planrd as
it was found during a recursive step. Therefore, the actions in planrd are updated with
the makespan of the all dead-end agent goals plan pland mapped to the incoming edge of
the node that maps Π′

i to T (Π) (lines 1 to 3). This is done to mitigate any concurrency
violations among the actions required for achieving the dead-end agent goals in the current
recursive step with the actions required for achieving the dead-end agent goals in the base
case and in any of the previous recursive steps (Figure 6.26).

If we are unable to achieve the parent agent goals of Π′
i, we start a new recursive step

with the all parent agent goals planning problem derived from Π′
i as input and repeat the

whole procedure described in this section. Otherwise, we proceed to create a plan that
achieves all goals in Π′

i from the all dead-end agents plan and the all parent agents of Π′
i

(described in Section 6.6.1) and a plan that solves all goals in the unmodified original
planning problem Π (described in section 6.6.2).

As in the base case, the all dead-end agent goals planning problem, each strategic
planning problem, each tactical planning problem and the all parent agent goals plan-
ning problem in a recursive step are solved as stand-alone numeric temporal planning
problems using an off-the-shelf temporally expressive numeric planner. Therefore, any
sub-problems created in any RALSTP instance can involve temporal expressiveness and
numeric components, even if constructed and solved during a recursive step.
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6.6 Processing Decomposition Plans to Obtain the Final
Plan

Fig. 6.24 Location of Section 6.6 on the High-Level Flow Chart
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Section Overview In this section, we describe the procedure for stopping the RALSTP
instances and for obtaining the final plan.

6.6.1 Creating a RALSTP Instance Plan

Section Overview In this section, we describe the procedure for obtaining a plan for an
instance planning problem Πi.

Definition 6.52. An instance planning problem plan plani is a plan that achieves all the
goals of an instance planning problem Πi when executing plani from the initial state of Πi.
plani for Πi is achieved by merging pland for Πi with planp for Πi.

If we are able to obtain an all dead-end agent goals plan pland and an all parent agent
goals plan planp for an instance planning problem Πi, our procedure continues by creating
an instance planning problem plan plani for Πi (Algorithm 30 which computes in linear
time). plani is created by merging the actions in plamd with the actions in planp. To
respect the partial ordering between all dead-end agent goals and all parent agent goals in
Πi, the start time of the actions in planp are increased with the makespan of pland when
added to plani (lines 2 and 3).

Algorithm 30 Algorithm for Creating an Instance Planning Problem Plan
Input: an all dead-end agent goals pland (could be a from a Πd or a Πs) and an all
parent agent goals plan planp

Output: an instance planning problem plan plani

1: instance planning problem plan plani = all dead-end agent goals plan pland

2: for all actions a in all parent agent goals plan planp do
3: start_time(a) += makespan of the all dead-end agent goals plan pland

4: add action a to the instance planning problem plan plani

5: end for
6: return instance planning problem plan plani
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6.6.2 Creating a Plan for the Unmodified Original Problem

Section Overview In this section, we describe the procedure for obtaining a plan for the
unmodified original planning problem Π.

Definition 6.53. An unmodified original planning problem plan planu represents a plan
that achieves all the goals of the unmodified original planning problem Π (the problem
that was the input of the first initialised RASLTP instance).

Fig. 6.25 Flowchart for Creating an Unmodified Original Planning Problem Plan

If we are able to obtain an instance planning problem plan plani for an instance
planning problem Πi, our procedure continues by creating an unmodified original planning
problem plan planu for Π (Algorithm 31 which computes in polynomial time). In the base
case, the instance planning problem plan plani is also the unmodified original planning
problem plan planu (line 1). However, if the RALSTP instance of Πi was started by a
recursive step, planu is created by merging the actions in a plani for Πi with the actions in
all of the all dead-end agent goals plans pland that were obtained by all previous RALSTP
instances in the recursive (directed) path between the unmodified original planning problem
Π (the root of T (Π)) and the instance planning problem Πi (lines 2 to 4). If an unmodified
original planning problem plan planu is found valid by VAL [41] when executed on the
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unmodified original planning problem Π, we return planu as one of the solutions for Π

(line 8).

Algorithm 31 Algorithm for Creating a Plan for the Unmodified Original Problem
Input: an instance planning problem plan plani, Πi and decomposition arborescence
T (Π)

Output: an instance planning problem plan plani

1: unmodified original planning problem plan planu = instance planning problem plan
plani

2: for all edges e in the directed path from the root of decomposition arborescence T (Π)

to the node that maps Πi in T (Π) do
3: for all actions a in the all dead-end agent goals plan pland mapped to e do
4: add action a to unmodified original planning problem plan planu

5: end for
6: end for
7: if unmodified original planning problem plan planu is valid when executed on the

original unmodified planning problem Π we want to solve then
8: return unmodified original planning problem plan planu as a solution to Π and

continue to the next decomposition or last paused RALSTP instance if available
9: else

10: return error "unmodified original planning problem plan planu is invalid" (this
error will redirect RALSTP to the next decomposition or last paused RALSTP
instance if available)

11: end if
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6.6.3 Stopping RALSTP Instances and Creating the Final Plan

Section Overview In this section, we describe the procedure for stopping all initialised
RALSTP instances and for obtaining the final plan for the unmodified original planning
problem Π.

A RALSTP instance can output multiple valid unmodified original planning problem
plans planu for Π. This happens due to the multiple potential dead-end agent goals
decompositions, such as the decomposition of all the dead-end agent goals into a single
problem (Section 6.3) and the multiple potential contextual decompositions obtained during
the landmarks and agents decomposition procedure (Section 6.4). The dead-end agent
goal decompositions can happen within each RALSTP instance, regardless if the instance
was started in the base case or in a recursive step. Therefore, regardless if a valid planu

is found or not from a particular decomposition dec in the running RALSTP instance,
the procedure continues with the next available decomposition in the running instance
(lines 8 and 10 of Algorithm 31) upon finishing the solving attempt of dec. The technique
as described in this thesis uses depth-first search for establishing the solving order of all
possible decompositions obtained from a RALSTP instance. This design choice has been
made to increase the chances of outputting a plan for Π when the planning time allowed
for solving is finite. A breadth-first search ordering would increase the chances of solving
only dead-end agent goals decompositions without ever advancing to parent agent goals
when the planning time allowed for solving is finite. This means that our procedure will
never start a new dead-end agent goals decomposition (if available) in the same instance it
found a valid all dead-end agent goals plan pland for the instance planning problem Πi

until it has found all possible unmodified original planning problem plans which may be
found from all possible decompositions obtained from the final state of Πi after executing
pland . Only the descendant instances (started by recursive steps) of the instance where
pland was found may create and solve a new dead-end agent goals decomposition (which
will be in effect a decomposition of the parent agent goals from a parent instance).
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Fig. 6.26 Detailed Flowchart for Solving a Planning Problem using RALSTP
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After exhausting all possible decompositions from all descendant instances of a RAL-
STP instance inst and all possible decompositions from inst, we stop inst, re-start the
instance that was paused when inst was started (if such an instance exists), proceed to the
next available decomposition in the resumed instance (Figure 6.26) and continue the search
for all unmodified original planning problem plans planu in the resumed instance (Algo-
rithm 29 line 17). The procedure ends only when all RALSTP instances have exhausted all
their possible decompositions. After all instances have finished (the first initialised instance
that had Π as input will be the last to finish) we output as the final plan for Π the planu

plan with the best makespan among all valid planu plans obtained from all decompositions
in all RALSTP instances.

6.7 Summary of Chapter Contributions

In this chapter, we presented a collection of automatic decomposition techniques systemat-
ically arranged to reduce the difficulty metrics of a temporal numeric planning problem,
with as few such decompositions as possible for finding a solution.

Specifically, we introduced an automatic decomposition technique that uses the agent
dependency relationships to form a partial order between the dead-end agent goals and
parent agent goals in order to decompose a problem into an all dead-end agent goals
sub-problem and a parent agent goals sub-problem (Sections 6.3 and 6.5).

We presented an automatic decomposition method from PDDL encoded data which
groups dead-end agent goals into goal sets based on the duplicate landmarks found between
dead-end agent goals and based on the maximum quantity of unique parent agent groups
with no common agents (Section 6.4.1). We also introduced a technique that groups the
goal sets obtained from landmarks into multiple distinct contextual decompositions, similar
to how humans use the available context and information to generate a variety of alternative
solutions to a particular problem (Section 6.4.1).

We used the contextual decompositions and agent dependency classification to extend
strategic tactical planning from a manual domain-engineer-dependent and time-consuming
procedure into a fast automatic process that requires no human input (Sections 6.4.2 and
6.4.3). We described an automatic procedure for efficiently allocating parent agents in
tactical planning problems outside of the solution search (Section 6.4.2.3) in order to not
only decrease the solving difficulty but also to allow the solving of parent agent goals at
the tactical level (Section 6.4.2.4). We introduced a relaxed version of tactical planning
problems that can exponentially decrease the solving difficulty in comparison to regular
tactical planning problems (Section 6.4.2.5).
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Furthermore, we presented a high-level description (Section 6.1) as well as a detailed
description of how the decomposition techniques are utilised in a recursive solving proce-
dure that employs the agents and landmarks strategic tactical planning to obtain quality
solutions for numeric temporally expressive problems with as few such decompositions as
possible (Sections 6.3, 6.4 6.5 and 6.6). The description also illustrates a technique for
using temporal data to mitigate all constraints between the dead-end agent goals and parent
agent goals solutions as well as between recursive steps (Section 6.5).
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Chapter 7

Evaluation

Chapter Overview In this Chapter, we evaluate an implementation of the recursive
agent and landmarks strategic-tactical planning (RALSTP) procedure described in Chapter
6 against a broad range of state-of-the-art temporal planners on benchmark domains from
past international planning competitions. We also present an analysis of the potential
benefits of using relaxed tactical planning problems.

7.1 Difficulty of Relaxed Tactical Planning Problems

The potential exponential difficulty reductions obtained by using relaxed tactical planning
problems can be clearly observed in the test problems in set DT at Section 5.4 from Chapter
5. All test problems in set DT have the same static environment and identical top-level
goals: one driver parent agent goal, one truck parent agent goal and one package dead-end
agent goal. In each test problem from set DT, only the driver and truck agents are gradually
increased, without any corresponding goals. Figure 7.1 shows how the extra added agents
exponentially increase the difficulty of the test problems for all tested planners to the point
where a solution is no longer found.
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Fig. 7.1 Normalised Planning Time of the Test Problems in Set DT from Section 5.4.
X-Axis: Number of Driver and Truck Agents per Problem. Y Axis: Normalised Planning
Time

When applying RALSTP to any test problem Πi in set DT, we obtain an identical
relaxed tactical planning problem Πr for all Πi ∈ DT. Πr has as the mandatory parent
agent group ωpαt the driver and truck parent agents with corresponding gpαt goals in Πi

regardless of the number of added agents in the test problem Πi from which Πr was derived.
This happens because the relaxed plan of each test problem Πi contains the agents that
have their in_goal_state(pαt) goal state constraint set to true due to the corresponding
gpαt parent agent goals in Πi. All solutions for Πr are also valid solutions for all test
problems Πi. This is the case as Πr has agents that are present in every Πi, has the same
static environment as every Πi and contains the same goals as every Πi. Πr, however,
is identical to the first test problem, the problem that has only one agent per agent type.
Therefore, Πr is solved by RALSTP regardless of the planner selected as the tactical solver
(from the planners tested in Section 5.4) irrespective of the number of added agents in the
test problem from which Πr was derived (Figure 7.1). The solution search operation of
each relaxed tactical planning problem Πr derived from a test problem Πi remains constant
regardless of the number of agents added to Πi. However, the solution search operation
of the test problems Πi when solved directly with a planner increases exponentially the
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more driver and truck parent agents are added. This happens because the state space of the
test problems is expanded by the entanglement of the extra-added agents while no such
expansion takes place in Πr regardless of the number of extra agents added to the problem
Πr was derived from. Therefore, using RALSTP can exponentially increase the size of
solvable planning problems.

7.2 RALSTP Evaluation on Benchmark Problems

7.2.1 Evaluation Specifics

Section Overview In this section, we present the evaluation setup.

The evaluation of the technique presented in this thesis has been made using a proof-
of-concept implementation built on top of a mix of legacy academic codebases (detailed
in Section 8.2 from Chapter 8). The implementation consists of two versions. The first
version, named RALSTP, uses regular (non-relaxed) tactical planning problems for the
solving process. The second version, named RALSTP-rnd, uses a partial implementation
of relaxed tactical planning problems in which the selection of a mandatory parent agent
group outside of the solving process of tactical planning problems is done arbitrarily from
the parent agents that have their parent agent constraints set to true in each tactical planning
problem.

The two implementations have been evaluated against the latest versions of multiple
robust and well-known temporal planners that employ different approaches to solving
temporal problems and participated in past international planning competitions as well as
the most competitive temporal planners that were part of the last international planning
competition with a temporal track (IPC 2018). The evaluated planners are Optic [6], Itsat
[49], Temporal Fast Downward (TFD) [26], Yahsp3 [64], TBurton [65], TFLAP [53], and
TPSHE [32]. The evaluated domains represent all the benchmarks from past international
planning competitions with temporal tracks that have the feature exploited by RALSTP
explicitly encoded, that do not have irreversible state transitions (detailed in Section 8.3.2
of Chapter 8) and that do not require cooperative agents with the same parent type for
solving (within the same map segment in case the problem has a disconnected map) as the
feature (described in paragraph 6.4.2.5 from Chapter 6) has not been implemented. We also
present an example of a domain where the exploited feature is not explicit (Section 7.2.5)
which required modifications to the PDDL encoding for our technique to be beneficial.

Each problem was solved on a Dell XPS 15 9560 laptop with 32GB total and unre-
stricted RAM and a threshold of 1800 seconds per problem. The implementation specifics
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(detailed in Section 8.2 from Chapter 8) that are related to the evaluation process are as
follows:

• The landmarks-based contextual decompositions Contextd ∈ Σ for each planning
problem are sorted in ascending order based on the number of their goal sets. This
is done as, usually, fewer decompositions yield a better solution. The contextual
decomposition obtained from the maximum quantity of unique parent agent groups
is left for last, as the landmarks decompositions if found, are expected to yield better
solutions.

• The decompositions in the base case were sufficient to solve the problems without
needing the implementation of the recursive step (which would not have affected the
results or algorithmic overheads in any way and was assigned to future work).

• Problem ’cleaning’ was partially implemented. The cleaning process in the evalu-
ated implementation consists of searching and removing the dead-end agent objects
and facts from the all parent agent goals planning problems. The complete imple-
mentation of the cleaning process (future work) would have added the cost of an
extra reachability analysis for every dynamic object in a planning problem to the
algorithmic overhead, but both approaches are polynomial (max 151 reachability
analyses, as the highest number of dynamic objects among all evaluated problems is
151, found in problem no 20 from the RTAM domain).

• The agent dependency identification considered all dynamic objects as agents and
all static objects as necessary static objects due to the partial cleaning of planning
problems (N(α) = all dynamic objects and N(Φ) = all static objects). However, even
without ignoring the inactive dynamic objects and unnecessary static objects (that
can decrease the accuracy of the obtained planning problem ’advice’), the obtained
dependency relationships were sufficient to solve all problems. There are close to no
differences in the algorithmic overhead of the dependency relationships extracting
process if the input consists of active dynamic objects and necessary static objects
or if the input consists of dynamic objects and static objects, as the algorithmic
overhead for identifying the active dynamic objects and necessary static objects is
accounted for in the problem ’cleaning’ process.

• The partial implementation of the relaxed tactical planning problems in RALSTP-rnd
consists of the selection of the mandatory parent agents outside the solving process of
a tactical planning problem Πt in order to decrease the solving difficulty of Πt . The
agents are selected at random from all agents with favourable parent agent constraints
in Πt . The complete implementation of the relaxation for tactical planning problems
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(future work) would have selected the parent agents in the relaxed plan of Πt instead
of an arbitrary selection and would have added the cost of finding the relaxed
plan of Πt to the algorithmic overhead. Intuitively, the complete implementation
is expected to yield better results than the partial implementation due to having
heuristic guidance for selecting the mandatory parent agents instead of a random
selection.

• Multi-Agents with the same parent type not implemented

• Unlimited landmarks extraction time with a threshold of 450 seconds for the
backchaining operations.

• TPSHE as the main planner and Optic as the backup planner in case a problem is
not solvable by TPSHE.

• A threshold of max 120 seconds per sub-problem (tactical, strategic, etc.).

• Each sub-problem solution search terminates 5 seconds after the first plan is found
and uses the best plan (if multiple plans are found) as the sub-problem plan.

The difficulty of each planning problem was estimated using the N(α) and N(Φ)

difficulty metrics (described in Section 5.6 from Chapter 5) when N(α) = all dynamic
objects and N(Φ) = all static objects (due to the partial implementation of the problem
cleaning process). The results in the evaluation against IPC planners are scored using
the IPC scoring system. The scoring system uses the ratio C*/C to calculate the score
of a planner for each solved problem Π from a specific domain. C is the makespan of
the best plan among all planners for Π and C* is the makespan of a reference plan for Π.
In case a planner found multiple plans for a specific problem in the allocated time, we
considered the plan with the best makespan for scoring purposes. Unsolved problems are
scored with 0. The final score of a planner for a specific domain is the sum of all the scores
obtained by the planner for each problem in the domain. Results marked with * represent
results obtained using the all dead-end agent goals planning problem decomposition while
the results not marked with * represent results obtained using the agents and landmarks
strategic-tactical decomposition of the dead-end agent goals.
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7.2.2 Driverlog

The Driverlog temporal domain consists of trucks that must be boarded by drivers in order
to be driven to various locations in order to load, transport and unload packages.

7.2.2.1 RALSTP and RALSTP-rnd Driverlog Results and Algorithmic Overhead

In the Driverlog domain, RALSTP and RALSTP-rnd were not able to find valid contextual
decompositions from the similarity goal sets in each problem, so the dead-end agent goals
decompositions were constructed using only the maximum quantity of unique parent
agent groups M technique (described in Section 6.4.1.2 from Chapter 6). The results of
solving the Driverlog problems using RALSTP and RASTP-rnd are found in Tables 7.1
and 7.2. The second and third columns in the two tables represent the difficulty estimation
of each Driverlog planning problem using the N(α) and N(Φ) difficulty metrics. Since
the dead-end agent goals are split at random among a number of goal sets equal to the
maximum quantity of unique parent agent groups M of each problem, we solved each
Driverlog benchmark problem ten times (columns R1 to R10 in Tables 7.1 and 7.2) to
reduce the impact of potential outliers on the results. The last two columns in Tables
7.1 and 7.2 represent the worst and median results among the ten solving attempts of a
particular problem.

Π N(α) N(Φ) R1 R2 R3 R4 R5 R6 R7 R8 R9 R10 Best
1 20 27 0.95 0.94* 0.94* 1.00* 0.94* 0.94* 0.94* 0.94* 1.00* 0.94* 210.00*
2 25 38 0.99 0.99 0.99 0.91 0.95 1.00 0.95 0.91 0.91 0.95 228.00
3 30 51 0.66 0.69 1.00 0.74 0.91 0.68 0.64 0.62 0.91 0.71 212.01
4 35 67 0.82 1.00 0.89 0.82 0.94 0.91 0.82 0.82 0.85 1.00 338.01
5 40 80 0.96 0.91 0.91 1.00 0.89 0.97 0.91 0.94 0.99 0.94 318.01
6 45 88 0.92 0.89 1.00 0.87 0.97 0.85 1.00 0.97 0.97 0.98 330.01
7 50 102 0.99 1.00 0.93 1.00 0.96 0.91 0.97 0.91 0.93 0.96 340.01
8 55 115 1.00 0.86 0.88 0.86 0.73 0.73 0.76 0.93 0.86 0.84 370.01
9 60 131 0.92 0.92 1.00 0.94 0.87 0.90 0.80 0.97 0.83 0.92 330.01
10 65 140 0.80 0.93 0.80 0.97 0.85 0.94 0.92 0.89 1.00 0.82 334.01
11 24 43 0.83 0.83 0.96 0.84 0.84 0.83 0.93 1.00 0.96 0.83 200.00
12 29 56 0.96 0.96 0.96 0.91 0.94 0.94 0.91 0.94 1.00 0.96 346.01
13 34 67 0.86 0.84 0.84 0.84 0.86 0.86 1.00 0.92 0.84 0.86 268.01
14 39 85 0.96 1.00 0.97 0.93 0.79 0.93 0.93 0.93 0.90 1.00 260.01
15 44 93 0.96 0.81 0.70 0.96 0.96 0.81 0.66 0.63 1.00 0.96 250.01
16 49 105 0.86 1.00 0.77 0.81 0.75 0.86 0.91 0.79 1.00 0.88 300.01
17 54 118 0.97 0.97 0.83 0.75 0.75 0.76 1.00 0.82 0.95 0.80 352.01
18 59 131 0.94 0.97 0.94 0.89 0.86 0.89 0.94 0.89 0.79 1.00 310.01
19 64 139 0.83 0.75 0.87 0.89 0.81 0.85 0.85 0.85 1.00 0.83 332.01
20 47 70 0.79 0.84 1.00 0.83 0.83 0.87 0.84 0.81 0.87 0.83 380.01
- - - 17.99 18.10 18.19 17.76 17.38 17.43 17.68 17.49 18.56 18.01 Score
- - - 20/20 20/20 20/20 20/20 20/20 20/20 20/20 20/20 20/20 20/20 Solved

Table 7.1 Results of the Driverlog benchmark problems solved by RALSTP.
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Π N(α) N(Φ) R1 R2 R3 R4 R5 R6 R7 R8 R9 R10 Best
1 20 27 0.94* 0.94* 0.94* 1.00* 0.94* 0.94* 0.96 0.94* 0.94* 0.94* 210.00
2 25 38 0.82 1.00 0.82 0.89 0.82 0.82 0.82 0.82 0.82 0.82 240.01
3 30 51 0.83 0.86 1.00 0.83 0.67 0.66 0.80 0.80 0.80 0.84 264.01
4 35 67 0.85 1.00 0.80 0.85 0.82 0.99 0.83 0.86 0.96 0.82 318.01
5 40 80 0.65 0.63 0.70 0.71 1.00 0.63 0.70 0.74 0.76 0.77 288.01
6 45 88 0.92 1.00 0.92 0.92 0.97 0.90 0.86 0.73 0.86 0.93 380.01
7 50 102 0.84 0.80 1.00 0.93 0.91 0.96 0.91 0.99 0.95 0.79 404.01
8 55 115 0.82 0.80 0.93 0.98 0.97 1.00 0.97 0.89 0.96 0.86 430.01
9 60 131 0.82 0.91 0.87 0.86 1.00 0.87 0.82 0.85 0.97 0.97 430.01
10 65 140 0.74 0.83 0.77 1.00 0.72 0.91 0.70 0.83 0.83 0.91 394.01
11 24 43 1.00 0.72 0.72 0.76 0.75 0.73 0.76 0.76 0.80 0.75 224.00
12 29 56 0.78 0.97 0.79 0.80 0.74 0.97 0.74 0.90 1.00 0.97 280.01
13 34 67 0.97 0.82 0.82 0.91 0.86 0.74 1.00 0.94 0.84 0.82 310.01
14 39 85 0.85 0.87 0.85 0.67 0.85 1.00 0.79 0.82 0.67 1.00 280.01
15 44 93 0.97 0.89 0.91 0.89 0.86 1.00 0.94 0.82 0.84 0.84 320.01
16 49 105 0.88 0.90 1.00 0.84 0.94 0.95 0.88 0.98 0.93 0.91 346.01
17 54 118 0.92 0.70 0.87 0.80 0.76 1.00 0.92 0.88 0.80 0.98 462.01
18 59 131 0.87 0.89 0.83 0.83 0.89 0.87 0.89 0.96 0.93 1.00 402.01
19 64 139 1.00 0.83 0.87 0.81 0.68 0.85 0.90 0.91 0.71 0.82 410.01
20 47 70 0.74 1.00 0.92 0.79 0.78 0.85 0.96 0.89 0.94 0.79 350.01
- - - 17.22 17.36 17.34 17.06 16.94 17.64 17.17 17.32 17.32 17.53 Score
- - - 20/20 20/20 20/20 20/20 20/20 20/20 20/20 20/20 20/20 20/20 Solved

Table 7.2 Results of the Driverlog benchmark problems solved by RALSTP-rnd.

The averages of the algorithmic overheads in each of the ten solution searches of
each Driverlog benchmark problem have been added in Table 7.3. The second and third
columns in the table represent the difficulty estimation of each planning problem using
the N(α) and N(Φ) difficulty metrics. The Agents columns represent the overheads for
extracting the agents, agent dependency relationships and classifications in each problem.
The LM columns represent the overhead for extracting the landmarks in each problem.
The LM-rlx columns represent the overhead for relaxing the landmarks and creating the
similarity goal sets. The ADEAG columns represent the decomposition and solving time
when using the all dead-end agent goals planning problem for solving all dead-end agent
goals. The STP columns represent the decomposition and solving time when using the
agents and landmarks strategical tactical planning for solving all dead-end agent goals. The
algorithmic overheads in the Agents columns clearly show that determining if a Driverlog
planning problem is suitable for our solving approach is computationally cheap relative to
the problem difficulty.
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RALSTP RALSTP-rnd
Π N(α) N(Φ) Agents LM LM-rlx ADEAG STP Agents LM LM-rlx ADEAG STP
1 20 27 0.0 0.2 0.0 10.6 34.5 0.4 0.3 0.0 10.7 34.0
2 25 38 0.4 2.1 0.0 11.2 41.0 0.9 2.0 0.0 10.5 40.0
3 30 51 1.0 5.1 0.0 10.9 50.8 0.7 5.0 0.0 11.2 48.0
4 35 67 2.0 10.1 0.0 11.8 60.5 1.8 10.0 0.0 11.7 56.8
5 40 80 3.0 22.2 0.0 18.1 80.1 3.2 21.2 0.0 17.4 66.5
6 45 88 5.1 34.3 0.0 36.4 101.0 4.5 31.8 0.0 33.4 77.4
7 50 102 7.8 87.5 1.0 35.0 115.3 7.1 82.2 0.6 34.3 93.6
8 55 115 11.6 130.7 1.0 152.8 163.9 10.9 116.5 1.0 150.0 108.9
9 60 131 16.5 159.8 1.0 93.9 189.0 15.2 146.7 1.0 84.6 128.4
10 65 140 22.8 327.9 1.0 98.4 193.2 21.4 314.5 1.0 103.6 152.2
11 24 43 1.0 2.0 0.0 10.4 44.0 0.7 2.0 0.0 10.6 42.5
12 29 56 1.0 5.3 0.0 11.5 52.6 1.2 5.4 0.0 11.4 49.0
13 34 67 2.1 13.5 0.0 12.1 63.0 2.0 13.3 0.0 11.9 58.0
14 39 85 4.0 17.1 0.0 17.5 82.2 3.7 16.1 0.0 17.4 66.9
15 44 93 6.1 52.3 0.0 24.7 102.6 5.6 48.3 0.0 23.2 80.2
16 49 105 10.0 58.6 0.1 65.3 131.2 8.6 51.0 0.0 54.4 94.0
17 54 118 13.3 139.7 1.0 114.3 184.6 12.3 128.8 1.0 102.6 125.0
18 59 131 18.9 234.0 1.0 177.2 197.0 17.4 203.8 1.0 172.3 134.5
19 64 139 24.7 443.3 2.0 87.9 207.9 22.8 392.7 1.7 84.2 159.2
20 47 70 4.2 28.8 0.0 57.9 95.4 4.0 26.9 0.0 53.4 76.0

Table 7.3 Average Algorithmic Overheads of RALSTP and RALSTP-rnd while solving
the Driverlog benchmark problems when the results in Tables 7.1 and 7.2 were obtained.
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7.2.2.2 Driverlog Evaluation Against IPC Planners

The results 1 of executing all Driverlog problems on all evaluated planners can be seen in
Table 7.4. The second and third columns in the table represent the difficulty estimation
of each planning problem using the N(α) and N(Φ) difficulty metrics. The rest of the
columns represent the results of each evaluated planner using the IPC scoring system. For
each Driverlog problem, we have used the worst and median among all ten results obtained
by RALSTP and RALSTP-rnd (Tables 7.1 and 7.2) in the evaluation against the other
planners.

Π N(α) N(Φ) RALSTP RALSTP-rnd Optic Itsat TFD Yah- TF- TPSHE Best
Me- Worst Me- Worst sp3 LAP
dian dian

1 20 27 0.71* 0.71* 0.71* 0.71* - 1.00 - 0.61 - 0.89 159.15
2 25 38 0.57 0.54 0.47 0.47 - 1.00 - 0.34 0.88 0.65 136.14
3 30 51 1.00 0.89 0.93 0.75 - - - - 0.87 0.55 302.01
4 35 67 0.96 0.91 1.00 0.93 - - - 0.37 - 0.75 372.01
5 40 80 1.00 0.95 0.84 0.75 - - - 0.35 - 0.85 340.01
6 45 88 1.00 0.87 0.82 0.65 - - - - - 0.61 340.01
7 50 102 0.95 0.91 0.77 0.66 - - - - - 1.00 338.01
8 55 115 1.00 0.84 0.95 0.80 - - - - - 0.56 430.01
9 60 131 1.00 0.88 0.73 0.69 - - - - - 0.24 360.01

10 65 140 1.00 0.88 0.78 0.65 - - - - - 0.31 369.01
11 24 43 0.55 0.55 0.44 0.42 - 1.00 - 0.44 0.55 0.87 131.07
12 29 56 0.55 0.53 0.61 0.53 - 1.00 - - 0.80 0.70 200.09
13 34 67 1.00 0.97 0.85 0.74 - - - 0.53 - 0.89 310.01
14 39 85 1.00 0.85 0.85 0.67 - - - - - 0.75 280.01
15 44 93 1.00 0.71 0.79 0.73 - - - 0.27 - 0.60 285.01
16 49 105 1.00 0.87 0.93 0.85 - - - - - 0.63 350.01
17 54 118 1.00 0.90 0.81 0.64 - - - - - 0.37 426.01
18 59 131 1.00 0.87 0.75 0.70 - - - - - - 340.01
19 64 139 1.00 0.88 0.80 0.65 - - - - - 0.46 392.01
20 47 70 0.89 0.84 1.00 0.86 - - - 0.61 - 0.41 402.01
- - - 18.18 16.36 15.82 13.84 0.00 4.00 0.00 3.51 3.10 12.09 Score
- - - 20/20 20/20 20/20 20/20 0/20 4/20 0/20 8/20 4/20 19/20 Solved

Table 7.4 RALSTP and RALSTP-rnd Evaluation Against IPC Planners on the Driverlog
benchmark problems using IPC scoring.

The results in Table 7.4 show that RALSTP and RALSTP-rand were able to solve all
Driverlog problems and obtained a far better IPC score than all other evaluated planners
even when considering the worst result among the ten solutions obtained by each of the
two implementation versions for each problem (Tables 7.1 and 7.2).

The all dead-end agent goals decomposition proved better than the agents and land-
marks strategic tactical decomposition only in the easiest Driverlog problem according to

1The TBurton planner did not start due to a licensing issue of one of its components and outputted the
following error upon execution: ’Lisp has expired. Please contact sales@franz.com for a new license file.’
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our difficulty metrics (result marked with * in Table 7.3). In the larger, more difficult prob-
lems, the agents and landmarks strategic tactical decomposition obtained overwhelmingly
better results than the all dead-end agent decompositions.

Most Driverlog problems were too difficult to solve in the allocated threshold by
most IPC planners except TPSHE. Optic and TFD were not able to solve any of the
problems. Itsat was able to solve only four of the easier problems according to the N(α)

and N(Φ) difficulty metrics but with the best makespans among all planners in all four
solved problems. TFLAP was also able to solve only four of the easier problems according
to N(α) and N(Φ) and obtained better results than RALSTP and RALSTP-rnd in two of
them. Yahsp3 was able to solve problems with a slightly increased difficulty in comparison
to the other IPC planners but with inferior results than RALSTP and RALSTP-rnd.
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7.2.3 RTAM

The RTAM temporal-numeric domain simulates multiple simultaneous car accidents that
happen at distinct locations. The accidents must be efficiently mitigated by a response
team of ambulances, police cars, fire brigades and tow trucks.

7.2.3.1 RALSTP and RALSTP-rnd RTAM Results and Algorithmic Overhead

In the RTAM problems, RALSTP and RALSTP-rnd were able to find multiple valid
landmarks-based contextual decompositions from the similarity goal sets in each problem
and attempted to solve as many contextual decompositions as possible within the allocated
threshold of 1800 seconds. The results as well as the algorithmic overheads of the solutions
searches for each RTAM problem have been added to Table 7.5. The second and third
columns in the table represent the difficulty estimation of each planning problem using
the N(α) and N(Φ) difficulty metrics. The Agents columns represent the overheads for
extracting the agents, agent dependency relationships and classifications in each problem.
The LM columns represent the overhead for extracting the landmarks in each problem.
The LM-rlx columns represent the overhead for relaxing the landmarks and creating the
similarity goal sets. The ADEAG columns represent the decomposition and solving time
when using the all dead-end agent goals planning problem for solving all dead-end agent
goals. The STP columns represent the decomposition and solving time when using the
agents and landmarks strategical tactical planning for solving all dead-end agent goals.
The algorithmic overheads in the Agents columns clearly show that determining if an
RTAM planning problem is suitable for our solving approach is computationally cheap
relative to the problem difficulty.
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Π N(α) N(Φ) RALSTP RALSTP-rnd
Make- Age- LM LM- AD- STP Make- Age- LM LM- AD- STP
span nts rlx EAG span nts rlx EAG

1 77 41 411 2 6 0 42 1098 507 2 9 0 47 873
2 90 41 345 3 7 0 46 1226 335 4 9 0 46 992
3 74 43 1256 1 8 0 24 1767 1256 1 10 0 27 1762
4 87 43 511 3 9 0 29 1753 577 3 11 0 30 1756
5 100 43 343 3 9 0 46 1742 396 5 11 0 45 1739
6 79 45 1290 1 10 0 20 1318 1290 1 14 0 23 1363
7 92 45 630 2 11 0 45 1742 535 3 14 0 45 1565
8 105 45 456 5 11 0 45 1739 395 5 14 0 46 1486
9 76 47 1607 0 10 0 21 1769 1666 1 13 0 22 1764
10 89 47 520 2 11 0 50 1347 588 3 13 0 56 1587
11 110 47 390 5 12 0 46 1559 351 6 16 0 46 1575
12 95 49 1632 2 16 0 42 1499 1632 2 20 0 34 1543
13 108 49 594 3 16 0 46 1623 608 4 21 0 46 1586
14 121 49 397 10 16 0 46 1664 549 8 22 0 46 1716
15 90 51 1518 1 15 0 30 859 1526 1 19 0 32 939
16 103 51 600 3 15 0 45 675 565 3 21 0 46 1006
17 116 51 374 6 16 0 46 732 410 7 20 0 46 601
18 125 53 2002 3 27 0 57 1713 1933 3 34 0 62 1701
19 138 53 894 6 28 0 46 1720 751 7 35 0 45 1713
20 151 53 767 9 28 0 46 1717 762 12 36 0 45 1707

Table 7.5 Results and Algorithmic Overheads of RALSTP and RALSTP-rnd when solving
the RTAM benchmark problems.

7.2.3.2 Landmarks Contextual Decompositions vs Random Decompositions

The landmarks contextual decompositions were also evaluated against same-sized random
decompositions (R1 to R10 in Table 7.6). A random decomposition randomd is constructed
from each landmarks-based contextual set Contextd obtained from a RTAM test problem
Π. Each randomd has the same number of goal-sets Gd as the contextd from which it was
constructed. Each Gd ∈ randomd has the same size as its corresponding Gd ∈ contextd .
The dead-end agent goals in Π are randomly split among all Gd ∈ randomd for each
randomd in Π (while in each contextd in Π they are arranged according to the landmarks
decomposition procedure described in Algorithm 18 when applied to Π). The results from
the all dead-end agent goals problems have not been added to highlight the differences
between the landmarks contextual decompositions and random decompositions. The result
of the landmarks contextual decompositions vs ten instances of random decompositions
can be seen in Table 7.6.
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Π RAL RAL R1 R2 R3 R4 R5 R6 R7 R8 R9 R10 Best
STP STP

-rnd
1 1.00 0.81 0.83 0.79 0.63 0.76 0.73 0.75 0.68 0.70 0.74 0.69 411.39
2 0.86 0.89 0.86 0.71 0.72 0.82 0.79 0.78 0.81 0.94 0.67 1.00 297.06
3 1.00 1.00 0.87 0.96 0.78 0.79 0.87 0.88 0.95 0.85 0.86 0.88 1,256.01
4 1.00 0.89 0.79 0.83 0.80 0.99 0.82 0.84 0.83 0.91 0.77 0.73 510.90
5 1.00 0.87 0.77 0.77 0.83 0.94 0.87 0.77 0.67 0.88 0.75 0.89 343.39
6 1.00 1.00 0.99 0.90 0.94 0.87 0.89 0.89 0.88 0.99 0.86 0.99 1,289.58
7 0.83 0.98 0.72 0.79 0.73 0.81 0.82 1.00 0.80 0.97 0.80 0.75 525.75
8 0.82 0.95 0.75 0.80 0.89 0.86 0.80 1.00 0.86 0.98 0.82 0.80 376.40
9 0.85 0.82 0.93 1.00 0.94 0.84 0.92 0.95 0.93 0.94 0.92 0.89 1,372.21
10 0.91 0.81 1.00 0.97 0.95 0.92 0.83 0.86 0.94 0.79 0.92 0.85 473.90
11 0.90 1.00 0.74 0.86 0.63 0.59 0.77 0.74 0.75 0.83 0.66 0.71 351.38
12 1.00 1.00 0.83 0.95 0.79 0.80 0.93 0.85 0.82 0.90 0.67* 0.80 1,632.13
13 1.00 0.98 0.71 0.64 0.67 0.56 - - 0.66 0.71 - 0.74 593.72
14 1.00 0.72 0.64 - - - - - - - - - 397.24
15 0.95 0.94 0.93 0.98 0.98 0.99 0.91 1.00 0.94 0.99 0.97 0.90 1,434.92
16 0.94 1.00 0.95 0.92 0.88 0.93 0.84 0.89 0.89 0.94 0.95 0.96 564.73
17 1.00 0.91 0.93 0.88 0.88 0.63 0.81 0.84 0.84 0.78 0.79 0.77 373.55
18 0.97 1.00 0.87 0.85 0.79 0.87 0.82 0.91 0.85 0.78 0.81 0.88 1,932.57
19 0.84 1.00 - - 0.59 - - - - 0.73 - - 750.72
20 0.92 0.93 - - - 1.00 - - - - - - 705.43
- 18.80 18.50 15.10 14.60 14.44 14.96 13.43 13.94 14.08 15.61 12.95 14.23 Score
- 20/20 20/20 18/20 17/20 18/20 18/20 16/20 16/20 17/20 18/20 16/20 17/20 Solved

Table 7.6 Results of Landmarks Contextual Decompositions vs Random Decompositions
of the RTAM benchmark problems using IPC scoring.
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7.2.3.3 RTAM Evaluation Against IPC Planners

The results 2 of executing all RTAM problems on all evaluated planners can be seen in
Table 7.7. The second and third columns in the table represent the difficulty estimation
of each planning problem using the N(α) and N(Φ) difficulty metrics. The rest of the
columns represent the results of each evaluated planner using the IPC scoring system.

Π N(α) N(Φ) RALSTP RALSTP Optic Itsat TFD Yahsp3 TFLAP TPSHE Best
-rnd

1 77 41 0.96 0.78 - 1.00 - 0.62 - 0.61 395.22
2 90 41 0.70 0.72 - 1.00 - 0.48 - 0.39 240.16
3 74 43 1.00 1.00 - - - 0.70 - 0.70 1,256.01
4 87 43 0.76 0.68 - 1.00 - 0.52 - - 390.24
5 100 43 0.83 0.72 - 1.00 - 0.45 - 0.41 285.19
6 79 45 1.00 1.00 - - - 0.35 - 0.60 1,289.58
7 92 45 0.85 1.00 - - - 0.43 - - 535.42
8 105 45 0.66 0.76 - 1.00 - 0.35 - 0.25 300.16
9 76 47 1.00 0.96 - - - 0.61 - 0.94 1,606.84
10 89 47 1.00 0.89 - - - 0.51 - - 520.12
11 110 47 0.90 1.00 - - - 0.30 - 0.49 351.38
12 95 49 1.00 1.00 - - - 0.41 - 0.63 1,632.13
13 108 49 1.00 0.98 - - - 0.25 - 0.43 593.72
14 121 49 1.00 0.72 - - - 0.38 - 0.30 397.24
15 90 51 1.00 1.00 - - - 0.43 - 0.63 1,518.25
16 103 51 0.94 1.00 - - - 0.41 - 0.43 564.73
17 116 51 1.00 0.91 - - - 0.29 - 0.37 373.55
18 125 53 0.97 1.00 - - - 0.46 - 0.65 1,932.57
19 138 53 0.84 1.00 - - - 0.32 - - 750.72
20 151 53 0.99 1.00 - - - 0.37 - 0.80 761.73

- - 18.40 18.11 0.00 5.00 0.00 8.64 0.00 8.62 Score
- - 20/20 20/20 0/20 5/20 0/20 20/20 0/20 16/20 Solved

Table 7.7 RALSTP and RALSTP-rnd Evaluation Against IPC Planners on the RTAM
benchmark problems using IPC scoring.

The results in Table 7.7 show that RALSTP and RALSTP-rand were able to solve all
RTAM problems and obtained a far better IPC score than all other evaluated planners. Most
RTAM problems were too difficult to solve in the allocated threshold by most IPC planners
except TPSHE and Yahsp3. However, Yahsp3 and TPSHE obtained results with inferior
quality to RALSTP and RALSTP-rnd in all problems regardless of difficulty. Optic, TFD
and TFLAP were not able to solve any of the problems. Itsat was able to solve only five of
the problems that have a lower N(Φ) difficulty metric but with the best makespans among
all planners in all five solved problems.

2The TBurton planner did not start due to a licensing issue of one of its components and outputted the
following error upon execution: ’Lisp has expired. Please contact sales@franz.com for a new license file.’
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7.2.4 ZenoTravel

In the ZenoTravel temporal domain, planes must transport passengers between cities while
refuelling when needed.

7.2.4.1 RALSTP and RALSTP-rnd ZenoTravel Results and Algorithmic Overhead

In the ZenoTravel domain, RALSTP and RALSTP-rnd were not able to find valid contex-
tual decompositions from the similarity goal sets in each problem, so the dead-end agent
goals decompositions were constructed using only the maximum quantity of unique parent
agent groups M technique (described in Section 6.4.1.2 from Chapter 6). The results of
solving the ZenoTravel problems using RALSTP and RASTP-rnd are found in Tables 7.8
and 7.9. The second and third columns in the two tables represent the difficulty estimation
of each ZenoTravel planning problem using the N(α) and N(Φ) difficulty metrics. Since
the dead-end agent goals are split at random among a number of goal sets equal to the
maximum quantity of unique parent agent groups M of each problem, we solved each
ZenoTravel benchmark problem ten times (columns R1 to R10 in Tables 7.8 and 7.9) to
reduce the impact of potential outliers on the results. The last two columns in Tables
7.8 and 7.9 represent the worst and median results among the ten solving attempts of a
particular problem.

Π N(α) N(Φ) R1 R2 R3 R4 R5 R6 R7 R8 R9 R10 Best
1 20 27 0.84 0.94 0.86 0.88 1.00 1.00 0.75 0.86 1.00 0.86 1,518.00
2 25 38 0.95 0.95 0.95 1.00 0.95 0.95 0.95 0.95 0.95 0.95 2,144.00
3 30 51 0.89 0.92 0.92 1.00 0.84 0.92 0.91 0.84 0.89 0.91 2,377.00
4 35 67 0.99 0.99 0.93 0.85 0.91 0.79 0.91 1.00 0.98 0.99 2,893.01
5 40 80 1.00* 1.00* 1.00* 1.00* 1.00* 1.00* 1.00* 1.00* 1.00* 1.00* 3,041.01
6 45 88 0.81 0.92 0.81 0.75 0.86 0.81 0.97 0.75 0.86 1.00 3,056.01
7 50 102 1.00 0.94 0.94 0.93 0.91 0.85 0.94 0.89 1.00 0.91 3,359.01
8 55 115 1.00 0.89 0.92 0.89 0.81 0.88 0.88 0.86 0.87 0.94 3,409.01
9 60 131 1.00 0.95* 0.95* 0.95* 0.95* 0.95* 0.95* 0.95* 0.95* 0.97 3,965.01
10 65 140 0.84 0.94 0.45 1.00 0.83 0.84 0.94 0.99 0.88 0.86 3,602.01
11 24 43 1.00 0.88 0.87 0.84 0.87 0.99 0.84 0.83 0.77 0.83 3,815.01
12 29 56 0.91 0.91 0.89 0.99 0.91 0.94 0.95 0.85 0.95 1.00 4,381.01
13 34 67 0.95 0.94 0.99 1.00 0.90 0.94 0.91 0.88 0.94 0.86 4,554.01
14 39 85 0.91 0.83 1.00 0.91 0.90 0.86 0.77 0.91 0.86 0.87 4,634.01
15 44 93 0.89 0.86 0.93 0.96 0.89 0.96 0.94 1.00 0.86 0.89 3,166.01
16 49 105 0.89 0.98 0.95 0.83 0.97 0.98 0.89 1.00 0.98 0.89 2,357.00
17 54 118 0.99 0.95 0.99 0.95 0.97 0.95 0.90 0.90 0.95 1.00 2,044.00
18 59 131 0.98 0.98 0.98 0.98 1.00 1.00 0.98 0.97 1.00 0.98 1,771.00
19 64 139 0.92 0.85 1.00 0.85 0.85 0.85 0.85 0.90 0.92 0.85 1,392.00
20 47 70 0.98 1.00 1.00 0.98 0.98 1.00 0.98 1.00 0.98 1.00 1,265.00
- - - 18.74 18.63 18.33 18.54 18.30 18.46 18.20 18.32 18.60 18.57 Score
- - - 20/20 20/20 20/20 20/20 20/20 20/20 20/20 20/20 20/20 20/20 Solved

Table 7.8 Results of the ZenoTravel benchmark problems solved by RALSTP.
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Π N(α) N(Φ) R1 R2 R3 R4 R5 R6 R7 R8 R9 R10 Best
1 20 27 1.00 0.86 0.96 0.86 0.87 0.75 0.86 0.86 0.86 0.86 1,518.00
2 25 38 0.91 0.85 0.85 0.88 0.85 0.85 0.85 1.00 0.85 0.85 1,911.00
3 30 51 0.81 0.90 0.99 0.99 0.89 1.00 0.81 1.00 0.96 0.89 2,308.00
4 35 67 0.84 0.83 0.78 0.78 0.78 0.91 0.84 0.99 1.00 0.72 2,660.01
5 40 80 1.00* 1.00* 1.00* 1.00* 1.00* 1.00* 1.00* 1.00* 1.00* 1.00* 3,041.01*
6 45 88 0.84 0.97 1.00 0.84 0.86 0.80 0.85 0.90 0.75 0.90 3,056.01
7 50 102 0.88 0.97 0.98 1.00 0.98 0.91 0.91 0.99 1.00 0.99 3,582.01
8 55 115 0.99 0.96 0.88 0.80 0.93 1.00 0.83 0.93 0.94 0.99 3,642.01
9 60 131 0.94 0.96 1.00 0.94 1.00 0.93 0.93 0.96 0.94 0.88* 3,692.01
10 65 140 0.88 0.88 0.94 0.93 0.83 1.00 0.88 0.88 0.89 0.88 3,583.01
11 24 43 0.94 0.99 0.85 0.94 0.99 1.00 1.00 0.99 1.00 0.89 4,301.01
12 29 56 0.95 0.95 0.95 0.95 0.95 0.90 0.95 1.00 0.95 0.90 4,401.01
13 34 67 0.85 0.82 0.81 0.94 0.94 0.94 0.89 0.86 1.00 0.81 4,301.01
14 39 85 0.96 0.91 0.97 0.93 0.96 0.96 1.00 0.95 0.96 0.92 5,130.01
15 44 93 0.91 0.96 1.00 0.96 0.96 0.85 0.99 0.97 0.90 0.93 3,289.01
16 49 105 0.86 0.90 0.91 0.90 0.92 0.95 1.00 0.96 0.90 0.95 2,404.00
17 54 118 0.82 0.82 0.79 0.89 0.88 0.81 0.82 1.00 0.80 0.80 1,871.00
18 59 131 0.97 1.00 0.97 0.98 0.97 0.98 0.97 0.97 0.97 0.97 1,841.00
19 64 139 0.87 0.97 1.00 0.87 0.94 0.87 0.94 0.97 0.91 0.91 1,549.00
20 47 70 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1,365.00
- - - 18.24 18.51 18.61 18.39 18.49 18.42 18.32 19.20 18.57 18.06 Score
- - - 20/20 20/20 20/20 20/20 20/20 20/20 20/20 20/20 20/20 20/20 Solved

Table 7.9 Results of the ZenoTravel benchmark problems solved by RALSTP-rnd.

The averages of the algorithmic overheads in each of the ten solution searches of each
ZenoTravel benchmark problem have been added in Table 7.10. The second and third
columns in the table represent the difficulty estimation of each planning problem using
the N(α) and N(Φ) difficulty metrics. The Agents columns represent the overheads for
extracting the agents, agent dependency relationships and classifications in each problem.
The LM columns represent the overhead for extracting the landmarks in each problem.
The LM-rlx columns represent the overhead for relaxing the landmarks and creating the
similarity goal sets. The ADEAG columns represent the decomposition and solving time
when using the all dead-end agent goals planning problem for solving all dead-end agent
goals. The STP columns represent the decomposition and solving time when using the
agents and landmarks strategical tactical planning for solving all dead-end agent goals.
The algorithmic overheads in the Agents columns clearly show that determining if a
ZenoTravel planning problem is suitable for our solving approach is computationally cheap
relative to the problem difficulty.
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RALSTP RALSTP-rnd
Π N(α) N(Φ) Agents LM LM-rlx ADEAG STP Agents LM LM-rlx ADEAG STP
1 25 17 0 2 0 11.3 36.5 0.2 2.0 0.0 11.0 36.0
2 35 17 0 3 0 11.2 39.8 0.4 3.5 0.0 10.9 39.0
3 45 17 1 4.6 0 10.8 111.5 0.5 4.9 0.0 11.1 105.9
4 55 17 1 6 0 5.8 43.3 0.9 6.0 0.0 5.9 40.5
5 65 17 1.0 8.2 0.0 11.8 44.2 0.8 8.2 0.0 11.8 43.1
6 75 17 1 10.1 0 41.4 126.1 1.2 10.2 0.0 41.3 109.0
7 85 17 1 13 0 17 121.5 1.4 13.1 0.0 16.8 113.8
8 95 17 2 15.1 0 16.3 129.6 1.8 15.7 0.0 17.2 118.1
9 105 17 2 18 0 11.6 136.1 1.9 18.5 0.0 11.4 120.6
10 65 22 2 17.4 0 41.5 56.6 1.8 17.8 0.0 45.6 45.7
11 65 27 2.9 30.7 0 46.9 62.3 2.6 31.6 0.0 46.1 52.0
12 65 32 4 46.8 0 46.2 68.3 4.0 47.1 0.0 46.7 59.5
13 65 37 5.1 492.9 1 47.6 78.1 5.9 484.7 1.0 47.1 66.0
14 65 42 7.1 108.6 0 47.9 89.4 7.2 109.8 0.0 47.7 78.2
15 80 32 8.3 83.1 0 48.3 151.4 8.4 83.7 0.0 48.3 119.7
16 85 32 12.2 117.4 1 49.9 252.4 11.4 115.4 1.0 49.7 172.0
17 90 32 15.9 812.2 0 51.6 340.7 12.7 632.3 0.0 50.0 194.3
18 95 37 27.3 330.1 1 57 905.9 21.8 260.9 1.0 53.8 439.6
19 100 37 31.4 379.0 1.1 58.2 841.1 27.0 321.8 1.0 56.1 402.7
20 105 37 36.7 419.5 1.4 59.4 1030.0 32.5 371.2 1.0 57.8 479.9

Table 7.10 Average Algorithmic Overheads of RALSTP and RALSTP-rnd while solving
the ZenoTravel benchmark problems when the results in Tables 7.8 and 7.9 were obtained.
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7.2.4.2 ZenoTravel Evaluation Against IPC Planners

The results 3 of executing all ZenoTravel problems on all evaluated planners can be seen
in Table 7.11. The second and third columns in the table represent the difficulty estimation
of each planning problem using the N(α) and N(Φ) difficulty metrics. The rest of the
columns represent the results of each evaluated planner using the IPC scoring system.
For each ZenoTravel problem, we have used the worst and median among all ten results
obtained by RALSTP and RALSTP-rnd (Tables 7.8 and 7.9) in the evaluation against the
other planners.

Π N(α) N(Φ) RALSTP RALSTP-rnd Op- Itsat TFD Yah- TF- TPSHE Best
Me- Worst Me- Worst tic sp3 LAP
dian dian

1 25 17 0.88 0.76 0.86 0.76 - 1.00 - 0.47 0.73 0.49 1,529.17
2 35 17 0.68 0.68 0.68 0.68 - 1.00 - 0.80 0.47 0.80 1,533.18
3 45 17 0.68 0.63 0.72 0.63 - 1.00 - 0.66 0.49 0.69 1,779.21
4 55 17 0.51 0.42 0.49 0.42 - 1.00 - 0.58 0.55 0.38 1,543.18
5 65 17 0.54* 0.54* 0.54* 0.54* - 1.00 - 0.37 0.58 0.37 1,640.18
6 75 17 0.55 0.50 0.57 0.50 - 1.00 - 0.73 0.35 0.32 2,039.22
7 85 17 0.57 0.52 0.56 0.51 - 1.00 - 0.71 0.37 0.33 2,051.24
8 95 17 0.46 0.42 0.46 0.39 - 1.00 - 0.55 0.40 0.28 1,786.20
9 105 17 0.43* 0.43* 0.46 0.43* - 1.00 - 0.69 - 0.43 1,813.20
10 65 22 0.70 0.36 0.71 0.66 - 1.00 - - 0.46 0.46 2,869.33
11 65 27 0.97 0.88 1.00 0.86 - - - - 0.79 0.65 4,346.01
12 65 32 0.98 0.90 1.00 0.95 - - - - 0.70 0.45 4,644.01
13 65 37 1.00 0.91 0.99 0.91 - - - - - 0.71 4,837.01
14 65 42 1.00 0.87 0.98 0.93 - - - - - 0.42 5,237.01
15 80 32 0.98 0.92 1.00 0.88 - - - - - 0.41 3,414.01
16 85 32 1.00 0.86 0.93 0.87 - - - - - 0.67 2,451.00
17 90 32 1.00 0.94 0.94 0.90 - - - - - 0.64 2,151.00
18 95 37 1.00 0.98 0.95 0.95 - - - - - 0.37 1,801.00
19 100 37 1.00 1.00 0.98 0.93 - - - - - 0.27 1,645.00
20 105 37 1.00 0.99 0.94 0.94 - - - - - 0.31 1,280.00
- - - 15.95 14.53 15.75 14.64 0.00 10.00 0.00 5.55 5.88 9.46 Score
- - - 20/20 20/20 20/20 20/20 0/20 10/20 0/20 9/20 11/20 20/20 Solved

Table 7.11 RALSTP and RALSTP-rnd Evaluation Against IPC Planners on the ZenoTravel
benchmark problems using IPC scoring.

The results in Table 7.11 show that RALSTP and RALSTP-rand were able to solve all
ZenoTravel problems and obtained a far better IPC score than all other evaluated planners
even when considering the worst result among the ten solutions obtained by each of the
two implementation versions for each problem (Tables 7.8 and 7.9). Optic and TFD
were not able to solve any of the problems.Itsat, Yahsp3 and TFLAP were able to solve
only the problems that were mostly in the lower difficulty half according to the N(Φ)

difficulty metric. Yahsp3 obtained comparable, yet slightly better results than RALSTP and
3The TBurton planner did not start due to a licensing issue of one of its components and outputted the

following error upon execution: ’Lisp has expired. Please contact sales@franz.com for a new license file.’
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RALSTP-rnd in the problem where it could find solutions. TFLAP obtained inferior results
to RALSTP and RALSTP-rnd in the problem where it could find solutions. Itsat obtained
the best makespans among all planners in the problem where it could find solutions.

7.2.5 Rovers

The Rovers temporal domain models problems confronted during the NASA Mars Explo-
ration Rovers [62] missions. Rovers must travel between waypoints in over to collect rock
and soil samples and to take images of objectives. The data from the samples and images
must be communicated with the help of a lander. The rovers have various equipment con-
figurations ranging from rock and soil extraction equipment to a camera that can support
one or several image-capture modes.

7.2.5.1 Explicit vs Implicit Features

The Rovers domain is an example of a planning problem encoding where the feature we are
exploiting is not explicit. Specifically, even though the rock and soil samples represent key
elements of the planning problem and are part of the goal, they are not explicitly defined
as objects. Instead, the rock and soil samples appear implicitly in the domain by being
defined within predicates, such as in the (have_rock_analysis ?r - rover ?w - waypoint)
and (communicated_soil_data ?w - waypoint) predicates. When executing RALSTP on
the Rovers domain, the rock and soil samples are not identified as agents (as they are
not defined as objects in the problem) and our procedure can not find solutions as the
implicit agent dependency relationships can not be identified. However, as shown in Table
7.14, we gain huge benefits by explicitly defining the samples as objects. This encoding
modification allows RALSTP to correctly identify the samples as dead-end agents, extract
the agent dependency relationships and find competitive solutions.

7.2.5.2 Temporal Expressiveness

To showcase the capacity of RALSTP to solve temporally expressive problems, we added
temporal expressiveness to the Rover domain by extending it with a new action, illumi-
nate_sample (Figure 7.2), that allows a specific sample to be illuminated. An explicitly
defined rock or soil sample must be illuminated by a rover during the sample collection
procedure (similar to how a match must be lit during the fuse repair in the Matchcellar
domain). Also, to showcase the scalability of our method, we extended the problems (IPC
large problems version) with additional landers and added all possible sample communica-
tion goals for each sample in the problem. We also added all image communication goals
supported by the existing cameras in a problem for all objectives present in the problem.
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Fig. 7.2 The illuminate_sample and sample_soil actions that use explicitly defined samples
and make the Rover domain temporally expressive.

7.2.5.3 Rovers Results and Algorithmic Overhead

In the Rovers problems, RALSTP and RALSTP-rnd were able to find multiple valid
landmarks-based contextual decompositions from the similarity goal sets in each problem
and attempted to solve as many contextual decompositions as possible within the allocated
threshold of 1800 seconds. The results as well as the algorithmic overheads of the solutions
searches for each Rovers problem have been added to Table 7.12. The second and third
columns in the table represent the difficulty estimation of each planning problem using
the N(α) and N(Φ) difficulty metrics. The Agents columns represent the overheads for
extracting the agents, agent dependency relationships and classifications in each problem.
The LM columns represent the overhead for extracting the landmarks in each problem.
The LM-rlx columns represent the overhead for relaxing the landmarks and creating the
similarity goal sets. The ADEAG columns represent the decomposition and solving time
when using the all dead-end agent goals planning problem for solving all dead-end agent
goals. The STP columns represent the decomposition and solving time when using the
agents and landmarks strategical tactical planning for solving all dead-end agent goals. The
algorithmic overheads in the Agents columns clearly show that determining if a Rovers
planning problem is suitable for our solving approach is computationally cheap relative to
the problem difficulty.
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Π N(α) N(Φ) RALSTP RALSTP-rnd
Make- Age- LM LM- AD- STP Make- Age- LM LM- AD- STP
span nts rlx EAG span nts rlx EAG

1 18 43 351 2 13 0 10 178 673 2 14 0 10 26
2 21 52 403 6 33 0 15 106 914 5 31 0 17 17
3 20 55 361 6 3 0 15 136 898 4 3 0 16 95
4 19 54 332 3 36 0 16 102 979 3 33 0 16 27
5 19 54 509 8 42 0 25 117 929 8 39 0 23 45
6 18 60 294 8 41 0 22 274 849 7 37 0 22 83
7 23 62 402 13 4 0 32 401 1127 12 3 0 31 72
8 25 75 1155 25 166 0 53 540 1155 24 162 0 53 521
9 33 79 577 34 277 0 60 249 - 34 272 0 59 378
10 27 78 495 28 203 0 64 404 1310 28 199 0 60 505
11 35 73 619 32 221 0 58 325 803 32 225 0 59 434
12 33 79 648 34 249 0 60 500 - 36 274 0 61 535
13 43 88 853 76 929 0 75 726 - 78 950 0 77 695
14 39 84 802 56 517 0 70 287 - 58 502 0 69 430
15 32 74 506 41 373 0 65 246 - 38 335 0 62 380
16 26 76 533 38 277 0 64 858 - 37 274 0 64 907
17 36 89 638 57 529 0 70 331 - 55 460 0 69 383
18 35 95 659 77 830 0 79 378 - 69 713 0 77 386
19 46 101 824 85 916 0 79 380 - 92 1127 0 85 396
20 48 105 - - - - - - - - - - - -

Table 7.12 Results and Algorithmic Overheads of RALSTP and RALSTP-rnd when solving
the Rovers planning problems.

7.2.5.4 Landmarks Contextual Decompositions vs Random Decompositions

The landmarks contextual decompositions were also evaluated against random decomposi-
tions with the same size specifications (as in the case of the RTAM problems). The results
from the all dead-end agent goals problems have not been added to highlight the differences
between the landmarks contextual decompositions and random decompositions. The result
of the landmarks contextual decompositions vs ten instances of random decompositions
can be seen in Table 7.13.

The vast majority of random decompositions were unsolvable as the goals required
specific equipment and camera configurations that no single rover possessed in most
problems or the decompositions contained disconnected locations. The few problems
that had fully equipped rovers obtained poor results as the fully equipped rovers were
sequentially used for all tactical problems. On the other hand, the landmarks decomposition
(Table 7.12) was able to successfully group the goals into solvable similarity goal sets.
This was achieved by the identification of similarity goal sets with characteristics specific
to each problem such as: all rock samples, all soil samples, all colour images, all low-res
images and all high-res images in the problem.
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Π RAL RAL R1 R2 R3 R4 R5 R6 R7 R8 R9 R10 Best
STP STP

-rnd
1 1.00 0.52* 0.52* 0.52* 0.52* 0.52* 0.52* 0.52* 0.52* 0.52* 0.52* 0.52* 351.02
2 1.00 0.44* 0.44* 0.44* 0.44* 0.44* 0.44* 0.44* 0.44* 0.44* 0.44* 0.44* 403.02
3 1.00 0.40* 0.40* 0.40* 0.40* 0.40* 0.40* 0.40* 0.40* 0.40* 0.40* 0.40* 361.02
4 1.00 0.34* 0.34* 0.34* 0.34* 0.34* 0.34* 0.34* 0.34* 0.34* 0.34* 0.34* 332.01
5 1.00 0.55* 0.55* 0.55* 0.55* 0.55* 0.55* 0.56* 0.56* 0.55* 0.55* 0.55* 509.02
6 1.00 0.35* 0.35* 0.35* 0.35* 0.35* 0.35* 0.35* 0.35* 0.35* 0.35* 0.35* 294.01
7 1.00 0.36* 0.35* 0.36* 0.35* 0.35* 0.35* 0.35* 0.35* 0.35* 0.35* 0.35* 402.02
8 1.00* 1.00* 1.00* 1.00* 1.00* 1.00* 1.00* 1.00* 1.00* 1.00* 1.00* 1.00* 1,155.04*
9 1.00 - - - - - - - - - - - 577.03
10 1.00 0.38 0.38 0.38 0.38 0.38 0.38 0.38 0.38 0.38 0.38 0.38 495.03
11 1.00 0.77 - - 0.41 0.41 - - 0.41 0.41 0.41 0.41 619.03
12 1.00 - - - - - - - - - - - 648.03
13 1.00 - - - - - - - - - - - 853.04
14 1.00 - - - - - - - - - - - 802.04
15 1.00 - - - - - - - - - - - 506.03
16 1.00 - - - - - - - - - - - 533.03
17 1.00 - - - - - - - - - - - 638.03
18 1.00 - - - - - - - - - - - 659.03
19 1.00 - - - - - - - - - - - 824.04
20 - - - - - - - - - - - - -
- 19.00 5.10 4.32 4.33 4.73 4.73 4.32 4.34 4.75 4.73 4.73 4.73 Score
- 19/20 10/20 9/20 9/20 10/20 10/20 9/20 9/20 10/20 10/20 10/20 10/20 Solved

Table 7.13 Results of Landmarks Contextual Decompositions vs Random Decompositions
of the Rovers planning problems using IPC scoring. The second and third columns
represent the difficulty estimation of each planning problem using the N(α) and N(Φ)
difficulty metrics.
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7.2.5.5 Rovers Evaluation Against IPC Planners

The results 4 of executing all Rovers problems on all evaluated planners can be seen in
Table 7.14. The second and third columns in the table represent the difficulty estimation
of each planning problem using the N(α) and N(Φ) difficulty metrics. The rest of the
columns represent the results of each evaluated planner using the IPC scoring system.

Π N(α) N(Φ) RALSTP RALSTP Optic Itsat TFD Yahsp3 TFLAP TPSHE Best
-rnd

1 18 43 0.70 0.37* 1.00 0.78 - - - 0.37 247.02
2 21 52 1.00 0.44* - - - - - 0.45 403.02
3 20 55 1.00 0.40* - 0.87 - - - 0.40 361.02
4 19 54 1.00 0.34* - 0.84 - - - 0.35 332.01
5 19 54 1.00 0.55* - - - - - 0.56 509.02
6 18 60 1.00 0.35* - - - - - 0.35 294.01
7 23 62 1.00 0.36* - - - - - 0.36 402.02
8 25 75 1.00* 1.00* - - - - - 1.00 1,155.04*
9 33 79 1.00 - - - - - - 0.37 577.03
10 27 78 1.00 0.38* - - - - - 0.38 495.03
11 35 73 1.00 0.77 - - - - - 0.41 619.03
12 33 79 1.00 - - - - - - 0.51 648.03
13 43 88 1.00 - - - - - - 0.50 853.04
14 39 84 1.00 - - - - - - 0.49 802.04
15 32 74 1.00 - - - - - - 0.44 506.03
16 26 76 1.00 - - - - - - 0.48 533.03
17 36 89 1.00 - - - - - - 0.50 638.03
18 35 95 1.00 - - - - - - 0.48 659.03
19 46 101 1.00 - - - - - - 0.50 824.04
20 48 105 - - - - - - - - -

- - 18.70 4.95 1.00 2.49 0.00 0.00 0.00 8.92 Score
- - 1.0 10/20 1/20 3/20 0/20 0/20 0/20 1.0 Solved

Table 7.14 RALSTP and RALSTP-rnd Evaluation Against IPC Planners on the Rovers
planning problems using IPC scoring.

The results in Table 7.14 show that RALSTP was able to solve all but one of the Rovers
problems and obtained a far better IPC score than all other evaluated planners.

RALSTP was not able to preprocess problem 20 due to an unoptimised PDDL pars-
ing procedure inherited from legacy code. As a solution, we could either optimise the
current parser or implement other existing designs. An efficient PDDL parser is particu-
larly required for large problems. However, optimising the current parsing procedure or
implementing a different design is outside the scope of our thesis.

All RALSTP-rnd results except for the results of problem 11 have been obtained from
the all dead-end agent goals decomposition (results marked with *) as RALSTP-rnd was
not able to use the agents and landmarks strategic-tactical planning in most cases. This

4The TBurton planner did not start due to a licensing issue of one of its components and outputted the
following error upon execution: ’Lisp has expired. Please contact sales@franz.com for a new license file.’
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happened because the goals in Rovers require specific equipment and camera configuration,
and the random selection of parent agents did not select the appropriate rover for the
goals in the tactical planning problems in all but problem 11. However, if the complete
implementation of the relaxed tactical planning problem procedure had been made, the
rovers would have been selected based on their appearance in the relaxed plan of each
tactical planning problem instead of a random selection. This would have guaranteed that
the selected rover would have been capable of solving the tactical planning problem it was
obtained from via reachability analysis.

Most Rovers problems were too difficult to solve in the allocated threshold by most
IPC planners except TPSHE. However, TPSHE obtained results with inferior quality
to RALSTP and RALSTP-rnd in all problems regardless of difficulty. The temporal
expressivity of the problems prevented Yahsp3 from finding valid solutions. TFD and
TFLAP were not able to solve any of the problems. Optic was able to solve only the easiest
problem according to the N(α) and N(Φ) difficulty metrics but with the best makespan
among all planners. Itsat was able to solve only three of the easier problems according to
the N(α) and N(Φ) difficulty metrics. Only in the easiest solved problem did Itsat obtain
a comparable, yet slightly better result than RALSTP and RALSTP-rnd.

7.3 Summary of Results

The overall results in all tested domains show that RALSTP and RALSTP-rand not only
solved the larger, more difficult, problems that the evaluated IPC planners were unable to
solve but also obtained better quality solutions than most IPC planners in the commonly
solved problems. The inferior solutions obtained even in the commonly solved problems
show that planners used without external decomposition techniques make costly sacrifices
in solution quality to be able to solve difficult problems in comparison to the cost of our
abstracted decomposition technique. The few exceptions where the evaluated IPC planners
obtained better results than our technique were in the less difficult problems according to
the N(α) and N(Φ) difficulty metrics.

The data in the Agents columns of the algorithmic overheads tables clearly show that
determining if a planning problem is suitable for our solving approach is computationally
cheap relative to the problem difficulty.

A strong correlation can be observed between the N(α) and N(Φ) difficulty metrics and
the capacity of the evaluated IPC planners to find a solution. The metrics are particularly
relevant when comparing problems from the same domain.
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The analysis performed in Section 7.1 showed the potential exponential reductions in
the difficulty of tactical planning problems if applying the relaxation technique described
in Section 6.4.2.5 from Chapter 6.
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Chapter 8

Discussion and Future Work

Chapter Overview In this chapter, we analyse the applicability and limitations of RAL-
STP and present potential avenues for future research.

8.1 Technique Analysis

8.1.1 Type and Size of Planning Problems

RALSTP can operate on temporally expressive numeric problems as all sub-problems
are solved as stand-alone numeric temporal planning problems using an off-the-shelf
temporally expressive numeric planner. Our technique makes use of temporal data to
potentially modify the action start times in all sub-plans in a way that eliminates all
eventual constraint violations among all actions from all sub-plans (detailed in Sections
6.4.3.2 and 6.5 from Chapter 6. RALSTP works best on large planning problems from
which we can extract an acyclic, directed and weakly connected dependency graph that
contains all the agent types present in a specific planning problem (Figure 8.1). In such
problems, the partial ordering according to the dependency relationships, combined with
the agents and landmarks strategic-tactical decomposition during each individual recursive
step (Figure 8.3), can output sub-problems with a significantly reduced difficulty compared
with the initial problem. In addition, the external selection of the mandatory parent agent
group ωpαt from the relaxed plan of a tactical planning problem Πt can further substantially
reduce the difficulty of a relaxed tactical planning problem Πr as it eliminates the parent
agent entanglement for selecting a unique parent agent group during the solution search.
This can lead to an exponential reduction of the state space of a tactical planning problem
that has multiple parent types and multiple parent agents with a distinct parent type (as
shown in Section 7.1 of the evaluation).
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Fig. 8.1 Difficulty of the Instance Planning Problem and a Relaxed Tactical Planning
Problem at Step 1 (base case of the recursion). Ti = set of unique instantiated dynamic
types (no types in common between any two sets Ti,Tj). Ai-Tj = set of unique agents αt
with type t ∈ Tj, of all fαt agent facts and of all gαt agent goals (no αt agents in common
between any two sets Ap-Tj,Aq-Tj). For all types t in Tj there can be zero or max one αt
agent in Ai-Tj.

Therefore, RALSTP can operate on very large problems, as it can prune the state space
of the initial problem and allow a planner to only focus on the state space of a single
relaxed tactical planning problem found in the base case or in an individual recursive step
(Figures 8.1 and 8.2) or on a single strategic abstraction found in the base case or in a
single recursive step (Figure 8.3) of the decomposition.
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Fig. 8.2 Difficulty of the Instance Planning Problem and a Relaxed Tactical Planning
Problem at Step 2 (first recursive step). Ti = set of unique instantiated dynamic types (no
types in common between any two sets Ti,Tj). Ai-Tj = set of unique agents αt with type
t ∈ Tj, of all fαt agent facts and of all gαt agent goals (no αt agents in common between
any two sets Ap-Tj,Aq-Tj). For all types t in Tj there can be zero or max one αt agent in
Ai-Tj.

If the problem structure is compatible, the size of a problem solvable by RALSTP is
limited only by the capacity to preprocess the initial problem, by the difficulty of each
individual relaxed tactical planning problem found in the base case or in an individual
recursive step (which can be exponentially lower than the difficulty of the initial problem
if the initial problem has multiple parent types and multiple parent agents with a distinct
parent type) by the difficulty of each individual strategic abstraction found in the base
case or in an individual recursive step of the decomposition and by the difficulty of the all
dead-end agent problems in the last recursive step (which could also be decomposed into
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a set of trivial sub-problems, as many as one sub-problem for each dead-end agent with
corresponding goals).

8.1.2 Abstraction Properties

Our technique respects the ordered monotonicity property [43] as the refinement of the
strategic plan with the information from the tactical plan never affects the literals in the
strategic plan. Our technique also respects the downward refinement property [5], as once
we find a strategic plan we immediately refine it with the information obtained from the
plans at the tactical level and are never required to backtrack to the strategic level.

8.1.3 Soundness, Completeness and Complexity

All algorithms in RALSTP have been designed considering the main aim of our technique:
to efficiently solve large-scale problems. The Algorithms in RALSTP can be classified
into three major categories: element extraction, decomposition and solving.

The element extraction part (described in Chapter 4) is composed of domain-independent
algorithms designed with a heuristic approach that aims to identify problem-specific ’ad-
vice’ in order to potentially reduce the difficulty of planning problems and facilitate efficient
decompositions. The heuristic nature of the algorithms makes them lack completeness,
but our aim is to find quality solutions to large-scale (hard) problems, so guaranteeing
completeness is not a practical concern, as using other existing techniques either yields
bad solutions or no solutions at all (as shown in the empirical evaluation from Chapter 7).
The algorithmic overhead in the first category is minimal for identifying if a problem is
suitable for our procedure (detailed in the algorithmic overhead analyses from Chapter
7). The more expensive algorithms (such as the landmarks extraction) only execute if
a planning problem has been identified as compatible (as described in Section 6.2 from
Chapter 6), so using RALSTP as the get-go technique for solving large-scale temporally
expressive numeric planning problems will either fail fast or have a high chance of yielding
competitive solutions (as shown in the evaluation from Chapter 7. On the other hand, it is
possible to engineer domains in a way that affects the accuracy of the element identification
algorithms. However, we have not encountered (so far) a situation where a plan found with
RALSTP was invalid. Additionally, VAL [41] is integrated into RALSTP to rule out with
minimal cost any invalid solutions that might occur.

The decomposition part (described in Chapter 4) is mostly formed of sorting and
merging algorithms used for goal decomposition and sub-problem creation. The algorithms
in the decomposition part are sound with respect to their specific semantics and have a
negligible algorithmic overhead in comparison to the solution search. Their completeness
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is reliant on the output of the element extraction algorithms, so completeness is not
guaranteed but not a practical concern considering the aim of RALSTP and the subpar
outcomes obtained by using alternative solutions.

The recombination algorithms from the solving part (described in Chapter 4) have a
negligible algorithmic overhead and are sound and complete in reference to their specific
semantics and properties. However, the solving part employs off-the-shelf planners in the
algorithms responsible for finding solutions to all sub-problems derived from the main
problem. Therefore, these algorithms inherit the soundness, completeness and algorithmic
overheads of the chosen solvers.

Overall, our empirical data (presented in Chapter 7) shows that using RALSTP as the
get-go technique for solving large-scale temporally expressive numeric planning problems
either has a low cost when the problems are incompatible or the cost of using RALSTP
for solving such problems is justifiable considering the scale of addressable problems and
the quality of the solutions. RALSTP does not guarantee completeness, but considering
the aim of RALSTP is to solve large-scale problems and the subpar outcomes of using
alternative solutions for these types of problems, completeness is not a practical concern.
There are, of course, ways to mitigate this (the integration of a breadth-first solution search
after the main technique finishes or fails, often employed by other techniques to claim
completeness), but, in reality, no existing planner can be considered practically capable of
finding all solutions to all large scale problems. So far we have not encountered a situation
where a solution found by RALSTP was invalid, but all solutions found by RALSTP are
validated with VAL [41]. Therefore, RALSTP is sound.

8.1.4 Optimality and Solution Quality

The solutions obtained by RALSTP are not guaranteed to be optimal, as using decom-
positions leads to the isolation of the components of a problem and to a disregard of
the global constraints of the problem when solving the sub-problems. However, the few
inferior solutions obtained by RALSTP in the evaluation in comparison to the solutions of
state-of-the-art planners are mostly in instances where the problems have low difficulty
(the small problems). On the other hand, the solutions found by state-of-the-art planners
in the larger, more difficult problems (if they were able to find solutions), are overall
inferior to the solutions of RALSTP. The results of the evaluation correlate with the results
in the RBS problem [15], the results of the examples in the motivation and the results
in the difficulty evaluation from Chapter 5. Overall, all results tend to show that the
solution quality in difficult problems compatible with RALSTP is worse when solved with
regular planners without decompositions in comparison to using efficient decompositions
such as the ones in RALSTP. This happens because the addition of entangled types and
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objects exponentially expands the state space of a problem to the point where the solving
approaches of regular planners have to make costly trade-offs (such as using only one agent
or one unique parent agent group for solving the whole problem) in order to find a solution.
However, RALSTP prunes such exponentially expanded state spaces both polyno-
mially using the partial ordering obtained from the dependency relationships and
the agents and landmarks strategic-tactical decomposition as well as exponentially
by relaxing the tactical planning problems (as shown in Figures 8.1, 8.2 and Section
7.1). Also, the decomposition acts as an efficient agent management control centre
that divides the responsibility of solving the goal among the maximum number of
unique parent agent groups at every step of the decomposition. Therefore, if we use
the solutions obtained by state-of-the-art planners as a qualitative benchmark, RAL-
STP obtains very good solutions to large, difficult, problems even if the solutions are
not optimal.

8.2 RALSTP Software

Our thesis has been created by performing both theoretical and practical experimentation.
The practical experimentation has been conducted by developing new software specific
to this thesis using a rapid prototyping approach. The experimentation concluded with a
proof-of-concept implementation of the work presented in this thesis. The largest part of
the proof-of-concept was built on top of the C++ temporal landmarks extraction codebase
used in the work by Karpas et al. (2015). The landmarks codebase is itself built on top
of an old version of Optic (clp version) [6] that uses an old version of VAL [41]. The
codebase was used for every aspect of RALSTP except for solving the sub-problems and
for the creation of the macro-actions. The ’cplex’ version of Optic and the latest version
of TPSHE [32] were integrated with the landmarks extraction codebase for parsing and
solving the sub-problems. The tactical planning problems and plans were also parsed with
the latest version of VAL (PlanToValStep and ValStep in particular) which we modified to
create the macro-actions and which was also integrated with the landmarks codebase.

Using a mix of legacy academic codebases was good for rapidly prototyping several
design choices until we settled for the proof-of-concept akin to the description in our
thesis. However, the mix of codebases was not ideal for an optimal implementation of
our algorithms due to different optimisation focuses and constraints that came with the
legacy code. While no problems were encountered with the latest version of VAL, we did
encounter some issues with the PDDL parser from the landmarks extraction code, which
made the implementation more complicated and less optimised than it could have been.
For example, we encountered situations where the types of objects and constants were
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Fig. 8.3 RALSTP Flowchart.
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not correctly imported and situations where importing additional PDDL files following
the initial import done while starting the code would make the code crash (segmentation
fault). We also encountered issues with the legacy RPG analysis (particularly the removal
of pointless effects) which added considerable algorithmic overhead to the landmarks
extraction process in some cases. TPSHE also caused some issues while parsing PDDL files
with numeric components. For every encountered issue, we had to implement workarounds
with various degrees of efficiency that made the complete implementation of some of the
algorithms described in this thesis best left for a new RALSTP implementation optimised
and built from the ground up.

The RALSTP proof-of-concept is open-source and is available at the following GitHub
repository: https://github.com/b-dorian/RALSTP

8.3 Limitations

In this section, we discuss the limitations of RALSTP as well as potential approaches for
mitigating the limitations.

8.3.1 Problem Encodings Not Compatible with RALSTP

Our technique is suitable for planning problems that can be encoded in such a way that
we can obtain an acyclic, directed and preferably weekly-connected dependency graph
that explicitly contains all the agent types present in a problem that has dead-end agent
goals. RALSTP does not bring any benefits to problems that do not have the above feature.
Such problems have been immediately identified by RALSTP as incompatible during our
evaluation.

Our empirical data shows that the cost of finding out if a planning problem was suitable
for our solving technique was minimal (the cost of the problem compatibility check from
the evaluated problems can be seen in the ’Agents’ columns from the algorithmic overheads
tables in the evaluations from Chapter 7), as we only needed to run the procedures for
identifying and classifying the agents to determine if a problem had the feature we were
looking to exploit (as described in Section 6.2 from Chapter 6). Upon failure to identify the
desired structure (agent classification failed or there were no dead-end agent goals in Πi or
there were goals in Πi that contain a dead-end agent as well as a parent agent or G in Πi was
not equal to the reunion of dead-end agent goals and parent agent goals derived from Πi)
the rest of the components in RALSTP were not invoked, so there is presumably no extra
cost beyond the explicit feature probing to finding out if a solution search with RALSTP
should be attempted for any specific problem. However, our thesis does not present a
formal proof that guarantees a successful solution by using our decomposition technique
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for all planning problems that do contain the feature we are exploiting. Without such proof,
we can not exclude the possibility of a domain engineered in a way that is compatible
with our current feature identification protocol yet not solvable with our decomposition
technique (such as a problem with unmitigated irreversible state transitions as described
in Section 8.3.2). In such a case, our technique would spend fruitless time searching for
a non-existent solution. On the other hand, if additional outlier domain structures are
found in the future, then the current feature identification protocol could be potentially
updated to exclude them. Additionally, even if such proof exists and would have been
provided, guaranteeing that a temporal planning problem is solvable if it contains the
exploited feature would still be infeasible as a temporal planning problem can in principle
be undecidable [35].

Our work presents the evaluation of the IPC domains that were identified as compatible
with RALSTP and excludes the rest, as our technique brings no benefit to incompatible
problems. The compatible domains where the exploited feature is explicitly encoded are
the Driverlog, ZenoTravel and RTAM IPC domains. Using RALSTP on incompatible IPC
domains (or any other domains) brings no benefit, as the lack of an appropriate encoding
prevents us from conducting an automatic exploitation. However, the encodings of the
incompatible IPC domains could have well been made with the mentioned feature explicit
and compatible with RALSTP in order to make the domains more practically interesting.
For example, in the Rover domain, we had to explicitly define the sample agents for our
procedure to work, even though the samples are implicit agents in the unmodified Rover
domain. Our method brings no benefit to the Rover domain without the added manual
encoding. However, with an encoding carefully constructed to expose the implicit agents,
we have immediate access to huge benefits over other planners. The explicit encoding was
also the reason we obtained superior results in the rest of the evaluated domains. There is
nothing particularly special about the Driverlog, RTAM and Zenotravel domains other than
they are encoded in a way that exposes the exploited feature in a compatible format with
RALSTP in its current form, while the rest of the competition domains fail to achieve that.

On the other hand, we could probably create a more sophisticated analysis that identifies
some of the implicit features automatically (TIM [29] would be the place to start for
constructing such an analysis). This would give us access to the same exploitation as the
explicit manually encoded versions of the feature in the Rovers domain. However, this
was not the focus of the work presented in this thesis. What we were able to demonstrate
with the manual encoding in the Rover domain is the potential savings that are out there
to be made by either doing a comprehensive automatic analysis or by encouraging good
practices in domain modelling to ensure these features are made more explicit.

We can not estimate the exact compatibility frequency of our technique in typical
planning problems due to neither having a way of accurately determining what constitutes
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a typical planning domain nor a record of all real-world planning problems. However,
the domains evaluated in Chapter 7 were not constructed artificially to fit our technique.
They are, instead, pre-existing benchmark domains used in past international planning
competitions. IPC benchmark domains are rather specific by design, as they are built
for testing distinct aspects of AI planning instead of representations of typical planning
problems. The fact that our technique is compatible with multiple distinct benchmark
domains is a confirmation of its relevance in AI planning.

8.3.2 Irreversible State Transitions

Our procedure might not work if the initial state of the initial problem from the starting step
or a specific recursive step cannot be reached from the final state of the tactical planning
problems at the specific step before the final solution to the original problem is found.
This happens because each tactical planning problem starts from the same initial state in
the starting step and eventual recursive steps. For example, let’s consider a version of
Driverlog where you can only pass through each location once and in which we have only
one driver, only one truck and two packages with corresponding goals reachable from the
initial state. Let’s also assume an individual tactical planning problem for each of the two
packages. In this scenario, the strategic planning problem would be unsolvable, as the
driver and truck parent agents will be prevented from returning to their starting locations
once they depart the starting locations. This will cause one of the two macro actions
corresponding to the two tactical planning problems to not be allowed to execute due to the
parent agents’ starting location preconditions not being met. An interesting observation is
that, even though returning the agents to their initial state adds an extra cost to the solution,
our procedure still achieves very good results. Potential fixes to the issue described above
are to create an automatic procedure that re-encodes the problem in a way that allows the
required state transitions or to encourage best practices in the domain design to avoid such
issues for the problems where this is possible or to create a procedure for determining
if a problem has irreversible state transitions as to not start a solving procedure for such
problems.

8.4 Future Work

We have made several proposals for ways of improving the opportunities to exploit the de-
compositions based on deeper automated analysis as well as for using the newly introduced
technical concepts in other areas of AI Planning.
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8.4.1 Extend the Generality of the Approach

RALSTP was designed, implemented and tested to be compatible with temporal plan-
ning problems encoded with the PDDL 2.1 formalism. The technique as presented in
this thesis is not applicable to problems encoded with non-temporal (classical) planning
representations but could be modified to also support such problems (detailed in Section
8.4.1.1).

Our technique could also be potentially extended to additional versions of PDDL
and planning representations. The use of PDDL+ processes and events [30] should be
compatible with our technique provided that the problems which employ them do so in a
way that can be contained within the decompositions employed by our techniques (similar
to the applicability of temporal expressivity).

Planning representations that use negative preconditions should also be compatible
with our technique as long as the problems we want to solve do not contain irreversible
state transitions (detailed in Section 8.3.2).

Disjunctive preconditions should also not cause issues with our technique, as each
action with such preconditions is effectively equivalent to multiple actions (one for each
disjunct) and our technique does not have a bottleneck related to the number of actions in
a problem. Relaxed landmarks (described in Section 4.3.2 from Chapter 4) are particularly
useful in the case of disjunctive preconditions, as the landmarks relaxation can effectively
reduce the disjunctive landmarks which might be extracted to relaxed landmarks that
consist of a single proposition or event [42] (as shown in Example 4.65 from Chapter 4).

Conditional effects can be effectively compiled away with negative preconditions, so
the former share the same level of compatibility with our technique as the latter.

Planning representations that use quantified effects might interfere with our technique
if the quantified effects are in direct conflict with the decompositions. Even though such
effects can be effectively compiled away, we could potentially encounter planning problems
that are designed to not be able to achieve their solution without a quantified effect over all
the agents in a way that doesn’t allow splitting the agents among multiple sub-problems.
However, problems with quantified effects that have less restrictive constraints which are
compatible with our decomposition approach should be solvable with our technique, so
support for quantified effects is also a potential area for future research.

Our decomposition techniques might also be applicable to hierarchical task networks,
as our techniques effectively capture some of the natural structuring that domain engineers
typically use in building HTN encodings. With our methods, such encoding can be created
automatically or semi-automatically and with flexibility - as we can identify with minimal
cost if a problem has a structure compatible with our decompositions and not push the
technique if not suitable (described in Section 8.3.1).
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8.4.1.1 Classical Planning Compatibility

The decompositions in RALSTP can be considered from a two-dimensional perspective.
The horizontal decompositions stretch across the final solution from start to finish. These
decompositions are sequential and represent the partial ordering among the dead-end
agent goals and parent agent goals in the base case and in any eventual recursive step.
Along the horizontal dimension, we have one or more orthogonal decompositions. These
decompositions represent the agents and landmarks strategic tactical decompositions. Each
orthogonal decomposition is designed to permit concurrency among its sub-problems.

Applying our technique to classical planning problems is straightforward provided we
are no longer interested in concurrency among actions. For the horizontal decompositions,
we simply consider the order of the obtained plans and merge them sequentially. For the
orthogonal decompositions, we consider all macro-actions mutually exclusive and follow
the order of the actions in the strategic plan when merging the regular (non-macro) actions
from the strategic plan with the actions in the encapsulated tactical plans (corresponding
to each macro-action in the strategic plan). On the other hand, potential conflicts among
tactical plans could also be resolved using constraint satisfaction techniques (as described
in Yang (2012)). However, problems that can only be solved in a temporal framework (such
as the temporally expressive problems that can not be solved if we ignore the information
about duration) would not be guaranteed a valid solution.

8.4.2 Using Global Constraints to Improve Solution Quality

The current heuristic for selecting the mandatory parent agents of the relaxed tactical
planning problems disregards potential global constraints. A more comprehensive proce-
dure for the mandatory parent agent selection prior to search that also takes into account
some of the global constraints of the problem could be constructed. For example, we
could construct a problem that contains all parent agents and abstractions of all dead-end
agent goal sets which is designed to output in the relaxed plan specific distinct unique
parent agent groups µpαt for solving each dead-end agent goal set. This way, the parent
agent selection will potentially take into account some of the global constraints among
all dead-end agent goals when assigning the mandatory parent agent groups to tactical
planning problems.

8.4.3 Merging Local Constraints to Improve Solution Quality

Our technique could also be improved with a procedure that analyses the tactical planning
problems and respective tactical plans to find potential cost reductions that do not violate
any of the local constraints of each tactical planning problem. For example, two tactical
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plans that use the same parent agents for solving distinct dead-end agent goals are encap-
sulated in mutually exclusive macro-actions by the current technique. The actions in these
plans are sequentially arranged in the final plan according to the order of the corresponding
macro-actions in the strategic plan. However, executing these plans individually might
yield similar states in which the parent agents interact with the environment and dead-end
agents. In such a situation, the actions in the two plans could be merged into a single plan
that might be more cost-effective than the sequential arrangement of the two tactical plans
according to the order of the corresponding macro-actions in the strategic plan.

8.4.4 Agents and Dependencies Identification

We believe that the construction of more sophisticated automatic analyses for identifying
the agents and agent dependencies of a problem is a promising area of future research. Our
work has shown the benefits that can be obtained if we are able to determine agent-based
partial orderings prior to the solution search. However, there are still problems that are
incompatible with our agent identification and dependency extraction techniques due to the
way they are encoded. On the other hand, each planning problem is, at its core, a collection
of agents that interact with each other and with the environment, so the agent identification
and a partial order among the agents could theoretically be obtained in most (if not all)
planning problems (particularly in large-scale problems).

8.4.5 Encoding Validator and Best Practice Guide for Designing Do-
mains

The Rovers domain is an example of how a minor change in the PDDL encoding makes
the domain compatible with our technique and brings huge benefits in the quality of the
solutions (as shown in the evaluation from Chapter 7). Considering the above, another
potential area of future research is the creation of a best practice guide for domain de-
sign. The guide could be used by domain engineers to encode problems in a way that
prevents conflicting dependency relationships from appearing in problems or that allows
the mitigation of eventual conflicting dependency relationships. The guide should focus on
design choices that create problems from which we can extract an acyclic, directed and
preferably weekly-connected dependency graph that explicitly contains all the agent types
present in the problem. The guide could be combined with our cost-effective procedure
for identifying and classifying the agents (described in Section 6.2 from Chapter 6) which
would act as an Encoding Validator that determines if a problem was encoded in a way
that makes the feature we are exploiting explicit.

224



8.4.6 Agents and Relaxed Landmarks Heuristics, Abstractions and
Decompositions

Our empirical data shows that the heuristics, decompositions and abstractions presented
in this thesis are effective in finding quality solutions to large-scale problems. However,
additional heuristics, decompositions and abstractions can be potentially created using
the agents, relaxed landmarks as well as relaxed propositions and relaxed events. New
constructs (such as the abstraction of all dead-end agent goal sets described in Section
8.4.2) could potentially further decrease the solving difficulty of large-scale problems and
further improve the quality of the obtained solutions.

Agents as defined in our work could potentially be used along existing heuristics (or
potentially open a new class of heuristics) to improve the search operation of planners. For
example, our cost-effective agents identification and classification procedure (described
in Section 6.2 from Chapter 6) could be incorporated into the pre-processing of heuristic
planners in order to use agent, facts, and goals dead-end vs parent classifications to
fine-tune, back-track or act as a tie-break for the planner decision process when states
problematic for the employed heuristic are reached.

The relaxed landmarks could also potentially be used along existing heuristics (or
potentially open a new class of heuristics) to improve the search operation of planners.
For example, the relaxed landmarks could be incorporated into existing techniques that
use heuristics constructed from regular landmarks as a guide for the solution search (such
as the LAMA planner [50]) to potentially improve the efficiency of the landmarks-based
heuristics.

8.4.7 Using Difficultly Metrics for Determining the Appropriate Solv-
ing Approach

Our empirical analysis reconfirms that the use of AI planning beyond demonstration
examples is challenging for expressive problems with numerous components. Heuristics
planners are good for small-scale precision but are not ideal for efficiently navigating large
state spaces. However, using decompositions is also not without potential risks, as the more
you isolate the components of a problem and disregard global constraints the more you risk
degrading the quality of the obtained solution. Therefore, appreciating when a problem
is difficult enough that employing decompositions would be beneficial is a potential
area of future research. The evaluation in Chapter 7 shows a strong correlation between
the N(α) and N(Φ) difficulty metrics (described in Chapter 5) and the effectiveness of
decompositions of problems from the same domain. Our metrics are cheap to compute and
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could be used at the pre-processing stage to determine the appropriate solving technique
for a specific planning problem.
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8.5 Conclusions

Using decompositions in AI planning carries the risk of constraints becoming stronger due
to the choice restrictions of certain variables. However, our thesis shows that, in large-scale
problems, using current planners without a decomposition strategy is not effective. After a
certain difficulty threshold, the solving approaches employed by existing planners either fail
or start making costly trade-offs (such as using only one agent or one unique parent agent
group for solving the whole problem) that result in poor-quality solutions in comparison
to the solutions obtained by our abstracted decompositions technique. The success of
heuristic planners in the past years has drawn focus away from using decompositions in AI
planning. However, our thesis shows that abstracted decompositions might be the lesser
of evils in large-scale planning if correctly applied. Our results point out that abstracted
decomposition techniques should be refocused on if we aim to increase the use of AI
planning beyond demonstration examples.

The emphasis of this thesis has been on the role of agents and landmarks in a planning
problem and how they can be applied to recognise and extract key planning problem
components, properties, and metrics that enable efficient data-driven algorithmic decompo-
sitions and abstractions. The resulting technique improves the scale and solution quality of
solvable planning problems using decomposition methods that attempt to simulate human
intuition. An interesting remark is that writing our thesis consisted of decomposing and
partially ordering vast quantities of information obtained from our experiments, which
more often than not resembled the actual large task decomposition approaches described
by our thesis.

Our work introduced new AI planning technical concepts along with automated ex-
traction procedures that output data utilised as "advice" for efficiently decomposing and
abstracting planning problems. These concepts consist of formal definitions for the agents,
the agent dependency relationships and classifications, the necessary and unnecessary
static environment as well as for the relaxed landmarks, propositions and events.

We described a new framework for evaluating the difficulty of a planning problem
according to object-based difficulty metrics such as the number of agents and inactive
dynamic objects, the number of instantiated dynamic types and the number of necessary
and unnecessary static objects entangled in a planning problem.

Our work presented a detailed description of a new fully automated data-driven re-
cursive agents and landmarks strategic-tactical planning decomposition and abstraction
procedure (RALSTP) that significantly increases the solution quality of solvable planning
problems. The procedure uses a novel goal clustering method based on the regular and
relaxed landmarks found in common between the individual backchaining of each top-level
goal. We have also shown that the abstractions and relaxations in our technique can
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exponentially increase the scale of solvable planning problems that have a large state space
due to numerous entangled parent types with multiple parent agent instances for each
parent type.

A proof-of-concept implementation of our thesis was built across multiple C++ code-
bases and was made publicly available as open-source software. The implementation was
used to perform an evaluation of the decomposition and abstraction technique described in
our thesis on IPC benchmark problems. The evaluation showed the benefits in scale and
solution quality of our method in comparison to the solutions obtained by a broad range of
state-of-the-art temporal planners. Furthermore, we presented promising areas of future
research enabled by the new concepts and techniques introduced by our thesis.

If the project had to be done from the beginning, the implementation for the practical
experimentation would start with the latest version of VAL as the base layer, to which the
landmarks extraction part from the Karpas et al. (2015) codebase would be added. A new
PDDL/RPG parser optimised for RALSTP might also be considered if an industry-grade
implementation of RALSTP is required.
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[63] Vallati, M., Chrpa, L., Grześ, M., McCluskey, T. L., Roberts, M., Sanner, S., et al.
(2015). The 2014 international planning competition: Progress and trends. AI Magazine,
36(3):90–98.

[64] Vidal, V. (2014). YAHSP3 and YAHSP3-MT in the 8th international planning
competition. Proceedings of the 8th International Planning Competition (IPC-2014),
pages 64–65.

[65] Wang, D. and Williams, B. (2015). tburton: A divide and conquer temporal planner.
In Proceedings of the AAAI Conference on Artificial Intelligence, volume 29.

[66] Winner, E. and Veloso, M. M. (2003). Distill: Learning domain-specific planners by
example. In Proceedings of the 20th International Conference on Machine Learning
(ICML-03), pages 800–807.

[67] Yang, Q. (2012). Intelligent planning: a decomposition and abstraction based
approach. Springer Science & Business Media.

233



Appendix A

Appendix

A.1 PDDL Files

A.1.1 Driverlog

A.1.1.1 Driverlog Domain

(define (domain driverlog)

(:requirements :typing :durative-actions)

(:types location locatable - object

driver truck obj - locatable)

(:predicates

(at ?obj - locatable ?loc - location)

(in ?obj1 - obj ?obj - truck)

(driving ?d - driver ?v - truck)

(link ?x ?y - location) (path ?x ?y - location)

(empty ?v - truck)

)

(:durative-action LOAD-TRUCK

:parameters

(?obj - obj

?truck - truck

?loc - location)

:duration (= ?duration 2)

:condition

(and
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(over all (at ?truck ?loc)) (at start (at ?obj ?loc)))

:effect

(and (at start (not (at ?obj ?loc))) (at end (in ?obj ?truck))))

(:durative-action UNLOAD-TRUCK

:parameters

(?obj - obj

?truck - truck

?loc - location)

:duration (= ?duration 2)

:condition

(and

(over all (at ?truck ?loc)) (at start (in ?obj ?truck)))

:effect

(and (at start (not (in ?obj ?truck))) (at end (at ?obj ?loc))))

(:durative-action BOARD-TRUCK

:parameters

(?driver - driver

?truck - truck

?loc - location)

:duration (= ?duration 1)

:condition

(and

(over all (at ?truck ?loc)) (at start (at ?driver ?loc))

(at start (empty ?truck)))

:effect

(and (at start (not (at ?driver ?loc)))

(at end (driving ?driver ?truck)) (at start (not (empty ?truck)))))

(:durative-action DISEMBARK-TRUCK

:parameters

(?driver - driver

?truck - truck

?loc - location)

:duration (= ?duration 1)

:condition

(and (over all (at ?truck ?loc)) (at start (driving ?driver ?truck)))
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:effect

(and (at start (not (driving ?driver ?truck)))

(at end (at ?driver ?loc)) (at end (empty ?truck))))

(:durative-action DRIVE-TRUCK

:parameters

(?truck - truck

?loc-from - location

?loc-to - location

?driver - driver)

:duration (= ?duration 10)

:condition

(and (at start (at ?truck ?loc-from))

(over all (driving ?driver ?truck)) (at start (link ?loc-from ?loc-to)))

:effect

(and (at start (not (at ?truck ?loc-from)))

(at end (at ?truck ?loc-to))))

(:durative-action WALK

:parameters

(?driver - driver

?loc-from - location

?loc-to - location)

:duration (= ?duration 20)

:condition

(and (at start (at ?driver ?loc-from))

(at start (path ?loc-from ?loc-to)))

:effect

(and (at start (not (at ?driver ?loc-from)))

(at end (at ?driver ?loc-to))))

)
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A.1.1.2 DLOG-5-5-10 Problem

(define (problem DLOG-5-5-10)

(:domain driverlog)

(:objects

driver1 - driver

driver2 - driver

driver3 - driver

driver4 - driver

driver5 - driver

truck1 - truck

truck2 - truck

truck3 - truck

truck4 - truck

truck5 - truck

package1 - obj

package2 - obj

package3 - obj

package4 - obj

package5 - obj

package6 - obj

package7 - obj

package8 - obj

package9 - obj

package10 - obj

s0 - location

s1 - location

s2 - location

s3 - location

s4 - location

s5 - location

s6 - location

s7 - location

s8 - location

s9 - location

p0-4 - location

p0-5 - location

p1-6 - location
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p2-0 - location

p2-4 - location

p3-2 - location

p3-8 - location

p4-1 - location

p4-3 - location

p5-6 - location

p5-7 - location

p5-9 - location

p6-4 - location

p7-0 - location

p8-4 - location

p9-5 - location

p9-7 - location

)

(:init

(at driver1 s9)

(at driver2 s1)

(at driver3 s5)

(at driver4 s7)

(at driver5 s3)

(at truck1 s0)

(empty truck1)

(at truck2 s1)

(empty truck2)

(at truck3 s9)

(empty truck3)

(at truck4 s7)

(empty truck4)

(at truck5 s8)

(empty truck5)

(at package1 s1)

(at package2 s3)

(at package3 s9)

(at package4 s0)

(at package5 s5)

(at package6 s2)

(at package7 s2)
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(at package8 s6)

(at package9 s4)

(at package10 s1)

(path s0 p0-4)

(path p0-4 s0)

(path s4 p0-4)

(path p0-4 s4)

(path s0 p0-5)

(path p0-5 s0)

(path s5 p0-5)

(path p0-5 s5)

(path s1 p1-6)

(path p1-6 s1)

(path s6 p1-6)

(path p1-6 s6)

(path s2 p2-0)

(path p2-0 s2)

(path s0 p2-0)

(path p2-0 s0)

(path s2 p2-4)

(path p2-4 s2)

(path s4 p2-4)

(path p2-4 s4)

(path s3 p3-2)

(path p3-2 s3)

(path s2 p3-2)

(path p3-2 s2)

(path s3 p3-8)

(path p3-8 s3)

(path s8 p3-8)

(path p3-8 s8)

(path s4 p4-1)

(path p4-1 s4)

(path s1 p4-1)

(path p4-1 s1)

(path s4 p4-3)

(path p4-3 s4)

(path s3 p4-3)
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(path p4-3 s3)

(path s5 p5-6)

(path p5-6 s5)

(path s6 p5-6)

(path p5-6 s6)

(path s5 p5-7)

(path p5-7 s5)

(path s7 p5-7)

(path p5-7 s7)

(path s5 p5-9)

(path p5-9 s5)

(path s9 p5-9)

(path p5-9 s9)

(path s6 p6-4)

(path p6-4 s6)

(path s4 p6-4)

(path p6-4 s4)

(path s7 p7-0)

(path p7-0 s7)

(path s0 p7-0)

(path p7-0 s0)

(path s8 p8-4)

(path p8-4 s8)

(path s4 p8-4)

(path p8-4 s4)

(path s9 p9-7)

(path p9-7 s9)

(path s7 p9-7)

(path p9-7 s7)

(link s0 s7)

(link s7 s0)

(link s1 s2)

(link s2 s1)

(link s1 s3)

(link s3 s1)

(link s1 s6)

(link s6 s1)

(link s1 s8)

240



(link s8 s1)

(link s1 s9)

(link s9 s1)

(link s2 s0)

(link s0 s2)

(link s2 s5)

(link s5 s2)

(link s2 s6)

(link s6 s2)

(link s2 s7)

(link s7 s2)

(link s2 s9)

(link s9 s2)

(link s3 s0)

(link s0 s3)

(link s3 s8)

(link s8 s3)

(link s4 s0)

(link s0 s4)

(link s4 s1)

(link s1 s4)

(link s4 s8)

(link s8 s4)

(link s4 s9)

(link s9 s4)

(link s5 s4)

(link s4 s5)

(link s5 s7)

(link s7 s5)

(link s5 s9)

(link s9 s5)

(link s6 s3)

(link s3 s6)

(link s6 s7)

(link s7 s6)

(link s9 s6)

(link s6 s9)

(link s9 s8)
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(link s8 s9)

)

(:goal (and

(at driver2 s0)

(at driver4 s1)

(at driver5 s9)

(at truck2 s9)

(at truck3 s5)

(at truck4 s7)

(at truck5 s3)

(at package2 s4)

(at package4 s7)

(at package5 s1)

(at package6 s1)

(at package7 s2)

(at package8 s1)

(at package9 s9)

(at package10 s7)

))

(:metric minimize (total-time))

)

A.1.1.3 DLOG-7-7-16 Problem

(define (problem DLOG-7-7-16)

(:domain driverlog)

(:objects

driver1 - driver

driver2 - driver

driver3 - driver

driver4 - driver

driver5 - driver

driver6 - driver

driver7 - driver
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truck1 - truck

truck2 - truck

truck3 - truck

truck4 - truck

truck5 - truck

truck6 - truck

truck7 - truck

package1 - obj

package2 - obj

package3 - obj

package4 - obj

package5 - obj

package6 - obj

package7 - obj

package8 - obj

package9 - obj

package10 - obj

package11 - obj

package12 - obj

package13 - obj

package14 - obj

package15 - obj

package16 - obj

s0 - location

s1 - location

s2 - location

s3 - location

s4 - location

s5 - location

s6 - location

s7 - location

s8 - location

s9 - location

s10 - location

s11 - location

s12 - location

s13 - location

s14 - location
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s15 - location

s16 - location

s17 - location

p0-8 - location

p1-8 - location

p1-15 - location

p2-12 - location

p3-4 - location

p3-11 - location

p4-6 - location

p4-8 - location

p5-8 - location

p6-9 - location

p6-15 - location

p7-1 - location

p7-2 - location

p7-5 - location

p7-17 - location

p9-10 - location

p9-12 - location

p10-11 - location

p10-13 - location

p10-14 - location

p11-7 - location

p13-4 - location

p13-16 - location

p14-0 - location

p14-3 - location

p14-7 - location

p14-17 - location

p15-8 - location

p16-0 - location

p16-7 - location

p16-10 - location

p16-12 - location

p17-1 - location

)

(:init
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(at driver1 s13)

(at driver2 s14)

(at driver3 s9)

(at driver4 s7)

(at driver5 s8)

(at driver6 s13)

(at driver7 s3)

(at truck1 s9)

(empty truck1)

(at truck2 s11)

(empty truck2)

(at truck3 s11)

(empty truck3)

(at truck4 s16)

(empty truck4)

(at truck5 s6)

(empty truck5)

(at truck6 s1)

(empty truck6)

(at truck7 s10)

(empty truck7)

(at package1 s2)

(at package2 s16)

(at package3 s11)

(at package4 s14)

(at package5 s8)

(at package6 s15)

(at package7 s0)

(at package8 s4)

(at package9 s13)

(at package10 s17)

(at package11 s7)

(at package12 s5)

(at package13 s7)

(at package14 s12)

(at package15 s0)

(at package16 s10)

(path s0 p0-8)
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(path p0-8 s0)

(path s8 p0-8)

(path p0-8 s8)

(path s1 p1-8)

(path p1-8 s1)

(path s8 p1-8)

(path p1-8 s8)

(path s1 p1-15)

(path p1-15 s1)

(path s15 p1-15)

(path p1-15 s15)

(path s2 p2-12)

(path p2-12 s2)

(path s12 p2-12)

(path p2-12 s12)

(path s3 p3-4)

(path p3-4 s3)

(path s4 p3-4)

(path p3-4 s4)

(path s3 p3-11)

(path p3-11 s3)

(path s11 p3-11)

(path p3-11 s11)

(path s4 p4-6)

(path p4-6 s4)

(path s6 p4-6)

(path p4-6 s6)

(path s4 p4-8)

(path p4-8 s4)

(path s8 p4-8)

(path p4-8 s8)

(path s5 p5-8)

(path p5-8 s5)

(path s8 p5-8)

(path p5-8 s8)

(path s6 p6-9)

(path p6-9 s6)

(path s9 p6-9)
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(path p6-9 s9)

(path s6 p6-15)

(path p6-15 s6)

(path s15 p6-15)

(path p6-15 s15)

(path s7 p7-1)

(path p7-1 s7)

(path s1 p7-1)

(path p7-1 s1)

(path s7 p7-2)

(path p7-2 s7)

(path s2 p7-2)

(path p7-2 s2)

(path s7 p7-5)

(path p7-5 s7)

(path s5 p7-5)

(path p7-5 s5)

(path s7 p7-17)

(path p7-17 s7)

(path s17 p7-17)

(path p7-17 s17)

(path s9 p9-10)

(path p9-10 s9)

(path s10 p9-10)

(path p9-10 s10)

(path s9 p9-12)

(path p9-12 s9)

(path s12 p9-12)

(path p9-12 s12)

(path s10 p10-11)

(path p10-11 s10)

(path s11 p10-11)

(path p10-11 s11)

(path s10 p10-13)

(path p10-13 s10)

(path s13 p10-13)

(path p10-13 s13)

(path s10 p10-14)
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(path p10-14 s10)

(path s14 p10-14)

(path p10-14 s14)

(path s11 p11-7)

(path p11-7 s11)

(path s7 p11-7)

(path p11-7 s7)

(path s13 p13-4)

(path p13-4 s13)

(path s4 p13-4)

(path p13-4 s4)

(path s13 p13-16)

(path p13-16 s13)

(path s16 p13-16)

(path p13-16 s16)

(path s14 p14-0)

(path p14-0 s14)

(path s0 p14-0)

(path p14-0 s0)

(path s14 p14-3)

(path p14-3 s14)

(path s3 p14-3)

(path p14-3 s3)

(path s14 p14-7)

(path p14-7 s14)

(path s7 p14-7)

(path p14-7 s7)

(path s14 p14-17)

(path p14-17 s14)

(path s17 p14-17)

(path p14-17 s17)

(path s15 p15-8)

(path p15-8 s15)

(path s8 p15-8)

(path p15-8 s8)

(path s16 p16-0)

(path p16-0 s16)

(path s0 p16-0)
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(path p16-0 s0)

(path s16 p16-7)

(path p16-7 s16)

(path s7 p16-7)

(path p16-7 s7)

(path s16 p16-10)

(path p16-10 s16)

(path s10 p16-10)

(path p16-10 s10)

(path s16 p16-12)

(path p16-12 s16)

(path s12 p16-12)

(path p16-12 s12)

(path s17 p17-1)

(path p17-1 s17)

(path s1 p17-1)

(path p17-1 s1)

(link s0 s1)

(link s1 s0)

(link s0 s9)

(link s9 s0)

(link s0 s13)

(link s13 s0)

(link s1 s3)

(link s3 s1)

(link s1 s6)

(link s6 s1)

(link s1 s13)

(link s13 s1)

(link s1 s15)

(link s15 s1)

(link s2 s3)

(link s3 s2)

(link s2 s5)

(link s5 s2)

(link s2 s8)

(link s8 s2)

(link s2 s11)
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(link s11 s2)

(link s2 s13)

(link s13 s2)

(link s2 s16)

(link s16 s2)

(link s2 s17)

(link s17 s2)

(link s3 s9)

(link s9 s3)

(link s4 s0)

(link s0 s4)

(link s4 s2)

(link s2 s4)

(link s4 s3)

(link s3 s4)

(link s4 s10)

(link s10 s4)

(link s4 s11)

(link s11 s4)

(link s4 s13)

(link s13 s4)

(link s5 s0)

(link s0 s5)

(link s5 s12)

(link s12 s5)

(link s5 s14)

(link s14 s5)

(link s5 s16)

(link s16 s5)

(link s6 s0)

(link s0 s6)

(link s6 s11)

(link s11 s6)

(link s6 s15)

(link s15 s6)

(link s6 s17)

(link s17 s6)

(link s7 s1)
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(link s1 s7)

(link s7 s2)

(link s2 s7)

(link s7 s15)

(link s15 s7)

(link s7 s16)

(link s16 s7)

(link s8 s0)

(link s0 s8)

(link s8 s7)

(link s7 s8)

(link s8 s9)

(link s9 s8)

(link s8 s14)

(link s14 s8)

(link s8 s16)

(link s16 s8)

(link s8 s17)

(link s17 s8)

(link s9 s2)

(link s2 s9)

(link s9 s7)

(link s7 s9)

(link s9 s12)

(link s12 s9)

(link s10 s0)

(link s0 s10)

(link s10 s2)

(link s2 s10)

(link s10 s12)

(link s12 s10)

(link s10 s17)

(link s17 s10)

(link s11 s0)

(link s0 s11)

(link s11 s13)

(link s13 s11)

(link s12 s6)
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(link s6 s12)

(link s12 s15)

(link s15 s12)

(link s14 s11)

(link s11 s14)

(link s14 s17)

(link s17 s14)

(link s15 s2)

(link s2 s15)

(link s16 s9)

(link s9 s16)

(link s16 s15)

(link s15 s16)

(link s17 s12)

(link s12 s17)

)

(:goal (and

(at driver1 s0)

(at driver2 s5)

(at driver3 s12)

(at driver4 s4)

(at driver5 s7)

(at driver6 s3)

(at truck1 s1)

(at truck2 s3)

(at truck5 s8)

(at truck7 s8)

(at package1 s16)

(at package2 s11)

(at package3 s15)

(at package4 s6)

(at package5 s0)

(at package6 s12)

(at package7 s10)

(at package8 s17)

(at package9 s1)

(at package10 s12)

(at package11 s14)
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(at package12 s13)

(at package13 s7)

(at package14 s3)

(at package15 s12)

(at package16 s9)

))

(:metric minimize (total-time))

)

A.1.1.4 DLOG-8-8-19 Problem

(define (problem DLOG-8-8-19)

(:domain driverlog)

(:objects

driver1 - driver

driver2 - driver

driver3 - driver

driver4 - driver

driver5 - driver

driver6 - driver

driver7 - driver

driver8 - driver

truck1 - truck

truck2 - truck

truck3 - truck

truck4 - truck

truck5 - truck

truck6 - truck

truck7 - truck

truck8 - truck

package1 - obj

package2 - obj

package3 - obj

package4 - obj
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package5 - obj

package6 - obj

package7 - obj

package8 - obj

package9 - obj

package10 - obj

package11 - obj

package12 - obj

package13 - obj

package14 - obj

package15 - obj

package16 - obj

package17 - obj

package18 - obj

package19 - obj

s0 - location

s1 - location

s2 - location

s3 - location

s4 - location

s5 - location

s6 - location

s7 - location

s8 - location

s9 - location

s10 - location

s11 - location

s12 - location

s13 - location

s14 - location

s15 - location

s16 - location

s17 - location

s18 - location

s19 - location

s20 - location

s21 - location

p0-1 - location
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p1-2 - location

p1-10 - location

p1-15 - location

p2-0 - location

p2-3 - location

p2-10 - location

p2-14 - location

p2-19 - location

p3-7 - location

p3-13 - location

p5-10 - location

p5-11 - location

p6-5 - location

p7-8 - location

p8-2 - location

p8-6 - location

p8-12 - location

p8-18 - location

p8-21 - location

p9-1 - location

p10-6 - location

p10-9 - location

p10-11 - location

p11-15 - location

p12-13 - location

p12-16 - location

p12-17 - location

p13-9 - location

p14-0 - location

p14-4 - location

p16-0 - location

p16-5 - location

p16-15 - location

p17-0 - location

p17-5 - location

p17-9 - location

p17-20 - location

p19-10 - location
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p19-13 - location

p20-0 - location

p20-1 - location

p20-9 - location

p20-15 - location

p21-9 - location

)

(:init

(at driver1 s14)

(at driver2 s17)

(at driver3 s10)

(at driver4 s18)

(at driver5 s0)

(at driver6 s4)

(at driver7 s16)

(at driver8 s20)

(at truck1 s9)

(empty truck1)

(at truck2 s6)

(empty truck2)

(at truck3 s8)

(empty truck3)

(at truck4 s15)

(empty truck4)

(at truck5 s0)

(empty truck5)

(at truck6 s12)

(empty truck6)

(at truck7 s1)

(empty truck7)

(at truck8 s6)

(empty truck8)

(at package1 s21)

(at package2 s14)

(at package3 s17)

(at package4 s19)

(at package5 s13)

(at package6 s4)
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(at package7 s2)

(at package8 s2)

(at package9 s16)

(at package10 s0)

(at package11 s5)

(at package12 s11)

(at package13 s11)

(at package14 s6)

(at package15 s17)

(at package16 s15)

(at package17 s18)

(at package18 s13)

(at package19 s20)

(path s0 p0-1)

(path p0-1 s0)

(path s1 p0-1)

(path p0-1 s1)

(path s1 p1-2)

(path p1-2 s1)

(path s2 p1-2)

(path p1-2 s2)

(path s1 p1-10)

(path p1-10 s1)

(path s10 p1-10)

(path p1-10 s10)

(path s1 p1-15)

(path p1-15 s1)

(path s15 p1-15)

(path p1-15 s15)

(path s2 p2-0)

(path p2-0 s2)

(path s0 p2-0)

(path p2-0 s0)

(path s2 p2-3)

(path p2-3 s2)

(path s3 p2-3)

(path p2-3 s3)

(path s2 p2-10)
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(path p2-10 s2)

(path s10 p2-10)

(path p2-10 s10)

(path s2 p2-14)

(path p2-14 s2)

(path s14 p2-14)

(path p2-14 s14)

(path s2 p2-19)

(path p2-19 s2)

(path s19 p2-19)

(path p2-19 s19)

(path s3 p3-7)

(path p3-7 s3)

(path s7 p3-7)

(path p3-7 s7)

(path s3 p3-13)

(path p3-13 s3)

(path s13 p3-13)

(path p3-13 s13)

(path s5 p5-10)

(path p5-10 s5)

(path s10 p5-10)

(path p5-10 s10)

(path s5 p5-11)

(path p5-11 s5)

(path s11 p5-11)

(path p5-11 s11)

(path s6 p6-5)

(path p6-5 s6)

(path s5 p6-5)

(path p6-5 s5)

(path s7 p7-8)

(path p7-8 s7)

(path s8 p7-8)

(path p7-8 s8)

(path s8 p8-2)

(path p8-2 s8)

(path s2 p8-2)
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(path p8-2 s2)

(path s8 p8-6)

(path p8-6 s8)

(path s6 p8-6)

(path p8-6 s6)

(path s8 p8-12)

(path p8-12 s8)

(path s12 p8-12)

(path p8-12 s12)

(path s8 p8-18)

(path p8-18 s8)

(path s18 p8-18)

(path p8-18 s18)

(path s8 p8-21)

(path p8-21 s8)

(path s21 p8-21)

(path p8-21 s21)

(path s9 p9-1)

(path p9-1 s9)

(path s1 p9-1)

(path p9-1 s1)

(path s10 p10-6)

(path p10-6 s10)

(path s6 p10-6)

(path p10-6 s6)

(path s10 p10-9)

(path p10-9 s10)

(path s9 p10-9)

(path p10-9 s9)

(path s10 p10-11)

(path p10-11 s10)

(path s11 p10-11)

(path p10-11 s11)

(path s11 p11-15)

(path p11-15 s11)

(path s15 p11-15)

(path p11-15 s15)

(path s12 p12-13)
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(path p12-13 s12)

(path s13 p12-13)

(path p12-13 s13)

(path s12 p12-16)

(path p12-16 s12)

(path s16 p12-16)

(path p12-16 s16)

(path s12 p12-17)

(path p12-17 s12)

(path s17 p12-17)

(path p12-17 s17)

(path s13 p13-9)

(path p13-9 s13)

(path s9 p13-9)

(path p13-9 s9)

(path s14 p14-0)

(path p14-0 s14)

(path s0 p14-0)

(path p14-0 s0)

(path s14 p14-4)

(path p14-4 s14)

(path s4 p14-4)

(path p14-4 s4)

(path s16 p16-0)

(path p16-0 s16)

(path s0 p16-0)

(path p16-0 s0)

(path s16 p16-5)

(path p16-5 s16)

(path s5 p16-5)

(path p16-5 s5)

(path s16 p16-15)

(path p16-15 s16)

(path s15 p16-15)

(path p16-15 s15)

(path s17 p17-0)

(path p17-0 s17)

(path s0 p17-0)
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(path p17-0 s0)

(path s17 p17-5)

(path p17-5 s17)

(path s5 p17-5)

(path p17-5 s5)

(path s17 p17-9)

(path p17-9 s17)

(path s9 p17-9)

(path p17-9 s9)

(path s17 p17-20)

(path p17-20 s17)

(path s20 p17-20)

(path p17-20 s20)

(path s19 p19-10)

(path p19-10 s19)

(path s10 p19-10)

(path p19-10 s10)

(path s19 p19-13)

(path p19-13 s19)

(path s13 p19-13)

(path p19-13 s13)

(path s20 p20-0)

(path p20-0 s20)

(path s0 p20-0)

(path p20-0 s0)

(path s20 p20-1)

(path p20-1 s20)

(path s1 p20-1)

(path p20-1 s1)

(path s20 p20-9)

(path p20-9 s20)

(path s9 p20-9)

(path p20-9 s9)

(path s20 p20-15)

(path p20-15 s20)

(path s15 p20-15)

(path p20-15 s15)

(path s21 p21-9)
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(path p21-9 s21)

(path s9 p21-9)

(path p21-9 s9)

(link s0 s1)

(link s1 s0)

(link s0 s8)

(link s8 s0)

(link s0 s16)

(link s16 s0)

(link s1 s11)

(link s11 s1)

(link s1 s16)

(link s16 s1)

(link s2 s4)

(link s4 s2)

(link s2 s5)

(link s5 s2)

(link s2 s6)

(link s6 s2)

(link s2 s14)

(link s14 s2)

(link s2 s19)

(link s19 s2)

(link s2 s20)

(link s20 s2)

(link s3 s6)

(link s6 s3)

(link s3 s10)

(link s10 s3)

(link s3 s11)

(link s11 s3)

(link s3 s14)

(link s14 s3)

(link s3 s16)

(link s16 s3)

(link s3 s19)

(link s19 s3)

(link s3 s21)
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(link s21 s3)

(link s4 s0)

(link s0 s4)

(link s4 s8)

(link s8 s4)

(link s4 s11)

(link s11 s4)

(link s4 s13)

(link s13 s4)

(link s4 s16)

(link s16 s4)

(link s5 s0)

(link s0 s5)

(link s5 s4)

(link s4 s5)

(link s5 s13)

(link s13 s5)

(link s5 s16)

(link s16 s5)

(link s6 s15)

(link s15 s6)

(link s6 s17)

(link s17 s6)

(link s6 s20)

(link s20 s6)

(link s7 s0)

(link s0 s7)

(link s7 s19)

(link s19 s7)

(link s8 s1)

(link s1 s8)

(link s8 s3)

(link s3 s8)

(link s8 s18)

(link s18 s8)

(link s8 s20)

(link s20 s8)

(link s9 s1)
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(link s1 s9)

(link s9 s12)

(link s12 s9)

(link s9 s17)

(link s17 s9)

(link s9 s19)

(link s19 s9)

(link s10 s0)

(link s0 s10)

(link s10 s17)

(link s17 s10)

(link s10 s19)

(link s19 s10)

(link s10 s21)

(link s21 s10)

(link s11 s8)

(link s8 s11)

(link s11 s9)

(link s9 s11)

(link s11 s15)

(link s15 s11)

(link s12 s1)

(link s1 s12)

(link s12 s2)

(link s2 s12)

(link s12 s3)

(link s3 s12)

(link s12 s20)

(link s20 s12)

(link s12 s21)

(link s21 s12)

(link s13 s14)

(link s14 s13)

(link s14 s0)

(link s0 s14)

(link s14 s7)

(link s7 s14)

(link s14 s16)

264



(link s16 s14)

(link s14 s18)

(link s18 s14)

(link s17 s14)

(link s14 s17)

(link s17 s16)

(link s16 s17)

(link s17 s21)

(link s21 s17)

(link s18 s3)

(link s3 s18)

(link s19 s11)

(link s11 s19)

(link s20 s3)

(link s3 s20)

(link s20 s15)

(link s15 s20)

(link s20 s19)

(link s19 s20)

(link s21 s14)

(link s14 s21)

)

(:goal (and

(at driver2 s8)

(at driver3 s0)

(at driver4 s14)

(at driver6 s21)

(at driver7 s1)

(at truck2 s16)

(at truck3 s8)

(at truck4 s4)

(at truck5 s14)

(at truck6 s11)

(at package1 s11)

(at package2 s10)

(at package3 s19)

(at package4 s3)

(at package5 s12)

265



(at package6 s5)

(at package7 s6)

(at package8 s19)

(at package9 s21)

(at package10 s5)

(at package11 s4)

(at package12 s19)

(at package13 s15)

(at package14 s12)

(at package15 s4)

(at package16 s8)

(at package17 s11)

(at package18 s13)

(at package19 s8)

))

(:metric minimize (total-time))

)

A.1.2 RTAM

A.1.2.1 RTAM Domain

(define (domain rtam)

(:requirements :typing :durative-actions)

(:types

ambulance police car tow truck fire brigade - vehicle

acc victim vehicle car - subject

city location city - location

accident location hospital police station - city location

garage fire station - city location

route

accident)

(:predicates
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(at ?physical obj1 - subject ?location1 - location)

(available ?vehicle1 - vehicle)

(busy ?vehicle1 - vehicle)

(waiting ?subject1 - subject)

(certified ?subject1 - subject)

(aided ?subject1 - acc victim)

(uncertified ?subject1 - subject)

(delivered ?subject1 - subject)

(loaded ?subject1 - subject ?vehicle1 - vehicle)

(identified ?accident1 - accident)

(vehicle involve ?vehicle1 - vehicle)

(connects ?route1 - route ?location1 - location ?location2 - location)

(in city ?location1 - location ?city1 - city)

(route available ?route1 - route)

(trapped ?hum - acc victim)

(untrapped ?hum - acc victim)

(on fire ?car acc - car)

(off fire ?car acc - car)

)

(:functions

; (distance ?O - location ?L - location)

(route-length ?O - route)

; (confirmation-time)

; (firstaid-time)

(speed ?V - vehicle)

; (loading-time)

; (loading-time-car)

; (unloading-time)

; (delivery-time)

; (untrapping-time)

; (extinguishing-time)

)

(:durative-action confirm accident

:parameters (?V - police car ?P - subject ?A - accident location)

:duration (= ?duration 10)

:condition (and
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(at start (at ?V ?A))

(at start (at ?P ?A))

(at start (uncertified ?P))

)

:effect (and

(at start (not (uncertified ?P)))

(at end (waiting ?P))

(at end (certified ?P))

)

)

(:durative-action untrap

:parameters (?V - fire brigade ?P - acc victim ?A - accident location)

:duration (= ?duration 25)

:condition (and

(at start (at ?P ?A))

(at start (at ?V ?A))

(at start (certified ?P))

(at start (available ?V))

(at start (waiting ?P))

(at start (trapped ?P))

)

:effect (and

(at start (not (available ?V)))

(at end (not (trapped ?P)))

(at end (untrapped ?P))

(at end (available ?V))

)

)

(:durative-action extinguish fire

:parameters (?V - fire brigade ?P - car ?A - accident location)

:duration (= ?duration 20)

:condition (and

(at start (at ?P ?A))

(at start (at ?V ?A))

(at start (available ?V))

(at start (certified ?P))
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(at start (waiting ?P))

(at start (on fire ?P))

)

:effect (and

(at start (not (available ?V)))

(at end (not (on fire ?P)))

(at end (off fire ?P))

(at end (available ?V))

)

)

(:durative-action first aid

:parameters (?V - ambulance ?P - acc victim ?A - accident location )

:duration (= ?duration 20)

:condition (and

(at start (at ?P ?A))

(at start (at ?V ?A))

(at start (certified ?P))

(at start (waiting ?P))

(at start (untrapped ?P))

)

:effect (and

(at start (not (waiting ?P)))

(at end (waiting ?P))

(at end (aided ?P))

)

)

(:durative-action load victim

:parameters ( ?V - ambulance ?L - accident location ?P - acc victim)

:duration (= ?duration 5)

:condition (and

(at start (at ?V ?L))

(at start (at ?P ?L))

(at start (certified ?P))

(at start (waiting ?P))

(at start (aided ?P))

(at start (available ?V))
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)

:effect (and

(at start (not (available ?V)))

(at start (busy ?V))

(at start (not (waiting ?P)))

(at start (not (at ?P ?L)))

(at end (loaded ?P ?V))

)

)

(:durative-action move

:parameters ( ?V - vehicle ?O - location ?City - city ?L - location

?City1 - city ?R - route)

:duration (= ?duration (/ (route-length ?R) (speed ?V)))

:condition (and

(at start (at ?V ?O))

(at start (in city ?O ?City))

(at start (in city ?L ?City1))

(at start (connects ?R ?City ?City1))

)

:effect (and

(at start (not (at ?V ?O)))

(at end (at ?V ?L))

)

)

; (:durative-action move in city

; :parameters ( ?V - vehicle ?O - location ?City - city ?L - location)

; :duration(=?duration(/(distance ?O ?L) (speed ?V)))

; :condition (and

; (at start (at ?V ?O))

; (at start (in city ?O ?City))

; (at start (in city ?L ?City))

; )

; :effect (and

; (at start (not (at ?V ?O)))

; (at end (at ?V ?L))

; )
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; )

(:durative-action load car

:parameters ( ?V - tow truck ?L - accident location ?P - car)

:duration (= ?duration 5)

:condition (and

(at start (at ?V ?L))

(at start (at ?P ?L))

(at start (waiting ?P))

(at start (certified ?P))

(at start (available ?V))

(at start (off fire ?P))

)

:effect (and

(at start (not (available ?V)))

(at start (busy ?V))

(at start (not (waiting ?P)))

(at start (not (at ?P ?L)))

(at end (loaded ?P ?V))

)

)

(:durative-action unload car

:parameters ( ?P - car ?L - garage ?V - tow truck )

:duration (= ?duration 5)

:condition (and

(at start (at ?V ?L))

(at start (loaded ?P ?V))

(at start (busy ?V))

)

:effect (and

(at start (not (loaded ?P ?V)))

(at end (at ?P ?L))

(at start (not (busy ?V)))

(at end (waiting ?P))

(at end (available ?V))

)

)
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(:durative-action unload victim

:parameters ( ?P - acc victim ?L - hospital ?V - ambulance)

:duration (= ?duration 5)

:condition (and

(at start (at ?V ?L))

(at start (loaded ?P ?V))

(at start (certified ?P))

(at start (aided ?P))

(at start (busy ?V))

)

:effect (and

(at start (not (loaded ?P ?V)))

(at end (at ?P ?L))

(at end (not (busy ?V)))

(at end (waiting ?P))

(at end (available ?V))

)

)

(:durative-action deliver victim

:parameters ( ?P - acc victim ?L - hospital )

:duration (= ?duration 10)

:condition (and

(at start (at ?P ?L))

(at start (waiting ?P))

(at start (certified ?P))

(at start (aided ?P))

)

:effect (and

(at start (not (waiting ?P)))

(at start (not (certified ?P)))

(at start (not (aided ?P)))

(at end (delivered ?P))

)

)

(:durative-action deliver vehicle
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:parameters ( ?P - car ?L - garage )

:duration (= ?duration 10)

:condition (and

(at start (at ?P ?L))

(at start (waiting ?P))

(at start (certified ?P))

)

:effect (and

(at start (not (waiting ?P)))

(at start (not (certified ?P)))

(at end (delivered ?P))

)

)

)

A.1.2.2 RTAM_5_1_35 Problem

(define (problem RTAM 5 1 35) (:domain RTAM)

(:objects

accident0 - accident

accident1 - accident

accident2 - accident

accident3 - accident

accident4 - accident

accident location0 - accident location

accident location1 - accident location

accident location2 - accident location

accident location3 - accident location

accident location4 - accident location

acc victim0 - acc victim

acc victim1 - acc victim

acc victim2 - acc victim

acc victim3 - acc victim

acc victim4 - acc victim
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acc victim5 - acc victim

acc victim6 - acc victim

acc victim7 - acc victim

acc victim8 - acc victim

acc victim9 - acc victim

acc victim10 - acc victim

acc victim11 - acc victim

acc victim12 - acc victim

acc victim13 - acc victim

acc victim14 - acc victim

acc victim15 - acc victim

acc victim16 - acc victim

acc victim17 - acc victim

acc victim18 - acc victim

acc victim19 - acc victim

acc victim20 - acc victim

acc victim21 - acc victim

acc victim22 - acc victim

acc victim23 - acc victim

acc victim24 - acc victim

acc victim25 - acc victim

acc victim26 - acc victim

acc victim27 - acc victim

acc victim28 - acc victim

acc victim29 - acc victim

acc victim30 - acc victim

acc victim31 - acc victim

acc victim32 - acc victim

acc victim33 - acc victim

acc victim34 - acc victim

ambulance0 - ambulance

fire brigade0 - fire brigade

police car0 - police car

tow truck0 - tow truck

tow truck1 - tow truck

tow truck2 - tow truck

car0 - car

car1 - car
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car2 - car

car3 - car

car4 - car

car5 - car

car6 - car

car7 - car

car8 - car

car9 - car

car10 - car

car11 - car

car12 - car

car13 - car

car14 - car

car15 - car

car16 - car

car17 - car

car18 - car

car19 - car

car20 - car

car21 - car

car22 - car

car23 - car

car24 - car

car25 - car

car26 - car

car27 - car

car28 - car

car29 - car

car30 - car

car31 - car

car32 - car

fire Hud - fire station

fire Hal - fire station

police Queen - police station

police Bradley - police station

police Halifax - police station

police Huddersfield - police station

huddersfield hospital - hospital
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halifax hospital - hospital

brighouse hospital - hospital

garage halifax - garage

garage huddersfield - garage

garage brighouse - garage

garage queensbury - garage

ainley top - city

huddersfield - city

halifax - city

bradley - city

greetland - city

brighouse - city

baliff bridge - city

queensbury - city

hud bradley - route

bradley ainley - route

hud brigh - route

a629 - route

ainley greet - route

ainley brigh - route

greet halifax - route

brigh baliff - route

brigh queen - route

baliff halifax - route

queen halifax - route

ainley halifax - route

)

(:init

(= (speed ambulance0) 1)

(= (speed police car0) 1.2)

(= (speed fire brigade0) 0.8)

(= (speed tow truck0) 0.8)

(= (speed tow truck1) 0.8)

(= (speed tow truck2) 0.8)

(in city accident location0 queensbury)

(in city accident location1 ainley top)

(in city accident location2 bradley)

(in city accident location3 bradley)
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(in city accident location4 halifax)

(in city huddersfield hospital huddersfield)

(in city garage huddersfield huddersfield)

(in city police Huddersfield huddersfield)

(in city fire Hud huddersfield)

(in city halifax hospital halifax)

(in city garage halifax halifax)

(in city police Halifax halifax)

(in city fire Hal halifax)

(in city police Queen queensbury)

(in city garage queensbury queensbury)

(in city police Bradley bradley)

(in city garage brighouse brighouse)

(in city brighouse hospital brighouse)

(route available ainley halifax)

(connects ainley halifax halifax ainley top)

(connects ainley halifax ainley top halifax)

(route available hud bradley)

(connects hud bradley huddersfield bradley)

(connects hud bradley bradley huddersfield)

(route available bradley ainley)

(connects bradley ainley bradley ainley top)

(connects bradley ainley ainley top bradley)

(route available hud brigh)

(connects hud brigh huddersfield brighouse)

(connects hud brigh brighouse huddersfield)

(route available a629)

(connects a629 huddersfield ainley top)

(connects a629 ainley top huddersfield)

(route available ainley greet)

(connects ainley greet ainley top greetland)

(connects ainley greet greetland ainley top)

(route available ainley brigh)

(connects ainley brigh ainley top brighouse)

(connects ainley brigh brighouse ainley top)

(route available greet halifax)

(connects greet halifax greetland halifax)

(connects greet halifax halifax greetland)
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(route available brigh baliff)

(connects brigh baliff brighouse baliff bridge)

(connects brigh baliff baliff bridge brighouse)

(route available brigh queen)

(connects brigh queen brighouse queensbury)

(connects brigh queen queensbury brighouse)

(route available baliff halifax)

(connects baliff halifax baliff bridge halifax)

(connects baliff halifax halifax baliff bridge)

(route available queen halifax)

(connects queen halifax queensbury halifax)

(connects queen halifax halifax queensbury)

(= (route-length hud bradley) 10)

(= (route-length bradley ainley) 10)

(= (route-length hud brigh) 6)

(= (route-length a629) 5)

(= (route-length ainley greet) 10)

(= (route-length ainley brigh) 10)

(= (route-length greet halifax) 2)

(= (route-length brigh baliff) 8)

(= (route-length brigh queen) 8)

(= (route-length baliff halifax) 10)

(= (route-length queen halifax) 2)

(= (route-length ainley halifax) 4)

(at acc victim0 accident location2)

(uncertified acc victim0)

(trapped acc victim0)

(at acc victim1 accident location1)

(uncertified acc victim1)

(trapped acc victim1)

(at acc victim2 accident location0)

(uncertified acc victim2)

(untrapped acc victim2)

(at acc victim3 accident location0)

(uncertified acc victim3)

(trapped acc victim3)

(at acc victim4 accident location0)

(uncertified acc victim4)
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(trapped acc victim4)

(at acc victim5 accident location3)

(uncertified acc victim5)

(untrapped acc victim5)

(at acc victim6 accident location4)

(uncertified acc victim6)

(trapped acc victim6)

(at acc victim7 accident location1)

(uncertified acc victim7)

(untrapped acc victim7)

(at acc victim8 accident location3)

(uncertified acc victim8)

(untrapped acc victim8)

(at acc victim9 accident location4)

(uncertified acc victim9)

(trapped acc victim9)

(at acc victim10 accident location2)

(uncertified acc victim10)

(trapped acc victim10)

(at acc victim11 accident location0)

(uncertified acc victim11)

(untrapped acc victim11)

(at acc victim12 accident location4)

(uncertified acc victim12)

(untrapped acc victim12)

(at acc victim13 accident location1)

(uncertified acc victim13)

(trapped acc victim13)

(at acc victim14 accident location3)

(uncertified acc victim14)

(untrapped acc victim14)

(at acc victim15 accident location4)

(uncertified acc victim15)

(untrapped acc victim15)

(at acc victim16 accident location4)

(uncertified acc victim16)

(untrapped acc victim16)

(at acc victim17 accident location4)
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(uncertified acc victim17)

(untrapped acc victim17)

(at acc victim18 accident location4)

(uncertified acc victim18)

(untrapped acc victim18)

(at acc victim19 accident location2)

(uncertified acc victim19)

(trapped acc victim19)

(at acc victim20 accident location2)

(uncertified acc victim20)

(trapped acc victim20)

(at acc victim21 accident location2)

(uncertified acc victim21)

(untrapped acc victim21)

(at acc victim22 accident location0)

(uncertified acc victim22)

(untrapped acc victim22)

(at acc victim23 accident location1)

(uncertified acc victim23)

(untrapped acc victim23)

(at acc victim24 accident location3)

(uncertified acc victim24)

(trapped acc victim24)

(at acc victim25 accident location1)

(uncertified acc victim25)

(untrapped acc victim25)

(at acc victim26 accident location4)

(uncertified acc victim26)

(untrapped acc victim26)

(at acc victim27 accident location1)

(uncertified acc victim27)

(untrapped acc victim27)

(at acc victim28 accident location0)

(uncertified acc victim28)

(untrapped acc victim28)

(at acc victim29 accident location4)

(uncertified acc victim29)

(untrapped acc victim29)
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(at acc victim30 accident location2)

(uncertified acc victim30)

(untrapped acc victim30)

(at acc victim31 accident location4)

(uncertified acc victim31)

(trapped acc victim31)

(at acc victim32 accident location3)

(uncertified acc victim32)

(untrapped acc victim32)

(at acc victim33 accident location2)

(uncertified acc victim33)

(untrapped acc victim33)

(at acc victim34 accident location4)

(uncertified acc victim34)

(untrapped acc victim34)

(at car0 accident location0)

(uncertified car0)

(on fire car0)

(at car1 accident location1)

(uncertified car1)

(on fire car1)

(at car2 accident location4)

(uncertified car2)

(off fire car2)

(at car3 accident location3)

(uncertified car3)

(off fire car3)

(at car4 accident location1)

(uncertified car4)

(off fire car4)

(at car5 accident location2)

(uncertified car5)

(off fire car5)

(at car6 accident location1)

(uncertified car6)

(off fire car6)

(at car7 accident location0)

(uncertified car7)
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(on fire car7)

(at car8 accident location0)

(uncertified car8)

(on fire car8)

(at car9 accident location2)

(uncertified car9)

(off fire car9)

(at car10 accident location0)

(uncertified car10)

(off fire car10)

(at car11 accident location2)

(uncertified car11)

(on fire car11)

(at car12 accident location2)

(uncertified car12)

(off fire car12)

(at car13 accident location4)

(uncertified car13)

(off fire car13)

(at car14 accident location1)

(uncertified car14)

(on fire car14)

(at car15 accident location0)

(uncertified car15)

(on fire car15)

(at car16 accident location1)

(uncertified car16)

(off fire car16)

(at car17 accident location1)

(uncertified car17)

(on fire car17)

(at car18 accident location0)

(uncertified car18)

(off fire car18)

(at car19 accident location0)

(uncertified car19)

(on fire car19)

(at car20 accident location3)
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(uncertified car20)

(off fire car20)

(at car21 accident location4)

(uncertified car21)

(on fire car21)

(at car22 accident location3)

(uncertified car22)

(on fire car22)

(at car23 accident location0)

(uncertified car23)

(on fire car23)

(at car24 accident location2)

(uncertified car24)

(on fire car24)

(at car25 accident location4)

(uncertified car25)

(on fire car25)

(at car26 accident location1)

(uncertified car26)

(on fire car26)

(at car27 accident location1)

(uncertified car27)

(on fire car27)

(at car28 accident location0)

(uncertified car28)

(on fire car28)

(at car29 accident location2)

(uncertified car29)

(on fire car29)

(at car30 accident location2)

(uncertified car30)

(off fire car30)

(at car31 accident location4)

(uncertified car31)

(off fire car31)

(at car32 accident location1)

(uncertified car32)

(on fire car32)
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(available ambulance0)

(available fire brigade0)

(available police car0)

(available tow truck0)

(available tow truck1)

(available tow truck2)

(at ambulance0 huddersfield hospital)

(at fire brigade0 fire Hud)

(at police car0 police Queen)

(at tow truck0 garage halifax)

(at tow truck1 garage huddersfield)

(at tow truck2 garage brighouse)

)

(:goal (and

(delivered acc victim0)

(delivered acc victim1)

(delivered acc victim2)

(delivered acc victim3)

(delivered acc victim4)

(delivered acc victim5)

(delivered acc victim6)

(delivered acc victim7)

(delivered acc victim8)

(delivered acc victim9)

(delivered acc victim10)

(delivered acc victim11)

(delivered acc victim12)

(delivered acc victim13)

(delivered acc victim14)

(delivered acc victim15)

(delivered acc victim16)

(delivered acc victim17)

(delivered acc victim18)

(delivered acc victim19)

(delivered acc victim20)

(delivered acc victim21)

(delivered acc victim22)

(delivered acc victim23)
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(delivered acc victim24)

(delivered acc victim25)

(delivered acc victim26)

(delivered acc victim27)

(delivered acc victim28)

(delivered acc victim29)

(delivered acc victim30)

(delivered acc victim31)

(delivered acc victim32)

(delivered acc victim33)

(delivered acc victim34)

(delivered car0)

(delivered car1)

(delivered car2)

(delivered car3)

(delivered car4)

(delivered car5)

(delivered car6)

(delivered car7)

(delivered car8)

(delivered car9)

(delivered car10)

(delivered car11)

(delivered car12)

(delivered car13)

(delivered car14)

(delivered car15)

(delivered car16)

(delivered car17)

(delivered car18)

(delivered car19)

(delivered car20)

(delivered car21)

(delivered car22)

(delivered car23)

(delivered car24)

(delivered car25)

(delivered car26)
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(delivered car27)

(delivered car28)

(delivered car29)

(delivered car30)

(delivered car31)

(delivered car32)

(at ambulance0 huddersfield hospital)

(at fire brigade0 fire Hud)

(at police car0 police Queen)

(at tow truck0 garage halifax)

(at tow truck1 garage huddersfield)

(at tow truck2 garage brighouse)

))

(:metric minimize (total-time)))

A.1.2.3 RTAM_5_2_35 Problem

(define (problem RTAM 5 2 35) (:domain RTAM)

(:objects

accident0 - accident

accident1 - accident

accident2 - accident

accident3 - accident

accident4 - accident

accident location0 - accident location

accident location1 - accident location

accident location2 - accident location

accident location3 - accident location

accident location4 - accident location

acc victim0 - acc victim

acc victim1 - acc victim

acc victim2 - acc victim

acc victim3 - acc victim

acc victim4 - acc victim

acc victim5 - acc victim
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acc victim6 - acc victim

acc victim7 - acc victim

acc victim8 - acc victim

acc victim9 - acc victim

acc victim10 - acc victim

acc victim11 - acc victim

acc victim12 - acc victim

acc victim13 - acc victim

acc victim14 - acc victim

acc victim15 - acc victim

acc victim16 - acc victim

acc victim17 - acc victim

acc victim18 - acc victim

acc victim19 - acc victim

acc victim20 - acc victim

acc victim21 - acc victim

acc victim22 - acc victim

acc victim23 - acc victim

acc victim24 - acc victim

acc victim25 - acc victim

acc victim26 - acc victim

acc victim27 - acc victim

acc victim28 - acc victim

acc victim29 - acc victim

acc victim30 - acc victim

acc victim31 - acc victim

acc victim32 - acc victim

acc victim33 - acc victim

acc victim34 - acc victim

ambulance0 - ambulance

ambulance1 - ambulance

ambulance2 - ambulance

ambulance3 - ambulance

fire brigade0 - fire brigade

fire brigade1 - fire brigade

fire brigade2 - fire brigade

police car0 - police car

police car1 - police car
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police car2 - police car

police car3 - police car

police car4 - police car

tow truck0 - tow truck

tow truck1 - tow truck

tow truck2 - tow truck

tow truck3 - tow truck

tow truck4 - tow truck

tow truck5 - tow truck

tow truck6 - tow truck

car0 - car

car1 - car

car2 - car

car3 - car

car4 - car

car5 - car

car6 - car

car7 - car

car8 - car

car9 - car

car10 - car

car11 - car

car12 - car

car13 - car

car14 - car

car15 - car

car16 - car

car17 - car

car18 - car

car19 - car

car20 - car

car21 - car

car22 - car

car23 - car

car24 - car

car25 - car

car26 - car

car27 - car
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car28 - car

car29 - car

car30 - car

car31 - car

car32 - car

fire Hud - fire station

fire Hal - fire station

police Queen - police station

police Bradley - police station

police Halifax - police station

police Huddersfield - police station

huddersfield hospital - hospital

halifax hospital - hospital

brighouse hospital - hospital

garage halifax - garage

garage huddersfield - garage

garage brighouse - garage

garage queensbury - garage

ainley top - city

huddersfield - city

halifax - city

bradley - city

greetland - city

brighouse - city

baliff bridge queensbury - city

hud bradley - route

bradley ainley - route

hud brigh - route

a629 - route

ainley greet - route

ainley brigh - route

greet halifax - route

brigh baliff - route

brigh queen - route

baliff halifax - route

queen halifax - route

ainley halifax - route

)
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(:init

(= (speed ambulance0) 1)

(= (speed ambulance1) 1)

(= (speed ambulance2) 1)

(= (speed ambulance3) 1)

(= (speed police car0) 1.2)

(= (speed police car1) 1.2)

(= (speed police car2) 1.2)

(= (speed police car3) 1.2)

(= (speed police car4) 1.2)

(= (speed fire brigade0) 0.8)

(= (speed fire brigade1) 0.8)

(= (speed fire brigade2) 0.8)

(= (speed tow truck0) 0.8)

(= (speed tow truck1) 0.8)

(= (speed tow truck2) 0.8)

(= (speed tow truck3) 0.8)

(= (speed tow truck4) 0.8)

(= (speed tow truck5) 0.8)

(= (speed tow truck6) 0.8)

(in city accident location0 queensbury)

(in city accident location1 ainley top)

(in city accident location2 bradley)

(in city accident location3 bradley)

(in city accident location4 halifax)

(in city huddersfield hospital huddersfield)

(in city garage huddersfield huddersfield)

(in city police Huddersfield huddersfield)

(in city fire Hud huddersfield)

(in city halifax hospital halifax)

(in city garage halifax halifax)

(in city police Halifax halifax)

(in city fire Hal halifax)

(in city police Queen queensbury)

(in city garage queensbury queensbury)

(in city police Bradley bradley)

(in city garage brighouse brighouse)

(in city brighouse hospital brighouse)

290



(route available ainley halifax)

(connects ainley halifax halifax ainley top)

(connects ainley halifax ainley top halifax)

(route available hud bradley)

(connects hud bradley huddersfield bradley)

(connects hud bradley bradley huddersfield)

(route available bradley ainley)

(connects bradley ainley bradley ainley top)

(connects bradley ainley ainley top bradley)

(route available hud brigh)

(connects hud brigh huddersfield brighouse)

(connects hud brigh brighouse huddersfield)

(route available a629)

(connects a629 huddersfield ainley top)

(connects a629 ainley top huddersfield)

(route available ainley greet)

(connects ainley greet ainley top greetland)

(connects ainley greet greetland ainley top)

(route available ainley brigh)

(connects ainley brigh ainley top brighouse)

(connects ainley brigh brighouse ainley top)

(route available greet halifax)

(connects greet halifax greetland halifax)

(connects greet halifax halifax greetland)

(route available brigh baliff)

(connects brigh baliff brighouse baliff bridge)

(connects brigh baliff baliff bridge brighouse)

(route available brigh queen)

(connects brigh queen brighouse queensbury)

(connects brigh queen queensbury brighouse)

(route available baliff halifax)

(connects baliff halifax baliff bridge halifax)

(connects baliff halifax halifax baliff bridge)

(route available queen halifax)

(connects queen halifax queensbury halifax)

(connects queen halifax halifax queensbury)

(= (route-length hud bradley) 10)

(= (route-length bradley ainley) 10)
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(= (route-length hud brigh) 6)

(= (route-length a629) 5)

(= (route-length ainley greet) 10)

(= (route-length ainley brigh) 10)

(= (route-length greet halifax) 2)

(= (route-length brigh baliff) 8)

(= (route-length brigh queen) 8)

(= (route-length baliff halifax) 10)

(= (route-length queen halifax) 2)

(= (route-length ainley halifax) 4)

(at acc victim0 accident location2)

(uncertified acc victim0)

(trapped acc victim0)

(at acc victim1 accident location1)

(uncertified acc victim1)

(trapped acc victim1)

(at acc victim2 accident location0)

(uncertified acc victim2)

(untrapped acc victim2)

(at acc victim3 accident location0)

(uncertified acc victim3)

(trapped acc victim3)

(at acc victim4 accident location0)

(uncertified acc victim4)

(trapped acc victim4)

(at acc victim5 accident location3)

(uncertified acc victim5)

(untrapped acc victim5)

(at acc victim6 accident location4)

(uncertified acc victim6)

(trapped acc victim6)

(at acc victim7 accident location1)

(uncertified acc victim7)

(untrapped acc victim7)

(at acc victim8 accident location3)

(uncertified acc victim8)

(untrapped acc victim8)

(at acc victim9 accident location4)
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(uncertified acc victim9)

(trapped acc victim9)

(at acc victim10 accident location2)

(uncertified acc victim10)

(trapped acc victim10)

(at acc victim11 accident location0)

(uncertified acc victim11)

(untrapped acc victim11)

(at acc victim12 accident location4)

(uncertified acc victim12)

(untrapped acc victim12)

(at acc victim13 accident location1)

(uncertified acc victim13)

(trapped acc victim13)

(at acc victim14 accident location3)

(uncertified acc victim14)

(untrapped acc victim14)

(at acc victim15 accident location4)

(uncertified acc victim15)

(untrapped acc victim15)

(at acc victim16 accident location4)

(uncertified acc victim16)

(untrapped acc victim16)

(at acc victim17 accident location4)

(uncertified acc victim17)

(untrapped acc victim17)

(at acc victim18 accident location4)

(uncertified acc victim18)

(untrapped acc victim18)

(at acc victim19 accident location2)

(uncertified acc victim19)

(trapped acc victim19)

(at acc victim20 accident location2)

(uncertified acc victim20)

(trapped acc victim20)

(at acc victim21 accident location2)

(uncertified acc victim21)

(untrapped acc victim21)
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(at acc victim22 accident location0)

(uncertified acc victim22)

(untrapped acc victim22)

(at acc victim23 accident location1)

(uncertified acc victim23)

(untrapped acc victim23)

(at acc victim24 accident location3)

(uncertified acc victim24)

(trapped acc victim24)

(at acc victim25 accident location1)

(uncertified acc victim25)

(untrapped acc victim25)

(at acc victim26 accident location4)

(uncertified acc victim26)

(untrapped acc victim26)

(at acc victim27 accident location1)

(uncertified acc victim27)

(untrapped acc victim27)

(at acc victim28 accident location0)

(uncertified acc victim28)

(untrapped acc victim28)

(at acc victim29 accident location4)

(uncertified acc victim29)

(untrapped acc victim29)

(at acc victim30 accident location2)

(uncertified acc victim30)

(untrapped acc victim30)

(at acc victim31 accident location4)

(uncertified acc victim31)

(trapped acc victim31)

(at acc victim32 accident location3)

(uncertified acc victim32)

(untrapped acc victim32)

(at acc victim33 accident location2)

(uncertified acc victim33)

(untrapped acc victim33)

(at acc victim34 accident location4)

(uncertified acc victim34)
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(untrapped acc victim34)

(at car0 accident location0)

(uncertified car0)

(on fire car0)

(at car1 accident location1)

(uncertified car1)

(on fire car1)

(at car2 accident location4)

(uncertified car2)

(off fire car2)

(at car3 accident location3)

(uncertified car3)

(off fire car3)

(at car4 accident location1)

(uncertified car4)

(off fire car4)

(at car5 accident location2)

(uncertified car5)

(off fire car5)

(at car6 accident location1)

(uncertified car6)

(off fire car6)

(at car7 accident location0)

(uncertified car7)

(on fire car7)

(at car8 accident location0)

(uncertified car8)

(on fire car8)

(at car9 accident location2)

(uncertified car9)

(off fire car9)

(at car10 accident location0)

(uncertified car10)

(off fire car10)

(at car11 accident location2)

(uncertified car11)

(on fire car11)

(at car12 accident location2)
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(uncertified car12)

(off fire car12)

(at car13 accident location4)

(uncertified car13)

(off fire car13)

(at car14 accident location1)

(uncertified car14)

(on fire car14)

(at car15 accident location0)

(uncertified car15)

(on fire car15)

(at car16 accident location1)

(uncertified car16)

(off fire car16)

(at car17 accident location1)

(uncertified car17)

(on fire car17)

(at car18 accident location0)

(uncertified car18)

(off fire car18)

(at car19 accident location0)

(uncertified car19)

(on fire car19)

(at car20 accident location3)

(uncertified car20)

(off fire car20)

(at car21 accident location4)

(uncertified car21)

(on fire car21)

(at car22 accident location3)

(uncertified car22)

(on fire car22)

(at car23 accident location0)

(uncertified car23)

(on fire car23)

(at car24 accident location2)

(uncertified car24)

(on fire car24)

296



(at car25 accident location4)

(uncertified car25)

(on fire car25)

(at car26 accident location1)

(uncertified car26)

(on fire car26)

(at car27 accident location1)

(uncertified car27)

(on fire car27)

(at car28 accident location0)

(uncertified car28)

(on fire car28)

(at car29 accident location2)

(uncertified car29)

(on fire car29)

(at car30 accident location2)

(uncertified car30)

(off fire car30)

(at car31 accident location4)

(uncertified car31)

(off fire car31)

(at car32 accident location1)

(uncertified car32)

(on fire car32)

(available ambulance0)

(available ambulance1)

(available ambulance2)

(available ambulance3)

(available fire brigade0)

(available fire brigade1)

(available fire brigade2)

(available police car0)

(available police car1)

(available police car2)

(available police car3)

(available police car4)

(available tow truck0)

(available tow truck1)
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(available tow truck2)

(available tow truck3)

(available tow truck4)

(available tow truck5)

(available tow truck6)

(at ambulance0 huddersfield hospital)

(at ambulance1 halifax hospital)

(at ambulance2 brighouse hospital)

(at ambulance3 huddersfield hospital)

(at fire brigade0 fire Hud)

(at fire brigade1 fire Hal)

(at fire brigade2 fire Hud)

(at police car0 police Queen)

(at police car1 police Bradley)

(at police car2 police Halifax)

(at police car3 police Huddersfield)

(at police car4 police Queen)

(at tow truck0 garage halifax)

(at tow truck1 garage huddersfield)

(at tow truck2 garage brighouse)

(at tow truck3 garage queensbury)

(at tow truck4 garage halifax)

(at tow truck5 garage huddersfield)

(at tow truck6 garage brighouse)

)

(:goal (and

(delivered acc victim0)

(delivered acc victim1)

(delivered acc victim2)

(delivered acc victim3)

(delivered acc victim4)

(delivered acc victim5)

(delivered acc victim6)

(delivered acc victim7)

(delivered acc victim8)

(delivered acc victim9)

(delivered acc victim10)

(delivered acc victim11)
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(delivered acc victim12)

(delivered acc victim13)

(delivered acc victim14)

(delivered acc victim15)

(delivered acc victim16)

(delivered acc victim17)

(delivered acc victim18)

(delivered acc victim19)

(delivered acc victim20)

(delivered acc victim21)

(delivered acc victim22)

(delivered acc victim23)

(delivered acc victim24)

(delivered acc victim25)

(delivered acc victim26)

(delivered acc victim27)

(delivered acc victim28)

(delivered acc victim29)

(delivered acc victim30)

(delivered acc victim31)

(delivered acc victim32)

(delivered acc victim33)

(delivered acc victim34)

(delivered car0)

(delivered car1)

(delivered car2)

(delivered car3)

(delivered car4)

(delivered car5)

(delivered car6)

(delivered car7)

(delivered car8)

(delivered car9)

(delivered car10)

(delivered car11)

(delivered car12)

(delivered car13)

(delivered car14)

299



(delivered car15)

(delivered car16)

(delivered car17)

(delivered car18)

(delivered car19)

(delivered car20)

(delivered car21)

(delivered car22)

(delivered car23)

(delivered car24)

(delivered car25)

(delivered car26)

(delivered car27)

(delivered car28)

(delivered car29)

(delivered car30)

(delivered car31)

(delivered car32)

(at ambulance0 huddersfield hospital)

(at ambulance1 halifax hospital)

(at ambulance2 brighouse hospital)

(at ambulance3 huddersfield hospital)

(at fire brigade0 fire Hud)

(at fire brigade1 fire Hal)

(at fire brigade2 fire Hud)

(at police car0 police Queen)

(at police car1 police Bradley)

(at police car2 police Halifax)

(at police car3 police Huddersfield)

(at police car4 police Queen)

(at tow truck0 garage halifax)

(at tow truck1 garage huddersfield)

(at tow truck2 garage brighouse)

(at tow truck3 garage queensbury)

(at tow truck4 garage halifax)

(at tow truck5 garage huddersfield)

(at tow truck6 garage brighouse)))

(:metric minimize (total-time)))
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