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ABSTRACT: An original approach that adopts machine learning inference to predict
protein structural information using hydrogen−deuterium exchange mass spectrometry
(HDX-MS) is described. The method exploits an in-house optimization program that
increases the resolution of HDX-MS data from peptides to amino acids. A system is
trained using Gradient Tree Boosting as a type of machine learning ensemble
technique to assign a protein secondary structure. Using limited training data we
generate a discriminative model that uses optimized HDX-MS data to predict protein
secondary structure with an accuracy of 75%. This research could form the basis for
new methods exploiting artificial intelligence to model protein conformations by HDX-MS.

■ INTRODUCTION
Knowledge of protein structure and the structures of other
biomolecules is seen as one of the principal routes to
understanding their function. For the increasing list of proteins
that thwart classical structural biology, biophysics and
simulation can be employed to provide structural models.1

Hydrogen−deuterium exchange mass spectrometry (HDX-
MS) is an established biophysical technique used to under-
stand protein conformations which has risen in popularity due
to recent commercial availability.2−5 The approach exploits the
natural exchange of covalently bound hydrogen atoms in
proteins for deuterium in D2O solvent with mass differences
between 1H and 2H permitting the exchange kinetics to be
followed by mass spectrometry.6,7 Isotope incorporation is
typically localized by acid proteolysis which yields a series of
partially overlapping peptides of different lengths that can
cover the entire protein sequence. In the archetypical HDX-
MS experiment isotope incorporation into a protein sample is
understood by direct comparison to the HDX behavior of a
reference protein.8 From these experiments, various effects
such as those stemming from point mutations or ligand-
binding can be investigated from any accompanying changes in
structure and dynamics that alter the kinetics of isotope
exchange. One of the main strengths of HDX-MS is that it can
uncover changes in protein conformations that are hidden to
conventional structural biology.9−11 Combined with many
other advantages including throughput and sensitivity, HDX-
MS has experienced a remarkable increase in popularity over
the past decade.

One notable limitation of HDX-MS is the absence of an
established approach to exploit the technique for ab initio
modeling. HDX-MS data are sufficiently rich to accurately
identify native structures, but unlike other methods such as
NMR or SAXS, HDX is impeded by an incomplete
understanding of the structural origins that provoke a

particular biophysical output. The pursuit to understand the
structural determinants of HDX for protein modeling has given
rise to a specialist area covering more than 20 years active
research. Over this time, a large number of different paradigms
have emerged of varying sophistication and differing
interpretations of the structural elements that orchestrate
protection from HDX.12 One of the most popular approaches
for protein modeling by HDX employs the so-called
phenomenological method developed by Karplus and co-
workers.13 Successful modeling of certain structures has been
demonstrated using the Karplus method, but the scope of the
approach is limited with several examples where it fails to
correctly simulate HDX data.14,15 A facet shared by virtually all
HDX prediction models proposed over the last 2 decades is the
use of classical methods to describe HDX.16−20 In classical
methods, a predictive algorithm linking HDX data to protein
conformations must be formulated on expectations of the
nature of HDX in contrast to AI where machines are used to
create maps between input-output data. Algorithms can be
tested and optimized, but classical approaches are ill-equipped
at exploring all of the different variables that could potentially
influence the HDX characteristics of a particular protein
structure.

We describe a method using artificial intelligence (AI) to
predict protein structural information by HDX-MS. The
application of AI to decipher the relationship between the
protein structure and the associated HDX signals is under-
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represented in the field despite its obvious relevance to this
problem. Our method takes advantage of HDXmodeller an in-
house HDX-MS optimizer that models the HDX kinetics of
individual amino acids from inputted time-dependent peptide
mass changes.21,22 The main advantage of HDXmodeller in
this application is the accompanying increase in resolution it
affords from peptides to amino acids. This resolution change
permits structural features to be mapped directly onto
individual residues rather than peptides, which limit the
model to an average property across each fragment. A model is
generated using Gradient Boosting (GB) which is a form of
supervised machine learning that utilizes an ensemble of weak
predictors akin to decision trees.23 Using a limited data set
encompassing the HDX-MS profiles of just 5 proteins
spanning approximately 500 amino acids, a model is generated
capable of predicting residue secondary structure with 75%
accuracy. With sufficient training data, other structural features
could be mapped to amino acids and described by HDX-MS
using this method. A combination of different predictive
models obtained by AI could form the basis of new structural
modeling techniques based on HDX-MS while also shedding
light on the fundamental basis of isotope exchange.

■ MATERIALS AND METHODS
Materials. Unless stated otherwise, all reagents were

purchased from Sigma-Aldrich or Thermo Fisher Scientific.
Barnase was produced in-house, and barstar was from Ruth
Rose at Queen Mary University of London. Green Fluorescent
Protein (GFP) and GFP nanobodies (nb) GFP-nb) and GFP-
nbmin were obtained from Rebecca Beavil at King’s College
London. All protein samples were diluted to 10−20 μM,
aliquoted, and stored at −80 °C prior to use. 1BRS was used
for the pdb codes of barnase and barstar with the GFP and
GFP-nb structures taken from 3OGO and 3G9A used for the
GFP-nbmin structure.

Methods. Hydrogen−Deuterium Exchange Mass Spec-
trometry. HDX-MS experiments were performed on a Synapt
G2Si HDMS in tandem with an Acquity UPLC M-Class
system with HDX and automation (Waters Corporation,
Manchester, UK) and a LEAP PAL autosampler (Trajan
Scientific Europe Ltd., Milton Keynes, UK) for sample
management. The mass spectrometer was calibrated against
NaI and sample data acquired with lock-mass correction using
Leu-enkephalin every 30 s. Data was obtained by diluting 5 μL
of protein sample at 10−20 μM into 95 μL of either buffer L
(4.5 mM K2HPO4, 4.5 mM KH2PO4 in D2O, pD 7) or buffer E
(4.5 mM K2HPO4, 4.5 mM KH2PO4, pH 7) at 20 °C. Data
were obtained for 5 different isotope exposure times ranging
between 15 s and 4 h, and were collected in triplicate with 6
acquisitions for the reference data. For quenching, 70 μL of
each sample was diluted into 70 μL of quench buffer (2.4%
formic acid in H2O) at 1 °C to reduce further deuteration.
Then 50 μL of quenched sample was digested online using a
Waters Enzymate BEH pepsin column at 20 °C for 3 min at a
flow rate of 200 μL/min in buffer A (H2O + 0.1% formic acid,
pH 2.5). Peptides were immobilized on a Waters BEH C18
VanGuard precolumn before being separated using a Waters
BEH C-18 analytical column with a linear gradient of organic
solvent, buffer B (acetonitrile +0.1% formic acid, pH 2.5), from
8 to 40% over 6 min and spectra acquired by electrospray
ionization. All trapping and chromatography was performed at
0 °C to minimize the erroneous gain and/or loss of isotope.
MS data were acquired for 11 min with the majority of

peptides eluting between 2 and 8 min. Clean blanks were taken
after each data acquisition which utilizes a gradient of buffer B
from 8 to 85% and back over 4 min, repeated twice.

Back exchange controls (BEX) were set up for each protein
by loading a single aliquot of protein (<1 mL) into a 3 kDa
MWCO Slide-A-Lyzer dialysis cassette followed by dialysis
against 100 mL of labeling buffer L overnight at room
temperature with gentle stirring. Following the exchange of
H2O for D2O, samples were extracted from the cassette,
filtered through a 0.22 μm syringe filter, and incubated at 37
°C for up to 2 weeks. There are several published methods for
the production of back exchange control data, also referred to
as D100% or Dmax samples. Published methods normally involve
some form of protein denaturation induced by temperature,
pH, the addition of chaotropes, or some combination of these
methods.24,25 Alternative protocols also describe approaches
involving the collection and lyophilization of protein digests
followed by exposure to D2O.26 Previous in-house testing
involving periodic HDX-MS characterization of protein
samples incubated in D2O at 37 °C has revealed that most
proteins exhibit no further mass increment after a few days of
incubation. The additional time provided for the present
systems should be sufficient to ensure complete exchange.
Additional data were acquired to allow correction for forward
exchange (FEX) artifacts. FEX data were obtained by acquiring
additional reference data acquisitions but with the quench
buffer made using D2O to achieve a H2O:D2O ratio of 1:1 in
the final quench of 1:1. BEX data were acquired using the fully
exchanged protein samples and treating the sample as a 15 s
labeled aquation. In this way, each experimental peptide had
unique control data with an identical polypeptide sequence,
and all control data were obtained in triplicate. Following data
acquisition, reference data sets were initially analyzed using the
ProteinLynx Global Server (PLGS) v3.0.2 (Waters Corpo-
ration, Manchester, UK) software and the associated ion
accounting generated. HDX-MS data were then analyzed using
DynamX v3.0.0 (Waters Corporation, Manchester, UK) and
the relative fractional uptake (RFU) of each peptide
subsequently determined from the centroid masses of each
spectral envelope. All RFUs were then corrected for FEX and
BEX artifacts according to the following expression, where
RFUcorr, RFUexp, RFUFEX, and RFUBEX are the respective
corrected, experimental, forward, and back exchange RFU for
each labeling time point (eq 1).

=RFU
RFU RFU

RFU RFUcorr
exp. FEX

BEX FEX (1)

HDX-MS Data Optimization. The corrected RFU data for
each protein were submitted to HDXmodeller for optimization
to model the HDX exchange rates (kobs) of each amino acid
(https://hdxsite.nms.kcl.ac.uk/Modeller). An output file con-
taining the intrinsic exchange rates (kint) of each amino acid
was first generated using the online tool k-intrinsic (https://
hdxsite.nms.kcl.ac.uk/kintrinsic) with a temperature setting of
293.15 K and a pD of 7.0. Residue resolved protection factors
(PFs) were then obtained by uploading the corrected RFU
data along with the kint file for each protein and the data
optimized using the default settings. PFs are outputted by
HDXmodeller and calculated from the ratio of kobs to kint
expressed as the natural logarithm of the PF value (ln P).
HDXmodeller utilizes a bespoke validation method that images
the error surface following optimization and then uses this
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information to quantify the degree of certainty in the model
data using a R-matrix value which is any number between 0
and 1. To increase the utility of the R-matrix scores, the
experimental data for each protein was subdivided into
different subsections and optimized separately. This strategy
was adopted because of the variable success rate of
optimization across any HDX-MS data set. The preparation
of subsections allowed multiple validation outputs to be
generated across each protein sequence rather than a single R-
matrix score for each protein which would have little utility.
The generation of data subsections was facilitated by deleting a
limited number of peptides with the identification of peptides
suitable for deletion guided by the Occupier tool of HDXsite
which can identify weakly constrained peptides and the peptide
error scores outputted by HDXmodeller.21,22 Data subsection
preparation was an iterative process guided by the R-matrix
score to maximize the number of subsections generated with
minimal loss in the ability of the data to constrain the
optimization. It is instructive to note that peptide deletion
generally affected redundancy not coverage, and as such, this
process had virtually no impact on the number of residues used
for model development. Overall 26 different subsections of
HDX-MS data were prepared from 5 different proteins with
model exchange rates calculated for approximately 500 amino
acids (Table 1). All of the experimental data used with this
research is downloadable from the HDXmodeller web site.
Machine Learning. 500 data points constituting different

amino acids over 5 proteins and 4 features including kobs, kint,
R-matrix, and amino acid type were used as training data. The
amino acid type included structural features for each amino
acid with the names encoded between 0 and n classes -1 in
order to transform the categorical scale to numerical
predictors. Crystal structures of the relevant proteins were
taken and used to determine the phi and psi dihedral angles of
each amino acid which were then binned into binary classes
using kernel density classification such that every amino acid
was defined as either β-strand or α-helix. A GB algorithm using
the scikit-learn Python library was then applied to learn how to
map the input features to amino acid secondary structure.27

GB is a type of supervised machine learning that generates a
series of decision trees, with each new tree attempting to
improve the error. The procedure of building trees and
minimization continues until the model is either overfit or
there is no change in the residuals with a differentiable loss
function used to improve the output in each tree. The data
included in GB are the input variables and the output
classification (eq 2), where xi and yi refer to the variables and
binary classification targets respectively.

= { }x ydata ( , )i i (2)

A single leaf was initially built and given a value based on the
log(odds) of class 1, for example, the probability of each amino
acid being a β-strand. This value, which is the initial prediction,
was then transformed into a probability prediction using a
logistic function by softmax. Differences between the actual
and predicted values were then quantified by a loss function
(L) defined in the compact form as follows (eq 3).

= |L y F x p y F x( , ( )) log ( ( ))i i (3)

An initial model was generated using constant values as
follows, where x refers to the input values (kobs, kint, R-matrix
value, and amino acid), yi is the observed classification value (0
or 1) of each data point (i), and γ is the log(odds). Argmin
denotes the process of searching for optimum values of γ to
minimize the loss function (eq 4).

=
=

F x L y( ) argmin ( , )
i

n

i0
1 (4)

A cross entropy loss function, which is differentiable with
respect to the predicted value or log(odds), was then utilized
in the gradient descent algorithm in order to identify the
correct direction to be followed with changes in γ.28 The cross-
entropy or logarithmic loss function is based on predicted
probability and is defined as follows: where yi is the target
variable (0 or 1) and p is the predicted probability of class 1 in
decision trees in each iteration (eq 5).

= +L y p y p( log( ) (1 )log(1 ))y p i ilog( , )i (5)

Transformation of the loss function was performed, allowing
it to function using predicted log(odds) rather than probability
according to the following relationship (eq 6).

i
k
jjjjj

y
{
zzzzz= p

p
log(odds) log

1 (6)

The loss function was then converted into a function of
log(odds) (eq 7) with p redefined to log(odds) using the
softmax transformation (eq 8).

= +L y p( log(odds) log(1 ))i (7)

=
+

p
e

1 e

log(odds)

log(odds) (8)

The loss function expression can be simplified as follows to
show the log(odds) for different outputs for the individual
leaves (eqs 9, 10).

Table 1. Summary of R-matrix scores for the 5 proteins and data subsections. The start and end amino acids for each
subsection are indicated, along with the associated R-matrix scores in parentheses. The overall R-matrix score following HDX-
MS data optimization of each protein without subdivision of the data is also provided

protein barnase barstar GFP GFP-nb GFP-nbmin

overall R-matrix (0.775) (0.726) (0.671) (0.645) (0.795)
subsection 1 A1-Y13 (0.924) E8-L16 (0.362) L7-F46 (0.760) L5-L21 (0.832) A2-L22 (0.521)
subsection 2 Y13-A43 (0.699) L16-L34 (0.892) F46-F99 (0.594) S22-W37 (0.272) S23-E48 (0.871)
subsection 3 A43-F56 (0.421) L34-E52 (0.594) F100-F130 (0.588) E48-F69 (0.560) E48-T70 (0.838)
subsection 4 F56-D93 (0.891) E52-L71 (0.360) F130-F165 (0.702) L82-Y95 (0.218) T70-C97 (0.707)
subsection 5 W94-I109 (0.635) Q72-T85 (0.306) K166-L207 (0.661) Y95−F103 (0.722) D121-H139 (0.745)
subsection 6 L207-T230 (0.606)
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= +L y( log(odds) log(1 e ))i
log(odds)

(10)

Since this loss function is differentiable, the derivative can be
taken with respect to the log(odds) (eq 11).

=

[ + ]

=

=

L

y

log(odds) log(odds)

log(odds) log(1 e )

i

n

i

n

i

1

1

log(odds)

(11)

The derivate of the first part (yi log(odds)) of eq 10 is the
negative of the observed value, and for the derivate of the
second part (−log(1 + elog(odds)) the chain rule was used (eqs
12, 13), and this was solved by setting the value to 0 so that p
was equal to the mean of y (eq 14).

= +
+= =

L y n
log(odds)

e
1 ei

n

i

n

i
1 1

log(odds)

log(odds)
(12)

= +
= =

L y
log(odds)

np
i

n

i

n

i
1 1 (13)

= =
=

p
n

y y1

i

n

i
1 (14)

Pseudoresiduals (r) were calculated following each iteration
and compared to the previous prediction using the derivative
of the loss function as shown, where m denotes the index of
each tree and i is the number assigned to each data point (eq
15).

Ä

Ç

ÅÅÅÅÅÅÅÅÅÅ

É

Ö

ÑÑÑÑÑÑÑÑÑÑ
=r

L y F x

F x

( , ( ))

( )im
i i

i F x F x( ) ( )m 1 (15)

This can be simplified to show the deference between the
observed data (yi) and predicted probability (p) (eq 16).

=r y pim i (16)

Following this, a regression tree was fitted to the residual
values to generate terminal regions. The output value (γ) for
each leaf was then calculated as shown where i and j refer to
the leaf number, and the total number of the leaves,
respectively (eq 17).

= + =L y F x j Jargmin ( , ( ) ) for 1, ...,
x R

i m i mim 1

i jm

(17)

The loss function was then added, and the second order
Taylor polynomial was employed to simplify the function as
follows, where γ is the output for each leaf (i) on each tree (m)
(eq 18).

=
y p

p p

( )

(1 )
x R i

x R

i jm

i jm (18)

A search then occurs on individual trees to optimize values
of γ with the objective of improving the output of the new
function (Fm) with respect to the previous prediction (Fm−1)

expressed as follows, where v is the learning rate for which a
value of 0.2 was used and based on the hyper-parameter
optimization (eq 19).

= +
=

F x F x v x R( ) ( ) 1( )m
j

J

jm jmm 1
1

m

(19)

Model Validation. Validation using domain knowledge is a
crucial part in understanding the quality of a model generated
by GB. In instances where the size of the training data is
limited, setting aside 20% of the data for the purpose of
validation can be inefficient in determining the overall quality
of the model. In these cases the optimum solution is to adopt a
cross validation (CV) strategy in which the training set is split
into K folds (k ∈ {1,..., K}) and the system is trained and
validated by the kth data set interchangeably akin to a round-
robin tournament.29 A stratified K-fold validation strategy was
implemented using a scikit-learn Python Library to evaluate
the preference of the model where the whole data was split
into 5 (K) parts. The main hyper-parameters in the GB
algorithm include the number of boosting stages, learning rate,
and number of nodes in each tree which control the type and
complexity of the model. Optimal model parameters were
found using grid searching with selection based on the loss
output. Three evaluation strategies we utilized to measure and
visualize the performance of the algorithm involving confusion
matrices, calibration curves, and receiver operating character-
istic (ROC) plots. The confusion matrix provided a visual
means to evaluate the accuracy of the model in the testing data
set by indicating the percentage of true positives (TP), false
positives (FP), true negative (TN), and false negative (FN)
cases of the label classes. Confusion matrices consider the label
class for the predicted and observed values with the calculation
based on the mismatch between the binary labels. Calibration
curves were utilized to measure the difference between the
actual values and the predicted probabilities and understand
how the model was corroborated.30 Calibration curves provide
more confidence for the prediction of the algorithm from a
probabilistic perspective where a more constant baseline could
be interpreted as a more calibrated model. The squared error
of the predictive probabilities compared to actual class data
was calculated using Brier Score with the Brier Skill Score used
to understand how the model improved compared to previous
models.31 A ROC plot was finally used to provide information
about the relationship between the true positive rate (TPR)
and the false positive rate (FPR) at different threshold values.
The plot provided a visual representation of the diagnostic
ability of the model with the area under the curve (AUC)
yielding a quantitative measure of the ability of the algorithm
to discriminate the classes. The AUC describes the probability
of correctly classifying examples of each class taken a random.
A value of 0.5 is equivalent to random chance, with the model
providing no benefit beyond a coin flip. An AUC of 1.0
represents a perfectly accurate model that is able to
discriminate each class without error.

■ RESULTS
HDX-MS data were acquired for 5 different proteins including
barnase, barstar, green fluorescent protein (GFP) and 2 GFP-
binding nanobodies (nb) GFP-nb and GFP-nbmin. Since the
purpose of this research was to assess the feasibility of using AI
to define a predictive structural algorithm based on HDX-MS
data, no particular emphasis was placed on protein selection.
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The only real constraint was that the data should include back
and forward exchange values for each peptide to facilitate RFU
correction. Successful method development is viewed as the
first step in establishing a foundation for future models that are
more highly tuned to specific structural characteristics. Data
were acquired over 6 different isotope exposure times along
with data for reference samples and control data, allowing
correction for back and forward exchange artifacts. Raw HDX-
MS data were processed, and the corrected relative fractional
uptake (RFU) was calculated for each peptide and labeling
time point (Materials and Methods). Corrected RFU were
then submitted for data optimization by HDXmodeller to
extract the underlying exchange kinetics and enable residue
resolution. Rather than submitting individual optimization runs
for each protein, each data set was first subdivided into
separate subsections each of which was then optimized

separately. HDXmodeller provides a validation output for
each optimization based on a unique R-matrix score taken as
the arithmetic mean of the pairwise correlation coefficients (R)
of all optimization replicates in a production run. The R-matrix
in a bespoke validation method for HDX-MS data optimization
provides a score from 0 to 1 that quantifies the quality of the
constraints and is highly correlated with the accuracy of
modeled data. Optimisation of individual subsections allows
the generation of multiple R-matrix scores for each data set,
thereby increasing the detail at which the validation outputs
are reported (Materials and Methods). Overall 26 different
subsections of data were optimized for the 5 proteins
encompassing 500 amino acids (Table 1). The R-matrix
scores varied from poor (0.218) to excellent (0.924), and the
intention was to allow the AI to utilize these scores in model
development (Figure 1).

Figure 1. Overview of HDX-MS data acquisition and processing. (a) Example HDX-MS spectra for green fluorescent protein (GFP).
Representative spectra are shown for 6 different isotope labeling times as well as the unlabeled reference spectrum (REF) and spectra for back
(BEX) and forward exchange (FEX) control data. The m/z scale is between 569 and 574 throughout. (b) Overview of peptide mass changes for
GFP reported as relative fractional uptake (RFU). RFUs are shown for 6 different isotope exposure times along with the back and forward exchange
RFUs. Missing data in the profile are due to peptide removal to aid in the creation of unique data subsections or represent peptides removed due to
high error. (c) Same data as for (b) but with the RFU corrected for back and forward exchange. Peptide removal allowed the generation of 6
different data subsections as shown. (d) Each subsection of HDX-MS data was submitted for optimization in turn using HDXmodeller. Following
optimization the main outputs were the residue resolved HDX exchange rates (kobs) and the R-matrix validation score for each subsection which is
taken as the arithmetic mean of the pairwise correlation coefficients between all replicate optimization runs. These data were then used as input for
development of the gradient boosting algorithm.

Figure 2. Example workflow of supervised learning using Gradient Boost. Left to right: HDX-MS data of each protein was subdivided into different
subsections and each subsection submitted separately for optimization by HDXmodeller. Example data subsections and their associated peptide
maps are shown. Optimized data outputs including the observed exchange rates (kobs), the R-matrix scores calculated from the images of covariance
matrices and the amino acid type were used as inputs (in) for supervised machine leaning. Each amino acid was labeled with the input values along
with a one-dimensional target for amino acid secondary structure type taken from the dihedral angles (out). A model was then trained using a GB
algorithm to predict the secondary structure from the HDX-MS input data.
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The entire data set, involving approximately 500 amino
acids, was then used to train a model using GB, a type of
supervised machine learning that implements an ensemble of
many weak learners or decision trees designed to gradually
improve the mismatch between the predicted and true values.
In order to search for the best input-output mapping algorithm
employed by the machine for learning from the data set,
diverse machine learning models with different integrated
mapping methods were built and evaluated including Nearest
Neighbors, Linear Support Vector Machines (SVM), Radial
Basis Function (RBF) SVM, Gaussian Process, Decision Tree,
Random Forest, Multilayer Perceptron (MLP), AdaBoost,
Naive Bayes, Quadratic Discriminant Analysis (QDA), Histo-
gram-based GB, Extra Trees, LightGBM, Logistic Regression,
and XGBoost. The same strategy based on generating
confusion matrices, calibration plots, and ROC AUC scores
for the validation data set was applied for measuring the
uncertainty existing in the predictions of the models. The
comparison between the certainty in the models, demonstrated
that the performance of these methods was inferior to GB for
this specific classification task (Figure S1). Each amino acid in
the model consisted of a four-dimensional covariate of kobs, kint,
R-matrix, and amino acid type along with a one-dimensional
target for secondary structure. Assignment of amino acids in
binary classes of β-sheet or α-helix was performed by kernel
density classification on the basis of their phi and psi dihedral
angles taken from the associated pdb files. No imbalance
between the 2 classes was observed with the binary
classifications sharing almost equal proportions of β-sheet
and α-helical conformations. The many hyper-parameters that
define the structure of the GB model including the number of
trees and internal nodes, type of loss function and learning rate
were defined through several rounds of optimization to
maximize model accuracy (Figure 2, Materials and Methods).

The quality of the model was then evaluated using cross
validation (CV) in which 20% of the data was used to evaluate
the performance of a model trained by the remaining 80%.
During CV both the training and validating processes were
conducted 5 times using entirely different data constituting the
training and evaluation data in each cycle. This validation
strategy was employed because of the increased reliability of
CV in assessing model quality arising from its capacity to use
the entire data set for validation rather than simpler methods
that only utilize the highest quality data. The training process
was carried out over 500 iterations during which the different
hyper-parameters were optimized. Gradient descent was used
to follow the error during optimization and indicate the point
at which the model had converged (Figure 3, Materials and
Methods).

The extent to which the model was able to discriminate
between secondary structure types was then evaluated. A
confusion matrix was initially printed, which reported the
percentage of correctly identified negative labels at 68% and
the percentage of correctly identified positive labels at 72%.
Further insight into model accuracy was then obtained through
the preparation of a calibration curve based on the true label
classes and the probability of the respective classes. The GB
method is able to provide estimates of class probabilities that
can be interpreted as a confidence factor in the calibration
curve. Preparation of the calibration curves initially involved
random partitioning of the data into 20 different bins. For each
of the binned data sets, the fraction of positive cases was then
determined and compared to the mean predicted probability of

correct secondary structure assignment. The calibration curve
indicated a robust model with a corresponding brier score
(BS) loss of 0.20, with the BS indicating model linearity
reported by a value between 0 and 1 with lower values being
optimal. A ROC curve was then plotted to provide a visual
representation of the true positive rate (TPR) against the false
positive rate (FPR) determined across a wide range of
thresholds. From the ROC plot the area under the curve
(AUC) was also calculated revealing a model accuracy of 75%
(Figure 4).

The importance of different input features in the model was
then investigated. Of the 4 inputs, kint was found to have the
smallest effect on the predictive model, which is expected given

Figure 3. Organization of the decision trees and model validation. (a)
Representation of the structure of the GB algorithm to determine the
pobability (P) of secondary structure (SS). GB utilizes an ensemble of
weak learners or decision trees where leaf nodes (blue) of one tree are
inputs to the root nodes (green) of the next tree. The leaf nodes of
the last decision tree will be the best and final output of the model as
determined by the error. The learning rate or shrinkage factor is used
to slow down the contribution of trees in each stage and avoid
overfitting of the training data. (b) Model error (loss) for each
iteration and cross validation (CV) plot depicting model training and
validation (insert). Training and validation was iterated 5 times with
80% of the data allocated to training (gray) and 20% allocated to
validation (pink) in each iteration. Note how the indices of the data
used shift across in each step to cover 100% of the data. Classes were
balanced with nearly identical proportions of data for β-sheet (green)
and α-helix (black) targets.
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that kint depends on variables that are unrelated to higher order
structure. Amino acid type and kobs had similar contributions
to the model, and while there are known secondary structure
propensities for certain amino acids the training data is likely
too small to detect and model these trends. The R-matrix
validation score was unexpectedly found to have the greatest
contribution to model accuracy. To confirm the importance of
R-matrix, data were reoptimized but with the omission of this
term which resulted in a considerable decrease in model
accuracy to 64% with a corresponding reduction in the BS
from 0.20 to 0.234 (Figure 4). While the relationship of R-
matrix with secondary structure is unknown, it is apparently
exploited by the model for the characterization of kobs. This
suggests that the R-matrix term may have an important role in
AI applications that rely on optimized HDX-MS data for
model generation.

■ CONCLUSION
Leveraging HDX-MS for protein modeling has transformative
potential across biosciences owing to the many advantages of
the technique and its applicability to a diverse range of protein
systems. While recent advances in computational methods has
seen a step change in the accuracy of ab inito protein
structures, the reliability of these models can really only be
assessed by experiment.32 More tools are therefore required
capable of exploiting biophysics for the structural character-
ization of biomolecules. Focusing on this critical aspect of
structural biology, we have described a method based on GB
capable of predicting protein secondary structure from
optimized HDX-MS data. The development of predictive
algorithms for HDX is complex, and despite a plethora of
models being proposed over the last 2 decades, methods to
determine protein conformations by HDX-MS have yet to be
established. The ability of AI to effectively learn from data
experiences and find a map between features and responses
that may not be apparent with classical methods makes it
highly suited for this application. In spite of the relevance of AI

for linking structural features to HDX, the use of the
technology in this area has been largely ignored. A knowl-
edge-based predictor of HDX protection factors is the only
other known example, but this approach did not utilize
experimental data and was developed to make predictions
directly from sequence.33 Our model clearly demonstrates the
feasibility of using AI to develop algorithms capable of
predicting structures using HDX. Direct application of this
method was not pursued because of the spacity of the training
data and low expectations of the diagnostic power of models
that can classify only secondary structure. However, our
method defines a roadmap for the development of more
sophisticated models with potential for direct application as
more training data becomes available.

The use of optimized HDX-MS data in this research had an
important role in model development as it allowed structural
features to be mapped directly onto amino acids. This is not
possible with conventional HDX-MS data, which is resolved at
the peptide level and therefore represents a one-dimensional
input poorly suited for this type of classification problem. In AI
methods the most efficient strategy describing tasks that
involve chemical structures with high complexity is to map
multidimensional presentations of data to responses or targets,
and in most cases one-dimensional vectors conveying less
informative data cannot be classified in this way. The
utilization of HDXmodeller to optimize the HDX-MS data is
therefore appropriate in this research as it increased the
number of classifiable features which benefits nonlinear
models. Nevertheless, the projection of high-resolution
HDX-MS data is a nontrivial optimization problem prone to
errors with highly deterministic outputs that depend heavily on
the initial guess values. To overcome this problem our model
exploited a bespoke R-matrix term which is a value assigned
postoptimization and related to the accuracy of model data.
Interestingly, the R-matrix value was found to be the most
important feature in model development despite having an
unknown connection to protein secondary structure in the

Figure 4. (a) Ramachandran plot showing the binary classification of amino acids corresponding to β-sheet (green) and α-helical conformations
(red). (b) Confusion matrix of the testing data set shown as a heat map with the normalized number of true positive and true negative classes being
0.68 and 0.72, respectively. (c) Calibration curve of the relationship between predicted probability classes and the true classes binned into 20
random groups. (d) ROC plot for the observed and predicted probability classes for the testing data set separated from the whole data set using
cross validation; the accuracy of the model taken from the area under the curve (AUC) is 0.75. (e) Feature importance plot for the 4 input
parameters of the model with the R-matrix score having the most important role in classifying the data. (f−h) Data are shown as for (b−d) but with
omission of R-matrix from the input labels; exclusion of the R-matrix score reduces the AUC 0.64.

Journal of the American Society for Mass Spectrometry pubs.acs.org/jasms Article

https://doi.org/10.1021/jasms.3c00145
J. Am. Soc. Mass Spectrom. 2023, 34, 1989−1997

1995

https://pubs.acs.org/doi/10.1021/jasms.3c00145?fig=fig4&ref=pdf
https://pubs.acs.org/doi/10.1021/jasms.3c00145?fig=fig4&ref=pdf
https://pubs.acs.org/doi/10.1021/jasms.3c00145?fig=fig4&ref=pdf
https://pubs.acs.org/doi/10.1021/jasms.3c00145?fig=fig4&ref=pdf
pubs.acs.org/jasms?ref=pdf
https://doi.org/10.1021/jasms.3c00145?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


model. This unique validation parameter may therefore have a
vital role in the development of future AI models utilizing
HDX-MS. A limitation of the present model regards the
handling of coil structure, which has been overlooked. Since
the model is based on dihedral angles, it is not well suited for
the prediction of coils given the large range of dihedrals these
structures can adopt. The presence of coils in the training set
may also be a source of misclassification, reducing model
accuracy, and a different approach would be needed to map
coil structure to HDX-MS data. Rationalization of these results
at the fundamental level is challenging due to the low
interpretability of black-box models such as those generated by
GB. Nevertheless, the capacity to assign protein secondary
structure using HDX-MS data implies some form of relation-
ship between isotope exchange and different classes of
secondary structure. β-Sheets may be less protected overall
because of their lower stability, increased flexibility, and greater
exposure of backbone NH groups relative to α-helices.34−37

However, the ability of HDX to discriminate between α and β
secondary structures may be a result of some unknown
conformational features. It will be interesting to follow the
emergence of any future relationships uncovered by AI on the
fundamental relationship between HDX and protein con-
formations.
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