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Abstract. We consider a simple model of establishing influence in a net-
work. Vertices (people) split into influence groups and follow the opinion
of the leader – the influencer – of their group. Groups can merge, based
on interactions between influencers (the ‘active vertices’ of the network,
while the followers are the ’passive vertices’).
We study how the final number of influence groups depends on the way
active vertices are chosen for interacting, considering two types of sparse
graphs: the cycle Cn, which allows detailed analysis of various influencer
algorithms, and random graphs G(n, p) where p = c/n for a constant c.
We also introduce a simple dynamic Falling-Out model, which allows for
rejection of opinion. In its most general form, as considered for G(n, p),
one of the two interacting influencers can decide to follow the other
influencer, or they both can reject the opinion of the other influencer
and instead choose other influencers to follow.
Our analysis for the cycle is based on solving systems of recurrences using
generating functions, and our analysis for the random G(n, p) graph uses
the differential equation method.

Keywords: Random graphs and processes · Social networks and influ-
ence

1 Introduction

We study a simple model of influence in a network. In the model vertices (people)
follow the opinion of the group they belong to. This opinion percolates down
from an active (or opinionated) vertex, the influencer, at the head of the group.
Groups can merge, based on edges between influencers (active vertices), so that
the number of opinions is reduced. Eventually no active edges (edges between
influencers) remain and the groups and their opinions become static.

Interest in models of social structure was promoted by the sociologist Robert
Axelrod [2], who posed the question “If people tend to become more alike in
their beliefs, attitudes, and behavior when they interact, why do not all such
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differences eventually disappear?”. This question was further studied by, for ex-
ample, Flache et al. [8] and Moussaid et al. [12] who review various models of
social interaction, generally based on some form of agency.

In our model, the emergence of separate groups occurs naturally due to lack
of active edges between influencers. The exact composition of the groups and
the opinion which influences them is a random outcome of the connectivity of
the graph and the precise method of merging the groups. The paper [6] made
an analysis of the Influencers model on an evolving version of the random graph
G(n,m). The graph has n vertices and m edges, which are selected randomly
and added to the graph one at a time, in random order. If both end points of the
current edge are active influencers, then one of them becomes a passive follower
of the other, which remains as an active influencer. When no edges remain, the
final influence structure is revealed.

x

y

x follows y

x

y

Fig. 1. Influencer x chooses a neighbouring influencer y and joins the group of y.
Thus x becomes a follower of y along with the rest of its group.

In the current paper we study how the final number of influence groups
depends on the way active vertices are chosen for interacting. We make this
comparison for two types of sparse graphs: the cycle Cn, which allows detailed
analysis of influencer algorithms; and random graphs G(n, p) where each of the
potential

(
n
2

)
edges is present with probability p = c/n for a constant c, inde-

pendently of other edges.
We also introduce a simple dynamic model (Falling-Out) which allows for

rejection of opinion. In its most general form, as considered for G(n, p), one
influencer can choose to follow another, or reject the opinion and instead follow
another influencer. Although the dynamic is crude it does incorporate a natural
component of human behaviour.

Joining Protocols. The Influencers problem is an instance of a general greedy
process on a graph in which vertices are classified as active or passive. At any
step, active vertices interact in some fashion, the result being that only one
of the interacting vertices remains active, whilst the other interacting vertices
become passive; the edges from the active vertex to the (now) passive ones being
retained. This reduces the total number of active vertices until eventually there
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are no edges between them. At this point, the remaining active vertices become
isolated and the process halts.

In this way, the process partitions the graph into disjoint subgraphs, which
we call fragments, based on following the opinion of a neighbour. At any step,
a fragment consists of a directed tree rooted at an active vertex, the current
influencer, the edges pointing from follower vertices towards the root. This forms
a simple model of influence where vertices in a fragment follow the opinion of
the vertex they point to, and hence eventually that of the root.

The process is carried out on an underlying graph G = (V,E). Initially all
vertices of V are active, and all fragments are individual vertices. Let A = At

be the active set at step t and denote by G[A] the subgraph of G induced by A.
The simplest processes iterate the following steps.

1. Vertex model : Choose uniformly at random (u.a.r.) an active non-isolated
vertex u and choose u.a.r. an active neighbour v of u. The edge uv is directed
(u, v) and vertex u becomes passive (and follows the active vertex v).

2. Edge model : Choose a random edge from G[A] and orient it u.a.r. If the ori-
ented edge is (u, v), then u becomes passive (and follows the active vertex v).

Both processes end when G[A] has no edges, and the final influencers are the
final set A of remaining isolated active vertices.

Other processes studied here include variants of the edge model based on the
active degrees of the edge endpoints and the following Falling out (break edge)
model. Choose a random unexamined edge uv from G[A]. Vertices u and v then
choose u.a.r. neighbours from A\{u, v}, direct an edge to the chosen neighbours
and become passive. If no such neighbour exists they become isolated.

Summary of previous results. The paper [6] made an analysis of the edge process
on the random graph G(n,m), choosing at step 1 ⩽ t ⩽ m ⩽ N ≡

(
n
2

)
a random

edge from the remaining N − t+1 potential edges. Whenever both endpoints of
the currently considered edge are active, one of them (selected u.a.r.) becomes
passive. The results given in [6] include the following, among others.

– The number of fragments a(m) in G(n,m) is with high probability (w.h.p.)
asymptotic to F (m) = 1

1−(1−1/n)
√

1−m/N
, for m ≪ N , and this formula is

an upper bound on the expected value of a(m) for any m ⩽ N(1 − o(1)).
The simulations indicate that this upper bound F (m) may give the actual
expected number of fragments for any m ⩽ N(1− o(1)).

– The equivalent number of fragments in the presence of stubborn vertices (who
accept followers, but refuse to follow). If m = cN , for a constant c < 1, then
one stubborn vertex reduces the expected number of fragments to at most√
1− c F (m).

– The sizes of the fragments correspond to the lengths of the parts of a stick in
the stick breaking process [11, 13]. The expected size of the largest of k ⩾ 2
remaining fragments is asymptotic to (n/k) log k.
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General remarks. As previously noted, the Influencers problem is an instance
of a class of greedy processes on graphs, in which at each step some subset of
active vertices interact and all but one of them become passive. For the Influencer
problem the interactions are pairwise based on the existence of edges between
active vertices. The selected edges are retained to form tree components rooted
at currently active vertices.

For a given graph G let α(G) be the independence number, the size of the
largest independent set. The final set S of active isolated vertices returned by
the Influencer process on a graph G is an independent set. Thus |S| ⩽ α(G),
and it is natural to compare the size of S with the sizes of sets computed by
heuristics for large independent sets.

The algorithm Greedy-IS (Greedy Independent Set) chooses at each step
an active vertex v, adds v to S (initially empty), and deletes v and all of its
neighbours from the graph, continuing until there are no vertices left in the
graph. Greedy-IS fits formally the general description of the Influencers process,
and can be viewed as a variant in which a selected active vertex v makes all its
active neighbours passive (followers of v). Greedy-IS is a well known attempt to
solve a maximization problem, whereas there is no obvious objective function
for Influencers. Thus, realistically, protocols like the vertex and edge models
align better with the underlying idea of modeling emergence of influencers than
Greedy-IS, which requires that the selected active vertex imposes its opinion on
all its neighbours.

The following Lemma, quoted from [5], is classic and gives a bound for
Greedy-IS for any graph G.

Lemma 1. Greedy-IS outputs an independent set S such that |S| ⩾ n/(∆ + 1)
where ∆ is maximum degree of G. This can be extended via Turan’s theorem to
prove |S| ⩾ n/(d+ 1) where d is the average degree.

Since α(G), the independence number of G, is an upper bound on the final
number of influencers, it may be tempting to assume Greedy-IS also gives an
upper bound for the Influencer process. For G(n, c/n) when c > 1 this should
be the case, see [1], as Greedy-IS is notoriously difficult to improve. For very
sparse graphs such as a cycle (or G(n, c/n), c < 1) this is not necessarily so. In
Section 2 we compare a range of algorithms for the Influencer process on Cn, one
of which returns larger (independent) sets than Greedy-IS. In Section 3 we give
a more limited comparison for G(n, p). In both types of graph we also consider
the Falling-Out dynamic model which has no direct relationship to independence
number.

We define the influencer ratio, which is the limiting expected fraction of
active isolated vertices S. Let Gn be a graph or graph space parameterized by n,
for example Cn or G(n, p). For a given fragmentation algorithm F , let Sn be the
set of isolated active vertices remaining after running F on (a random element
of) Gn and define the influencer ratio as

ρ(F ) = ρ(F,Gn) = lim
n→∞

E |Sn|/n.
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The probabilities here are taken over the randomness in F and the potential
randomness of Gn. Thus for the maximum independent set problem, ρIS =
ρIS(Gn) = limn→∞Eα(Gn)/n.

2 The Influencer Problem on the cycle Cn

As the independence number α(Cn) = α(Pn−1) = ⌊n/2⌋, we have ρ(F ) ⩽ ρIS =
1/2 for any algorithm F applied to n-vertex cycle Cn or path Pn. The lower
bound on the number of influencers is 1, achieved on Pn by the Left protocol,
which keeps making the leftmost active vertex of the path passive; ρ(Left) = 0.

2.1 Results for the cycle Cn

Greedy-IS (G-IS) was solved for the path Pn by Flory [9], who showed that the
expected greedy independence ratio ρ(G-IS) tends to ζ2 = (1 − e−2)/2 as the
path length tends to infinity. The cycle Cn is asymptotically equivalent to Pn.

The simplicity of the cycle allows us to compare many related strategies
for the Influencer model. The algorithms listed in Table 1 are all randomized,
and the stated value of ρ(A) is the limiting expected value ratio. In [14] N. Vu
studied many of these variants of the influencer problem on the cycle Cn, as an
example of graph fragmentation. In most cases the value ρ(A) is obtained via
generating functions, as the solution to a system of recurrences. These results
also hold asymptotically for any class of n-vertex 2-regular graphs with at most
o(n) cycles of finite length. In particular they hold w.h.p. for the underlying
graph of a random permutation, as the expected number of cycles length at
most ℓ in a random permutation is O(log ℓ).

1. Active vertex, active neighbour. A random active vertex is chosen and
a u.a.r. active neighbour (if any).

(a) Vertex Passive. The chosen vertex becomes passive (or isolated).

(b) Neighbour Passive. The chosen neighbour becomes passive.

(c) Lower Passive. The lower degree vertex becomes passive. Ties are bro-
ken in favour of the neighbour.

(d) Higher Passive. The higher degree vertex becomes passive. Ties are
broken in favour of the chooser.

2. Active vertex, maximum-degree active neighbour. An active vertex
is chosen and a random active neighbour of maximum degree.

(a) Overall Max. Deg. Wins. The vertex of maximum degree remains
active. Ties are broken randomly.

(b) Chooser Wins. The choosing vertex remains active.

(c) Max. Deg. Neighbour. The maximum degree neighbour wins. Ties
are broken randomly.
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3. High-Low. The lowest degree neighbour of a random vertex of highest de-
gree is made passive. In the cycle, as long as paths of length at least 3 remain,
a vertex of degree 2 is chosen. If it is next to a path endpoint, the endpoint
becomes passive, and otherwise a random neighbour becomes passive.

4. Random Edge. A random edge between active vertices is chosen and one
end becomes passive.

5. Falling-Out (Dynamic). A random edge between active vertices is broken
and, each endpoint attaches to its random active neighbour, if any.

Algorithm A Influencer ratio ρ(A) Value Comments
Max. Indep. Set 1/2 0.5000 Upper bound
Greedy-IS ζ2 = (1− e−2)/2 0.4323 Flory [9]

Vertex Passive (VP) 1/3 0.3333 Section 2.2
Neighbour Passive 1− e−1/2 0.3935
Lower Passive 1 + e1/2 −

√
2π erfi(1/

√
2) 0.2588

Higher Passive 1− 1/2e−
√

π/4 erf(1) 0.4426 Largest

Overall Max. Deg.
[
2(1− e1/12) 0.2959

−
∫ 1

0
(3x− 2)e−x3/6+x2/4

]
/e1/12

Chooser
[
1− e1/6 0.2919

−
∫ 1

0
(x− 1)e−x3/3+x2/2

]
/e1/6

Max. Deg. Nbr. 1/3 0.3333 Same as VP

High-Low
[
e5/6 − 1−

∫ 1

0
xe−x3/3+x2/2

]
/e5/6 0.2366 Smallest

Random Edge 1/e 0.3677 Section 2.2
Falling-Out ζ2 = (1− e−2)/2 0.4323 Dynamic

Table 1. Influencer algorithms on cycle Cn and their ratios.

The largest value, ρ ∼ 0.44256, is from Higher Passive (higher degree end-
point becomes passive). This supports the view that picking a vertex of minimum
degree improves the performance of Greedy-IS. Similarly, the smallest value,
ρ ∼ 0.2366, is from High-Low see [14], where a minimum degree neighbour of a
vertex of maximum degree is made passive.

For Cn, the dynamic variant Falling-Out (called Burn-Edge in [14]), has
the same influencer ratio ζ2 as the influencer ratio of Greedy-IS determined by
Flory [9]. To see the correspondence between these two processes, use numbers
0, 1, . . . , n − 1 to label the consecutive vertices around the C ′

n cycle for the
Greedy-IS process and to label the consecutive edges around the C ′′

n cycle for
the Falling-Out process. Couple the processes by selecting in the current step
a random active vertex i in C ′

n in the Greedy-IS process and using the edge
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with the same label i in C ′′
n in the Falling-Out process. To see that this coupling

works, check by induction that at the beginning of each step a vertex i is active
in C ′

n in the Greedy-IS process, if and only if, the edge with the same label i
is active in C ′′

n in the Falling-Out process. The processes end at the same step
(no active vertices in C ′

n and no active edges in C ′′
n). The number of vertices in

C ′
n selected for the IS is the same as the number of broken edges in C ′′

n , which
in turn is equal to the number of fragments in C ′′

n computed by the Falling-Out
process. (When the Falling-Out process terminates on C ′′

n , there is exactly one
broken edge between each pair of consecutive fragments.)

2.2 Analysis for the cycle Cn

In this section we give proofs for the Vertex Passive and Random Edge models.
The Vertex Passive proof is short and simple and gives also the result for Maxi-
mum Degree Neighbour. The Random Edge proof is not given in [14]. For other
cases the analysis is given in [14].

Vertex Passive algorithm (VP). The sampled active vertex follows its chosen ac-
tive neighbour. Active vertices are sampled in a random order. This corresponds
to a random permutation (x1, x2, ..., xn) of the vertex labels. When we process
xj , the ordered active set is (xj+1, ..., xn). The vertices x1, ..., xj−1 are already
either passive or isolated. To remove ambiguity, suppose vertex xj follows the
first occurrence of a neighbour (if any) in the sequence (xj+1, ..., xn). If no such
neighbour exists xj is isolated.

Let y, z be the neighbours of a vertex x in Cn. The event that x is isolated
occurs if y, z precede x in the random permutation. Of the six permutations of
{x, y, z}, two put x last, so being isolated has probability 1/3. Thus the expected
number of active isolates is n/3.

Maximum Degree Neighbour (MDN). We explain why the expected number of
fragments is the same as Vertex Passive (VP). On a cycle, VP and MDN act
identically if the selected vertex has two active neighbours of the same degree,
or only one active neighbour. Thus MDN can only differ from VP when a vertex
next to a path endpoint is chosen, and the path is of length L ⩾ 4. Label the
vertices v1, v2, ..., vL. If vertex v2 is chosen, in MDN it will attach to v3 which
has degree 2. The resulting active lengths of the sub-paths are 1 and L− 2, with
v1, v3 active. In VP, choosing v2 in a path of length at least 3, corresponds to
a case where v2 is first in the permutation, and thus has two active neighbours.
Thus v2 will attach to either v1 or v3 depending which is next in the permutation
order. In either case, the resulting active lengths are 1 and L− 2.

Random Edge algorithm. At each step a random edge between active vertices is
chosen and one end becomes passive. An active path of length L is a (maximal)
path of L active vertices, and thus L − 1 edges. A path of length one is an
isolated active vertex. At step t = 1 a random edge of Cn is chosen and one
endpoint becomes passive, resulting in an active path of length n − 1 bordered
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by the passive vertex. As the algorithm proceeds, this path is broken into smaller
active paths bordered at each end by passive vertices, until finally only isolated
vertices (active paths of length 1) remain.

Let NL be the expected number of isolated vertices obtained by applying the
Random Edge algorithm to an active path of length L. Thus N1 = 1, N2 = 1, and
we define N0 = 0. Given a path of length at least three, with vertices v1, ..., vL
and edges e1, ..., eL−1, where ei = (vi, vi+1). Let B(i, L) be the expected number
of isolated vertices resulting when we apply the algorithm to edge ei. Then

B(1, L) = B(L− 1, L) =
1

2
(N1 +NL−2) +

1

2
NL−1

B(i, L) =
1

2
(Ni−1 +NL−i) +

1

2
(Ni +NL−i−1), 2 ⩽ i ⩽ L− 1.

It can be seen that B(i, L) = B(L− i, L) for all i. Thus for L ⩾ 3,

NL =

L−1∑
i=1

B(i, L) =
1

L− 1

(
N1 +NL−2 +NL−1 +

L−2∑
i=2

(Ni−1 +Ni)

)

=
1

L− 1

L−1∑
i=1

(Ni−1 +Ni), giving

LNL =NL +

L−1∑
i=1

(Ni−1 +Ni). (1)

Observe that (1) holds also for L = 2 since 2N2 = 2 = N2 + (N0 + N1). Thus
for L ⩾ 3, by subtracting from (1) the same formula for L− 1, we get

LNL − (L− 1)NL−1 = NL +NL−2. (2)

The expression (2) is also true for L = 2 and, by setting N−1 = 0, for L = 1.
Let G(x) =

∑∞
L=1 NLx

L, multiply (2) by xL−1, and sum up for L ⩾ 1 to obtain

G′(x)− xG′(x) =
1

x
G(x) + xG(x), which implies G′(x) =

(x+ 1/x)

1− x
G(x).

The general solution to this differential equation is

G(x) = A
x

(1− x)2
e−x.

As G(0) = 0, differentiate again to obtain G′(0) = A = N1 = 1. To find the
coefficient [xn]G(x) write

G(x) =
x

(1− x)2
e−x =

x

e(1− x)2
e1−x

=
x

e(1− x)2

(
1 + (1− x) +

(1− x)2

2!
+ · · ·+ (1− x)j

j!
+ · · ·

)
=

xe−1

(1− x)2
+

xe−1

(1− x)
+ f(x),
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where f(x) is entire (defined for all real numbers) so limn→∞[xn]f(x) = 0. Thus

[xn]G(x) = ne−1 + e−1 + on(1),

and

ρ = lim
n→∞

Nn−1

n
= e−1.

3 The Influencer Problem for random graphs G(n, p)

The following is known about the independence number of G(n, p); see [10,
Theorem 7.4]. Let ε > 0 be a fixed constant, then for c ⩾ c(ε), w.h.p.∣∣∣∣α(G(n, c/n))− 2n

c
(log c− log log c− log 2 + 1)

∣∣∣∣ ⩽ εn

c
.

If p = c/n where c → ∞, then Eα ∼ 2n log c
c n and thus ρIS ∼ 2 log c

c , whereas for
c constant this is not the case.

3.1 Results for G(n, p) when p = c/n

We give results for the Influencer model in G(n, p) when p = c/n for a constant
c, for the following algorithms.

1. Vertex Passive. An active vertex is chosen u.a.r. and follows a random
active neighbour.

2. Random Edge. Pick a random active edge and make one endpoint passive.

3. Falling Out. (Dynamic) A random edge between active vertices is chosen
and broken. Each endpoint attaches to a random active neighbour, if any.

General Falling Out model. We also consider the following generalisation of the
Falling-Out model. With probability β, a random edge is broken and each end-
point vertex becomes passive by following another active neighbour, or isolated
active, if no such neighbour exists. With probability 1− β the edge is retained;
in which case one endpoint becomes passive while the other remains active. If
β = 0, the process is the Random Edge model; if β = 1, it is the basic Falling Out
model. The general case of 0 ⩽ β ⩽ 1 interpolates between these two models.

Theorem 1. In G(n, p) with p = c/n for a constant c, the Falling Out model
with 0 ⩽ β ⩽ 1 constant has the influencer ratio

ρβ =
2(1 + β)− 2βe−c

2 + c(1 + β)
.
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Algorithm A Influencer ratio ρ(A) limc→∞ ρ(A) Comments
Maximum Indep. Set (2 log c)/c For c large
Greedy-IS (log(c+ 1))/c (log c)/c

Vertex Passive (1− e−c)/c 1/c
Random Edge 2/(c+ 2) 2/c

Falling-Out (2− e−c)/(c+ 1) 2/c Dynamic

Falling-Out(β)
2(1 + β)− 2βe−c

2 + c(1 + β)
2/c

Table 2. Influencers ratios for algorithms on G(n, p), where p = c/n for an arbitrarily
large constant c.

3.2 Analysis for random graphs G(n, p)

Greedy-IS. For completeness, and as an introductory simple example of the
methodology we use later, we sketch how the well-known ratio ρ = log(c+ 1)/c
of Greedy-IS on G(n, c/n) can be derived. Let At be the number of active vertices
at step t. The size of the computed independent set is s = min{t : |At| = 0}. We
have A0 = n and

E (At+1 | At) =

{
At − 1− p(At − 1), if At ⩾ 1,
0, if At = 0.

(3)

were p(At−1) is the expected number of neighbours of the selected vertex. Taking
the expectation of both sides of (3) and rearranging, we get, where q = 1− p,

E (At+1) = q(E (At)− 1) + qP(At = 0).

This recurrence can be approximated (as long as P(At = 0) = o(1)) with the
recurrence a0 = n, at+1 = q(at − 1), and one can show that if 0 ⩽ at = o(n),
then E (At) = o(n) and E (s) = t+o(n). The recurrence for the sequence (at)t⩾0

solves to at = (n+q/p)qt−q/p, giving 0 ⩽ at = o(n) for t ∼ ρn, ρ = log(c+1)/c.

Vertex Passive model. At each step, random active vertex is chosen and follows
a random active neighbour (if any). Thus the number of active vertices decreases
by one. Initially there are n active vertices. So after t steps there are n− t active
vertices.

Let S(t) be the number of isolated influencers at the start of step t. Thus
S(0) = 0. As S(t) increases by one if and only if the chosen vertex v has no
active neighbours (no edges between v and any of the other n − (t + 1) active
neighbours), we have

ES(t+ 1) = S(t) + (1− p)n−(t+1),

ES(n) =

n−1∑
t=0

(1− p)n−t−1 =
1− (1− p)n

1− (1− p)
.

Thus ES(n) ∼ (1− e−np)/p, and if p = c/n, ρ ∼ (1− e−c)/c.
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Other models. In Sections 3.3–3.5 we analyse the Random Edge and Falling-Out
models. The analysis is related to the analysis of the random Greedy Matching
presented in [7] and [10, Chapter 6.4]. Furthermore, the analysis is for the random
G(n,m) graph with m = cn/2 and we derive the influencer ratios ρ using the
differential equation method. As any m = cn/2 + o(n) gives the same ρ, and
w.h.p. G(n, p) for p = c/n has cn/2+o(n) edges, the influencer ratios for G(n, p =
c/n) are the same as for G(n,m = cn/2). We note that to obtain ρ, we are only
interested in expected values and not w.h.p. results.

3.3 Random Edge

The following notation borrows from [10, Chapter 6.4] and [4] which give a proof
of a related problem. Let G(t) = (At, Et) denote the active random subgraph
of G(n,m) remaining after t iterations. Let ν(t) = |At| = n − t be the number
of vertices and µ(t) the number of edges in G(t). At each step t, we choose a
random edge et = {x, y}, delete the vertex x from At, and all edges incident
with x. For the sake of our analysis we reveal the random graph as we run the
algorithm.

A priori we do not know the degrees of any of the vertices. We just know
that at step t we have ν(t) vertices and a uniform random set of µ(t) edges.
We reveal the location of one of these edges, which is equally likely to have any
two distinct endpoints among the ν(t) active vertices. More specifically, at each
step t we reveal the edge et by choosing a random pair of distinct vertices. After
we reveal the location of that edge, we know that its two endpoints must have
degree at least 1. But we only know that because we revealed the edge.

For each edge e′ among the other µ(t)− 1 edges we reveal whether or not e′

shares an endpoint with x. Any e′ meeting x is deleted. Let d′t(x) be the number
of such edges. Conditional on the edge et and the (say) d′t(x) = k deleted edges,
the remaining edges comprise a uniform random set of µ(t)− 1− k edges on the
remaining set of ν(t)− 1 vertices. Thus we have

E [µ(t+ 1) | µ(t)] = µ(t)− 1− E (d′t(x) | µ(t), et = {x, y}). (4)

There are 1 · (ν(t)−2) arrangements for an edge with one end at x and the other
at a vertex other than x, y. Thus

E (d′t(x) | µ(t), et = {x, y}) = (µ(t)− 1) · ν(t)− 2(
ν(t)
2

)
− 1

=
2(µ(t)− 1)

ν(t) + 1

=
2µ(t)

ν(t)
+O

(
1

n− t
+

µ(t)

(n− t)2

)
. (5)

Provided t = dn for some constant d < 1, the error term on the RHS is O(1/n).
From (4) and (5) we have

E [µ(t+ 1) | µ(t)] = µ(t)− 1− 2µ(t)

ν(t)
+O

(
n−1

)
. (6)
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This leads us to consider the differential equation (DE) which will simulate the
process w.h.p. Let t = τn,M(τ) = µ(t)/n, then

dM

dτ
= −1− 2M(τ)

1− τ
, M(0) =

c

2
, (7)

which has solution
M(τ) =

1

2
(1− τ) (c− τ(c+ 2)) .

The smallest positive root of M(τ) = 0 is τ∗ = c/(c+ 2), which gives

ρ = 1− τ∗ = 2/(c+ 2). (8)

It can be shown (see e.g. [4] or [10, Chapter 6.4]) that w.h.p. the process ends
with an isolated active set of size τ∗n+ o(n).

We only need expected values for the influencer ratio, and are using the DE
method as a way to approximate the solution to non-standard recurrences; as
we now explain. It can be checked that the solution S(t) = nM(τ) satisfies

S(t+ 1) = S(t)− 1− 2S(t)

ν(t)
+

c+ 2

n
.

Thus by the above and (6),

Eµ(t+ 1)− S(t+ 1) = (Eµ(t)− S(t))(1− 1/(n− t)) + dt/n.

Provided t = τn for some constant τ < 1, iterating this back to S(0) = µ(0) =
cn/2 the error term on the RHS is O(t/n). So Eµ(t∗) = S(t∗) + O(1), and
Eµ(t) = 0 at some t ∼ t∗.

3.4 Basic Falling-Out model

We continue using the ideas in the formulation above, giving a brief proof, and
leaving aside details. When the random edge et = {x, y} is exposed, then given
µ(t) and ν(t), the random graph G(t) is otherwise unknown. We delete both x
and y, the edge {x, y} and the d′t(x) + d′t(y) remaining edges adjacent to x or
y. Thus we have ν(t) = n − 2t and the analysis of remaining edges follows the
random Greedy Matching algorithm, see [7] or [10, Chapter 6.4]. The recurrence

E (µ(t+ 1) | µ(t)) = µ(t)− 1− E (d′t(x) + d′t(y) | µ(t), et = {x, y})

gives rise to the following differential equation, analogous to (7),

dM

dτ
= −1− 4M(τ)

1− 2τ
, M(0) =

c

2
.

As before we used E dt(x) = 1 + 2µ/ν +O(1/n), see (5). Hence

M(τ) =
1

2
(1− 2τ) (c− 2(c+ 1)τ) . (9)
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Thus M(τ) = 0 at τ∗ = c/2(c + 1); the expected proportional size of the final
matching (the set of removed independent edges) is c/2(c + 1) (see [7]) and an
expected proportion of 1− 2τ∗ = 1/(c+ 1) remaining isolated vertices.

It remains to calculate the number of isolated vertices created when edges
were being deleted. An isolated vertex was created whenever an endpoint of the
selected edge did not have any other neighbours. Let d′t(x) be the other edges
incident with x after edge {x, y} was exposed. Using a balls-in-boxes model where
we throw 2(µ(t)− 1) edge endpoints into ν(t) boxes, the probability none of the
remaining randomly allocated edge endpoints is incident with x is

P(d′t(x) = 0) =

(
1− 1

ν(t)

)2(µ(t)−1)

∼ e−2µ/ν .

Conditional on this a similar result holds for y.
Let S(t) be the number isolated active vertices arising from edge deletion at

step t, then given µ(t) and ν(t) = n− 2t,

ES(t+ 1) = S(t) + 2(1 + o(1))e−2µ(t)/n−2t, S(0) = 0.

Let t = t/n, M(τ) = µ/n, σ(τ) = S(t)/n, then using (9),

dσ

dτ
= 2e−M(τ)/(1−2τ) = 2e−ce2(c+1)τ , σ(0) = 0.

This has solution

σ(t) =
e−c

c+ 1

(
e2(c+1)τ − 1

)
.

At τ∗ = c/2(c+1), σ(τ∗) = (1−e−c)/(c+1). Combining this with the 1−2τ∗ =
1/(c+ 1) remaining fraction of isolated vertices, we obtain the influencers ratio
ρ for the basic Falling-Out model as

ρ =
2− e−c

c+ 1
. (10)

3.5 General Falling-Out model

For β constant, 0 ⩽ β ⩽ 1, E ν(t) = n− (1 + β)t. It follows as above that

Eµ(t+ 1) ∼ µ(t)− 1−
(
2µ

ν
+ β

2µ

ν

)
.

This gives the corresponding differential equation and its solution:

dM(τ)

dτ
=− 1− 2(1 + β)M

1− (1 + β)τ
, M(0) = c/2,

M(τ) =
1

2
(1− (1 + β)τ)(c− τ(2 + c(1 + β))).
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Thus M(τ) = 0 at
τ∗ =

c

2 + c(1 + β)
. (11)

The expected number of isolated (active) vertices arising from edge deletion is

ES(t+ 1) ∼ S(t) + 2βe−2µ/ν .

Putting σ(τ) = S(t)/n, τ = t/n, and 2µ/ν = c− τ(2 + c(1 + β)) gives

dσ(τ)

dτ
= 2βe−ceτ(2+c(1+β)), σ(0) = 0,

which has solution

σ(τ) =
2βe−c

2 + c(1 + β)

(
eτ(2+c(1+β)) − 1

)
.

It follows that
σ(τ∗) =

2β

2 + c(1 + β)
(1− e−c).

The expected fraction of isolated active vertices remaining at this point is 1 −
(1 + β)τ∗. Adding this to the above gives

ρ =
2(1 + β)− 2βe−c

2 + c(1 + β)
.

In particular, β = 0 gives ρ for the Random Edge model as in (8), and β = 1
gives ρ for the Basic falling-Out model as in (10).

3.6 Formalizing the DE for w.h.p. results

The formulations above use the Differential Equation method as a device to
estimated expected values; the method to do this being shown at the end of
Section 3.3.

Our analysis uses the notation and methodology of [10, Chapter 6.4], which
gives an exposition of random Greedy Matching in G(n,m) for m = cn, c con-
stant. (Note that our analysis is for m = cn/2.) Thus although we do not require
it, our results hold w.h.p. and not just in expectation. The models we analysed
are similar to Greedy Matching. We refer the reader to [10, Chapter 6.4 ] for
details, noting that the conditions (P1)-(P4) and the definition of the domain D
as given there differ by constants from our setting, while the event E that the
maximum degree ∆(G) ⩽ log n is identical. See also [3, 15] for further details.

4 Conclusions and further work

The simplicity of the cycle allows us to analyse a range of related algorithms for
the Influencer process, a number of which we were able to generalize to G(n, p) or
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G(n,m). It would be interesting to analyse more realistic variants of the Falling-
Out model. For example an active vertex x picks an active neighbour y1 and
either follows y1 or breaks the edge. In the latter case x picks another active
neighbour y2 and repeats this behaviour until they either find some neighbour
yk they agree with or become an isolated influencer. This may possibly be a
more realistic model of social behaviour.
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