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Abstract. Quantum programs are hard to develop and test due to their
probabilistic nature and the restricted availability of quantum comput-
ers. Quantum simulators have thus been introduced to help software
developers. There are, however, no formal proofs that these simulators
behave in exactly the way that real quantum hardware does, which could
lead to errors in their implementation. Here we propose to use a search-
based technique, grammar-based fuzzing, to generate syntactically valid
quantum programs, and use differential testing to search for inconsistent
behaviour between selected quantum simulators. We tested our approach
on three simulators: Braket, Quantastica, and Qiskit. Overall, we gen-
erated and ran over 400k testcases, 2,327 of which found new coverage,
and 292 of which caused crashes, hangs or divergent behaviour. Our
analysis revealed 4 classes of bugs, including a bug in the OpenQASM 3
stdgates.inc standard gates library, affecting all the simulators. All but
one of the bugs reported to the developers have been already fixed by
them, while the remaining bug has been acknowledged as a true bug.

Keywords: Differential Testing · Fuzzing · Quantum Simulators

1 Introduction

Quantum computers offer an exciting opportunity to massively speed up exist-
ing computation. However, writing valid quantum programs is non-trivial. By
shifting the paradigm from traditional computing the outputs are no longer de-
terministic. It is thus no wonder that testing quantum software is a challenging
task [1]. Furthermore, quantum computers are not widely available, require spe-
cialist knowledge to run and maintain, and suffer with inaccuracy due to noise.

Quantum simulators have been introduced to ease developers in programming
and validating quantum circuits. Nevertheless, there are no formal guarantees
that the outputs of simulation will be the same on real quantum hardware.
Furthermore, simulators themselves might not be bug-free. In fact, Wang et al. [5]
generated semantics-preserving gate transformations and showed that in 33 of
730 cases the outputs of simulations diverged. The technique, however, requires
specialist domain knowledge to create these metamorphic relations; we lack the
knowledge to ascertain whether they have already found all of the viable ones.
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To aid the development of quantum simulators we propose to use search-
based differential testing to check their validity. In particular, we investigate
the difference in behaviour between different quantum simulators, when given
the same quantum programs, generated by a grammar-based fuzzer. As far as
we know, this is the first time our differential search-based testing ap-
proach has been applied to test quantum program simulators.

Our initial results are encouraging. We found 4 classes of bugs, with at least
one in all three quantum program simulation frameworks tested, i.e., Qiskit3,
Braket4 and Quantastica5. All bugs have been confirmed and all but one
already fixed by the developers. Furthermore, our method has generated a large
number of testcases (over 400k) covering a lot of functionality which we have
minimised to a set of 842 testcases that achieve 100% of the coverage discovered
by the fuzzer; this may be useful to the simulator maintainers as a standalone
regression test set, or alternatively our approach could be trivially adapted to do
regression fuzz testing. Moreover, our methodology can aid in extending existing
quantum program benchmarks. To allow further uptake of our approach we
provide the artefact at https://doi.org/10.5281/zenodo.11002154 and the
GitHub repo: https://github.com/GloC99/fuzzingQuantumSimulator.

2 Differential Fuzz Testing

Here we propose to perform differential fuzz testing of quantum simulators. We
first take existing quantum programs representing valid circuits. We compile
them into an intermediate representation: the OpenQASM 3 language [2] (herein
referred to as QASM). We feed these programs to a search-based automated test
generation tool to generate more testcases. We chose to use an existing grey-box
fuzzer for this purpose. Grey-box fuzzing is a search-based software testing tech-
nique that generates new testcases by mutating existing ones; coverage feedback
is used to retain any new testcases that exercise new program functionality. In
essence, the mechanism of a grey-box fuzzer can be likened to a genetic algorithm
whose fitness function is the total coverage of the retained set of testcases. We
have extended the fuzzer with a QASM grammar-aware mutator. This way we
generate only syntactically valid programs. Finally, we feed the generated QASM
programs through different quantum simulators, observe crashes or hangs where
they occur, and compare the outputs where they don’t.

In order to evaluate our approach we built tooling based on the AFL++
fuzzer [3] and tested it on 3 quantum simulation frameworks: Qiskit, Braket and
Quantastica. Next, we detail each step of the implementation of our approach.

Grammar Mutator We use Grammar-Mutator6 from AFL++’s set of included
custom mutators. As it takes grammars provided in an unusual JSON format; we

3 https://github.com/Qiskit/qiskit-aer
4 https://github.com/amazon-braket/amazon-braket-default-simulator-python
5 https://github.com/quantastica/quantum-circuit
6 https://github.com/AFLplusplus/Grammar-Mutator

https://doi.org/10.5281/zenodo.11002154
https://github.com/GloC99/fuzzingQuantumSimulator
https://github.com/Qiskit/qiskit-aer
https://github.com/amazon-braket/amazon-braket-default-simulator-python
https://github.com/quantastica/quantum-circuit
https://github.com/AFLplusplus/Grammar-Mutator
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had to manually adapt the ANTLR4 grammar from the OpenQASM 3 specifica-
tion7. Additionally, we found that the specification is very much forward-looking,
and 10 of the 28 statements are not yet implemented in the two simulators
supporting OpenQASM 3. As such, these statements along with certain other
unimplemented features were removed from our grammar in order to increase
the number of valid executable programs we could generate. Grammar-Mutator
works on a context-free grammar, which means that while it generates programs
that will pass the lexing stage, many of these will not successfully parse due to
invalid semantics. To increase the likelihood of successful parsing, and thus ex-
ecution, we adjusted the grammar so that the generated program is guaranteed
to begin with the declaration of a quantum register, and will include at least one
gate statement; without these, the Braket simulation framework we use would
throw an exception to indicate that the program has no functionality.

Instrumentation We chose to use python-afl8 in combination with AFL++,
in order to have easy access to a grammar mutator. As noted in GitHub issue no.
25 by the author, the instrumentation method used by python-afl incurs sig-
nificant runtime overhead. Running the three simulators with example programs
took around 0.3-0.5 seconds already; with instrumentation this could be up to
2 or more seconds. To mitigate this, we added functionality to python-afl to
allow us to enable and disable instrumentation at points in the fuzzing harness
so as to eliminate the overhead of instrumentation on ‘boring’ functionality. This
allowed us to average approximately 1.1 executions per second – still slow by
fuzzing standards, but several times better than the naive approach.

It is worth noting that the Quantastica quantum-circuit simulator is writ-
ten in JavaScript and hence cannot be invoked directly from the Python fuzzing
harness. We built a Node JS server that is run on localhost, with a single end-
point to receive a QASM program as a string, load it in, execute it and send
the result as a response. The fuzzing harness sends a web request and parses the
response in order to compare with that of the other simulators; as a result, no
coverage feedback is available for this simulator.

Fuzzing Harness A single fuzzing harness was created that took the Open-
QASM 3 input generated by the fuzzer, and fed it through all three simulators in
the following order: Braket, Qiskit then Quantastica; collecting the state vector
for each. As Quantastica only supports OpenQASM 2 (rather than the Open-
QASM 3 that our generated programs are in), we chose to export the circuit that
we have just generated in Qiskit to OpenQASM 2; this is not an ideal solution
as any parsing errors made by Qiskit will be passed along, but it is the best
option we have short of not testing Quantastica. Chaining the executions in the
way we do means that if a crash occurs in Braket, then the input will not be
ran for Qiskit or Quantastica; when triaging the discovered crashes we run the
generated programs on the other simulators to ensure that the same crash does
not occur for them.
7 https://openqasm.com/versions/3.0/grammar/index.html
8 https://github.com/jwilk/python-afl

https://openqasm.com/versions/3.0/grammar/index.html
https://github.com/jwilk/python-afl
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Any generated programs that parse and execute successfully on all simula-
tors make it to the final step, which is comparison of the output probability
distributions. For this we used Jensen-Shannon divergence [4], which is a finite
symmetric measure of divergence between two probability distributions. Using
an assertion, we set an arbitrary cap of 0.01 to be allowed when comparing
Braket with Qiskit, and Qiskit with Quantastica; failing to pass this assertion
marks this input as a crash in the fuzzer. We could set such a strict cap on
expected divergence because directly using the state vectors avoids noise and
should be fully deterministic. We did not cap at 0 in order to allow for a small
amount of accumulated floating point errors.

Initial Seeds To obtain the initial seeds we took the set of 382 benchmarks in
OpenQASM 3 form from the mqtbench9 benchmarks. We minimised them down
to a subset of 22 testcases that covered all edge cases found in the complete set
using py-afl-cmin10. We modified these testcases to minimise the number of
unique variable identifiers and added these to the grammar in order to increase
the probability of generating programs free from undeclared variable usage.

Fuzzing Campaigns Many short campaigns were run whilst creating and de-
bugging the pipeline, often these produced large numbers of crashes due to un-
handled exceptions during the parsing phase. We noted down each unique crash
type and decided whether it was handled sufficiently gracefully or not; we added
catches within our fuzzing harness for those exceptions that we believe were han-
dled gracefully within the quantum library, as our aim was to test the functional-
ity of the simulators rather than our tools ability to create valid QASM programs.
In some cases we found exceptions during the parsing phase that were not well
handled and could benefit from providing more context to the user. We report
results from our longest run campaign which was performed on a 2023 Macbook
Air with M2 processor and 8GB RAM; this ran for 106 hours on a single core.

3 Results
Our longest fuzzing campaign resulted in 407k executions (and thus approxi-
mately as many unique QASM programs), generating a corpus of 2,327 testcases
(from an original 22), 139 saved crashes and 153 saved hangs; note that these are
AFL++ statistics where only inputs that cover new functionality are saved, thus
the resultant testcases significantly increase the diversity of the orignal 22 tests.

We discovered that 4 types of bugs were responsible for all 139 crashes; they
are listed in order of severity in the rest of this paragraph. One bug filed to Qiskit
maintainers ended up being an error in the specification for the OpenQASM 3
standard library (stdgates.inc); this directly led to us publicly filing a report in
Braket and privately alerting Quantastica to a potential error in their simulator.
Qiskit’s standard library implementation has now been fixed, and Braket’s sim-
ulator too. Additionally, we reported a significant performance issue in Braket,
which has now been fixed; and a crash in the Quantastica simulator which has
also been fixed. We describe these bugs further:
9 https://www.cda.cit.tum.de/mqtbench/

10 https://github.com/jwilk/python-afl/blob/master/py-afl-cmin

https://www.cda.cit.tum.de/mqtbench/
https://github.com/jwilk/python-afl/blob/master/py-afl-cmin
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Braket In Braket we found that the QASM interpreter made certain assump-
tions about the available attributes of some objects; this resulted in uncaught
exceptions that provided no context about where the error occurred. In most
cases, these were invalid programs and our only concern was that the error mes-
sage was less helpful than others which provided context about which line and
token the interpreter failed on. It is certainly possible to rationally argue that
this is a whole family of bugs (though we do not), and we have witnesses to eight
different crash locations.

<Bug BRAKET1>: In one of these cases the interpreter did not conform to the
OpenQASM 3 specification, and after reporting we are assured that this will be
addressed in a future release.

<Bug BRAKET2>: We filed another bug report whereby simulating relatively
simple quantum circuits of 14 qubits resulted in the Python interpreter being
killed due to running out of memory. This was due to an error in the implemen-
tation of the gphase builtin instruction, and has now been fixed by a maintainer;
after which the simulator could comfortably handle the same circuits with 25 or
more qubits.

Qiskit For consistency between platforms, we chose to manually expand the
include "stdgates.inc" statement using a simple string replacement with the
file definition from the original OpenQASM 3 specification publication [2]. All
three simulators provide inbuilt definitions for the standard gates, however, as
a direct result of forcing them to have to generate the definitions directly from
QASM we discovered that Qiskit’s output probability distributions diverged from
the other simulators for testcases involving use of the sx gate.

<Bug QISKIT1>: After triaging and discovering that the divergence only oc-
curred when manually specifying the sx gate definition in QASM (rather than
relying on the built-in definition), we decided to file an issue. The maintainers
narrowed it down to one line: gate sx a { pow(1/2) @ x a; }. According to
the OpenQASM 3 specification, dividing two integer literals should use integer
division resulting in 1/2 resolving to 0; whereas Braket performed float division
resulting in a value of 0.5. Ultimately it was decided that the error was in the
original sx gate definition as provided in the specification and it should instead
have either written the fraction as 1.0/2 (or equivalent) or used 0.5. While
this meant that the stdgates.inc (the equivalent of OpenQASM 3’s standard
library) would need correcting, it also meant that Braket has an implementation
error in applying floating point division where integer division should be used.
Quantastica’s behaviour aligned with Qiskit due to the OpenQASM 2 code being
generated by Qiskit re-exporting the circuit that it had produced – after realising
the divergent behaviour in Braket, we manually constructed a simple testcase to
check Quantastica and found that it too uses floating point division. We filed an
issue with Braket to alert them to the issue, and privately informed the Quantas-
tica maintainers of the finding, though as the OpenQASM 2 specification is less
rigorous and does not directly specify integer division, we are not treating this as
a bug. The Qiskit maintainers have merged a fix to the stdgates.inc standard
library file, and Braket maintainers have fixed the floating point division error.
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Quantastica <Bug QUANT1>: The Quantastica simulator does some undocu-
mented processing of register identifiers, causing some of our generated testcases
to throw an out-of-heap-memory error. Identifiers that trigger this bug are also
generated by Qiskit when exporting to OpenQASM 2 – this is not a highly im-
probable bug to encounter. The online tools quantum-circuit and q-convert
run this JavaScript code in the browser, and attempting to parse code containing
the bad identifiers results in a hang rather than a crash. As this bug could be
used in a denial-of-service attack, we first emailed the library maintainer to en-
sure that no server-side applications could be targeted and only filed a publicly
visible issue once we had assurance that all applications were run client-side.

3.1 Effectiveness of the Differential Testing Approach
Our search-based fuzz testing approach revealed multiple crashes and hangs.
We can directly attribute the differential testing approach to the discovery of
<Bug BRAKET2> causing crashes for gphase instructions with 14 qubits, and <Bug
QISKIT1> where floating point division was incorrectly used in place of integer
division. As many of the auto-generated circuits had large numbers of qubits,
many testcases crashed or were killed, so if we were just testing Braket alone
we may not have realised there was an issue. It was only after we spotted that
Qiskit correctly handled one particular testcase that Braket crashed on that
we decided to investigate further and discovered that there was probably an
implementation issue. In the case of the division bug, it was as a direct result
of the Jensen-Shannon divergence bounding assert being failed that this was
detected. Testing any of the simulators on their own could have only discovered
this with an appropriate oracle – which we do not have.

4 Conclusions
We proposed to use search-based differential testing to check validity of quantum
program simulators. In particular, we used grammar-aware fuzzing to generate
valid programs, which were then fed into different quantum simulators. Our re-
sults from over 400k executions show that our approach is useful in finding real
bugs in such software. Funding We thank the ERC Advanced Grant no. 741278
and UK EPSRC Grant no. EP/S022503/1.
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