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Abstract We introduce an hp–version discontinuous Galerkin finite element
method (DGFEM) for the linear Boltzmann transport problem. A key feature of
this new method is that, while offering arbitrary order convergence rates, it may
be implemented in an almost identical form to standard multigroup discrete
ordinates methods, meaning that solutions can be computed efficiently with
high accuracy and in parallel within existing software. This method provides a
unified discretisation of the space, angle, and energy domains of the underlying
integro-differential equation and naturally incorporates both local mesh and
local polynomial degree variation within each of these computational domains.
Moreover, general polytopic elements can be handled by the method, enabling
efficient discretisations of problems posed on complicated spatial geometries.
We study the stability and hp–version a priori error analysis of the proposed
method, by deriving suitable hp–approximation estimates together with a novel
inf-sup bound. Numerical experiments highlighting the performance of the
method for both polyenergetic and monoenergetic problems are presented.
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1 Introduction

The linear Boltzmann transport problem describes the flow of particles through
a scattering and absorbing medium, and is a widely used model in areas as
diverse as medical imaging, radiotherapy treatment planning, and the design of
nuclear reactors, for example. Here, we consider the numerical approximation
of the stationary form of the problem, seeking a solution which is a function of
up to six independent variables: d, d = 2, 3, spatial variables varying over a
domain in Rd, (d − 1) angular variables on the surface of the d-dimensional
unit sphere S, and an energy variable on the non-negative real line R≥0. The
high dimensionality of this problem means that it is imperative to develop
efficient numerical approximation methods. Over the years numerous methods
have been proposed for this problem, which we shall briefly review below.

Given the structure of the underlying problem, the space, angle and energy
components of the solution are typically discretised separately using a variety
of techniques. Historically, there has largely been a predominant standard
approach to energy discretisation known as the multigroup approximation;
see [36, Chapter 2] and the references cited therein. Essentially, this approach
approximates the energy by a piecewise constant function with respect to a
finite number of non-overlapping energy groups. A key appeal of this approach
is that the numerical solution is computed by sequentially solving a single
monoenergetic Boltzmann transport problem (i.e., only depending on the
spatial and angular variables) for each energy group. This is possible because
the scattering process is typically structured in such a way that particles only
lose energy in each collision with the medium, either by producing secondary
particles or depositing energy locally, and hence the solution in a given energy
group only depends on the solution in groups at higher energies, cf., also [21].

On the other hand, discretisations of the angular component of the solution
have a rich history and numerous numerical schemes have been proposed. A few
classes of such schemes have received particular attention within the literature
due to their numerical properties. Spherical harmonic approximations are a
widely used form of spectral discretisation in angle, constructed utilising a basis
of typically high-order smooth spherical harmonic functions defined globally
on the sphere; see [14,19,36]. The emphasis of such schemes is to simplify the
implementation of the scattering operator, typically at the expense of a more
expensive implementation of the streaming operator. Such schemes offer a
natural variational setting for their analysis, but the global nature of the basis
functions makes local adaptivity a challenging task and Gibbs’-type oscillations
may be expected around sharp variations in the solution.

An alternative strain of methods are collectively known as discrete ordinates
methods, in which the angular component of the problem is discretised via
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collocation at a discrete set of angular quadrature points. The advantage of
this approach is that, when combined with an appropriate linear solver, the
Boltzmann transport problem may be solved in parallel as a set of independent
linear transport problems in the spatial domain with fixed wind directions.
There appear to be two predominant flavours of discrete ordinates-type methods
in the literature, which may be coarsely classified as global high-order methods
and local low-order methods. Schemes in the former category typically fall
within the family of spectral collocation methods, based on sets of interpolatory
or quadrature points for high-order spherical harmonic functions on the sphere,
designed according to the principles laid out by Sobolev and Vaskevich in
[42]. Such schemes include those based on the widely used level symmetric
quadrature formulae in [31,13,28], Lebedev quadrature schemes in [35,34],
general double cyclic triangle quadratures in [29,28], or sets of points arranged
on spherical t-designs in [3], to name but a few. The appeal of such methods
is that they formally approximate the solution using high-order spherical
harmonics, although generating efficient point sets can become difficult for
very high-orders, limiting the theoretical accuracy of such schemes. Moreover,
it is typically challenging to produce such point sets adaptively, i.e., to focus
quadrature points in zones of the angular domain where higher resolution is
required, for instance, around beams or other localised structures present in
the underlying solution.

Complementing these are methods based on quadrature sets constructed
locally using an angular mesh. Typically, the quadrature schemes used are
exact for constant functions on each element, such as so-called TN schemes,
cf. [46], or sometimes linear or quadratic functions; see [25,26,32,33,48]. In a
similar category, we include methods based on interpolation using continuous
finite element basis functions in angle, such as those of [20], and schemes
incorporating piecewise spherical harmonic approximations on an angular mesh
in [30] and wavelet-based approaches in [8,2]. Although such schemes formally
approximate the solution using lower-order polynomials, the ability to generate
a higher fidelity approximation by refining the mesh, either locally or globally,
has contributed to their significant popularity. Recent work has generalised
these schemes to use higher order polynomials in angle in various different
ways; see, for example, [30,21,48]. While such schemes offer the possibility
of high-order convergence and mesh adaptivity, underpinned by a variational
framework, they can be more challenging to implement efficiently because the
high-order nature of the basis functions on each angular element means that
the problem may not immediately facilitate a discrete ordinates-like decoupling
into independent spatial transport problems.

In this article, we propose a state of the art hp-version discontinuous
Galerkin finite element method (DGFEM) for the discretisation of the lin-
ear Boltzmann transport problem, in which the space, angle, and energy
components of the solution are approximated in a unified manner. In many
applications, particularly those arising in medical physics, the spatial domain
may be highly complicated; to deal with such strong complexity of the physical
geometry, in an efficient manner, we admit the use of general polytopic meshes;



4 Paul Houston et al.

see, for example, [12,10,11] and the references cited therein. The key prop-
erties and advantages of the proposed methodology include: the exploitation
of a unified DGFEM discretisation of the linear Boltzmann problem over the
entire computational domain ensures that the resulting scheme is naturally
high-order; note that, in particular, the use of the aforementioned multigroup
approximation limits the accuracy of the resulting numerical method to first-
order. Taking advantage of the intrinsic variational formulation of the scheme
means that the convergence and stability analysis of the underlying DGFEM
can be developed, which is the key objective of this article. Furthermore, the
proposed framework naturally lends itself to the exploitation of hp–adaptivity
techniques coupled with rigorous a posteriori error estimation to ensure that
the spatial, angular, and energy meshes can be focused around solution features
of interest. Moreover, as already highlighted above, complex geometries can
be efficiently meshed and easily handled. Finally, and perhaps most impor-
tantly from a practical viewpoint, the proposed method enables arbitrary order
mesh-based approximations to be built independently in each of the space,
angle and energy domains, while still being implemented in the same way
as conventional multigroup discrete ordinates schemes. This highly efficient
and naturally parallelisable implementation is made possible by exploiting a
novel set of basis functions for the polynomial function spaces which satisfy a
Lagrangian property at the nodes of a (tensor product) Gaussian quadrature
scheme. We remark that employing a unified DGFEM approximation in all
dimensions has been utilised in other application areas, such as, for example,
coupled wave/circulation problems, cf. [37]. Previous work using higher order
local basis functions in angle has also aimed to build quadrature sets which
decouple the angular variables, although the focus was on schemes where
the angular quadrature is used in a collocation-type manner such as [25,32,
33] for evaluating the angular integrals. For this, the quadrature points and
basis functions are chosen together such that the quadrature is exact for the
basis functions, and the basis functions satisfy the Lagrangian property at the
quadrature points. Despite the apparent similarity to our approach here, these
existing approaches are based around piecewise spherical harmonic functions
(on triangular or quadrilateral elements) and the quadratures are therefore
unable to offer the Gaussian-type exactness property which is required to inte-
grate products of basis functions and therefore produce a family of variational
schemes which are stable (Theorem 6) and offer arbitrary order convergence
rates (Theorem 7). To the best of our knowledge, analogous quadrature sets
are not available for general order piecewise spherical harmonic basis functions.

To the best of the authors knowledge, the mathematical convergence re-
sults presented in this article represent the first hp–version error analysis of
the DGFEM approximation applied to the poly-energetic linear Boltzmann
transport problem, which also admits the use of general polytopic meshes in
the spatial domain. To this end, a novel inf-sup bound is established based on
extending the analysis presented in [10] to the high–dimensional setting, with
the inclusion of the scattering operator. Here, great care is taken to not only
track the discretization parameters for each finite element space employed in
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the space, angle, and energy domains, but also the material coefficients present
in the underlying integro-differential equation; this latter issue is particularly
important when studying the convergence rates of iterative solvers for the
resulting system of linear equations, cf. [23], for example. For related error
bounds, we also refer to the early paper by Johnson and Pitkäranta in [27],
who derived the first a priori error estimates for a discrete ordinates h–version
DGFEM approximation of the mono-energetic Boltzmann transport problem,
assuming isotropic scattering, albeit under very low regularity assumptions on
the analytical solution.

We remark that a very popular alternative computational framework for
simulating the linear Boltzmann transport problem are Monte Carlo methods,
which are widely used in practice. Such methods naturally incorporate the
stochastic nature of the underlying physical processes and are highly efficient
to implement, as the trajectories of individual incoming particles are simulated
independently, yet the mean observed behaviour may only be expected to
converge with the square root of the number of samples used. For this reason,
Börgers in [9] identified that finite element-based methods could expect to
perform more efficiently than Monte Carlo-based methods if high-order finite
element methods could be utilised in a suitably efficient way. Our work therefore
provides a stepping stone to answering the open question of how to achieve
this objective in practice, as we are able to compute high-order numerical
approximations with minimal additional computational overhead compared to
conventional multigroup discrete ordinates methods.

The outline for this paper is as follows. In Section 2 we introduce the linear
Boltzmann transport problem. Then in Section 3, we formulate the unified
hp–version DGFEM discretisation. Section 4 introduces the necessary inverse
and hp–approximation results; on the basis of these bounds, the stability and
convergence analysis of the underlying DGFEM is undertaken in Section 5. In
Section 6 we outline how the proposed DGFEM may be implemented in a highly
efficient and parallelisable manner based on employing a careful selection of the
quadrature and local polynomial bases in the angular and energy domains. The
practical performance of the method is assessed in Section 7 through a series
of numerical examples. Finally, in Section 8 we summarise the work presented
in this paper and draw some conclusions.

1.1 Notation

For a bounded open set ω ⊂ Rd, d ≥ 1, we write Hk(ω) to denote the usual
Hilbertian Sobolev space of index k ≥ 0 of real-valued functions defined on ω,
endowed with the seminorm | · |Hk(ω) and norm ∥ · ∥Hk(ω), as detailed in [1],
for example. Furthermore, we let Lp(ω), p ∈ [1,∞], be the standard Lebesgue
space on ω, equipped with the norm ∥ · ∥Lp(ω). Similarly, for a bounded (d− 1)–

dimensional surface S embedded in Rd, the spaces Hk(S) are defined in an
analogous manner, cf. [18], for example.
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2 Model problem

Given an open bounded polyhedral spatial domain Ω ⊂ Rd for d = 2 or 3, let
D = Ω × S × E, where S = {µ ∈ Rd : |µ|2 = 1} denotes the surface of the
d-dimensional unit sphere and E = {E ∈ R : E ≥ 0} is the real half line.

The linear Boltzmann transport problem reads: find u : D → R such that

µ · ∇xu(x,µ, E) + (α(x,µ, E) + β(x,µ, E))u(x,µ, E) = S[u](x,µ, E)

+ f(x,µ, E) in D,

u(x,µ, E) = gD(x,µ, E) on Γin,
(1)

where f, gD, α, β : D → R are given data terms (discussed further below), ∇x is
the spatial gradient operator, and Γin = {(x,µ, E) ∈ D̄ : x ∈ ∂Ω and µ·n < 0}
denotes the inflow boundary of D, where n denotes the unit outward normal
vector on the boundary ∂Ω of Ω. The action of the scattering operator applied
to the solution u is denoted by

S[u](x,µ, E) =

ˆ
E

ˆ
S
θ(x,η → µ, E′ → E)u(x,η, E′) dη dE′,

where θ is a specified scattering kernel, and β(x,µ, E) =
´
E
´
S θ(x,µ → η, E →

E′) dη dE′.
Physically, the model (1) describes the transport of particles through a

scattering medium, and is linear due to the key physical assumption that
particles are only scattered by interactions with the medium and do not
interact with one another. The solution u(x,µ, E) represents the fluence of
particles with a particular energy E ∈ E, travelling in direction µ ∈ S, passing
through the point x ∈ Ω. The scattering kernel θ(x,η → µ, E′ → E) represents
the proportion of particles at position x with energy E′ travelling in direction
η which transition to direction µ and energy E as a result of an instantaneous
collision with the medium. Conversely, the reaction coefficient α(x,µ, E) +
β(x,µ, E), commonly referred to as the total scattering cross section, models
loss of particles from the fluence in direction µ with energy E as they are
absorbed by the medium (α) or scattered into other directions and energies
(β).

We simplify the model slightly by assuming that the medium is angularly
isotropic in the sense that α(x,µ, E) ≡ α(x, E) and the scattering kernel
depends only on the cosine of the angle between the initial and final directions;
i.e., θ(x,η → µ, E′ → E) ≡ θ(x,η · µ, E′ → E). This has the implication
that β(x,µ, E) ≡ β(x, E) by symmetry. Furthermore, we make the (physically
reasonable) assumption that θ(x,η · µ, E′ → E) = 0 for E′ < E, which states
that particles cannot gain energy by scattering off the medium.

Remark 1 We remark that this assumption on the scattering kernel is not
essential for the definition of the proposed DGFEM discretization or the
proceeding a priori error analysis presented in Section 5; indeed, it is only
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relevant in Section 6, where we present a source iteration linear solver. For
many applications involving photon/electron transport, the assumption that
particles cannot gain energy by scattering off the medium is typically fulfilled,
though of course up-scattering is relevant in some applications, e.g., thermal
neutrons [36,43]. In the case where up-scattering occurs, then the iterative
solver presented in Section 6 would need to be suitably modified, whereby, for
example, one sweeps both up and down the energy groups.

Finally, we assume that f and g are compactly supported functions of
energy, and that there exists a constant c0 such that

c(x,µ, E) := α(x,µ, E) +
1

2
(β(x,µ, E)− γ(x,µ, E)) ≥ c0 > 0, (2)

where γ(x,µ, E) =
´
E
´
S θ(x,η → µ, E′ → E) dη dE′. For notational simplicity,

henceforth we will suppress the dependence of the data terms α, β, f and gD
on the independent variables.

Remark 2 In practice the absorption cross section α may be equal to zero;
hence, in this setting, condition (2) reduces to the requirement that β − γ ≥
c′0 > 0, c′0 = 2c0, or more precisely that the macroscopic scattering cross
section related to outgoing directions and energies (β) is greater than the
corresponding quantity related to the incoming directions and energies (γ).
An important scattering model employed in practice for photons is the Klein-
Nishina scattering model, discussed in Section 7; one can show that this model
does indeed satisfy (2) within a physical range of energies; see [39] for details.

Remark 3 In neutron transport applications, cross-section data may not be
calculated from first principles, and instead must be determined through empir-
ical means, cf. [36, Chapter 2.2]. By contrast, photon and electron applications
may directly use analytic expressions of cross-section data [22].

3 Discrete scheme

We discretise the Boltzmann transport problem (1) using a DGFEM approach,
seeking an approximate solution which is a product of discontinuous piecewise
polynomial functions with respect to meshes defined in the spatial, angular,
and energy domains separately. For this, we introduce the following notation.

3.1 Spatial discretisation

Let TΩ be a subdivision of the spatial domain Ω into non-overlapping open
polytopic elements κΩ with diameter hκΩ

such that Ω = ∪κΩ . The set of faces
in TΩ will be denoted by FΩ, which are defined as the (d − 1)-dimensional
planar facets of the elements κΩ present in the mesh TΩ . For d = 3, we assume
that each planar face of an element κΩ ∈ TΩ can be subdivided into a set of
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co-planar (d− 1)-dimensional simplices and we refer to this set as the set of
faces, as in [11].

Given κΩ ∈ TΩ, we denote by pκΩ
≥ 0 the polynomial degree on κΩ, and

define the vector p := (pκΩ
: κΩ ∈ TΩ). The spatial finite element space is then

defined by

Vp
Ω = {v ∈ L2(Ω) : v|κΩ

∈ PpκΩ
(κΩ) for all κΩ ∈ TΩ},

where Pk(κΩ) denotes the space of polynomials of total degree k on κΩ. We
denote by ∂κΩ the union of (d − 1)–dimensional open faces of the element
κΩ . Then, for a given direction µ ∈ S the inflow and outflow parts of ∂κΩ are
defined as

∂−κΩ = {x ∈ ∂κΩ : µ · nκΩ
(x) < 0},

∂+κΩ = {x ∈ ∂κΩ : µ · nκΩ
(x) ≥ 0},

respectively, where nκΩ
(x) denotes the unit outward normal vector to ∂κΩ at

x ∈ ∂κΩ .
Given κΩ ∈ TΩ , the trace of a (sufficiently smooth) function v on ∂−κΩ from

κΩ is denoted by v+κΩ
. Further, if ∂−κΩ\∂Ω is nonempty, then for x ∈ ∂−κΩ\∂Ω

there exists a unique κ′
Ω ∈ TΩ such that x ∈ ∂+κ

′
Ω; with this notation, we

denote by v−κΩ
the trace of v|κ′

Ω
on ∂−κΩ\∂Ω. Hence the upwind jump of the

function v across a face F ⊂ ∂−κΩ\∂Ω is denoted by

⌊v⌋ := v+κΩ
− v−κΩ

.

In the remainder of the article we suppress the subscript κΩ , since it will always
be clear which element κΩ ∈ TΩ the quantities v±κΩ

correspond to.

3.2 Angular discretisation

A general framework developed for solving partial differential equations on
surfaces has been developed in [4,17,18] and the references cited therein. Given
that our particular setting is greatly simplified, we proceed in a slightly different
manner. Let Sh to denote a polyhedral surface in Rd composed of (closed) planar
faces κ̃S which are assumed to be either simplices (intervals if d = 2; triangles
if d = 3) or (affine) quadrilaterals (when d = 3). We write T̃S = {κ̃S} to denote
the associated regular conforming triangulation of Sh, i.e., Sh = ∪κ̃S∈T̃S

κ̃S. We
now introduce a smooth invertible mapping ϕS : Sh → S; for example, assuming
the surface is star-shaped with respect to the origin, we may simply define
ϕS(µ̃) = |µ̃|−1

2 µ̃, where | · |2 denotes the l2-norm. With this notation, we define
a mesh of curved surface elements defined on S by

TS =
{
κS : κS = ϕS(κ̃S) ∀κ̃S ∈ T̃S

}
.

Crucially, we assume that elements κ̃S ∈ T̃S are mapped to κS ∈ TS, without
any significant rescaling. More precisely, we assume that the determinant of the
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inverse of the first fundamental form of the mapping ϕS : Sh → S is uniformly
bounded from above and below, cf. [18]. Following [4,17,18], in the case when T̃S
is composed of simplices, then Sh may, for example, be chosen to be a piecewise
linear approximation of S, whereby the elements forming Sh may be constructed
so that their vertices lie on S. In the case when quadrilateral elements are
employed, then an initial polyhedral domain S′h may be constructed in a similar
fashion, though in general the resulting element domains will not be affine.
In this setting, we assume there exists Sh consisting of affine quadrilateral
elements, in such a manner that the corresponding quadrilateral facets of S′h
and Sh may be mapped to one another without any significant rescaling. We
stress that, irrespective of the specific choice of Sh, the assumption on scaling
of the Jacobian of the mapping ϕS : Sh → S is crucial to ensure that Lemma 5
holds, see Section 4 below.

Since the surface we are interested in discretising is simply the unit sphere
in Rd, a practical choice for Sh is the surface of the cube [−1, 1]d. This leads
to the widely used cube-sphere discretisation of the sphere, and enables a
particularly simplified implementation of the method.

Let κ̂S ⊂ Rd−1 denote the reference element (either a simplex or quadrilat-
eral), ϕκS : κ̂S → κ̃S, which is assumed to be affine, and define FκS : κ̂S → κS
by FκS = ϕS ◦ ϕκS . For each κS ∈ TS, let qκS ≥ 0 denote the polynomial degree
used on κS, and introduce q := (qκS : κS ∈ TS). The finite element space defined
on the surface of the sphere S is then given by

Vq
S = {v ∈ L2(S) : v|κS = v̂ ◦ F−1

κS
, v̂ ∈ RqκS

(κ̂S) for all κS ∈ TS},

where Rk(κ̂S) = Pk(κ̂S) if κ̂S is a simplex and Rk(κ̂S) = Qk(κ̂S) if κ̂S is a
square; here Qk(κ̂S) denotes the space of tensor product polynomials on κ̂S of
degree k in each coordinate direction.

3.3 Energy discretisation

We first restrict the energy domain to be a finite interval by selecting mini-
mum and maximum energy cutoffs Emin and Emax, respectively. Due to the
assumption that the problem data is compactly supported in energy and the
assumption on the structure of the scattering kernel, these limits may be chosen
so that the analytical solution is compactly supported in energy; with a slight
abuse of notation we refer to E to be this restricted domain (Emin, Emax).

Then, for NE ≥ 1, let Emax = E0 > E1 > . . . > ENE−1 > ENE = Emin

define a partition of the energy domain of the problem into NE energy groups.
We will refer to the interval κg = (Eg, Eg−1) as energy group g, g = 1, . . . , NE,

and define TE = {κg}NE
g=1. To each energy group κg, g = 1, . . . , NE, we associate

a polynomial degree rg ≥ 0. Defining r = (rκg)
NE
g=1, we introduce the energy

finite element space

Vr
E = {v ∈ L2(Emin, Emax) : v|κg

∈ Prκg
(κg) for all κg ∈ TE}.
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3.4 Discontinuous Galerkin scheme

Employing the definitions introduced in the previous sections, we define the
full space-angle-energy mesh by

T = TΩ × TS × TE = {κ : κ = κΩ × κS × κg, κΩ ∈ TΩ , κS ∈ TS, κg ∈ TE}.

Over the mesh T, we combine the separate function spaces defined above to
obtain the discretisation space

Vp,q,r
h = Vp

Ω ⊗ Vq
S ⊗ Vr

E,

and, for any µ ∈ S, let Gµ,h = {v ∈ L2(Ω) : µ · ∇xv|κΩ
∈ L2(κΩ) for all κΩ ∈

TΩ} denote the broken spatial graph space.
We define the upwind transport bilinear form aEµ : Gµ,h × Gµ,h → R as

aEµ (w, v) =
∑

κΩ∈TΩ

ˆ
κΩ

(µ · ∇xwv + (α+ β)wv) dx

−
∑

κΩ∈TΩ

ˆ
∂−κΩ\∂Ω

(µ · nκΩ
)⌊w⌋v+ ds

−
∑

κΩ∈TΩ

ˆ
∂−κΩ∩∂Ω

(µ · nκΩ
)w+v+ ds,

and further define the scattering bilinear form sEµ : L2(D)× L2(Ω) → R and

load linear form ℓEµ : Gµ,h → R, respectively, by

sEµ (w, v) =

ˆ
Ω

S[w](x,µ, E)v dx,

and

ℓEµ (v) =

ˆ
Ω

fw dx−
∑

κΩ∈TΩ

ˆ
∂−κΩ∩∂Ω

(µ · nκΩ
)gDw ds.

Finally, we introduce the DGFEM: find uh ∈ Vp,q,r
h such that

b(uh, vh) ≡ a(uh, vh)− s(uh, vh) = ℓ(vh) (3)

for all vh ∈ Vp,q,r
h , where a, s : Vp,q,r

h × Vp,q,r
h → R and ℓ : Vp,q,r

h → R are
given, respectively, by

a(wh, vh) =

ˆ
E

ˆ
S
aEµ (wh, vh) dµ dE, s(wh, vh) =

ˆ
E

ˆ
S
sEµ (wh, vh) dµ dE,

ℓ(vh) =

ˆ
E

ˆ
S
ℓEµ (vh) dµ dE.

We note that this scheme is consistent in the sense that if the analytical solution
u to (1) is sufficiently smooth then

b(u, v) = ℓ(v)

for all v ∈ Vp,q,r
h .
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Remark 4 We note that when q = 0 and r = 0, i.e., when piecewise constant
polynomials are employed over the angular and energy meshes TS and TE,
respectively, then the proposed DGFEM scheme (3) is essentially equivalent to
employing a discrete ordinates approximation over the angular domain S, with
the multigroup approximation in the energy domain E, subject to a slightly
different treatment of the scattering operator, cf. [21], for example.

4 Inverse inequalities and approximation theory

In this section, we briefly outline the key technical results required to analyse
the DGFEM defined in (3); for further details, we refer to [10–12]. We first
introduce some assumptions on the polytopic spatial mesh TΩ .

Assumption 1 The subdivision TΩ is shape regular in the sense that there
exists a positive constant Cshape, independent of the mesh parameters, such
that:

∀κΩ ∈ TΩ ,
hκΩ

ρκΩ

≤ Cshape,

with ρκΩ
denoting the diameter of the largest ball contained in κΩ.

Assumption 2 There exists a positive constant CF , independent of the mesh
parameters, such that

max
κΩ∈TΩ

(card {F ∈ FΩ : F ⊂ ∂κΩ}) ≤ CF .

In order to state the following hp-version inverse estimates, proved in [10,
12], which are sharp with respect to (d − k)–dimensional, k = 1, . . . , d − 1,
element facet degeneration, we first recall the following definition.

Definition 1 Let T̃Ω denote the subset of elements κΩ ∈ TΩ which can each
be covered by at most mTΩ

shape-regular simplices Ki, i = 1, . . . ,mTΩ
, and

dist(κΩ , ∂Ki) > Cas diam(Ki)/p
2
κΩ

, with |Ki| ≥ cas|κΩ |

for all i = 1, . . . ,mTΩ
, for some mTΩ

∈ N and Cas, cas > 0, independent of κΩ

and TΩ , where pκΩ
denotes the polynomial degree associated with element κΩ ,

κΩ ∈ TΩ .

Next we recall the following definition from [10].

Definition 2 For each element κΩ ∈ TΩ, let FκΩ

♭ denote the family of all
possible d–dimensional simplices contained in κΩ and having at least one face in
common with κΩ . The notation κF

♭ will be used to indicate a simplex belonging
to FκΩ

♭ and sharing the face F with κΩ .
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With this definition, we introduce the mesh parameter h⊥
κΩ

defined by

h⊥
κΩ

:= min
F⊂∂κΩ

supκF
♭
⊂κΩ

|κF
♭ |

|F |
d ∀κΩ ∈ TΩ , d = 2, 3, (4)

and note that h⊥
κΩ

≤ hκΩ
. This enables us to recall the following inverse

inequality, cf. [11] (equation (5.23)).

Lemma 1 Let κΩ ∈ TΩ, F ⊂ ∂κΩ denote one of its faces. Then, for each
v ∈ Pp(κΩ), we have the inverse estimate

∥v∥2L2(F ) ≤ CF
inv

p2

h⊥
κΩ

∥v∥2L2(κΩ), (5)

where CF
inv is a positive constant, which depends on the shape regularity of the

covering of κΩ, if κΩ ∈ T̃Ω, but is independent of the discretisation parameters.

To state the H1 − L2 trace inequality, we need the following further as-
sumption.

Assumption 3 We assume that every polytopic element κΩ ∈ TΩ\T̃Ω, ad-
mits a sub-triangulation into at most nTΩ

shape-regular simplices si, i =
1, 2, . . . , nTΩ

, such that κ̄Ω = ∪nTΩ
i=1 s̄i and

|si| ≥ ĉ|κΩ |

for all i = 1, . . . , nTΩ
, for some nTΩ

∈ N and ĉ > 0, independent of κΩ and
TΩ.

Lemma 2 ([11] (Lemma 14)) Given Assumptions 1 and 3 are satisfied, for
each v ∈ Pp(κΩ), κΩ ∈ TΩ, the inverse estimate

∥∇xv∥2L2(κΩ) ≤ CκΩ

inv

p4

h2
κΩ

∥v∥2L2(κΩ), (6)

holds, with constant CκΩ

inv independent of the element diameter hκΩ
, the polyno-

mial order p, and the function v, but dependent on the shape regularity of the
covering of κΩ, if κΩ ∈ T̃Ω, or the sub-triangulation of κΩ, if κΩ ∈ TΩ\T̃Ω.

Furthermore we recall the following multiplicative trace inequality, see [12],
but written in a slightly different form, see [10].

Lemma 3 For v ∈ H1(κΩ), κΩ ∈ TΩ, given F ⊂ ∂κΩ, the following bound
holds

∥v∥2L2(F ) ≤
CT

h⊥
κΩ

(
∥v∥2L2(κΩ) + hκΩ

∥v∥L2(κΩ)∥∇xv∥L2(κΩ)

)
,

where CT is a positive constant which is independent of the element diameter
hκΩ

.
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We now turn our attention to deriving suitable hp–version approximation
results on each of the finite element spaces Vp

Ω , V
q
S and Vr

E. Starting with the
spatial finite element space Vp

Ω , we first introduce the following covering of the
mesh TΩ , see [12].

Definition 3 A (typically overlapping) covering T♯ = {K} related to the
polytopic mesh TΩ is a set of shape-regular d–simplices K, such that for each
κΩ ∈ TΩ, there exists a K ∈ T♯, with κΩ ⊂ K. Moreover, we assume there
exists a covering such that diam(K) ≤ Cdiamhκ, for each pair κΩ ∈ TΩ , K ∈ T♯,
with κΩ ⊂ K, for a constant Cdiam > 0, uniformly with respect to the meshsize.

Furthermore, we introduce the following extension operator from [44] (The-
orem 5) and [40] (Theorem 3).

Theorem 4 Let D be a domain with minimally smooth boundary. Then, there
exists a linear extension operator E : Hs(D) → Hs(Rd), s ∈ N0 ≡ {0, 1, 2, . . .},
such that Ev|D = v and

∥Ev∥Hs(Rd) ≤ CE∥v∥Hs(D),

where CE is a positive constant depending only on s and parameters which
characterize the boundary ∂D.

With this notation we recall the approximation result from [12] (Theo-
rem 4.2).

Lemma 4 Let κΩ ∈ TΩ and K ∈ T♯ denote the corresponding simplex such that
κΩ ⊂ K, cf. Definition 3. Suppose that v ∈ L2(Ω) is such that Ev|K ∈ H lκΩ (K),
for some lκΩ

≥ 0. Then, there exists ΠΩv, such that ΠΩv|κΩ
∈ PpκΩ

(κΩ), and
the following bound holds

∥v −ΠΩv∥Hm(κΩ) ≤ C
h
sκΩ

−m
κΩ

p
lκΩ

−m
κΩ

∥Ev∥HlκΩ (K), lκΩ
≥ 0, (7)

for 0 ≤ m ≤ lκΩ
. Here, sκΩ

= min{pκΩ
+ 1, lκΩ

} and C is a positive constant,
that depends on the shape-regularity of K, but is independent of v, hκΩ

, and
pκΩ

.

A careful inspection of the proof of Theorem 4 reveals that the constant
CE is independent of the measure of the underlying domain D, cf. [5]. Hence,
employing Theorem 4, the bound (7) given in Lemma 4 may be stated in the
following simplified form:

∥v −ΠΩv∥Hm(κΩ) ≤ C
h
sκΩ

−m
κΩ

p
lκΩ

−m
κΩ

∥v∥HlκΩ (κΩ), lκΩ
≥ 0, (8)

for 0 ≤ m ≤ lκΩ
, and therefore the condition placed on the amount of overlap

of the simplices K in [10–12] is not required.
To construct a projection operator onto the angular finite element space

Vq
S , some care is required to account for the curvature of S; for completeness

we recall the key steps. Under our assumptions on the mapping ϕS : Sh → S,
we first recall the following result from [4,17].
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Lemma 5 Let v ∈ Hj(κS), j ≥ 0; then writing ṽ = v ◦ ϕS, we have that

1

C
∥v∥L2(κS) ≤∥ṽ∥L2(κ̃S) ≤ C∥v∥L2(κS), and |ṽ|Hj(κ̃S) ≤ C∥v∥Hj(κS),

where C is a positive constant, which is independent of the meshsize hκS .

Employing hp–approximation results for standard shaped elements, we
recall the following result from [7,41].

Lemma 6 Suppose that K is a d–simplex or d–parallelepiped of diameter hK.
Suppose further that v|K ∈ H lK(K), lK ≥ 0. Then, there exists Π̂pK

v in RpK
(K),

pK = 1, 2, . . . , such that for 0 ≤ m ≤ lK,

∥v − Π̂pK
v∥Hm(K) ≤ C

hsK−m
K

plK−m
K

∥v∥HlK (K),

where sK = min{pK + 1, lK} and C is a positive constant, independent of v and
the discretisation parameters.

Equipped with Lemma 6, we introduce the projection operator ΠS by

ΠSv|κS = (Π̂qκS
v|κS ◦ ϕS) ◦ ϕ−1

S

for all κS ∈ TS. Hence, employing Lemmas 5 & 6, together with the definition
of ΠS we deduce the following result.

Lemma 7 Let κS ∈ TS, then given v|κS ∈ H lκS (κS), for some lκS ≥ 0, the
following bound holds

∥v −ΠSv∥L2(κS)
≤ C

h
sκS
κS

q
lκS
κS

∥v∥
HlκS (κS)

, lκS ≥ 0,

where sκS = min{qκS + 1, lκS} and C is a positive constant, that depends on the
shape-regularity of κS, but is independent of v, hκS , and qκS .

For approximation with respect to energy, we simply define the projection
operator ΠE by ΠEv|κg

= Π̂rκg
v|κg

, for g = 1, . . . , NE. Collecting these three

projection operators, we define Π : L2(D) → Vp,q,r
h by Π = ΠΩΠSΠE. With

this notation we state the following approximation result for the projection
operator Π.

Lemma 8 Let κ ∈ T such that κ = κΩ × κS × κg, κΩ ∈ TΩ, κS ∈ TS, κg ∈ TE,
then given v|κ ∈ H lκ(κ), lκ ≥ 0, the following bound holds

∥v −Πv∥2L2(κ)
≤ C

(
h
2sκΩ
κΩ

p2lκκΩ

+
h
2sκS
κS

q2lκκS

+
h
2sκg
κg

r2lκκg

)
∥v∥2Hlκ (κ). (9)
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Furthermore, assuming v|κ ∈ H lκ(κ) ∪H1(κΩ ;H
lκ(κS × κg)), lκ ≥ 1, we have

that

∥∇x(v −Πv)∥2L2(κ)
≤ C

(
h
2sκΩ

−2
κΩ

p2lκ−2
κΩ

∥v∥2Hlκ (κ)

+

(
h
2sκS
κS

q2lκκS

+
h
2sκg
κg

r2lκκg

)
∥∇xv∥2L2(κΩ ;Hlκ (κS×κg))

)
, (10)

and ˆ
κg

ˆ
κS

∥v −Πv∥2L2(∂κΩ) dµ dE

≤ C

(
1

h⊥
κΩ

(
h
2sκΩ
κΩ

p2lκ−2
κΩ

+
h
2sκS
κS

q2lκκS

+
h
2sκg
κg

r2lκκg

)
∥v∥2Hlκ (κ)

+
h2
κΩ

h⊥
κΩ

(
h
2sκS
κS

q2lκκS

+
h
2sκg
κg

r2lκκg

)
∥∇xv∥2L2(κΩ ;Hlκ (κS×κg))

)
. (11)

Here, sκΩ
= min(pκΩ

+ 1, lκ), sκS = min(qκS + 1, lκ), sκg = min(rκg + 1, lκ),
and C is a positive constant that depends on the shape regularity of the element
κ, but is independent of the mesh parameters.

Proof We start by first writing the projection error in the form

v −Πv = v −ΠEv +ΠE(v −ΠSv) +ΠEΠS(v −ΠΩv).

Then (9) follows immediately upon application of the triangle inequality,
employing the L2-stability of ΠE and ΠS, and the approximation results stated
in Lemma 4, cf. (8), Lemma 6 and Lemma 7. The proof of (10) follows in an
analogous fashion. To derive (11), we first employ the trace inequality stated
in Lemma 3, together with (9) and (10).

5 Stability and convergence of the discrete scheme

In this section we study the stability and convergence of the DGFEM (3). To
this end, we introduce the DGFEM-energy norm

|||v|||2DG =∥
√
c v∥2L2(D)

+
1

2

ˆ
E

ˆ
S

∑
κΩ∈TΩ

(
∥v+ − v−∥2∂−κΩ\∂Ω + ∥v+∥2∂κΩ∩∂Ω

)
dµ dE, (12)

where ∥ · ∥ω, ω ⊂ ∂κΩ , denotes the (semi)norm associated with the (semi)inner
product (v, w)ω =

´
ω
|µ · nκΩ

|vw ds, and define streamline norm

|||v|||2s = |||v|||2DG +

ˆ
E

ˆ
S

∑
κΩ∈TΩ

τκΩ
∥µ · ∇xv∥2L2(κΩ) dµ dE.
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Furthermore, for κΩ ∈ TΩ , we define

τκΩ
=

h⊥
κΩ

p2κΩ

.

Firstly, we state the following coercivity bound.

Theorem 5 (Coercivity) The DGFEM (3) is coercive with respect to the
DGFEM-energy norm |||·|||DG in the sense that the following bound holds:

b(v, v) ≥ |||v|||2DG

for all v ∈ Vp,q,r
h .

Proof Integrating by parts and rearranging the face terms, the transport
bilinear form satisfies

aEµ (v, v) = ∥(α+ β)1/2v∥
2

L2(Ω) +
1

2

∑
κΩ∈TΩ

(
∥v+ − v−∥2∂−κΩ\∂Ω + ∥v+∥2∂κΩ∩∂Ω

)
,

as shown in [24]. Recalling that β(x,µ, E) =
´
E
´
S θ(x,µ · η, E → E′) dη dE′

and γ(x,µ, E) =
´
E
´
S θ(x,µ · η, E′ → E) dη dE′, employing the Cauchy-

Schwarz inequality implies that the scattering term may be bounded by

s(v, v) =

ˆ
E

ˆ
S

ˆ
E

ˆ
S

ˆ
Ω

θ(x,µ · η, E′ → E)v(x,η, E′)v(x,µ, E) dx dη dE′ dµ dE

≤ ∥β1/2v∥L2(D)∥γ
1/2v∥L2(D) ≤

1

2
∥β1/2v∥2L2(D) +

1

2
∥γ1/2v∥2L2(D).

The result then follows by combining these bounds with the definition of c in
(2).

We now derive an inf-sup stability result in the streamline norm |||·|||s.

Theorem 6 (Inf-sup stability) Given that Assumptions 1, 2, and 3 hold,
then the DGFEM (3) is inf-sup stable in the streamline norm, i.e., there exists
a constant Λ > 0, independent of discretisation parameters, such that

inf
v∈Vp,q,r

h \{0}
sup

w∈Vp,q,r
h \{0}

b(v, w)

|||v|||s|||w|||s
≥ Λ.

Proof The proof follows a standard form for inf-sup results, and is similar to
the argument presented in [10] for a scalar advection problem, adapted to the
Boltzmann setting. To this end, we construct a function w ∈ Vp,q,r

h for each

v ∈ Vp,q,r
h such that |||w|||s ≤ Λ1|||v|||s and b(v, w) ≥ Λ2|||v|||2s. The result then

follows with Λ = Λ2/Λ1.
Let w(x,µ, E) = v(x,µ, E) + δvs(x,µ, E) where δ > 0 is a constant which

will be determined, depending only on the problem data, and vs(x,µ, E)|κΩ
=

τκΩ
µ · ∇xv(x,µ, E) on each spatial element κΩ ∈ TΩ. To prove that there
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exists C > 0 such that |||w|||s ≤ C|||v|||s, we apply the triangle inequality to
find

|||w|||s ≤ |||v|||s + δ|||vs|||s,
and bound each term of |||vs|||s by |||v|||s individually. Observing that |µ| = 1,
upon application of the inverse inequality stated in Lemma 2, recalling the
definition of τκΩ

and noting that h⊥
κΩ

≤ hκΩ
, we deduce that

∥
√
cvs∥2L2(D) =

ˆ
E

ˆ
S

∑
κΩ∈TΩ

τ2κΩ
∥
√
cµ · ∇xv∥

2

L2(κΩ) dµ dE

≤
CκΩ

inv∥c∥L∞(D)

c0
∥
√
cv∥2L2(D).

Similarly, we haveˆ
E

ˆ
S

∑
κΩ∈TΩ

τκΩ
∥µ · ∇xvs∥2L2(κΩ) dµ dE

≤ CκΩ

inv

ˆ
E

ˆ
S

∑
κΩ∈TΩ

τκΩ
∥µ · ∇xv∥2L2(κΩ) dµ dE.

We now consider the face terms arising in the definition of the streamline
norm |||·|||s. Noting that |µ · nκΩ

| ≤ 1, applying the inverse inequality stated
in Lemma 1 gives

1

2

ˆ
E

ˆ
S

∑
κΩ∈TΩ

(
∥v+s − v−s ∥2∂−κΩ\∂Ω + ∥v+s ∥2∂κΩ∩∂Ω

)
dµ dE

≤
ˆ
E

ˆ
S

∑
κΩ∈TΩ

∑
F⊂∂κΩ

∥v+s ∥2L2(F ) dµ dE ≤ CF
invCF |||v|||2s.

Since the terms resulting from these bounds are components of |||·|||s, it follows
that

|||w|||s ≤ Λ1|||v|||s with Λ1 = 1 + δ
(
CκΩ

inv

(
1 +

∥c∥L∞(D)

c0

)
+ CF

invCF

)1/2
.

We now show that b(v, w) ≥ Λ2|||v|||2s. By linearity and the coercivity bound
stated in Theorem 5, we deduce that

b(v, w) = b(v, v) + δb(v, vs) ≥ |||v|||2DG + δ(a(v, vs)− s(v, vs)), (13)

and expanding the second term on the right-hand side of (13) gives

a(v, vs) =

ˆ
E

ˆ
S

∑
κΩ∈TΩ

τκΩ

(
∥µ · ∇xv∥2L2(κΩ) +

ˆ
κΩ

(α+ β)(µ · ∇xv)v dx

−
ˆ
∂−κΩ\∂Ω

(µ · nκΩ
)⌊v⌋µ · ∇xv

+ ds

−
ˆ
∂−κΩ∩∂Ω

(µ · nκΩ
)v+µ · ∇xv

+ ds
)
dµ dE

≡ I + II + III + IV.
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Term I is already in the required form; employing Lemma 2, Term II may be
bounded as follows:

|II| ≤ ∥α+ β∥L∞(D)

ˆ
E

ˆ
S

∑
κΩ∈TΩ

τκΩ
∥µ · ∇xv∥L2(κΩ)∥v∥L2(κΩ) dµ dE

≤ (CκΩ

inv )
1/2

∥α+ β∥L∞(D)

c0
∥
√
cv∥2L2(D).

We now consider the face terms present in terms III and IV; employing the
inverse inequality in Lemma 1 together with Young’s inequality, we deduce
that

|III + IV| ≤
ˆ
E

ˆ
S

∑
κΩ∈TΩ

(
C2

FC
F
inv

(
∥v+−v−∥2∂−κΩ\∂Ω + ∥v+∥2∂κΩ∩∂Ω

)
+

τκΩ

4
∥µ · ∇xv∥2L2(Ω)

)
dµ dE.

Finally, we bound the scattering term; recalling the definition of β and γ,
employing the Cauchy-Schwarz inequality and Lemma 2 gives

s(v, vs) =
∑

κΩ∈TΩ

τκΩ

×
ˆ
κΩ

ˆ
E

ˆ
S

ˆ
E

ˆ
S
θ(x,µ · η, E′ → E)v(x,η, E′)µ · ∇xv(x,µ, E) dη dE′ dµ dE dx

≤
( ˆ

Ω

ˆ
E

ˆ
S
βv2 dµ dE dx

)1/2( ∑
κΩ∈TΩ

τ2κΩ

ˆ
κΩ

ˆ
E

ˆ
S
γ(µ · ∇xv)

2 dµ dE dx
)1/2

≤ (CκΩ

inv )
1/2

∥β∥1/2
L∞(D)∥γ∥

1/2
L∞(D)

c0
∥
√
cv∥2L2(D).

Combining the individual estimates above, we deduce that

b(v, w) ≥
ˆ
E

ˆ
S

∑
κΩ∈TΩ

(
C1∥

√
cv∥2L2(κΩ) + C2

(
∥v+ − v−∥2∂−κΩ\∂Ω + ∥v+∥2∂κΩ∩∂Ω

)
+

3δ

4
τκΩ

∥µ · ∇xv∥2L2(κΩ)

)
dµ dE.

where

C1 = 1− δ (CκΩ

inv )
1/2

∥α+ β∥L∞(D)

c0
− δ (CκΩ

inv )
1/2

∥β∥1/2
L∞(D)∥γ∥

1/2
L∞(D)

c0
,

and C2 = 1
2 − δC2

FC
F
inv. Setting Λ2 = min

{
3δ
4 , C1, C2

}
which is positive for

0 < δ < min

 c0

(CκΩ

inv )
1/2 (∥α+ β∥L∞(D) + ∥β∥1/2

L∞(D)∥γ∥
1/2
L∞(D)

) , 1

2C2
FC

F
inv

 ,

we conclude that b(v, w) ≥ Λ2|||v|||2s and the result follows.
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Finally, we state the main result of this paper in the following theorem.

Theorem 7 (Convergence in the streamline norm) Given the mesh T
defined over the space-angle-energy domain D, we assume that the spatial
polytopic mesh TΩ satisfies Assumptions 1, 2, and 3. Let uh ∈ Vp,q,r

h denote
the DGFEM approximation satisfying (3), let u ∈ H1(D) denote the solution of
the problem (1) and suppose that u|κ ∈ H lκ(κ)∪H1(κΩ ;H lκ(κS ×κg)), lκ > 1.
Then it follows that

|||u− uh|||2s ≤ C
∑
κ∈T

(
h
2sκΩ
κΩ

p2lκκΩ

(
Lκ(α, β, γ) +

1

h⊥
κΩ

(1 + p2κΩ
) +

h⊥
κΩ

h2
κΩ

)
∥u∥2Hlκ (κ)

+

(
h
2sκS
κS

q2lκκS

+
h
2sκg
κg

r2lκκg

)((
Lκ(α, β, γ) +

1

h⊥
κΩ

)
∥u∥2Hlκ (κ)

+

(
h2
κΩ

h⊥
κΩ

+
h⊥
κΩ

p2κΩ

)
∥u∥2H1(κΩ ;Hlκ (κS×κg))

))
,

where

Lκ(α, β, γ) = ∥c∥L∞(κ) + (∥α+ β∥2L∞(κ) + ∥β∥L∞(κ)∥γ∥L∞(κ))c
−1
0 ,

sκΩ
= min(pκΩ

+ 1, lκ), sκS = min(qκS + 1, lκ), sκg = min(rκg + 1, lκ) and C
is a positive constant which is independent of the discretization parameters.

Proof The triangle inequality implies that

|||u− uh|||s ≤ |||u−Πu|||s + |||Πu− uh|||s, (14)

where Π denotes the projection operator defined in Section 4. Exploiting the
approximation results derived in Lemma 6, the first term on the right-hand
side of (14) can be bounded as follows:

|||u−Πu|||2s ≤ C
∑
κ∈T

Mκ∥u∥2Hlκ (κ) + Tκ

(
h2
κΩ

h⊥
κΩ

+
h⊥
κΩ

p2κΩ

)
∥u∥2H1(κΩ ;Hlκ (κS×κg))

,

(15)

where

Tκ =
h
2sκS
κS

q2lκκS

+
h
2sκg
κg

r2lκκg

,

and

Mκ =
h
2sκΩ
κΩ

p2lκκΩ

(
∥c∥L∞(κ) +

1

h⊥
κΩ

(1 + p2κΩ
) +

h⊥
κΩ

h2
κΩ

)
+ Tκ

(
∥c∥L∞(κ) +

1

h⊥
κΩ

)
.

Recalling the inf-sup bound derived in Theorem 6 and employing Galerkin
orthogonality, the second term on the right-hand side of (14) can be bounded
by

|||Πu− uh|||s ≤
1

Λ
sup

w∈Vp,q,r
h \{0}

b(u−Πu,w)

|||w|||s
. (16)
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We proceed by estimating the individual terms arising in b(u−Πu,w). Writing
uΠ = u−Πu and integrating by parts elementwise gives

aEµ (uΠ , w)

=
∑

κΩ∈TΩ

(ˆ
κΩ

((α+ β)uΠw − uΠµ · ∇xw) dx

+

ˆ
∂−κΩ\∂Ω

(µ · nκΩ
)⌊w⌋u−

Π ds−
ˆ
∂+κΩ∩∂Ω

(µ · nκΩ
)u+

Πw+ ds

)
.

The Cauchy-Schwarz inequality therefore implies that

aEµ (uΠ , w)

≤
∑

κΩ∈TΩ

(∥α+ β∥L∞(κΩ)√
c0

∥uΠ∥L2(κΩ)∥
√
cw∥L2(κΩ) + ∥u+

Π∥∂+κΩ∩∂Ω∥w
+∥∂+κΩ∩∂Ω

+ ∥τ−1/2
κΩ

uΠ∥
L2(κΩ)

∥τ 1/2
κΩ

µ · ∇xw∥L2(κΩ)
+ ∥u−

Π∥∂−κΩ\∂Ω∥w
+ − w−∥∂−κΩ\∂Ω

)
and, applying the Cauchy-Schwarz inequality once again gives

aEµ (uΠ , w) ≤
( ∑

κΩ∈TΩ

((∥α+ β∥2L∞(κΩ)

c0
+

1

τκΩ

)
∥uΠ∥2L2(κΩ)

+2∥u−
Π∥2∂−κΩ\∂Ω+2∥u+

Π∥2∂+κΩ∩∂Ω

)) 1
2

×
( ∑

κΩ∈TΩ

(
∥
√
cw∥2L2(κΩ) + τκΩ

∥µ · ∇xw∥2L2(κΩ)

+
1

2
∥w+ − w−∥2∂−κΩ\∂Ω +

1

2
∥w+∥2∂+κΩ∩∂Ω

)) 1
2

.

Hence, integrating over energy and angle, and applying the Cauchy-Schwarz
inequality and Lemma 6, we deduce that

a(uΠ , w) ≤ C

(∑
κ∈T

(
h
2sκΩ
κΩ

p2lκκΩ

(
∥α+ β∥2L∞(κ)

c0
+

1

h⊥
κΩ

(1 + p2κΩ
)

)
∥u∥2Hlκ (κ)

+

(
h
2sκS
κS

q2lκκS

+
h
2sκg
κg

r2lκκg

)((
∥α+ β∥2L∞(κ)

c0
+

1

h⊥
κΩ

)
∥u∥2Hlκ (κ)

+
h2
κΩ

h⊥
κΩ

∥u∥2H1(κΩ ;Hlκ (κS×κg))

)))1/2

|||w|||s.
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Finally, we consider the scattering term; applying the Cauchy-Schwarz inequal-
ity, recalling the definition of β and γ, and using Lemma 6 gives

s(uΠ , w)

≤ C

(∑
κ∈T

∥β∥L∞(κ)∥γ∥L∞(κ)

c0

(
h
2sκΩ
κΩ

p2lκκΩ

+
h
2sκS
κS

q2lκκS

+
h
2sκg
κg

r2lκκg

)
∥u∥2Hlκ (κ)

)1/2

∥
√
cw∥L2(D).

The result then follows by inserting the above bounds into (16) and using (15).

Remark 5 (p-suboptimality of Theorem 7) Let hκ = diam(κΩ), κ ∈ T, and
h = maxκ∈T hκ, and suppose we have a uniform polynomial degree for all
elements, so pκΩ

= p for all κΩ ∈ TΩ, qκS = p for all κS ∈ TS, rκg
= p for all

κg ∈ TE. Assume that we also have a uniform smoothness degree sκ = s for all
κ ∈ T, s = min(p+1, l), l ≥ 1, and that the diameter of the spatial faces of each
element κΩ ∈ TΩ is of comparable size to the diameter of the corresponding
element, i.e., so that h⊥

κΩ
∼ hκΩ

. Then, the a priori bound stated in Theorem 7
yields

|||u− uh|||s ∼ O
(
hs−1/2

pl−1

)
,

as h → 0 and p → ∞. This bound is optimal with respect to the meshsize h, but
suboptimal in the polynomial degree p by half an order, cf. the corresponding
result derived in [10] for the DGFEM approximation of the linear transport
problem on (spatial) polytopic meshes.

6 Efficient implementation as a multigroup discrete ordinates
scheme

The numerical method (3) introduced above can be implemented in the frame-
work of a multigroup discrete ordinates scheme. Although at first sight it appears
that the method fully couples the space, angle and energy unknowns, we show
that, through a judicious choice of basis functions and element quadrature
schemes, it is possible to evaluate the DGFEM solution by simply computing a
sequence of linear transport problems in the d spatial variables. More precisely,
we select (tensor-product) Gauss-Legendre quadrature points for angle and
energy. This allows, on the reference element, exact integration of the bilinear
form a(·, ·) generated by the (tensor product) polynomial basis elements which
satisfy the Lagrangian property at the quadrature points. The Lagrangian prop-
erty of the basis functions allows us to eliminate coupling between quadrature
points, while retaining the same order of convergence of the underlying scheme.
To this end, we first consider the multigroup approximation in energy before
outlining the angular implementation. For further details, we refer to [47].
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6.1 Multigroup implementation in energy

We first show how the energy dependence of the problem may be decoupled. If
we had perfect knowledge of the function

u+(x,µ, E) =

{
u(x,µ, E) for E > Ê,

0 otherwise,

for some Ê > 0, then the assumption that the scattering kernel satisfies
θ(x,η · µ, E′ → E) = 0 for E′ < E, would imply that û(x,µ) ≡ u(x,µ, Ê)
satisfies the monoenergetic radiation transport problem: find û : Ω × S → R
such that

µ · ∇xû(x,µ) + (α(x,µ, Ê) + β(x,µ, Ê))û(x,µ) = S[u+](x,µ, Ê)

+ f(x,µ, Ê) in D,

û(x,µ) = g(x,µ, Ê) on Γin.

This is the observation underpinning the standard multigroup discretisation: in
the discrete setting, we first solve for the fluence in the highest energy group
(corresponding to g = 1) and then subsequently for each lower energy group in
turn. Recalling that κg = (Eg, Eg−1) denotes the gth energy group, 1 ≤ g ≤ NE,
we therefore introduce the following family of energy cutoff functions:

u+
g (x,µ, E) =

{
uh(x,µ, E) for E ≥ Eg−1,

0 otherwise,

which represents the component of the discrete fluence which may be considered
as pre-computed ‘data’ when solving for the fluence in group κg, and focus on
solving the problem in a single energy group κg, 1 ≤ g ≤ NE.

We expand uh in group κg in terms of energy basis functions as

uh(x,µ, E)|κg ≡ ug(x,µ, E) =

rκg+1∑
j=1

uj
g(x,µ)φ

j
g(E),

where uj
g ∈ Vp,q

Ω,S = Vp
Ω ⊗Vq

S , j = 1, 2, . . . , rκg +1, and {φj
g}

rκg+1

j=1 forms a basis

of Prκg
(κg) (which is only supported on κg). Selecting vh = vgφ

i
g ∈ Vp,q,r

h ,

with vg ∈ Vp,q
Ω,S, i = 1, 2, . . . , rκg

+ 1, the fluence in group κg may then be

computed by solving: find
{
ui
g

}rκg+1

i=1
∈ Vp,q

Ω,S such that

rκg+1∑
j=1

(ˆ
κg

ˆ
S
aEµ (u

j
g, vg)φ

j
gφ

i
g dµ dE − s(uj

gφ
j
g, vgφ

i
g)

)
= s(u+

g , vgφ
i
g) + ℓ(vgφ

i
g)

(17)

for all vg ∈ Vp,q
Ω,S and i = 1, 2, . . . , rκg

+ 1.
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Currently, this takes the form of a fully coupled system of monoenergetic
Boltzmann transport problems for the rκg+1 unknowns within the energy group

κg. To simplify this structure, let {Eq
g}

rκg+1

q=1 ⊂ κg denote the rκg
+ 1 Gauss-

Legendre quadrature points on κg with associated weights {ωq
g}

rκg+1

q=1 ⊂ R≥0.

We then select the basis functions {φi
g}

rκg+1

i=1 to be the unique set of polynomials

which satisfy the Lagrangian property φi
g(E

j
g) = δij , i, j = 1, 2, . . . , rκg

+ 1,
where δij denotes the Kronecker delta. This quadrature is exact for polynomials
of degree 2rκg

+1, and so we use it to evaluate the (energy) integrals present in

the bilinear form aEµ (·, ·), meaning we replace (17) with: find
{
uj
g

}rκg+1

j=1
∈ Vp,q

Ω,S
such that

ωi
g

ˆ
S
a
Ei

g
µ (ui

g, vg) dµ−
rκg+1∑
j=1

s(uj
gφ

j
g, vgφ

i
g) = s(u+

g , vgφ
i
g) + ℓ(vgφ

i
g) (18)

for all vg ∈ Vp,q
Ω,S and i = 1, 2, . . . , rκg + 1. Here, a

Ei
g

µ (·, ·) is defined analogously

to aEµ (·, ·) with the coefficient data α and β evaluated at the energy quadrature

point Ei
g, i = 1, 2, . . . , rκg

+ 1. Furthermore, with a slight abuse of notation we

have written
{
ui
g

}rκg+1

i=1
to also denote the solution of (18), though we stress

that (18) is an approximation of (17)1.
We have not applied the above quadrature scheme in energy to the forcing

and scattering terms, since in applications it is usually preferable to treat these
terms separately. Instead, we express the scattering term in an alternative form.
For w, v ∈ Vp,q

Ω,S, we define

sj,ig′,g(w, v) =

ˆ
S

ˆ
Ω

ˆ
S
Θj,i

g′,g(x,η · µ)w(x,η)v(x,µ) dη dx dµ,

where

Θj,i
g′,g(x,η · µ) =

ˆ
κg

ˆ
κg′

θ(x,η · µ, E′ → E)φi
g(E)φj

g′(E
′) dE′ dE,

for g, g′ = 1, 2, . . . , NE , i = 1, 2, . . . , rκg + 1, and j = 1, 2, . . . , rκg′ + 1. With
this notation (18) may be rewritten in the following equivalent form: find{
uj
g

}rκg+1

j=1
∈ Vp,q

Ω,S satisfying the discrete monoenergetic radiation transport

problem

ωi
g

ˆ
S
a
Ei

g
µ (uj

g, vg) dµ−
rκg+1∑
j=1

sj,ig,g(u
j
g, vg) =

g−1∑
g′=1

rκ
g′

+1∑
j=1

sj,ig′,g(u
j
g′ , vg) + ℓ(vgφ

i
g)

(19)

1 This quadrature scheme exactly evaluates the integral when the problem data is indepen-
dent of energy, otherwise it is an approximation which may be expected to be of higher order
than the scheme itself when the problem data is sufficiently smooth; see [15], for example,
for a detailed discussion of the role of quadrature in finite element discretisations.
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for all vg ∈ Vp,q
Ω,S and i = 1, 2, . . . , rκg + 1. This yields a system of rκg + 1

monoenergetic radiation transport problems to solve within each energy group,
which are only coupled through the scattering operator. Moreover, the assumed
structure of the scattering kernel implies that the problems within a given
energy group depend only on the solutions within the same group and from
higher energy groups.

6.2 Discrete ordinates implementation in angle

We now focus on solving the monoenergetic radiation transport problem (19)
for a single energy group g, g = 1, 2, . . . , NE , and energy basis function φi

g,
i = 1, 2, . . . , rκg

+1. To simplify the presentation in this section, we will use uh

to denote ui
g for an arbitrary g and i, and write (19) in the following simplified

form: find uh ∈ Vp,q
Ω,S such that

ˆ
S
aµ(uh, v) dµ− s̃(uh, v) = ℓ̃(v) (20)

for all v ∈ Vp,q
Ω,S, where

aµ(v, w) = ωi
ga

Ei
g

µ (v, w), s̃(v, w) =

rκg+1∑
j=1

sj,ig,g(v, w),

ℓ̃(v) =

g−1∑
g′=1

rκ
g′

+1∑
j=1

sj,ig′,g(u
j
g′ , v) + ℓ(vφi

g)

for some (fixed) g, g = 1, 2, . . . , NE , and some (fixed) i, i = 1, 2, . . . , rκg
+ 1.

For simplicity, we discuss the scheme in the context of the widely-used
framework of source iteration, although similar simplifications may be incorpo-
rated into other linear solvers; indeed, source iteration may be effectively used
as a preconditioner within a GMRES solver, for example, see [39].

We may express the problem (20) in the following equivalent matrix form:
find the vector U ∈ RN of coefficients with respect to a basis of Vp,q

Ω,S such that

AU − SU = F (21)

where A,S ∈ RN×N and F ∈ RN denote the matrix representation of the
streaming and scattering operators and load term, respectively. Source iteration
simply refers to the technique of solving this linear system using the Richardson
iteration: given U0 ∈ RN , find Ur ∈ RN such that

AUr = SUr−1 + F, (22)

for r = 1, 2, . . .. It may be shown that this iteration converges to the solution
of (21) under certain assumptions on the problem data. The advantage of this
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approach is that it avoids inverting the scattering matrix, which is typically
dense and highly coupled in angle.

To investigate the structure of the matrix A, we introduce the following
notation: for an angular element κS, κS ∈ TS, we define the local element

basis by {φi
κS
}|qκS |
i=1 , where |qκS | denotes the dimension of the polynomial space

defined on κS. Furthermore, write Vp
Ω = span{φi

Ω}
NΩ
i=1, NΩ = dim(Vp

Ω). Then,
noting that the underlying DGFEM does not contain any communication terms
between different angular elements, the matrix A has the natural nested block
structure

A =



D1 0
0 D2 0

0
. . .

. . . 0
0 D|TS|

 , with Dn =


Dn

1,1 . . . Dn
1,|qκS |

...
. . .

...
Dn

|qκS |,1
. . . Dn

|qκS |,|qκS |

 ,

where |TS| = card(TS) and, for n = 1, 2, . . . , |TS|,Dn
i,j =

´
κS

φi
κS
(µ)φj

κS
(µ)Aµ dµ,

i, j = 1, 2, . . . , |qκS |, where Aµ ∈ RNΩ×NΩ , with (Aµ)i,j = aµ(ϕ
j
Ω , ϕ

i
Ω), i, j =

1, 2, . . . , NΩ . Solving (22) therefore requires inverting each diagonal block Dn,
n = 1, 2, . . . , |TS|, which corresponds to solving a coupled system of spatial
transport problems on each angular element.

By working once again as in Section 6.1, this algorithm can be made
significantly more efficient. To enable this, we restrict the angular mesh to
only consist of tensor-product elements, with local element spaces consisting of
tensor-product polynomials. We can therefore define a basis on each angular
element κS ∈ TS which satisfies the Lagrangian property with respect to a
tensor-product Gauss-Legendre quadrature scheme, simply by using the tensor
product of the 1D bases constructed above for the energy discretisation. Given

the reference element κ̂S, let {(µ̂q, ω̂q)}
|qκS |
q=1 (where |qκS | = (qκS +1)d−1) denote

the tensor-product Gauss-Legendre quadrature scheme with qκS + 1 points in
each direction. As in the 1D case, this scheme exactly integrates polynomials
in the space Q2qκS+1(κ̂S).

On the reference element κ̂S, let {φ̂i}
|qκS |
i=1 denote the Lagrangian basis for

QqκS
(κ̂S) constructed with respect to the Gauss-Legendre quadrature points µ̂q,

q = 1, 2, . . . , |qκS |, which uniquely satisfies φ̂i(µ̂j) = δij , i, j = 1, 2, . . . , |qκS |. On
each angular element κS, κS ∈ TS, we map the local basis defined on the reference
element to κS based on employing the mapping FκS ; more precisely, this yields

the local basis {φi
κS

= φ̂i◦F−1
κS

}|qκS |
i=1 on κS. Furthermore, the quadrature scheme

on κS, κS ∈ TS, is given by (µq, ωq)
|qκS |
q=1 , where µq = FκS(µ̂q), ωq = ω̂qJ (µ̂q),

q = 1, 2, . . . , |qκS |, and J denotes the square root of the determinant of the
first fundamental form of the mapping FκS . Hence, the mapped basis retains
the Lagrangian property of the reference basis.

Using this quadrature to approximate the angular integrals in the first term
on the left-hand side of (20), corresponding to the streaming operator, we
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deduce that

Dn ≈


ω1Aµ1 0

0 ω2Aµ2

. . .

. . .
. . . 0
0 ω|qκS |AµN|qκS |

.


Consequently, with this approximation A becomes a block diagonal matrix
formed from block diagonal matrices where the individual blocks correspond
to a single spatial transport problem. Solving the source iteration system (22)
therefore only requires the numerical solution of a set of independent spatial
transport problems, one for each angular quadrature point, which may be
performed in parallel.

Remark 6 We point out that similar ideas have also been exploited in [25,32,33],
for example, to develop high-order discrete ordinates schemes, though there are
a number of key differences in terms of the general methodology adopted here.
Most notably, in this article we start from a variational framework, rather than
directly considering a collocation method. Moreover, our basis functions are
built from local mappings from a (d− 1)-dimensional reference element rather
than piecewise spherical harmonics on the sphere. Although the philosophy
of constructing interlinked basis functions and quadrature sets is similar, the
Gaussian rules used here allow the method to be seamlessly interpreted as being
both collocation-type (enabling an efficient discrete ordinates implementation)
and variational (facilitating the stability analysis of Theorem 6 and the error
estimates of Theorem 7). To the best of our knowledge, analogous quadrature
sets are not available for general order piecewise spherical harmonic basis
functions.

6.3 Full algorithm

Combining the multigroup energy discretisation and the discrete ordinates
angle discretisation described above, we arrive at the efficient algorithm for
solving the problem presented in Algorithm 1. Here, we require a function
GaussLegendre(ω,k + 1) which provides the set of points within the one- or
two-dimensional element ω consisting of k + 1 points in each dimension, or the
mapped analogue for an element on the spherical surface. The function weight

is then used to obtain the quadrature weight associated with a given quadrature
point. The notation parfor indicates a for loop where the individual iterations
are independent of one another and may therefore be performed simultaneously
and in parallel.

We associate a solution vector Uµ,E , containing degrees of freedom with

respect to the basis {ϕi
Ω}

NΩ
i=1 of Vp

Ω , with each pair of angular quadrature points
µ and energy quadrature points E in the natural manner described above. The
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Algorithm 1 High order multigroup discrete ordinates implementation of the
DGFEM scheme

inputs:


Energy, angle and space meshes: TE, TS, TΩ ,

Polynomial degree vectors: r,q,p

Source and boundary data: f, g,

Number of source iterations: N ≥ 1

initialise solution vectors U0
µm,El

= 0 ∈ RNΩ for each angle and energy quadrature point

µm and El

for energy group κg with g ∈ {1, . . . , NE} do
for source iteration t ∈ {1, . . . , N} do

parfor energy quadrature points El ∈ GaussLegendre(κg,rκg + 1) do
parfor angular quadrature points µm ∈

⋃
κS∈TS

GaussLegendre(κS,qκS + 1) do

Evaluate the scattering operator SE
µ ∈ RNΩ :

(SE
µ )i = s(ut−1

h , φi
Ωφl

gφ
m
κS )

end parfor
end parfor
parfor energy quadrature points El ∈ GaussLegendre(κg,rκg + 1) do

parfor angular quadrature points µm ∈
⋃

κS∈TS
GaussLegendre(κS,qκS + 1) do

Assemble:

transport matrix AE
µ ∈ RNΩ×NΩ with (AE

µ )i,j = aEµ (φi
Ω , φj

Ω),

source vector FE
µ ∈ RNΩ with (FE

µ )i = ℓEµ (φi
Ωφl

gφ
m
κS ).

Solve for Ut
µ,E satisfying:

AE
µUt

µm,El
= weight(E)−1weight(µ)−1(FE

µ + SE
µ )

end parfor
end parfor

end for
end for
return angular flux vectors Ut

µm,El
for each µm, El

DGFEM solution uh is therefore obtained by summing these solution vectors
weighted by the space, angle and energy basis functions.

The general structure of the algorithm is to iterate through energy groups
in order of decreasing energy, and apply the discrete ordinates algorithm within
each group. We note that the solutions associated with all of the energy basis
functions in a given energy group are necessarily coupled together through the
scattering operator. This coupling is quite weak, however, and source iteration
reduces this to alternating between two algorithmic steps. First, the scattering
operator is evaluated (using the current solution within the energy group and
the previously obtained solution from higher energy groups), which may be
performed in parallel. Second, we solve the spatial transport problem associated
with each angle and energy quadrature point. Again, these are independent
problems which may be performed in parallel.

We note that this algorithm could be made more efficient by splitting up the
evaluation of the scattering operator into intragroup and intergroup components
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as in (19), although we do not pursue this here to keep the presentation of the
algorithm as simple as possible.

Remark 7 The convergence analysis of the source iteration linear solver outlined
here is analysed in our recent article [23]. Furthermore, in [23], we also study
a modified source iteration solver for mono-energetic solvers, as well as a
preconditioned GMRES method, where the preconditioner is selected based
on employing the source iteration proposed here. This latter iterative solver is
shown to be particularly effective in the low-energy photon scattering regime
where traditional solvers may stagnate.

7 Numerical results

In this section we present the results from a series of computational experiments
designed to numerically investigate the asymptotic convergence behaviour of
the proposed method for both polyenergetic and monoenergetic problems. The
deal.II finite element library in [6] was used for the implementation of the
method in these numerical examples.

7.1 Example 1: Polyenergetic problem in 2D

In this example we consider the numerical approximation of the polyenergetic
problem (1) posed in a two-dimensional spatial domain, i.e., d = 2, with a
one-dimensional angular domain and a one-dimensional energy domain. To
this end, the spatial domain is defined as Ω = (0, 1)2 (in units of m) and the
energy domain is E = (500keV, 1000keV). Furthermore, the macroscopic total
absorption cross-section α and the differential scattering cross-section θ are
chosen to mimic Compton scattering of photons travelling through water, see
[16], albeit in a two-dimensional setting. This is achieved by setting α = 0 and

θ(x,µ′ → µ, E′ → E) = ρ(x)σKN (E′, E,µ · µ′)δ(F (E′, E,µ · µ′)),

where ρ(x) ≈ 3.34281× 1029e/m3 is the electron density of water, and σKN is
the Klein-Nishina differential scattering cross-section, see [16], defined by

σKN (E,E′, cosϕ) =
1

2
r2e

(
E′

E

)2(
E′

E
+

E

E′ − sin2 ϕ

)
,

with re ≈ 2.81794× 10−15m. Further, δ denotes the Dirac delta distribution
and

F (E,E′, cosϕ) = E′ − E

1 + E
511 (1− cosϕ)

,

is used to enforce the conservation of particle momentum. Finally, f and gD
are selected so that the analytical solution to (1) is given by

u(x,µ, E) = e−(Eµ·x/Emax)
2

e−(1−(E/Emax)
2)−1

,
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Fig. 1 Example 1: Convergence of the DGFEM under h–refinement for p = 0, 1, 2. Here,
the DGFEM-norm is defined in (12).

where Emax = 1000keV.

We investigate the asymptotic behaviour of the proposed DGFEM on a
sequence of successively finer meshes for different values of the polynomial
degrees. To this end, the spatial meshes are (non-nested) polygonal grids
generated using the Polymesher software package [45]. As noted in Section 3.2
the angular meshes are formed by mapping uniform interval elements, defined
on the boundary of the square (−1, 1)2 to the unit circle S. We set polynomial
degrees pκΩ

= p for all κΩ ∈ TΩ, qκS = p for all κS ∈ TS, and rκg
= p for

all κg ∈ TE. Figure 1 shows the error, measured in terms of both the L2(D)
and DGFEM-norm, against the number of degrees of freedom (denoted by
N) in the underlying finite element space Vp,q,r

h . Writing dD to denote the
dimension of the domain D = Ω×S×E (here, dD = 4), we clearly observe that
∥u− uh∥L2(D) ∼ O(N (p+1)/dD) as the space-angle-energy mesh T is uniformly

refined for each fixed p. Equivalently, since h ∼ N−1/dD , where h denotes the
meshsize of T, we note that ∥u−uh∥L2(D) ∼ O(hp+1) as h tends to zero for each
fixed p. This is the expected optimal rate of convergence with respect to the
L2(D)-norm, though this rate of convergence for the DGFEM approximation
of first-order hyperbolic PDEs is not guaranteed on general meshes, for further
details see [38] and the remarks in [10]. Secondly, from Figure 1 we also observe
that for fixed p, p = 0, 1, that the DGFEM-norm of the error behaves like
O(N (p+1/2)/dD), or equivalently O(hp+1/2), as the meshsize h tends to zero.
This is in full agreement with Theorem 7 (see also Remark 5). In the case
when p = 2, we observe that |||u− uh|||DG converges at a slightly faster rate
as h tends to zero; despite the large number of degrees of freedom in Vp,q,r

h ,
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Fig. 2 Example 2: Convergence of the method under h–refinement for p = 0, 1, 2. Here, the
DGFEM-norm is defined in (12).

the meshes are relatively coarse and hence we expect that we are still in the
pre-asymptotic regime.

7.2 Example 2: Monoenergetic problem in 3D

We now consider the numerical approximation of a simplified monoenergetic
variant of the problem (1), where the energy is assumed to remain constant,
posed in a three-dimensional spatial domain with a two-dimensional angular
domain. To this end, we let Ω = (0, 1)3, α = 1, θ(x,µ′ → µ) = 1/|S2| = 1/4π,
β(x) =

´
S θ(x,µ → µ′) dµ′ = 1, and select f and gD so that the analytical

solution of the underlying problem is given by

u(x,µ) = cos(4ϕ) (x cos y + y sinx) ,

where ϕ = arccosµ3 denotes the polar angle of µ.
Figure 2 shows the convergence of the DGFEM using meshes comprising of

uniform cubes in the spatial domain Ω and mapped quadrilateral elements in
the angular domain S. As before, we plot the error measured in both the L2(D)-
norm and the DGFEM-norm. As in the previous example we observe that
∥u−uh∥L2(D) ∼ O(N (p+1)/dD ), dD = 5, or equivalently ∥u−uh∥L2(D) ∼ O(hp+1)
as h tends to zero for each fixed value of the polynomial degree p, p = 0, 1, 2.
Moreover, we observe that |||u− uh|||DG ∼ O(N (p+1/2)/dD) (∼ O(hp+1/2)) for
p = 0, 1, as h tends to zero. As in the previous example, we again observe a
slighter faster rate of convergence of |||u− uh|||DG for p = 2, which we attribute
to being in the pre-asymptotic regime.
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8 Conclusions

We have introduced a unified hp–version DGFEM for the numerical approxima-
tion of the linear Boltzmann transport problem. We have proven stability and
convergence results for the method, through an inf-sup condition in an appro-
priate norm, and shown how it may be efficiently implemented as a high-order
version of the widely used multigroup discrete ordinates method. The unified
DGFEM formulation in the space, angle and energy domains therefore provides
a simple and flexible way of computing arbitrary order approximations of
solutions to the Boltzmann transport problem for the first time. General classes
of polytopic elements are admitted for the design of the spatial computational
mesh, which facilitates the accurate and efficient representation of complex
geometries. Numerical experiments have been presented which confirm the
theoretical results derived in this paper. Further work will include generalizing
the scheme to include more general boundary conditions, such as reflective
conditions, for example, utilizing automatic hp-refinement mesh adaptation,
and investigating problems arising in medical physics applications. In addition,
the extension of the proposed linear solver to the case when particles gain
energy after scattering off the medium, which can occur in applications such
as thermal neutrons, for example, cf. [36,43], will also be considered
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27. Johnson, C., Pitkäranta, J.: Convergence of a fully discrete scheme for two-dimensional
neutron transport. SIAM Journal on Numerical Analysis 20(5), 951–966 (1983). DOI
10.1137/0720065. URL https://doi.org/10.1137/0720065

28. Koch, R., Becker, R.: Evaluation of quadrature schemes for the discrete ordi-
nates method. Journal of Quantitative Spectroscopy and Radiative Transfer 84(4),
423 – 435 (2004). DOI https://doi.org/10.1016/S0022-4073(03)00260-7. URL
http://www.sciencedirect.com/science/article/pii/S0022407303002607. Eurotherm Semi-
nar 73 - Computational Thermal Radiation in Participating Media

29. Koch, R., Krebs, W., Wittig, S., Viskanta, R.: Discrete ordinates quadrature schemes for
multidimensional radiative transfer. Journal of Quantitative Spectroscopy and Radiative
Transfer 53(4), 353 – 372 (1995). DOI https://doi.org/10.1016/0022-4073(95)90012-8.
URL http://www.sciencedirect.com/science/article/pii/0022407395900128

30. Kópházi, J., Lathouwers, D.: A space-angle DGFEM approach for the Boltzmann
radiation transport equation with local angular refinement. Journal of Computational
Physics 297, 637 – 668 (2015). DOI https://doi.org/10.1016/j.jcp.2015.05.031. URL
http://www.sciencedirect.com/science/article/pii/S0021999115003654

31. Lathrop, K.D., Carlson, B.G.: Discrete ordinates angular quadrature of the neutron
transport equation. Tech. Rep. LA-3186, Los Alamos Scientific Laboratory (1965)

32. Lau, C.Y.: Adaptive discrete-ordinates quadratures based on discontinuous finite elements
over spherical quadrilaterals. Ph.D. thesis, Texas A&M University (2016)

33. Lau, C.Y., Adams, M.L.: Discrete ordinates quadratures based on linear and quadratic
discontinuous finite elements over spherical quadrilaterals. Nuclear Science and Engi-
neering 185(1), 36–52 (2017). DOI 10.13182/NSE16-28

34. Lebedev, V.: Values of the nodes and weights of ninth to seventeenth or-
der Gauss-Markov quadrature formulae invariant under the octahedron group
with inversion. USSR Computational Mathematics and Mathematical Physics
15(1), 44 – 51 (1975). DOI https://doi.org/10.1016/0041-5553(75)90133-0. URL
http://www.sciencedirect.com/science/article/pii/0041555375901330

35. Lebedev, V.: Quadratures on a sphere. USSR Computational Mathematics and Mathe-
matical Physics 16(2), 10 – 24 (1976). DOI https://doi.org/10.1016/0041-5553(76)90100-
2. URL http://www.sciencedirect.com/science/article/pii/0041555376901002

36. Lewis, E.E., Miller, W.F.: Computational methods of neutron transport. John Wiley
and Sons (1984)

37. Meixner, J., Dietrich, J., Dawson, C., Zijlema, M., Holthuijsen, L.: A discontinuous
Galerkin coupled wave propagation/circulation model. J. Sci. Comput. 59 (2014)

38. Peterson, T.: A note on the convergence of the discontinuous Galerkin method for a
scalar hyperbolic equation. SIAM J. Numer. Anal. 28(1), 133–140 (1991)

39. Radley, T.: Discontinuous galerkin methods for the linear boltzmann transport problem.
Ph.D. thesis, University of Nottingham (2023)

40. Sauter, S.: A remark on extension theorems for domains having small geometric details.
Technical report 96-03, University of Kiel (1996)

41. Schwab, C.: p- and hp- finite element methods: Theory and applications in solid and fluid
mechanics. Oxford University Press: Numerical mathematics and scientific computation
(1998)

42. Sobolev, S.L., Vaskevich, V.L.: The theory of cubature formulas. Springer Science and
Business Media (1997)

43. Stacey, W.M.: Nuclear reactor physics. John Wiley & Sons (2018)
44. Stein, E.M.: Singular Integrals and Differentiability Properties of Functions. Princeton,

University Press, Princeton, N.J. (1970)
45. Talischi, C., Paulino, G., Pereira, A., Menezes, I.: Polymesher: A general-purpose mesh

generator for polygonal elements written in Matlab. Struct. Multidisc. Optim. 45,
309–328 (2012)

46. Thurgood, C.P., Pollard, A., Becker, H.A.: The TN quadrature set for the discrete
ordinates method. Journal of Heat Transfer 117(4), 1068–1070 (1995)



34 Paul Houston et al.

47. Widdowson, R.: Discontinuous Galerkin FEMs for radiation transport problems. Ph.D.
thesis, University of Nottingham (2023)

48. Yang, R., Zelyak, O., Fallone B, G., St-Aubin, J.: A novel upwind stabilized discontinuous
finite element angular framework for deterministic dose calculations in magnetic fields.
Physics in Medicine and Biology 63(035018), 1–17 (2018)


