
 
 

 
 
 
 

 
 
 
 
 
 
 
 
 
 
 

 

 

 
 

 

 

King’s Research Portal 
 

Document Version
Peer reviewed version

Link to publication record in King's Research Portal

Citation for published version (APA):
Cook, M. (in press). The Art of Programming: Challenges in Generating Code for Creative Applications. In
AIWare 2024

Citing this paper
Please note that where the full-text provided on King's Research Portal is the Author Accepted Manuscript or Post-Print version this may
differ from the final Published version. If citing, it is advised that you check and use the publisher's definitive version for pagination,
volume/issue, and date of publication details. And where the final published version is provided on the Research Portal, if citing you are
again advised to check the publisher's website for any subsequent corrections.

General rights
Copyright and moral rights for the publications made accessible in the Research Portal are retained by the authors and/or other copyright
owners and it is a condition of accessing publications that users recognize and abide by the legal requirements associated with these rights.

•Users may download and print one copy of any publication from the Research Portal for the purpose of private study or research.
•You may not further distribute the material or use it for any profit-making activity or commercial gain
•You may freely distribute the URL identifying the publication in the Research Portal
Take down policy
If you believe that this document breaches copyright please contact librarypure@kcl.ac.uk providing details, and we will remove access to
the work immediately and investigate your claim.

Download date: 10. Jan. 2025

https://kclpure.kcl.ac.uk/portal/en/publications/5fddfa95-3567-4792-872c-ae698694d563


The Art of Programming: Challenges in Generating Code for
Creative Applications

Michael Cook
King’s College London

London, UK
mike@possibilityspace.org

ABSTRACT
Programming has been a key tool for artists and other creatives
for decades, and the creative use of programming presents unique
challenges, opportunities and perspectives for researchers consid-
ering how AI can be used to support coding more generally. In this
paper we aim to motivate researchers to look deeper into some of
these areas, by highlighting some interesting uses of programming
in creative practices, suggesting new research questions posed by
these spaces, and briefly raising important issues that work in this
area may face.

CCS CONCEPTS
• Applied computing→ Arts and humanities; • Computing
methodologies→ Artificial intelligence.

KEYWORDS
computational creativity, generative systems, code generation
ACM Reference Format:
Michael Cook. 2024. The Art of Programming: Challenges in Generating
Code for Creative Applications. In Proceedings of the 1st ACM International
Conference on AI-Powered Software (AIware ’24), July 15–16, 2024, Porto de
Galinhas, Brazil. ACM, New York, NY, USA, 5 pages. https://doi.org/10.1145/
3664646.3664774

1 INTRODUCTION
Creative AI is currently a popular area of study among AI re-
searchers, with many of the best-known public-facing AI systems
currently focused on creative tasks, such as image synthesis [19]
or music composition [8]. Such systems raise a lot of important
ethical questions about how their input data is sourced [22], what
impact they have on the workers in the industries they target [2],
and what the long-term impact they might have on the creative
industries. They also have unexamined issues relating to how they
affect the creativity of the user. Although many of these creative AI
systems are promoted as making creativity ‘more accessible’, it’s
unclear whether they have adverse effects on their users in terms
of restricting their ability to innovate, ideate and create.

Programming has an unusual position in the creative industries.
While many creative media rely on programming as an integral

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
AIware ’24, July 15–16, 2024, Porto de Galinhas, Brazil
© 2024 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0685-1/24/07
https://doi.org/10.1145/3664646.3664774

skill (particularly game design and development, but also many
forms of digital art, music production, and film), programming
itself is not generally viewed as a creative pursuit. There are many
contributing factors to this: the politicisation of STEM has led
to backlash against technological roles in some areas of the arts,
for example, and many people who do not have a background in
programming may view it as a ‘technical’ rather than ‘creative’ skill
and discipline. Nevertheless, many creative communities exist built
on a foundation of coding as a creative activity: for example, the
generative art community, NaNoGenMo [15], the livecoding music
(and art) community [3], and more.

Studies looking at the usefulness of tools such as GitHub Copilot
appear to largely focus on their use in industrial-scale software
engineering on large projects. GitHub do not explicitly share the in-
dustries or domains that their survey participants work in, however
we can intuit some things from the information they do release. For
example, in one survey they ask 2,000 participants which languages
they program in as part of a study of Copilot usage, in which the
most popular languages for game development work (C++ and C#)
barely feature [25]. In another survey, the test exercise given to
participants is to write an HTTP server in Javascript [14]. A third
survey focused only on companies with more than 1000 employees
– this would exclude every creative industries studio in the UK,
including the entire games sector [23].

This raises the concern that creative tasks, and creative coding
as a discipline, is understudied for AIware, which means missing
out on important research questions and use-cases, but also risks
repeating the problems inherent in image synthesis and other cre-
ative tools: namely, that we repurpose tools not explicitly designed
for creative work without giving consideration to how they are
designed; what their strengths and weaknesses are; and what the
needs are of the people who wish to use them. In this paper I iden-
tify some areas of potential focus, interesting research questions,
and important ethical issues at play that are of particular relevance
to creative workers and artists.

2 NOVEL DOMAINS
In this section we give some examples of domains within the cre-
ative industries that offer unique problems, opportunities or use-
cases for AI research. This is not an exhaustive list - instead it is
intended to highlight some interesting landmarks in the creative
programming landscape, to give readers a sense of what vast new
application domains, creative practices and communities exist.

2.1 Livecoding
Livecoding is the act of creating music or art using code as an act of
performance. As the name suggests, it is usually done live in front of

https://doi.org/10.1145/3664646.3664774
https://doi.org/10.1145/3664646.3664774
https://doi.org/10.1145/3664646.3664774


AIware ’24, July 15–16, 2024, Porto de Galinhas, Brazil Cook

Figure 1: An algorave. Photo credit: Coral Manton.

an audience, using specialised libraries or programming languages,
such as TidalCycles [17] or Gibber [20]. Livecoding tools emphasise
rapid execution of code, often in a modular fashion so that segments
of a codebase can be recompiled and rerun without affecting other
ongoing computation. They also benefit from immediate feedback
and low barriers to entry. The act of programming is often part
of the performance – the code is usually visible to the audience,
who enjoy the aesthetic of programming even if they may not
understand what is being written.

Livecoding represents an exciting application domain for AI-
synthesised code, as it is already seen as an activity that has con-
siderable overlap with generative systems and programming lan-
guages. It is also a programming context with unique constraints
on it – the live nature of the performance, the fact that the act of
programming is observed by the audience, the immediate and direct
experience of the output all make livecoding somewhat unique as
a programming application domain. This presents novel challenges
that researchers may not have encountered elsewhere. This also
has a natural overlap with computer science education, or other
contexts where programming is demonstrated live.

2.2 Modding
Modding in the context of videogames describes the act of creating a
set of files that can be loaded on top of an existing game to change it
in some way. Mods can have a variety of purposes, including adding
accessibility options; making the game easier or harder; adding new
content or restoring cut content; or fixing older games to run on
modern hardware. In past decades mods were mostly ‘homebrew’
hacks that overwrote or otherwise injected themselves into pre-
compiled games, however increasingly often now game developers
add dedicated support for modding through the distribution of
custom development tools, modding languages and APIs. Modding
is a vital area of creativity and ideation for the games industry [1].
Some of the most famous games, and even entire genres, started
originally as fan-made modifications of existing games [18].

Mods represent an interesting application area for AI-assisted
software development. For one, modding is often seen as a route
into game development, and the opportunity to build on an exist-
ing codebase means that it is popular with designers who do not
have extensive programming or software engineering experience.
Modding tools often use a domain-specific language or a simpler
scripting language to interact with an API built onto the game, writ-
ten in a more complex language such as C++ [11]. For DSLs this

might mean that traditional approaches to AI-driven code synthesis
do not apply, and new approaches might be required that work
with different kinds of language, and smaller amounts of training
examples. It might also require richer explanations, including those
capable of explaining how code written in one language (such as the
DSL) relates to code written in another (the game itself). Mods are
often built on very large games that take a long time to run or test,
which means that common approaches to testing codebases, such
as writing unit tests or running the code in situ, are not applicable.

2.3 Mechanical Ideation for Games
Game mechanics are atomic systems within games that are com-
posed into rules and game logic. The term ‘mechanic’ has many
definitions within the literature, but broadly speaking we can define
it as the smallest unit of game systems design. Jumping in Super
Mario Bros. might be considered a mechanic; catching insects with
a net in Animal Crossing is a mechanic; swapping two tiles to make
a row of three in Candy Crush is a mechanic. Mechanical ideation
is an appealing problem for AI research as game mechanics are
often quite short and simple to define, but have wide-reaching and
complex systemic effects. Past research has looked into inventing
and discovering game mechanics using computational evolution
[7] as well as machine learning [13].

A key challenge for automated game design research in this
space is creating mechanics with broad potential and novelty. Small
changes to a well-known design can be enough to build an en-
tire game upon, but identifying which mechanics have potential
and which are likely to be shallow is very difficult. Different types
of game also have different needs from new mechanics. Action-
oriented or very dynamic games often favour mechanics that are
playful, expressive or that have a high skill ceiling. By contrast,
so-called ‘systems-driven’ games such as roguelikes prefer mechan-
ics which tightly couple themselves with existing game systems,
extending the possibilities much like a new keyword in a program-
ming language. Understanding, and more important evaluating,
new mechanics with this in mind is a challenging task.

2.4 Generative Art
The use of computers to create art is many decades old, with the
Victoria and Albert museum documenting collaborations between
artists and scientists in the 1960s to create pioneering works of what
we now call generative or algorithmic art [24]. Nowadays there are
many, many tools for creating art through programming, and many
unconventional and homebrewed ways to do it too. Processing and
p5.js are two examples of popular digital art tools that use common
programming languages (like Java, Javascript and Python), have
accessible APIs, run on the web and are extremely lightweight [9].
The demoscene can also be seen as a kind of generative art, where
programmers write extremely compressed programs which, when
executed, create elaborate and beautiful artworks, pieces of music
or animations [21]. Generative art has strong parallels to work in
computational creativity [5] where AI techniques were leveraged
to create visual art (among other things), although computational
creativity practitioners often de-emphasised themselves as creators
or artists in the process.



The Art of Programming: Challenges in Generating Code for Creative Applications AIware ’24, July 15–16, 2024, Porto de Galinhas, Brazil

Figure 2: A screenshot of the p5.js interface, showing the
code (left) and output (right).

Generative art is an interesting domain for coding assistance
precisely because it is so broad, and its users work in ways that
are often intuitive and exploratory. Some artists describe their pro-
gramming IDE as a sketchbook, and tools like Processing emphasise
this feeling by always displaying the output of a script side-by-side
as new code is being written (Processing also refers to files as
‘sketches’). This more rapid, iterative and fluid approach to pro-
gramming might enable new perspectives on howAI code synthesis
is deployed. For example, rather than waiting to be called upon by
the user, or focusing code completion on areas the user is currently
writing, an AI code generator might simply add new code to a com-
pletely different section of the sketch, without asking or informing
the user at all. While this might sound chaotic or completely unde-
sirable in a more ordinary commercial context, this might open up
new forms of creative coding for people, emphasising serendipitous
connections and surprising discoveries.

3 RESEARCH PROBLEMS
3.1 Evaluation and Visualisation
AI-generated code is usually examined visually before being ac-
cepted, at which point it is subject to whatever testing or quality
control process the programmer might normally employ for other
code. In some of the creative use-cases we have outlined above this
is possible, however other use-cases require a considerably different
approach to both understanding the impact of a piece of code, and
for evaluating its appropriateness. In livecoding, for example, code
is usually not tested before being run directly in front of the audi-
ence. Livecoders and other performance artists may have different
needs to feel confident that a piece of code will not do something
harmful or damaging to the performance – this might be as simple
as having a second sandbox where they can preview the code, in
the same way a mixing deck allows sounds to be previewed on one
channel before being output to another.

Evaluation in general is a difficult task, however, because the
qualities a creative coder is looking for in a piece of code are difficult
to automatically test or objectively measure. Livecoders will often
execute a small segment of new code briefly before stopping it
and going back to change it. For another example, suppose we are
trying to generate a new mechanic for a videogame. We might
be able to validate a game mechanic to show it does not violate
any constraints or that it passes unit tests; however in order to

properly understand the proposed code snippet we would need to
play the game ourselves, and ideally would need to adversarially
playtest the game with several other people. This may mean that
AI assistance for some creative application areas benefits from live
or hot-swappable coding environments where new snippets can be
immediately compiled and integrated into a running build.

3.2 Interventions and Clarity
The relationship between a programmer and the program is also
different in creative contexts. Systems like copilot are called on-
demand when a programmer wants to instruct the system to pro-
duce some code, while other assistants act like autocomplete, guess-
ing at the code that might be written next. Some creative workflows
may not admit this type of intervention however - for example, if
the user is in a creative flow they may not want to stop to query
a system, or they may find autocompletion works against their
own feeling of expression or independence. Creative programmers
might prefer to see automated code generate and execute in altenra-
tive windows, providing ‘parallel workspaces’ they can jump into if
they see one which appeals to them [16]. This might provide more
of a feeling of curation or exploration which might connect to the
creative context better. A turn-taking approach, which is employed
by many mixed-initiative creative AI systems, might also support
artistic exploration better [13].

In [4] Colton et al emphasise the need for automated code gen-
erators working in creative spaces to produce code that is ‘human-
understandable... [and written] in human-like ways’. Although this
paper was written before the advent of LLMs, a recurring point
made about LLM coding assistants is that the code they generate
can be accurate while also being hard to understand. In commercial,
secure or safety-critical environments this is a concern for robust-
ness and reliability reasons. In creative spaces this is not necessarily
a downside – a generative artist might only care about the visual
effect of the code, not what its internals do, and the mystery could
actually enhance the act of creative experimentation in some cases.
However, it is also worth recognising that many subcommunities
within creative spaces are self-taught programmers who may not
be used to reading and understanding complex code written by
other people (or systems). As a result, for those that do wish to
understand the code they are looking at, the need for that code to
be easily understandable and clearly documented may actually be
higher than for other industry software domains.

3.3 Innovation and Risk
When solving more traditional everyday problems in software en-
gineering, one might argue that we desire the least interesting
solution possible. If we ask an AI assistant to produce code to sort a
list of database entries, or create a dictionary from some table data,
we presumably want an algorithm that is straightforward, efficient
and boring. In this regard, having foundation models reproduce
structures and approaches they have already seen is arguably a
desirable feature. For creative applications, however, we are often
looking for the opposite. Livecoders and generative artists might
be exploring areas of an expressive space that have never been
encountered before, and a lot of game design work is predicated on



AIware ’24, July 15–16, 2024, Porto de Galinhas, Brazil Cook

building systems which are novel. Depending on whether coding as-
sistants are deployed for ideation, code completion or co-creativity,
we may want them to be more or less innovative with the kinds of
code they are capable of generating. As we mentioned earlier, it will
be critical to understand whether AI code synthesis has a negative
effect on creativity and expressivity for artists, something which
may be difficult to understand without large long-term studies.

Related to this is the issue of risk. Most AI code generation is
focused on commercial or scientific contexts where the potential
for harm is high. Security flaws, memory leaks, harmful side-effects
and other concerns could have catastrophic effects for a company or
product if not caught in time. While these concerns certainly exist
in some creative domains (videogame development, for example)
some creative coders may want to explore ideas which are more
dangerous or even approach some of the red lines that LLMs may
have internally. For example, famous digital art projects include
games which delete files off the player’s hard drive whenever they
kill an enemy [10], websites which upload and download random
files from the internet, or that connect to random open socket
connections on the internet. Creative coding projects may well
have apparent similarities in structure or function to worms, viruses
or other harmful software. This raises issues in whether coding
assistance can be easily provided for those users, or whether they
will be flagged as false positives and refused support.

4 BROADER CHALLENGES
4.1 Ethics
Code generation via LLMs has come under criticism for many of
the reasons LLMs have more widely, both in general terms (such
as the large economic and energy cost of training the models)
and more specific ones (such as the claims that Copilot may be
recreating licensed code or breaching the licenses of some of the
code it was trained on). While these issues are not new, they are
particularly applicable for the creative industries where there is
already considerable criticism of and resistance to the use of AI
in other areas, such as art. The AIware community should take
these concerns seriously and look at ways these concerns can be
addressed before trying to engage deeply with these communities.

However, the nature of creative code tasks may also make it
easier to address these issues. Because of the desire for more ex-
ploratory, high-temperature solutions that propose more unusual
suggestions, it may be possible to train much smaller models on
much leaner datasets. This opens up the possibility that larger game
developers could train focused models entirely on their own code
archives, for example, or that synthetic datasets of code could be
generated for training livecoding assistants. While lower-quality
and less reliable code completion is unacceptable for safety-critical
scenarios or production branches, it is much more acceptable in
playful or sketchbook-like scenarios with experienced users.

This still leaves us with the question of who this technology is
for. GitHub and Microsoft have gone to great lengths to dissect the
notion of productivity, and how Copilot affects this. They express
productivity in terms of programmer happiness, and state that their
aim is not to replace developers but to support them and let them
focus on interesting work. However even they observe that some
jobs are at risk [12]. It’s important for everyone in this emerging

field to consider what their research is for, whom it benefits, and
what negative externalities this may bring. I would argue this is
crucial whether you are targeting creative domains or otherwise.

4.2 Adapting To Existing Practice
In [6] Cook suggests that game developers might need to adopt dif-
ferent approaches to the design and engineering of game codebases
in order to write code that is more amenable to comprehension
and extension by AI systems. Software engineering has a certain
amount of consistency across industries, yet there exist individual
subcultures and traditions in engineering large projects that de-
velop in a particular application area, decade or part of the world.
The creative industries, and in particular applications where code
is being used as a sketchbook or an experimental medium, rely on
quick hacks, rapid evaluation and testing, and fast iteration. Code
is often messy and poorly structured, fixes and changes are hacked
in to meet deadlines, and mistakes creep in as programmers crunch
to meet release dates or other milestones.

A lot of the discourse around coding assistants focuses on one
of two scenarios: the first, a casual assistant to a complete novice
working on a solo project; the second, a large company with clear
pipelines for production, testing, review and planning. A different
set of approaches and considerations may be required to properly
support the creative industries, who often do not neatly fall into
either of these categories. One of the primary reasons that new
technology often fails to take hold in the games industry, for ex-
ample, is that researchers do not properly understand and adapt to
the hard requirements that companies working in this sector have,
and the way the tool fits into an existing engineering culture.

5 CONCLUSIONS
Programming is a creative endeavour. I would argue this is as true
for those writing backend code for a web application as it is for
those writing python live on stage at a rave. Yet the needs of some
creative coding communities may be very different to those of more
traditional commercial engineers, either in technology, workflow,
ergonomics or attitude. This poses problems if we develop coding
assistants that only have one particular kind of programming in
mind; but it also provides exciting opportunities for new research,
new ideas and new challenges if we embrace these creative spaces
and the people who work within them – and take those lessons and
inventions back into other programming cultures, in return.

Speaking from experience, however, it is only possible to work
with these communities if we respect them, understand them, and
crucially take their concerns and questions seriously. The use of
LLMs is not uncontroversial, and while it may be seen as a pro-
ductivity tool in many industries, it is important to recognise that
creative spaces are much more critical of their implementation and
use. However this, too, should be viewed as an opportunity rather
than a roadblock. These communities are asking us to find different
ways forward, new tools, techniques and approaches that not only
integrate with their way of programming, but that respect their
ideals, their needs and their hopes for future technology. I hope that
the AIware community can embrace this exciting and interesting
space and apply their ingenuity and passion to it, to find ways
forward that everyone is excited by.



The Art of Programming: Challenges in Generating Code for Creative Applications AIware ’24, July 15–16, 2024, Porto de Galinhas, Brazil

REFERENCES
[1] Anna Anthropy. 2012. Rise of the Videogame Zinesters: How Freaks, Normals,

Amateurs, Artists, Dreamers, Drop-outs, Queers, Housewives, and People Like You
Are Taking Back an Art Form. Seven Stories Press.

[2] Aleena Chia. 2022. The artist and the automaton in digital game production.
Convergence 28, 2 (2022), 389–412. https://doi.org/10.1177/13548565221076434

[3] Nick Collins and Alex McLean. 2014. Algorave: Live Performance of Algorithmic
Electronic Dance Music. In Proceedings of the International Conference on New
Interfaces for Musical Expression. Goldsmiths, University of London, London,
United Kingdom, 355–358. https://doi.org/10.5281/zenodo.1178734

[4] Simon Colton, Ed Powley, and Michael Cook. 2018. Investigating and Automating
the Creative Act of Software Engineering. In Proceedings of the International
Conference on Computational Creativity.

[5] Simon Colton and Geraint A. Wiggins. 2012. Computational creativity: the final
frontier?. In Proceedings of the 20th European Conference on Artificial Intelligence.
IOS Press.

[6] Michael Cook. 2020. Software Engineering for Automated Game Design. In
Proceedings of the IEEE Conference on Games.

[7] Michael Cook, Simon Colton, Azalea Raad, and Jeremy Gow. 2013. Mechanic
Miner: Reflection-Driven Game Mechanic Discovery and Level Design. In Pro-
ceedings of the Evo* Conference.

[8] Prafulla Dhariwal, Heewoo Jun, Christine Payne, Jong Wook Kim, Alec Rad-
ford, and Ilya Sutskever. 2020. Jukebox: A Generative Model for Music.
arXiv:2005.00341 [eess.AS]

[9] The Processing Foundation. 2001. Processing. https://processing.org/.
[10] Zach Gage. 2009. lose/lose. http://www.stfj.net.
[11] Epic Games. 2023. Verse Language Reference. https://tinyurl.com/verse-lang.
[12] GitHub. 2023. FAQ: Is GitHub Copilot intended to fully automate code generation

and replace developers? https://github.com/features/copilot.
[13] Matthew Guzdial, Nicholas Liao, Jonathan Chen, Shao-Yu Chen, Shukan Shah,

Vishwa Shah, Joshua Reno, Gillian Smith, and Mark O. Riedl. 2019. Friend,
Collaborator, Student, Manager: How Design of an AI-Driven Game Level Editor
Affects Creators. In Proceedings of the 2019 CHI Conference on Human Factors in
Computing Systems.

[14] Eirini Kalliamvakou. 2022. Research: quantifying GitHub Copilot’s impact on
developer productivity and happiness (GitHub blog). https://tinyurl.com/github-
happiness.

[15] Darius Kazemi and Hugo van Kemenade. 2013. National Novel Generating Month.
https://nanogenmo.github.io/.

[16] Antonios Liapis, Georgios N. Yannakakis, and Julian Togelius. 2013. Sentient
Sketchbook: Computer-Aided Game Level Authoring. In Proceedings of the 8th
Conference on the Foundations of Digital Games.

[17] Alex McLean. 2014. Making programming languages to dance to: live coding
with tidal. In Proceedings of the 2nd ACM SIGPLAN International Workshop on
Functional Art, Music, Modeling & Design (Gothenburg, Sweden) (FARM ’14).
Association for Computing Machinery.

[18] Mike Minotti. 2014. The history of MOBAs: From mod to sensation.
https://venturebeat.com/games/the-history-of-mobas-from-mod-to-sensation/.

[19] Aditya Ramesh, Mikhail Pavlov, Gabriel Goh, Scott Gray, Chelsea Voss, Alec Rad-
ford, Mark Chen, and Ilya Sutskever. 2021. Zero-Shot Text-to-Image Generation.
CoRR abs/2102.12092 (2021). arXiv:2102.12092 https://arxiv.org/abs/2102.12092

[20] Charlie Roberts. 2021. gibber.cc. https://gibber.cc/.
[21] Vincent Scheib, Theo Engell-Nielsen, Saku Lehtinen, Eric Haines, and Phil Tay-

lor. 2002. The demo scene. In ACM SIGGRAPH 2002 Conference Abstracts and
Applications. Association for Computing Machinery.

[22] Christoph Schuhmann, Romain Beaumont, Richard Vencu, Cade W Gordon, Ross
Wightman, Mehdi Cherti, Theo Coombes, Aarush Katta, Clayton Mullis, Mitchell
Wortsman, Patrick Schramowski, Srivatsa R Kundurthy, Katherine Crowson,
Ludwig Schmidt, Robert Kaczmarczyk, and Jenia Jitsev. 2023. LAION-5B: An open
large-scale dataset for training next generation image-text models (OpenReview
Thread). https://openreview.net/forum?id=M3Y74vmsMcY.

[23] Inbal Shani. 2023. Survey reveals AI’s impact on the developer experience (GitHub
blog). https://tinyurl.com/github-impact.

[24] Victoria and Albert Museum. 2024. Digital art.
https://www.vam.ac.uk/articles/digital-art.

[25] Albert Ziegler, Eirini Kalliamvakou, Shawn Simister, Ganesh Sittampalam, Alice
Li, Andrew Rice, Devon Rifkin, and Edward Aftandilian. 2022. Productivity As-
sessment of Neural Code Completion. In Proceedings of the 6th Annual Symposium
on Machine Programming.

Received 2024-04-05; accepted 2024-05-04

https://doi.org/10.1177/13548565221076434
https://doi.org/10.5281/zenodo.1178734
https://arxiv.org/abs/2005.00341
https://arxiv.org/abs/2102.12092
https://arxiv.org/abs/2102.12092

	Abstract
	1 Introduction
	2 Novel Domains
	2.1 Livecoding
	2.2 Modding
	2.3 Mechanical Ideation for Games
	2.4 Generative Art

	3 Research Problems
	3.1 Evaluation and Visualisation
	3.2 Interventions and Clarity
	3.3 Innovation and Risk

	4 Broader Challenges
	4.1 Ethics
	4.2 Adapting To Existing Practice

	5 Conclusions
	References

