

King’s Research Portal

Document Version
Peer reviewed version

Link to publication record in King's Research Portal

Citation for published version (APA):
Albrecht, M., Backendal, M., Coppola, D., & Paterson, K. G. (in press). Share with Care: Breaking E2EE in
Nextcloud. In Euro S&P 2024 https://ethz.ch/content/dam/ethz/special-interest/infk/inst-
infsec/appliedcrypto/education/theses/nextcloud.pdf

Citing this paper
Please note that where the full-text provided on King's Research Portal is the Author Accepted Manuscript or Post-Print version this may
differ from the final Published version. If citing, it is advised that you check and use the publisher's definitive version for pagination,
volume/issue, and date of publication details. And where the final published version is provided on the Research Portal, if citing you are
again advised to check the publisher's website for any subsequent corrections.

General rights
Copyright and moral rights for the publications made accessible in the Research Portal are retained by the authors and/or other copyright
owners and it is a condition of accessing publications that users recognize and abide by the legal requirements associated with these rights.

•Users may download and print one copy of any publication from the Research Portal for the purpose of private study or research.
•You may not further distribute the material or use it for any profit-making activity or commercial gain
•You may freely distribute the URL identifying the publication in the Research Portal
Take down policy
If you believe that this document breaches copyright please contact librarypure@kcl.ac.uk providing details, and we will remove access to
the work immediately and investigate your claim.

Download date: 13. Jan. 2025

https://kclpure.kcl.ac.uk/portal/en/publications/6584bef2-5c52-473f-9917-608539cbb1b5
https://ethz.ch/content/dam/ethz/special-interest/infk/inst-infsec/appliedcrypto/education/theses/nextcloud.pdf
https://ethz.ch/content/dam/ethz/special-interest/infk/inst-infsec/appliedcrypto/education/theses/nextcloud.pdf

Share with Care:
Breaking E2EE in Nextcloud

Martin R. Albrecht
King’s College London

London, UK

Matilda Backendal
Department of Computer Science

ETH Zurich, Switzerland

Daniele Coppola
Department of Computer Science

ETH Zurich, Switzerland

Kenneth G. Paterson
Department of Computer Science

ETH Zurich, Switzerland

Abstract—Nextcloud is a leading cloud storage platform
with more than 20 million users. Nextcloud offers an end-
to-end encryption (E2EE) feature that is claimed to be
able “to keep extremely sensitive data fully secure even
in case of a full server breach”. They also claim that the
Nextcloud server “has Zero Knowledge, that is, never has
access to any of the data or keys in unencrypted form”. This
is achieved by having encryption and decryption operations
that are done using file keys that are only available to
Nextcloud clients, with those file keys being protected by
a key hierarchy that ultimately relies on long passphrases
known exclusively to the users.

We provide the first detailed documentation and se-
curity analysis of Nextcloud’s E2EE feature. Nextcloud’s
strong security claims motivate conducting the analysis in
the setting where the server itself is considered malicious.
We present three distinct attacks against the E2EE security
guarantees in this setting. Each one enables the confiden-
tiality and integrity of all user files to be compromised. All
three attacks are fully practical and we have built proof-
of-concept implementations for each. The vulnerabilities
make it trivial for a malicious Nextcloud server to access
and manipulate users’ data.

We have responsibly disclosed the three vulnerabilities
to Nextcloud. The second and third vulnerabilities have
been remediated. The first was addressed by temporarily
disabling file sharing from the E2EE feature until a redesign
of the feature can be made. We reflect on broader lessons
that can be learned for designers of E2EE systems.

1. Introduction

Cloud storage enables users to store data and
files online using the storage infrastructure of a cloud
computing service provider. The advantages for the
users are many: outsourced files are safely backed up,
can be accessed from any device, and are easily shared
with other users. Additionally, features such as real-
time collaborative editing make it possible to work
with data stored in the cloud in a way that is not
possible for local files. For these reasons, and more,
the use of cloud storage has become ubiquitous among
individuals and businesses alike, and estimates indicate
that it is likely to account for half of all global data
storage by 2025 [22].

However, the advantages come at a cost. When data
leaves the safety of a user’s local device, it may become
exposed to a range of additional security threats. For
example, users must place their trust in the selected
cloud storage provider to not deny them access to their
files, and, in the absence of cryptographic mechanisms,
they must also trust the provider to not inspect or
modify their files. Additionally, users are no longer in
control of how their data is stored, and must also trust
the provider to protect their files from malicious third
parties.

The sheer amount of data stored by cloud providers,
and their large user-bases, make them attractive targets
for attackers; a successful attack on a cloud storage
service can potentially compromise data of many users
simultaneously. These threats are not just hypothetical.
Cloud storage breaches due to misconfigurations or
lack of appropriate access management are ubiquitous
and lead to exposure of potentially sensitive data.
For example, in 2021, personal information about
US citizens was left accessible to the public due
to misconfiguration of the Amazon S3 buckets used
to store the data of over 80 US municipalities [39].
Furthermore, beyond privacy issues, lack of integrity
of data stored in cloud1 leads to another set of
attacks, such as ransomware attacks, e-skimming and
cryptojacking. These types of attacks can be performed
directly by a malicious cloud storage provider, but
a more likely adversary is an external actor who
compromises the cloud or makes use of its lack of
security to launch an attack.

Given that cloud storage systems are highly attrac-
tive targets for attackers and that they are not immune
to breaches, it makes sense to minimize the amount of
trust that needs to be placed in the service provider, in
an attempt to decrease the negative consequences of a
breach. Additionally, privacy-minded users might not
want to entrust their sensitive data to a company, even
if it would be perfectly secure against outsiders. Luckily,
with appropriate use of cryptographic mechanisms and
key management techniques, most of the required trust

1. By design, or due to misconfiguration.

https://orcid.org/0000-0002-8677-8301
https://orcid.org/0000-0002-5145-4489

assumptions can be dispensed with.2
To meet the demand for privacy-preserving out-

sourced storage, multiple services offering cloud storage
with client-side encryption are available, including
MEGA [21], Nextcloud [28], Preveil [36], Proton
Drive [37] and Tresorit [40]. These systems aim to
provide end-to-end encryption (E2EE), which guaran-
tees both confidentiality and integrity of data stored
in the cloud, even if the cloud provider is compromised
or malicious. In addition, all of the above-mentioned
service providers aim to offer file-sharing features,
enabling users to securely grant, and possibly later
remove, access to their files for other users.

There is still no standardized approach for E2EE
cloud storage, and as recent analyses [1], [2], [17] show,
ad hoc approaches such as that taken by MEGA can
spectacularly fail to achieve the advertised security
claims. In the case of MEGA, up to 1000 Petabytes of
user data was left vulnerable to attacks that could be
mounted in practice by a malicious or compromised
service provider.

In the continued absence of a standardization effort,
we are forced to rely on security audits of the existing
systems in order to evaluate their security. However,
the standard industry approach to performing security
audits typically involves a time-limited approach that
checks for standard vulnerabilities and that is usually
focussed on testing for standard software vulnerabilities
rather than conducting a deep investigation of the
cryptographic design. This has limited value. As
supporting evidence for this statement, we remark
that Nextcloud and its customers had commissioned
at least two different security audits3 and yet we were
able to find three different and severe cryptographic
vulnerabilities in the E2EE feature.

1.1. Nextcloud

Nextcloud provides open-source software that lets
individuals and businesses create and host their own
cloud storage platforms. In 2017, Nextcloud estimated
that it had “well over 20 million users” [25]. Nextcloud
has reported having over 400,000 separate deployments
in 2022, also suggesting a large number of users.
However, estimating the true number of Nextcloud
users is challenging, as they are spread across a range
of self-hosted server instances.

Nextcloud’s primary goal is to give users control
over their data and to safeguard the privacy of sensitive
information. Nextcloud advertises an enterprise-grade,
seamlessly integrated solution for end-to-end encryp-
tion [27]. They claim “to keep extremely sensitive
data fully secure even in case of a full server breach”
because the server “has Zero Knowledge, that is, never
has access to any of the data or keys in unencrypted
form” [27]. These claims imply that the customary
threat model for E2EE systems – namely, where
the adversary controls the server – applies also to
Nextcloud’s E2EE feature.

2. Trusting the service provider with availability, that is, to not
deny users access to their outsourced files, remains a necessary
assumption.

3. See https://nextcloud.com/secure/.

The platform has gained popularity among users
who require advanced security features. For example,
organisations such as Amnesty International and the
German Federal Government [24], [29] use Nextcloud
to safeguard the privacy of their sensitive data.

1.2. Overview of E2EE in Nextcloud

Here we briefly describe Nextcloud’s approach to
E2EE. More details can be found in Section 2.2.

Notably, E2EE is not deployed by default in
Nextcloud. Instead, it is a feature that users have
to enable at the folder level by marking the folder as
E2EE. All files in E2EE folders are encrypted by the
Nextcloud client using AES-GCM (an authenticated
encryption with additional data (AEAD) mode of
operation of AES) with a separate key for each file.
Each E2EE folder is assigned a so called “metadata
key”. The metadata key encrypts the file keys as well
as other metadata associated with the folder, again
using AES-GCM.

In order to support key rotation, the system allows
each folder to have an array of associated metadata
keys and only uses the one with the highest index to
encrypt the folder metadata. Each time the client syncs
with the server, the metadata (including all file keys)
are re-encrypted with the highest indexed metadata
key in the array.

Each Nextcloud user additionally holds a unique
RSA key pair. The metadata keys of all folders to which
the user has access are encrypted to the user’s public
key using RSA-OAEP. To support access from multiple
devices, storage of the RSA key pairs is outsourced to
the Nextcloud server. The public key is stored in clear,
and the private key is encrypted using AES-GCM
under a master key that is derived from a so-called
mnemonic. This is a secret passphrase consisting of 12
randomly sampled words. The mnemonic is generated
for the user by its client when E2EE is first enabled.

In totality, then, Nextcloud uses a key hierarchy
consisting of: file keys (at the lowest level), metadata
keys, RSA key pair, master key, user-memorable
mnemonic (at the highest level). See Figure 1 for
a pictorial view.

When a user wants to access E2EE files, the user
enters their mnemonic into the client. The client then
re-derives the master key, uses the master key to
decrypt the private RSA key, uses the RSA private
key to decrypt the metadata keys, uses the metadata
keys to decrypt the file keys, and finally uses the file
keys to decrypt E2EE files fetched from the server.

When a folder is shared between multiple users,
its metadata key is encrypted for all of those users
individually using RSA-OAEP. A user can revoke
access to a folder for another user by generating a new
metadata key for the folder and encrypting it using
RSA-OAEP to the public keys of all the users who
should still have access, omitting the public key of the
revoked user.

https://nextcloud.com/secure/

1.3. Contributions

In this work, we conduct a detailed analysis of the
cryptographic security of Nextcloud’s E2EE feature,
assessing the achieved security compared to the adver-
tised guarantees. Our analysis unveiled three distinct
vulnerabilities in the E2EE module of Nextcloud. As we
will explain, an adversary in control of the Nextcloud
server can leverage the presented vulnerabilities to
completely break confidentiality and integrity of users’
data. We briefly present each attack next.

1.3.1. Key Insertion Attack. The first attack arises
from a basic misunderstanding of the security offered
by public key encryption (PKE) in tandem with
Nextcloud’s desire to allow access to files to be granted
and possibly later revoked for other users as part of
the E2EE feature. The attack exploits the fact that the
malicious server can create an RSA-OAEP ciphertext
containing a chosen metadata key and place it in
the relevant directory of the victim user; the server
can then trigger the client to perform a key rotation
operation so that the chosen key is taken into use.
Hence, a malicious server can substitute a legitimate
metadata key for a folder with one that they chose,
encrypt it for the relevant user(s), and thereby make
the client encrypt the keys of all files in the folder with
a metadata key that the server knows. Knowledge of
the metadata key also allows the server to trivially
insert new files and modify existing ones.

At its core, the attack exploits the fact that
PKE provides confidentiality but not data origin
authentication: without some form of the latter, the
victim user cannot be sure from whence the key came.

1.3.2. Ghost Key Attack. Nextcloud clients fetch en-
crypted key material from the server. The file structure
containing this information is not thoroughly checked
by the client. As a consequence, a malicious server can
modify this file to trick clients into accessing the map
of metadata keys at an index that is not present in the
map. If accessed at an uninitialized index, the map
allocates a default all-zero key. The all-zero key is later
used by the client to encrypt file keys. This obviously
leads to a complete loss of both confidentiality and
integrity for user data.

1.3.3. IV Reuse in File Encryption. Files are encrypted
using AES-GCM with a random 128-bit key and a
random 96-bit initialization vector (IV). However,
when a file is modified, it is re-encrypted using the
same key and the same IV. It is well known that
the security of AES-GCM depends critically on using
a fresh IV for each encryption under a given key,
with disastrous consequences otherwise. Specifically,
because AES-GCM uses a stream cipher mode of AES
as its encryption component, a repeated IV leads to
a repeated keystream. This can result in a loss of
confidentiality. In the context of Nextcloud, we show
how to exploit this weakness to recover plaintext files
in the situation where the adversary can see encrypted
versions of a file and of a modified version of the
file (more exactly, a version of the file in which a

single character has been inserted). A repeated IV
in AES-GCM also enables recovery of the AES-GCM
authentication key, making it possible for an attacker
to violate integrity [5], [18]. In the context of Nextcloud,
this allows the adversary to mount a framing attack
in which it injects validly encrypted files into E2EE
folders.

1.4. Methodology

Our security analysis was performed in three main
steps:

1) Definition of the Threat Model. We outlined
the threat model and associated security goals
by referring to Nextcloud’s documentation of
the E2EE module [23], [30] and their advertised
claims [27].

2) System Modeling. We built pseudocode models
of Nextcloud’s cryptographic operations based on
their white paper [23], [26] and on the client source
code.4 Only the in-depth analysis of the client
source code revealed the ghost key vulnerability
and the IV reuse.

3) Proof-of-Concepts. We used a self-hosted
Nextcloud server to test all attacks against real
(self-owned) desktop clients.

1.5. Ethical Considerations

All experiments and proof of concept attacks were
performed on a self-hosted Nextcloud server under our
full control; no other server instance was targeted.

We contacted Nextcloud to inform them of the
vulnerabilities in their system and to suggest miti-
gations on January 2, 2023. We suggested a 90-day
disclosure period. Nextcloud acknowledged the attacks
on January 12, 2023, confirming that the system is
vulnerable and needs patching.

Nextcloud released patches for all three vulnera-
bilities on March 29, 2023. Each vulnerability was
accompanied by a CVE.5 The first vulnerability was
temporarily addressed by implementing a checksum on
the metadata keys based on the users’ mnemonic. File
sharing is not possible with this patch because only
the user generating the checksum, not the recipients,
can verify it [33]. A significant revision of Nextcloud’s
cryptographic design was later carried out to enable
file sharing in the E2EE setting. The other two vulner-
abilities were fixed by addressing the implementation
pitfalls that caused them [31], [32].

1.6. Related Work

The only previous published work on cryptogra-
phy in Nextcloud that we are aware of is that of
Niehage [34], who analyzed server-side encryption in
Nextcloud and discovered four vulnerabilities. The

4. https://github.com/nextcloud/desktop
5. https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2

023-28997, https://cve.mitre.org/cgi-bin/cvename.cgi?name=
CVE-2023-28998, https://cve.mitre.org/cgi-bin/cvename.cgi?n
ame=CVE-2023-28999.

https://github.com/nextcloud/desktop
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2023-28997
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2023-28997
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2023-28998
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2023-28998
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2023-28999
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2023-28999

first exploits the lack of authenticity of public keys to
break confidentiality, essentially by performing a key
substitution attack. The others break file integrity. The
vulnerabilities were patched by Nextcloud in version
20 of their server.

As noted above, the systematic study of deployed
E2EE cloud storage systems only began recently, with
the analysis of MEGA [1], [2], [17]. Backendal, Haller
and Paterson [2] performed the first in-depth analysis
of MEGA. By leveraging a lack of key separation,
poor primitive choices, and a lack of integrity of users’
private keys, they managed to completely break both
the confidentiality and integrity of MEGA’s cloud
storage. In a follow-up work, Ryan and Heninger [17]
improved the central RSA private-key recovery attack
of [2], decreasing the number of required logins (and
user interactions) from 512 to just six. Albrecht, Haller,
Mareková and Paterson [1] showed that the patches
deployed by MEGA to the attacks of [2] were ineffective.
They presented two distinct attacks each leading to
RSA private-key recovery and needing roughly the
same number of logins as the original attack in [2].

Our work can be seen as a natural successor to
this line of work on MEGA, focussed on the next most
prominent E2EE cloud storage provider. Our analysis
followed the same methodology used to unveil MEGA’s
vulnerabilities. It involved building pseudocode models
of the cryptographic operations followed by human
analysis to find attacks, and then testing the attack
ideas against the actual code. The attacks we present
on Nextcloud are significantly less complex (both from
a technical perspective and in terms of the attack
requirements). But they are just as devastating to
the core security properties that Nextcloud’s E2EE
feature purports to offer. The vulnerabilities in MEGA
were primarily due to their custom implementation of
cryptographic operations. In contrast, Nextcloud opted
for well-established primitives and implementations,
but misused them, resulting in an overall vulnerable
system.

Already five years ago, Dalskov and Orlandi [13]
found significant and numerous vulnerabilities in the
cryptographic design of SpiderOak One, an E2EE
backup solution. This work can be seen as an early
indicator that implementations of E2EE cloud storage
systems could be badly designed. Other prominent
E2EE cloud storage solutions include PreVeil [36],
Proton Drive [37] and Tresorit [40]. Analyses of these
systems may yield interesting results.

One of our attacks exploits the well-known IV (or
nonce) re-use vulnerability in AES-GCM. This was
first highlighted by Joux [18]. Böck, Zauner, Devlin,
Somorovsky and Jovanovic [5] showed how this vulner-
ability arose in some SSL/TLS implementations and
performed Internet-wide scans to identify vulnerable
servers. The field of misuse-resistant authenticated
encryption (MRAE), cf. [38], can be seen as attempting
to design AE schemes that are more resilient to mis-
handling of IVs by developers. RSA-OAEP is generally
considered to be a secure PKE scheme, with a detailed
analysis of its IND-CCA security being available in the
literature [16]. However, some early implementations
of RSA-OAEP were vulnerable to Manger’s attack [19]

which exploited analysis of different error conditions
that could arise during decryption. Our attack does
not rely on any implementation pitfall in RSA-OAEP
itself, but rather on a misunderstanding on the part
of Nextcloud’s developers concerning what security
services a PKE scheme can provide.

There is a huge academic literature on cloud storage
with E2EE and other, more advanced security features,
e.g. user anonymity, metadata hiding, and obliviousness
of access and operations. While scientifically sound
and technically interesting, this work seems to have
had little influence on the practice of E2EE for cloud
storage, as evinced by the above-mentioned work on
MEGA and our work on Nextcloud.

1.7. Paper Structure

We give a detailed description of cryptographic
aspects of Nextcloud’s E2EE feature in Section 2. We
provide more details on each attack in Section 3. In
Section 4, we briefly describe our proof of concept
implementations of the three attacks. We discuss
mitigations for the attacks in Section 5, and, in
Section 6, general takeaways for the design of secure
cloud storage systems.

2. Cryptography in Nextcloud

2.1. Notation

By [ptxt]k we denote the encryption of a plaintext
ptxt with the key k. The encryption algorithm can be
derived from the context. We use maps to collect
identifier-value pairs. A map MP is initialized as
MP ← {}. MP.put(id, v) represents the insertion
of the identifier-value pair (id, v). MP.get(id) re-
turns the value v corresponding to the identifier
id, and MP.keys() returns the set of all identifiers
for which any value has been inserted. Finally, the
Encode/Decode procedures serialize/deserialize a
list of variables. In practice, Nextcloud collects the
values in a JSON-encoded byte string.

2.2. E2EE in Nextcloud

Key Hierarchy. Figure 1 illustrates the key hierarchy
in Nextcloud’s E2EE module. At the bottom of the
hierarchy are the file keys. File keys are 128-bit
symmetric keys used to encrypt files with AES-GCM,
and are freshly generated by the client for every new
file that is uploaded. Files are organized in folders, and
every folder is associated with a metadata key kmd
that the client generates by sampling kmd ←$ {0, 1}128

when a folder is marked as E2EE. Each file key is
encrypted separately with the metadata key of the
corresponding folder using AES-GCM with a randomly
sampled IV.

To enable sharing of encrypted folders, Nextcloud
uses public-key encryption (RSA-OAEP) to encrypt
the metadata keys. When a user enables E2EE, an
RSA master key pair (sk,pk) is generated by their
client and the public key is signed by the server to

Figure 1: Nextcloud’s key hierarchy

Mnemonic: 𝑚

RSA Master Key: (𝑠𝑘, 𝑝𝑘)

Metadata Key: 𝑘!"

File Key: 𝑘#

File Content: 𝑓

Master Key Encryption key: 𝑘!

KDF

AES-GCM

AES-GCM

AES-GCM

RSA-OAEP

form an X.509 certificate in a public key infrastructure
(PKI) in which the Nextcloud server acts as the root
certificate authority. The first time a user wants to
share a folder with another user, they establish a
trust relationship with the recipient by downloading
and verifying the certificate for their public key [26].
Following a trust on first use (TOFU) approach, clients
store the downloaded certificates locally for future
use. We discuss this design choice in Section 3. The
metadata key of an E2EE folder is initially encrypted
for the owner, and can then additionally be encrypted
with the public key of any user to give them shared
access to the folder. To allow a user to fetch their
keys from any device, the RSA key pair is stored on
the server, in partially encrypted form; the public
key is stored in the clear, whereas the private key
sk is encrypted using AES-GCM with an encryption
“master” key km derived from a so-called mnemonic.

The mnemonic is a 12-word long passphrase, which
is generated on the client by random sampling from
a set of 2048 words. It stands at the top of the key
hierarchy and thereby forms the root of security for
E2EE data. Note that in other E2EE systems, it is
common to have a user-chosen password as the root of
the key hierarchy. In Nextcloud, in contrast, passwords
are only used to authenticate users, and the mnemonic
(for which the client enforces relatively high entropy)
is used to achieve confidentiality and integrity. As a
consequence, user authentication is kept separate from
cryptographic access to E2EE data. This is a laudable
design choice which likely improves the E2E security of
Nextcloud compared to password-only systems, since
users unfortunately often pick weak passwords with
much lower entropy than the mnemonics used by
Nextcloud.

To summarize, all of the keys in the hierarchy
depicted in Figure 1 – except for the mnemonic and
the public part of the RSA master key – are stored
encrypted on the server to support access from multiple
devices. The public key is stored in plaintext on the

server, and the mnemonic is the root of the key
hierarchy that the user needs to remember or securely
store in order to access their files.6 A user on a new
device, after authenticating to the server, can enter
the mnemonic, fetch the encrypted key material from
the server, decrypt it, and validate it.7 Once the file
keys have been recovered, the encrypted files can be
fetched from the server and decrypted.

Folder Metadata. The metadata of an E2EE encrypted
folder consists of two maps, MPk and MPf, containing
the metadata keys associated with the folder and
the file metadata (i.e. the file keys and file names),
respectively.

The metadata key map MPk maps an integer i
to a metadata key kmd. Here, the index i represents
the point in order in which the metadata key was
generated. (The first key has index i = 0, the second
one index 1, and so on.)

In the file metadata map MPf, a filename fn is
mapped to a tuple consisting of the obfuscated file name
ofn, the file key kf , the IV ivf used for the encryption
of the file, and the resulting message authentication
code (MAC) tag τf . The obfuscated file name is a
random bitstring used to identify an encrypted file on
the server.

Together, MPk and MPf form the folder metadata,
which is stored encrypted on the server. That is,
corresponding to each of MPk and MPf, there is
an “encrypted” map [MPk] and [MPf], which instead
maps the identifiers to the encryption of the values
in the original map. The encryption and decryption
procedures for the folder metadata are described later
in this section.

Folder Creation. When an E2EE folder is created,
the client initializes the folder metadata (MPk, MPf),
samples a metadata key kmd ←$ {0, 1}128 and puts it
in the map of metadata keys MPk via an operation
MPk.put(0, kmd). The client concludes the creation
of the folder by encrypting the folder metadata and
uploading ([MPk], [MPf]) to the server. At this point,
[MPk] contains the encryption of a single metadata
key, and [MPf] is empty because the folder still does
not contain any files.

Folder Synchronization. Nextcloud desktop clients
are synchronization clients that keep a local folder
synchronized with the one stored remotely on the
server. Synchronization can be triggered by various
events, including a modification to the local folder, a
user-initiated synchronization request, or an automatic
activation upon opening the client.

6. Note that, as a consequence of the E2EE security guarantees,
the server cannot support a user who has lost their mnemonic
in recovering their keys.

7. The validation of the RSA key pair is done by retrieving
the public key from the server, reconstructing a version of the
RSA modulus from the private key, and finally performing a
trial encryption and decryption operation. This operation uses
the retrieved public key for encryption and the private key
and reconstructed modulus during decryption. Because of the
integrity provided by AES-GCM and the use of a reconstructed
modulus during decryption, this approach appears to prevent
key overwriting attacks like those in [6].

encryptFolderMetadata(pk, MPk, MPf):
Given: the user’s public key pk, the map of metadata
keys MPk, and the map of file metadata MPf
Returns: the map of encrypted metadata keys [MPk],
and the map of encrypted file metadata [MPf]

1 [MPk]← {}
2 for i, kmd ∈ MPk
3 [kmd]pk ← RSA.Enc(pk, kmd)
4 [MPk].put(i, [kmd]pk)
5 i∗ ← max(MPk.keys())
6 k∗md ← MPk.get(i∗)
7 [MPf]← {}
8 for fn, (ofn, kf , τf , ivf) ∈ MPf
9 iv ←$ {0, 1}96

10 prot← Encode((fn, kf))
11 [prot]k∗

md
, τ ← AES-GCM.Enc(k∗md , prot, iv, ε)

12 [MPf].put(ofn, ([prot]k∗
md

, τ , iv, i∗, τf , ivf))
13 return ([MPk], [MPf])

Figure 2: Encryption of folder metadata. Note that file
metadata is encrypted with the latest metadata key
k∗md corresponding to the highest index i∗ in MPk.

The synchronization process consists of three steps:
1) Folder Metadata Download. The client downloads

the encrypted folder metadata and decrypts it
to retrieve the list of filenames contained in the
E2EE folder and the corresponding file keys.

2) File Synchronization. The local and remote times-
tamps of each file are compared to determine
which copy (if the file is present both remotely
and locally) is newer. Each timestamp reported
by the server is associated with the obfuscated file
name. If the client determines that the more recent
version of a file is the remote one, it requests the
encrypted file identified by the obfuscated name
ofn from the server. Similarly, new local files are
encrypted and uploaded to the server under the
name ofn.

3) Folder Metadata Upload. At the end of the
synchronization, the folder metadata is encrypted
and uploaded to the server. The folder metadata
is re-uploaded each time as it may have been
modified in the previous step. For example, if a new
file is added locally, its filename and corresponding
file key are added to MPf.

Folder Metadata Encryption. The client executes the
encryptFolderMetadata procedure in Figure 2 to
encrypt the folder metadata before uploading it to the
server. During the encryption, the metadata keys are
encrypted with RSA-OAEP under the user’s public
key pk and are stored in the map [MPk] under their
index from MPk. For each file, the protected metadata
prot, encoding the filename fn and the file key kf , is
encrypted with AES-GCM under the metadata key
k∗md associated with the highest index i∗ in MPk,
and a randomly sampled IV iv . In the encrypted file
metadata map [MPf], the obfuscated file name ofn
is mapped to ([prot]k∗

md
, τ , iv , i∗, τf , ivf), where τ , iv

and τf , ivf are the tags and IVs resulting from the
encryption of prot and of the file itself, respectively.

The inverse of the folder metadata encryption is
the decryptFolderMetadata procedure, shown in

decryptFolderMetadata(sk, [MPk], [MPf]):
Given: the user’s secret key sk, the map of encrypted
metadata keys [MPk], and the map of encrypted file
metadata [MPf]
Returns: the map of metadata keys MPk, and the map
of file metadata MPf

1 MPk ← {}
2 for i, [kmd]pk ∈ [MPk]
3 kmd ← RSA.Dec(sk, [kmd]pk)
4 MPk.put(i, kmd)
5 MPf ← {}
6 for ofn, ([prot]k∗

md
, τ , iv, i, τf , ivf) ∈ [MPf]

7 kmd ← MPk.get(i)
8 if kmd == ⊥
9 kmd ← {0}128

10 MPk.put(i, kmd)
11 prot← AES-GCM.Dec(kmd , [prot]k∗

md
, τ , iv)

12 if prot == ⊥
13 continue � No error is reported.
14 (fn, kf)← Encode(prot)
15 MPf.put(fn, (ofn, kf , τf , ivf))
16 return (MPk, MPf)

Figure 3: Decryption of folder metadata. Note that
the map MPk is accessed at the index i specified in
the file metadata. This is relevant for the ghost key
attack.

Figure 3. This procedure is executed by the client at
the beginning of synchronization to retrieve the file
metadata. In the procedure, the protected metadata
[prot]kmd

is decrypted using the metadata key corre-
sponding to the index i specified in the tuple (which is
not necessarily the highest in MPk). We believe that
this behavior is there to allow clients to rotate the
metadata key while postponing the re-encryption of
the file metadata to when/if the file itself is modified.

File Encryption. Files are encrypted with the
encryptFile procedure in Figure 4. If a new file
is created locally, a file key kf and IV ivf are sampled
randomly and used to encrypt the file content using
AES-GCM. According to Nextcloud’s white paper and
E2EE RFC [23], [26], file keys should be re-sampled
each time a file is modified and re-encrypted. However,
during our analysis, we found that file keys were only
generated when a file is first uploaded. That is, if an
already existing file is updated, kf and ivf are retrieved
from MPf and used to re-encrypt the file content. At
the end of the procedure, MPf is updated with the
key and IV used in the encryption.

The decryptFile procedure is shown in Figure 5.
On input the obfuscated file name ofn, it first looks
for an entry in the file metadata MPf which contains
ofn. If such an entry is found, the associated file key
is used to decrypt the file, which is returned together
with the (unobfuscated) filename. If no entry contains
the obfuscated name, then an error is raised by the
client.

Sharing. In Nextcloud, file sharing is implemented on
a folder level using the PKI of RSA keys associated to
users. To share a folder, the relevant metadata key is
encrypted under the RSA public key of the intended

encryptFile(MPf, fn, f):
Given: the map of file metadata MPf, the name of the
file fn, and the file content f
Returns: the updated map of file metadata MPf, and
the encrypted file [f]kf

1 if fn ∈ MPf
2 (ofn, kf , τf , ivf)← MPf.get(fn)
3 else
4 kf ←$ {0, 1}128

5 ivf ←$ {0, 1}96

6 ofn←$ {0, 1}128

7 ([f]kf , τf)← AES-GCM.Enc(kf , f , ivf , ε)
8 MPf.put(fn, (ofn, kf , τf , ivf))
9 return

(
MPf, [f]kf

)
Figure 4: File encryption. Note that if the filename is
already in the map MPf, then both the file encryption
key and the IV are reused.

decryptFile(MPf, ofn, [f]kf):

Given: the map of file metadata MPf, the obfuscated
name ofn, and the encrypted file [f]kf
Returns: the filename fn, and the decrypted file f

1 for fn, (˜ofn, kf , τf , ivf) ∈ MPf
2 if ofn == ˜ofn
3 (ofn, kf , τf , ivf)← MPf.get(fn)
4 f ← AES-GCM.Dec(kf , [f]kf , τf , ivf)
5 return (f , fn)
6 return (⊥,⊥) � The client reports an error.

Figure 5: File decryption. If there is no entry in MPf
for the file identified by ofn, then the client reports an
error to the user during the synchronization step.

recipient. Direct sharing of individual E2EE files is
not supported.

As described above, each folder has an associated
metadata key map MPk, which may contain multiple
metadata keys. According to Nextcloud documenta-
tion [23], the reason that each folder can have multiple
metadata keys is to allow the removal of users from
shared access to the folder. That is, if user A wants to
revoke access to a folder from user B, A can add a new
metadata key to MPk and not encrypt the new key with
the public key of user B. Since only the highest indexed
metadata key k∗md in MPk is used to encrypt the folder
metadata when the folder is next synchronized (see the
encryptFolderMetadata procedure in Figure 2),
user B will no longer be able to decrypt the folder
metadata.

Note, however, that since file keys are not updated
when files are re-encrypted (contradicting the specifi-
cation in Nextcloud’s white paper [23]), the removed
user could in theory still access the files by storing
the individual file keys themselves. That is, the re-
encryption of file keys with a new metadata key is
insufficient to provide forward security for updated
files from removed users.

Finally, we note that, in the Nextcloud client
deployed at the time of our analysis (v3.6), the sharing
feature is not fully implemented, meaning that folder
sharing is actually not possible in practice. However,
clients already support multiple metadata keys and
key rotation as described above.

3. Attacks

Threat Model. According to Nextcloud’s documenta-
tion, “end-to-end encryption in Nextcloud protects user
data against any attack scenario between user devices,
even in case of an undetected, long-term security breach
or against untrusted server administrators” [30]. As
this quote highlights, the E2EE module is supposed to
remain secure even if the server running Nextcloud’s
protocol is itself compromised or malicious.

In this setting, the adversary has full access to
all encrypted data outsourced by the clients to the
server, and can also interact with clients via legitimate
channels during operations like authentication and
file upload. Furthermore, a malicious server – or an
adversary with control of the server – can change the
behavior of the server and deviate arbitrarily from
the normal protocol. Consequently, the security of the
system relies entirely on the protective measures and
cryptography employed by the clients.

In the following sections, we describe three attacks
on the end-to-end security guarantees of Nextcloud in
this setting. First, however, we make a short detour
to critique Nextcloud’s trust assumptions concerning
authentication of users’ public keys.

Trust Assumptions for Public Key Authentication.
While a client can authenticate its own RSA key pair
because it is authenticated by the key km derived from
the user’s mnemonic, the authentication of other users’
public key relies on a PKI having the server as the
root of trust.

Nextcloud employs a TOFU approach to justify
the use of an untrusted entity as the root of trust:
when a client downloads a certificate from the server,
it is stored locally for future use; it is assumed that
the server is honest and provides a certificate for the
legitimate requested public key at this point. However,
this approach leaves much to be desired.

First, given the setting, the server should be
considered to be an untrusted entity and so cannot
be relied upon as a root of trust. A malicious server
can mount certificate substitution attacks that fool
clients into accepting the wrong public key for any
other client; coupled with the file sharing mechanism
described in Section 2.2 this enables trivial attacks
allowing the server to recover file contents of E2EE
shared folders.

Second, if TOFU is the chosen security model, then
exchanging certificates instead of just public keys does
not add significant security to the system. This is
because an adversary in control of the server would
presumably also have access to the server’s private key
and hence be able to issue fake certificates.

Third, if TOFU is used, it should not be possible for
the server to remove already cached keys or certificates
on the clients. However, Nextcloud allows servers to
issue a so-called “remote wipe” which induces a client
to delete all the stored key material (including the
certificates). The feature is intended to allow the
server to delete important key material from the client
in case the device on which it is running is lost or
stolen. However, this feature voids the TOFU approach

because it allows a compromised server to erase older
certificates and substitute them with new ones when
the user next logs in.

Nextcloud is aware that TOFU relies on a strong se-
curity assumption and aspires to integrate a certificate
transparency log and support for hardware security
modules in the future [23]. However, these features are
not currently implemented.

None of the attacks that we present below exploit
weaknesses in the TOFU assumption; they all work
even if public keys are properly authenticated.

3.1. Key Insertion Attack

In this attack, the malicious or compromised server
exploits the lack of authenticity of encrypted metadata
keys to replace an honest metadata key with one
generated by and known to the server. This gives the
adversary access to all the file keys which are encrypted
with the malicious metadata key.

The attack relies on the fact that metadata keys
are encrypted under the user’s master key using
RSA-OAEP [4]. While RSA-OAEP has been proven
secure against adaptive chosen-ciperhtext attacks (IND-
CCA2) [15] – which also implies that ciphertexts
are non-malleable [3] – it does not provide any data
origin authentication (or integrity) guarantees for the
generated ciphertexts. Consequently, anyone who has
access to the public key of a Nextcloud user can
generate a valid encryption of a metadata key of their
choosing. This allows a malicious server to deceive a
client into using a metadata key known to the server,
by replacing the highest-indexed metadata key of a
folder with the encryption of a chosen key. We provide
the pseudocode of the attack in Figure 6.

Once the attack has been executed, the folder
metadata contains the encryption of a metadata key
k̂md chosen by the adversary which decrypts correctly
on the client. Any subsequent synchronization process
will then cause the file metadata – including file keys
of all existing files in the folder – to be(re-)encrypted
with the rogue metadata key, as shown in Figure 2.

Note that users’ public keys are stored in the clear
on the server, and hence known to the adversary,
enabling the attack. Additionally, according to the
white paper [23] public keys should be auditable.
That is, it is explicitly required that the keys can
be made public. This means that the attack is in
theory also possible by a TLS machine-in-the-middle
(MiTM) attacker (i.e. a MiTM attacker that can break
TLS), since such an attacker can intercept the client to
server traffic and replace the metadata key map with
a modified version containing k̂md. This highlights the
system’s reliance on the security provided by TLS.
Furthermore, the attack is entirely surreptitious: since
RSA-OAEP does not provide authentication, the client
cannot distinguish the maliciously inserted metadata
key from a metadata key added by another legitimate
client (for example to perform a key rotation).

Key Overwriting Variant. The presented key insertion
attack uses the fact that clients support the decryption
of protected metadata with different metadata keys,

while always encrypting these fields with the metadata
key associated with the highest index in the key map
MPk. Therefore, the insertion of k̂md does not disrupt
the decryption of file metadata encrypted with other
legitimate keys. Rather, only the encryption step at
the end of the synchronization process changes, as the
client will encrypt all the file metadata with the new
k̂md.

Here, we present a variant of the attack which
does not rely on clients supporting the use of multiple
metadata keys, but still gives the adversary access to
files that are added after the attack. We include this
variant to demonstrate that the simple fix of removing
multiple metadata keys would not be sufficient to
address the vulnerability. It works as follows. Instead
of inserting k̂md with identifier î > i∗ into MPk, the
adversary overwrites the legitimate metadata key at
i∗ with k̂md. This means that all file metadata of files
added to the E2EE folder after the overwriting takes
place will be encrypted with the malicious key k̂md.
Therefore the adversary can recover the file keys and
get full access to any newly added files.

This attack variant is weaker than the original key
insertion version for two reasons. First, it does not
allow the recovery of files added to the E2EE folder
before the adversary was active. Second, it is less
stealthy: without support for multiple metadata keys,
the client cannot use the previous legitimate metadata
keys to decrypt the metadata of files added before the
attack. As a result, the decryption of file metadata
(and the related files) fails because the client would
try to decrypt it using k̂md instead of the overwritten
previous key. This raises an error when procedure
decryptFile in Figure 5 is executed with one of the
older files as input, because there is no corresponding
entry in the file metadata. (The decryption of the
protected metadata on line 11 in Figure 3 will fail,
leading to a ⊥ entry in MPf.)

To avoid raising errors, the adversary can delete the
files on the server, causing the files to also be deleted
locally. Both options may raise the suspicion of users.
However, if the adversary is active when the folder is
created and still empty, then the attack stealthiness
would be preserved. In conclusion, although weaker,
the attack variant highlights the root cause of the
vulnerability: PKE-encrypted metadata keys are not
authenticated.

Consequences. The consequences of the key insertion
attack are severe, as it provides an attacker with com-
plete control over the E2EE folder. The confidentiality
and integrity of the folder are entirely compromised,
allowing the adversary to access files, modify existing
ones, and insert new ones at will – and all of this in a
way that is completely undetectable to the client.

The overwriting variant of the attack enables an
adversary to gain full control of folders created after
the adversary becomes active. Performing the attack
on existing, non-empty E2EE folders either leads to
errors or to content modifications which are detectable
to victim. It also does not allow the recovery of the
already existing files.

KeyInsertionAttack([MPk], pk, k̂md):

Given: the encrypted map of metadata keys [MPk], the
victim’s public key pk, a metadata key chosen by the
adversary k̂md
Returns: the map of encrypted metadata keys [MPk]

1 [k̂md]pk ← RSA.Enc(pk, k̂md)
2 i∗ ← max([MPk].keys())
3 î ← i∗ + 1 � Key Overwriting: î ← i∗

4 [MPk].put(i, [k̂md]pk)
5 return [MPk]

Figure 6: Key insertion attack. A malicious or com-
promised server can add the encryption of a rogue
metadata key k̂md to the map of metadata kes.

3.2. Ghost Key Attack

In this attack, the adversary exploits two imple-
mentation pitfalls to insert an all-zero metadata key
at the highest index in the metadata key map MPk
of an E2EE folder. Similar to the key insertion attack,
this results in the client using a metadata key which is
known to the adversary to encrypt the folder metadata,
thereby giving the attacker complete access to the files
in the folder.

At the core of the vulnerability is the fact that
the metadata key map MPk allocates a default value
– namely, an all-zero entry – when accessed at an
index that is not already in the map. Nextcloud
maps are implemented using the QMap object [8]
from the Qt library [10], and this default allocation is
clearly specified in the map documentation [9]. Hence
the issue does not stem from a bug in the library.
Rather, the problem is that this behavior is not well-
suited for use in a security-critical system, unless
precautions are taken to avoid it. This leads to the
second implementation pitfall: Nextcloud clients do not
perform sufficient sanity checks on the inputs provided
by the server. In particular, the client does not check
for “out-of-bound” indices, and error messages from
metadata decryption failures are ignored. Together,
this creates sufficient conditions for an attack which
we call the “ghost key attack”. The attack is shown in
Figure 7.

To perform the attack, the adversary first inserts
a dummy entry into the encrypted file metadata map
[MPf]. The dummy entry is empty, except for where it
specifies the index of the metadata key that should be
used to decrypt it. There, the adversary chooses î ←
max([MPk].keys()) + 1, such that the malicious index
î is higher than the highest index in the metadata key
map [MPk]. As a consequence, the index in the dummy
entry points to a non-existing metadata key in [MPk].
When the client performs the next synchronization, it
will try to decrypt the file metadata of the dummy
entry (as shown in Figure 3), thereby accessing MPk
at the adversarially chosen index î. Due to the default
behavior of the Qmap object, this creates an entry
with the all-zero key k̂0 = {0}128 in MPk at î. At the
end of the synchronization, î is the highest identifier in
MPk and therefore all file metadata – including all file
keys – are re-encrypted with k̂0 before being uploaded
to the server.

GhostKeyAttack([MPk], [MPf]):

Given: the encrypted map of file metadata [MPk], the
encrypted map of metadata keys [MPk]
Returns: the modified encrypted file metadata [MPk]

1 i∗ ← max([MPk].keys())
2 î ← i∗ + 1 � Key Overwriting: î ← i∗

3 [MPf].put(“dummy”, (0, 0, 0, î, 0, 0))
4 return [MPk]

Figure 7: Ghost key attack. A malicious or compro-
mised server can add a dummy entry to the file
metadata which leads the client to access MPk at
a non-existing index. By default behavior of the map
object used, this access creates an all-zero key in MPk
at the index î.

This attack can be performed by a malicious or
compromised server, or by a TLS MiTM attacker.
After the attack has been performed, the adversary
has access to the folder metadata encrypted under k̂0
and therefore full control over the whole E2EE folder.

Attack Stealthiness. As shown in procedure
decryptFolderMetadata in Figure 3, no error is
raised when decryption of the protected fields fails.
Instead, the entry is simply skipped. For this reason,
the attacker can set all values in the dummy entry
(except î) to zero and let the decryption fail. However,
another approach is also possible; since the adversary
knows that the client will try to decrypt the protected
fields using k̂0 , the decryption failure can be avoided.

Specifically, the adversary can set the protected
field of the dummy entry to [(k̂f , f̂n)]

k̂0
where k̂f and

f̂n are a file key and a filename chosen by the adversary,
and additionally insert a dummy file in the remote
folder encrypted with k̂f . As a result, the client would
successfully decrypt both the protected fields and the
file content of the dummy file. On the one hand,
this strategy prevents the decryption failure, and also
directly breaks the integrity guarantees of the end-to-
end encryption. On the other hand, the new file is
detectable to the user and may hence make the attack
less stealthy.

Key Overwriting Variant. Similarly to the key insertion
attack, the ghost key attack relies on clients supporting
multiple metadata keys, but can also be modified to
work without this feature. If the adversary is active
when the folder is first created, then they can substitute
the encrypted folder metadata [MPk] with an empty
map. This causes the client to replace the honest
metadata key map MPk with one which contains (0, k̂0)
as the only entry. The replacement will not raise any
errors since the legitimate metadata key was never
used, and after the replacement the metadata of all
files added to the folder will be encrypted with k̂0 .

Performing this attack for an existing folder, rather
than a new one, leads to the overwriting of a metadata
key that already encrypts some data. This is possible
but results in the same limitations as discussed in
the overwriting version of the key insertion attack in
Section 3.1. That is, the decryption of the existing

metadata would fail on the client and additionally
the adversary would not be able to recover files that
are present in the E2EE folder before the attack was
performed.

Consequences. The ghost key attack allows an adver-
sary in control of the server or a TLS MiTM attacker
to gain full access to an E2EE folder. Because the
adversary knows the metadata key used to encrypt
the folder metadata it can access files, modify existing
ones, as well as insert new ones at will.

The key overwriting variant of the attack allows
the adversary to gain full control over newly created
folders. For existing folders, the adversary can gain full
access to the files added after the overwriting attack
takes place.

Despite the consequences of the ghost key attack
being the same as the key insertion attack, we stress
that the two vulnerabilities are independent. In the
ghost key attack, the key known to the adversary (k̂0)
is generated by the client itself. Therefore, this attack
would work even if metadata keys were authenticated.

3.3. IV Reuse in File Encryption

This vulnerability is caused by the reuse of IVs
when E2EE files are updated. As shown in Figure 4, no
new IV is sampled when an existing file is re-encrypted;
rather, the existing IV is reused. This is problematic,
since the encryption scheme used for file encryption
in Nextcloud’s E2EE module is AES-GCM, and it is
a well-known fact that IV reuse in AES-GCM can
lead to a complete loss of confidentiality and integrity.
Below, we briefly explain why this is the case, as well
as how it can be turned into an attack on the E2EE
security of Nextcloud.

AES-GCM is an AEAD scheme obtained by com-
bining AES-CTR with a Carter-Wegman MAC. That
is, the encryption component of AES-GCM uses a
keystream to mask the plaintext using an XOR
operation. The keystream is generated by applying
AES block cipher encryption to an increasing counter.
The counter is initialized by the IV. Reusing the IV
leads to a repeated sequence of counters and hence a
repeated keystream. Consequently, taking the XOR of
two ciphertexts c1 , c2 created using the same IV will
yield the XOR of the corresponding plaintexts p1 ⊕p2 .

The problem of recovering the individual plaintexts
p1 and p2 given their XOR p1 ⊕ p2 was carefully
studied in [20]. There, the authors show how to separate
p1 and p2 with a high success rate if a suitable language
model for the underlying plaintext is available. The
core idea of the attack is to use an n-gram model of the
language in combination with dynamic programming
to approximate the likelihoods of pairs of candidates
(p1 ,p2) satisfying the constraint on their XOR.

In the context of Nextcloud, we can mount an even
simpler attack breaking confidentiality under a mild
assumption on the nature of the files being encrypted.
Recall that in Nextcloud, IV reuse occurs when different
versions of the same file are encrypted. Imagine a
scenario where a user edits a text file, perhaps adding
and deleting a few characters on each update. Then

many characters in the updated file will appear in
shifted positions relative to the original file. This can
be used to recover part of the original plaintext.

For concreteness, suppose that a file p1 is stored
encrypted on the server and that the user modifies it
by adding exactly one character at an offset j from
the beginning of the file. As a result, the server learns
two ciphertexts, c1 and c2 : the encryption of p1 and
of the updated file p2 , respectively. By comparing the
two ciphertexts, the server can learn the value of j
(since c1 and c2 are identical up to that position).

As shown in Figure 8, the modification causes all
the characters after the character in position j to shift
one position to the right. Consequently,

p1 [i] = p2 [i + 1] (1)

for all indices i ≥ j. For each guess g of the added
character, the server does the following (see Figure 8):

1) set p2 [j] = g .
2) for each i ≥ j, set p1 [i] = c1 [i]⊕ c2 [i]⊕ p2 [i] and

p2 [i + 1] = p1 [i].
Repeating these steps yields a pair of candidate
plaintexts (p1 ,p2) for each guess g of the added
character. A language model can then be used to
automatically detect which candidate pair contains
meaningful text. As a result, the server can recover all
the plaintext characters beyond position j.

The attack can be generalised to the situation where
a larger number of contiguous characters have been
added or deleted. This number can be approximated
by comparing ciphertext lengths (since AES-GCM
ciphertext lengths directly leak plaintext lengths).

This method for “unzipping” the plaintexts when
characters have been inserted (or deleted) and an IV
reused is not new, but in fact dates back to Tiltman’s
cryptanalysis of the German Lorenz cipher at Bletchley
Park during World War II.8

Reuse of the IV in AES-GCM also leads to a
break of integrity [18]. In short, with high probability
and with low effort, an adversary can recover the
AES-GCM authentication key from two ciphertexts
if an IV is reused. Given this key, and a portion of
keystream recovered using the confidentiality attack
given above, an adversary can go on to forge valid
AES-GCM ciphertexts for chosen plaintexts. We refer
to [18] for further details.

Consequences. An adversary with read access to
encrypted files can leverage the IV reuse to mount
a plaintext recovery attack on modified files. An
adversary that can also modify a user’s file storage can
then use the attack of [18] to forge validly AES-GCM-
encrypted files.

4. Proof of Concept Attack Implementations

We implemented all attacks presented in this work
and tested them using a self-hosted Nextcloud server
instance over which we had full control. This allowed
us to test the attacks in a controlled environment and

8. See https://billtuttememorial.org.uk/codebreaking/the-til
tman-break/.

https://billtuttememorial.org.uk/codebreaking/the-tiltman-break/
https://billtuttememorial.org.uk/codebreaking/the-tiltman-break/

I V M U S T N O T B E R E U S E D

I V s M U S T N O T B E R E U S E D

0. Guess p2[i]

... ...

1. Recover
p1[i] = c1[i] ⊕ c2[i] ⊕ p2[i]

2. Recover p2[i+1] = p1[i]

p1:

p2:

Figure 8: Illustrating the plaintext recovery attack when an IV is reused in AES-GCM and the plaintexts are
related by a single character shift.

verify their effectiveness. The attacks were performed
against version 3.6 of the desktop client,9 this being
the latest stable version at the time of our analysis.

The Proof-of-Concepts (PoCs) modified the server
behavior by edits to its source code. This is consistent
with the setting where the service provider itself is to
be considered malicious. Furthermore, since the server
code is loaded on each client request, an adversary
gaining control over a Nextcloud server can alter its
code and behavior in real-time, without needing to
restart the server. No changes were made to the client
code.

The PoCs for the key insertion attack and the
ghost key attack follow exactly the pseudocode in
Figure 6 and 7, respectively. To build a PoC exploiting
the IV reuse, we considered the simplified case shown
in Figure 8 in which a single character is added to
or deleted from a text file. Our PoC brute-forces on
the deleted character and uses a language model to
recover the correct underlying plaintext, as described
in Section 3.3. We also implemented Joux’s attack [18]
to recover the AES-GCM authentication key on IV
reuse. Combining the two attacks, our PoC can then
both recover the file plaintext and change it to an
arbitrary string (of the same length as the original).
The source code of the PoCs is publicly available.10

5. Mitigations

This section describes the mitigations that we
suggested to Nextcloud as part of our disclosure, as
well as the measures implemented by Nextcloud to
address the vulnerabilities. Nextcloud implemented
mitigations for the key insertion attack in version 3.8
of their desktop client and for the other vulnerabilities
in version 3.6.5 [31]–[33].

5.1. Mitigation of the Key Insertion Attack

As mentioned in the attack description (see Sec-
tion 3.1), the key insertion attack exploits the fact
that metadata keys are encrypted using RSA-OAEP,
and hence not authenticated. The use of asymmetric
cryptography to encrypt metadata keys was introduced
to allow a folder-sharing feature.

9. https://github.com/nextcloud/desktop/releases/tag/v3.6.0
10. https://github.com/daniCoppola/nc-poc-release

Suggested Mitigation. In order to achieve authenti-
cation of the encrypted metadata keys, while still
allowing folder sharing through the use of public-key
cryptography, a signcryption scheme can be used to
protect metadata keys instead of RSA-OAEP. A secure
signcryption scheme provides both confidentiality, un-
forgeability, and non-repudiation [41]. Confidentiality
(which is already achieved with RSA-OAEP) ensures
that an adversary without access to the private
key is not able to retrieve an encrypted metadata
key. Unforgeability provides the additional necessary
guarantee of origin authentication for the encrypted
key. If metadata keys were signcrypted, each user
with access to a shared folder would be able to check
who generated the encrypted metadata key, thereby
preventing the server from inserting malicious keys.

Implemented Mitigation. Nextcloud decided to intro-
duce a short-term patch in version 3.8 of their desktop
client. It prevents the key insertion attack and gained
time to design and deploy a completely new version
of the E2EE module with secure file sharing. After
this patch, a checksum cs is computed over part of the
folder metadata and the owner’s mnemonic using the
checksum procedure shown in Figure 9. The checksum
consists of a SHA-256 hash over the concatenation of
the mnemonic m, the obfuscated file names ofn, and
the metadata key used to encrypt the file metadata
k∗md. The idea is that only the legitimate user should
be able to generate cs, since m is known only to that
user.

The checksum is computed at the end of algo-
rithm encryptFolderMetadata in Figure 2 and
stored on the server as part of the folder metadata.
decryptFolderMetadata in Figure 3 is modified
to recompute the checksum and compare it with the
one provided by the server.

Discussion. Although we could not find an attack on
this mitigation, we note that hash checksums generally
do not provide cryptographic unforgeability guarantees.
The correct primitive to use in order to authenticate
the metadata based on the mnemonic is a MAC. More
precisely, a key should be derived from the mnemonic
and used as input to a secure MAC to authenticate
the encrypted metadata key.

Moreover, authentication using symmetric-key cryp-
tography based on the mnemonic does not meet the
requirements posed by Nextcloud for their sharing
feature. Because the mnemonic is kept secret by each

https://github.com/nextcloud/desktop/releases/tag/v3.6.0
https://github.com/daniCoppola/nc-poc-release

checksum(m, k∗md , [MPf]):

Given: the user’s mnemonic m, the metadata key k∗md ,
and the map of encrypted file metadata [MPf]
Returns: the checksum cs

1 buff ← “ ” � Initialize an empty buffer
2 buff ← buff || m
3 for ofn, _ ∈ [MPf]
4 buff ← buff || ofn
5 buff ← buff || k∗md
6 cs ← SHA256(buff)
7 return cs

Figure 9: Checksum introduced by Nextcloud to
authenticate the metadata key k∗md and the obfuscated
file names.

user, only the user who created the folder metadata is
able to authenticate it. As a consequence, the recipient
of a shared E2EE folder cannot verify the origin of the
folder metadata nor of the folder content. Therefore,
if folder sharing were to be enabled together with this
temporary patch, the recipient of a shared folder could
not authenticate the metadata key, and hence would
still be vulnerable to attacks from a malicious server. In
conclusion, unless metadata keys can be authenticated
by the recipients (for example using signcryption),
E2EE folder sharing cannot be implemented securely.
Nextcloud released a major restructuring of the E2EE
feature in version 3.12 of the desktop client.11 The new
E2EE feature uses signatures to authenticate metadata
keys and supports file sharing. We have not analyzed
its security.

5.2. Mitigation of the Ghost Key Attack

This vulnerability stems from the fact that the
map MPk used by the client to store metadata keys
allocates a default metadata key of all zeros if accessed
at an uninitialized index.

Suggested Mitigation. The attack can be easily pre-
vented by having the client verify that the map entry
has been initialized before accessing the map at a
specified identifier. In general, when developing end-
to-end encryption systems in a malicious server threat
model, the inputs provided by the server should not
be trusted and hence always checked by the client.

Implemented Mitigation. As suggested, additional
checks on the server input were introduced. After
decrypting [MPk] in Figure 3, the client checks that
the decrypted map MPk is not empty. Additionally,
in the decryptFolderMetadata procedure, all files
are decrypted with the metadata key at the highest
initialized index in MPk, rather than with the key in-
dicated by the file metadata. This prevents maliciously
added file metadata entries from causing the client
to access the map at an uninitialized index. Together
with the fact that the client checks that MPk is not
empty, this ensures that the map is only accessed at
valid indices.

11. https://github.com/nextcloud/desktop/releases/tag/v3.1
2.0

After the mitigation, clients still support metadata
key rotation. However, they no longer support file
keys for different files being encrypted with different
metadata keys.

Discussion. Note that none of the mitigations (sug-
gested or implemented) for the key insertion attack
help prevent the ghost key attack. The mitigations
against the key insertion attack aim to authenticate
metadata keys, thereby preventing an adversary (such
as a MiTM attacker or a malicious or compromised
server) from modifying or adding a new metadata key
to the folder metadata. However, in the ghost key
attack, the all-zero key is inserted by the client itself
and not by the adversary. Even if metadata keys were
authenticated, the verification of their authenticity
would occur during decryption in line 3 of Figure 3.
Once the metadata keys are decrypted and put into
the key map MPk, the client trusts that the map only
contains authentic keys. However, in the ghost key
attack, the client inserts the all-zero key directly into
MPk, thereby circumventing any authenticity checks.

5.3. Mitigation of IV Reuse

Suggested Mitigation. The attack can be easily pre-
vented by always sampling the IV used for file encryp-
tion uniformly at random, both when encrypting new
files and when re-encrypting modified files.

Implemented Mitigation. Nextcloud patched this vul-
nerability by generating a fresh random IV as well as
a new file key for each file encryption.

Discussion. Note that to prevent our attack it would
have been sufficient to just re-sample the IV. Nextcloud
chose to re-sample both the IV and the file key, such
that (in a future where folder sharing is actually
possible) security for updated files is ensured against a
removed user. That is, since updated files are encrypted
with new file keys, a user who has their access to a
shared folder revoked does not learn the new file keys,
and hence cannot decrypt the modified files.

6. Conclusion

We analyzed the E2EE features offered by
Nextcloud and found three vulnerabilities; each leading
to devastating attacks that completely break the
confidentiality and integrity of E2EE files. Moreover,
we can draw the following broader lessons.

Treat your own code and infrastructure as adversarial.
While the ghost key attack relies on an odd behavior of
the object used to store metadata keys, the root cause
of this vulnerability is more fundamental. Here, had
the server inputs been checked before use by the client,
the attack would have been prevented. This points to
the lesson that, in the E2EE setting where the servers
should be considered adversarial, developers need to
distrust all server actions and all server-generated
inputs. This mindset might be difficult to adopt because
it requires developers to produce client code that

https://github.com/nextcloud/desktop/releases/tag/v3.12.0
https://github.com/nextcloud/desktop/releases/tag/v3.12.0

distrusts server code that they themselves may have
written.

Do not beta test security-critical features. Releas-
ing features early, as beta, or as minimum viable
products (MVPs), may help attract users and gather
support from the developer community. The latter
is particularly valuable in an open-source project
such as Nextcloud. However, prematurely deploying
security features that are only partially implemented
can introduce vulnerabilities. For example, deploying a
server-rooted PKI while leaving the development of a
certificate transparency log as future work undermines
the basic security assumptions on which the system
relies. Moreover, committing to insecure design choices
can lead to an over-complicated solution later on and
may necessitate complex patches when vulnerabilities
are found. In an extreme case, as with Nextcloud’s
file sharing feature, the introduced patches may be
incompatible with the original desired functionality.

Secure primitives do not imply secure systems. While
the adoption of secure primitives and carefully audited
implementations is picking up pace in real-world
deployments such as Nextcloud, this does not suffice
if the chosen primitives do not meet the requirements
of the application or are composed incorrectly. For
example, our key insertion attack exploits the mismatch
between what the designers presumably expected from
the primitive (data origin authentication and confiden-
tiality), and what the primitive actually offers (confi-
dentiality). Generalizing from this example, designers
need to understand the security guarantees offered by
a primitive, and understand how to properly combine
primitives in order to achieve more complex security
properties. Similarly, developers need to know under
what assumption(s) these security guarantees hold.
This would have prevented the IV reuse vulnerability
in file encryption.

Do not “Design→Release→Break→Patch”. Systems
should be designed using a proactive approach to
security, cf. [35]. This approach requires designers to
first produce formal security models capturing the
security goals and adversarial capabilities, then specify
the system in full, and finally develop security proofs
showing that the system meets its goals under well-
defined assumptions on its cryptographic components.
Only once this phase is complete can the developers
start their work. Of course, this approach still leaves a
gap between formal specification and implementation,
but this approach prevents specification-level flaws.
Pursuing it is also considerably more involved and
less agile than the current practice where design and
development go hand-in-hand, and where there is often
no separation between designers and developers. It
requires highly specialist knowledge on the part of the
designers, or the recruitment of applied cryptographers
to the design team.

Future Work. Our work on Nextcloud and the recent
work on MEGA [1], [2], [17] have shown that well-
established companies and open-source projects with

millions of users struggle to provide their users with
the intended security guarantees. At the same time,
the cryptographic community has managed to model
and prove the security of important protocols for client-
server communication (e.g. TLS1.3 [11], [12], [14]) and
E2EE messaging (e.g. Signal [7]). An important goal
for future work would be to reach a similar state for
E2EE cloud storage. This would be an ambitious and
complicated goal to attain, even without the more
advanced security properties typically targeted in the
literature today. However the result – when adopted
by vendors – would greatly improve the security of
cloud storage systems compared to the observed state
in today’s deployed systems.

Acknowledgments

We thank Nextcloud staff for their helpful cooper-
ation during the disclosure process.

References

[1] Martin R. Albrecht, Miro Haller, Lenka Mareková, and
Kenneth G. Paterson. Caveat implementor! Key recovery
attacks on MEGA. In Carmit Hazay and Martijn Stam,
editors, EUROCRYPT 2023, Part V, volume 14008 of LNCS,
pages 190–218. Springer, Heidelberg, April 2023.

[2] Matilda Backendal, Miro Haller, and Kenneth G. Paterson.
MEGA: Malleable encryption goes awry. In 2023 IEEE
Symposium on Security and Privacy, pages 146–163. IEEE
Computer Society Press, May 2023.

[3] Mihir Bellare, Anand Desai, David Pointcheval, and Phillip
Rogaway. Relations among notions of security for public-
key encryption schemes. In Hugo Krawczyk, editor,
CRYPTO’98, volume 1462 of LNCS, pages 26–45. Springer,
Heidelberg, August 1998.

[4] Mihir Bellare and Phillip Rogaway. Optimal asymmetric
encryption. In Alfredo De Santis, editor, EUROCRYPT’94,
volume 950 of LNCS, pages 92–111. Springer, Heidelberg,
May 1995.

[5] Hanno Böck, Aaron Zauner, Sean Devlin, Juraj Somorovsky,
and Philipp Jovanovic. Nonce-Disrespecting adversaries:
Practical forgery attacks on GCM in TLS. In 10th USENIX
Workshop on Offensive Technologies (WOOT 16), Austin,
TX, August 2016. USENIX Association.

[6] Lara Bruseghini, Daniel Huigens, and Kenneth G. Paterson.
Victory by KO: Attacking OpenPGP using key overwriting.
In Heng Yin, Angelos Stavrou, Cas Cremers, and Elaine
Shi, editors, ACM CCS 2022, pages 411–423. ACM Press,
November 2022.

[7] Katriel Cohn-Gordon, Cas Cremers, Benjamin Dowling,
Luke Garratt, and Douglas Stebila. A formal security
analysis of the Signal messaging protocol. Journal of
Cryptology, 33(4):1914–1983, October 2020.

[8] The Qt Company. Qmap class. https://doc.qt.io/qt-
6/qmap.html.

[9] The Qt Company. Qmap class, access operator. https:
//doc.qt.io/qt-6/qmap.html#operator-5b-5d.

[10] The Qt Company. Qt documentation. https://doc.qt.io/qt
-6/.

[11] Cas Cremers, Marko Horvat, Jonathan Hoyland, Sam Scott,
and Thyla van der Merwe. A comprehensive symbolic
analysis of TLS 1.3. In Bhavani M. Thuraisingham, David
Evans, Tal Malkin, and Dongyan Xu, editors, ACM CCS
2017, pages 1773–1788. ACM Press, October / November
2017.

https://doc.qt.io/qt-6/qmap.html#operator-5b-5d
https://doc.qt.io/qt-6/qmap.html#operator-5b-5d
https://doc.qt.io/qt-6/
https://doc.qt.io/qt-6/

[12] Cas Cremers, Marko Horvat, Sam Scott, and Thyla van der
Merwe. Automated analysis and verification of TLS 1.3:
0-RTT, resumption and delayed authentication. In 2016
IEEE Symposium on Security and Privacy, pages 470–485.
IEEE Computer Society Press, May 2016.

[13] Anders P. K. Dalskov and Claudio Orlandi. Can you trust
your encrypted cloud?: An assessment of SpiderOakONE’s
security. In Jong Kim, Gail-Joon Ahn, Seungjoo Kim,
Yongdae Kim, Javier López, and Taesoo Kim, editors,
ASIACCS 18, pages 343–355. ACM Press, April 2018.

[14] Benjamin Dowling, Marc Fischlin, Felix Günther, and
Douglas Stebila. A cryptographic analysis of the TLS
1.3 handshake protocol. Journal of Cryptology, 34(4):37,
October 2021.

[15] Eiichiro Fujisaki, Tatsuaki Okamoto, David Pointcheval,
and Jacques Stern. RSA-OAEP is secure under the RSA
assumption. In Joe Kilian, editor, CRYPTO 2001, volume
2139 of LNCS, pages 260–274. Springer, Heidelberg, August
2001.

[16] Eiichiro Fujisaki, Tatsuaki Okamoto, David Pointcheval,
and Jacques Stern. RSA-OAEP is secure under the RSA
assumption. Journal of Cryptology, 17(2):81–104, March
2004.

[17] Nadia Heninger and Keegan Ryan. The hidden number
problem with small unknown multipliers: Cryptanalyzing
MEGA in six queries and other applications. In Alexandra
Boldyreva and Vladimir Kolesnikov, editors, PKC 2023,
Part I, volume 13940 of LNCS, pages 147–176. Springer,
Heidelberg, May 2023.

[18] Antoine Joux. Authentication failures in NIST version of
GCM. NIST Comment, page 3, 2006.

[19] James Manger. A chosen ciphertext attack on RSA optimal
asymmetric encryption padding (OAEP) as standardized
in PKCS #1 v2.0. In Joe Kilian, editor, CRYPTO 2001,
volume 2139 of LNCS, pages 230–238. Springer, Heidelberg,
August 2001.

[20] Joshua Mason, Kathryn Watkins, Jason Eisner, and Adam
Stubblefield. A natural language approach to automated
cryptanalysis of two-time pads. In Ari Juels, Rebecca N.
Wright, and Sabrina De Capitani di Vimercati, editors, ACM
CCS 2006, pages 235–244. ACM Press, October / November
2006.

[21] Mega. Online privacy for everyone, 2023. https://mega.io/.

[22] Steve Morgan. Data attack surface report. cybersecurity
ventures, 2020.

[23] Nextcloud. Security and authentication. https://nextcl
oud.com/blog/whitepapers/security/, Last accessed on
2022-11-30.

[24] Nextcloud. German federal administration relies on
nextcloud as a secure file exchange solution, 2018. https:
//nextcloud.com/blog/german-federal-administration-relie
s-on-nextcloud-as-a-secure-file-exchange-solution/.

[25] Nextcloud. Nextcloud grew customer base 7x, added over
6.6 million lines of code and doubled its team in 2017, 2018.
https://nextcloud.com/blog/nextcloud-grew-customer-base-
7x-added-over-6-6-million-lines-of-code-and-doubled-its-
team-in-2017/.

[26] Nextcloud. End-to-end encryption RFC, 2021. https://gi
thub.com/nextcloud/end_to_end_encryption_rfc/tree/
master.

[27] Nextcloud. Encryption and hardening, 2022. https://next
cloud.com/encryption/.

[28] Nextcloud. Nextcloud about page, 2022.
https://nextcloud.com/about.

[29] Nextcloud. Nextcloud ceo kicks off nextcloud
conference with keynote speech, 2022.
https://nextcloud.com/blog/nextcloud-ceo-kicks-off-
nextcloud-conference-with-keynote-speech/.

[30] Nextcloud. Nextcloud threat model, 2022. https://ne
xtcloud.com/security/threat-model/, Last accessed on
2022-09-12.

[31] Nextcloud. Desktop clients misbehaves with end-to-end en-
cryption when the server returns an empty list of metadata
keys, April 2023. https://github.com/nextcloud/security-a
dvisories/security/advisories/GHSA-jh3g-wpwv-cqgr.

[32] Nextcloud. Initialization vector reuse in end-to-end encryp-
tion allows a malicious server admin to break manipulate
and access files, April 2023. https://github.com/nextcloud
/security-advisories/security/advisories/GHSA-4p33-rw2
7-j5fc.

[33] Nextcloud. Lack of authenticity of metadata keys allows a
malicious server to gain access to E2EE folders, April 2023.
https://github.com/nextcloud/security-advisories/security
/advisories/GHSA-8875-wxww-3rr8.

[34] Kevin “Kenny” Niehage. Cryptographic vulnerabilities
and other shortcomings of the Nextcloud server side en-
cryption as implemented by the default encryption mod-
ule. Cryptology ePrint Archive, Report 2020/1439, 2020.
https://eprint.iacr.org/2020/1439.

[35] Kenneth G. Paterson and Thyla van der Merwe. Reactive
and proactive standardisation of TLS. In Lidong Chen,
David A. McGrew, and Chris J. Mitchell, editors, Security
Standardisation Research - Third International Conference,
SSR 2016, Gaithersburg, MD, USA, December 5-6, 2016,
Proceedings, volume 10074 of Lecture Notes in Computer
Science, pages 160–186. Springer, 2016.

[36] PreVeil. Preveil security and design a description of the
Preveil system architecture, 2023. https://www.preveil.co
m/wp-content/uploads/2019/10/PreVeil_Security_Whit
epaper-v1.5.pdf.

[37] Proton. Secure cloud storage and file sharing, 2023. https:
//proton.me/drive.

[38] Phillip Rogaway and Thomas Shrimpton. A provable-
security treatment of the key-wrap problem. In Serge
Vaudenay, editor, EUROCRYPT 2006, volume 4004 of
LNCS, pages 373–390. Springer, Heidelberg, May / June
2006.

[39] WisCase Cyber Research Team. Over 80 us municipalities’
sensitive information, including resident’s personal data, left
vulnerable in massive data breach. Trend Micro Research,
July 20, 2021. https://www.wizcase.com/blog/us-municip
ality-breach-report/, Last accessed on 2023-05-05.

[40] Tresorit. Tresorit encryption whitepaper, 2023. https:
//cdn.tresorit.com/202208011608/tresorit-encryption-whi
tepaper.pdf.

[41] Yuliang Zheng. Digital signcryption or how to achieve
cost(signature & encryption) � cost(signature) + cost(en-
cryption). In Burton S. Kaliski Jr., editor, CRYPTO’97,
volume 1294 of LNCS, pages 165–179. Springer, Heidelberg,
August 1997.

https://mega.io/
https://nextcloud.com/blog/whitepapers/security/
https://nextcloud.com/blog/whitepapers/security/
https://nextcloud.com/blog/german-federal-administration-relies-on-nextcloud-as-a-secure-file-exchange-solution/
https://nextcloud.com/blog/german-federal-administration-relies-on-nextcloud-as-a-secure-file-exchange-solution/
https://nextcloud.com/blog/german-federal-administration-relies-on-nextcloud-as-a-secure-file-exchange-solution/
https://github.com/nextcloud/end_to_end_encryption_rfc/tree/master
https://github.com/nextcloud/end_to_end_encryption_rfc/tree/master
https://github.com/nextcloud/end_to_end_encryption_rfc/tree/master
https://nextcloud.com/encryption/
https://nextcloud.com/encryption/
https://nextcloud.com/security/threat-model/
https://nextcloud.com/security/threat-model/
https://github.com/nextcloud/security-advisories/security/advisories/GHSA-jh3g-wpwv-cqgr
https://github.com/nextcloud/security-advisories/security/advisories/GHSA-jh3g-wpwv-cqgr
https://github.com/nextcloud/security-advisories/security/advisories/GHSA-4p33-rw27-j5fc
https://github.com/nextcloud/security-advisories/security/advisories/GHSA-4p33-rw27-j5fc
https://github.com/nextcloud/security-advisories/security/advisories/GHSA-4p33-rw27-j5fc
https://github.com/nextcloud/security-advisories/security/advisories/GHSA-8875-wxww-3rr8
https://github.com/nextcloud/security-advisories/security/advisories/GHSA-8875-wxww-3rr8
https://eprint.iacr.org/2020/1439
https://www.preveil.com/wp-content/uploads/2019/10/PreVeil_Security_Whitepaper-v1.5.pdf
https://www.preveil.com/wp-content/uploads/2019/10/PreVeil_Security_Whitepaper-v1.5.pdf
https://www.preveil.com/wp-content/uploads/2019/10/PreVeil_Security_Whitepaper-v1.5.pdf
https://proton.me/drive
https://proton.me/drive
https://www.wizcase.com/blog/us-municipality-breach-report/
https://www.wizcase.com/blog/us-municipality-breach-report/
https://cdn.tresorit.com/202208011608/tresorit-encryption-whitepaper.pdf
https://cdn.tresorit.com/202208011608/tresorit-encryption-whitepaper.pdf
https://cdn.tresorit.com/202208011608/tresorit-encryption-whitepaper.pdf

	Introduction
	Nextcloud
	Overview of E2EE in Nextcloud
	Contributions
	Key Insertion Attack
	Ghost Key Attack
	IV Reuse in File Encryption

	Methodology
	Ethical Considerations
	Related Work
	Paper Structure

	Cryptography in Nextcloud
	Notation
	E2EE in Nextcloud

	Attacks
	Key Insertion Attack
	Ghost Key Attack
	IV Reuse in File Encryption

	Proof of Concept Attack Implementations
	Mitigations
	Mitigation of the Key Insertion Attack
	Mitigation of the Ghost Key Attack
	Mitigation of IV Reuse

	Conclusion
	References

