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ABSTRACT

Intuitively, poisoned machine learning (ML) models may forget
their adversarial manipulation via retraining. However, can we
quantify the time required for model recovery? From an adversarial
perspective, is a small amount of poisoning sufficient to force the
defender to retrain significantly more over time?

This poster paper proposes RPAL, a new framework to answer
these questions in the context of malware detection. To quantify
recovery, we propose two new metrics: intercept, i.e., the first time
in which the poisoned model’s and vanilla model’s performance
intercept; recovery rate, i.e., the percentage of time after intercept
that the poisoned model’s performance is within a tolerance margin

which approximates the vanilla model’s performance. We conduct
experiments on an Android malware dataset (2014 − 2016), with
two feature abstractions based on Drebin and MaMaDroid, with
uncertainty-sampling active learning (retraining), and label flipping
(poisoning). We utilize the introduced parameter and metrics to
demonstrate (i) how the active learning and poisoning rates impact
recovery and (ii) that feature representation impacts recovery.
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1 INTRODUCTION

This paper investigates how retraining strategies help recover the
model after training-time data poisoning attacks. Firstly, we propose
a formalization of recovery from poisoning by introducing two new
metrics: intercept and recovery rate. The intercept aims to estimate
when the poisonedmodel’s performance approximates the retrained
vanilla model. Since model performance exhibits fluctuations in
non-stationary context [2, 6], the recovery rate aims to quantify the
percentage of time that the poisonedmodel has a performance equal
to or higher than the vanilla retrained model. We introduce the
concept of tolerancemargin, which defines howmuch approximation
is tolerated when assuming a model is recovered.

Finally, we propose RPAL as an extensible framework that can
assess the recovery rate of an ML model for a given set of parame-
ters, models, retraining and poisoning strategies. We evaluate RPAL
in the context of Android malware detection to quantify recovery
from label-flip poisoning via active learning retraining based on
uncertainty sampling using the dataset from Pendlebury et al. [6]
which contains the Drebin [1] and MaMaDroid [5] feature spaces.

Our results demonstrate that an ML model can recover from a
poisoning attack subject to the strength of the poisoning attack
and retraining mechanism. Different feature abstractions under the
same classifier can greatly affect the speed of recovery. We show
interesting trade-offs in the defender’s diminished return in poison
recovery when increasing active learning rates.
Novelty. Existing literature has indeed proposed some defenses
for poisoning such as fine-pruning [4], however, to the best of our
knowledge, we are the first to evaluate the recovery over time of a
classification system from poisoning. Moreover, we are the first to
consider it in the context of malware detection.
Contributions. In summary, we make the following contributions:
(i) we propose new metrics and parameters for understanding re-
covery from poisoning over time, (ii) and we propose an evaluation
framework, RPAL, through which (iii) we demonstrate trade-offs of
poisoning-recovery in the Android malware context and confirm
that feature abstractions impact recovery.

2 RPAL EVALUATION FRAMEWORK

Here we discuss the threat model, parameters, metrics and evalua-
tion pipeline (Figure 1) of the RPAL framework.
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Threat Model. In RPAL, the threat model requires defining both
attackers and defenders capabilities, along with the attackers objec-
tive (e.g., increasing FNs or FPs). The attacker’s capability is defined
via a poisoning strategy [3, 4] and the percentage of training data
affected. Instead, the defender capability is defined via a recovery
strategy (e.g., active learning [7]) and the retraining budget. A re-
covery strategy is a method which enables the model to adapt over
time, however, recovery strategies come with their own operational
costs (such as labeling cost). When deciding on a recovery strategy
it is important to take into account a realistic operational budget.
When choosing a poisoning strategy for evaluation it is important
that it fits within the threat model chosen and that the adversarial
manipulations performed are realistic.
Parameters and Metrics. For recovery evaluation, poisoned
model MP ’s and non-poisoned model M’s only difference should
be the poisoning at initial training time.We define tolerance margin,
intercept and recovery rate as follows.

Definition 2.1 (Parameter: Tolerance Margin). The tolerance margin
𝛿 (𝛿 ∈ R, 0 ≤ 𝛿 ≤ 1) is an input hyper-parameter of RPAL that is
subtracted to the monthly performance of a clean model M, such
that the monthly performance of the poisoned MP if compared
with that ofM minus 𝛿 .

Definition 2.2 (Metric: Intercept). Given a tolerance margin 𝛿 , the
intercept 𝐼 is a metric defined as the first month 𝜏 where MP ’s
monthly performance is greater than or equal to M’s monthly
performance minus 𝛿 .

Definition 2.3 (Metric: Recovery Rate). The recovery rate 𝑅 is de-
fined as the percentage of months thatMP ’s performance is greater
than or equal to M’s performance minus 𝛿 , after the intercept 𝐼 .

To the best of our knowledge, the metrics defined in this paragraph
are the first temporally-aware poisoning recovery metrics.
Recovery Evaluation. Figure 1 shows the pipeline of the RPAL
evaluation framework. The initial input is a timestamped dataset,
consisting of a feature matrix 𝑋 , labels 𝑦, and time-stamps 𝑡 . The
dataset is temporally split into a training set and monthly testing
sets via the Tesseract framework [6]. In the time-aware evaluation,
the training dataset is rebalanced to a realistic class distribution
(e.g., approximately 10% in the case of Android malware [6]). The
dataset is then poisoned based on the current iteration’s poisoning
rate (starting from 0%, for a clean model baseline), and is then used
to train the model. The model predicts on the current test month
data. After prediction, the recovery strategy (e.g., active learning [7])
selects samples to retrain the model on. The process of train, predict
and sample is then repeated for all testing months. After all test
months have been evaluated then the process is repeated for all
poisoning and recovery strategy rates in the evaluation settings.
Once all setting evaluations have been completed then, the intercept
and recovery rate are extracted from the results.

3 EVALUATION

We consider two research questions: does the feature space affect
the recovery rate? (RQ-Feature) and how do the active learning
and poisoning rates impact the recovery time? (RQ-Intercept).
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Figure 1: RPAL Evaluation Framework.

Experimental Settings. We use the Tesseract dataset by Pendle-
bury et al. [6], which ranges from 2014 to 2016 and offers two
feature abstractions: MaMaDroid [5] and Drebin [1]. We train on
the 57, 740 samples from 2014 and test on the 71, 988 samples from
2015/2016 however, a lack of samples in month 24 of testing causes
performance drop off. We assume the defender relies on active
learning with uncertainty sampling [7] as the recovery strategy
for our evaluation with strength from 2% to 16%. The tolerance
margin 𝛿 for the experiments in this research was set to 0.02. We
assume the attacker has the capability to fully access the training
data and is utilizing label-flip poisoning [4] to compromise the gen-
eral availability of the model with granularity 2% to 16%. We utilize
the Random Forest classifier with the settings of 101 decision trees
with a max depth of 64, the same as the original paper [5].
Compare Different Feature Abstractions. The MaMaDroid
and Drebin experiments both utilize the same underlying dataset,
which allows the evaluation of the impact feature space has on
recovery thereby addressing research question RQ-Feature. With
a constant active learning rate, the plots Figure 2a and Figure 2c
show a similar trend between the different rates of poisoning, how-
ever, when comparing the monthly 𝐹1 performance of the same
poisoning rates between the two feature abstractions with the same
fixed active learning rate as in the plots, MaMaDroid has better
performance 1% of the time and Drebin has better performance
98% of the time across the four poisoning settings. With a constant
poisoning rate, the plots Figure 2b and Figure 2d show a similar
starting performance, however, when comparing the monthly 𝐹1
performance of the same active learning rates between the two
feature abstractions with the same fixed rate as in the plots, Ma-
MaDroid has better performance 4% of the time, Drebin has better
performance 95% of the time with the remaining 1% being tied
across the four active learning settings. When comparing the two
feature extractions via the tables Table 1and Table 2. we can see
that although MaMaDroid’s performance is worse than Drebin,
it outperforms Drebin in recovery. When comparing the recovery
across the 16 settings, MaMaDroid is better in 8, Drebin is better
in 0, and 8 are deemed mixed results.

RQ-Feature. The feature abstraction has a significant
impact on recovery, and a better-performing system
does not equate to a better-recovering system. Although
MaMaDroid’s performance is worse than Drebin, Ma-
MaDroid achieves better recovery statistics on D1416.
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(c) Fixed Active Learning Rate

Drebin
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Figure 2: Recovery plots showing the impact of single variable change by varying either poisoning or active learning rate.

Table 1: MaMaDroid feature space results.

MaMaDroid Results Tolerance Margin = 0.02

Active Learning Rate Poisoning Rate
2% 4% 8% 16%

2% Intercept (Month) 9 11 19 21
Recovery Rate (%) 75% 64% 83% 75%

4% Intercept (Month) 9 11 11 22
Recovery Rate (%) 88% 64% 71% 67%

8% Intercept (Month) 2 7 14 24
Recovery Rate (%) 74% 50% 64% 100%

16% Intercept (Month) 3 12 16 21
Recovery Rate (%) 73% 85% 89% 75%

Speed of Recovery. Through comparisons between the tables
(Table 1 and Table 2), we can evaluate the rate in which the mod-
els recover thereby addressing research question RQ-Intercept.
When comparing the intercepts of experiments with equal active
learning and poisoning rates, we can see that the intercept consis-
tently increases as the rates increase. This shows that an increase in
poisoning rate has a larger impact on the intercept than the active
learning rate. Poisoning could force a substantially higher active
learning rate, which is the result of two factors: firstly, the known
diminishing returns of active learning [6], which can be observed
in the converging active learning rates in the fixed active learning
plots in Figure 2; secondly, the ever increasing impact of poisoning,
which can be observed by the growing separation in the poisoning
rates in the fixed active learning plots in Figure 2.

RQ-Intercept. Higher poisoning rates of the training
dataset result in a delayed intercept, even if the active learn-
ing rate is much higher than the poisoning rate (Table 1
and Table 2). This also corresponds to a diminished return
in recovery speed for increasing active learning rates.

4 CONCLUSION

We demonstrated that drift mitigation strategies can indeed facili-
tate recovery of the model whereby the model forgets the poisoning
effect over time. However, the speed of recovery heavily depends
on the components of the system and data considered. Our initial
investigation paves the way for further research on this topic which

Table 2: Drebin feature space results.

Drebin Results Tolerance Margin = 0.02

Active Learning Rate Poisoning Rate
2% 4% 8% 16%

2% Intercept (Month) 9 16 21 X
Recovery Rate (%) 62% 44% 50% 0%

4% Intercept (Month) 8 12 19 X
Recovery Rate (%) 82% 62% 33% 0%

8% Intercept (Month) 7 8 14 X
Recovery Rate (%) 78% 71% 64% 0%

16% Intercept (Month) 4 10 14 19
Recovery Rate (%) 86% 80% 82% 67%

in addition to exploring more scenarios, could also investigate drift
mitigation strategies that take poisoning into account for optimal
recoveries, as well as evaluating impact of existing poisoning de-
fenses to time-aware recovery.

ACKNOWLEDGMENTS

This work has been partially supported by the King’s-China Schol-
arship Council Ph.D. Scholarship programme (K-CSC), by a Google
ASPIRE research award, by EPSRC Grant EP/X015971/1, and by a
research service agreement with the Alan Turing Institute’s AI for
Cyber Defense (AICD) Research Centre.

REFERENCES

[1] Daniel Arp, Michael Spreitzenbarth, Malte Hubner, Hugo Gascon, Konrad Rieck,
and CERT Siemens. 2014. Drebin: Effective and Explainable Detection of Android
Malware in your Pocket.. In Ndss, Vol. 14. 23–26.

[2] Federico Barbero, Feargus Pendlebury, Fabio Pierazzi, and Lorenzo Cavallaro. 2022.
Transcending Transcend: Revisiting Malware Classification in the Presence of
Concept Drift. In 2022 IEEE Symposium on Security and Privacy (SP). IEEE, 805–823.

[3] Battista Biggio and Fabio Roli. 2018. Wild Patterns: Ten years After the Rise of
Adversarial Machine Learning. (2018).

[4] Antonio Emanuele Cinà, Kathrin Grosse, Ambra Demontis, Sebastiano Vascon,
Werner Zellinger, Bernhard A Moser, Alina Oprea, Battista Biggio, Marcello Pelillo,
and Fabio Roli. 2022. Wild Patterns Reloaded: A Survey of Machine Learning
Security against Training Data Poisoning. Comput. Surveys (2022).

[5] Lucky Onwuzurike, Enrico Mariconti, Panagiotis Andriotis, Emiliano De Cristo-
faro, Gordon Ross, and Gianluca Stringhini. 2019. MaMaDroid: Detecting Android
Malware by Building Markov Chains of Behavioral Models (Extended Version).
ACM Transactions on Privacy and Security (TOPS) 22, 2 (2019), 1–34.

[6] Feargus Pendlebury, Fabio Pierazzi, Roberto Jordaney, Johannes Kinder, and
Lorenzo Cavallaro. 2019. TESSERACT: Eliminating Experimental Bias in Malware
Classification across Space and Time. In 28th USENIX Security Symposium (USENIX

Security 19). 729–746.
[7] Burr Settles. 2009. Active learning literature survey. (2009).


	Abstract
	1 Introduction
	2 RPAL Evaluation Framework
	3 Evaluation
	4 Conclusion
	References

