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Abstract

We introduce a new universal framework describing fluctuations and correlations in
quantum and classical many-body systems, at the Euler hydrodynamic scale of space
and time. The framework adapts the ideas of the conventional macroscopic fluctua-
tion theory (MFT) to systems that support ballistic transport. The resulting “ballistic
MFT” (BMFT) is solely based on the Euler hydrodynamics data of the many-body system.
Within this framework, mesoscopic observables are classical random variables depend-
ing only on the fluctuating conserved densities, and Euler-scale fluctuations are obtained
by deterministically transporting thermodynamic fluctuations via the Euler hydrodynam-
ics. Using the BMFT, we show that long-range correlations in space generically develop
over time from long-wavelength inhomogeneous initial states in interacting models. This
result, which we verify by numerical calculations, challenges the long-held paradigm
that at the Euler scale, fluid cells may be considered uncorrelated. We also show that
the Gallavotti-Cohen fluctuation theorem for non-equilibrium ballistic transport follows
purely from time-reversal invariance of the Euler hydrodynamics. We check the validity
of the BMFT by applying it to integrable systems, and in particular the hard-rod gas, with
extensive simulations that confirm our analytical results.
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1 Introduction

Determining the emergent, universal principles of non-equilibrium dynamics in many-body
systems is an extremely active subject of current research. The emergence of hydrodynamics
for the description of fluxes and large-scale motion is one of the most far-reaching ideas, and
has been been extremely successful recently (see, e.g., [1–3]). However, a crucial question is
to go beyond, and develop a statistical theory for fluctuations and correlations. An important
result is the Gallavotti-Cohen fluctuation theorem [4,5], which relates fluctuations of currents
to equilibrium properties of reservoirs or driving forces, and which is valid no matter how far
from equilibrium the system is. In this spirit, at large scales of space and time, x , t →∞, one
would expect only few properties of the microscopic model to be required in order to under-
stand the full spectrum of fluctuations. What are these properties and what is the statistical
theory for large-scale dynamics?

In the last two decades, a universal approach to accessing the diffusive scale x ∼
p

t has
been proposed and developed: macroscopic fluctuation theory (MFT) [6, 7]. It is a large-
deviation theory for many-body systems out of equilibrium whose hydrodynamics is purely
diffusive, taking as only input the hydrodynamic equations of the system (thus, transport
quantities such as the diffusion matrix). MFT has given an understanding of both current
fluctuations and correlations, explaining long-range effects observed in driven-diffusive non-
equilibrium steady states (NESS) [7]. It has been successfully applied to many classical many-
body diffusive systems, such as the symmetric simple exclusion process (SSEP) [8–12]. It is
expected to hold for stochastic or deterministic, classical or (at nonzero temperature) quan-
tum systems, as on large scales one always finds hydrodynamics and classical fluctuations
around it (although to our knowledge, no quantum application of the MFT has been reported
so far). Quantum effects on fluctuations in diffusive systems have also been studied, with the
construction of a quantum version of the MFT being considered [13].

A natural question is as to the nature of correlations and fluctuations in systems that ad-
mit ballistic transport. Ballistic transport means that persistent currents can exist even with
vanishing gradients. It is realised in many important systems including the totally asymmet-
ric exclusion process (TASEP) [14], anharmonic chains [15], and integrable many-body sys-
tems [16, 17]. In all cases, the leading hydrodynamic equation is the (general form of the)
Euler hydrodynamic equation, which is solely based on the assumption of maximisation of en-
tropy in local fluid cells and which arises at the ballistic (or hyperbolic) scaling x ∼ t [3,18].
It takes the form

∂tqi(x , t) +A j
i (x , t)∂xq j(x , t) = 0 , (1)

where qi(x , t) are averages of the local conserved densities admitted by the model, and
A j

i (x , t) is the “flux Jacobian”, the variation of the fluxes with respect to the densities (see
(8)),

A j
i =

∂ ji

∂ q j
, (2)

in the entropy-maximised state at x , t. But relatively little is known about the structure of
fluctuations at the ballistic scale as compared to what is available at the diffusive scale with the
MFT, the main works being [19–23]. One is thus looking for an adaptation of the framework of
the MFT to the universal description of correlations and fluctuations of ballistic modes based
solely on the Euler equation.

In Ref. [24], this theory, which we refer to as the ballistic MFT (BMFT), has been first
introduced. The theory requires only the Euler hydrodynamics data of the system (the flux
Jacobian A j

i as a function of maximal entropy states), and accounts for the presence of any
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number of ballistic modes. The BMFT is a large-deviation theory, based on an action princi-
ple and saddle-point analysis much like the diffusive MFT, but it gives access to the ballistic
scale instead of the diffusive scale. The BMFT provides the space-time probability distribu-
tion of fluctuating local observables in states that are subject to large-wavelength variations
and motion and described by Euler hydrodynamics. In Ref. [24], the application of the BMFT
to Euler scale correlations [19, 25] has been, in particular, considered. It has been therein
fundamentally shown that the BMFT generically predicts that long-range correlations develop
over long times in non-stationary states. For initial states with spatial variations on large wave-
lengths ℓ, these are correlations which develop over time t ∼ ℓ, which extend on regions of
size x ∼ ℓ, and with strength∼ 1/ℓ. A physical interpretation is that correlated ballistic modes
are emitted continuously at points where the state vary in time and scatter; alternatively, the
one may see long-wavelength profiles in the fluid as being formed of a bath of ballistic modes
that scatter and correlate continuously. See the pictorial representation in Fig. 1.

In this manuscript we systematically present and develop the results of the companion
manuscript [24]. We discuss in details and in completely general terms the physical assump-
tions on which the BMFT relies and the associated implications. The BMFT states that Euler-
scale fluctuations of time-evolved observables are obtained by deterministically transporting
fluctuations of conserved quantities in the initial state via the Euler hydrodynamic equations
of the model. This follows from a simple principle of “local relaxation of fluctuations” within
fluid cells, similar in spirit to, but a refinement of, the principle of local relaxation that justi-
fies the emergence of the Euler hydrodynamic equations themselves [18]. The principle stems
from a separation of scales: non-conserved degrees of freedom vary quickly in time as they
are affected by every interaction within the volume of a cell, and the local state rapidly cov-
ers the microcanonical shell; while conserved quantities vary more slowly as they are only
affected by exchanges through the surface of fluid cells, and the local state slowly fluctuates
amongst different microcanonical shells. We further develop the application of the BMFT to
the ballistic large-deviation theory of current fluctuations. Using the BMFT, we show that the
Gallavotti-Cohen fluctuation theorem for the large-deviation function of total currents holds
independently from the details of the microscopic dynamics, purely as a consequence of a
time-reversal symmetry of the Euler hydrodynamic equations. Considering the applications
to correlations of the BMFT, we show that the latter naturally retrieves the whole structure of
Euler-scale correlation functions, such as hydrodynamic projection formulas [18, 19, 26–30].
The emergence of long-range correlations in interacting many-body systems subjected to long-
wavelength dynamics, even from states which have only short-range correlations, is further
discussed. The differences between this phenomenon and correlations stemming from linear-
response theory [19,22,23,31] are presented (see Fig. 1). Both in the case of current fluctua-
tions and of correlations, we give explicit results for integrable systems, based on generalised
hydrodynamics (GHD) [16, 17]. In order to confirm these results, we will compare with sim-
ulations in the classical model of hard rods on the line.

We believe the BMFT is a framework with wide applicability, appropriate for the study
of a vast range of correlations and large deviations in many-body systems, integrable or not,
quantum or classical, deterministic or stochastic. It is a universal tool capable of describing
the rare fluctuations of any (mesoscopic) observable, including charge densities and currents,
in a unified way. In principle the BMFT should work in arbitrary dimensionality; however, in
order to lay out its foundation without any unnecessary complication, we shall focus on the
one-dimensional case.

1.1 Previous works on the ballistic scale

There is an extensive literature on the Euler scale of various types of many-body systems, from
stochastic particle systems to quantum spin chains. We provide here only a partial overview
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Figure 1: Correlations from the BMFT and linear response. Pictorial representa-
tion of the Euler-scale evolution from a state with a density bump varying on a macro-
scopic length scale ℓ around the origin. Dark and light blue denote high and low par-
ticle density 〈q0(ℓx ,ℓt)〉ℓ, respectively. Red lines are sketches of fluid waves while
dotted arrows indicate their trajectories. Red points denote the space-time points of
the observables involved in the correlations. (a) Long-range Euler-scaled correlations
ℓ 〈q0(ℓx ,ℓt)q0(0,ℓt)〉cℓ develop over time because of coherent wave emissions at posi-
tions where the state is inhomogeneous and non stationary, throughout the time evo-
lution. This nonlinear effect is described by the BMFT and it necessarily requires an
inhomogeneous and non stationary state, and two (as in the Figure), or more, inter-
acting modes. Initially uncorrelated Euler-scale fluid cells therefore develop correla-
tions over time. (b) Euler-scaled correlations at different times ℓ 〈q0(ℓx ,ℓt)q0(0,0)〉cℓ
also occur because of normal modes emitted by the perturbation of the state at the
insertion of the earlier observable, and probed by the later observables. This mecha-
nism is described by linear response and it can take place also in homogeneous and
stationary states, such as the one sketched in the figure.

of some of the works relevant to this paper.
In stationary, homogeneous states, many results are available at the ballistic scale; this

includes not only equilibrium states, but also generalised Gibbs ensembles in integrable models
[32] and ballistic NESS emerging at long times from the partitioning protocol, where constant
flows exist [16, 17, 33]. Here, the partitioning protocol refers to a particular initial condition
that consists of two semi-infinite subsystems that are prepared at different (generalised) Gibbs
ensembles. Correlations have been studied by a variety of techniques, such as linear and non-
linear response and hydrodynamic projection methods. Under ballistic scaling of space and
time, they are purely controlled by the Euler hydrodynamics of the model. See, e.g., the recent
reviews [25,34].

The Boltzmann-Gibbs principle, that mesoscopic observables “project”, in some way, onto
mesoscopic conserved quantities, has a long history starting with Mori [35] and Zwanzig [36].
Until recently it had been studied mainly in stochastic particle systems assuming few conser-
vation laws of the conventional form, see, e.g., the books [18, 26] and the paper [27] for a
recent result. For correlation functions, the Boltzmann-Gibbs principle leads to hydrodynamic
projection formulae. The first proposal for a general hydrodynamic projection formula, for
two-point correlation functions in Hamiltonian systems with many-component Euler hydrody-
namics, were written in [28] and [19] (in homogeneous, and long-wavelength inhomogeneous
states, respectively). Hydrodynamic projections lead in a simple way to linearised Euler equa-
tions for two-point functions. In stationary, homogeneous states, the linearised Euler equation
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for two-point functions has been shown rigorously in the hard-rod gas [29]. Further, both the
general hydrodynamic projection formula, and the linearised Euler equation, have been shown
rigorously in every finite-range quantum spin chains [30]. There, the complete space of con-
served quantities is defined rigorously, and so is the Euler scaling limit of two-point correlation
functions.

For higher-point functions, nonlinear response, as first proposed in [19], can be used, as
developed for integrable systems in [22], but the structure is less well understood.

In macroscopically inhomogeneous initial states of integrable systems, also much less is
known. A theory has been developed for two-point correlation functions at the ballistic scale
in [19], and numerical checks in the hard rod gas have confirmed the expression [31].

Fluctuations at the ballistic scale have also been studied in specific models by various hy-
drodynamic techniques, which differ from the BMFT developed here. In the TASEP, the earliest
is that by Jensen [37] and Varadhan [38], culminating in an exact rate function (see, e.g., [39]
for recent developments on the rate function of the TASEP from first principles). Another ap-
proach is via a ballistic extension of the diffusive MFT (similar to, but differing from, that
proposed in section 3.3), which has been written [8] for the so-called weakly asymmetric sim-
ple exclusion process (WASEP), whose totally asymmetric limit gives the TASEP. By taking the
totally asymmetric limit the Jensen-Varadhan formulation is re-obtained. In the TASEP, exact
current large deviation functions, and scaled cumulant generating functions (SCGFs), are in
fact known in various situations [40,41].

The recently developed ballistic fluctuation theory (BFT) [20,21], which provides the large-
deviation theory for total current fluctuations in stationary states, is the first general theory for
ballistic-scale fluctuations. The BFT is based on modifying the local states by accounting for
the insertion of total currents, through a “flow equation” derived using hydrodynamic linear
response. It shows that these fluctuations are also controlled by the Euler hydrodynamics of the
model, and it accounts for an arbitrary number of ballistic modes. It implies, for instance, that
“dynamical phase transitions” occur whenever the initial state admits a hydrodynamic mode
with vanishing velocity. The first four cumulants of energy transport have been checked against
numerical simulations in the hard rod gas [21], and the BFT reproduces the known exact SCGF
in homogeneous states of the TASEP [42, Sec 4.2], obtained by first-principle calculations
earlier [41]. It has been confirmed by exact calculations in the box-ball system [43]. The BFT
was generalised to long-wavelength, non-stationary situations in integrable systems in [23],
but again this is less understood.

The Gallavotti-Cohen fluctuation theorem (GCFT) has been studied widely, see the review
[44] for basic results. In particular, in ballistic NESS, the GCFT was analytically proved for
several models, see the review [33]. This includes (interacting) conformal field theories [45].
It has also been verified for integrable systems [21] by numerically evaluating the expression
obtained from the BFT, although no proof yet has been provided. A general argument based
on time-reversal symmetry of the microscopic model was proposed [46] for the full current
fluctuations, including the early times of the partitioning protocol. For the latter state, the
GCFT has been checked for various non-interacting models, see, e.g., [47,48].

1.2 Organisation of the paper

This paper is organised as follows. In Sec. 2, we set the stage by introducing the two main
quantities that we will study: the SCGF for time-integrated currents and the Euler-scale dy-
namical correlation functions. In particular, we shall emphasise that the BMFT predicts a novel
phenomenon that had been hitherto not known, which is the existence of long-range correla-
tions in equal-time Euler-scale correlators in generic ballistic many-body systems. In Sec. 3,
we then discuss the general idea of the BMFT, which rests upon the assumption of local re-
laxation of fluctuations, culminating in the expression of local equilibrium averages in terms
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of path-integrals. The relation to diffusive MFT is also explained. In Sec. 4, the actual im-
plementations of the BMFT to compute the above two objects will be then carried out. The
associated equations are hard to solve in general. In Sec. 5, we discuss integrable systems,
where it turns out that all the difficulties presented in generic cases can be circumvented. The
main predictions for this class of systems, as well as some technical details, are provided. We
eventually conclude with future directions in Sec. 6. Technical aspects of the presentation and
details about the calculations and the numerical simulations are consigned to the Appendix
sections.

The notations used throughout the manuscript are as follows: microscopic system’s observ-
ables (or operators in quantum systems) are denoted with a hat as ô(x , t), and their fluid-cell
mean, defined in (23), as o(x , t) (these are still operators in quantum systems). The integra-
tion of a microscopic observable over the full, infinite length of the system is denoted with a
capital letter, Ô =

∫

R dx ô(x). Note that the space and time used as arguments in ô(x , t) and
o(x , t) are microscopic ones. We will also define below classical fluctuating variables o(x , t) in
Eqs. (48)-(51) which are identified, via their Euler-scale correlation functions, with the meso-
scopic means o(ℓx ,ℓt). Recall that ℓ is the macroscopic scale, and thus in o(x , t) space and
time coordinates are macroscopic ones. Finally, we will also take ensemble averages of the mi-
croscopic observables ô within homogeneous, stationary states (that is, within (generalised)
Gibbs ensembles, see below), which we will denote in typewriter font, o. With macroscopically
varying states, such as in Eq. (12) below, the Lagrange multipliers (or generalised tempera-
tures) β i(x), or β i(x , t), give rise to space or space-time dependent averages, o(x) or o(x , t),
where space-time coordinates are again macroscopic.

2 Main physical predictions and numerical checks

We now overview the setup for the BMFT, the two main applications and physical predictions
from the theory (the current large deviations and the CGFT in Subsec. 2.1, the Euler-scale
correlation functions and long-range correlations in Subsec. 2.2), and the explicit results in in-
tegrable systems and numerical checks we performed to verify these predictions (Subsec. 2.3).

The setup is an extensive model, quantum or classical, supported on the line R, with a
dynamics that admits a certain number of extensive conserved quantities,

Q̂ i =

∫

R
dx q̂i(x) . (3)

Here and below, the set of values the index i can take is kept arbitrary; it can be finite or
infinite. Extensivity is intuitively understood as the fact that qi(x) is local – it probes the
system at, or around, position x only (this includes quasi-local densities as constructed in
integrable models [49]). The set of charges Q̂ i is assumed to be complete.1

One of the representative models that belongs to the former case is the classical anharmonic
chain whose Hamiltonian reads [15]

ĤAHC =
N
∑

j=1

�

1
2

p2
j + V (r j)
�

, r j = x j+1 − x j , (4)

where x j and p j give the position and the momentum of j-th particle. Barring some excep-
tions, the model possesses the three conservation laws (3) for i = 0, 1,2, corresponding to the

1Completeness and extensivity are difficult to define rigorously in general. Although we are not looking for
rigour in the present paper, we nevertheless mention that these concepts are given fully unambiguous definitions
for the linearised Euler hydrodynamics of quantum spin chains in [30].
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number of particles q̂0(x) =
∑N

j=1δ(x − x j), the momentum q̂1(x) =
∑N

j=1 p jδ(x − x j), and

the energy q̂2(x) =
∑N

j=1 e jδ(x − x j) with e j =
1
2 p2

j + V (r j). Some exceptions occur when
the potential is fine-tuned, giving a number of conservation laws that grows like N , e.g., the
system of hard rods of lengths a, with VHR(r) =∞ for |r| ≤ a and VHR(r) = 0 for |r|> a [50],
and the Toda chain VToda(r) = e−r [51–53]. Quantum mechanically, one of the prototypical
integrable models is the Lieb-Liniger model, which is given by [54]

ĤLL = −
1
2

N
∑

j=1

∂ 2

∂ x2
j

+ c
∑

i< j

δ(x i − x j) , (5)

where c > 0. Time evolution may, however, not necessarily be generated by a Hamiltonian; in
stochastic models, a conserved quantity is to be understood as a martingale for the stochastic
dynamics.

Under time evolution, continuity equations for local densities q̂i(x , t) and currents ȷ̂i(x , t)
hold:

∂t q̂i(x , t) + ∂x ȷ̂i(x , t) = 0 . (6)

Crucial to the structure of the BMFT and the expression of our main results are the set of
stationary, homogeneous states where entropy is maximised with respect to the available con-
served quantities. The states are characterised by a set of inverse “generalised temperatures”
(temperature, chemical potential, Galilean or relativistic boosts, etc.), or Lagrange multipliers,
β i ,

〈•〉β =
1
Z
µ

�

exp
�

−
∑

i

β iQ̂ i

�

•
�

, Q̂ i =

∫

R
dx q̂i(x) . (7)

µ is any “flat a priori measure” that is homogeneous (invariant under space translation) and
stationary (invariant time evolution). Physically, it is an infinite-temperature ensemble, such
as the trace in quantum mechanics µ = Tr, or the flat phase-space integral µ =

∫ ∏

n dpndqn
in classical mechanics. Here and henceforth, Z is the constant normalising the resulting state
〈•〉β . Note that in integrable systems, where an infinity of conserved quantities may be in-
volved in (7), these states are usually referred to as generalised Gibbs ensembles (GGE).

Also crucial are the flux Jacobian and Euler hydrodynamic equations. We recall that the
flux Jacobian is the variation of the average currents ji = 〈 ȷ̂i〉β with respect to the average

densities qi = 〈q̂i〉β within homogeneous stationary states,

A i
j = A i

j [β] =
∂ j j

∂ qi
= −
∑

k

∂ j j

∂ β k
Cki , (8)

where Cki = (C−1)ki is the inverse of the static covariance matrix, or susceptibility matrix, Ci j ,

Ci j = −
∂ qi

∂ β j
=

∫

R
dx



q̂i(x)q̂ j(0)
�c
β

. (9)

By positive-definiteness of the matrix C there is a bijection q↔ β (in appropriate domains of
values of these quantities). The Euler equation is obtained by assuming that the state is slowly
varying in space and time so that in every fluid cell local entropy maximisation to the state
(7) takes place. A fluid cell may be seen as a “mesoscopic” region: a region of extent L, large
compared to microsocpic scales ℓmicro, set by the mean inter-particle distance and interaction
lengths, but small compared to macroscopic spatial variation scales ℓ (we take all the “scales”
to have dimension of length),

ℓmicro≪ L≪ ℓ . (10)
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Thus all quantities associated to the state (7) now acquire x , t dependence, β i(x , t), qi(x , t)
and ji(x , t), and the resulting equation takes a number of equivalent forms: Eq. (1), and
(using the property AC= CAT , see, e.g., [28])

∂tqi(x , t) + ∂xji(x , t) = 0 ,

∂tβ
i(x , t) +
∑

j

A i
j [β(x , t)]∂xβ

j(x , t) = 0 . (11)

Clearly, the Euler hydrodynamic equations are linear if the flux Jacobian is in fact inde-
pendent of the state. We name henceforth, in agreement with Ref. [20], “interacting” those
hydrodynamic systems where the flux Jacobian A k

i (x , t) = A k
i [β(x , t)] depends non-trivially

on the state β(x , t).
The BMFT is concerned with out-of-equilibrium phenomena that happen at long wave-

lengths and long times. For definiteness, we will look at time evolution from initial states with
long-wavelength ℓ variations

〈•〉ℓ =
1
Z
µ

�

exp
�

−
∑

i

∫ ∞

−∞
dx β i

ini(x/ℓ)q̂i(x)
�

•
�

. (12)

For an extensive discussion of such long-wavelength states and the ensuing Euler hydro-
dynamics of many-body systems admitting an arbitrary number of conserved quantities, see,
e.g., [3].

2.1 Current large deviations and fluctuation theorem

The BMFT gives access to the large-deviation theory for total observables integrated on macro-
scopic regions of space and time. Two natural examples are the scaled cumulant generating
functions (SCGF) F̃(λ, T ) and F(λ, T ) of total charges

¬

eλQ̂(ℓX )
¶

ℓ
≍ eℓX F̃(λ,X ) , Q̂(ℓX ) =

∫ ℓX

0

dx q̂i∗(x , 0) , (13)

and, most interestingly, of total currents,

¬

eλĴ(ℓT )
¶

ℓ
≍ eℓT F(λ,T ) , Ĵ(ℓT ) =

∫ ℓT

0

dt ȷ̂i∗(0, t) , (14)

as ℓ →∞. The notation “≍” means, e.g., F(λ, T ) = limℓ→∞
1
ℓT log
¬

eλĴ(ℓT )
¶

ℓ
, cf. Ref. [23].

Here q̂i∗ and ȷ̂i∗ are one particular pair of charge density and current of the model; as the basis
of conserved charges is kept arbitrary, this is without loss of generality. Note that Eq. (14)
is equivalently the large-deviation theory for the total amount of the conserved quantity i∗
transported from left to right in time ℓT , that is Ĵ(ℓT ) =

∫∞
0 dx (qi∗(x ,ℓT )− qi∗(x , 0)). The

SCGF’s are generating functions for the scaled cumulants of Q̂(ℓX ) and Ĵ(ℓT ); for instance
F(λ, T ) =
∑

n≥0λ
ncn(T )/n! with

cn(T ) = lim
ℓ→∞

(ℓT )−1

∫ ℓT

0

dt1 · · ·
∫ ℓT

0

dtn




ȷ̂i∗(0, t1) · · · ȷ̂i∗(0, tn)
�c
ℓ

. (15)

In (13) and (14), the SCGF is evaluated in general in the macroscopically inhomogeneous
state (12), where variations occur over the length scale ℓ; thus the results depend on the
scaled position X and scaled time T . Many studies have concentrated on the special case of
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homogeneous initial states, where F(λ, T ) = F(λ, 1) =: F(λ), but our theory gives access to
the general situation.

It is explained in [20] that F̃(λ, X ) is simply a difference of thermodynamic free energies
(see also Appendix A),

F̃(λ, X ) =
1
X

∫ X

0

dx
�

f [βini(x)]− f [β•ini(x)−δ
•
i∗
λ]
�

, (16)

where f [β] is the specific free energy for the stationary state (7), defined as a generating

function for averages of conserved densities, 〈q̂i〉β = ∂ f /∂ β i .

The quantity F(λ, T ) is more involved, as it requires understanding the dynamics of the
model. In homogeneous states, where βini is indepedent of position, a general solution in terms
of the Euler hydrodynamics is given by the BFT [20,21]. However, the BMFT developed here
is, to our understanding, the first general framework that applies to many-body systems both
for homogeneous stationary states and long-wavelength inhomogeneous and non-stationary
states.

Of particular interest is the partitioning protocol. In this setup, the initial state takes the
Gibbs form with different, but otherwise constant, Lagrange multipliers on the right (x > 0)
and the left (x < 0), for instance:2

exp
�

−
∑

i∈C

�

β i
L

∫ 0

−∞
dx q̂i(x) + β

i
R

∫ ∞

0

dx q̂i(x)
�

+
∑

i ̸∈C
β i

0Q̂ i

�

, (17)

where C specifies the set of the charges for which there is imbalance in the state. With this
particular form of the initial state, choosing a single i∗ in the SCGF is no longer the most
general case, and instead one may consider

F(λ, T ) = lim
ℓ→∞

1
ℓT

log
¬

e
∑

i∈C λ
i Ĵi(ℓT )
¶

ℓ
. (18)

In this equation, Ĵi(ℓT ) is defined analogously as Ĵ(T ) after (14) with the replacement i∗→ i.
The Gallavotti-Cohen fluctuation theorem (GCFT) gives a symmetry relation for this (gener-
alised) current SCGF. As the initial state (17) is scale invariant, F(λ, T ) = F(λ, 1) =: F(λ), and
the GCFT is

F(β
L
− β

R
−λ) = F(λ) . (19)

We will show, using the BMFT, that the GCFT holds solely as a consequence of a time-
reversal symmetry of the Euler hydrodynamics. With A j

i [β] the flux Jacobian within the state
(7), the symmetry is an appropriate time-reversibility of the Euler hydrodynamic solution,
including the existence of a collection of signs Si ∈ {+1,−1} such that

A j
i [β] = −SiS jA

j
i [β̃] , (20)

where β̃ i = Siβ
i (no sum over repeated indices), along with the requirements Si = 1 and

〈 ȷ̂i〉β = −〈 ȷ̂i〉β̃ for all i ∈ C. This arises if there exists a time-reversal symmetry of the micro-

scopic model, under which densities of conserved charges transform diagonally, with signs Si ,
see Eq. (84).

The result shows that, in ballistic many-body systems, the GCFT is a consequence of gen-
eral principles of large-scale fluctuations, and does not depend on the microscopic details.

2This is not a large-wavelength initial state. However, it quickly settles to a large-wavelength state, and the
effect of the initial transient on the cumulants vanish in the large-scale limit, as confirmed by our numerical results
in Sec. 5.
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In particular, by combining with generalised hydrodynamics, this provides, as far as we are
aware, the first proof of the GCFT in all integrable many-body systems. The application to
models of conventional hydrodynamic type, such as TASEP and the anharmonic chains, would
require a more in-depth study of “weak solutions” to the BMFT equations (see below).

2.2 Long-range correlations

The BMFT also gives access to connected correlation functions of any number of mesoscopic
observables at different, macroscopically separated points in space-time, again in general from
large-wavelength states. Let us first recall the main elements of Euler-scale correlation func-
tions.

The Euler scaling limit of correlation functions is the limit where space, time and wave-
lengths all tend to infinity simultaneously. The scaling limit in fact requires two additional
operations: one must take fluid-cell means, and the correlation function must be rescaled ap-
propriately. See [19]. For the n-point function, the Euler scaling limit is

Sô1,...,ôn
(x1, t1; · · · ; xn, tn) := lim

ℓ→∞
ℓn−1 〈o1(ℓx1,ℓt1) · · · on(ℓxn,ℓtn)〉

c
ℓ , (21)

where 〈· · ·〉cℓ is the connected correlation function in the initial state (12), again with its de-
pendence on the scale of spatial variations ℓ explicitly written. For the two point function,
explicitly, 〈o1(x1, t1)o2(x2, t2)〉

c
ℓ = 〈o1(x1, t1)o2(x2, t2)〉ℓ − 〈o1(x1, t1)〉ℓ 〈o2(x2, t2)〉ℓ, and

Sô1,ô2
(x1, t1; x2, t2) := lim

ℓ→∞
ℓ 〈o1(ℓx1,ℓt1)o2(ℓx2,ℓt2)〉

c
ℓ . (22)

In the Euler-scaling limit (21), the quantity oi(x , t) is the fluid-cell means of ôi around the
space-time point x , t; the fluid-cell mean can be taken as a mesoscopic space-time average

o(x , t) =
1

vL2

∫ L/2

−L/2
dy

∫ vL/2

−vL/2
ds ô(x + y, t + s) , (23)

for some v > 0. The fluid-cell mean (23) is generically required in order for the limit expressed
in (22) to be described by Euler hydrodynamics. Time-averaging is, in general, necessary in
order to wash out oscillations; see for instance the discussion in Ref. [55] for the XX spin chain
and in Ref. [56] for the classical sinh-Gordon field theory. For the hard-rod model, however,
we find that averaging in space (as in Eq. (35)) works well (see also Ref. [31]). See [19, 25]
for discussions of fluid-cell means.

In general, Sôi1 ,...,ôin
(x i1 , t i1; · · · ; x in , t in) is expected to be symmetric under permutations of

indices ik 7→ iσ(k). This is clear in classical systems, but should also hold in quantum systems
thanks to the taking of the Euler scaling limit, as shown by the rigorous results of [30] for
two-point functions in stationary homogeneous states of quantum spin chains.

As discussed in [23], the SCGF F(λ, T ) is related to Euler-scale correlation functions. In-
deed, from Eqs. (14) and (15), and assuming that we can neglect the spatial part of the fluid-
cell mean,

cn(T ) = T−1

∫ T

0

dt1· · ·
∫ T

0

dtn S ȷ̂i∗ ,..., ȷ̂i∗ (0, t1; · · · ; 0, tn) . (24)

Therefore, conceptually, Euler-scale correlation functions (21) encode all Euler-scale informa-
tion.

We note that the existence (in some sense) of the limit (21) does not mean that the n-point
correlation function of microscopic observables decays as ℓ1−n. In non-integrable systems the
result of the limit is expected to be a distribution, where delta-functions are found along the
characteristics of the fluid, representing a decay of microscopic correlations that is slower
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than ℓ1−n. In integrable systems, because of the continuum of fluid modes, n-point correlation
functions generically indeed decay as ℓ1−n. See the review [25].

Before presenting our results, we recall that using hydrodynamic linear response argu-
ments and other related principles, one arrives, from the Euler hydrodynamic equations (1),
(11), at predictions for Euler-scale correlations. This is based on the fact that the hydrody-
namic equations, with initial condition β i(x , 0) = β i

ini(x) or equivalently qi(x , 0) = 〈q̂i〉βini(x),

predict the averages of all mesoscopic observables [3,18]:

lim
ℓ→∞
〈o(ℓx ,ℓt)〉ℓ = 〈ô〉β(x ,t) =: o(x , t) . (25)

The main lines of linear and nonlinear response arguments in multi-component Euler hydro-
dynamics (see Appendix C for a short review) are expressed in [19,22], where they are worked
out for integrable models.

One prediction is the hydrodynamic projection formula for two-point functions [19]:

Sô1,ô2
(x1, t1; x2, t2) =

∂ o1

∂ qi

�

�

�

β(x1,t1)

∂ o2

∂ q j

�

�

�

β(x2,t2)
Sq̂i ,q̂ j

(x1, t1; x2, t2) , (26)

where for lightness of notation, here and below, the Einstein convention of summation over
repeated indices is used. That is, it is sufficient to know the Euler-scale correlation functions
of conserved densities, in order to access other Euler-scale correlation functions. In stationary
homogeneous states (7) of short-range quantum spin chains, this has been shown rigorously
in Ref. [30]. In particular,

S ȷ̂k ,q̂ j
(x1, t1; x2, t2) = A i

k (x1, t1)Sq̂i ,q̂ j
(x1, t1; x2, t2) . (27)

Combining (27) with the conservation laws (6), one obtains a linear equation for
Sq̂i ,q̂ j

(x , t; x ′, t ′):

∂tSq̂i ,q̂ j
(x , t; x ′, t ′) + ∂x

�

A k
i (x , t)Sq̂k ,q̂ j

(x , t; x ′, t ′)
�

= 0 . (28)

This is a linearised version of the Euler equations, which physically represents the propa-
gation of a small disturbance on top of a (generically) inhomogeneous, non-stationary back-
ground. Eq. (28) says that the hydrodynamic modes are transported via the local flux Jacobian
A k

i (x , t) = A k
i [β(x , t)] viewed as a “propagator”, being emitted by the observable at x ′, t ′ and

probed by the observable at x , t. Of course, in homogeneous and stationary states, Eq. (28)
can be solved explicitly by a simple Fourier transform as the flux Jacobian can be taken out of
the derivative.

We will show that the BMFT gives the full structure of Euler-scale correlation functions.
First, we show that (26) and (28) indeed hold. We also obtain a generalisation of hydrody-
namic projections to higher-point functions, and related linearised Euler hydrodynamic equa-
tions. For three-point functions, omitting the explicit space-time arguments for lightness of
notation, hydrodynamic projection is

Sô1,ô2,ô3
=
∂ o1

∂ qi

∂ o2

∂ q j

∂ o3

∂ qk
Sq̂i ,q̂ j ,q̂k

+
∂ 2o1

∂ qi∂ q j

∂ o2

∂ qk

∂ o3

∂ ql
Sq̂i ,q̂k

Sq̂ j ,q̂l
+ cyclic perm. of 1, 2,3 , (29)

and the evolution equation is

∂t1
Sq̂i ,q̂ j ,q̂k

+ ∂x1

�

A l
i Sq̂l ,q̂ j ,q̂k

+H l r
i Sq̂l ,q̂ j

Sq̂r ,q̂k

�

= 0 , (30)

where H l r
i = ∂

2ji/∂ ql∂ qr . The evolution equation is in agreement with nonlinear response
results of [22], and a similar structure has been found in the hydrodynamic limit of the quan-
tum single exclusion process [57,58]. These, as we will show, in fact follow quite directly from
the scaling (21) and the BMFT principle of relaxation of fluctuations.

12

https://scipost.org
https://scipost.org/SciPostPhys.15.4.136


SciPost Phys. 15, 136 (2023)

We further show one of the most striking physical predictions of the BMFT: the lack of
correlations between separate fluid cells that is often assumed in hydrodynamic response theory,
is in fact not generically preserved under macroscopic time evolution.

By standard arguments, an initial state of the form (12) has quickly decaying correlations.
With finitely-many local densities q̂i(x), exponential decay is typically found on microscopic
length scales ℓmicro ≪ ℓ, much like in equilibrium states. In integrable systems, as infinitely-
many charges may be involved, 1/x2 correlations may appear, as is found in NESS [59,60]. But
in all cases, correlations are expected to decay faster than 1/|x |. This means that equal-time
Euler-scale correlations in this state vanish at different points,

Sô1,ô2
(x1, 0; x2, 0) = 0 , if x1 ̸= x2 . (31)

In this states, fluid cells are not correlated at macroscopic scales. In particular, if t ′ = 0, the
initial condition for (28), as taken in [19], is

Sq̂i ,q̂ j
(x , 0; x ′, 0) = Ci j(x , 0)δ(x − x ′) . (32)

In the conventional view of Euler hydrodynamics, under time evolution, local entropy
maximisation occurs with respect to the mesoscopic conserved quantities in fluid cells, and
the form (12), with time-dependent β i(x , t), describes the state later in time. This indeed
correctly describes averages of local observables. But the BMFT generically invalidates the time-
evolved form of (12) at nonzero macroscopic times for the description of Euler-scale correlations.
That is, the set of states of the form (12) is not preserved under time evolution. Long-range
correlations appear,

Sô1,ô2
(x1, t; x2, t) ̸= 0 , for |x1 − x2|> 0 , t > 0 , (33)

and the BMFT gives a quantitative prediction.
In fact, it is possible to argue for long-range correlations directly from hydrodynamic pro-

jection. Indeed, if the flux Jacobian depends on the state and has a nontrivial matrix structure,
and the state is space-time dependent, the evolution equation

∂tSq̂i ,q̂ j
(x , t; x ′, t) + ∂x

�

A k
i (x , t)Sq̂k ,q̂ j

(x , t; x ′, t)
�

+ ∂x ′
�

A k
j (x
′, t)Sq̂i ,q̂k

(x , t; x ′, t)
�

= 0 , (34)

which follows from (26) for t1 = t2 = t and the conservation laws, does not preserve the
initial delta-function structure. Although hydrodynamic projection for two-point functions
was already known, this observation, it appears, had not been made before.

Long-range correlations occur whenever the system is interacting (that is, the flux Jaco-
bian depends on the state), spatio-temporal variations are present, and there are more than
one fluid velocity. They are built by macroscopically separated fluid modes going at different
velocities, that have been emitted coherently in small regions with spatio-temporal variations,
and scatter with each other. More generally, correlations at the Euler scale in space-time, such
as (22), are not only due to fluid modes propagating between observables as obtained by lin-
ear response theory, but also receive contributions from fluid modes coherently emitted in the
past. As a consequence, the initial condition (32) does not hold at times t ′ > 0, in contrast to
what is normally assumed in linear- and nonlinear-response studies.

The above mechanism for long-range correlations is of hydrodynamic origin. In certain
situations there may be other mechanisms at play, giving rise to long-range correlations of
similar strength, but not described by the BMFT. For instance, if the initial condition is not of
large-scale variations, say it admits a step density profile, then it can be expected that during
the initial stage of the dynamics some nontrivial correlations build up from the microscopic
physics. Thus dynamical correlations of observables at different spatial positions, from such
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initial conditions, will be given by the combination of the early time microscopic ones and
hydrodynamics ones as above. We shall indeed numerically observe for the hard-rod model
evolving from a step initial condition, that correlations that stem from microscopic physics give
additional contributions to those from coherent production of normal modes described by the
BMFT.

Lastly, we remark that the observed long-range correlations are not in contradiction with
the Lieb-Robinson bound [61], which constraints the spatial extent of time-evolved operators
in lattice systems. By the Lieb-Robinson bound, nontrivial long-range correlations (33) can
exist only if the two Lieb-Robinson light cones that fan out from x = x1 and x = x2 overlap;
beyond this, correlations must decay exponentially (or as fast as in the initial state). Our
explicit formulae for long-range correlations in integrable systems (132) show that correlations
indeed decay quickly when the light cones determined by the maximum fluid velocity do not
overlap; the maximum fluid velocity is bounded by the Lieb-Robinson velocity.

2.3 Numerical checks: Integrable systems

As mentioned, the BMFT is based on an action principle. The BMFT action turns out to be
rather simple. It yields a set of hydrodynamic-type equations of motion that describe the
representative, “typical” dynamics which encodes the rare but large fluctuations at the root
of Euler-scale correlations. Handling the resulting BMFT equations is however tricky. First,
obtaining exact, analytic solutions is usually difficult, much like in conventional MFT (see
however the recent exact result [12,62]). Second, generically the profile of the solution would
display points of non-continuity where entropy is not conserved, as in Euler hydrodynamics.
Due care is therefore needed in determining which weak solution to choose. This is a problem
that has been addressed in simple models by first formulating the MFT in the presence of
viscosity terms and taking the vanishing viscosity limit [8]. In the present paper, we do not
address this problem more generally, although we provide some pointers.

In order to avoid these difficulties and assess our new theory in models which are simple
enough yet which present all the structures of interacting Euler hydrodynamics, we concen-
trate on one-dimensional integrable systems. Their hydrodynamics, which has been coined
generalised hydrodynamics (GHD), has come under intensive scrutiny over the last five years
[16, 17, 63, 64] (see also the review [3] and the special issue [65]). GHD is based on the
idea that fluid cells are described by generalised Gibbs ensemble (GGE). These are, nominally,
Eq. (7) with, in general, infinitely many charges involved. These are the ensembles emerging
in integrable systems under relaxation [32], instead of the usual Gibbs ensembles. In GHD,
one in fact forgoes the set of explicit, extensive conserved charges, and describes the relaxed
states more universally in terms of distributions of asymptotic states, see [3]. GHD has been
observed in recent experiments on cold atomic gases [66–68], and it is also the framework
at the heart of the theory of soliton gases, structures observed in water-wave and light-guide
experiments [69–71].

In integrable systems, an intricate analysis of entropy-non-conserving discontinuous points
is not necessary, as their hydrodynamic equations are known to have no shock solutions [72],
something that is attributed to complete linear degeneracy of these equations [3,73,74]. Linear
degeneracy means that the hydrodynamic velocity of a given normal mode does not depend
on the value of this normal mode. This allows for contact discontinuities, instead of shocks, to
develop, where entropy is preserved, as seen for instance in non-equilibrium steady states [16].
Further, one of the salient features of GHD is that it admits exact solutions of its hydrodynamic
equations by means of the method of characteristics [75]. This fact greatly facilitates the
application of the BMFT to integrable systems, allowing us to understand the structure of the
BMFT equations to a much larger extent than in usual interacting many-body systems.

We concentrate on the two types of physical quantities discussed above: the scaled cumu-
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lants cn(T ) for total time-integrated currents, Eqs. (14), (15), and the Euler-scale, equal-time
two-point functions Sq̂i ,q̂ j

(x1, t1; x2, t2), Eq. (22). The latter is numerically evaluated as:

Sq̂0,q̂0
(x1, t; x2, t) = lim

ℓ→∞

ℓ

L2

∫ L/2

−L/2
dy

∫ L/2

−L/2
dy ′



q̂0(ℓx1 + y,ℓt)q̂0(ℓx2 + y ′,ℓt)
�c
ℓ

. (35)

The integrals over y and y ′ give the fluid-cell means q0(ℓx1,ℓt) and q0(ℓx2,ℓt) over the meso-
scopic scale L in Eq. (10).3 The numerical evaluation of cn(T ) is detailed in Appendix I. The
calculations are performed in the generality of the universal GHD formalism, and thus the
results apply to all integrable many-body systems, quantum or classical. The numerical com-
parisons are done against simulations of the hard rod model. This model is simple enough
to simulate with good statistics, yet non-trivial enough to present all the properties of generic
interacting intergable systems. The hydrodynamic theory of the hard rod model [50] is known
to be a special case of GHD [63,76], and thus our GHD result can immediately be specialised
to it (see Appendix B).

First, the scaled cumulants are evaluated both in homogeneous, stationary states (7), and
in the non-stationary configurations emanating from an initial partitioning of the system into
two homogeneous halves as in Eq. (17). As in both cases there is scale invariance, the scaled
cumulants are not time dependent, cn(T ) = cn. For homogeneous states, we show that the
BMFT results for the first nontrivial scaled cumulants c2 and c3 agree with the known expres-
sions from the BFT [21]. For the partitioning protocol, we show that our BMFT results also
agree with the recent inhomogeneous BFT proposal [23]. We further compare the c2 result
against molecular-dynamics simulations of the hard rod model, with excellent agreement.

As an illustration, we find that cpart
2 , the second cumulant associated to particle transport

(i∗ = 0 in our convention) in the partitioning protocol of the hard-rod model, is given by

cpart
2 = (1− aρ)3

∫

R
dθ nθ
�

�veff
θ

�

� . (36)

Here a is the rod length, ρ is the density of the rods in the NESS, and nθ is the “normal mode”
density in the NESS, which is simply the velocity distribution function, labeled by the velocity
θ , normalised in such a way that ρ(1− aρ)−1 =

∫

R dθ nθ . The effective velocity of the rods
veff
θ

is given by

veff
θ =

1
1− aρ

�

θ − (1− aρ)

∫

R
dφφnφ
�

. (37)

The NESS is the fluid state on the ray x/t = 0 of the partitioning protocol; see the solution to
the hydrodynamic Riemann problem of the hard rods in [76]. Interestingly, expression (36)
is precisely the same as its homogeneous version except that each thermodynamic quantity is
now evaluated with respect to the NESS. The reason for this resemblance will be explained in
later sections. We find perfect agreement with numerics, thereby confirming the validity, at
least for this cumulant, of both the inhomogeneous version of BFT, and of our new BMFT.

Second, we provide, using the GHD normal modes, explicit sets of integral equations for
two-point correlation functions of conserved densities in space-time, from arbitrary large-
wavelength initial configurations, in the Euler scaling limit, Sq̂i ,q̂ j

(x1, t1; x2, t2).
In particular, we focus on the equal-time case t1 = t2 = t. The assumption that the state

is of locally entropy-maximised form at that time, Eq. (12), would only give a delta function;
as discussed already, the BMFT generically invalidates this assumption.

3One may take L = εℓ for some ε > 0, and take ε→ 0 after the limit on ℓ. Numerical simulations were done
with ε = 0.05. In the hard rod gas, we expect L = 0, no fluid-cell averaging, would also work, but this is hard to
verify numerically.
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For the density-density dynamical correlation function Sq̂0,q̂0
(x , t; 0, t) in the hard-rod gas,

the BMFT yield the following exact expression:

Sq̂0,q̂0
(x , t; 0, t) = ρ(x , t)(1− aρ(x , t))2δ(x)− (1− aρ(0, t))2

∫

R
dθ [nE]θ (0, t) , (38)

where Eθ (x , t) satisfies the integral equation

Eθ (x , t) = Eθ0 (x , t) +wθ (x , t)

∫ x

−∞
dy (1− aρ(y, t))[nE]dr;θ (y, t) . (39)

In the previous equation, ρ(x , t) and nθ (x , t) are defined as before except that this time they
are functions of space and time, and evaluated in the fluid cell at x , t. The objects Eθ0 (x , t)
and wθ (x , t) are some (cumbersome) functionals of nθ (x , t), which can be obtained from
Eqs. (132)-(138) by specialising to the hard-rod gas (see Appendix B). Finally, adr;θ (x , t) for
any function aθ (x , t) is defined by

adr;θ (x , t) := aθ (x , t)− a(1− aρ(x , t))

∫

R
dφ nφa

φ(x , t) . (40)

We verify numerically with the hard rod simulations that long-range correlations indeed de-
velop, that is, that Sq̂0,q̂0

(x1, t; x2, t) gives, for all t > 0, a function of x that is nonzero on
an extended region. Furthermore, we also confirm that this function agrees with the above
BMFT prediction. We have done this from Eqs. (38) and (39) (and Eqs. (132)-(138)) for
Sq̂0,q̂0

(x , t; 0, t) in Fig. (1) of the companion manuscript [24]. In the case of the correlator
Sq̂0,q̂0

(x , t;−x , t), we present our analysis in Sec. 5 (see Fig. 4).

3 MFT for ballistic transport

In this Section, we introduce the BMFT formalism, which will be used in the calculations
presented in the next sections of the manuscript. In particular, in Subsec. 3.1, we give the main
statements of the BMFT in Eqs. (46)-(49), along with the predictions (50), (51). In Subsec. 3.2,
we provide a justification for these statements. In Subsec. 3.3, a connection between BMFT
and the conventional diffusive MFT is presented. The ideas developed in Subsec. 3.3 are not
used in later sections, hence for a basic understanding of the BMFT, this subection can be
skipped.

3.1 Formulation of the BMFT

The starting point for our implementation of the BMFT is the set of initial states (12). Below we
sometimes write qi = qi[β] to emphasise its functional dependence on the β i ’s; as mentioned
just before Eq. (11), there is a bijection q ↔ β . Likewise, we write A = A[β]. For local
observables ô, including the currents ô = ȷ̂i , we write

o[q] := 〈ô〉β (under qi = qi[β]) . (41)

As is clear from (25) at t = 0 (and the initial condition β i(x , 0) = β i
ini(x)), the marginal

distributions of fluid cells in the initial state, or the fluid-cell reduced density matrices in the
quantum language, give, at least for mesoscopic means, GGEs with the local values of β i . By
the fast correlation decay discussed above, the full measure induced on mesoscopic means is
a product measure over these local fluid-cell marginals.
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It is a simple statistical mechanics exercise [77] to express the product measure repre-
senting (12) on the mesoscopic conserved quantities. In order to do so, one sees the coarse-
grained, mesoscopic means qi(ℓx , 0), whose correlations are obtained from (12), as classical
fluctuating variables, qi(x , 0), whose correlations are obtained from an appropriate measure
dPini[q(·, 0)]; that is, one sets the equivalence

qi(ℓx , 0)≡ qi(x , 0) (at Euler scale) . (42)

The equivalence hold in the Euler scaling limit in Eq. (10) with L,ℓ →∞. In macroscopic
coordinates, the fluid cell scale L shrinks to a point, thus the measure dPini[q(·, 0)] is point-
wise factorised. One finds that the following measure represents well the initial state (12):
dPini[q(·, 0)] = dµ[q(·, 0)] e−ℓF[q(·,0)] where F[q(·, 0)] can be expressed as follows:4

F[q(·, 0)]=
∫

R
dx
�

β i
ini(x)qi(x , 0)− f [βini(x)]−s[q(x , 0)]

�

. (43)

Here dµ[q(·, 0)] =
∏

x∈R
∏

i dqi(x) is the flat measure, and s[q] is the entropy density, which

is defined (up to an unimportant constant) by the equations ∂ s[q]/∂ qi|qi=qi[β] = β
i . The func-

tion F[q(·, 0)] can be interpreted as a relative entropy,5 and it is clearly pointwise factorised.
The measure dPini[q(·, 0)] represents the initial state (12) at the Euler scale. Indeed, the

generating function of equal-time Euler-scale correlations takes the form of a difference of
integrated free energies, generalising (16) (see Appendix A):
�

exp

∫

R
dx λi(x/ℓ)q̂i(x)

�

ℓ

≍ exp ℓ

�∫

R
dx
�

f [βini(x)]− f [βini(x)−λ(x)]
�

�

, (44)

and the Legendre transform, of a difference of free energies is a relative entropy, giving the
large-deviation functional e−ℓF[q(·,0)] in Eq. (43) (see e.g. Ref. [78]). In particular, the saddle-
point of this measure indeed gives the correct averages of conserved densities for (12); defining
β i(x , 0) via the relation qi(x , 0) = qi[β(x , 0)], the saddle-point equation is

β i(x , 0) = β i
ini(x , 0) (saddle-point of dPini[q(·, 0)]) . (45)

The main purpose of the BMFT is to give an action principle that describes how the proba-
bility distribution dPini[q(·, 0)] extends to a probability distribution for the full space-time meso-
scopic conserved densities, dP[q(·, ·)] for qi(·, ·)’s on S := R × [0, T], for any time T . This
action principle is derived from the main assertion of the BMFT that the initial distribution
dPini[q(·, 0)] propagates in time according to the Euler equations (11). We will justify this
assertion below in Subsec. 3.2.

Specifically, the resulting measure on space-time configurations is

dP[q(·, ·)] = dµ[q(·, ·)] e−ℓF[q(·,0)]δ[∂tq+ ∂xj[q]] . (46)

dµ[q(·, ·)] is the flat measure for functions on S. The delta functional, which we represent as
an integral over an auxiliary fields (as is done in the diffusive MFT [10])

δ[∂tq+ ∂xj[q]] =

∫

(S)
dµ[H(·, ·)]exp

�

−ℓ
∫

R
dx

∫ T

0

dt H i(∂tqi + ∂xji[q])

�

, (47)

4One can also write F[q(·, 0)] =
∫

R dx
∫ q(x ,0)

q
ini
(x) dri C

i j[r](q j(x , 0)− r j) where C[r] is the static covariance matrix

as a function of average conserved densities ri ’s.
5Indeed, F[q(·, 0)] =

∫

R dx µ
�

ϱ̂[β(x , 0)] log
�

ϱ̂[β(x , 0)]/ϱ̂[βini(x)]
��

, where ϱ̂[β] = exp
�

−
∑

i β
iQ̂ i

�

/Z(β).
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enforces the Euler equations. Here on the integral symbol we indicate the range of the func-
tions in the function space over which we integrate.

Euler-scale correlation functions involving mesoscopic fluid-cell means of any observables
o(ℓx ,ℓt) are obtained with the above measure by identifying them with appropriate classical
random variables. They are identified with the functions of qi(x , t)’s representing their GGE
averages in the local states characterised by qi(x , t)’s:

o(ℓx ,ℓt)≡ o[q(x , t)] (at Euler scale). (48)

Explicitly, the BMFT average is given by

〈〈•〉〉ℓ =
1
Z

∫

(S)
dµ[q(·, ·)] e−ℓF[q(·,0)]δ(∂tq+ ∂xj[q]) • . (49)

The main BMFT predictions are expressions for Euler-scale correlations (21)

Sô1,...,ôn
(x1, t1; · · · ; xn, tn) = lim

ℓ→∞
ℓn−1
¬¬

o1[q(x1, t1)] · · ·on[q(xn, tn)]
¶¶c

ℓ
, (50)

and in particular

F(λ, T ) = lim
ℓ→∞

1
ℓT

log 〈〈expλℓJ(T )〉〉ℓ , (51)

where

J(T ) =

∫ T

0

dt ji∗[q(0, t)] , (52)

see Eqs. (21) and (14). (Recall that the expansion of the right-hand side of (51) in powers of
λ boils down to correlation functions as in the right-hand side of (50).) We will write (50),
for simplicity, as

〈•〉ℓ ∼ 〈〈•〉〉ℓ . (53)

Although we have formulated the theory using functional integration on appropriate mea-
sures, the result as ℓ→∞ on the right-hand side of (53) is in fact obtained by taking a saddle
point. For an observable O[q] in space-time,

− lim
ℓ→∞

ℓ−1 log
¬¬

exp
�

ℓO[q]
�¶¶

ℓ
= FO[q

∗] , (54)

where
FO[q(·, ·)] = F[q(·, 0)]−O[q(·, ·)] , (55)

is the “observable action”, and q∗ is the minimiser of the “BMFT action”

SO[q, H] = FO[q] +

∫

R
dx

∫ T

0

dt H i
�

∂tqi + ∂xji[q]
�

, (56)

with respect to q and H. Equivalently, one can see the fields H i(·, ·) as Lagrange parameters
enforcing the Euler equations viewed as constraints on the minimisation of the observable
action FO. That is:

δSO[q, H]

δqi(x , t)

�

�

�

q=q∗
= 0 , ∂tq

∗
i + ∂xji[q

∗] = 0 . (57)

We take O = λJ(T ) for the current SCGF, and O =
∑n

a=1λaoa[q(xa, ta)] for the generator of
Euler-scale correlation functions, with n independent generating parameters λa. The set of
equations (57) – the BMFT equations – will form the basis for our analysis below.
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The BMFT formalism we have here outlined presents similarities with the Martin-Siggia-
Rosa (MSR) [79–81] formalism, which provides a field-theoretical functional representation
of the Langevin equation. As such the MSR is a field theory formulated at the mesoscopic
scale for a slowly varying field, while all the other rapidly fluctuating degrees of freedom are
effectively represented through the Gaussian noise term in the Langevin equation. This is a
fundamental difference with the BMFT, which is a macroscopic fluctuation theory based on the
large-scale deterministic Euler equation. The BMFT action is therefore entirely controlled by
Euler-scaling limit, where the macroscopic length scale is sent to infinity ℓ→∞. This allows
to compute the BMFT path integrals exactly by saddle point, as explained above. This is a
great advantage with respect to the MSR action, which does not contain any macroscopic scale
parameter being formulated from the mesoscopic Langevin equation. The MSR path integral
are therefore evaluated only approximately by perturbative expansions and renormalization
group schemes, see, e.g., Ref. [82]. From the technical point of view, we mention that the
field H(x , t) is the equivalent in the BMFT action of the so-called “response field” of the MSR
functional. The response field in the MSR action is introduced, similarly as in Eq. (47), via
Laplace transform of the delta function enforcing the field to obey the Langevin equation. The
BMFT action (55), however, is linear in the field H(x , t), while the MSR action is quadratic in
the response field. This difference is caused by the integration over the Gaussian noise (absent
in the BMFT), which produces the quadratic term in the response field.

From Eq. (57), it is evident that the space-time configuration minimizing the BMFT action
satisfies the Euler equation (although, as we will see, the initial condition is not q[βini(x)],
but a λ- or λa-dependent initial condition accounting for the rare fluctuations we are focusing
on). We shall therefore use for the minimizer q∗ the notation q∗(x , t) = q(x , t). A sketch of
the space-time configurations whose weight is given by the BMFT action in Eq. (56), together
with the saddle point minimizing configuration, is given in Fig. 2.

We note that it is not necessary to have as initial state the form (12) (which gives the initial
measure in factorised form (43)). The initial state must be slowly varying, but may otherwise
have long-range correlations, thus giving a non-factorised initial measure. The BMFT principle,
which simply says to evolve the initial fluctuating state with the Euler equation, will work all
the same, with in (46) that measure instead of e−ℓF[q(·,0)]. However, the state (12), giving the
measure (43), is natural to assume in local equilibrium, and is simple yet nontrivial enough
for this presentation.

3.2 Local relaxation of fluctuations

The BMFT probability distribution, Eqs (46) and (49), results from a single assumption about
fluctuations of mesoscopic variables. This is the assumption that

Mesoscopic means of local observables (coarse-grained observables), o(ℓx ,ℓt), do not fluctuate
independently from the conserved densities, but are fixed functions of these, o[q(x , t)].

That is, the form (50) must hold, for some, yet unknown, functions oa[q(x , t)], which we
show below must be the GGE average oa[q(x , t)]. This means that the mesoscopic fluctuating
degrees of freedom are reduced to the conserved quantities: all other degrees of freedom quickly
relax, and only the “slowly-decaying modes”, which are the extensive conserved quantities
of the model, remain as fluctuating variables in the Euler scaling limit. In phase space, the
interpretation is that the fixed-q shell is quickly covered in fluid cells (as per the principle of
ergodicity), and large-scale fluctuations are fluctuations between different shells.

The principle can be justified by a separation of fluctuation scales between variables that
change due to interactions within the fluid cell, and those that are only affected by exchanges
between fluid cells. Take the picture of classical particles with short-range interactions. If
τ is the mean free time and ρ the spatial density, then in a length L and time T there will
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Figure 2: Space-time configurations (Feynman history) of fluctuating variables
o(x , t) that contribute to the BMFT path integrals (49). Due to local relaxation of
fluctuations, the functional form of the classical fluctuating variables o(x , t) on rare
trajectories (sketched in red in the Figure) is completely determined by the fluctu-
ating variables for the conserved densities q(x , t) through the GGE expression, i.e.,
o(x , t) = o[q(x , t)]. The trajectory minimizing the BMFT action is sketched in black
dashed. Along this trajectory, Euler hydrodynamics is recovered and the fluctuating
variables o(x , t) take the value given by the λ-dependent GGE at the corresponding
space-time point (x , t), i.e., o(x , t) = o[q(x , t)].

be ρLT/τ collisions (interactions). Thus an observable (LT )−1
∫ L

0 dx
∫ T

0 dt o(x , t) affected
by the few-body interaction with nearby particles will have fluctuations due to in-cell process
of order 1/
p

ρLT/τ. But conserved quantities (LT )−1
∫ L

0 dx
∫ T

0 dt qi(x , t) are only affected
by exchange of particles through the boundaries of the cells, and exchange of energy and
other quantities by interactions through these boundaries. Naturally, such processes take place
less frequently than the in-cell processes, giving contributions to fluctuations only of order
1/
p

T/τ and 1/
p

ρℓmicroT/τ, respectively. Therefore, with T ∝ L inter-cell fluctuations of
fluid-cell means∆inter-cello∝ 1/

p
L dominate over in-cell fluctuations∆in-cello∝ 1/L, and as

∆in-cellqi = 0, in-cell processes simply cover the phase-space shell with fixed values of qi ’s.
Tacitly assumed in the above assumption is that fluid-cell means of observables can be seen

as classical random variables, in agreement with the general expectation that the Euler-scale
correlation functions are symmetric as mentioned above. In classical systems this is clearly the
case. In quantum systems, this assumes that such fluid-cell means become, in the Euler scaling
limit, classical fluctuating variables. The idea is that such observables are examples of the
“macroscopic observables” introduced by von Neumann in the context of the quantum ergodic
theorem [83] (see an analysis of this paper in [84]). An ergodicity result has recently been
shown [85], which implies that, in a large class of stationary, homogeneous states of quantum
lattices with short-range Hamiltonians, averages of observables over space-time indeed project
onto the state average times the identity operator; this further support taking fluid-cell means
as classical variables.

The principle of local relaxation of fluctuations is of course closely related to the princi-
ple used normally to justify hydrodynamics: the hydrodynamic equations can be derived by
assuming that state averages of fluid-cell means of local observables are functions of local con-
served densities only. As this must be true in (G)GE’s, then the functions are fixed to (G)GE
averages. As this holds in particular for the currents, the Euler equations follow.
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The concept of relaxation of fluctuations goes one step further, and makes this assumption
for the large-scale fluctuations. It turns out again that the functions o[q] are uniquely fixed to
the ensemble averages o[q] by this assumption. Indeed, Eqs. (25) at t = 0, and (50) at n= 1
and t1 = 0, imply

〈ô〉β(x ,0) =

∫

(R)
dPini[q(·, 0)] o[q(x , 0)] , (58)

hence by the saddle-point (45) we obtain (48). Of course, this is nothing else but the equiv-
alence of macrocanonical and microcanonical ensembles: the fast relaxation over the fixed-q
shell gives (microcanonical) values of observables that are functions of the qi ’s as per their
(macrocanonical) GGE averages.

Local relaxation of fluctuations has appeared in various forms in the literature. Most im-
portantly, the Boltzmann-Gibbs principle is often stated as a projection of fluctuating fields
onto fluctuating conserved fields in stochastic particle systems, see, e.g., [26,27].

With local relaxation of fluctuations, and in particular Eq. (48), it is a simple matter to
obtain the BMFT formula. This again parallels the derivation of the Euler hydrodynamic equa-
tions. As, by the equations of motion, the conservation laws must be satisfied, we must have

〈•〉ℓ =

D

eℓ
∫

R dx
∫ T

0 dt H i(x ,t)(∂t qi+∂x j i) •
E

ℓ
D

eℓ
∫

R dx
∫ T

0 dt H i(x ,t)(∂t qi+∂x j i)
E

ℓ

, (59)

for all ℓ, and any values of the fields H i(x , t). Note that variations of densities and currents
occur on scales ℓ, hence with a factor ℓ2 from the space-time integral and ℓ−1 from the deriva-
tives, we indeed have a factor ℓ in the exponential; it is made explicit here as integrals are
on macroscopic variables x , t. The principle of local relaxation of fluctuations at all times t
implies that there is some measure dP[q(·, ·)] representing averages 〈•〉ℓ at large ℓ,

〈•〉ℓ ∼
∫

(S)
dP[q(·, ·)]• , (60)

and this can be used on (59). With the result (48) for the observables ȷ̂i , we deduce that

dP[q(·, ·)]∝ dP[q(·, ·)]eℓ
∫

R dx
∫ T

0 dt H i(x ,t)(∂t qi+∂xji[q]) . (61)

Assuming that the hyperbolic system (11) has a unique solution – or imposing appropriate
conditions on possible weak solutions to make it unique – the arbitrariness of H i(x , t) implies
that dP[q(·, ·)] is supported on this solution. Thus it is sufficient to put a measure on the initial
condition, hence to know the marginal at time t = 0. As the initial measure dPini[q(·, 0)]
must be this marginal, we obtain (46) (equivalently (49)), where the flat integration measure
over all times with the delta functional guarantee both the right initial-time marginal and the
support on the hydrodynamic solution. This shows (46) - (51).

3.3 Relation to diffusive MFT and fluctuating hydrodynamics

The goal of this section is to provide further justifications for the BMFT, by proposing how it
relates to the well-known and well-established theory of diffusive MFT [7], and by making a
parallel with (nonlinear) fluctuating hydrodynamics (NLFHD) [15]. The conventional MFT
gives a probability distribution for mesoscopic variables in purely diffusive systems, and of
course BMFT is largely inspired by it.

On the one hand, as explained above, the underlying idea of the BMFT, the local relax-
ation of fluctuations, implies that the mesoscopic currents j do not fluctuate independently,
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but rather are random variables given, as functions of fluctuating conserved densities, by the
stationary (GGE) values, j = j[q]. On the other hand, in diffusive MFT, the currents fluc-
tuate, via a stochastic, Gaussian noise determined by microscopic diffusion via the Einstein
relation (see [7]). Both are, nevertheless, “macroscopic fluctuation theories”, describing large
deviations of fluid trajectories obtained by saddle-point analysis. How are these two theories
related?

In order to better understand this, we propose here a multi-scale hydrodynamic fluctuation
theory that covers both ballistic and diffusive effects. We will see that BMFT is obtained under
ballistic scaling, in the limit of zero noise and zero diffusion, while diffusive MFT is obtained
under diffusive scaling, with ballistic currents set to zero. The resulting saddle-point analysis, in
BMFT and diffusive MFT, is therefore done under different choices of scaling.

The general idea of combining ballistic and diffusive effects is not new: it was used in [8] to
analyse the weakly asymmetric simple exclusion process, and, by a zero-noise limit, to obtain
a ballistic fluctuation theory for the totally asymmetric simple exclusion process. But as far as
we are aware, a universal theory has not been constructed yet.

Formulated in terms of the ballistic scale ℓ, our ansatz is a theory for fluctuating classi-
cal variables that reproduce not only the leading large-ℓ order of correlation functions such
as (21) (the Euler scale), but also the next-to-leading order. The measure dP[q(·, ·)] must be
modified in order to reproduce correctly both these leading and next-to-leading orders. This
multi-scale hydrodynamic fluctuation theory is no longer a large-deviation theory, as its anal-
ysis would require going beyond saddle-point equations and considering “loop corrections”,
which we reserve for future works. In a sense, it is an action re-formulation for NLFHD, as
it combines both ballistic and diffusive scales (recall that their combination, in NLFHD, helps
explaining superdiffusive behaviours of two-point correlation functions.) The ideas proposed
here, besides being applicable to general multi-component hydrodynamic systems, are also
slightly different from those of [8].

Recall that the main assertions of the BMFT is the measure on the mesoscopic densities
(46). The macroscopic fluctuation theory that covers both the ballistic and diffusive orders,
instead, is a measure on space-time configurations (q(x , t), j(x , t)) : (x , t) ∈ R × [0, T] of
both the mesoscopic charge densities and currents. The measure accounts for fluctuations of the
currents that, although suppressed in the limit ℓ →∞, give small contributions for ℓ large
that describe the next-to-leading order corrections to the Euler-scale correlation functions.
It is natural to introduce independent fluctuations of fluid-cell means of observables at that
order. Indeed, the argument above concerning the separation of scales, with fluctuations of
order ∆in-cello∝ 1/L and ∆inter-cello ∼ 1/

p
L, indicates that at the next order, in-cell fluctu-

ations, which affect non-conserved observables, and not just inter-cell fluctuations, by which
non-conserved observables follow conserved ones, must be taken into account. As discussed
above, corrections to large-scale correlations induced by such additional fluctuations may be
diffusive, superdiffusive, etc. Here, we will not develop the full phenomenology, but only ex-
press the measure, emphasising how it extends BMFT to including microscopic noise, and how
it specialises in the case without ballistic currents to the standard equations of the MFT under
the right scaling.

The measure encoding ballistic and diffusive behaviours is obtained by adding Gaussian
noise contributions to the currents. As explained, this represents the small, rapid fluctuations
of quickly relaxing modes that are not protected by conservation laws, occurring within micro-
canonical shells, on top of the large fluctuations due to fluctuating mesoscopic charges. That
is,

dP[(q, j)(·, ·)] = dµ[q(·, ·)]dP[ j|q] e−ℓF[q(·,0)]δ[∂tq+ ∂x j] , (62)

where dP[ j|q] = dPnoise[ℓ j· − ℓj·[q] + D
j
· [q]∂xq j|q] is obtained from adding noise to the
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diffusive-order constitutive relation for the currents,

ji = ji[q] + ℓ
−1
�

−D j
i [q]∂xq j +ηi

�

. (63)

The measure dPnoise[η|q] on the zero-mean Gaussian noise ηi is fully determined by the cor-
relation matrix




ηi(x , t)η j(x
′, t ′)
�

noise = Li j[q]δ(x − x ′)δ(t − t ′) . (64)

The factors of ℓ in (63) are obtained from the same scaling as above,

qi(ℓx ,ℓt)≡ qi(x , t) , j i(ℓx ,ℓt)≡ ji(x , t) . (65)

The fluid-cell means qi , j i on the mesoscopic scale L must be defined carefully, so as not to
“wash out” diffusive effects, hence we propose

ℓmicro≪ L≪ ℓdiff≪ ℓ , ℓdiff :=
p

ℓ . (66)

Note that now ji(x , t) fluctuates independently, through its associated noise (of course, the full
measure is still supported on space-time configurations that satisfy the continuity equation
∂tqi + ∂x ji = 0). Above, Li j is the “microscopic Onsager matrix”, a positive definite matrix

representing local Gaussian fluctuations of the microscopic currents. The diffusion matrix D
j

i
is related to the Onsager matrix via the Einstein relation D= LC−1.

When corrections to the Euler scale of correlation functions are indeed diffusive, and
not superdiffusive, the microscopic Onsager matrix can be evaluated from correlation func-
tions in stationary states via the Green-Kubo formula Li j =

∫∞
0 dt
∫

R dx〈 ȷ̂−i (x , t) ȷ̂−j (0,0)〉c
β

(at

qi = qi[β]), where ȷ̂−i = ȷ̂i −A
j

i q̂ j is the current minus its projection onto the conserved den-
sities. The microscopic Onsager matrix is no longer simply given by the Green-Kubo formula
when the correction to ballistic transport is superdiffusive. This is in fact the most typical case
in the Hamiltonian dynamics of non-integrable translation invariant systems; see [86] for a re-
cent proposal on the microscopic Onsager matrix that should be used in such situations in the
fluctuating hydrodynamics. In integrable systems, typically corrections to ballistic transport
are indeed diffusive [64,87].

Naturally, one may ask why not introduce noise to other observables o(x , t) than the cur-
rents themselves, with noise correlations of the form (64) and Onsager-like coefficients involv-
ing these other observables, L ȷ̂i ,ô and Lô,ô′ . Generic observables are not directly involved in the
measure (62), however if noise correlations exist between generic observables and currents,
these will affect the currents and must be included. Such effects appear not to have been dis-
cussed in the literature, neither in the context of fluctuating hydrodynamics nor of the MFT.
A possible resolution is that, according to the Hilbert space theory for diffusive and thermalis-
ing processes developed in [88,89], it is possible to separate generic observables into a linear
combination of currents ȷ̂i and a part ô that is orthogonal to currents within the “second order
hydrodynamic space” (meaning L ȷ̂i ,ô = 0). This would mean that their noises do not correlate
to those of currents, and hence it is safe to only consider fluctuating currents in the measure
(62). A complete understanding is certainly missing.

As mentioned, the proposal (62) with (63) is to describe not only the ballistic scale of
correlation functions, but also their leading correction. If these are diffusive, a simple exam-

ple is the correlator limℓ→∞ ℓ
− 1

2

¬¬

qi(x + ℓ−
1
2δx , t)q j(0, 0)
¶¶c

ℓ
around a ballistic ray of velocity

v = x/t in a stationary, homogeneous initial state. The result is a function of v and δx that
describes the diffusive profile of the correlator around this ray; of course, it is nontrivial if
and only if v is one of the hydrodynamic velocities of the model in that state, v ∈ spec(A).
More generally, the theory (62) with (63) leads to the basic noisy-current stochastic equations
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for two-point correlation functions (thus, by the NLFHD analysis [15], under the appropriate
conditions these equations explain superdiffusion). We expect the theory to also predict the
leading corrections to long-time saturation of the transport cumulants cn in (15) (see also the
discussion in Sec. 5).

It is clear from Eq. (62) with (63) that the leading order at large ℓ reduces to the BMFT.
Effectively, the BMFT is the zero-noise, zero-diffusion limit (of course, physical diffusion does
not need to vanish for the BMFT to hold, its effects are simply at a smaller scale than that
observed by the BMFT). But also, under appropriate rescaling and with vanishing ballistic
currents, one recovers from Eqs. (62) and (63) the standard diffusive MFT [7].

To see this, recall that in diffusive MFT, one concentrates on the diffusive scale ℓdiff =
p
ℓ.

Let us thus define new scaled variables as

qi(ℓdiff x ,ℓ2diff t)≡ q̌i(x , t) , ℓdiff j i(ℓdiff x ,ℓ2diff t)≡ ȷ̌i(x , t) , (67)

where the extra factor on the current guarantees that the continuity equation stays unchanged.
Further, in purely diffusive systems, the hydrodynamic velocities vanish. Let us thus take
ji = 0.6 In fact, with external fields E i , constant currents develop at the diffusive scale, deter-
mined by Onsager’s coefficients. Accounting for these, one may instead make the replacement
in Eq. (63)

ji[q]→ ℓ−1
diffLi j[q̌]E

j . (68)

In order to get the theory in the diffusive scaling, we start from the fundamental equation for
the ballistically scaled quantities (63) (with this replacement), we rewrite them in terms of the
fundamental microscopic quantities as per (65), and we further rewrite these in terms of dif-
fusively scaled quatities as per (67). Using the scaling property ηi(x/ℓdiff, t) =

p

ℓdiffη(x , t),
the diffusively scaled fluctuating currents then take the form

ȷ̌i = Li j[q̌]E
j −D j

i [q̌]∂x q̌ j + ℓ
− 1

2
diffηi . (69)

Writing explicitly the Gaussian measure for the noise, one then obtains

dP[(q̌, ȷ̌)(·, ·)] = dµ[q̌(·, ·)]dµ[ ȷ̌(·, ·)] e−ℓdiff(F[q̌(·,0)]+I[q̌, ȷ̌])δ[∂t q̌+ ∂x ȷ̌] , (70)

where the functional I[q̌, ȷ̌] is given by

I[q̌, ȷ̌] =

∫ T

0

dt

∫

R
dx Li j[q̌]
�

ȷ̌i − ȷ̌diff,i[q̌,∂x q̌]
��

ȷ̌j − ȷ̌diff, j[q̌,∂x q̌]
�

, (71)

with
ȷ̌diff,i = Li j[q̌]E

j −D j
i [q̌]∂x q̌ j . (72)

This is exactly the diffusive MFT probability distribution on space-time configurations
(q̌(x , t), ǰ(x , t)) : (x , t) ∈ R × [0, T] of Ref. [7], written here in its most general, multi-
component form.

4 BMFT for current fluctuations and Euler-scale correlations

With a firm foundation for the BMFT, we move on to its actual implementation to generic
quantum or classical many-body systems. In Subsec. 4.1, we focus on the SCGF F(λ, T ) de-
fined in Eq. (14). In Subsec. 4.2, we discuss how the ballistic MFT allows to recover the result

6It is also possible, by a simple ballistic shift, to concentrate on diffusive effects around other velocities than 0.
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of the aforementioned BFT theory for homogeneous and stationary states. In Subsec. 4.3,
the derivation of the Gallavotti-Cohen fluctuation theorem (19) within the BMFT formalism is
detailed. In Subsec. 4.4, we discuss Euler-scale correlation functions Sq̂i1 ,q̂i2

(x1, t1; x2, t2), de-
fined in Eqs. (21)-(23). In Subsec. 4.5, we show how the BMFT formalism naturally embodies
the (non)linear hydrodynamic projection result (see Eq. (26)). In Subsec. 4.6, we show how
the BMFT predicts long-range correlations.

4.1 BMFT of current fluctuations

The BMFT offers us an efficient way of evaluating the SCGF F(λ, T ), as




eλℓJ(T )
��

ℓ
≍ eℓT F(λ,T ).

According to the discussion in Subsec. 3.1, cf. Eqs. (51)-(54), we have




eλℓJ(T )
��

ℓ
≍ e−ℓFcurr[q∗] , (73)

where q∗ minimise

Scurr[q, H] := Fcurr[q] +

∫

S
dxdt H i(∂tqi + ∂xji[q]) , (74)

and Fcurr[q(·, ·)] = F[q(·, 0)] − λJ(T ). The saddle-point equations (57) yield the following
BMFT equations (dropping the star symbol ∗ for lightness of notation)

H i(x , 0) = β i
ini(x)− β

i(x , 0) , (75a)

H i(x , T ) = 0 , (75b)

∂tβ
i +A i

j [β]∂xβ
j = 0 , (75c)

∂t H
i +A i

j [β]∂x H j = −λδ(x)A i
i∗
[β] , (75d)

where we used AC = CAT [28] and in (75c) and (75d) we have removed the explicit x , t
dependence of β i(x , t) and H i(x , t). Note that for convenience the BMFT equations are written
in terms of β i , which are related to the densities via the usual mapping to GGE averages,
qi(x , t) = qi[β(x , t)]. As remarked after Eq. (57), we also drop the dependence of H and

β i on λ to lighten the notation. One can recast these equations into a more useful form by
redefining the auxiliary field H i by H i(x , t) 7→ H i(x , t) − λδi

i∗
Θ(x) with the step function

Θ(x), yielding

λδ i
i∗
Θ(x)− β i(x , 0) + β i

ini(x)−H i(x , 0) = 0 , (76a)

λδ i
i∗
Θ(x)−H i(x , T ) = 0 , (76b)

∂tβ
i(x , t) +A i

j [β(x , t)]∂xβ
j(x , t) = 0 , (76c)

∂t H
i(x , t) +A i

j [β(x , t)]∂x H j(x , t) = 0 , (76d)

which are the main equations we shall deal with. The boundary conditions associ-
ated to Eq. (76) are β i(x → ±∞, t) = β i

ini(x → ±∞), H i(x → +∞, t) = λδ i
i∗

and H i(x → −∞, t) = 0 for any value of t. The re-writing in Eq. (76) is equiva-
lent to expressing the time-integrated current in the BMFT action in terms of the density
J(T ) =
∫∞

0 dx (qi∗(x , T )− qi∗(x , 0)) (see also after Eq. (14)) from the beginning.
The SCGF may be written in various ways. Clearly using (43) and (55),

T F(λ, T ) = F[q(·, 0)] − λ
∫ T

0 dt ji∗[q(0, t)] evaluated on the solution to (76a)-(76d). But
also, note that (in a self-explanatory notation)

d
dλ

T F(λ, T ) = −
dFcurr[q]

dλ
= −

dScurr[q, H]

dλ
= J(T ) , (77)

25

https://scipost.org
https://scipost.org/SciPostPhys.15.4.136


SciPost Phys. 15, 136 (2023)

as Scurr is stationary under changes of H and q on the saddle point. Therefore, integrating over
λ,

F(λ, T ) =
1
T

∫ λ

0

dλ′
∫ T

0

dt ji∗[q
(λ′)(0, t)] , (78)

where q(λ
′)

i (0, t) = qi[β
(λ′)(0, t)] is the solution to (76a)-(76d) at x = 0, for λ replaced by λ′

(with the notation introduced after Eq. (57)). Expression (78) has a similar form to what was
obtained in the BFT [20, 21, 23] (see also the discussion in Appendix D about the inhomoge-
neous BFT).

We note that β(x , t) (or equivalently q(x , t)) time-evolve independently from H(x , t), and
the only effect of having nontrivial H(x , t) enters into the boundary conditions. This is in stark
contrast with the diffusive cases (see, e.g., [10]).

As is usual in solving Euler equations, weak solutions [90] may appear from the BMFT
equations, for both β(x , t) and H(x , t); therefore, ambiguities may arise. Much like for Euler
hydrodynamic equations, one may need to re-introduce diffusive effects in order to obtain the
equivalent of Lax conditions for the BMFT equations, and thus determine the correct solution
for β(x , t) and H(x , t). Such considerations will be relevant in the application of the BMFT,
for instance, to the anharmonic chain, whose hydrodynamics is composed of three conserva-
tion laws [15], and to the TASEP, whose hydrodynamics is the inviscid Burgers equation. Of
importance may be the fact that, in the Jensen-Varadhan theory [37,38], the contributions to
the rate function stem only from hydrodynamic configurations that give positive Kruzhkov en-
tropy productions (that is, negative physical entropy production, contrary to what is required
for usual hydrodynamic solutions). We leave this for future studies.

4.2 Relation with the ballistic fluctuation theory

The BFT [20, 21], briefly recalled in the introduction, gives the time-independent SCGF
F(λ, T ) = F(λ) in the case where the initial state βini(x) = βini is homogeneous and sta-

tionary. In this theory, the SCGF is written in a form similar to (78), F(λ) =
∫ λ

0 dλ′ ji∗[q(λ
′)],

but now qi(λ) = qi[β(λ)] describes a stationary, homogeneous state satisfying the BFT flow
equation

∂λβ
i(λ) = −sgn(A[β(λ)]) i

i∗
, β i(0) = β i

ini . (79)

We note that Eq. (79) is proved solely on the basis of hydrodynamic projection techniques and
therefore applies generally, both to integrable and non-integrable systems.

As a verification of the ballistic MFT developed here, we argue that it reproduces the above
BFT result. In order to do so, we would only need to establish that β (λ)(0, t) = β(λ) for all

t ∈ (0, T ). As β (0)(x , t) = βini, we would only need to show that β (λ)(0, t) is independent of t
and satisfies the BFT flow equation (79). This would require a precise analysis of the solution
to the BMFT equations, and is related to the assumption, made in [20], that connected time
correlation functions of all orders vanish sufficiently fast at large times. We keep this precise
analysis for future works, and instead provide a consistent argument.

Under the assumption that β (λ)(0, t) is independent of t ∈ (0, T ), it is clear from (76c) that
at x = 0, the state is homogeneous, including at the leading order beyond the Euler scale, as
∂xβ

(λ)(x , t)|x=0 = 0. Let us concentrate on a region t ∈ [s− r, s+ r], x ∈ [−y, y] where r > 0
and y > 0 are finite but small (in macroscopic units). Let us further assume that, for a given
λ, the homogeneous, stationary state there (as we argued it must be), is in fact also clustering,
thus it is a GGE. As a consequence, we may apply the BMFT on this region, where as initial
state in (43) we take βini = β

(λ)(0, s). Now let us perturb λ→ λ+δλ, and consider the BMFT
for the insertion of δλJ(T ). The leading-order BMFT equations are as in (76a)-(76d), but
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in terms of the leading-order quantities in δβ i(x , t) = β i(x , t)− β i(0, s) (which are assumed
small as δλ is taken small), for x ∈ [−y, y] and t ∈ [s− r, s+ r],

δλδ i
i∗
Θ(x)−δβ i(x , s− r)−δH i(x , s− r) = 0 , (80a)

δλδ i
i∗
Θ(x)−δH i(x , s+ r) = 0 , (80b)

∂tδβ
i(x , t) +A i

j ∂xδβ
j(x , t) = 0 , (80c)

∂tδH i(x , t) +A i
j ∂xδH j(x , t) = 0 , (80d)

where A= A[β (λ)(0, s)]. This is a linear system, whose solution is simple:

δH i(x , t) = δλΘ(x − (t − s− r)A) i
i∗

, (81)

and then, using δH i(x , s− r) = δλΘ(x + 2rA) i
i∗

δβ i(x , t) = δλ
�

Θ(x − (t − s+ r)A) i
i∗
−Θ(x − (t − s− r)A) i

i∗

�

. (82)

Thus δβ i(0, s) = −δλ sgn(A) i
i∗

, which indeed reproduces (79).
In view of the long-range correlations that appear, as mentioned, generically in inhomoge-

neous states, the assumption that the state at (0, s) is indeed clustering is the most nontrivial.
However, explicit results for the cumulants in Sec. 5 show that the BMFT indeed agrees with
the BFT in integrable systems.

The BFT was also extended to inhomogeneous states (12) for integrable systems in [23].
We discuss this in light of the present understanding in Appendix D.

4.3 Fluctuation theorem

We now show that the BMFT equations (75a)-(75d) provide an intuitively clear understand-
ing as to how the Gallavotti-Cohen fluctuation theorem (GCFT) is realised in many-body sys-
tems [4, 5]. To unveil the full symmetry stemming from a time-reversal symmetry of Euler
hydrodynamics, we consider in this Subsection the generalised SCGF (18). Accordingly the
equation for H i of the BMFT equations (75d) is altered to

∂t H
i +A i

j [β]∂x H j = −δ(x)
∑

j∈C
λ jA i

j [β] . (83)

In the following, we assume that the solution to (75a)-(75d) are continuous solutions, and
not weak solutions under certain entropy or Lax condition (see the discussion in Subsec 4.1).
We will then discuss briefly what steps may fail for weak BMFT solutions. We recall that for
integrable systems, the BMFT solutions are continuous and well behaved, hence the proof
below applies.

Recall that the GCFT manifests itself as a particular symmetry of the SCGF (14), in the
partitioning protocol, where by scale invariance, we can set T = 1 and F(λ, T ) = F(λ). The
symmetry relation is Eq. (19). This is normally seen to originate from a relation between the
probability associated to time-forward and time-reversed trajectories. Our argument from the
BMFT shows that in fact the theorem holds from a weaker version of time-reversal invariance,
and for any many-body systems which admits an Euler hydrodynamic description, indepen-
dently from the details of the microscopic dynamics (be it classical or quantum, stochastic
or deterministic). The time-invariance requirement is the existence of a “time-reversal” in-
volution T of the algebra of observables, T (o1o2) = T (o1)T (o2), T ◦ T = 1, with the only
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requirements that the a priori measure µ be invariant µ◦T = µ, that it acts on charge densities
and currents as follows:

T (q̂i(x , t)) := Si q̂i(x , 1− t) , (84a)

T ( ȷ̂i(x , t)) := −Si ȷ̂i(x , 1− t) , (84b)

for Si ∈ {+1,−1}, and that the charges Q̂ i whose (time-integrated) currents are put in the
generalised SCGF (18) be invariant, Si = 1 for all i ∈ C. The sign Si is the parity of the charge
Q̂ i , taking values 1 (resp. −1) if it is time-reversal even (resp. odd). Note that the relation for
the current (84b) (where the extra minus sign appears) is not an additional constraint: it is a
consequence of the relation for the densities along with the continuity equation.

The argument is as follows. In the partitioning protocol, the initial state (17) is

β i
ini(x) =

¨

Θ(x)β i
R +Θ(−x)β i

L , i ∈ C ,

β i
0 , otherwise .

(85)

First, we make two variable changes. In (83) we write

λi = β i
L − β

i
R − λ̃

i , (86)

for all i ∈ C. We then note that the extra delta-function terms that this brings can be cancelled
by a shift of the functions H i(x) by β i

ini(x). In order to also exchange the initial and final
conditions (75a), (75b), we further shift by −β i(x , t) and change the sign,

H i(x , t)→ β i
ini(x)− β

i(x , t)−H i(x , t) . (87)

Combining with (75c), the shift does not affect the left-hand side of (83), and hence the
equations stay of the same form. Thus

H i(x , 0) = 0 , (88a)

H i(x , 1) = β i
ini(x)− β

i(x , 1) , (88b)

∂tβ
i +A i

j [β]∂xβ
j = 0 , (88c)

∂t H
i +A i

j [β]∂x H j = −δ(x)
∑

j∈C
λ̃ jA i

j [β] . (88d)

Second, we use the dynamical input of time-reversal invariance, (84). This implies the follow-
ing identities involving GGE averages

qi = Siq̃i , ji = −Sij̃i , (89)

where õ := 〈ô〉β̃ with β̃i = Siβ
i (no sum over repeated indices). These identities give rise in

particular to a relation for the flux Jacobian,

A j
i [β] = −SiS jA

j
i [β̃] . (90)

Relation (90), as well as
Si = 1 , ji = −j̃i , (91)

for all i ∈ C are in fact the only dynamical relations that are needed.
With these relations, we can now make the final, time-reversal change of variable

β i(x , t) = Siβ̃
i(x , 1− t) , H i(x , t) = Si H̃

i(x , 1− t) . (92)
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It is a simple matter to see, using (90) and Si = 1 for any i ∈ C, that (88c), (88d) are in-
variant under this change, and that the initial and final conditions (88a) and (88b) are again
exchanged. Thus we recover the original equations (75a)-(75c) and (83), but in terms of
β̃ i(x , t), H̃ i(x , t) and λ̃i . Assuming that the solution is unique, and re-introducing the explicit
λ-dependence for clarity, we conclude that

β̃
(λ)
(x , t) = β (λ̃)(x , t) , (93)

or equivalently β̃
(λ̃)
(x , t) = β (λ)(x , t). Finally, in order to obtain the symmetry of the SCGF,

we use the expression (78). We have for every i ∈ C, using q(λ) = q[β (λ)] and the relation

ji = −j̃i , that

∂ F(λ)
∂ λi

=

∫ 1

0

dt ji[q
(λ)(0, t)] =

∫ 1

0

dt ji[q̃
(λ̃)(0, t)] = −
∫ 1

0

dt ji[q
(λ̃)(0, 1− t)]

=−
∫ 1

0

dt ji[q
(λ̃)(0, t)] =

∂ F(β
L
− β

R
−λ)

∂ λi
. (94)

Integrating in λi from the mid-point λi = (β i
L − β

i
R)/2, we obtain Eq. (19).

Let us finally comment on the potential pitfalls if weak solutions are involved. The first is
the shift made in (87). This step works only because we use (75c) to keep the left-hand side
of (75d) invariant. However, if β i(x , t) and H i(x , t) admit weak solutions of different entropy
type, for instance with positive, respectively negative, physical entropy production, then this
does not work, and the derivation fails. Another is the time-reversal change of variable itself,
Eq. (92), which, on weak solutions, would simply reverse the entropy production type. As
mentioned, in integrable systems these pitfalls are avoided.

4.4 BMFT of dynamical correlation functions

While in previous studies the MFT has been mainly applied to study density and current fluc-
tuations, it also provides us a powerful way of evaluating dynamical correlation functions in
both homogeneous and inhomogeneous states. In diffusive systems, correlation functions in a
NESS have been studied using the conventional MFT in [7, 77]. To our knowledge, however,
we provide here the first instance where the MFT is applied to compute dynamical correlation
functions on the Euler scale in arbitrary slowly modulating initial states.

In order to illustrate how it works, let us evaluate Sq̂i1 ,q̂i2
(x1, t1; x2, t2), which is the Euler

scaling limit (22) for the charge densities q̂i1 , q̂i2 . We repeat the arguments made in Subsec
4.1 for the SCGF. The BMFT gives the saddle-point result

Sq̂i1 ,q̂i2
(x1, t1; x2, t2) = −

d2

dλ1dλ2
Fcorr[q

∗]
�

�

�

λ1=λ2=0
, (95)

where q∗ minimises the BMFT action Scorr[q, H] associated to the dynamical correlation func-
tion,

Scorr[q, H] := Fcorr[q] +

∫

S
dxdt H i
�

∂tqi + ∂xji[q]
�

, (96)

with Fcorr[q(·, ·)] = F[q(·, 0)] − (λ1qi1(x1, t1) + λ2qi2(x2, t2)). Here the final time T in
S = R × [0, T] could take an arbitrary value so long as T > t1, t2; we will see that the re-
sult is indeed independent of T . Again, we drop the star symbol ∗ for lightness of notation.
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By the saddle-point equation, the total λ2 derivative equals the partial derivative, and since
∂λ2

Fcorr = −qi2(x2, t2) = qi2[β(x2, t2)], we have

Sq̂i1 ,q̂i2
(x1, t1; x2, t2) =

d
dλ

qi2(x2, t2)
�

�

�

λ=0
, (97)

where we redefined λ := λ1, with the associated BMFT equations

H i(x , 0) = β i
ini(x)− β

i(x , 0) , (98a)

H i(x , T ) = 0 , (98b)

∂tβ
i +A i

j [β]∂xβ
j = 0 , (98c)

∂t H
i +A i

j [β]∂x H j = −λδ i
i1
δ(x − x1)δ(t − t1) . (98d)

Here, the boundary conditions are β i(x →±∞, t) = β i
ini(x →±∞) and H i(x →±∞, t) = 0

for any value of t.
Similarly, higher-point functions are accessed by multiple derivatives. In fact, one may

repeat the argument for arbitrary observables, using

Fcorr[q] = F[q(·, 0)]−
n
∑

a=1

λaoa[q(xa, ta)] , (99)

as per the theory of Subsec. 3.1 (see Eqs. (55)-(57)). This gives

Sô1,...,ôn
(x1, t1; · · · ; xn, tn) =

dn−1on[q(xn, tn)]

dλ1 · · ·dλn−1

�

�

�

λ1,...,λn−1=0
, (100)

with the BMFT equations

H i(x , 0) = β i
ini(x)− β

i(x , 0) , (101a)

H i(x , T ) = 0 , (101b)

∂tβ
i +A i

j [β]∂xβ
j = 0 , (101c)

∂t H
i +A i

j [β]∂x H j = −
n−1
∑

a=1

λa
∂ oa

∂ qi
δ(x − xa)δ(t − ta) . (101d)

4.5 (Non)linear hydrodynamic projections and (non)linear response

We first note that two applications of Eq. (100) with n= 2 give

Sô1,ô2
(x1, t1; x2, t2) =

∂ o2

∂ qi

�

�

�

q(x2,t2)
Sô1,q̂i

(x1, t1; x2, t2) , (102)

where q(x2, t2) is the Euler hydrodynamic solution; by recursion this implies the hydrody-
namic projection principle of Eq. (26). Further, as the BMFT equation (98c) implies the Euler
equation (11) relating qi2(x2, t2) with ji2(x2, t2) in (97), we may apply the t2 derivative, use
this Euler equation, take the x2 derivative out, and apply the λ derivative on ji2(x2, t2) using
(102) with ô1 = q̂i1 and ô2 = ȷ̂i2 . The result is the Euler equation (28) for Euler-scale two-point
functions of conserved densities, which is expanded around the inhomogeneous background.
Thus, these two pillars of the study of ballistic-scale correlation functions follow simply from
the BMFT.
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By multiple applications of the λa-derivatives, the BMFT gives rise to a nonlinear hydrody-
namic projection principle, for higher-point functions. For instance, for three-point functions,
dropping the explicit space-time dependence,

Sô1,ô2,ô3
=

d
dλ1

∂ o3

∂ qi

dqi

dλ2
=
∂ o3

∂ qi
Sô1,ô2,q̂i

+
∂ 2o3

∂ qi∂ q j
Sô1,q̂ j

Sô2,q̂i
, (103)

which by recursive applications give rise to (29),

Sô1,ô2,ô3
=
∂ o1

∂ qi

∂ o2

∂ q j

∂ o3

∂ qk
Sq̂i ,q̂ j ,q̂k

+
∂ 2o1

∂ qi∂ q j

∂ o2

∂ qk

∂ o3

∂ ql
Sq̂i ,q̂k

Sq̂ j ,q̂l
+ cyclic perm. of 1, 2,3 . (104)

Thus, for the evaluation of general n-point correlation functions in the Euler scaling limit, it
stays true that it is sufficient to know the dynamical correlation functions of conserved densi-
ties, along with the stationary, homogeneous averages of the local fields involved. We note that
formula (29) gives an immediate explanation for certain 3-point function projection formulae
obtained earlier by linear response from the Euler equations [88, Eqs 187, 189]. Note that the
BMFT techniques described here recast the problem of nonlinear hydrodynamic projections
into simple applications of differential operators, and higher-point formulae are straightfor-
ward to work out.

The transport equation for higher-point functions can be deduced from the nonlinear hy-
drodynamic projection principle, as usual by using the conservation laws. For the three-point
function, for instance, from Eq. (29) one has

∂t1
Sq̂i ,q̂ j ,q̂k

+ ∂x1

�

A l
i Sq̂l ,q̂ j ,q̂k

+H l r
i Sq̂l ,q̂ j

Sq̂r ,q̂k

�

= 0 , (105)

where H l r
i = ∂

2ji/∂ ql∂ qr . This is in agreement with the results of nonlinear response argu-
ments from the Euler equations [22].

As a remark on the overall consistency of our theory, we note that the BMFT (non)linear
hydrodynamic projection formulae are in fact entirely a consequence of the Euler scaling ℓ1−n,
implied by Eq. (21), of n-point connected correlation functions at space-time points scaled
with ℓ, along with the principle of local relaxation of fluctuations. Indeed, one expresses the
observable o[q] as a series in powers of qi ’s, rewrites this in terms of connected correlation
functions, and uses the Euler scaling. The terms that remain nonzero in the Euler scaling limit
give the projection formula. For illustration, consider the scaled two-point function ℓ 〈o1 q2〉

c
ℓ

(where the scaled space-time positions are kept implicit), with an observable of the (purely
theoretical) form o1[q] = q2

1. We evaluate, as ℓ→∞

Sô1,q̂2
∼ ℓ 〈o1 q2〉

c
ℓ

∼ ℓ




q2
1q2

��

ℓ
− ℓ




q2
1

��

ℓ
〈〈q2〉〉ℓ

= ℓ 〈〈q1q1q2〉〉
c
ℓ + 2ℓ 〈〈q1〉〉ℓ 〈〈q1q2〉〉

c
ℓ

∼ 2q1Sq̂1,q̂2
, (106)

where in the last step we used the fact that, by Euler scaling, 〈〈q1q1q2〉〉
c
ℓ = O(ℓ−2) and

〈〈q1q2〉〉
c
ℓ = O(ℓ−1) as ℓ→∞, and thus only the second term remains finite. This gives (26)

for this particular observable.

4.6 Long-range correlations

As discussed in Sec. 2, the BMFT generically predicts that the equal-time correlator
Sq̂i1 ,q̂i2

(x1, t; x2, t) possesses long-range correlations, provided that three elements are present:
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interactions, initial inohomogeneity, and multiple conservation laws. By the BMFT, it is possi-
ble to see this from rather general arguments.

Consider again the BMFT equations (98). Let us denote formally the result of the linear
evolution by the space-time dependent propagator A i

j ,

∂tγ
i +A i

j [β]∂xγ
j = 0 , (107)

from time t = t1 to time t = t2, by using the operator Uλ(t2, t1):

γ(t2) = Uλ(t2, t1)γ(t1) , (108)

where here and below, for lightness of notation, when not writing the spatial argument, the
result is seen as a function of space. We make explicit the λ-dependence of the operator;
recall that the propagator A i

j [β] depends in general on β i ’s (unless the hydrodynamic system
is non-interacting), which are the λ-dependent solution to Eqs. (98).

Clearly,
β(t) = Uλ(t, t ′)β(t ′) , (109)

Upon integrating both sides of the equation (98d) for H over [t1 − ϵ, t1 + ϵ] (ϵ > 0 in-
finitesimal), we have H i(x , t1 + ϵ) − H i(x , t1 − ϵ) = −λδ i

i1
δ(x − x1) . Since, by the bound-

ary condition (98b), 0 = H(T ) = Uλ(T, t1 + ϵ)H(t1 + ϵ), invertibility of the evolution op-
erator implies H i(x , t1 + ϵ) = 0, which yields H i(x , t1 − ϵ) = λδ i

i1
δ(x − x1). Writing

H(t1 − ϵ) = Uλ(t1, 0)H(0) = Uλ(t1, 0)βini − Uλ(t1, 0)β(0) from the other boundary condition
(98a), and using (109), we then obtain

β i(x , t1) =
�

Uλ(t1, 0)βini

�i
(x)−λδ i

i1
δ(x − x1) . (110)

Eq. (110) is a crucial result concerning the structure of BMFT. Note that if the evolution
operator Uλ(t1, 0) was simply the Euler hydrodynamic (nonlinear) evolution, independent of
λ, then Uλ(t1, 0)βini would give β i(x , t1) evaluated at λ= 0. In this case, (110) would simply
state that the insertion of the observable at t = t1 can be implemented by evolving the fluid
from the initial state up to time t1, and then by perturbing the fluid state and measuring its
linear response. However, Uλ(t1, 0), representing time evolution for times t < t1, is not the
fluid evolution, and depends on λ itself, even though the inserted observable is at time t1.
In (110), the λ dependence comes both from the explicit δ-function, and from the evolution
operator itself. The former represents the linear response contribution, while the latter, we
interpret as coming from nonlinear correlated wave production and scattering occurring in
the times before t1; an interpretation that is made clearer in our studies of integrable systems.

In Appendix C, we review hydrodynamic response theory. In particular, we show on the
basis of the result in Eq. (110) that hydrodynamic response theory for two-point function is
correct only if the model is non-interacting, the earlier time in the correlator is zero t1 = 0,
or the state is homogeneous. For higher-point function, it is correct only if the model is non-
interacting, or all but one of the times are zero.

From (110) one evaluates the correlation function (97) at t2 = t1 as follows

Sq̂i1 ,q̂i2
(x1, t1; x2, t1) =

d
dλ

qi2[β(x2, t1)]

�

�

�

�

λ=0

= Ci1 i2(x1, t1)δ(x2 − x1)− ∂λ
�

Uλ(t1, 0)βini

�i
(x2)
�

�

�

λ=0
Ci i2(x2, t1) .

(111)

The first term in the resulting expression is the linear response (see Appendix C), which at
equal times is simply the thermodynamic response of the fluid cell and thus supported at equal
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positions. The second term, on the other hand, clearly demonstrates the potential presence
of long-range correlations – recall that the derivative with respect to λ brings a dependence
on x1, and in general the result is nonzero for x1 ̸= x2. It does not appear to be possible in
general to obtain a more explicit expression of the resulting correlations than (111), however
we will see that in integrable systems, explicit integral equations are found, which give indeed
nonzero results for x1 ̸= x2.

As we mentioned, in certain situations no long-range correlations are expected even at
t1 > 0 (for t1 = 0 no long range correlation appear as the initial state is by assumption not
correlated; in this case Uλ(0,0) = 1). Two of the conditions can be seen immediately from the
above result. Indeed, the second term in (111) vanishes either if the system is noninteracting
(in which case Uλ(t1, 0) is λ-independent) or the initial condition is homogeneous (in which
case Uλ(t1, 0)βini = βini).

For the third condition, that no long range correlation appear if there is only one conser-
vation law, a different general argument is required. For this purpose, consider the evolution
equation (34) for equal-time Euler-scale correlations, which follows from hydrodynamic pro-
jections (shown in the previous subsection from BMFT). In the single component case, it reads

∂tSq̂,q̂(x , t; x ′, t) + ∂x[A(x , t)Sq̂,q̂(x , t; x ′, t)] + ∂x ′[A(x
′, t)Sq̂,q̂(x , t; x ′, t)] = 0 . (112)

It is a simple matter to show that the form Sq̂,q̂(x , t; x ′, t) = C(x , t)δ(x − x ′) is invariant

under time evolution. As the initial condition satisfies it, with C(x , 0) = C(x), then indeed
the solution preserved the delta-function structure, and no long-range correlation appear. In
particular, one finds for C(x , t)

∂tC(x , t) + ∂x[A(x , t)C(x , t)] = 0 . (113)

The argument using the evolution equation makes it less evident how no long-range cor-
relation may appear if the flux Jacobian is independent of the state, as must be true from
the BMFT result (111). Here we simply note that, in this case, by diagonalising the resulting
evolution equation, and using conditions on the covariance matrix of normal modes [15] one
recovers the lack of long-range correlations.

It should be emphasised that various types of long-range correlations have been observed
in both driven-diffusive NESS [91,92], boundary-driven NESS in ballistic quantum spin chains
[93] and in ballistic NESS of integrable systems [60]. In diffusive systems, a NESS, which is
usually induced by an external field and hence has nonzero gradients, presents 1/x spatial
correlations due to Fourier-space discontinuities of diffusive transport coefficients. Indeed, a
discontinuity in the Fourier space generically points to 1/x decay because of the representa-
tion Θ(k) ∼
∫

R dx eikx/x of the step function. The existence of such long-range correlations
was also microscopically established for the SSEP, which was attributed to non-locality of the
density large deviation function in the NESS [94]. In integrable systems, a ballistic NESS
also develops at long times from unbalanced initial conditions, e.g., in the partitioning proto-
col; it itself homogeneous (it has no gradient) with constant fluxes, as permitted by ballistic
transport. For instance, in the case of the free massive scalar field theory, it was shown that
correlators show long-range correlations with varying exponents (1/x decay for certain cor-
relations involving the “fundamental fields”, and 1/x2 for correlations involving conserved
densities) [59]. In the same vein, it was also demonstrated that density-density correlations
in the Lieb-Liniger model in a NESS have long range, 1/x2, due to discontinuities in the quasi-
particle distributions [60]. Importantly, these long-range correlations are purely due to dis-
continuities in the NESS density matrix, in its representation in terms of asymptotic particles,
and do not necessitate interactions. In the case of the ballistic boundary-driven XX quantum
spin chain [93], long-range correlations in the NESS, similarly, do not need interactions and
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they can only be detected in the atypical-biased dynamics describing quantum trajectories
supporting large currents (being absent, instead, in the typical-unbiased dynamics).

Long-range correlations in all these cases are in sharp contrast with what the BMFT cap-
tures: long-range correlations that take generic shape in space, but that decay as 1/ℓ and are
supported on regions that grow with ℓ as time grows like ℓ (and the initial inhomogeneity
is of length scale ℓ). These are controlled entirely by the Euler-scale hydrodynamics, and
do not necessitate singularities in the Fourier or asymptotic-particle space representation of
any transport coefficient. They represent nontrivial correlations between separate fluid cells,
because integrals of the resulting correlation functions over macroscopic regions that are at
macroscopic separations have finite values. This is in contrast, in particular, to the 1/x2 con-
tributions in ballistic NESS, that pertain to single fluid cells.

4.7 Fluctuations inside fluid cells

We now argue that the BMFT gives information not only about the Euler-scale correlations
and fluctuations, which occur at macroscopic scales, but also about fluctuations within the
fluid cells. More precisely, we argue that the fluid cells’ thermodynamics can be accessed – that
is, the susceptibilities and in general all the cumulants of total charges in the cell, scaled by
the size of the cell. As the free energy generates such cumulants, this amounts to the specific
free energy of the fluid cell, i.e., its total free energy divided by its size.

Most importantly we also argue that, in general in interacting, non-integrable models, the
specific free energy of the fluid cell at macroscopic coordinates x , t, is not that of the state de-
scribed by the solution to the Euler equation β i(x , t). But in integrable systems, the fluid cell
free energy is indeed that of this GGE. The physics is similar to that behind long-range corre-
lation, but instead of being that of interactions between different fluid mode, the nontrivial
fluctuations within fluid cells is due to modes self-interaction. Here self-interaction refers to
the nontrivial dependence of normal modes on their own propagation (effective) velocities.
Thus, we conjecture that this effect is absent whenever the fluid is linearly degenerate (such
as in integrable systems).

The question is about the large-deviation theory for the mesoscopically extensive conserved
quantities Qi within any given fluid cell. At the macroscopic coordinates x , t, these may be
taken as

Qi = Lqi(ℓx ,ℓt) . (114)

In order to illustrate the ideas, we concentrate on the second cumulants, but similar calcula-
tions can be done for higher cumulants.
In analogy with usual thermodynamics, by extensivity of the charges the cumulants are ex-
pected to scale like L, which is trivial for the first cumulant,




Qi

�

ℓ
∼ Lqi(x , t). The pic-

ture is that within the fluid cell {(ℓx + y,ℓt) : y ∈ [−L/2, L/2]}, correlation functions



q̂i(ℓx + y,ℓt)q̂ j(ℓx ,ℓt)
�c
ℓ

decay quickly as |y| grows, up to values of order ℓ−1, where the
long-range correlations start. Note that it has to be of this order so that it is smoothly connected
to long-range correlations outside the fluid cell, which would amount to the contribution to



Qi1Qi2

�c

ℓ
with magnitude O(L2/ℓ). Thus, for instance for the second cumulants, one expects




Qi1Qi2

�c

ℓ
∼ L(Ci1,i2 +O(L/ℓ)) for some Ci1,i2 to be determined. Here O(L/ℓ) is a sub-leading

term with respect to the first one because usually L is taken as L = ℓα for some 0 < α < 1 by
the mesoscopic scaling, hence L/ℓ= L1−1/α < 1. We note that under the picture of fast decay
within the fluid cell, one may also take

Qi :=

∫ εℓ/2

−εℓ/2
dy q (ℓx + y,ℓt) , (115)

for ε > 0 small, which is useful for the calculation below.
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It turns out that the covariance matrix



Qi1Qi2

�c

ℓ
is determined by the coefficient C i1,i2(x , t)

of the delta-function contribution,

Sq̂i1 ,q̂i2
(x , t; x ′; t) = Ci1,i2(x , t)δ(x − x ′) + regular . (116)

Indeed,




Qi1Qi2

�c

ℓ
=

∫ εℓ/2

−εℓ/2
dy



qi1(ℓx + y, t) Lqi2(ℓx , t)
�c

ℓ

= Lℓ

∫ ε/2

−ε/2
dy



qi1(ℓ(x + y), t)qi2(ℓx , t)
�c

ℓ

= L

∫ ε/2

−ε/2
dySq̂i1 ,q̂i2

(x + y, t; x , t)

= LC i1,i2(x , t) (for ε small) . (117)

The question is therefore about the coefficient of this delta-function.
In the BMFT result (111), the first term gives for coefficient the C-matrix of the GGE rep-

resented by β i(x , t); this term gives the GGE covariances. But what about the second term?
In integrable models, the BMFT predicts that the covariace matrix is correctly described by

the GGE e−
∑

i β
i(x ,t)Qi associated to the Lagrange multipliers β i(x , t) at that point. In particular,

the second term in (111) does not have delta-function contributions. Thus, extending this to
all cumulants, although the Euler-hydrodynamics time evolution of (12) does not correctly
describe Euler-scale correlations at macroscopic times, in integrable models, it still correctly
describes all fluctuations of extensive quantities within fluid cells.

By contrast, a simple analysis for non-integrable models with a single fluid mode sug-
gests that, in such cases, the fluctuations within fluid cells are not given by the Gibbs states
e−
∑

i β
i(x ,t)Qi . That is, although all averages of local observables agree with this state, meso-

scopically extensive quantities fluctuate according to a different distribution. In this case, the
covariance matrix satisfies (113), and thus it evolves nontrivially.

Of course, local averages do not probe the full distribution: in the limit of large fluid cells,
from the viewpoint of local averages, the distribution concentrates on the micro-canonical
shell specified by the local conserved densities qi(x , t). The scaled cumulants of mesoscopic
quantities Qi probe more subtle, rare fluctuations (in the sense of large deviation theory). For
instance, it is well known that the macrocanonical and microcanonical ensembles are equiva-
lent for local averages, but give different scaled cumulants of extensive observables (extensive
observables are, in fact, non-fluctuating in the microcanonical ensemble). In the BMFT, there
is no reason for the fluid cell to be distributed according to e−

∑

i β
i(x ,t)Qi ; what we find is

that inhomogeneous long-wavelength initial states generate in general, over time, different,
non-canonical distributions within fluid cells.

We elucidate this aspect in Appendix E by considering the TASEP as a paradigmatic exam-
ple.

5 BMFT for integrable systems

There are many good reasons to study the out-of-equilibrium physics of integrable systems, as
it is well established that integrability qualitatively affects thermalisation and hydrodynamic
behaviours (see, e.g., the special issues [65,95]). However, here the main purpose is to provide
explicit examples of applications of the BMFT, and demonstrate that the machinery of GHD

35

https://scipost.org
https://scipost.org/SciPostPhys.15.4.136


SciPost Phys. 15, 136 (2023)

allows us to obtain the exact expressions of the two main objects we have been focusing on,
the SCGF F(λ, T ) and the Euler-scale dynamical correlation function Sq̂i1 ,q̂i2

(x1, t1; x2, t2).

5.1 The BMFT formulation using GHD

Integrable many-body systems possess a large number, that grows with the system’s size, of
extensive conserved charges [96]. Probably the most important consequence of this is that
many-body scattering processes factorise into two-body processes and preserve all momenta.
This in turn amounts to the existence of stable excitations called quasi-particles: a quasi-
particle is identified with an asymptotic particle of the model (or an “asymptotic object”, be it
a particle, bound state, soliton, radiation mode, etc.), and by elastic and factorised scattering,
its trajectory can be “traced” within space-time throughout the full scattering process, from the
in-state to the out-state. This is true at least at the level of precision required for Euler hydro-
dynamics. Below we will refer to quasi-particles simply as “particles”, and we will parametrise
their associated asymptotic momenta as pθ in terms of a “rapidity” θ . In general, the rapidity θ
may be a multiple index, encoding both the asymptotic momentum and the type of asymptotic
object, if the model admits many types; for simplicity we will assume it is a single continuous
index take values in R, as is the case for the Lieb-Liniger and hard-rod models, where one may
use simply pθ = θ .

The density of particles per unit rapidity Q̂θ =
∫

dx ρ̂θ (x) (i.e., ρ̂θ (x)dθdx counts the
number of particles with rapidity within [θ ,θ + dθ ) and position within [x , x + dx)) is an
extensive conserved charge, and these together form a complete basis of extensive charges,7

see the review [25]. Thus θ parametrises the hydrodynamic modes. The standard formulation
of GHD is as a hydrodynamic theory in terms of such modes. Thus it is a hydrodynamic
equation for the average densities ρθ (x) := qθ (x). The corresponding average currents take
the form jθ = veff

θ
ρθ (see the reviews [97,98]) where the effective velocity satisfies

p′θ veff
θ = E′θ + 2π

∫

dφ Tφ
θ
ρφ

�

veff
φ − veff

θ

�

, (118)

here Eθ is the asymptotic energy of the particle θ , and primes are derivatives, e.g.,
p′
θ
= dpθ/dθ . The effective velocity depends on the specifics of the interactions in the model

via the differential scattering phase Tθ
φ

, which is, in quantum systems, related to the two-

body scattering phase Sθφ as Tθ
φ
= −i d log Sθφ/(2πdθ ). Here for simplicity we assume that

Tθ
φ
= Tφ

θ
is symmetric, which is the case for many integrable systems (seeing T as a matrix,

the column index is the leftmost, superscript, and the row index is the rightmost, subsript
index). The GHD equation is then

∂tρθ + ∂x(v
eff
θ ρθ ) = 0 . (119)

See the lecture notes [3] for details.
We will use Greek indices for labelling rapidities, and Roman indices, as done in previous

sections, for labelling a generic basis of conserved charges. Lagrange multipliers associated
to the charges Q̂θ will be denoted βθ . These are related to the Lagrange multipliers β i , for a
generic basis of conserved charges, as

βθ = β ihθi , (120)

where hθi is the one-particle eigenvalue of Q̂ i in quantum systems, or the quantity of that
charge carried by the asymptotic object θ in classical systems. Charge densities and current
averages are given by qi =

∫

R dθ hθi ρθ and ji =
∫

R dθ hθi jθ .

7More precisely, Q̂θ is not quite extensive, but together for θ ∈ R they form a “scattering basis” for the space of
extensive conserved charges, out of which any charge can be written as a θ integral.
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In applying the BMFT to GHD, it is convenient to re-write the path-integral (49) in terms
of ρθ . We now explain how this work; this will also allow us to introduce some of the main
objects of the thermodynamics of integrable many body systems.

The BMFT expectation values are given by

〈•〉=
∫

(S×R)
dµ[ρ(·, ·)]e−ℓF[ρ(·,0)]δ(∂tρ + ∂xj[ρ])• , (121)

where the path-integral is performed over all the possible configurations of (x , t,θ ) 7→ ρθ (x , t),
with (x , t,θ ) ∈ S × R = R × [0, T] × R. Again, the delta function is best understood via its
integral representation

δ(∂tρ + ∂xj[ρ]) =

∫

(S×R)
dµ[H(·, ·)]exp

�

−
∫

S×R
dtdxdθ Hθ (∂tρθ + ∂x(v

eff
θ ρθ ))

�

. (122)

The probability distribution for the initial fluctuation in Eq. (43) reads

F[ρ(·, 0)]=

∫

R
dx

�∫

R
dθ βθini(x)ρθ (x , 0)− f [βini(x)]−s[ρ(x , 0)]

�

, (123)

where the free energy density f [β] and the (Yang-Yang) entropy density s[ρ] [99, 100] are
given by f [β] =

∫

R dθ p′
θ
Fθ/(2π) and s[ρ] =

∫

R dθ ρtot
θ
(nθεθ − Fθ ), respectively, with

Fθ = F(εθ ) the free energy function [3]. The latter encodes the statistics of the quasi-
particles; e.g., for fermions it is given by F(ε) = − log

�

1+ e−ε
�

. The quantities nθ and εθ

are the occupation function and pseudo-energy, respectively, and are related to each other by
nθ = dF(ε)/dε|ε=εθ . The pseudo-energy is in turn related to the Lagrange multipliers by the
non-linear integral equation

εθ = βθ +

∫

R
dφ Tθφ F

φ . (124)

The total density of states ρtot
θ

is

ρtot
θ =

p′
θ

2π
+

∫

R
dφ Tφ

θ
ρφ , (125)

and one can check that the above definitions imply the relation

nθ =
ρθ
ρtot
θ

. (126)

Finally, let us comment on how the Lieb-Liniger model and the hard rods are characterised
by the quantities we introduced above. First, the differential scattering phase Tθ

φ
is given,

respectively, as follows:

(TLL)
θ
φ =

2c
(θ −φ)2 + c2

, (THR)
θ
φ = −a , (127)

where c is the coupling constant of the Lieb-Liniger model (5). Second, another quantity
that distinguishes them is the statistics factor F(ε), which reads FLL(ε) = − log

�

1+ e−ε
�

and
FHR(ε) = −e−ε. Note that, since both of them are Galilean invariant, the dispersion relation is
given in the same way: Eθ = θ2/2 and pθ = θ .
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5.2 Main predictions

Before jumping into the formulation of the BMFT for integrable systems, we collect in Sub-
secs. 5.2.1 and 5.2.2 the main results obtained from the BMFT for the cumulants and the
correlation functions, respectively, so that readers who are interested in only results can sim-
ply consult. The details of the calculations for current fluctuations and cumulants are reported
in Subsecs. 5.3 and 5.4 and in Appendix G, while correlation functions are discussed in Sub-
sec. 5.5 and in Appendix H.

5.2.1 Cumulants

The evaluation of the SCGF F(λ, T ) is equivalent to computing all the cumulants
cn(T ) = dnF(λ, T )/dλn|λ=0, see the definitions in Eqs. (14) and (15). The BMFT allows us
to compute an arbitrary cn(T ) by knowing how thermodynamic quantities change as λ varies.
The equation that turns out to be instrumental in computing cn(T ) is the one for ∂λε

θ , which
we call the flow equation (see Eq. (147)), for the pseudo-energy εθ .

Using the flow equation, we can compute the first few cumulants for homogeneous initial
conditions. The final formulas for the second and the third cumulants are given by

chom
2 =

∫

R
dθ χθ |veff

θ |
�

hdr;θ
i∗

�2
, (128)

chom
3 =

∫

R
dθ χθ |veff

θ |h
dr;θ
i∗

�

sθ f̃θ
�

hdr;θ
i∗

�2
+3
h

s f
�

hdr
i∗

�2idr;θ�

. (129)

Let us explain the quantities that appear in Eqs. (128) and (129). First, the dressing oper-
ation is defined for any function of θ as adr;θ =

∫

R dφ (R−T)θ
φ
aφ , where the transformation

matrix R is defined by R = 1 − nT ; the superscript T means the transpose, and the super-
script −T is the transpose of the inverse. Note that the matrix R diagonalises the flux Jacobian
A φ
θ
= ∂ (veff

θ
ρθ )/∂ ρφ , i.e., RAR−1 = diag veff. The quasi-particle susceptibility χθ := ρθ fθ is a

statistics-dependent quantity where fθ = f (εθ ) = −(d2F(ε)/dε2)/(dF(ε)/dε)
�

�

ε=εθ (for exam-
ple, fθ = 1−nθ for fermionic statistics). Further, we define f̃θ := −(d log f (ε)/dε|ε=εθ +2 fθ ),
and sθ is the sign of the effective velocity sθ := sgn veff

θ
.

Expressions (128) and (129) precisely coincide with the cumulants obtained previously
using the BFT in Ref. [21]. Since the homogeneous BFT is built solely upon the tenet of
Euler hydrodynamics (with the assumption of strong clustering in both space and time), the
agreement gives an important consistency check for the BMFT.

The real advantage of the BMFT, however, is that it also allows us to calculate the SCGF
F(λ, T ) and the cumulants for inhomogeneous initial conditions in a unified way. We em-
phasize that results for the SCGF F(λ, T ) and the cumulants in inhomogeneous initial states
are scarce. So far, this problem has been, indeed, addressed only with the inhomogeneous
BFT approach of Ref. [23]. Importantly, since it does not account for long-range correlation
among fluid cells, which in general are present in ballistic many-body systems by our results
as discussed in Sec. 1 and 3, this approach is at present not solidly founded. The BMFT ap-
proach accounts for all ballistic effects, including potential long-range correlations, to large
scale fluctuations in interacting and inhomogeneous fluids.

We evaluated the second cumulant cpart
2 in the partitioning protocol (recall that the cu-

mulants cpart
n do not depend on T for the partitioning protocol by scale invariance, see the

discussion after Eqs. (14) and (17) in Subsec. 1).
In integrable systems, the partitioning protocol can be solved explicitly; the result is a

space-time profile of states which depends only on the ray ξ = x/t, by scale invariance. The
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space-time profile is determined by the occupation function nθ (ξ), which satisfies the following
self-consistency equation,

nθ (ξ) = nR,θΘ
�

ξ− veff
θ (ξ)
�

+ nL,θΘ
�

veff
θ (ξ)− ξ
�

, (130)

where the ξ-dependence of veff
θ
(ξ) is determined by nθ (ξ). The occupation functions nR,θ and

nL,θ are those corresponding to the left and right states, respectively, in (17). A remarkable
feature of the solution is that, since θ is a continuous parameter, it naturally gives rise to a
smooth profile of the fluid in space-time, where each fluid mode θ presents a single contact
discontinuity [3,16].

We find from the BMFT that cpart
2 is completely given by the thermodynamic quantities eval-

uated with respect to nθ (ξ= 0):

cpart
2 =

∫

R
dθ χθ (0) |veff

θ (0)|
�

hdr;θ
i∗
(0)
�2

. (131)

Eq. (131) explicitly shows that cpart
2 , computed over the inhomogeneous and non-stationary

partitioning protocol state, reduces to the cumulant (128) evaluated on the homogeneous
NESS, the state at ξ = 0 emerging at long times in the partitioning protocol. This is a highly
non-trivial statement since in inhomogeneous and non-stationary fluids [19, 31], indirect ef-
fects, present if the model is interacting and not directly caused by the propagation of normal
modes, means that correlations depend on the full inhomogeneous fluid profile and are not
only determined by the fluid characteristics connecting the space-time points of interest. It
turns out that these additional effects cancel out in the partitioning protocol when we count
the statistics at x = 0; in general, however, these effects are present if we change the ray on
which the statistics is evaluated or use other initial conditions.

In Subsec. 5.4, we present the detailed derivation of Eq. (131) for cpart
2 with the BMFT

formalism and we compare it with numerical simulations of the hard-rod model observing an
excellent agreement. The derivation of Eq. (131) with the inhomogeneous version of BFT is
reported in Appendix D. The numerical analysis we perform thereby validates our new BMFT.

We also checked that the inhomogeneous BFT yields Eq. (131). Hence for this cumulant in
the partitioning protocol on the ray ξ= 0, the inhomogeneous BFT is correct, despite not tak-
ing into account long-range correlations. Within the BMFT, this can be understood technically
by the fact that the contribution to cpart

2 coming from the long-range part of the current-current
correlator vanishes because the fluid velocity of the normal mode that propagates on the ray
ξ= 0 is zero.

In principle the higher cumulants cn≥4 can be computed by evaluating ∂ n−1
λ
εθ
�

�

λ=0, but
the task gets increasingly convoluted. Although the exact expression is harder to write down,

one can also calculate the SCGF F(λ, T ) =
∫

S dtdθ
∫ λ

0 dλ′ hθi∗j
(λ′)
θ
(0, t)/T by solving the MFT

equation with a λ-dependent initial condition (144), using the method of characteristics. We
hope to look into this in a future work.

5.2.2 Dynamical correlation functions

As explained in the previous sections, the BMFT predicts the existence of long-range correla-
tions in generic ballistic many-body systems. Since such long-range correlations had not been
predicted by any other means, it is of paramount importance to quantitatively evaluate them
in a concrete model.

To this end, we computed the dynamical correlation function Sqi1 ,qi2
(x1, t; x2, t) for in-

tegrable systems using the BMFT, and we obtained the following formula, which specialises
(111):

Sq̂i1 ,q̂i2
(x1, t; x2, t) = Ci1 i2(x1, t)δ(x1 − x2) + Ei1 i2(x1, x2; t) , (132)
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where Ci1 i2(x1, t) :=
∫

R dθ [χθhdr;θ
i1

hdr;θ
i2
](x1, t) is the local covariance matrix, and

Ei1 i2(x1, x2; t) := −
∫

R dθ [χθhdr;θ
i2

Eθ ](x2, t) is the term that represents long-range correla-
tions. The symbol [•](x , t) means that all the quantities inside the bracket are evaluated at
the space-time point (x , t). The function Eθ (x , t) satisfies the integral equation

Eθ (x , t) = Eθ0 (x , t) +wθ (x , t)

∫ x

−∞
dy [χE]dr;θ (y, t) , (133)

where we defined (here and below, ∂ is the derivative with respect to the spatial argument)

wθ (x , t) :=
∂ εθini(uθ (x , t))

ρtot
θ
(uθ (x , t), 0)

, (134)

with the initial pseudo-energy εθini(x) related to β i
ini(x) via (124). We set

uθ (x , t) := Uθ (x , t; 0), where Uθ (x , t; s) defines the fluid characteristics for the mode θ : it
is the spatial coordinate of the characteristic line, at time s, that passes through (x , t). It
satisfies [75]

∫ Uθ (x ,t;s)

−∞
dy ρtot

θ (y, s) + v−θ (t − s)=

∫ x

−∞
dy ρtot

θ (y, t) , (135)

with v−
θ

:= limx=−∞ veff
θ
ρtot
θ

.
Finally, the source term of the integral equation (133), i.e., Eθ0 (x , t), is written as a sum of

two terms Eθ0 (x , t) =Dθ1 (x , t) +Dθ2 (x , t). The first term reads

Dθ1 (x , t) :=

∫

R2

dφ dα (R−T)θφ(uθ (x , t), 0)∂
�

(RT)φαhdr;α
�

(x1, t)Θ(uθ (x , t)− uα(x1, t))

−wθ (x , t)[χhdr]dr;θ (x1, t)Θ(x2 − x1) . (136)

The second term comes from the initial condition

Dθ2 (x , t) := −wθ (x , t)

∫ uθ (x ,t)

−∞
dy [χD3]

dr;θ (y, 0) , (137)

where Dθ3 (x , 0) is given by

Dθ3 (x , 0) :=− hdr;θ (x1, t)
δ(x − uθ (x1, t))
∂ Uθ (uθ (x1, t), 0; t)

+

∫

R2

dφ dα (R−T)θφ(x , 0)∂
�

(RT)φαhdr;α
�

(x1, t)Θ (x − uα(x1, t)) . (138)

Despite the tedious expression of the long-range correlation term Ei1 i2(x1, x2; t), the numerical
evaluation of it turns out to agree well with its value obtained from hard-rod simulations. This
confirms that not only do the long-range correlations exist at least in integrable systems but
also they can be accurately computed by the BMFT. The comparison between the predictions
by the BMFT for the correlator Sq̂0,q̂0

(x , t; 0, t), from Eqs. (132)-(138) specialized to the hard-
rod model (cf. Eqs. (38) and (39)), and numerics is reported in Fig. (1) of the companion
manuscript [24]. For the correlator Sq̂0,q̂0

(x , t;−x , t), the comparison is reported in Sec. 5.5
in Fig. 4.
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5.3 Current fluctuations in integrable systems

In what follows, for brevity, much like for romain indices, we will also use Einstein’s “summa-
tion convention” for rapidities: whenever expressions contain factors with repeated upper and
lower rapidity indices, integrals over R are understood, for instance

aθ bθ ≡
∫

R
dθ aθ bθ . (139)

As is required, we will also use veff;θ = veff
θ

.
Let us start with current fluctuations, for which we follow the procedure of Subsec. 4.1.

The action to be minimised (cf. Eq. (74)) is

Scurr[ρ, H] = Fcurr[ρ] +

∫

S
dtdx Hθ (x , t)(∂tρθ + ∂x jθ [ρ]) , (140)

where Fcurr[ρ] = F[ρ(·, 0)]− λ
∫ T

0 dt hθi∗ jθ [ρ]. Let us redefine hθ := hθi∗ for brevity. Accord-
ingly the set of MFT equations, from Eq. (76), for integrable models are

λhθΘ(x)− βθ (x , 0) + βθini(x)−Hθ (x , 0) = 0 , (141a)

λhθΘ(x)−Hθ (x , T ) = 0 , (141b)

∂tβ
θ (x , t) +A θφ [β(x , t)]∂xβ

φ(x , t) = 0 , (141c)

∂t H
θ (x , t) +A θφ [β(x , t)]∂x Hφ(x , t) = 0 . (141d)

Note that the third equation is equivalent to the usual GHD equation in terms of the density
of particle ∂tρθ + ∂x(veff

θ
ρθ ) = 0 via AC = CAT. To solve these equations self-consistently,

we shall first recall how one can solve the initial-value problems in GHD. For simplicity, we
treat an integrable many-body system where quasi-particles have a single species and scat-
ter diagonally (e.g., Lieb-Liniger model). Let us start with introducing normal modes. One
usually introduces the normal modes by diagonalising the linearised Euler equation, but in
integrable systems it has been known that normal modes exists even in the fully non-linear
GHD equation, which are actually not unique [16,17]. We choose and define our normal mode
by ∂t,xε

θ := (R−T(x , t))θ
φ
∂t,xβ

φ , where the pseudo-energy εθ was already defined in (124).

Accordingly we rewrite (141c) as ∂tε
θ + veff;θ∂xε

θ = 0 [16, 17]. It is clear that any function
of εθ , e.g., the occupation function nθ , is also transported in a convective fashion as εθ , hence
is eligible for being a normal mode. Motivated by this we also introduce a normal mode Gθ

for the auxiliary field Hθ in the same way:

∂t,x Gθ := (R−T(x , t))θφ∂t,x Hφ . (142)

While a priori it is not obvious if such a normal mode could exist, it turns out in integrable
systems that it does. This is because a compatibility condition ∂t∂x Gθ = ∂x∂t G

θ holds due
to the fact that the row of the (transposed) transformation matrix RT is a normal mode:
∂t(RT)θ

φ
+ veff

φ
∂x(RT)θ

φ
= 0, which is obvious from the definition of R.

In terms of the normal modes, one readily obtains the solution of the MFT equations. We
first solve the equation for Gθ (x , t) given by

λhdr;θ (0, T )Θ(x)− Gθ (x , T ) = 0 , (143a)

∂t G
θ (x , t) + veff;θ (x , t)∂x Gθ (x , t) = 0 . (143b)

Note that in principle there is an additional constant term in (143a), which is Gθ (−∞, T ).
This however can always be set to zero, as this goes away when transforming back to Hθ ,
whose boundary conditions are specified after Eq. (76).
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Since Gθ (x , t) is a normal mode, it admits the solution Gθ (x , t) = Gθ (rθ (x , t), T ) =
hdr;θ (0, T )Θ(rθ (x , t)), where we defined rθ (x , t) := Uθ (x , t; T ) from Eq. (135). The full
space-time profile of Gθ is however of no importance, and we merely use it to write down
a self-consistent initial condition for βθ (x , 0):

βθ (x , 0) = βθini(x) +λhθΘ(x)−λ(RT)θφ(0, T )Θ(x − uφ(0, T ))hdr;φ(0, T ) . (144)

Therefore the MFT dynamics is now recast into GHD with the λ-dependent initial con-
dition given in the above self-consistent way, which again can be solved by the method
of characteristics. A somewhat special initial condition that complicates these considera-
tions is the partitioning protocol in Eq. (85), where one starts with a step initial condition
βθini(x) = β

θ
L Θ(−x) + βθRΘ(x). This situation calls for a more careful treatment, as the flow

equation ∂λε
θ (x , t) generically contains hdr(0, 0), which depends on the regularisation cho-

sen in the partitioning protocol. Such dependence on the regularisation at x = 0 is also re-
flected in the fact that the transformation matrix R(x , t) defined as above becomes ill-defined
at x = t = 0 due to δ(0) that stems from ∂xβ

θ (x , 0) at λ = 0. Fortunately in integrable
systems one can directly define R using the integral equation that defines εθ , which yields
∂λε

θ (x , t) = (R−T(x , t))θ
φ
∂λβ

φ(x , t). Note that which regularisation to use does not affect

the definition of Gθ , as Hθ and its derivatives are zero at λ= 0 anyway.

5.4 Flow equation and cumulants

To evaluate the cumulants, one needs to know how the fluid variables change as λ varies, i.e.,
∂λε

θ (x , t) (from which one recovers the derivatives of other variables). In general, the flow
equation for ∂λε

θ (x , t) takes a cumbersome form, but in the homogeneous case βθini(x) = β
θ
ini,

where βθini does not depend on the space coordinate x , it is given in a simple way. Note from
(144) that, using ∂xβ

θ := (RT(x , t))θ
φ
∂xε

φ , we have

∂xε
θ (x , 0) = λhdr;θ (0,0)δ(x)−λδ (x − uθ (0, T ))hdr;θ (0, T ) , (145)

where we used (RT)φ
θ
(uθ (x , t), 0) = (RT)φ

θ
(x , t) and note that we do not take summations

over rapidities when the only quantities with lower indices are uθ (or rθ ). Upon integrating
over x and invoking εθ (x , t) = εθ (uθ (x , t), 0), the full profile of the normal mode is readily
obtained as

εθ (x , t) = εθini +λ
�

hdr;θ (0, 0)Θ(uθ )− hdr;θ (0, T )Θ(rθ )
�

, (146)

where the identity Θ(uθ (x , t)− uθ (0, T )) = Θ(rθ (uθ (x , t), 0)) = Θ(rθ (x , t)) was invoked and
we introduced the shorthanded notation uθ := uθ (x , t) and rθ := rθ (x , t). What we are after
however is not the explicit εθ (x , t) but rather its derivative by λ, which is obviously given by

∂λε
θ (x , t) = ∂λ
�

λ(hdr;θ (0,0)Θ(uθ )− hdr;θ (0, T )Θ(rθ ))
�

. (147)

This is the sought flow equation in the homogeneous case. The flow equation with a generic
inhomogeneous initial condition (barring the partitioning protocol, which will be treated sep-
arately later) is reported in Appendix F. The flow equation (147) essentially encodes all the in-

formation needed to compute the cumulants that are given by cn =
∫ T

0 dt ∂ n−1
λ

hθ jθ (0, t)
�

�

�

λ=0
,

where we note that the cumulants do not depend on T in the homogeneous case. Notice also

that alternatively they can also be written as cn = ∂ n−1
λ

∫∞
0 dx hθ (ρθ (x , T )−ρθ (x , 0))

�

�

�

λ=0
,

which we shall use for evaluating the cumulants.
As explained in Subsec. 4.2, β(0, t) in the BMFT (θ and λ dependence are suppressed for

brevity) can be identified with β(λ) in the BFT if β(0, t) is time-independent and satisfies the
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BFT flow equation (79). It turns out that verifying these is still challenging even for integrable
systems, and only thing we can immediately notice is that at λ = 0 the MFT flow equation
(147) becomes that of εθ (λ) in the BFT, which indicates that the identification is true at least
up to the first order in λ. Further analysis on the structure of the BMFT flow equation (147)
is left for future studies.

With the flow equation at our disposal, let us see how it can be used to compute c2 for the
homogeneous initial condition. We first note

∂λρθ (x , t) = −(R−T)φ
θ
(x , t)χφ(x , t)∂λε

φ(x , t) , (148)

where we used ∂ ρθ/∂ ε
φ = −(R−T)φ

θ
χφ , from which we get

lim
λ→0
∂λρθ (x , t) = (R−T)φ

θ
hdr;φχφ(Θ(rφ)−Θ(uφ)) , (149)

where the thermodynamic quantities without arguments are meant to be evaluated with re-
spect to the initial homogeneous state. Since uθ (x , t) = x − veff

θ
t and rθ (x , t) = x − veff

θ
(t− T )

when λ= 0, it is a simple matter to observe that the homogeneous cumulant chom
2 reads

chom
2 =

∫

R
dθ χθ |veff

θ |(h
dr;θ )2 , (150)

where and we restored the integral for clarity. This is precisely the second cumulant that has
also been obtained using different methods previously [21, 28]. Following the same logic,
albeit growing complexity as n increases, one can in principle compute arbitrary higher cumu-
lants cn. See Appendix G for the computation of c3 (129).

One of the virtues of the MFT is that it allows us to compute cumulants for arbitrary initial
conditions that are not homogeneous following the same procedures. That being said, as men-
tioned before, the partitioning protocol requires a separate consideration due to the singularity
of the rotation matrix R(0, 0) at x = t = 0. Firstly the flow equation for ∂λε

θ (x , t) takes a
tedious and not so informative form (see Appendix F). As it turns out, it is more convenient to
evaluate the alternative form of c2, which is

c2 = ∂λ

∫ T

0

dt hθρθ (0, t)veff
θ (0, t)

�

�

�

�

�

λ=0

= −hdr;θ (0)χθ (0)v
eff
θ (0)

∫ T

0

dt ∂λε
θ (0, t)
�

�

λ=0 , (151)

where the thermodynamic quantities with arguments 0 are evaluated at ξ = x/t = 0. There-
fore we have to compute ∂λε

θ (0, t)
�

�

λ=0, which can be written as

∂λε
θ (0, t) = ∂λuθ ∂xε

θ (x , 0)
�

�

x=uθ (0,t) + (∂λε
θ )(uθ (0, t), 0) , (152)

where λ = 0 is taken in the right hand side. We hereafter assume that λ = 0 is al-
ways taken in each equation at the end of manipulations unless otherwise stated. Note
that in fact the first term does not contribute. To see this, we recall that, at λ = 0,
∂xε(x , 0) = (εθR − ε

θ
L )δ(x) (εθR/L are the pseudo-energies of the initial right/left subsystems),

hence ∂xε
θ (x , 0)
�

�

x=uθ (0,t) is proportional to δ(uθ (0, t)). Since in the partitioning protocol we

have δ(uθ (0, t)) = δ(−veff
θ
(0)t) = δ(veff

θ
(0))/t when t > 0, this gives zero when multiplied

by veff
θ
(0) in (151). The task therefore boils down to calculate (∂λεθ )(uθ (0, t), 0).

Using (144), (∂λεθ )(uθ (0, t), 0) is given by

(∂λε
θ )(uθ (0, t), 0) = hdr;θ (uθ (0, t), 0)Θ(uθ (0, t))

− (R−T)θφ(uθ (0, t), 0)(RT)φγ(0, T )Θ(uθ (0, t)− uγ(0, T ))hdr;γ(0, T ) .
(153)
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To proceed, we need to invoke a few important relations. First, it is a simple matter to see

∂tuθ (0, t) = −
vθ (0, t)

ρtot
θ
(uθ (0, t), 0)

, (154)

with vθ (x , t) = veff
θ
(x , t)ρtot

θ
(x , t) from Eq. (135). In the partitioning protocol, the solutions

are self-similar (i.e., they depend only on ξ= x/t), hence we have vθ (0, t) = vθ (ξ= 0) when
t > 0. This implies that uθ (0, t) is either monotonically increasing or decreasing depending
on the sign of vθ (0). Since uθ (0,0) = 0, we conclude that

Θ(uθ (0, t)) = Θ(−veff
θ (0)) . (155)

A similar observation can be made to obtain Θ(rθ (0, t)) = Θ(veff
θ
(0)). Another relation is that

(RT)θ
φ
(x , t) is a normal mode with respect to φ, i.e., (RT)θ

φ
(x , t) = (RT)θ

φ
(uφ(x , t), 0). This

means that (RT)φγ(0, T ) = (RT)φγ(uγ(0, T ), 0), which in turn allow us to compute the building

block (R−T)θ
φ
(uθ (0, t), 0)(RT)φγ(uγ(0, T ), 0)Θ(uθ (0, t) − uγ(0, T )). Importantly, this quantity

depends only on the sign of veff
θ
(0) and veff;γ(0). Thus when the signs of both velocities are

the same, it simply gives δθγΘ(v
eff
θ
), where we used Θ(uθ (0, t)− uθ (0, T )) = Θ(veff

θ
) because

t < T . When the signs differ, only situation when it has a nonzero contribution is when
veff
θ
(0)< 0< veff

γ (0). Combining these, we obtain

(R−T)θφ(uθ , 0)(RT)φγ(uγ, 0)Θ(uθ − uγ) = δ
θ
γΘ(v

eff
θ ) +Θ(−veff

θ )Θ(v
eff
γ )(R

−T
R )

θ
φ(R

T
L)
φ
γ , (156)

where temporarily we suppressed the argument of uθ (0, t), uγ(0, T ) and veff
θ
(0). Therefore we

end up with

(∂λε
θ )(uθ (0, t), 0) =

�

hdr;θ
R −Θ(veff

γ )(R
−T
R )

θ
φ(R

T
L)
φ
γh

dr;γ(0)
�

Θ(−veff
θ )−hdr;θ (0)Θ(veff

θ )

= (R−T
R )

θ
φ(R

T)φγ(0)
�

hdr;γ(0)−Θ(veff
γ )h

dr;γ(0)
�

Θ(−veff
θ )−hdr;θ (0)Θ(veff

θ )

= −hdr;θ (0)sgn
�

veff
θ (0)
�

, (157)

where we used Θ(veff
γ )(R

T
L)
φ
γ = Θ(veff

γ )(R
T)φγ(0) and Θ(−veff

γ )(R
T
R)
φ
γ = Θ(−veff

γ )(R
T)φγ(0) when

passing from the second to the third, and from the third to the fourth line, respectively. Plug-
ging this back into (151), we finally obtain the cumulant in the partitioning protocol cpart

2 :

cpart
2 =

∫

R
dθ χθ (0)|veff

θ (0)|
�

hdr;θ
i∗
(0)
�2

. (158)

This is the result anticipated in Eq. (131) of Subsec. 5.2. We again emphasize that in the pre-
vious equation, where the counting statistics is performed at the point x = 0, the terms caused
by the interactions among normal modes cancel out. This determines the simple expression
in Eq. (158), where all the quantities are evaluated on the single ray ξ = 0, corresponding to
the homogeneous NESS of the partitioning protocol.

In order to test the non-trivial prediction of Eq. (158), we perform simulations of the
interacting hard-rod model, which we already introduced in Sec. 2.

The rods are initialized in the inhomogeneous partitioning protocol state in Eq. (85) with
only the inverse temperature Lagrange multiplier being non zero, i.e, the set C contains only
the energy conserved charge (and β i

0 = 0 otherwise). The initial state has therefore the form
in Eq. (17). The inverse temperatures βL,R and the rod length a therefore fix the rod densities
ρ(βL,R) of the left (x < 0) and the right (x > 0) half. The rods’ positions are initially distributed
in a symmetric interval [−Lsize/2, Lsize/2] around the origin according to the aforementioned
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Figure 3: Second cumulant in the partitioning protocol of the hard-rod gas. The
figure displays an excellent agreement between the numerical simulations and the
BMFT prediction. The latter for the second cumulant cpart

2 of the particle current is
given by Eq. (158) with hθi∗ = 1 (red solid line). The numerical data are obtained by
computing the particle number second cumulant rescaled by the time T (blue points
with the corresponding statistical uncertainties’ bars). In the figure T ∈ [0.2, 15]. In
the inset, the data at long times, T ∈ [10,15], are zoomed in to highlight the excellent
agreement therein between the BMFT prediction and the numerical simulations. The
initial rods’ distribution present a step at x = 0 in the inverse temperature βl = 0.1
(x < 0) and βr = 10 (x > 0). The rod length is a = 0.2, the initial length Lsize where
the rods are distributed is Lsize = 105, the number of rods initially on the left and
right sides are NL = 42610 and NR = 6007, respectively. A number M = 8.8×107 of
independent statistical samples has been used.

thermal densities ρ(βL,R), with NL = ρ(βL)Lsize/2 and NR = ρ(βR)Lsize/2 rods initially in
the left and the right half, respectively. The rods’ velocities are sampled from the thermal
velocity distribution, which is a Gaussian with variance given by the corresponding inverse
temperature 1/βL,R. Statistical fluctuations are thereby solely determined by the initial sample
of the positions and velocities, while the dynamics is fully deterministic. In the numerical
analysis, we focus on particle transport, with single particle eigenvalue hθi∗ = 1, for the sake of
simplicity. We count numerically the number of rods transferred from the left to the right half
over a time interval T since the start of the dynamics. The cumulants are eventually computed
by rescaling by the time duration T and by averaging over a large number M of independent
samples of the initial rods’ distribution. The comparison between the prediction in Eq. (158)
and the value of cpart

2 from the numerical simulations of the hard-rod gas is shown in Fig. 3.
From the figure we can see that the numerical data deviate from the Euler-scale prediction

for short times. This is caused by the fact, cf. the discussion after Eq. (17) in Subsec. 2.1,
that the initial state does not show large wavelengths variations. Corrections coming from the
microscopic nature of the initial state, on the one hand, cause the numerical results to deviate
from the Euler-scale prediction (158) at short times. At long times, however, the partitioning
protocol initial state quickly relaxes to a smoothly varying state exhibiting large scale varia-
tions and the Euler-scale prediction is recovered with an excellent precision. The discrepancy
between Eq. (158) and the numerical data, at long times T ∈ [10, 15] in the inset of Fig. 3, is,
indeed, observable only on the fourth decimal digit and it is well within the statistical uncer-
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tainty bars. The latter are computed by propagating the statistical uncertainty of the computed
mean transferred particle number (and powers thereof) as detailed in Appendix I.

We emphasize that the prediction in Eq. (158), with the comparison with the numerical
simulations in Fig. 3, represents, to our knowledge, the first result in integrable models for
cumulants evaluated over inhomogeneous and non-stationary states, such as the partitioning
protocol state (17). For integrable systems, as a matter of fact, results for the cumulants were
so far limited to the simpler case of homogeneous and stationary states, such as Eq. (128)
and (129) for the NESS emerging at long times from the partitioning protocol, as shown in
Ref. [21]. We also checked that Eq. (158) is obtained within the inhomogeneous version of the
BFT theory. The numerical analysis of Fig. 3 thus also provides the first numerical confirmation
of the inhomogeneous BFT, at least for the cumulants on the ray ξ = 0 in the partitioning
protocol. In more general cases the inhomogeneous BFT requires additional checks since it
does not assume any long-range correlation on equal-time correlation functions. In passing,
we mention that at intermediate times, T ∈ [4, 10] in the Figure, the numerical data are
consistent with a power-law relaxation to the Euler-scale prediction as a function time. This
behavior might be related to diffusive sub-leading, i.e., O(

p
ℓ), corrections to the BMFT action

in Eq. (46) (see also the discussion in Sec. 3.3). This effect goes therefore beyond the scope
of the present manuscript and its analysis is left for future investigations.

5.5 Dynamical correlation functions and universal long-range correlations

We follow here the analysis of Subsec. 4.4. The action Sq̂i1 ,q̂i2
(x1, t1; x2, t2)whose saddle point

characterises the Euler scale dynamical correlation function is (cf. Eq. (96))

Scorr[ρ, H] := Fcorr[ρ] +

∫

S
dtdx Hθ (x , t)
�

∂tρθ + ∂xjθ [ρ]
�

, (159)

where Fcorr[ρ] = F[ρ(·, 0)]−(λ1hθi1ρθ (x1, t1)+λ2hθi2ρθ (x2, t2)). Following the same reason-
ing in the generic case, the set of MFT equations are given in Eq. (98), which for integrable
systems read as

βθ (x , 0)− βθini(x) +Hθ (x , 0) = 0 , (160a)

Hθ (x , T ) = 0 , (160b)

∂tβ
θ +A θφ ∂xβ

φ = 0 , (160c)

∂t H
θ +A θφ ∂x Hφ +λhθi1δ(x − x1)δ(t − t1) = 0 . (160d)

The correlator is then given from Eqs. (97) and (148) by

Sq̂i1 ,q̂i2
(x1, t1; x2, t2) = − [(hi2)

dr;θχθ∂λε
θ ](x2, t2)
�

�

λ=0 . (161)

As in the case of the current fluctuations, let us derive the initial condition given in a self-
consistent way. Integrating both sides of the equation for Hθ (x , t) over [t1 − ϵ, t1 + ϵ], we
get

Hθ (x , t1 + ϵ)−Hθ (x , t1 − ϵ) = −λhθi1δ(x − x1) . (162)

From the boundary condition Hθ (x , T ) = 0 it is clear that Hθ (x , t) = 0 for t > t1, hence we
obtain Hθ (x , t1 − ϵ) = λhθi1δ(x − x1). In order to obtain the full time profile of Hθ (x , t), one

has to first move to the normal modes and invoke Gθ (x , t) = Gθ (Uθ (x , t; t1), t1), obtaining

Gθ (x , t) = λ
�

hdr;θ (x1, t1)δ(Uθ (x , t; t1)− x1)− ∂x1
hdr;θ (x1, t1)Θ(Uθ (x , t; t1)− x1)

�

Θ(t1− t) ,
(163)

46

https://scipost.org
https://scipost.org/SciPostPhys.15.4.136


SciPost Phys. 15, 136 (2023)

where we defined h := hi1 . In particular, at time t = 0 we get

Gθ (x , 0) = λ
�

hdr;θ (x1, t1)
δ(x − uθ (x1, t1))
∂ Uθ (uθ (x1, t1), 0; t1)

− ∂x1
hdr;θ (x1, t1)Θ(x − uθ (x1, t1))

�

,

(164)
where we used t1 > 0 and x1 = Uθ (uθ (x1, t1), 0; t1). Notice that in Eqs. (163) and (164)
we have set the additive constant Gθ (−∞, t) to zero without loss of generality for the same
reason as after Eq. (143). In the previous equation, the derivative ∂ Uθ (uθ (x1, t1), 0; t1) is
taken with respect to uθ (x1, t1). Transforming back to Hθ , one observes that the terms can be
reorganised nicely, which yields the following βθ (x , 0):

βθ (x , 0) = βθini(x) +λ∂x1

�

(RT)θφ(x1, t1)h
dr;φ(x1, t1)Θ(x − uφ)

�

, (165)

where uφ := uφ(x1, t1). See the Appendix H.1 for the full profile of ∂λε
θ (x , t) at λ = 0 in

Eq. (H.5).
Before making a crucial observation in the inhomogeneous case, let us compute the corre-

lator for the homogeneous initial condition. Using (165), we have at λ= 0

∂λε
θ (x2, t2) = ∂λuθ∂y ε

θ (y, 0)
�

�

y=uθ
+ (∂λε)(uθ , 0) = −(hi1)

dr;θδ
�

x2 − x1 − veff
θ (t2 − t1)
�

,

(166)

with uθ = uθ (x2, t2) in the previous equation. From Eq. (166), one immediately has

Sq̂i1 ,q̂i2
(x1, t1; x2, t2) = (hi1)

dr;θχθδ
�

x2 − x1 − veff
θ (t2 − t1)
�

(hi2)
dr;θ . (167)

This is precisely what we expect. In particular note that on the same time slice
t1 = t2 = t, the correlator is simply given by the local covariance matrix, i.e.,
Sq̂i1 ,q̂i2

(x1, t1; x2, t2) = Ci1 i2δ(x1 − x2) where Ci1 i2 := (hi1)
dr;θχθ (hi2)

dr;θ .
Next let us evaluate Sq̂i1 ,q̂i2

(x1, t; x2, t)with respect to an inhomogeneous initial condition.
To be more precise, it takes the following form:

Sq̂i1 ,q̂i2
(x1, t; x2, t) = Ci1 i2(x1, t)δ(x1 − x2) + Ei1 i2(x1, x2; t) , (168)

where Ci1 i2(x1, t) is the local covariance matrix, while Ei1 i2(x1, x2; t) is a function that goes to
zero when |x1 − x2| ≫ 1 and it accounts for Euler-scaled long-range correlations. The exact
expression of Ei1 i2 (see again Appendix H.1 for the details of the calculation) can be obtained
by first solving Eq. (H.5) self-consistently to obtain ∂λε

θ (x2, t)
�

�

λ=0 and plugging it into (161).
The existence of the long-range correlations can be in fact already inferred in the initial

condition (164). Namely, it is readily seen that the first term in the bracket amounts to the local
equilibrium correlator, while the second term gives long-range correlations. A physical inter-
pretation of such long-range correlations is clear: two normal modes, which can be identified
with two particle-hole excitations [87], retain memories of their scattering, as their trajectories
would be severely affected by the density landscape around the position where the scattering
took place. The scattering picture also makes it evident that the following three conditions are
needed for long-range correlations to be supported: interaction, inhomogeneity, and multiple
conservation laws. Indeed, were the system to have just a single conservation law, the rotation
matrix R would be trivialised, making the long-range contribution in (164) vanish. The first
two conditions also ensure that ∂x1

hdr;θ (x1, t1) has a non-zero value at λ = 0, which implies
that it contributes in ∂λε

θ (x2, t1)
�

�

λ=0.
In order to verify our predictions, we computed the dynamical correlation functions

Sq̂0,q̂0
(x , t; 0, t) and Sq̂0,q̂0

(x , t;−x , t) for the hard-rod model and we compared the results
with molecular dynamics simulations. In particular, we looked into two initial conditions:
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two-modes bump-release and the partitioning protocol. In the latter, we implement the very
same inverse temperature partitioning initial condition that we used in Subsec. 5.4 for the
calculation of the second cumulant cpart

2 . It is worth to emphasize that in this case, one has a
continuum of normal modes since the velocity distribution is a Gaussian with variance given
by the inverse temperature. In the former, instead, the rods are released at time t = 0 from
the Gaussian density bump profile (sketched in the lower band of Fig. 1(a) with q̂0 the particle
density)

〈q̂0(x , 0)〉ℓ =
1+ 3e−(x/ℓ)

2

3+ 3e−(x/ℓ)2
∈ [1/3, 2/3] . (169)

We consider the case where rods’ velocities can only take two values v = ±1 with the same
probability. In this case, therefore, the velocity distribution is supported on two delta functions
and one has a discrete set of velocities and, consequently, normal modes. This choice of the
velocity distribution is not only a drastic simplification for analytic computations, but it also
makes the existence of long-range correlations more evident. According to the aforementioned
scattering interpretation of long-range correlations, the presence of a continuum set of normal
modes would, indeed, cause correlations to spread among all the normal modes through scat-
tering events among all the rods’ velocities. This is expected to make long-range correlations
small and barely numerically detectable. In the presence of two normal modes only, on the
contrary, scattering events necessarily concern rods with the opposite velocities +v and −v
and the long-range correlations between the two associated modes are enhanced. This makes
also convenient to compute correlations numerically by reducing the source of statistical error.

In Fig. 4, we report the comparison between the BMFT prediction in Eqs. (132)-(138)
and the hard-rod simulations for the correlator Sq̂0,q̂0

(x , t;−x , t). The analysis for the corre-
lator Sq̂0,q̂0

(x , t; 0, t) from the same initial state (169) is reported in Fig. (1) of the compan-
ion manuscript [24]. These are the first results showing the existence of long-range Euler-
scaled correlations in integrable models. We report numerical data for three different scales
ℓ = 250, 500 and 1000. The simulations, as in the case discussed in Subsec. 5.4 for cpart

2 , are
done in infinite volume, with the rods initially distributed in a symmetric interval [−Lsize, Lsize]
around the origin, with Lsize = 10ℓ. The number N of rods used in the simulations is there-
fore fixed by the initial density and Lsize as N =

∫ Lsize

−Lsize
dx 〈q̂0(x , 0)〉ℓ. In particular, we have

N = 2700,5000 and 104 rods for the simulations at the scales ℓ = 250,500 and 1000, re-
spectively. The deterministic hard rod evolution from this fluctuating initial condition is then
implemented. Equal-time correlation functions are obtained by performing the fluid-cell av-
eraging as per Eq. (35), with the fluid cell length L = 0.05ℓ, i.e., upon taking the Euler-
scaling limit. The numerical estimate for the correlator is eventually obtained by averaging
over a large number M of independent realizations of the initial rods’ configuration. A number
M = 1.2288 · 109, 2.1504 · 109 and 2.1504 · 109 of independent statistical samples has been
taken in Fig. (1) of Ref. [24] for the data at the scales ℓ = 250, 500 and 1000, respectively.
In the case of Fig. 4, the number of samples taken is reported in the corresponding caption.
The collapse of the data as a function of ℓ is convincing, with the tiny differences among the
different scales fully within the uncertainties’ bars. This result remarkably confirms, at the nu-
merical level, the existence of Euler-scale correlations, i.e., correlations developing over times
t and space regions x proportional to ℓ, with an amplitude decaying as ℓ−1. Moreover, the
BMFT result in Eqs. (132)-(138) particularized to the hard-rod model predicts the value of
such correlations with a very good agreement, despite of the small 10−2 order of magnitude of
the long-range correlations. The largest difference between the BMFT prediction and the nu-
merical result is, indeed, observable on the third decimal digit and it is always fully within the
statistical uncertainties’ bars. The latter are computed according to the same method used in
Subsec. 5.4 for cpart

2 (see the Appendix I for the details). Our numerical analysis thereby firmly
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Figure 4: Connected correlations from a bump release of the hard-rod
gas. The figure shows the rod-density equal-time connected correlation function
Sq̂0,q̂0

(x , t;−x , t) evaluated at the macroscopic time t = 0.5 as a function of the
macroscopic space coordinate x . The initial state is the Gaussian density bump in
Eq. (169). Also in this case, the numerical results clearly show the existence of long-
range correlations, also in this case of order 10−2, with an evident collapse of the
numerical data with respect to the macroscopic length scale ℓ= 250,500 and 1000.
The theoretical prediction from BMFT (red points) excellently predict the long-range
correlations values, the discrepancies with the numerical data being within the un-
certainties’ bars. The parameters used in the numerical simulations are rod length
a = 1 and two possible and equally likely values of the rods’ velocities v = ±1. One
has M = 9.216 ·108, 2.1504 ·109 and 1.536 ·109 independent statistical samples for
the simulations at the scales ℓ= 250,500 and 1000, respectively. We shifted the data
corresponding to the scales ℓ = 250 and 1000 by ±0.04 for the sake of illustration
purposes.

corroborate the existence of long-range correlations in interacting inhomogeneous fluids, and
at the same time, the power of the BMFT in quantitatively predicting this effect.

In the case of the partitioning protocol, the initial step is chosen in the very same way
as for the calculation of cpart

2 in Fig. 3. In particular, we consider the case of a step initial
inverse temperature profile β i

ini(x) in Eq. (85) (again with the single multiplier associated to
the energy conserved charge being non-zero). The initial density profile therefore shows a
discontinuity at x = 0 as well, with ρ(βL) (ρ(βR)) the density for x < 0 (x > 0). Since
the partitioning protocol state is scale invariant, the numerical data for Sq̂0,q̂0

(x , t; 0, t) and
Sq̂0,q̂0

(x , t;−x , t) are obtained by performing the fluid-cell averaging in Eq. (35) with the scale
ℓ = 300 taken as the microscopic-simulation time. We have specifically computed both the
equal-time correlators Sq̂0,q̂0

(x , 1; 0, 1) and Sq̂0,q̂0
(x , 1;−x , 1) at the macroscopic time t = 1

for x ∈ [−3,−1], for the same set of parameters in Fig. 3. We average, in this case, over
M = 109 independent realizations of the initial condition. Also in this case, we numerically
observe the existence of long-range correlations of order 10−2. This shows that the presence
of long-range correlations, caused by the emission of normal modes in the past, is a robust
phenomena present in different physically relevant out of equilibrium scenarios. Crucially, the
BMFT prediction of the correlator, evaluated from the specialization of Eqs. (132)-(138) to
the partitioning initial state (see Sec. H.2 of the Appendix), gives values of order 10−6. These
values are no way compatible with the result from the numerical analysis, whose statistical
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uncertainties are of order 10−3. The physical interpretation of this discrepancies is clear as
the partitioning protocol state does not show large-scale variations. Microscopic correlations
from the initial sharp inhomogeneity are therefore produced at early times in addition to the
Euler-scaled hydrodynamic correlations discussed so far. These microscopic contributions to
correlations, since are caused by normal modes emitted in the past, do not vanish at long times,
despite the partitioning state rapidly relaxing to a large-wavelength state. This is in stark
contrast to the cumulant analysis of Subsec. 5.4, where we found that the initial microscopic
contributions vanish at long times. Our results further show that the microscopic, short-time,
contribution to the correlations is predominant, causing the numerically observed values to be
much larger than the BMFT prediction.

In all the cases where the initial state displays, on the contrary, long wavelengths vari-
ations (such as in the bump release protocol discussed previously), microscopic early time
contributions to the correlations are suppressed. Only Euler-scaled, universal, correlations are
therefore present. The latter are quantitatively predicted by our BMFT.

6 Conclusion and Outlook

In this manuscript we thoroughly discussed and further elaborated the results of the compan-
ion work [24]. We extended the conventional diffusive MFT to describe the physics controlled
by rare but significant fluctuations, such as large deviations and the dynamical correlation func-
tions, at the Euler scale of hydrodynamics, in many-body systems supporting ballistic trans-
port. The fundamental principle of the BMFT is the local relaxation of fluctuations introduced in
Sec. 3: Fluctuations of mesoscopic observables (averages over fluid cells) are encoded as clas-
sical random variables, functions of the fluctuating mesoscopic conserved densities q(·, ·) on
space-time S= R×[0, T]. Their functional form is entirely fixed by the maximal entropy states
(Gibbs and generalised Gibbs ensembles) of the model. This is a version of the Boltzmann-
Gibbs principle of projection of local observables onto local densities, but expressed in full
generality in the context of the Euler-scale physics. Local relaxation of fluctuations, combined
with conservation laws of the microscopic model, implies that the fluctuations in space-time
originate from those of the initial condition, as described by thermodynamics; initial fluctu-
ations are simply time-evolved in a deterministic way according to the Euler hydrodynamic
equation. This is a generalisation of the principle of local relaxation of averages, which is
the cornerstone of Euler hydrodynamics, to that of rare fluctuations. From this principle, the
measure of the space-time configuration of the fluctuating densities in Eq. (46) is derived.
Equation (46) is the basis of all the BMFT predictions.

The BMFT is similar in spirit to the conventional, diffusive MFT, in that it is a large-deviation
theory for space-time configurations based on an action formalism on conserved densities.
However, one cannot be obtained from the other. Instead, we conjecture in Subsec. 3.3 a
theory that describes both the ballistic and diffusive scale, where, in addition to the ballistic
scale, noise contributions are included to the currents at smaller scales. The “zero-noise” limit
of this theory, the limit where one concentrates on the ballistic scale, recovers the BMFT; and
the special case where no ballistic transport is present gives back the conventional MFT.

The two main physical predictions of the BMFT that we focused on in this paper are dis-
cussed in Sec. 4: the SCGF of the time-integrated current F(λ, T ) (14) in Subsecs. 4.1-4.3, and
the Euler scale correlation function Sq̂i1 ,q̂i2

(x1, t1; x2, t2) (22) in Subsecs. 4.4-4.7, for arbitrary
weakly-inhomogeneous initial state of the form (12). There are two main observations.

One is that the existence of a time-reversal symmetry of the Euler hydrodynamics imply,
from the natural symmetry of the BMFT equations, the Gallavotti-Cohen fluctuation theorem
for transport in the partitioning protocol, as shown in Subsec. 4.3. This is one of the most
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universal out-of-equilibrium properties of many-body systems.
Another one, explained in Subsec. 4.6 and in the companion manuscript [24], is the exis-

tence of certain types of long-range correlations out of equilibrium. We show that for the system
to develop such long-range correlations, three conditions must be met: the system must be in-
teracting (nonlinear Euler hydrodynamics), it must admit more than one conservation laws
(more than one hydrodynamic velocity), and its initial condition must be inhomogeneous (for
instance, presenting large-wavelength variations). In particular, long-range two-point corre-
lations offer a clear way of distinguishing between interacting and non-interacting models
without the need for evaluating higher-point correlation or response functions [22] or going
to the diffusive scale [101].

The BMFT also gives access to more subtle information, such as the large-deviation theory
of fluctuations within fluid cells. It shows that, in certain situations, such fluctuations are
not given by those of the local maximal entropy state that corresponds to the values of local
densities solving the Euler hydrodynamics. We predict the scaled covariance for TASEP, but
further investigations would be necessary.

Importantly, only the Euler hydrodynamic data of the model – in particular the flux Jaco-
bian – is needed for the BMFT, and the predictions apply to any many-body systems, quantum
or classical, deterministic or stochastic (so long as the hydrodynamics at the Euler scale is
nontrivial). We emphasise in particular that even in stochastic systems, the theory for the dy-
namics of fluctuations at the ballistic scale does not involve noise. In these cases, the noise on the
microscopic dynamics serves the principle of local relaxation of fluctuations, and it stays true
that fluctuations at the ballistic scale are obtained by deterministic evolution (via the emerging
Euler equation) of the initial large-scale fluctuations.

Having these general predictions from the BMFT at our disposal, we focused on integrable
systems, where a much more elaborate analysis can be carried out than in non-integrable
systems. We relied heavily on the machinery of GHD.

We first computed cumulants associated with current fluctuations both in homogeneous
and step initial conditions, all of which perfectly agreed with hard-rods simulations.

We next computed the Euler-scale dynamical correlation function from general long-
wavelength initial condition. We specialised these to two inhomogeneous initial conditions:
the bump release and the partitioning protocol; the former is expected to be described by the
BMFT as it has smooth initial spatial variations, while the latter is generically not, as with rough
initial spatial variations, additional correlations are created by microscopic processes, which
are not universally set by Euler hydrodynamics. This turned out to indeed be the case. For the
bump release, we observed a very good agreement in Fig. 4 between the analytic BMFT result
and the numerical simulation. In the case of the partitioning protocol, instead, disagreement is
seen, with more correlations in the simulation; these are interpreted as additional correlations
that build up during the transient dynamics from the initial step condition.

There are numerous avenues that can be pursued by applying the BMFT. One immediate
direction is to put the idea of local relaxation of fluctuations on a mathematically more rigorous
ground. As mentioned, this idea is closely related to the Boltzmann-Gibbs principle, which in
general states that, at an appropriately large scale, any fluctuating fields that are functions of
space-time can be replaced by some functional of fluctuating density fields [26]. This statement
has been proved for stochastic systems, see e.g., [27], but it would be strongly desired to
establish it also in Hamiltonian systems, and in the generality of hydrodynamics with many
conservation laws.

Another direction, along the line of further checking the validity the BMFT, is to compute
the whole large deviation function F(λ, T ) and compare it with numerical simulations of classi-
cal systems, such as the hard rods. This would, moreover, allow us to verify the equivalence be-
tween the BMFT and the homogeneous BFT beyond the perturbative argument in Subsec. 4.2.
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It would also be satisfying to reproduce our predictions for integrable systems by focusing
on analytically tractable models such as the box-ball system [102,103] (see in particular [43]
for the exact computations of the cumulants). Concerning non-integrable systems, such as the
TASEP and anhamornic chains, wherein hyperbolicity of the hydrodynamic system generically
amounts to shocks, it is of paramount importance to investigate large deviations and dynamical
correlations using the BMFT. Within this perspective, it would be illuminating to discern any
possible qualitative differences between integrable and non-integrable systems. It would be
also interesting to work out a solvable stochastic exclusion process with multiple species, e.g.,
Arndt-Heinzl-Rittenberg model [104], to see if our predictions on the long-range correlations
can be microscopically confirmed.

The BMFT as formulated here can also be extended to describe ballistic large deviations
more generally, such as under time evolution with long-wavelength, low-frequency variations
of external fields and coupling parameters [105–107], and with initial conditions that already
include long-range correlations such as those appearing after quantum quenches [95, 108,
109]. As suggested in [20], ballistic fluctuations are connected to objects called “twist fields”,
which have many interesting applications, including for the study of entanglement [110]; this
is another area where the BMFT may offer new insight.

It is also tempting to go beyond the BMFT by including the subleading corrections in the
measure as in Subsec. 3.3, in particular (63). Importantly, the onset to the stationary value of
cpart
2 observed in Fig. 3 would be captured by the BMFT with diffusive corrections. More inter-

estingly, we should study the cases where subleading corrections to the ballistic transport are
superdiffusive. In such a situation one can try to incorporate these corrections perturbatively,
which amounts to the inclusion of fluctuations around the saddle point. Such fluctuations
are generally controlled by the determinant of the Hessian of the action, which tantalisingly
suggests a connection with determinantal structures that are often found in systems that be-
long to the KPZ universality class [111]. We also assert that the BMFT with diffusive correc-
tions applied to spin transport in the gapped and isotropic XXZ spin-1/2 chain might shed
some light on the recently discovered apparent breakdown of large-deviation principles in the
model [112–114].

Another promissing direction is to generalise the idea of the (B)MFT to study the dynamics
that is strongly influenced by quantum fluctuations. As we have seen, the underlying idea of
the BMFT is the propagation of initial fluctuations, which are, in the present case, dominated by
the thermal ones; quantum fluctuations are in general controlled by different scales. We would
need to combine the ideas of quantum GHD [115] with the (B)MFT path-integral formalism.

Finally, some of the predictions from the BMFT, e.g., the exact cumulant (158), could
be observed in the state-of-the-art cold atom experiments. Indeed, in a recent experiment
[116], the full counting statistics of spin transport in the isotropic XXZ spin-1/2 chain was
experimentally studied using a quantum gas microscope.
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A The measure for the initial state

In this section we derive the generating function Eq. (44) for the Euler-scale equal-time cor-
relations of conserved densities for the initial state (12) (generalising (16) to x-dependent
parameter λ(x)). We write

�

exp

∫

R
dx λi(x/ℓ)q̂i(x)

�

ℓ

=
µ
�

expℓ
∫

R dx (λi(x)− β i
ini(x))q̂i(ℓx)
�

µ
�

exp−ℓ
∫

R dx β i
ini(x)q̂i(ℓx)
� , (A.1)

where all charge densities are evaluated at time 0. We then apply δ
�

ℓ−1 log•
�

/δλi(x) on this
expression, in the limit ℓ→∞:

δ

δλi(x)
lim
ℓ→∞

ℓ−1 log

�

exp

∫

R
dx λi(x/ℓ)q̂i(x)

�

ℓ

= 〈q̂i(ℓx)〉ℓ = qi[βini(x)−λ(x)] . (A.2)

In the quantum case, this last calculation must be argued for more carefully because of
non-vanishing commutation relations. We write for instance

ℓ

∫

R
dx β i(x)q̂i(ℓx) = ℓ

∫

R
dx β i(x)qi(ℓx) = L

∑

k∈Z
β i(xk)qi(ℓxk) , (A.3)

where the sum is over the fluid cell at positions xk = kL/ℓ and of size L/ℓ (in macroscopic co-
ordinates), and here we take fluid cell averaging in space only. Because the fluid cells are large,
by locality of the densities, commutators vanish. For neighbouring cells, the only nontrivial
case, the calculation is as follows

[qi(ℓxk), q j(ℓxk+1)] =
1
L2

∫ L

0

dy

∫ L

0

dz [q̂i(ℓxk + y), q̂ j(ℓxk + z + L)]

=
1
L2

∫ L

L−ℓmicro

dy

∫ ℓmicro

0

dz [q̂i(ℓxk + y), q̂ j(ℓxk + z + L)] , (A.4)

where we used the fact that commutators of local observables are nonzero only at microscopic
distances. Therefore ||[qi(ℓxk), qi(ℓxk+1)]|| ≤ 2ℓ2micro/L

2 ||q̂i|| ||q̂ j|| → 0. The variables qi(ℓxk)
are commuting macroscopic variables in the sense introduced by von Neumann in the context
of his quantum ergodicity theorem (see, e.g., [84]).

From (A.2) and the condition at λ(x) = 0, and from the definition of the free energy f [β],
we deduce that
�

exp

∫

R
dx λi(x/ℓ)q̂i(x)

�

ℓ

≍ exp ℓ

�∫

R
dx
�

f [β
ini
(x)]− f [β

ini
(x)−λ(x)]
�

�

. (A.5)

This shows (44).
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B Thermodynamics of hard-rods system

The hard-rods model is a classical many-body system, describing a gas of identical rods (we
set the rods’ mass to 1) with length a. The rods propagate freely until they experience elastic
pairwise collisions, where the velocities get exchanged. The system has an infinite number of
conservation laws labelled by the velocities θ and hence is integrable. The hard-rods system
occupies a vital position amongst integrable systems from the viewpoint of GHD. This is partly
because one of the key insights offered by GHD is that, on the Euler scale, a fluid of integrable
systems can be thought of as a gas of tracer particles of hard-rods (with velocity-dependent
jumps) [28, 76]. Here, velocity tracers are quasi-particles assigned to each rod, which prop-
agate along straight line trajectories (in the space-time diagram) interspersed with jumps of
length a at each collision. The single particle eigenvalue of the energy, Eθ , momentum, pθ ,
and particle number, Nθ , are the ones of a classical Galilean particle

Eθ =
θ2

2
, pθ = θ , Nθ = 1 . (B.1)

The scattering phase shift equals (we follow the notation convention of Ref. [28])

Tθφ = −a , (B.2)

which amounts to the following integral equation for the pseudo-energy (124)

εθ = βθ + a

∫

R

dφ
2π

exp
�

−εφ
�

, (B.3)

where we used nθ = e−ε
θ
/(2π) in hard-rods. Thanks to this particularly simple form of the

phase shift, the description of hard-rods is substantially simplified. For instance, the dressing
operation simply gives, for any aθ ,

adr;θ = aθ − a(1− aρ)

∫

R
dφ nφa

φ , (B.4)

where the density of rods satisfies ρ/ρtot =
∫

R dφ nφ with ρtot := 1 − aρ. Accordingly, the
effective velocity reads

veff
θ =

θ − aj
ρtot

, (B.5)

where j := ρtot
∫

R dφφnφ . A simplification also occurs for the characteristics Uθ (x , t; s),
which is now determined by

∫ Uθ (x ,t;s)

−∞
dy ρtot(y, s) + (θ − aj−)(t − s)=

∫ x

−∞
dy ρtot(y, t) , (B.6)

where j− = limx→−∞ j(x , 0).

C Hydrodynamic response theory

In this section we shall review the basics of the hydrodynamic response theory, and in particular
articulate under which circumstances it is valid. The underlying idea of the hydrodynamic
response theory is that an initial local entropy-maximised state (12) propagates in time while
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keeping its form intact, and that perturbations of this state generate Euler-scale correlation
functions.
Suppose the system is initially in a local entropy-maximised state labelled by Lagrange
multipliers β j(x , 0) = β j

ini(x). We then let the system evolve in time. According to Eu-
ler hydrodynamics, β j(x , t) satisfy (11). In order to access dynamical correlation func-
tions, the insertion of a mesoscopic (fluid-cell averaged) conserved density qi1(x1, t1)
is obtained by performing a small perturbation of the state at the space-time (x1, t1):
β i1(x1, t1) 7→ β i1(x1, t1) + δβ i1(x1, t1). The way the Euler hydrodynamic solution changes
for a (possibly different) conserved density qi2(x2, t2), at a later time t2 > t1, gives
the correlation between qi1(x1, t1) and qi2(x2, t2). A similar principle holds for higher-
point functions: for the n-point Euler-scale function, one looks at the way the Euler-
scale (n − 1)-point function Sq̂i2 ,...,q̂in

(x2, t2; · · · ; xn, tn) changes under the perturbation

β i1(x1, t1) 7→ β i1(x1, t1) + δβ i1(x1, t1); this is referred to as nonlinear response as, by induc-
tion, it requires focusing on the (n−1)th power of perturbations of the original hydrodynamic
solution.

Thus, the two-point function Sq̂i1 ,q̂i2
(x1, t1; x2, t2), according to the hydrodynamic response

theory, is given by

Sq̂i1 ,q̂i2
(x1, t1; x2, t2) = −

δqi2(x2, t2)

δβ i1(x1, t1)
. (C.1)

This means that qi2(x2, t2) is evaluated in the state which is, at t1, described by

β i(x , t1)
�

�

�

linear response
= β i(x , t1)−λδ i

i1
δ(x − x1) , (C.2)

and that the derivative is with respect to λ, after which λ= 0 is taken. This idea is generalised
to perturbations of the hydrodynamic solution o(x2, t2) for an arbitrary observable ô(x2, t2), by
considering o(x2, t2) as a function of qi(x2, t2)’s and using the chain rule for differentiation.
The idea is further generalised, somewhat formally, by assuming that for every observable
ô(x , t), there is an associated Lagrange multiplier β ô which we can perturb in order to insert
that observable.

These response principles naturally lead to (26) and (28). But in addition, as mentioned,
implicit in response theory is that the form (12) stays valid for all times – this is how one
can justify modifying the parameter β i1(x1, t1), at time t1, in order to insert qi1(x1, t1) for
instance. And thus, in particular, as a direct consequence of (C.2), the initial condition for
(28) is the delta-function form Sq̂i ,q̂ j

(x1, t1; x2, t1) = Ci j(x1, t1)δ(x1 − x2), which in general
disagrees with the long-range correlations found in the BMFT if t1 > 0.

We will now see how the linear-response principles are in fact in disagreement with the
BMFT, even though (26) and (28) are correct.

In order to see this, we recall that in the BMFT, we consider, much like in linear response
theory, Lagrange multipliers β i(x , t) that evolve according to the Euler equation. The inser-
tion of a conserved density qi1(x1, t1) is also obtained by modifying the state appropriately.
However, we point out that the modification is not given by (C.2). Indeed, the result (110)
states that the Lagrange multipliers at time t1 have the form

β i(x , t1)
�

�

�

BMFT
=
�

Uλ(t1, 0)βini

�i
(x)−λδ i

i1
δ(x − x1) . (C.3)

Recall that Uλ(t, t ′) is the linear evolution operator that transports a quantity along the λ-
dependent fluid of the BMFT, Eqs. (107) and (108). Note also that at λ = 0 the BMFT simply
gives for β i(x , t) the Euler hydrodynamics from the initial state β i

ini(x). Thus we can write

β i(x , t1) =
�

U0(t1, 0)βini

�i
(x) . (C.4)

55

https://scipost.org
https://scipost.org/SciPostPhys.15.4.136


SciPost Phys. 15, 136 (2023)

We can now see clearly the difference between the linear response (C.2) and the BMFT
(C.3): it lies in the first term, which is

�

U0(t1, 0)βini

�i
(x) in the linear response theory, and

�

Uλ(t1, 0)βini

�i
(x) in the BMFT.

Therefore, linear response and the BMFT agree for the Euler-scale two-point functions
only in non-interacting models (in which case Uλ(t, t ′) is independent of λ), at t1 = 0 (as
Uλ(0,0) = 1), or in homogeneous states (as Uλ(t1, 0)βini = βini). This further suggests that
nonlinear response theory is incorrect (higher-point functions are not given by linear response
principles) even in homogeneous states, if the model is interacting and at least two of the times
are greater than zero. Indeed, as explained above, nonlinear response theory is obtained from
considering two-point functions in inhomogeneous, perturbed states.

D The inhomogeneous ballistic fluctuation theory

For ease of notation, here and in the rest of the appendices, we will occasionally use “dr” and
“eff” as subscripts. We will use upper and lower indices for uθ , rθ , T , and veff liberally too.

The inhomogeneous BFT, developed in Ref. [23], was devised to generalise the BFT to long-
wavelength inhomogeneous initial states, and built on the linear response theory developed
in [19] for integrable systems, which in particular assumes (C.1). The inhomogeneous BFT
turns out to predict that there are in general two contributions to Euler-scaled correlations
Sq̂i ,q̂ j

(x , t; y, t ′) (22) and cumulants cn (24) determined by a direct and an indirect propagator.
In particular, focusing on the Euler-scaled second cumulant c2 defined in Eq. (24) one has

c2(T )=
2
T

∫ T

0

dt2

∫ t2

0

dt1

�

Γ(0,t1)→(0,t2)
�θ

φ
veff,φ(0, t1)h

dr,φ
i∗
(0, t1)χθ (0, t2)v

eff
θ (0, t2)h

dr
i∗,θ
(0, t2) ,

(D.1)
where we symmetrized the two-point function as it is invariant under the exchange t1↔ t2.
The propagator Γ can be split, as anticipated, into the direct and indirect part as

�

Γ(y,τ′)→(x ,τ)
�θ

φ
= δ
�

y −Uθ (x ,τ,τ′)
�

δθφ +
�

∆(y,τ′)→(x ,τ)
�θ

φ
. (D.2)

The first term on the right hand side is the direct propagator and it depends on the single ra-
pidity θ whose associated normal mode propagates between the two space-time points (y, t ′)
and (x , t) correlations refer to, as sketched in Fig.1b. This contribution is present even in the
simpler case of homogeneous GGE states. The indirect propagator ∆(y,τ′)→(x ,τ), instead, nec-
essarily requires an inhomogeneous fluid background and interactions among normal modes.
The indirect propagator encodes the perturbation of the trajectory of the normal mode with
rapidity θ due to the interaction with normal modes with a different rapidityφ, not necessarily
connecting the space-time points (y, t ′) and (x , t). As a consequence, the indirect propagator
depends on all the rapidities.

Before giving the expression for the indirect propagator ∆(y,τ′)→(x ,τ), we consider the spe-
cialization of Eq. (D.1) to the partitioning protocol, discussed in Sec. 5.3. In this case, as
explained in the main text after Eq. (130), the state depends only the ray and therefore equa-
tion (D.1) can be rewritten as

cpart
2 =

2
T

∫ T

0

dt2

∫ t2

0

dt1

�

Γ(0,t1)→(0,t2)
�θ

φ
veff,φhdr,φ

i∗
χθ veff

θ hdr
i∗,θ

= 2

∫ 1

0

da (Γa)
θ
φ veff,φhdr,φ

i∗
χθ veff

θ hdr
i∗,θ

, (D.3)
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where the state-dependent functions reported without space-time arguments are meant hence-
forth in this Subsection to be evaluated on the ray ξ = x/t = 0. In the second equality, we
used the scaling property of the propagator Γ

�

Γ(0,ατ′)→(ατ)
�θ

φ
=

1
α

�

Γ0,τ′→0,τ

�θ

φ
, (D.4)

which is valid since the partitioning protocol initial state is invariant under space-time rescaling
transformations. We further defined Γa = Γ0,a→0,1 (omitting the space point x = 0 for brevity),

with 0 < a < t1/t2 < 1. It is immediate to evaluate the contribution cpart,dir
2 of the direct

propagator in Eq. (D.2) to the second cumulant

cpart,dir
2 = 2

∫ 1

0

daχθ
�

veff
θ hdr,θ

i∗

�2
δ (Uθ (0, 1, a)) = χθ |veff

θ |
�

hdr;θ
i∗

�2
, (D.5)

where we used that δ (Uθ (0,1, a)) = δ(a− 1)/|veff
θ
| and the regularization Θ(0) = 1/2 of the

Heaviside step function. Equation (D.5) is readily recognized as (158). In order to conclude
to proof of (158), we therefore need to show that the indirect propagator ∆ in Eq. (D.2) gives
zero contribution to cpart

2 .
This requires more work as the expression of the indirect propagator ∆ is given through

an integral equation. We report the latter equation for the specific case of the partitioning
protocol (see Refs. [19,23,31] for the general discussion) This indirect propagator satisfies

�

∆a,ξ

�θ

φ
veff,φhdr,φ

i∗
= 2π aeff,θ (Uθ (ξ, 1, a)/a)

×
�

�

Wa,ξveff,θhdr,θ
i∗

�

+
∫ ξ

−∞ dζ
�

ρtot,θ (ζ) f θ (ζ)
�

�

∆a,ζ

�θ

φ
veff,φhdr,φ

i∗

��∗dr
(ζ)

�

,

(D.6)

with the notation ∆(0,τ′)→(x ,τ) = τ−1∆(0,a)→(ξ,1) ≡ τ−1∆(a,ξ) from the scaling property (D.4).
Here and below ξ,ζ are rays, and a = t1/t2 as above (more precisely, a = t1 with t2 = 1). In
the previous equation, we denoted with h∗dr,θ (ζ) = hdr,θ (ζ)− hθ , where dressing operation is
performed with respect to the state on the ray ζ for a generic function hθ of the rapidity. The
operator Wa,ξ is defined as

[Wa,ξveff,θhdr,θ
i∗
] =−Θ
�

Uθ (ξ, 1, a)
�

(ρtot,θ f θ veff,θhdr,θ
i∗
)∗dr(0)

+

∫ ξ

−∞
dζ
ρtot,γ(ζ)nγ f γ
�

Tdr
�θ ,γ
(ζ)veff,γhdr,γ

i∗

|∂γUγ(ζ, 1, a)|

�

�

�

γ=θ∗(ζ,a)
, (D.7)

where Uθ∗(ζ,a)(ζ, 1, a) = 0 that is θ∗(ζ, a) is the rapidity for which the characteristic at time 1
passing by ζ, at time a passes by 0. We assumed monotonicity of the characteristic Uθ with
respect to the rapidity variable, but otherwise there is a sum over values of θ∗(ζ, a). We have

further denoted with
�

Tdr
�θ ,φ
(ζ,λ,γ) (with two upper indices to emphasize that no rapidity

integration is performed inside the ζ integral) the differential scattering kernel dressed with
respect to the state n(ζ). In Eq. (D.6), we have also introduced the effective acceleration
aeff
θ
[19], which encodes the inhomogeneity of the initial state as

aeff
θ (ξ) =

∂ξnθ (ξ)

2πρθ (ξ) fθ (ξ)
=

δnθ
2πρθ (ξ) fθ (ξ)

δ(veff
θ (ξ)− ξ)

�

1−
∂ veff
θ
(ξ)

∂ ξ

�

=
δnθ

2πρθ (ξ) fθ (ξ)
δ(veff

θ (ξ)− ξ) , (D.8)
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in the second step we used Eq. (130) for the state nθ (ξ) in the partitioning protocol and
δnθ = nR,θ −nL,θ . Importantly, in the partitioning protocol, the effective acceleration contains
a delta function that enforces the constraint that the ray ξ must be equal to ξ∗

θ
defined as

ξ∗θ : veff
θ (ξ

∗
θ ) = ξ

∗
θ . (D.9)

The ray derivative of the effective velocity evaluated at ξ∗ accordingly vanishes

∂ veff
θ
(ξ)

∂ ξ

�

�

�

ξ=ξ∗∗
= 0 , since ∂ξveff

θ (ξ)ρ
tot
θ (ξ) =
�

ξ− veff
θ (ξ)
�

∂ξρ
tot
θ (ξ) . (D.10)

The last equation follows from the fact that the total density of states ρtot
θ

(assumed to be
strictly positive) satisfies the same GHD equation as ρθ (written in terms of the ray ξ = x/t
coordinate). We used this property in the third equality in Eq. (D.8).

One can see that the effective acceleration, according to its definition, vanishes when the
state n is homogeneous. In the latter case, therefore, the indirect propagator ∆ vanishes
and cumulants are solely determined by the direct contribution of Eq. (D.2). In this case, we,
indeed, recover the prediction from the homogeneous BFT theory discussed in the text. For the
second cumulant, in particular, one has (D.5) in agreement with Eq. (128). We now, however,
show that for the partitioning protocol initial inhomogeneous state the structure of the effective
acceleration in (D.8) allows to show that the indirect propagator vanishes for c2(T ). Since
the effective accelaration aeff

θ
has to be computed in Eq. (D.6) along the characteristic curve

Uθ (ξ, 1, a), we exploit the identity

∂ Uθ (x ,τ,τ′)
∂ τ′

=
∂
�

τ′Uθ (x/τ′,τ/τ′, 1)
�

∂ τ′

= Uθ (x/τ′,τ/τ′, 1)−
x
τ′
∂ Uθ (x/τ′,τ/τ′, 1)

∂ (x/τ′)
−
τ

τ′
∂ Uθ (x/τ′,τ/τ′, 1)

∂ (τ/τ′)
= veff

θ

�

Uθ (x/τ′,τ/τ′, 1)
�

, (D.11)

where the first equality follows from the scaling property Uθ (x ,τ,τ′) = τ′Uθ (x/τ′,τ/τ′, 1)
valid for the partitioning protocol state, while in the third equality directly follows upon dif-
ferentiating with respect to τ′ the integral equation (135) for Uθ (x ,τ,τ′). Inserting the ex-
pression for Uθ (x/τ′,τ/τ′, 1) from (D.11) into the expression for the effective acceleration in
(D.7), one has that the latter can be rewritten as

aeff
θ (Uθ (ξ/a, 1/a, 1)) =

1
2π
δnθ
δ(veff

θ
(ξ)− ξ)

ρθ (ξ) fθ (ξ)
=

1
2π
δnθ

δ(ξ− ξ∗
θ
)

ρθ (ξ) fθ (ξ)
, (D.12)

with ξ∗
θ

defined in (D.9). In order to eventually compute c2(T ) from (D.3) one needs to
know∆a,ξ=0 from (D.6) and, therefore aeff

θ
(Uθ (0,1/a, 1)). The latter readily follows from the

previous equation

aeff
θ (Uθ (0, 1/a, 1)) =

1
2π
δnθ
δ(veff

θ
(ξ))

ρθ fθ
=

1
2π
δnθ

δ(θ − θ ∗)
|∂θ veff

θ
|ρθ fθ

, with veff(θ ∗) = 0 .

(D.13)
The effective acceleration determining the integral equation for ∆a,ξ=0 is therefore supported
only on the rapidity θ ∗ such that the effective velocity veff

θ
on the ray ξ = 0 is zero. Inserting

the expression (D.13) into (D.6) and eventually into Eq. (D.3), one readily recognizes that
the indirect contribution to c2 vanishes because of effective velocity veff

θ
factor appearing into

the integral (D.3). Therefore, we conclude that c2(T ) is exactly given by Eq. (D.5), which
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remarkably depends solely on thermodynamic quantities dependent on the state ξ = 0. This
constitutes the derivation of the result in Eq. (158) of the main text within the inhomogeneous
BFT formalism.

In order to compute higher cumulants and the whole scaled-cumulant generating func-
tion F(λ, T ) one needs to solve the inhomogeneous BFT flow equation, which describes the
flow of space-time dependent Lagrange multipliers β(x , t), in the manifold of inhomogeneous
GGE states β(x , t) 7→ β(x , t,λ). This equation generalizes Eq. (79) to long-wavelength ini-
tial states (12) by embodying the effect of indirect correlations among normal modes as per
the indirect propagator ∆. This equation has been reported in Ref. [23] and it relies on the
results of Ref. [19] for integrable systems. As such, the inhomogeneous BFT is at present lim-
ited to the latter class of systems, differently from its homogeneous counterpart in Eq. (79).
We do not report the equation here as the investigation of higher order cumulants is left for
future works. Here it is sufficient to say that from the solution of the flow equation, the

SCGF F(λ, T ) in Eq. (14), is eventually retrieved as F(λ, T ) =
∫ λ

0 dλ′
∫ T

0 dt ji∗(0, t,λ′)/T ,
with ji∗(0, t,λ′) = 〈 ȷ̂i∗(0,0)〉β(0,t,λ′), which is remarkably similar to the result from BMFT in
Eq. (78).

It is here fundamental to emphasize that, given our findings about the existence of long-
range Euler-scaled correlations, the inhomogeneous version of BFT still requires more checks.
As a matter of fact, this theory is based on Eq. (C.1) and therefore by construction it does
not account for the long-range contribution to correlations generated by normal modes co-
herently emitted at the past from the inhomogeneity (see the discussion in Appendix C). That
being said, in the present manuscript, we numerically verified that the inhomogeneous BFT
gives the correct second cumulant cpart

2 in Eq. (158) for the partitioning protocol on the ray
ξ = x/t = 0 (see the discussion in Subsec. 5.4 of the main text and Fig. 3). This a con-
sequence of the fact that the contribution to current-current correlators stemming from the
correlations between normal modes in both the inhomogeneous BFT and the BMFT vanishes
because the fluid velocity of the normal mode that propagates along the ray ξ= 0 is zero (see
Eq. (D.13)). The result for cpart

2 provides the first confirmation of the validity of the inhomo-
geneous BFT, at least for cumulants in the partitioning protocol. The effect of the presence
of long-range correlations on higher-order cumulants and on the scaled-cumulant generating
function F(λ, T ), requires, however, a more in-depth analysis and numerical checks which
would shed light on the relation betwen the BMFT and the inhomogeneous BFT and the limits
of validity of the latter. Regarding correlations functions, instead, whenever the contribution
from the long-range Euler scaled correlations is present, we expect the BFT and the BMFT to
predict different results, the latter of which is deemed to be correct.

E Non-canonical mesoscopic fluctuations out of equilibrium:
TASEP

The TASEP is a classical stochastic exclusion process defined on a lattice, where particles hop
only towards one direction randomly, subject to hard-core exclusion [117]. Its hydrodynamics
is well-known and is given by the inviscid Burgers equation

∂tρ(x , t) + ∂x[ρ(x , t)(1−ρ(x , t))] = 0 , (E.1)

where ρ(x , t) is the particle density. Its conjugate variable β(x , t) is then determined by
∂ β/∂ ρ = −1/(ρ(1 − ρ)), which yields β[ρ] = − log(ρ/(1−ρ)). The rest of the MFT
equations (98) carries over, except having only one component with the flux Jacobian re-
placed by v[ρ] := 1 − 2ρ. Following the same argument as after Eq. (109) in Sub-
sec. 4.6, we have H(x , t1) = λδ(x − x1). Defining the characteristic curve U(x , t; t1) by
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x = v[β(U(x , t; t1), t1)](t− t1)+U(x , t; t1) so that H(x , t) = H(U(x , t; t1), t1), the full profile
of H can be given by H(x , t) = λδ(U(x , t; t1)− x1). Further introducing u(x , t) := U(x , t; 0)
and invoking β(x2, t1) = β(u(x2, t1), 0), we therefore have, at λ= 0,

∂λβ(x2, t1) = (∂λβ)(u, 0) + ∂λu∂uβ =
(∂λβ)(u, 0)

1+ ∂ v(u, 0)t1
, (E.2)

where we used ∂λu = −(t ∂β v(∂λβ)(u, 0))/(1+ ∂ v(u, 0)t) and we denote by ∂ the derivative
of the function with respect to its spatial argument. Since (∂λβ)(u(x2, t1), 0) = −δ(x1− x2), it
turns out that the nontrivial interaction as well as the initial homogeneity amounts to a change
of the local covariance matrix rather than long-range correlations:

Sq̂0,q̂0
(x1, t1; x2, t2) =

δ(x1 − x2)
1+ ∂ v(u, 0)t1

C00(x1, t1) , (E.3)

where C00[ρ] = ρ(1−ρ). Of course, it is a well-known fact that the TASEP could generically
develop shocks [118], but at least up to the time when it starts developing shocks, the above
correlation function is expected to be valid. The inevitable appearance of a shock also prevents
the correlator from having the vanishing weight when t1→∞. The change of the local weight
suggests an intriguing phenomenon in the TASEP, which is that the fluid cells cannot be thought
of as being described by the local Gibbs distribution e−β(x ,t)Q0 , as the weight differs from what
one obtains from this distribution, i.e., C00(x , t). Clearly this phenomenon persists even for
other one-component systems whose hydrodynamics are controlled by the hyperbolic equation
of type ∂tρ+ f (ρ)∂xρ = 0 for an arbitrary function f (ρ). We therefore expect that the lack of
long-range correlations in systems that have only one conservation law to be generically true.

F The MFT flow equation for current fluctuations in integrable sys-
tems

The initial condition (144) allows us to write down the flow equation for εθ (x , t). Since
εθ (x , t) = ε(uθ (x , t), 0), we have

∂λε
θ (x , t) = ∂λuθ ∂yε

θ (y, 0)
�

�

y=uθ (x ,t) + (∂λε
θ )(uθ (x , t), 0)

= λhθdr(u
θ (x , t), 0)Θ(uθ (x , t), 0) + ∂λuθ ∂xε

θ (x , 0)
�

�

x=uθ (x ,t)

− (R−T)θα(u
θ (x , t), 0)∂λ
�

λ(RT)αφ(0, T )Θ(x − uφ(0, T ))hφdr(0, T )
�

. (F.1)

The treatment of ∂xε(x , 0) depends on the initial condition we choose. For the most of the
cases, we can simply use the boundary condition of the MFT equations and get

∂xε(x , 0) = λhθdr(0,0)δ(x) + (R−T)θφ(x , 0)∂xβ
φ
ini(x)−λδ(x − uθ (0, T ))hθdr(0, T ) . (F.2)

Having a quantity whose argument is x = t = 0 could however cause problems in some
situation, such as the partitioning protocol. In such a case one needs to take a detour by first
obtaining εθ (x , 0) by differentiating βθ (x , 0) with respect to λ, obtaining

εθ (x , 0)= εθini(x) +

∫ λ

0

dλ′
�

hθdr(x , 0)Θ(x)− (R−T)θα(x , 0)

× ∂λ′
�

λ′(RT)αφ(0, T )Θ(x − uφ(0, T ))hφdr(0, T )
�

�

, (F.3)

from which one obtains ∂xε
θ (x , 0). Therefore the flow equation in a generic inhomogeneous

case or in the partitioning protocol is given by (F.1) with (F.2) or (F.3), respectively.
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G Third cumulant in the homogeneous case

In this section we shall explain how one can obtain c3 using the flow equation (147). Recall
that what we have to evaluate is

c3 =
1
T

∫ ∞

0

dx

∫

R
dθ hθ∂ 2

λ (ρθ (x , T )−ρθ (x , 0))|λ→0 . (G.1)

For that, we first note

∂ 2
λρθ (x , t) = −∂ 2

λ ε
φ(x , t)(R−T)φ

θ
(x , t)χφ(x , t)− ∂λεφ(x , t)∂λ

�

(R−T)φ
θ
(x , t)χφ(x , t)
�

.
(G.2)

Let us start with ∂ 2
λ
εφ(x , t). Using (147) we have

∂ 2
λ ε
φ(x , t)
�

�

λ→0 = 2
h

∂λhφdr(0, 0)
�

�

�

λ→0
Θ(uφ(x , t))− ∂λhφdr(0, T )

�

�

�

λ→0
Θ(rφ(x , t))
i

+ 2hφdr

�

∂λuφ(x , t)
�

�

λ→0δ(u
φ(x , t))− ∂λrφ(x , t)

�

�

λ→0δ(r
φ(x , t))
�

. (G.3)

Note

∂λhφdr(0,0)
�

�

�

λ→0
= ∂λε

γ(0,0)|λ→0
∂

∂ εγ
hφdr = −(T

dr)φγnγ f γhγdr ∂λε
γ(0, 0)|λ→0 , (G.4)

where we recalled that hφdr = (R
−T)φγhγ. Defining Θ(0) := 1/2, ∂λε

γ(0, 0) is simply

∂λε
γ(0, 0)|λ→0 = hγdr

�

1
2
−Θ(vγ)
�

= −
1
2

sgn vγeffh
γ

dr . (G.5)

Likewise

∂λε
γ(0, T )|λ→0 = hγdr

�

Θ(−vγ)−
1
2

�

= −
1
2

sgn vγeffh
γ

dr . (G.6)

Combining these we can compute the first line in (G.3)

2
h

∂λhφdr(0,0)
�

�

�

λ→0
Θ
�

uφ(x , t)
�

− ∂λhφdr(0, T )
�

�

�

λ→0
Θ
�

rφ(x , t)
�

i

= sgn vγeff

�

Tdr
�φ

γ
nγ fγ
�

hγdr

�2 �
Θ
�

x−vφeff t
�

−Θ
�

x−vφeff(t−T )
��

. (G.7)

Next we deal with the second line in (G.3). For that note first

∂λrφ(x , t)
�

�

λ→0 (p
′)φdr =

∫ x

−∞
dy ∂λ(p

′)φdr[n(y, t)]

�

�

�

�

λ→0

−
∫ rφ(x ,t)

−∞
dy ∂λ(p

′)φdr[n
T (y)]

�

�

�

�

�

λ→0

.

(G.8)
Furthermore
∫ x

−∞
dy ∂λ(p

′)φdr[n(y, t)]

�

�

�

�

λ→0

=
∂ (p′)φdr

∂ εγ

∫ x

−∞
dy ∂λε

γ[n(y, t)]|λ→0

= −
∂ (p′)φdr

∂ εγ
hγdr

∫ x

−∞
dy
�

Θ(y − vγeff(t − T ))−Θ
�

y − vγeff t
��

,

(G.9)

and
∫ rφ(x ,t)

−∞
dy ∂λ(p

′)φdr[n
T (y)]

�

�

�

�

�

λ→0

= −
∂ (p′)φdr

∂ εγ
hγdr

∫ rφ(x ,t)

−∞
dy
�

Θ(y)−Θ(y − vγeffT )
�

. (G.10)
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Clearly ∂λrφ(x , T )
�

�

λ→0 = 0 and

∂λrφ(x , 0)
�

�

λ→0

= hγdr

∂

∂ εγ
log
�

p′
�φ

dr

∫ x

−∞
dy
�

Θ(y) +Θ(y + vφeffT )−Θ(y + vγeffT )−Θ(y + (v
φ

eff − vγeff)T )
�

,

(G.11)

which entails

δ(rφ(x , 0))∂λrφ(x , 0)
�

�

λ→0

= hγdr

∂

∂ εγ
log
�

p′
�φ

dr

�

vγeffΘ
�

−vγeff

�

+ vφγΘ
�

−vφγ
�

− vφΘ
�

−vφeff

��

δ
�

x + vφeffT
�

= −
hγdr

ρtot
φ

(Tdr)φγχγ
�

vγeffΘ
�

−vγeff

�

+ vφγΘ
�

−vφγ
�

− vφeffΘ
�

−vφeff

��

δ
�

x + vφeffT
�

, (G.12)

where vφγ = vφeff − vγeff. In the same way, one can also show that ∂λuφ(x , 0)
�

�

λ→0 = 0 and

δ(uφ(x , T ))∂λuφ(x , T )
�

�

λ→0

= −
hγdr

ρtot
φ

(Tdr)φγχγ
�

vγeffΘ(v
γ

eff) + vφγΘ(vφγ)− vφeffΘ
�

vφeff

��

δ
�

x − vφeffT
�

. (G.13)

Next we turn to the second term in (G.2). This is easier than the first term because we merely
need to evaluate

∂λε
φ(x , t)∂λ((R

−T)φ
θ
(x , t)χφ(x , t))
�

�

�

λ→0
= ∂λε

φ(x , t)
�

�

λ→0 ∂λε
γ(x , t)|λ→0

∂

∂ εγ

�

(R−T)φ
θ
χφ

�

= hφdrh
γ

drΘ
φ(x , t)Θγ(x , t)

∂

∂ εγ

�

(R−T)φ
θ
χφ

�

, (G.14)

where Θφ(x , t) := Θ(x − vφeff(t − T ))−Θ(x − vφeff t). Notice

∂

∂ εγ
((R−T)φ

θ
χφ)

= −χφ(Tdr)φγnγ f γ(R−T)γ
θ
− (R−T)φ

θ
nφ fφ(T

dr)φγχγ − (R−T)φ
θ
χφ(1− 2nφ)δ

φ
γ . (G.15)

Plugging this into (G.14), we get

∂λε
φ(x , t)∂λ((R

−T)φ
θ
(x , t)χφ(x , t))
�

�

�

λ→0

= −2(R−T)γ
θ
hφdrh

γ

drχφ(T
dr)φγnγ f γΘφ(x , t)Θγ(x , t)− (R−T)φ

θ
(hφdr)

2χφ(1− 2nφ)(Θ
φ(x , t))2 .

(G.16)

Having all the relevant terms at our disposal, we are in the position to compute c3. Let us first
compute the nondiagonal contributions, which read

�

R−T
�γ

θ
hφdrh

γ

drχφ
�

Tdr
�φ

γ
nγ fγ

1
T

∫ ∞

0

dx

×
�

− sgn vγeff

�

Θ
�

x − vφeffT
�

−Θ(x)−
�

Θ(x)−Θ
�

x + vφeffT
���

+ 2
�

vφeffΘ(v
φ

eff)− vφγΘ
�

−vφγ
�

− vγeffΘ
�

vγeff

�

�

δ
�

x − vγeffT
�

+ 2
�

vφΘ
�

−vφeff

�

− vφγΘ
�

vφγ
�

− vγeffΘ
�

−vγeff

�

�

δ
�

x + vγeffT
�

+ 2
�

Θ(x)−Θ
�

x − vφeffT
��

�

Θ(x)−Θ
�

x − vγeffT
��

− 2
�

Θ
�

x + vφeffT
�

−Θ(x)
�

�

Θ(x + vγeffT )−Θ(x)
�

�

. (G.17)
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It’s easier to work out each building block. The first one is

−
1
T

sgn vγeff

∫ ∞

0

dx
�

Θ
�

x − vφeffT
�

−Θ(x)−
�

Θ(x)−Θ
�

x + vφeffT
���

= sgn vγeff|v
δ
eff| . (G.18)

The second one is

1
T

∫ ∞

0

dx
��

vφeffΘ
�

vφeff

�

−vφγΘ(−vφγ)−vγeffΘ
�

vγeff

�

�

δ
�

x−vγeffT
�

+
�

vφeffΘ(−vφeff)−vφγΘ
�

vφγ
�

−vγeffΘ(−vγeff)
�

δ(x+vγeffT )
�

=
�

vφeffΘ(v
φ

eff)− vφγΘ(−vφγ)
�

Θ(vγeff) +
�

vφeffΘ(−vφeff)− vφγΘ(vφγ)
�

Θ(−vγeff)− vγeff . (G.19)

The third one turns out to be the same as the first one, namely

1
T

∫ ∞

0

�

�

Θ(x)−Θ
�

x − vφeffT
��

�

Θ(x)−Θ
�

x − vγeffT
��

−
�

Θ
�

x + vφeffT
�

−Θ(x)
�

�

Θ
�

x + vγeffT
�

−Θ(x)
�

�

= Θ
�

vγeff

�

Θ(vφ)min
�

vγeff, vφeff

�

+Θ
�

−vγeff

�

Θ
�

−vφeff

�

max
�

vγeff, vφeff

�

. (G.20)

Hence, the nondiagonal terms add up to

sgn vγeff|v
δ
eff|+ 2
�

Θ(vγeff)Θ(v
φ

eff)min(vγeff, vφeff) +Θ(−vγeff)Θ(−vφeff)max(vγeff, vφeff)
�

+ 2
��

vφeffΘ(v
φ

eff)− vφγΘ(−vφγ)
�

Θ(vγeff) +
�

vφeffΘ(−vφeff)− vφγΘ(vφγ)
�

Θ(−vγeff)− vγeff

�

,

(G.21)

which turns out to be 3|vδeff|sgn vγeff. We then have

c3 = hθ (hdr;φ)2
�

sφχφ |veff
φ |(R

−T)φ
θ
+ 3(R−T)γ

θ
nφ fφ |veff

γ |sφχγ(T
dr)γφ
�

= hθ (hdr;φ)2
�

sφχφ |veff
φ |(R

−T)φ
θ
+ 3(R−T)γ

θ
fφ |veff

γ |sφχγ(R
−1)φγ − 3 fφ |veff

φ |χφ(R
−T)φ

θ

�

= χφ |veff
φ |h

dr;φ
�

sφ f̃φ(h
dr
φ )

2 + 3[s f (hdr)
2]dr
φ

�

, (G.22)

which coincides with the known c3 from Ref. [21].

H Dynamical correlation functions in integrable systems

In this Appendix, we provide details on the calculations of dynamical correlation functions
from inhomogeneous states in integrable systems. In Appendix H.1, we detail the derivation
of the full profile of ∂λε

θ (x , t), with particular emphasis on the application to equal time
correlations and hence to the appearance of Euler-scaled long-range correlations. In the Ap-
pendix H.2, we specialize the analysis to the hard-rod model from the partitioning protocol
inhomogeneous initial state.

H.1 General cases

We start with the general formula for Sq̂i1 ,q̂i2
(x1, t1; x2, t2) evaluated with respect to an arbitrary

initial condition βini(x). Using (165) and ∂λε
θ (x2, t2) = ∂λuθ∂y ε

θ (y, 0)
�

�

y=uθ + (∂λε)(u
θ , 0),

the correlator is given by

Sq̂i1 ,q̂i2
(x1, t1; x2, t2) = −

∫

R
dθ hθi2(R

−T)θφ(x2, t2)χφ(x2, t2)∂λε
φ(x2, t2)

�

�

�

�

λ=0

. (H.1)
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The task therefore is to compute ∂λεθ (x2, t2). To this end recall first that

βθ (x , 0) = βθini(x)−λ
�

(RT)θφ(x1, t1)h
φ

dr(x1, t1)
δ(x − uφ(x1, t1))

∂ Uφ(uφ(x1, t1), 0; t1)

+ ∂
�

(RT)θφ(x1, t1)h
φ

dr(x1, t1)
�

Θ(x − uφ(x1, t1))
�

. (H.2)

Recall that here ∂ without subscript implies that it acts as the spacial derivative with respect
to the space argument of a function. The previous equation implies that ∂λεθ (x2, t2) satisfies

∂λε
θ (x2, t2)

= −
hθdr(x1, t1)

∂ Uθ (uθ (x1, t1), 0; t1)
δ(uθ (x2, t2)− uθ (x1, t1)) + ∂λuθ (x2, t2)∂ εini(u

θ (x2, t2))

+ (R−T)θφ(u
θ (x2, t2), 0)∂
�

(RT)φα(x1, t1)h
α
dr(x1, t1)
�

Θ
�

uθ (x2, t2)− uα(x1, t1)
�

. (H.3)

Note that ∂λuθ (x , t) satisfies

∂λuθ (x , t)ρθtot(u
θ (x , t), 0)

= −
∫ uθ (x ,t)

−∞
dy ∂λρ

θ
tot(y, 0) +

∫ x

−∞
dy ∂λρ

θ
tot(y, t)

= −
∫ uθ (x ,t)

−∞
dy (R−T)θφ(y, 0)χφ(y, 0)∂λε

φ(y, 0) +

∫ x

−∞
dy (R−T)θφ(y, t)χφ(y, t)∂λε

φ(y, t) .

(H.4)

The case of equal-time correlations, i.e., t1 = t2 = t, is of particular interest. In this case the
flow equation becomes

∂λε
θ (x2, t) =− hθdr(x1, t)δ(x1 − x2) + ∂λuθ (x2, t)∂ εini(u

θ (x2, t))

+ (R−T)θφ(u
θ (x2, t), 0)∂
�

(RT)φα(x1, t)hαdr(x1, t)
�

Θ
�

uθ (x2, t)− uα(x1, t)
�

.

(H.5)

Clearly the first term accounts for the local covariance matrix weight Ci1 i2(x1, t) that depends
on the local state, whereas the rest of the terms contribute to long-range correlations, which
amounts to Ei1 i2(x1, t) given by Eqs. (132) and (133). To be more precise, let us assume that
∂λε

θ (x2, t) takes the following form: ∂λε
θ (x2, t) = E0(x1, t)δ(x1− x)+E(x , t), where E(x , t)

is a regular function that contains no delta-function. Then plugging this into (H.5) with (H.4),
it is readily seen that E0(x1, t) has to be E0(x1, t) = −hθdr(x1, t), and E(x , t) satisfies the integral
equation (133) (together with Eqs. (134)-(138)). Since the integral equation has the unique
solution, which can also be verified numerically, the above ansatz is justified.

H.2 Partitioning protocol in the hard-rod gas

As mentioned in the main text in Subsec. 5.5, in the partitioning protocol, the long-range corre-
lations have two origins: one is the same as other protocols, i.e., correlations between normal
modes, and another is due to early time dynamics controlled by non-universal micsroscopic
physics. While the latter, on the basis of the numerical analysis we carried out, gives the domi-
nant contribution, it is interesting to see how the former contribution can be exactly computed
in this case. To better illustrate it, let us focus on the system of hard rods (see Appendix B)
and choose the particle density for both densities in the correlator: i1 = i2 = 0. Moreover we
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set x2 = 0. The flow equation (H.5) then reads

∂λε
θ (0, t) = −ρtot(0)δ(x1)− ∂λuθ (0, t)δεθδ(uθ (0, t))

+
1
t

�

− aρtot
R δnαδ(ξ1 − ξ∗(α))ρtot(ξ1)Θ(−vθeff(0))

+
�

(R−T)θα(u
θ , 0) + aρtot(u

θ , 0)nα(ξ1)
�

ρ′tot(ξ1)Θ(u
θ (0, t)− uα(x1, t))

�

, (H.6)

where δεθ = εθR − ε
θ
L and δnθ = nθR − nθL . To proceed, we note

(R−T)θα(u
θ , 0)Θ(uθ (0, t)−uα(x1, t)) = Θ(−x1)− aρtot(u

θ , 0)nα(u
θ , 0)Θ(uθ (0, t)−uα(x1, t)) ,

(H.7)
and

(nα(u
α(x1, t), 0)− nα(u

θ (0, t), 0))Θ(uθ (0, t)− uα(x1, t)) = δnαΘ(−vθeff(0))Θ(ξ∗(α)− ξ1) .
(H.8)

Furthermore,

ρtot
R ∂ξ1

(ρtot(ξ1)δnαΘ(ξ∗(α)− ξ1)) = ρ
tot
R ∂ξ1

(ρtot(ξ1)(n
α(ξ1)− nαR))

= ρtot
R ρ
′(ξ1)−ρRρ

′
tot(ξ1)

= ρ′(ξ1) . (H.9)

Using these the flow equation is now simplified to

∂λε
θ (0, t)

= −ρtot(0)δ(x1)− ∂λuθ (0, t)δεθδ(uθ (0, t)) +
1
t

�

ρ′tot(ξ1)Θ(−x1) + aρ′(ξ1)Θ
�

−vθeff(0)
�

�

.

(H.10)

Next we turn to the term that involves ∂λuθ . When λ= 0 and uθ (0, t) = 0 we have,

ρtot(0)∂λuθ (0, t) =

∫ 0

−∞
dy ∂λρtot(y, t)−

∫ 0

−∞
dy ∂λρtot(y, 0)

= −
∫ t

0

ds ∂λvθ (0, s) = −aρtot(0)ρφ(0)v
eff
φ (0)

∫ t

0

ds ∂λε
φ(0, s) , (H.11)

which gives the full ∂λε
θ (0, t)

∂λε
θ (0, t) = −ρtot(0)δ(x1) +

1
t
Eθ (ξ1) + aδεθδ(uθ (0, t))ρφ(0)v

eff
φ (0)

∫ t

0

ds ∂λε
φ(0, s) ,

(H.12)
where

Eθ (ξ1) := ρ′tot(ξ1)Θ(−x1) + aρ′(ξ1)Θ
�

−vθeff(0)
�

= aρ′(ξ1)
�

Θ(x1)Θ
�

−veff
θ (0)
�

−Θ(−x1)Θ
�

veff
θ (0)
��

. (H.13)

The term −ρtot(0)δ(x1) on the right hand side of Eq. (H.12) gives from Eq. (161) the lo-
cal covariance matrix C00(0, t) weight of the delta function in (168) (see also the discussion
after Eq. (H.5)). The remaining terms determine the Euler-scaled long-range correlations
E00(x1, 0; t). Let us focus on this contribution and suppose x1 ̸= 0. It is then clear that solving
the integral equation (H.12) recursively, the term containing δ(x1), which is t-independent,
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merely acquires the multiplicative factor tδ(uθ (0, t)). The latter is zero, hence the delta-
correlated term remains the same. As for the other source term 1

t Eθ (ξ1), it is clear that the
iteration truncates after the second term because veff

θ∗(0)
= 0. In conclusion, we have

∂λε
θ (0, t) = −ρtot(0)δ(x1) +

1
t
Eθ (ξ1) + aδεθδ(uθ (0, t))ρφ(0)v

eff
φ (0)

∫ t

0

ds
1
s
Eφ(x1/s) ,

(H.14)
which gives

E00(x1, 0; t) = −ρtot(0)ρθ (0)

�

1
t
Eθ (ξ1) + aδεθδ(uθ (0, t))ρφ(0)v

eff
φ (0)

∫ t

0

ds
1
s
Eφ(x1/s)

�

,

(H.15)
provided x1 ̸= 0. Note again that the result above does not agree with numerical simulations
we carried out, or to be more precise, it only gives the contribution that originates from hy-
drodynamics. But as we explained in the main text, the predominant contribution to the Euler
scale correlator Sq̂0,q̂0

(x1, t; 0, t) in the partitioning protocol stems from the transient physics
that takes place at the early stage of the dynamics, which is not accounted for by hydrodynam-
ics. One can, however, try to smear out the initial step function while keeping the asymptotic
values of the distribution unchanged, in which case the correlator from BMFT is expected to
agree with numerical simulations.

I Numerics: Hard-rod model simulations

In this Appendix we provide details about the numerical simulations of the hard-rod model.
For the numerical simulations with the partitioning protocol initial state, we focused on the
case where the initial state presents a jump in the inverse temperature β i

ini at x = 0:

β i
ini(x) = δ

i
ī
(βLΘ(−x) + βRΘ(x)) , (I.1)

which corresponds to the initial inhomogeneous state in Eq. (17) with the set C containing only
the energy qī conserved charge (and β i

0 = 0 otherwise). In the previous equation ī is then the
index corresponding to the energy conserved charge and the thermal state is identified by
the source term βθL,R = βL,Rθ

2/2 in Eq. (120). The thermal occupation function nθ
βL,R

can be
obtained by solving (B.3) with this source term, which turns out to admits a closed expression
(see, e.g., Ref. [21]) in terms of the Lambert function W (z) [119]:

nθβL,R
=

e
−εθ
βL,R

2π
=

e−βL,Rθ
2/2

2π
e−W(ad(βL,R)) , (I.2)

where d(β) = 1/
p

2πβ . The thermal quasi-particle density ρθ ,βL,R
is readily obtained from

Eq. (I.2) and it reads as
ρθ ,βL,R

= fθ (βL,R)ρ(βL,R) , (I.3)

where the rods spatial density ρ(β) can also be expressed solely in terms of the Lambert
function

ρ(βL,R) =
W (ad(βL,R))

a[1+W (ad(βL,R))]
, (I.4)

and fθ (β) is the velocity distribution

fθ (β) =

√

√βL,R

2π
e−βθ

2
. (I.5)
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From the previous equation, it is evident that for a thermal state, the rods velocity distribution
is a Gaussian with variance 1/β and mean µ zero. It is also possible to consider velocity
distribution with a non zero mean simply replacing θ → θ −µ in Eq. (I.5), which corresponds
to a boosted thermal distribution. In the simulations we always consider the case of µ= 0.

The numerical simulations are done in infinite volume, but the rods are initially distributed
in a symmetric interval [−Lsize/2, Lsize/2] around the origin. In the numerical simulations, in
addition to the discontinuity of the density at x = 0, there are, as a consequence, two deple-
tion zones, where the density of rods jumps to zero, which move inwards as time elapses. The
numerical results, as a consequence, deviate from the BMFT predictions in proximity of the
depletion zones. The initial left ([−Lsize/2,0]) and right half ([0, Lsize/2]) spatial distributions
of rods are given in Eq. (I.3) with inverse temperature βL and βR, respectively. Rods’ velocities
are sampled from the Gaussian distribution in Eq. (I.5) with βL for the rods initially in the left
half, and with βR for the rods initially in the right one. The number N of rods used in the sim-
ulations is then fixed by the initial size Lsize, by the rod length a and the inverse temperatures
βL,R (according to the density ρ(βL,R) in Eq. (I.4)). We emphasize that stochasticity in the
simulations is only due to the initial condition according to Eqs. (I.1), (I.4) and (I.5), while
the time evolution is purely deterministic according to the hard-rod dynamics. Numerical re-
sults are eventually obtained by averaging over a large number M of independent realizations
of the rods’positions and velocities.

Regarding the cumulants’ analysis in the partitioning protocol we focus on the second
cumulant cpart

2 for particle transport (single particle eigenvalue Nθ = 1 in Eq. (B.1)), as ex-
plained in Subsec. 5.4 of the main text. The second cumulant cpart

2 provides a nontrivial test
of the BMFT predictions as it probes fluctuations of the time-integrated particle current Ĵ(T )
beyond the mean value, described, instead, by the first cumulant cpart

1 . One expects, in partic-
ular, higher cumulants to be more sensible to rare events with very rapidly moving rods. As a
consequence, for the numerical calculation of cpart

2 , we exploit a large initial size Lsize = 105 in
order to be able to observe the Euler-scale predictions from BMFT before the boundary effects
due to the aforementioned depletion zones become visible. The cumulant is numerically eval-
uated by computing the number N+ and N− of rods on x > 0 and x < 0, respectively. We do
this both at the initial time 0, getting N±(0) and at a variable observation time T , with result
N±(T ). The numerical value of cpart

2 is then obtained by computing the connected average of
the transferred particle charge ∆N(T ) and rescaling it by the time duration T > 0:

cpart
2 (T ) = T−1



∆N(T )2
�c
= T−1
�


∆N(T )2
�

− 〈∆N(T )〉2
�

, (I.6)

with

∆N(T ) =
N+(T )− N−(T )

2
−

N+(0)− N−(0)
2

. (I.7)

Because of the continuity equation (6), it is immediate to verify that Ĵ(T ) = ∆N(T ) and
therefore the expression for cpart

2 (T) in Eq. (I.6) coincides with the one given in Eq. (15) of the
main text for c2(T ) in the long time limit T →∞. The averages 〈•〉 in Eq. (I.6) are done with
respect to the initial partitioning inhomogeneous and non-stationary state in Eqs. (I.1). In the
numerical simulations, averages 〈•〉 of an observable A are computed as the sample mean Ā
over the independent realizations A(i), with i = 1, 2 . . . M , of the initial rods’distribution as

Ā=
1
M

M
∑

i=1

A(i). (I.8)

This applies, for instance, both to A1(T ) = ∆N(T ) and A2(T ) = ∆N(T )2 in Eq. (I.6). The
resulting expression obtained for cpart

2 (T ) is plotted in Fig. 3 of the main text. The statistical
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uncertainty U(A) on the sample mean Ā is computed as the empirical standard deviation [120]

A= Ā± U(A) , U(A) =
1
p

M

√

√

√

√

1
M − 1

M
∑

i=1

�

A(i) − Ā
�2

, (I.9)

which quantifies the dispersion of the samples Ai around the sample mean Ā. Note that the
empirical standard deviation U(A) drops as 1/

p
M as M increases as a consequence of the

central limit. For the calculation of the uncertainty on cpart
2 (T ), we use the model for the

propagation of uncertainties, see, e.g., Ref. [120], which assign to cpart
2 (T ) the uncertainty

U(cpart
2 (T )) determined from the uncertainties U(A1,2) as follows

U(cpart
2 (T )) =

N
∑

i=1

�

�

�

∂ cpart
2 (T )

∂ Ai

�

�

�

Ai=Āi

U(Ai) =
1
T

�

U(A2) + 2Ā1U(A1)
�

. (I.10)

The previous equation has been used for the calculation of the error bars in Fig. 3, where
M = 8.8 · 107 samples have been used. Note that Eq. (I.10) leads to an excess estimation
of U(cpart

2 (T )) since the contributions from the uncertainties U(A1,2) are summed in absolute
value and therefore the possibility of a partial compensation of the the uncertainties U(A1,2)
is a priori excluded (cf., the discussion in Ref. [120]). The error bars in Fig. 3, which affect
the third decimal digit, thereby show an excellent agreement between the numerical result for
cpart
2 at long times and the BMFT prediction of Eq. (131), with the discrepancy between the

two visible only on the fourth decimal digit and utterly within the error bars.
We conclude by reporting the formulas used for the calculation of the uncertainties’bars in

Fig. (1) of Ref. [24] and in Fig. 4. The equal-time two-point correlator Sq̂0,q̂0
(x , t; 0, t) (and

analogously for Sq̂0,q̂0
(x , t;−x , t)) is numerically obtained from Eq. (22) particularized the

density conserved charge q̂0

Sq̂0,q̂0
(x , t; 0, t) = lim

ℓ→∞
ℓ 〈q0(ℓx ,ℓt)q0(0,ℓt)〉cℓ , (I.11)

with
〈q0(x , t)q0(0, t)〉cℓ = 〈q0(x , t)q0(0, t)〉ℓ − 〈q0(x , t)〉ℓ 〈q0(0, t)〉ℓ . (I.12)

In the numerical simulations, the fluid cell mean in Eq. (I.12) is implemented as in Eq. (35),
thereby averaging only in space (see the discussion after Eq. (23) in the main text). The terms
C2((x , t)) = 〈q0(x , t)q0(0, t)〉ℓ, C1(x , t) = 〈q0(x , t)〉ℓ and C1(0, t) = 〈q0(0, t)〉ℓ appearing on
the r.h.s. of Eq. (I.12) are evaluated in the numerical simulations by sample mean, as per
Eq. (I.8). The statistical uncertainty U(Sq̂0,q̂0

(x , t; 0, t)) of the connected correlator in Eq. (I.11)
is obtained from the uncertainties U(C2(x , t)), U(C1(x , t)) and U(C1(0, t)) as

U(Sq̂0,q̂0
) =
�

�

�

∂ U(Sq̂0,q̂0
)

∂ C2(x , t)

�

�

�

C̄2(x ,t)
U(C2(x , t))

+
�

�

�

∂ U(Sq̂0,q̂0
)

∂ C1(x , t)

�

�

�

C̄1(x ,t)
U(C1(x , t))

+
�

�

�

∂ U(Sq̂0,q̂0
)

∂ C1(0, t)

�

�

�

C̄1(0,t)
U(C1(0, t)) . (I.13)

In the previous equation we dropped the arguments of Sq̂0,q̂0
(x , t; 0, t) for the sake of brevity.

From Eqs. (I.11) and (I.12) one has

U(Sq̂0,q̂0
(x , t; 0, t)) = ℓ
�

U(C2(x , t)) + C̄1(0, t)U(C1(x , t)) + C̄1(x , t)U(C1(0, t))
�

. (I.14)

The Euler-scaling limit in Eq. (I.11), which requires infinite variation lengths ℓ→∞, is taken
by considering large values of ℓ= 250,500 and 1000. The previous equation, with the afore-
mentioned values for the macroscopic length scale ℓ, has been used in Fig. (1) of Ref. [24] and
in 4 to compute the uncertainties’bars.
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