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Abstract
Purpose In surgical image segmentation, a major challenge is the extensive time and resources required to gather large-scale
annotated datasets. Given the scarcity of annotated data in this field, ourwork aims to develop amodel that achieves competitive
performance with training on limited datasets, while also enhancing model robustness in various surgical scenarios.
Methods We propose a method that harnesses the strengths of pre-trained Vision Transformers (ViTs) and data efficiency
of convolutional neural networks (CNNs). Specifically, we demonstrate how a CNN segmentation model can be used as a
lightweight adapter for a frozen ViT feature encoder. Our novel feature adapter uses cross-attention modules that merge the
multiscale features derived from the CNN encoder with feature embeddings from ViT, ensuring integration of the global
insights from ViT along with local information from CNN.
Results Extensive experiments demonstrate our method outperforms current models in surgical instrument segmentation.
Specifically, it achieves superior performance in binary segmentation on the Robust-MIS 2019 dataset, as well as in multiclass
segmentation tasks on the EndoVis 2017 and EndoVis 2018 datasets. It also showcases remarkable robustness through cross-
dataset validation across these 3 datasets, along with the CholecSeg8k and AutoLaparo datasets. Ablation studies based on
the datasets prove the efficacy of our novel adapter module.
Conclusion In this study, we presented a novel approach integrating ViT and CNN. Our unique feature adapter suc-
cessfully combines the global insights of ViT with the local, multi-scale spatial capabilities of CNN. This integration
effectively overcomes data limitations in surgical instrument segmentation. The source code is available at: https://github.
com/weimengmeng1999/AdapterSIS.git.

Keywords Vision transformer · Adapter network · Surgical instrument segmentation

Introduction

Detecting and tracking surgical instruments in laparoscopic
videos is crucial for autonomous surgery and enhanced
clinical support [1]. The trend in the field is toward the
utilization of deep learning methodologies [2, 3]. Current
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models heavily depend on fully supervised learning, requir-
ing extensive annotated data. However, acquiring such data,
especially in surgical tool segmentation, is expensive and
time-intensive, resulting in the lack of large-scale annotated
datasets, a significant hurdle for precise model development.
Additionally, biases in training datasets arise from outdated
datasets, geographical diversity, and unverified clinical rele-
vance, affecting the robustness needed for applications like
autonomous surgery.

In light of the rapid advancements in large-scale ViTs
[4] and their excellent ability to learn from extensive data,
pre-trained ViT models [4–6] offer promising potential for
downstream tasks [7–9]. CNNs have revolutionized the
medical image segmentation field. However, their localized
convolution operations limit capturing global and long-range
semantic interactions. Transformers provide global self-
attention but might lack detailed localization abilities [10].
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Merging CNN and ViT is a recent trend to leverage their
strengths [10–13]. Yet, these methods, often starting from
scratch, might not fully exploit pre-trained knowledge from
large image datasets, a significant ViT strength. Moreover,
while most of them focus on bridging the global and local
information gaps between the two methods, they neglect the
inherent advantages of each: CNNs exhibit better perfor-
mance with limited datasets, whereas ViTs are superb with
extensive data training.

Therefore, given the constraints imposed above, we har-
ness the full potential of both ViT and CNN. We are
particularly focused on capitalizing on the pre-trained gen-
eral knowledge derived from ViT to enhance surgical image
segmentation models, with an overarching goal of opti-
mal both of the model performance and robustness within
the complex and diverse domain of surgical images. Our
main contributions are: (1) adapting a pre-trained and frozen
ViT based on DINOV2 [6] to a CNN backbone segmenta-
tion model optimized for scenarios with limited annotated
data; (2) introducing innovative adapter modules with cross-
attention (CA) to integrate the global information from ViT
and local features from CNN; (3) enhancing the generaliz-
ability of the segmentation model across multiple datasets.

Related work

Surgical instrument segmentation

The majority of surgical instrument segmentation works are
CNN-based methods. For example, ISINet [3] proposes an
instance-based surgical instrument segmentation CNN net-
work that includes a temporal consistencymodule. OR-UNet
[2] is introduced as an optimized 2D UNet [14] for instru-
ment segmentation. There is a growing trend of exploring
ViT-basedmethods.MATIS [15] is a fully transformer-based
method that utilizes pixel-wise attention and masked atten-
tion modules. TraSeTR [16] introduces a track-to-segment
transformer that leverages tracking cues to enhance surgical
instrument segmentation.

Pre-trained vision transformers

Driven by extensive pretraining on large datasets, ViT [4]
and DINO [5] employs self-supervised learning for vision
tasks. DINOV2 [6] improves DINO [5] by the training of
large-scale ViT models with 1B parameters and distills it
into smaller models. The pre-trained ViTs are successfully
applied to the downstream tasks such as image classification
[7, 8], object detection [6], semantic segmentation [6, 7], and
video action classification [8]. Research on fine-tuning cross-
attention modules with pre-trained embeddings [17] aligns
with our method of harnessing pre-trained knowledge from

large-scale ViT models. Yet, there is no existing work that
adapts pre-trained ViT features by a CNN adapter, crucial
due to limited data availability [4].

Hybrid CNN andViT models

ViTs and CNNs inherently complement each other. Numer-
ous studies fuse two architectures to address their limitations.
For instance, TransUNet [10] hybrids in which ViT pro-
cesses CNN-derived patches for global context. TransFuse
[11] parallels ViT and CNNs for efficient global and multi-
level spatial feature fusion. There are alsoworks that simulate
the characteristics of CNN in their ViT models [8, 17] or
directly adopt the cross-attention mechanism to augment the
CNN structure [18], but none of the existing work integrates
cross-attention into a CNN model to serve as a lightweight
adapter for a pre-trained ViT model.

Method

We present the three primary elements of our model with
the detailed architecture illustrated in Fig. 1. The ViT feature
encoder remains frozen, with only the adapter and the CNN
backbone segmented undergoing training. The CNN decoder
receives three distinct feature inputs: (1) patch tokens from
the ViT branch, encapsulating local information; (2) output
from the adapter, which combines local and global insights
from both the ViT and CNN branches; (3) feature maps from
the CNN encoder, preserving the spatial information of the
original image.

Vision transformer encoder

Our vision transformer encoder follows the established
method inspired byViT [4]. Given an input image, denoted as
I ∈ R

H×W×C , where H is the height andW is thewidth. The
ViT encoder initially divides the image into patches, forming
a sequence represented as I = [I1, . . . , IN ] ∈ R

N×P2×C ,
where P corresponds to the patch size. The count of patches,
N , is calculated as N = HW

P2 . Each of these individual patches
is then converted into a 1D vector and linearly projected,
resulting in a sequence of patch embeddings, denoted as I0 =
[EI1, . . . , EIN ] ∈ R

N×D , with the transformation matrix

E ∈ R
D×(P2C). To account for positional information, the

ViT encoder introduces learnable position embeddings to
combine with the patch sequence. The transformer encoder
then maps the input sequence of embedded patches with

position encoding to the output xViT =
[
xpatchViT ||xCLSViT

]
, a

contextualized encoding sequence containing rich semantic
information. To utilize pre-learned knowledge, we employed
and froze the entire ViTmodel. However, we selectively inte-
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Fig. 1 An overview of our
method. Our model includes two
main parts: the top consists of a
frozen pre-trained ViT feature
encoder; the middle introduces
adapter modules that enable CA
integration between multi-scale
features from CNN and
pre-trained ViT features; the
bottom is backbone segmenter
tailored for instrument
segmentation; q is query and
k/v is key/value

grated the ViT feature embeddings from the deeper layers
into our backbone segmentation model using adapters. We
opted not to utilize the shallower layers to optimize compu-
tational efficiency.

Feature adapter

Building on the strengths of ViT and CNN highlighted in
Sect. 1, our adapter integrates multi-scale features from the
CNN backbone segmentation encoder with those from the
pre-trained ViT feature encoder.

Cross attention for ViT In our CA module for the ViT,
we first utilize the patch token at the ViT branch, denoted as
xpatchViT , which includes local information from the ViT pre-
trained knowledge, as the query to exchange information
among the multi-scale feature embeddings from the back-
bone segmentation encoder and then back project it to the
ViT branch.

For visual clarity, Fig. 2 illustrates the CA module for
ViT. Specifically, the multi-scale feature embeddings from
the backbone segmenter encoder were initially aggregated.
Several fully connected layers are applied at the end to project
the feature maps to D dimensions, which equals the patch
embedding size of the ViT branch. The multi-scale feature
map from the backbone encoder, denoted as xHW/S , xHW/2S ,
and xHW/4S , then comprises D-dimensional features at 1/S,
1/2S, and 1/4S resolutions of the original image, encom-
passing featureswith distinct receptive fields. Thenweflatten
and concatenate these feature maps, as illustrated in Eq.(1),
serving as the key and value for the cross-attention, where ||

denotes the concatenation operation.

xCNN = Flatten(FC(
[
xHW/4S||xHW/2S||xHW/S

]
)) (1)

Here, S represents the reduction scaling factor of the fea-
ture map size from the first layer of the backbone segmenter
to the original input size. By taking xpatchViT , the module then

performs CA between xpatchViT and xCNN. Mathematically, the
CA can be expressed as:

q = xpatchViT Wq , k = xCNNWk, v = xCNNWv,

A = softmax

(
qkT√
D/h

)
, CA(xCNN) = Av

where Wq ,Wk,Wv ∈ R
D×(D/h) are learnable parameters,

D and h are the embedding dimension and number of heads.
Specifically, the output of the CA for ViT module, denoted
as zViT, is defined by the input from ViT and CNN branches
with projection operations and residual shortcut as follows:

ypatchViT = gViT(pViT(xpatchViT ) + CA(xCNN)),

zViT = xViTcls ||ypatchViT (2)

where pViT(·) and gViT(·) are projections to align dimen-
sions.

Cross attention for CNN Our CA for CNN module is
designed to facilitate information exchange between the
global insights harnessed by the ViT branch and the localized
details captured within the backbone segmentation encoder.
The core mechanics of this process are akin to CA for ViT,
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Fig. 2 Cross-attention module
for the ViT branch and
backbone segmentation model:
(1) Cross Attention ViT The
feature embedding from CNN
serves as a query to interact with
the patch tokens from the ViT
branch; (2) Cross Attention
CNN The CLS token of the ViT
serves as a query token to
interact with the feature map
from CNN through attention

albeit with a distinctive adjustment—here, the query and
key/value roles are swapped.

More specifically, the multi-scale feature xCNN in Eq.(1)
now takes on the role of the query. For the key and value,
we exclusively utilize the CLS token of the ViT feature
embedding. The CLS token has already assimilated abstract
information across all patch tokens within the ViT branch,
constituting a global representation. This CA procedure can
be concisely expressed as follows:

q = xCNNWq , k = xCLSViT Wk, v = xCLSViT Wv,

A = softmax

(
qkT√
D/h

)
, CA(xCLSViT ) = Av

Note that the character definitions remain consistent with
those in the CA for ViT module. Therefore, similar to the
above, the output of theCA forCNNmodulewith the residual
shortcut can be defined as below:

zCNN = gCNN
(
xCNN + CA

(
xCLSViT

))
(3)

where gCNN(·) is the projection that aligns the dimension of
the output feature map size to the input for the feed-forward
network. This approach ensures that the size of the fea-
ture embeddings remains unchanged, while simultaneously
amalgamating global insights from the ViT branch and local
details from the CNN branch.

Feed forward network This module is a composite of key
layers: convolution, activation, dropout for regularization,
and a fully connected layer, working together to process and
enhance the feature map to obtain z′CNN. Their concerted
efforts aim to extract vital features essential for the back-
bone segmentation model’s decoder.

Data flow The latter adapter takes the output from the
previous adapter, z′CNN, which has interacted with block i of
the ViT branch, as its input for the subsequent CA for ViT
module, engaging with the feature embedding xViTi+1 from
block i + 1 of ViT. Note that the input of block i + 1 is
the sum of the output of CA for ViT in the previous adapter
and the feature embedding xViTi of block i , denoted as zViT.
The final output of the last adapter, interfaced with the final
ViT block, serves as the input for the backbone segmentation
decoder.

Backbone segmentationmodel

For our backbone segmentation model, we use the UNet-
like [14] structure. The encoder is constructed as a series
stride-2 3×3 convolutions and MaxPooling layers. The fea-
ture maps from each layer of the encoder are contacted to
create multi-scale feature maps, subsequently fed into the
adapter as shown in Sect. 3.2.

For the input to the backbone decoder, the ultimate feature
map from the CNN encoder is combined with the output of
the adapter which encompasses global insights from the ViT
branch and local information from the CNN branch. Addi-
tionally, the patch tokens of the final feature embedding from
theViT branchwere also contacted to preserve the contextual
information of ViT.

Our backbone decoder is designed with a sequence
of upsampling and convolutional layers. Significantly, we
implement skip connections, a key feature that links feature
maps at corresponding scales from the encoder to the decoder.
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Implementation details

Loss function In surgical imagedatasets, a substantial number
of images predominantly comprise a background with no
visible tools. Even in caseswhere tools are present, they often
occupy a relatively small portion of the overall image. To
address the class imbalance, we combine the Dice Loss with
the Focal Tversky Loss for the assessment of our predictions
against the ground truth segmentation map.

Model configurationWeconstruct ourViT feature encoder
in three distinct sizes, denoted as ViT-T, ViT-S, ViT-B,
and ViT-g, all pre-trained using the DINOV2 framework
[6]. These models exhibit varying parameter counts for our
adapters: 21M, 86M, 14.0M, and 300M, respectively. The
number of attention heads is configured as 6, 6, and 12. In our
setup, we chose a patch size of 14, resulting in a feature map
scale of 1/14 for the ViT models. Additionally, for the CNN
branch, the scaling factor S is set to 2, effectively leading to
multi-scale feature maps with scales of 1/4, 1/8, and 1/16.

Hyper parameters The input image is 588×588, consid-
ering the ViT branch’s input requirement, and augmented
with the image augmentation techniques presented in [4].
We adopt the SGD optimizer with a learning rate of 0.01
and momentum of 0.9. We applied the linear scaling rule to
reduce the learning rate. The model is trained on 2 V100
GPUs, and the batch size is set to 16.

Experiments

Datasets and evaluationmetrics

Datasets Our binary segmentation experiments on the
Robust-MIS2019 [1] dataset utilized 5,983 annotated images
for training, with three-stage testing, where stage 3 is from
a procedure unseen during training. Multi-class segmenta-
tion was performed on EndoVis 2017 [19] and EndoVis
2018 [20]. Cross-dataset validation was conducted across
the aforementioned datasets, along with CholecSeg8k [21]
and AutoLaparo [22]. Each dataset was split into training
and validation subsets at an 8:2 ratio with no patient overlap
across folds.

Evaluation metrics For the state-of-the-art comparison
experiments on binary segmentation, we assessed our model
using the metrics outlined in the Robust-MIS 2019 chal-
lenge [1], which includes Dice Similarity Coefficient and
Normalized Surface Dice (NSD) [1]. Following the chal-
lenge’s specifications [1], we adopted a 13-pixel tolerance
for NSD. For the cross-dataset validation and ablation study,
we also use the mean Intersection over Union (mIoU). For
multi-class segmentation, we applied Ch_IoU, ISI_IoU, and
mc_IoU following the evaluation metrics provided in [3, 23].

Results

Comparison to state-of-the-art In Table 1, we compare our
model with several state-of-the-art models on Robust-MIS
2019 dataset for binary segmentation. Our model outper-
formed the CNN models designed for this task and the
pre-trained ViT models for natural semantic segmentation
downstream, indicating the success of merging the pre-
trained knowledgewith theCNNmodels. The existing hybrid
approaches were trained for a shorter duration (smaller
epochs) which signifies a potential for improvement. An
essential takeaway here is that our proposed model exhibits
superior efficiency: it requires minimal training to yield out-
standing outcomes.

For the multi-class segmentation task, we also com-
pare our model with existing models including S3Net[23],
TraSeTR[16], and MSLRGR [24]. Table 2 shows our model
outperforms the state-of-the-art on the EndoVis 2018 dataset
with +15.78 percentage point (pp) gain in mc_IoU. The
improvements across both datasets demonstrate the multi-
class segmentation capability of our model. Moreover, our
model outperforms MSLRGR [24], which directly intro-
duces global context into CNN, suggesting our approach of
integrating the global information from pre-trained ViT is
more effective than the state-of-the-art models.

Cross dataset validationWe conducted experiments using
a cross-dataset validation approach, where we trained the
model on one dataset and validated it on another, shown in
Table 3. We present comparative experiments between our
model, the top-performing CNN model OR-Unet [2], and
ViT-based model MaskFormer [7].

OR-UNet [2] and MaskFormer [7] experience significant
performance drops when the training and testing datasets
are different, while these variations are substantially reduced
when they are trained and tested on the same dataset, yet the
performance variability underscores their limited generaliz-
ability. Conversely, our model maintains consistent scores
across different datasets, indicating its excellent robustness
and accuracy. Some combinations, like training on EndoVis
2017 and testing on Robust-MIS 2019, show a more sig-
nificant drop in performance than others, which hints at
challenges the model faces when trained on a comparatively
simpler dataset and tested on more complex, real-world data
(Table 3).

Ablation study

Transformer feature encoder In Table 4, we conducted an
ablation on the transformer feature encoder, and observed
utilizing only the last layer resulted in a notable drop in both
Dice scores and mIoU across datasets. However, by incorpo-
rating the last 3 layers, we observed performance metrics are
close to that using all layers. Importantly, this configuration
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Table 1 Comparison on the Robust-MIS 2019 dataset between state-
of-the-art models: above are the fully supervised CNN and ViT models
for surgical segmentation task; the middle is the existing hybrid CNN-

ViT models (all trained for 400 epochs); the bottom is the pre-trained
ViT model for semantic segmentation downstream

Method Whole testing Stage 1 Stage 2 Stage 3
Mean dice NSD Mean dice NSD Mean dice NSD Mean dice NSD

OR-Unet [2] 88.0 86.2 90.2 88.5 87.9 85.6 85.9 84.5

Robust-MIS 2019 winner [1] 90.1 88.9 92.0 92.7 90.2 88.6 89.0 86.4

ISINet [3] 88.9 86.3 90.9 87.6 89.6 86.5 86.2 84.7

TransUNet[10] 79.6 76.5 82.2 77.9 80.4 76.2 75.2 75.4

TransFuse [11] 80.1 78.6 82.2 79.1 81.3 79.0 76.8 77.7

Swin TransV2 [8] 82.9 78.6 84.6 80.2 84.0 79.9 80.1 75.7

MaskFormer [7] 84.1 80.5 87.2 84.3 85.9 80.2 79.2 77

Ours 92.9 91.5 94.2 92.4 92.6 91.4 91.9 90.7

Table 2 Table 2 Comparison of our method with state-of-the-art methods on the EndoVis 2017 and EndoVis 2018 datasets for multi-class
segmentation

Method Ch_IoU ISI_IoU Bipolar Prograsp Large Vessel Grasping Monopolar Ultrasound mc_IoU
Forceps Forceps Needle driver Instrument Applier Curved scissors Probe

EndoVis 2017

TraSeTR [16] 60.40 65.20 45.20 56.70 55.80 38.90 11.40 31.3 18.20 36.79

S3Net [23] 72.54 71.99 75.08 54.32 61.84 35.5 27.47 43.23 28.38 46.55

Ours 73.96 69.15 66.45 67.56 70.52 42.68 12.9 40.15 29.12 47.06

EndoVis 2018

TraSeTR [16] 76.20 – 76.30 53.30 46.50 40.60 13.90 86.30 17.50 47.77

S3Net [23] 75.81 74.02 77.22 50.87 19.83 50.59 0.00 92.12 7.44 42.58

MSLRGR [24] – – 69.66 43.56 0.15 34.71 3.87 87.16 12.03 35.88

Ours 85.25 82.99 85.72 67.86 72.56 89.16 6.39 91.07 22.12 63.55

The values in bold signifies the best performance in the specific metric represented by that column

Table 3 Cross dataset validation on EndoVis 2017, EndoVis 2018, CholecSeg8k, Robust-MIS 2019, and AutoLaparo datasets for OR-Unet [2],
MaskFormer [7], and our method

Train dataset Model Test Dataset
EndoVis 2017 EndoVis 2018 CholecSeg8k Robust-MIS 2019 AutoLaparo
Mean dice mIoU Mean dice mIoU Mean dice mIoU Mean dice mIoU Mean dice mIoU

EndoVis 2017 OR-UNet [2] 92.4 81.3 73.0 62.4 74.3 65.7 59.2 10.3 74.5 56.7

MaskFormer [7] 93.2 84.2 79.8 70.2 73.8 65.2 54.2 19.7 83.2 52.8

Ours 98.9 96.2 94.2 85.8 85.9 80.7 88.4 80.6 89.9 69.7

EndoVis 2018 OR-UNet [2] 85.1 64.2 89.5 77.9 68.2 64.3 57.4 12.9 76.9 52.8

MaskFormer [7] 84.3 72.2 88.2 81.8 74.8 61.9 56.7 31.9 77.9 65.9

Ours 98.1 89.5 94.9 86.2 86.2 81.5 84.5 63.2 90.4 83.9

CholecSeg8k OR-UNet [2] 82.3 71.4 69.9 53.2 82.7 75.4 51.5 8.2 69.7 61.4

MaskFormer [7] 80.1 70.2 78.7 69.9 86.9 80.7 52.9 20.3 72.9 62.2

Ours 95.9 88.6 92.1 82.8 91.9 86.6 90.1 83.5 90.2 82.4

Robust-MIS 2019 OR-UNet [2] 73.6 45.5 70.8 59.2 67.6 55.2 88.0 86.2 65.1 62.5

MaskFormer [7] 86.4 79.0 81.8 70.1 77.2 62.7 84.1 80.5 71.8 65.2

Ours 97.9 91.4 93.2 84.5 86.5 70.2 92.9 86.6 95.1 89.5

AutoLaparo OR-UNet [2] 71.9 65.2 69.1 52.7 62.7 43.1 62.1 31.4 82.1 75.3

MaskFormer [7] 85.1 73.6 79.0 60.8 76.4 63.2 60.5 37.4 92.7 84.9

Ours 97.2 89.9 91.8 81.2 89.2 84.6 91.6 83.7 96.9 92.3
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Table 4 Ablation studies on the transformer encoder when trained on
Robust-MIS 2019 and tested on Robust-MIS 2019 and cross-dataset
validated on CholecSeg8k dataset

Transformer encoder Robust-MIS 2019 CholecSeg8k

Dice mIoU Dice mIoU

All blocks 93.2 87.1 87.4 71.5

Last block 88.9 83.2 83.7 67.5

Last 3 blocks (ours) 92.9 86.6 86.5 70.2

Table 5 Ablation studies for adapterwhen trained onRobust-MIS 2019
and tested on Robust-MIS 2019 and cross-dataset validated on Cholec-
Seg8k dataset

Adapter Robust-MIS 2019 CholecSeg8k

Dice mIoU Dice mIoU

× CA ViT&CNN 85.3 76.9 81.2 66.5

× CA ViT 88.9 80.1 82.6 65.7

× CA CNN 89.8 83.4 83.9 68.2

CA ViT Single scale 89.5 81.9 83.2 68.2

Patch → CLS 89.9 82.2 83.9 69.3

× Residual 90.6 85.4 84.1 70.5

CA CNN Single scale 91.3 87.4 82.7 68.6

CLS → Patch 89.2 81.5 82.6 70.1

× Residual 91.6 86.9 85.5 69.3

Ours 92.9 86.6 86.5 70.2

with the last 3 layers strikes a balance, offering near-optimal
performance while being significantly more computationally
efficient.

Adapter We conduct the ablation study with or without
CA for ViT and CA for CNN as shown in Table 5. When CA
modules are removed entirely, there’s a substantial decrease
in Dice and mIoU scores, highlighting their importance to
the model’s performance and robustness. The drop is less
severe when CA is removed only for CNN, suggesting the
importance of integrating patch tokens from the pre-trained
ViT embeddings.

Cross attention for ViT We offer the ablation study for the
adapter module in Table 5. For the CA for ViT module, we
observe that (1) when solely relying on the single scale, there
was a decrease of 3.4 pp in Dice scores on Robust-MIS 2019,
indicating the significance of multi-scale features in captur-
ing diverse spatial information; (2) adopting the strategy of
replacing the patch tokens with CLS token has led to some
performance decreases, suggesting incorporating the global
information from the CLS token, loses the local details that
patch tokens offer; (3) excluding the shortcut residuals leads
to a drop in the Dice score by 2.3 pp for Robust-MIS 2019
gave the importance of residual shortcut to maintain infor-
mation flow; (4) even with variations in the ablation studies

causing some drops in performance, the model’s consistent
decent scores on CholecSeg8k, underscores its superb gen-
eralization capability across datasets.

Cross attention for CNN In the context of the CA for CNN
module shown in Table 5, using only the single scale results
in a lesser decline in Dice score compared to that in CA for
ViT,which suggests the output of CA forViT already embod-
ies multi-scale information, reducing its impact for the latter
CA for CNN module. Opting to substitute the CLS token
with patch tokens, despite being computationally costly, has
observed a decrease in performance. This highlights the sig-
nificance of integrating global information within the CNN
branch.

Conclusion

In conclusion, our research presents an innovative approach
to surgical image segmentation by combining ViT with a
CNN used as a lightweight adapter module. Our work tack-
les the challenge of gathering large-scale annotated data and
enhances the generalizability of different surgical scenar-
ios. Our unique feature adapter, integrating cross-attention
modules, facilitates the fusion of global and local, multi-
scale spatial information from ViT and CNN, respectively.
Ourmodel achieves excellent accuracy and robustness across
diverse surgical scenarios, as evidenced by ourmodel’s supe-
rior performance on the Robust-MIS 2019 dataset and across
five other datasets. Our model has potential for applications
in autonomous surgery, offering a solution that is both robust
and adaptable to varying surgical environments.
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