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Brief Report
LYMPHOID NEOPLASIA
Ibrutinib-based therapy reinvigorates CD8+ T cells
compared to chemoimmunotherapy: immune
monitoring from the E1912 trial
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KEY PO INT S

•Higher effector T-cell
numbers and their
rejuvenated cytotoxic
function accompanies
favorable clinical
responses to ibrutinib-
rituximab.

• Enhanced CD8+ T-cell
lytic synapse activity
during ibrutinib-
rituximab therapy can
be exploited using the
bispecific antibody
glofitamab.
-020
Bruton tyrosine kinase inhibitors (BTKis) that target B-cell receptor signaling have led to a
paradigm shift in chronic lymphocytic leukemia (CLL) treatment. BTKis have been shown to
reduce abnormally high CLL-associated T-cell counts and the expression of immune
checkpoint receptors concomitantly with tumor reduction. However, the impact of BTKi
therapy on T-cell function has not been fully characterized. Here, we performed longitudinal
immunophenotypic and functional analysis of pretreatment and on-treatment (6 and 12
months) peripheral blood samples from patients in the phase 3 E1912 trial comparing
ibrutinib-rituximab with fludarabine, cyclophosphamide, and rituximab (FCR). Intriguingly,
we report that despite reduced overall T-cell counts; higher numbers of T cells, including
effector CD8+ subsets at baseline and at the 6-month time point, associated with no
infections; and favorable progression-free survival in the ibrutinib-rituximab arm. Assays
demonstrated enhanced anti-CLL T-cell killing function during ibrutinib-rituximab treatment,
including a switch from predominantly CD4+ T-cell:CLL immune synapses at baseline to
increased CD8+ lytic synapses on-therapy. Conversely, in the FCR arm, higher T-cell
numbers correlated with adverse clinical responses and showed no functional improve-
554-m
ain.
ment. We further demonstrate the potential of exploiting rejuvenated T-cell cytotoxicity during ibrutinib-rituximab
treatment, using the bispecific antibody glofitamab, supporting combination immunotherapy approaches.
pdf b
y guest on 14 June 2024
Introduction
E1912 was the first frontline phase 3 study to compare ibrutinib-
based therapy (ibrutinib with rituximab) with the chemo-
immunotherapy fludarabine, cyclophosphamide, and rituximab
(FCR).1 Long-term follow-up has demonstrated superior
progression-free survival (PFS) and overall survival for ibrutinib-
rituximab relative to those for FCR.2 Nevertheless, clinical
challenges remain, including the current need for continuous
therapy, tolerability, and residual and progressive disease.
Immunotherapy represents a powerful combination or alterna-
tive therapy to tackle resistant disease and deepen
responses.3,4 However, T-cell exhaustion is a major barrier for
optimal immunotherapy.5,6 Dysfunctionality of T cells is char-
acterized by increased chronic lymphocytic leukemia (CLL)-
associated T-cell subsets expressing inhibitory checkpoint
molecules.7 Furthermore, helper CD4+ T cells have a
tumor-promoting capacity, whereas impaired immune synapse
formation contributes to suppressed CD8+ T-cell cytotoxicity.8

Correlative studies have revealed that BTKis reduce abnor-
mally high T-cell numbers and checkpoint receptor expression
while reducing malignant B cells.9-13 However, the impact of
BTKis on T-cell function and association with clinical response is
less well defined. Here, we leverage pretreatment and on-
treatment peripheral blood patient samples serially collected
from the E1912 trial and report on the impact of ibrutinib-
rituximab vs FCR on T cells using immune monitoring func-
tional assays.

Study design
Samples from patients with CLL
Viable peripheral blood mononuclear cells at baseline and 6-,
12-, and 18-month time points from the Eastern Cooperative
4 JANUARY 2024 | VOLUME 143, NUMBER 1 57
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Oncology Group–American College of Radiology Imaging
Network (ECOG-ACRIN)-E1912 Cancer Research Group
(supplemental Figure 1, available on the Blood website) were
biobanked for longitudinal comparative immune analysis.
supplemental Table1,2 summarizes the samples studied (ibruti-
nib-rituximab, n = 89; FCR, n = 62).

Immune monitoring and functional assays are detailed in
supplemental Methods.

All patient samples were obtained after written informed con-
sent, in accordance with the declaration of Helsinki, and
approved by the National Research Ethics Committees,
ECOG-ACRIN and the National Institutes of Health.
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Results and discussion
T-cell monitoring and correlation with PFS, MRD,
and infections
We initially investigated the impact of therapy on T cells and
explored the association with clinical outcome (Figure 1A). Flow
cytometry measured the absolute numbers of naive (CD45RA+/
CCR7+), central memory (CD45RA−/CCR7+), effector memory
(TEM; CD45RA−/CCR7−) and terminally differentiated effector
memory (CD45RA+/CCR7−) subsets in patients at baseline and
6- and 12-month treatment time points (supplemental Table 3).
This analysis revealed a reduction in the majority of CD4+ and
CD8+ T-cell subsets, including naive and effectors, during
ibrutinib-rituximab treatment (Figure 1B; supplemental
Figure 2A,C), consistent with T-cell normalization, as previ-
ously reported for monotherapy.10,13 Expectedly, we observed
a marked decrease of subsets after FCR, with evidence of
immune reconstitution at 12 months (Figure 1B; supplemental
Figure 2B,D).14 The frequencies of subsets remained relatively
stable during ibrutinib-rituximab treatment, whereas FCR
caused naive and central memory subsets to contract, whereas
TEM expanded (supplemental Figure 2E-F). Both therapies
reduced the number of regulatory T cells, T helper 17 (TH17)
cells, and natural killer (NK) cells compared with those at
baseline, but an increased the regulatory T-cell to CD4 ratio
after FCR was observed (supplemental Figure 3A-C).15 Strik-
ingly, patients on ibrutinib-rituximab with higher T-cell
numbers, including PD-1+ effector CD8+ and CD4+ subsets, at
baseline had longer PFS (Figure 1D,F), suggesting the impor-
tance of an existent but exhausted immune response before
therapy. Interestingly, higher levels of PD-L1–expressing CLL
Figure 1. Higher CD8+ T-cell numbers at baseline and early on-therapy associate
representation of the E1912 trial and biobanked peripheral blood mononuclear cell sam
correlative T-cell analysis. PFS, infection, and MRD clinical outcome data were collecte
rituximab (n = 86 patients) and FCR (n = 50) at the time points indicated. Patient data
age of PD-1+ CD8+ TEM subsets during ibrutinib-rituximab (n = 86) or FCR (n = 50) treatme
between time points were assessed using the Wilcoxon signed-rank test. (D) Tabular sch
subset levels (flow cytometry, median values used as cut-off point) and PFS for patients
Green rows (correlations with hazard ratio [HR] values < 1) indicate higher immune sub
shorter PFS (HR > 1) are highlighted in blue rows. Confidence intervals (95%) and P valu
between immune subsets and infection (any infection) during ibrutinib-rituximab treatmen
patients who did not develop infection (green rows). In contrast, correlations with a posit
(blue rows). (F) Kaplan-Meier curves of immune subsets associated to good prognosis for t
progression events per 43 patients and low: 1 progression event per 43 patients), absolut
progression events per 43 patients), and PD-1+CD4+ T cells (high: 3 progression events p
with longer PFS. Higher percentage of CD8+ TEM (high: 3 progression events per 42 p
associate with longer PFS. Absolute number data are referred to as “ab.” P values indic

IBRUTINIB-BASED THERAPY REINVIGORATES CD8+ T CELLS

e

cells at baseline correlated with favorable PFS (Figure 1D,F;
multivariable analysis in supplemental Table 4). Furthermore, an
elevated frequency of effector CD8+ T cells at the 6-month
ibrutinib-rituximab time point associated with favorable PFS,
whereas no association was detectable at 12 months
(Figure 1D,F). Conversely, higher T-cell numbers correlated with
worse PFS in the FCR arm, whereas increased NK-cell frequency
at baseline associated with favorable outcome (supplemental
Figure 4A). Consistent with tumor-mediated exhaustion,
greater numbers of PD-1+ and PD-L1+ CD8+ T-cell subsets
associated with higher measurable residual disease (MRD) during
ibrutinib-rituximab treatment (supplemental Figure 5A). In
contrast, elevated frequencies of T-cell subsets not expressing
checkpoint molecules, including CD8+ terminally differentiated
effector memory and NK cells, correlated with low MRD during
ibrutinib-rituximab treatment, in keeping with reduced exhaus-
tion. An association between T cells and MRD was less evident in
the FCR arm, except for increased checkpoint-expressing T cells
at 12 months, which correlated with higher MRD (supplemental
Figure 5B). Ibrutinib’s inhibition of interleukin-2–inducible T-cell
kinase (ITK) enhanced TH1 polarization,16,17 but both therapeutic
arms reduced TH1 and TH2 numbers and TH1:TH2 ratios
(supplemental Figure 6A-B). Nevertheless, an increased fre-
quency of TH2 and CD4:CD8 ratio (baseline and 6 months)
associated with unfavorable PFS and incidence of infection,
respectively, during ibrutinib-rituximab treatment (Figure 1F-G).
However, increased effector CD8+ T-cell numbers and CD16+

NK cells at 6 months were associated with no infections during
ibrutinib-rituximab treatment (Figure 1G). Conversely, increased
T cells after FCR correlated with infections (supplemental
Figure 4B). In sum, higher CD8+ T-cell numbers at baseline
and early on-therapy, associated with favorable clinical
responses, whereas PD-1+ and PD-L1+ subsets associated with
greater MRD during ibrutinib-rituximab treatment.

Ibrutinib-rituximab promotes CD8+ synapses and
immunotherapy-triggered killing function
Next, we characterized the cytolytic function of therapy-
reshaped T cells against baseline CLL cells (Figure 2A-B).
T cells from both 6- and 12-month ibrutinib-rituximab time
points showed enhanced killing function compared with those
at pretreatment levels. In contrast, T cells after FCR showed no
cytolytic improvement. Notably, patients who experienced
grade 3 infections during ibrutinib-rituximab treatment showed
lower anti-CLL T-cell cytotoxic function (Figure 2C). Hypothe-
sizing altered T-cell:CLL interactions, we then performed
with favorable PFS and no infections with ibrutinib-rituxumab. (A) Schematic
ples collected at baseline (B/L) and 6- (6M) and 12- (12M) month time points for

d. (B) Absolute numbers of CD8+ TEM cell subsets (CD45RA−CCR7−) for ibrutinib-
are presented as Box and whiskers (10-90 percentile; log scale) plots. (C) Percent-
nts. (B-C) Data are given as the mean ± standard error of the mean; statistical analysis
ematic summary of the significant correlations (Cox model) between higher immune
on ibrutinib-rituximab (n = 88 patients with 13 experiencing disease progression).
sets associated with longer PFS, whereas higher immune subsets associating with
es are shown. (E) Schematic summary of the significant correlations (Wilcoxon test)
t (n = 88 patients). Negative t statistics (t.stat) indicate higher immune subset levels in
ive t.stat indicate higher immune subset levels in patients who developed infection
he ibrutinib-rituximab arm. Higher levels of percentage PD-L1+ CD19+ cells (high: 12
e number of PD-1+CD8+ TEM (high: 3 progression events per 43 patients and low: 10
er 43 patients and low: 10 progression events per 43 patients) at baseline associate
atients and low: 10 progression events per 43 patients) at the 6-month time point
ated. *P < .05; **P < .01; ****P < .0001. n/s, not significant.
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Figure 2. Ibrutinib-rituximab promotes CD8+ T-cell lytic synapse activity and supports immunotherapy-triggered anti-CLL killing function. (A) Illustration of the
autologous cytotoxicity assay using anti-CD3/-CD28–activated T cells (cytolytic T lymphocytes [CTLs]) from B/L, 6M, and 12M time points mixed with target B/L CLL B cells
(pulsed with superantigen as a model antigen) with flow-based quantification of T-cell killing function. (B) T-cell–mediated CLL cell death comparing T cells purified from B/L,
6M, and 12M time point samples (n = 30 patients per treatment arm). Data at 6M and 12M were normalized to B/L levels to generate fold change values for each patient. (C)
The association between patient’s T-cell killing function (12M ibrutinib-rituximab time point, n = 30) and infection status during ibrutinib-rituximab therapy (no infections vs
grade 2 or 3 infections) (Wilcoxon test, P = .01). (D-E) Representative confocal medial optical section and 3-dimensional (3D) volume–rendered images of T-cell:CLL conjugates
formed between patient T cells (B/L, 6M, and 12M on-ibrutinib-rituximab [D] or FCR [E]) interacting with autologous B/L CLL B cells (blue, CMAC dyed). Bar charts: quantitative
relative recruitment index (RRI) analysis of F-actin polarization (red, rhodamine phalloidin) in T-cell:CLL conjugates (n = 50 patients per treatment arm). (F) Box and violin plots
(minimum-maximum) showing the percentage of CD4+ or CD8+ T-cell:CLL conjugates formed from the total T-cell:CLL conjugates in B/L, 6M, and 12M ibrutinib-rituximab
time point samples (n = 15 patients). Representative confocal images of CD8+ (white) and CD4+ (green) T-cell conjugates with CLL B cells (blue) at B/L vs on ibrutinib-rituximab
therapy. (G) Representative confocal 3D volume–rendered images of granzyme B (GrB; white) expression at CD8+ T-cell synapses, comparing ibrutinib-rituximab and FCR 12M
time point samples. (H) Kaplan-Meier curve showing the association between the strength of polarized F-actin CD4+ T-cell:CLL immune synapse interactions in patient B/L
samples and their PFS outcomes during ibrutinib-rituximab administration. Median F-actin RRI values were used as a cut-off point to determine weak (<median RRI) vs strong
(>median RRI) CD4+ T-cell synapses (n = 52 patients). Patients’ showing strong CD4+ T-cell:CLL immune synapses at B/L showed significantly adverse PFS (9 progression
events per 29 patients) compared with patients showing weak CD4+ T-cell:CLL interactions (1 progression event per 23 patients). (Cox model, P = .01; HR, 9.14; 95% confidence
interval, 1.15-72.47). Bar chart: F-actin RRI analysis of CD4+ T-cell:CLL conjugates at B/L and representative 3D volume–rendered confocal images comparing patients
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Figure 2 (continued) who progressed (n = 7) with those who did not (progression free, n = 7) during ibrutinib-rituximab therapy. (I) Illustration of the cytotoxicity assay after
ex vivo treatment of purified T cells (B/L, 6M, and 12M time points) and B/L CLL cells with anti–PD-1 (αPD-1) or anti–PD-L1 (αPD-L1) blocking antibodies (10 μg/mL) or isotype
controls. (J-K) T-cell killing function against autologous B/L CLL cells examining T cells at B/L or at the 6-month ibrutinib-rituximab (orange) or FCR (blue) time points after
ex vivo treatment with (J) αPD-1 or isotype control (indicated using “−”) (B/L: n = 6, ibrutinib-rituximab: n = 13, and FCR: n = 15) or (K) αPD-L1 or isotype control (−) (B/L: n = 6,
ibrutinib-rituximab: n = 23, and FCR: n = 13). (L) Illustration of the autologous cytotoxicity assay incorporating the CD20 × CD3 glofitamab or a nonbinding antibody control.
(M-N) T-cell–mediated CLL cell death using purified T cells from B/L, 6M, 12M, or 18M ibrutinib-rituximab (M) or FCR (N) time points against target B/L CLL B cells after ex vivo
treatment with glofitamab (0.01 μg/mL) or nonbinding antibody control (indicated as “−”) (B/L, n = 13; ibrutinib-rituximab 6M and 12M,n = 6; ibrutinib-rituximab 18M, n = 5;
FCR 6M and 12M, n = 7; and FCR 18M, n = 5 patient samples). Data for all cytotoxicity assay timepoints were normalized to isotype antibody control for panels J-K or
nonbinding antibody control for panels M-N treated sample levels and presented as fold change data for each immunotherapy treated patient sample. Wilcoxon signed-rank
test for panels B,D-E,J-K,M-N, multiple comparisons mixed effect analysis of variance for panel F and Mann-Whitney U test for panel H. Mann-Whitney U test was used to
compare cell death among CD20-TCB–treated conditions at B/L, 6M, 12M, and 18M. Original magnification ×63; scale bars, 10 μm. Bar chart data are presented as mean ±
standard error of the mean. *P < .05; **P < .01; ***P < .001; ****P < .0001. CMAC, CellTracker Blue (7-amino-4-chloromethylcoumarin); TCB, T-cell bispecific antibody.
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conjugation assays. T cells during ibrutinib-rituximab treatment
showed augmented formation of polarized F-actin synapses
with baseline CLL cells (Figure 2D; supplemental Figure 7A). In
comparison, T cells after FCR exhibited distinctly nonpolarized
synapses (Figure 2E). Given the opposing roles of patient CD4+

and CD8+ T cells,8 we examined these subsets and detected an
increased frequency of granzyme B+ CD8+ T-cell:CLL synapses
at both ibrutinib-rituximab time points compared with that at
baseline, in which CD4+ T-cell:CLL synapses dominated. This
switch in the CD4+:CD8+ synapse balance was not detected
after FCR (Figure 2F-G; supplemental Figure 7B-D). Interest-
ingly, in keeping with protumoral CD4+ T cells, increased for-
mation of CD4+ T-cell:CLL F-actin–positive synapses at baseline
correlated with unfavorable PFS and grade 3 infections during
ibrutinib-rituximab administration (Figure 2H; supplemental
Figure 7E). Together, these data demonstrate that ibrutinib-
rituximab promotes previously exhausted CD8+ T-cell activity,
which could provide a gateway for immunotherapy.

Ibrutinib is known to reduce PD-1 expression on patient
T cells.9,10,18 Here, we detected a reduced frequency of PD-1–
expressing T-cell subsets during ibrutinib-rituximab administration
as well as PD-L1–expressing T cells except for CD8+ TEM at 6
IBRUTINIB-BASED THERAPY REINVIGORATES CD8+ T CELLS
months (Figure 1D-E; supplemental Figure 8). In contrast, T-cell
PD-1/PD-L1 expression was relatively unaffected after FCR. This
prompted us to investigate for a checkpoint blockade in our
cytotoxicity assay (Figure 2I-K; supplemental Figure 9). Both
ibrutinib-rituximab– and FCR-exposed T cells were insensitive to
anti–PD-1. However, anti–PD-L119 increased anti-CLL T-cell cyto-
toxicity only at the 6-month ibrutinib-rituximab time point, sug-
gesting a narrow window for the checkpoint blockade activity.17

This led us to investigate whether the T-cell–engaging bispecific
antibody glofitamab (CD20 × CD3)20 could trigger improved
cytolytic responses. T cells from all ibrutinib-rituximab time points
tested up to 18 months showed increased anti-CLL T-cell killing
after treatment with glofitamab, compared with those at baseline
(Figure 2L-N). However, T cells after FCR did not respond to
glofitamab, including at the later time point. Overall, these data
support the ability of ibrutinib-based therapy to enhance T-cell–
mediated cytotoxicity induced by bispecific immunotherapy.

In summary, our data highlight the importance of T cells during
ibrutinib-rituximab therapy, with higher T-cell numbers and
rejuvenated cytotoxicity accompanying favorable clinical
responses. Our exploratory findings that increased levels of
PD-1–expressing T cells as well as PD-L1–expressing CLL cells
4 JANUARY 2024 | VOLUME 143, NUMBER 1 61
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before therapy associate with longer PFS suggests that
ibrutinib-rituximab appears to capitalize on T-cell–mediated
immune surveillance in patients. Strikingly, opposing associa-
tions were found in the chemoimmunotherapy arm, and T cells
showed no functional improvement after FCR. Previous studies
have reported CD8+ T clonotype expansion during ibrutinib
therapy,21,22 likely reflecting active immunosurveillance. Taken
together, tumor debulking and alleviation of T-cell exhaustion
during BTKi-based therapy9-13 may promote CD8+ T-cell
activity. The switch from CD4+ T-cell:CLL interactions at
baseline to CD8+ lytic synapses during ibrutinib-rituximab
therapy supports this concept. Although ibrutinib-rituximab
did not increase TH1 numbers, we do not exclude ITK inhibi-
tion contributing to beneficial immunomodulation.18 Further-
more, our longitudinal assays designed to evaluate changes in
T-cell cytolytic function with therapy, revealed that revitalized
cytotoxicity during ibrutinib-rituximab therapy could be
maximized with glofitamab, further supporting combination
immunotherapy approaches.23-25 Overall, this report
underscores the importance of trial-associated science to
understand how BTKis modulate T cells and supports the
development of immunotherapy-based therapies.
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