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REVIEW

CAR-T cell technologies that interact with the tumour microenvironment in solid 
tumours
Chelsea Alice Taylor a, Maya Glovera and John Maher a,b,c

aLeucid Bio Ltd, Guy’s Hospital, London, UK; bKing’s College London, School of Cancer and Pharmaceutical Sciences, Guy’s Hospital, London, UK; 
cDepartment of Immunology, Eastbourne Hospital, Eastbourne, East Sussex, UK

ABSTRACT
Introduction: Chimeric antigen receptor (CAR) T-cells have emerged as a ground-breaking therapy for the 
treatment of hematological malignancies due to their capacity for rapid tumor-specific killing and long-lasting 
tumor immunity. However, the same success has not been observed in patients with solid tumors. Largely, this 
is due to the additional challenges imposed by safe and uniform target selection, inefficient CAR T-cell access 
to sites of disease and the presence of a hostile immunosuppressive tumor microenvironment.
Areas covered: Literature was reviewed on the PubMed database from the first description of a CAR by 
Kuwana, Kurosawa and colleagues in December 1987 through to the present day. This literature 
indicates that in order to tackle solid tumors, CAR T-cells can be further engineered with additional 
armoring strategies that facilitate trafficking to and infiltration of malignant lesions together with 
reversal of suppressive immune checkpoints that operate within solid tumor lesions.
Expert opinion: In this review, we describe a number of recent advances in CAR T-cell technology that 
set out to combat the problems imposed by solid tumors including tumor recruitment, infiltration, 
immunosuppression, metabolic compromise, and hypoxia.
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1. Introduction

Chimeric antigen receptors (CARs) are synthetic fusion molecules 
which are genetically delivered to immune cells to reprogram their 
specificity against one or more native cell surface-associated 
target(s). CARs consist of a modular fusion of a targeting moiety 
(most commonly antibody-derived), a variable spacer/hinge 
domain, a transmembrane element, and a functional signaling 
domain. Greatest success has been achieved using second- 
generation designs, originally invented by Finney et al. more 
than 25 years ago [1], and which contain a fused co-stimulatory 
and activation domain. Since 2017, six second-generation CAR 
T-cell therapies targeted against either CD19 [2–7] or BCMA [8– 
10] have been approved for use in patients with hematological 
malignancies. However, the same clinical success has not yet been 
achieved for patients with solid tumors. Compared to hematolo
gical malignancies, solid tumors present a much greater number 
of obstacles including the lack of tumor-specific targets, poorly 
accessible disease burden, and an immunologically hostile tumor 
microenvironment (TME). Despite the substantial inter- and intra- 
tumoral heterogeneity that is observed in solid tumors, more than 
100 candidate CAR T-cell targets have been identified pre-clinically 
[11], of which more than 30 have been the subject of clinical 
investigation [12]. Nevertheless, clinical efficacy of these 
approaches remains limited.

To achieve adequate and durable anti-tumor responses in 
patients with solid tumors, CAR T-cells must overcome a series of 
specific hurdles (Figure 1). Tumor recruitment represents the first 

challenge, in contrast to hematological malignancies. Second, CAR 
T-cells must extravasate through the highly disorganized tumor 
vasculature into malignant tissue. Third, CAR T-cells must pene
trate the high interstitial pressure within the stroma which encap
sulates the tumor. Tumor stroma provides a protective matrix that 
is composed of immune cells, cancer-associated fibroblasts (CAFs), 
endothelium, and extracellular matrix (ECM) molecules. It shields 
tumor cell islands from immune surveillance mechanisms through 
the combined effects of a physical barrier and an array of immu
nosuppressive molecules and cells, including tumor-associated 
macrophages (TAMs), myeloid-derived suppressor cells (MDSCs), 
and regulatory T-cells (Tregs) [13]. Operating within the TME, CAR 
T-cells must also endure the hypoxic, pro-oxidative, and acidic 
environment while sustaining their functional activity through 
serial encounter with tumor cells.

In this review, we explore different approaches that may be 
taken to facilitate each of these steps in order to enhance CAR 
T-cell efficacy for solid tumors. To achieve this, we have reviewed 
the literature contained in the PubMed database from 
December 1987, when the first CAR was described by Kuwana 
et al. [14], through to the present day.

2. Body of review

2.1. CAR T-cell recruitment to solid tumors

The first requirement for successful CAR T-cell immunotherapy 
of solid tumors is their efficient recruitment to sites of disease. 
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However, tumors frequently downregulate the expression of 
T-cell recruiting chemokines [15]. Furthermore, there is often 
a mismatch between the chemokines secreted by the TME and 
the chemokine receptors expressed by effector T-cells, with 
a particular tendency for tumors to produce factors that pre
ferentially recruit inhibitory immune cells [16]. Clinical imaging 
studies have demonstrated that even if CAR T-cells do access 
tumor sites, they often preferentially accumulate at the per
iphery of such lesions, mimicking an immune excluded phe
notype [17]. In selected cases, intra-tumoral delivery may be 
used to overcome this [18,19] particularly in tumors located in 

the central nervous system [20]. However, such a strategy is 
generally not feasible for disseminated disease. To circumvent 
this issue, investigators have explored the armoring of CAR 
T-cells to express a chemokine receptor with specificity for 
cognate ligands that are overproduced within the TME. 
Several examples of this approach are described below.

The CXCR2 chemokine receptor is typically expressed by 
neutrophils and MDSCs, but very rarely by T-cells. CXCR2 binds 
seven chemokines, namely CXCL1, CXCL2, CXCL3, CXCL5, CXCL6, 
CXCL7, and CXCL8, also known as interleukin (IL)-8. Several 
tumor types have been shown to secrete CXCR2 ligands, notably 
IL-8 [21,22]. To harness this, Kershaw et al. genetically engineered 
primary human T-cells to express CXCR2. As a result, T-cells 
acquired the ability to undergo chemotaxis in response to 
CXCL1, which correlated with T-cell interferon (IFN)-γ production 
[23]. More recently, CXCR2 has been co-expressed with αvβ6-, 
CD70-, or Glypican (GPC)3-specific CARs and resulted in 
enhanced CAR T-cell migration in tumor models in which cog
nate chemokines are produced [21,24,25]. CAR T-cells have also 
been transduced to express the alternative IL-8 receptor, CXCR1 
[21,24]. Although no differences were observed in CAR T-cell 
phenotype, tumor cell lysis, or cytokine production in vitro, 
expression of either CXCR1 or CXCR2 was associated with 
enhanced T-cell infiltration into the tumor, granzyme B (GZMB) 
production, T-cell persistence, and expansion in a number of 
xenograft mouse models [21]. Although CXCR1-expressing CAR 
T-cells demonstrated enhanced anti-tumor efficacy as compared 
to controls, CXCR2-expressing counterparts achieved superior 
disease control likely due to the capacity of this receptor to 
bind a greater diversity of chemokines [24]. Moreover, CXCR2 
armoring has been shown to enhance CAR T-cell safety as a result 
of more rapid clearance of the infused cells from healthy organs, 
accompanied by enhanced ingress into sites of disease [21].

The CCL2 chemokine is also secreted by a variety of solid 
tumors, including neuroblastoma and mesothelioma [26,27]. 
Accordingly, anti-GD2- and anti-mesothelin CAR T-cells have 
been engineered to co-express the cognate chemokine recep
tor, CCR2b. This resulted in augmented migration toward CCL2 
gradients and improved GD2- and mesothelin-specific CAR 
T-cell tumor infiltration, expansion, and disease control in 
mice bearing either SK-N-SH, SK-N-AS (both neuroblastoma) 
or M108 (mesothelioma) tumors, respectively [26,27].

Article highlights

● Armouring strategies can augment CAR T-cell responses against solid 
tumors.

● Engineering CAR T-cells to co-express chemokine receptors improves 
tumor recruitment and infiltration.

● CAR T-cell secretion of dendritic cell and T-cell chemokines improves 
immune cell recruitment to the tumor and subsequent tumor 
surveillance.

● Inhibition of tumor-associated neo-angiogenesis can simultaneously 
induce tumor starvation while improving CAR T-cell tumor 
infiltration.

● CAR T-cells can be redirected to kill cancer-associated fibroblasts 
(CAFs) or degrade extracellular matrix (ECM) components to improve 
tumor infiltration.

● Concomitant treatment with immune checkpoint inhibitors, such as 
those neutralizing PD-1, or direct secretion of derived scFvs by CAR 
T-cells can reduce immunosuppression.

● Reduction of CAR T-cell PD-1 expression either through gene knock
down or knockout can limit sensitivity to the inhibitory effects of PD-L1.

● Switch receptors such as PD-1/CD28 fusions offer the opportunity to 
harness PD-L1 engagement to deliver a co-stimulatory signal.

● The transforming growth factor β receptor II (TGFβRII) dominant 
negative receptor abrogates inhibitory TGF-β signaling and can also 
be converted into a switch receptor.

● Expression of the A2AR dominant negative receptor, knockout of 
ADORA2A, or overexpression of adenosine deaminase can limit sensi
tivity to adenosine-mediated immunosuppression.

● Hypoxia-dependent CAR expression can be stringently achieved through 
the use of a hypoxia-responsive promoter and/or fused oxygen- 
dependent degradation domain. By this means, CAR expression can be 
restricted to hypoxic tumor areas, limiting on-target, off-tumor toxicity.

● Co-expression of anti-oxidant enzymes by CAR T-cells can improve 
responses in the pro-oxidative tumor milieu.

● A combination of different approaches will likely be required to 
improve CAR T-cell tumor recruitment, infiltration, and resistance to 
immunosuppressive mechanisms.

Figure 1. Steps required for successful CAR T-cell immunotherapy of solid tumors. CAR T-cells must successfully negotiate the indicated steps in order to elicit 
effective anti-tumor activity.
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A number of solid tumors produce a chemokine known as 
Fractalkine/CX3CL1 [28]. Taking advantage of this, Siddiqui 
et al. engineered T-cells to express CX3CR1. Although no 
CAR was used in this study, they did demonstrate enhanced 
in vivo trafficking of these T-cells to tumors which produced 
Fractalkine/CX3CL1 [28].

In a further example of this approach, gene expression was 
compared between Panc02 tumor-infiltrating antigen-specific 
T-cells and matched splenocyte controls [29]. This revealed 
a distinct upregulation of both CCL1 in the tumor and cognate 
receptor CCR8 in successfully infiltrated T-cells. 
Correspondingly, CCR8-overexpressing EpCAM- and mesothe
lin-directed CAR T-cells mediated efficient migration toward 
CCL1 gradients conferring heightened tumor infiltration and 
reduced tumor burden in Panc02-bearing C57Bl/6 mice, parti
cularly when combined with transforming growth factor β 
receptor II (TGFβRII) dominant negative receptor armoring of 
the T-cells.

Gene expression analysis of lung, colorectal, and hepato
cellular cancer samples derived from The Cancer Genome 
Atlas (TCGA) revealed elevated CCL20 within tumors as com
pared to normal lung tissue [30]. To harness this, an epidermal 
growth factor receptor (EGFR)-targeted CAR was co-expressed 
with the unique CCL20 receptor, CCR6. As a result, enhanced 
tumor infiltration, cytokine production, reduced tumor bur
den, and improved survival were observed in NPG mice bear
ing either A549/CCL20 or H23 lung cancer xenografts [30].

A screen of the Panc02 pancreatic carcinoma cell line iden
tified CXCL16 as the most highly expressed chemokine. 
CXCL16 was similarly found to be upregulated by primary 
pancreatic tumors and myeloid stromal cells [31]. To extend 
CAR T-cell chemokine responsiveness to CXCL16, the cognate 
receptor for CXCL16, CXCR6, was transduced into mesothelin- 
or EpCAM-specific CAR T-cells. This facilitated CAR T-cell pene
tration of organoids and enhanced tumor infiltration in 
Panc02/SUIT-2-bearing mice, resulting in improved anti- 
tumor responses [31].

In addition to the induction of more effective CAR T-cell 
tumor trafficking, transgenic chemokine receptor expression 
can also competitively inhibit the recruitment of suppressive 
immune cells such as MDSCs through chemokine sequestering. 
Illustrating this, CXCR4-expressing claudin18.2-specific CAR 
T-cells were found to limit MDSC recruitment to the tumor via 
this mechanism [32]. Similarly, CXCR2 armoring of CAR T-cells 
reduces the recruitment of immunosuppressive myeloid cells to 
the TME due to competition for CXCR2 ligands [33].

Engineering of CAR T-cells to secrete chemokines has 
demonstrated additional benefits in tumor recruitment. CCR7 
is constitutively expressed by naïve T-cells and dendritic cells 
and drives their recruitment to lymphoid organs. Formation 
and maintenance of the T-cell zone in lymphatic organs is 
dependent on the combination of IL-7 and CCL19 [34]. To 
exploit this, Adachi et al. have armored CAR T-cells to produce 
IL-7 and CCL19 to facilitate recruitment of both T-cells and 
dendritic cells to tumor deposits [34]. This approach is now 
under evaluation in the clinic in patients with GPC3- or 
mesothelin-expressing solid tumors (NCT03198546). Two 
examples of impressive tumor control in man have recently 
been described using this approach [35]. More recently, 

enhanced anti-tumor activity has been reported using claudin 
18.2-specific CAR T-cells when armored with IL-7 and CCL21, 
which also binds CCR7 [36]. Although CAR T-cell expression of 
CCR7 ligands had no effect on cytokine production or cyto
toxicity in vitro, expression was associated with enhanced 
T-cell and dendritic cell tumor infiltration and hence overall 
tumor control in mice engrafted with a variety of tumors 
[34,36]. However, many effector T-cells do not express CCR7 
and consequently the CXCR3 axis has also been exploited to 
recruit effector T-cells to the tumor. CXCR3 binds CXCL9, 
CXCL10, and CXCL11 but most potently to CXCL11. While 
CXCL11 expression by mesothelin-specific CAR T cells showed 
no benefit, combining CAR T-cells with CXCL11-generating 
oncolytic vaccinia virus improved T-cell tumor infiltration and 
overall anti-tumor responses in NSG mice bearing EMMeso 
tumors [37]. Boosting both dendritic cell and T-cell recruit
ment to the tumor through expression of CCR7 or CXCR3 
ligands may also contribute to epitope spreading to comple
ment direct CAR T-cell-mediated anti-tumor effects.

In conclusion, the armoring of CAR T-cells with appropriate 
chemokines and/or chemokine receptors is a potentially valu
able approach to increase the efficiency of delivery of these 
cells to the TME. Several Phase I clinical trials are now evaluat
ing the safety and efficacy of this approach, including CXCR2+ 

anti-CD70 CAR T-cells (NCT05353530), CXCR4+ anti-BCMA CAR 
T-cells (NCT04727008), CXCR5+ anti-EGFR CAR T-cells 
(NCT04153799, NCT05060796), CCR4+ anti-CD30 CAR T-cells 
(NCT03602157), and anti-GPC3 CAR T-cells armored with IL-7 
and CCL19 (NCT03198546). A potential limitation of the co- 
expression of a chemokine receptor in CAR T-cells is the fact 
that some tumors express low levels of chemokines and that 
chemokine profiles can fluctuate between different tumor 
types. Optimal CAR T-cell recruitment may therefore be deliv
ered by a tumor tailored approach or using a combination of 
various chemokine receptors which can respond to the most 
common tumor-associated chemokines. Alternatively, 
approaches to inhibit downstream actions of protein kinase 
A have been shown to increase CAR T-cell migration into 
tumors [38].

2.2. CAR T-cell infiltration of solid tumors

2.2.1. Targeting of tumor-associated vasculature
In principle, CAR T-cell efficacy against solid tumors can also 
be improved through increased access via the vasculature. 
Tumor cells stimulate the formation of new blood vessels to 
ensure adequate oxygen and nutrient delivery to the TME and 
sufficient removal of metabolic waste. However, the tumor- 
associated vascular network is irregular with abnormalities in 
shape, diameter, and inconsistent pericyte coverage [39]. In 
addition, blood flow is suboptimal, generating a hypoxic and 
acidic environment which is detrimental to infiltrating immune 
cells. The aberrant tumor vasculature limits CAR T-cell adher
ence and extravasation, providing a rationale to deploy inter
ventions that can normalize this and thereby improve CAR 
T-cell access. Indeed, targeting of the tumor vasculature may 
simultaneously promote tumor starvation, hindrance of metas
tasis, and facilitation of immune cell infiltration into the tumor.
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Several approaches have been evaluated for their ability to 
enhance CAR T-cell delivery to tumors via vascular disruption. 
Combrestatin A-4 phosphate (CA4P) is one such agent, acting 
on endothelial cells within the TME via the inhibition of micro
tubule polymerization. When combined with HER2- or 
mesothelin-directed CAR T cells, it resulted in a reduction in 
CD31+ blood vessel density while increasing vascular perme
ability [40]. As a result, improved CAR T-cell tumor infiltration 
and anti-tumor efficacy were observed [40]. Tumor cells 
secrete vascular endothelial growth factor (VEGF), which 
binds its cognate receptor (VEGFR) on endothelial cells to 
stimulate angiogenesis or lymphangiogenesis. Expression of 
the VEGFR is highly expressed by the proliferating tumor- 
associated vasculature and thus represents an attractive tar
get. Consequently, VEGF blockade has been used to reduce 
tumor vascularization in animal models [41,42], enabling bet
ter CAR T-cell infiltration. Illustrating this, the combination of 
anti-EGFR variant III (vIII) CAR T-cells with the specific VEGF-A 
IgG1 monoclonal antibody, bevacizumab, induced direct 
apoptosis of vascular endothelial cells, permitting improved 
CAR T-cell access and infiltration within the tumor [43,44]. This 
was associated with increased CAR T-cell cytokine production 
(IL-2, IFN-γ), reduced Treg infiltration, and enhanced survival 
in vivo in murine models of glioblastoma [44]. Similarly, small- 
molecule VEGF inhibitors, sorafenib and sunitinib, augmented 
CAR T-cell therapy by delaying tumor growth, improving CAR 
T-cell tumor infiltration and cytokine production [45,46]. 
However, both of these agents are likely to target additional 
receptor tyrosine kinases, in particular, since sorafenib also 
altered CAR T cell activation directly [45]. Thus, the extent to 
which the observed benefits were due to altered tumor vas
culature is not fully clear.

In an alternative approach, CAR T-cells themselves may be 
directed against target molecules that undergo selective upre
gulation on tumor-associated endothelial cells. Both in vitro and 
in vivo studies have demonstrated the utility of VEGFR-2-tar
geted CAR T-cells including efficient elimination of CD31+ 

tumor-associated blood vessels, improved CAR T-cell tumor 
infiltration, activation, and anti-tumor response [47–60]. To 
further potentiate efficacy, combinatorial strategies have been 
pursued. For example, tumor-specific T-cells were transduced 
with a VEGFR-2-directed CAR, which facilitated tumor entry and 
improved tumor killing through epitope spreading [51,52]. 
Alternatively, VEGFR-2-specific CAR T-cells were designed to co- 
express NFAT-inducible IL-12, which further boosted CAR T-cell 
infiltration, persistence, IFN-γ production, and anti-tumor 
responses [50]. VEGFR-2-specific CAR T-cells have also been 
assessed in metastatic cancer patients in a Phase I/II clinical 
trial (NCT01218867) [61]. However, this trial was suspended due 
to a lack of objective responses. Lanitis et al. similarly found 
limited efficacy of VEGFR-2-targeted CAR T-cells due to com
pensatory tumor-derived VEGF-A upregulation [56]. Increased 
VEGF-A competitively inhibited CAR T-cell target binding, but 
the combination of CAR T-cells with VEGF-A blockade was 
found to restore efficacy [56]. In a similar fashion, the angiogen
esis inhibitor TNP-470 was found to have an additive effect 
when combined with VEGFR-2-specific CAR T-cells [48]. The 
higher affinity VEGFR-1 receptor has also been targeted using 
CAR T cells resulting in the efficient lysis of endothelial cells, 

reduced tube formation and improved overall anti-tumor 
responses in mice engrafted with A549 lung tumor xenografts 
[62]. Cancer patients with pleural or peritoneal metastases are 
currently being recruited to a Phase I clinical trial 
(NCT05477927) in which CAR T-cells are simultaneously co- 
targeted against both VEGFR-1 and PD-L1. However, as yet, 
no clinical outcome data have been reported. Although 
VEGFR-1- and VEGFR-2-specific CAR T-cells have demonstrated 
efficacy in vitro and have been tested in human trials, targeting 
of multiple VEGFR receptor types may be a preferred option. 
Illustrating this, CAR T-cells were engineered to recognize both 
angiogenic VEGFR-2 and lymphangiogenic VEGFR-3 receptors 
using the VEGF-C fragment as the CAR targeting moiety [63]. 
This strategy allowed for simultaneous targeting of both blood 
and lymphatic endothelial cells, resulting in improved overall 
anti-tumor responses and survival in MDA-MB-231- and 
HCC1806 tumor-bearing mice [63].

Aside from VEGFR, several other tumor-associated vascular 
markers have been targeted using CAR T-cells. Angiogenic 
endothelial cells, CAFs, TAMs, and tumor cells commonly express 
integrin ⍺vβ3 [64]. CAR T-cell targeting of ⍺vβ3 resulted in 
delayed tumor growth, improved survival, and was associated 
with excessive bleeding which was confined to tumor tissues 
with no damage observed in the normal vasculature [65–68]. 
Fibronectin is a key component of the ECM and is expressed by 
endothelial cells or tumor cells with a role in cell adhesion, 
growth, and migration through interaction with integrins. CAR 
T-cell targeting of oncofoetal fibronectin splice variants, extra 
domain (ED)A or EDB, was found to reduce the number of 
CD31+ tumor blood vessels, increase CAR T-cell tumor infiltration 
and subsequent activation [69–72]. CD13 is also overexpressed 
within proliferating endothelial cells and can be targeted using 
the NGR motif of the tissue factor (TF) protein, resulting in local 
thrombosis upon engagement. GD2-specific CAR T-cells were 
transduced to express a soluble TF mutant that is produced 
only upon NFAT activation, thereby imparting activation- 
specific secretion [73]. Infusion into mice engrafted with the 
Kelly neuroblastoma tumor xenograft led to improved CAR 
T-cell infiltration and tumor control [73]. Prostate-specific mem
brane antigen (PSMA) is also frequently found within the tumor 
endothelium [74] but is absent from the normal vasculature 
making it a further candidate for targeting. In keeping with this, 
CAR targeting of PSMA was found to reduce tumor-associated 
blood vessels [75]. In another example, Robinson et al. identified 
CLEC14A as a marker of tumor-associated vascular cells [76] and 
developed a CLEC14A-targeting CAR [77]. The CAR was infused 
into RIP-Tag2 mice which are susceptible to spontaneous insuli
noma formation. As a result, increased vascular apoptosis, 
reduced tumor vessel density, and overall tumor burden were 
observed but without any impact on wound healing [77].

To identify further tumor vasculature-associated markers, St 
Croix et al. compared the transcriptomes of blood vessels 
taken from normal and tumor-associated colorectal tissue 
samples [78]. Cancer-associated genes were assigned tumor 
endothelial marker (TEM) designations. Although TEM1, now 
referred to as CD248 or endosialin, was originally assumed to 
be overexpressed by tumor endothelial cells, it has since been 
recognized as a marker of pericytes and CAFs [79–85]. TEM1- 
targeting CAR T-cells were found to reduce TEM1+ tumor 
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blood vessels, limit tumor progression, and reduce metastasis 
in vivo in a number of tumor models [85]. These findings 
demonstrate that targeting tumor-associated pericytes repre
sents yet another approach to control tumors using vascular 
targeted CAR T-cells.

Although expression of most tumor vasculature-associated 
markers is limited in normal vascular tissue, off-tumor effects 
have been observed. For example, TEM8 was found to be 
enriched within the tumor vasculature with only low-level 
expression in healthy vasculature [78]. CAR T-cell targeting of 
TEM8 reduced the number of CD31+ tumor blood vessels, 
decreased tumor burden, and improved survival in vivo [86] 
but led to on-target, off-tumor toxicity [87].

Alternatively, investigators have sought to enhance the 
ability of T-cells to adhere to tumor-associated endothelium. 
This strategy is predicated on the fact that vascular adhesion is 
essential for efficient T-cell diapedesis into the tumor deposits. 
While tumor-associated endothelium may downregulate 
adhesion molecules including VCAM-1, ICAM-1, and ICAM-2, 
integrin αvβ3 is frequently upregulated at this site [64]. GPI- 
KISS31 is an αvβ3 ligand fused to CD31. When expressed in 
primary human T-cells [88], it successfully mediated their 
adhesion to αvβ3 integrin, facilitating subsequent migration 
across the endothelium of well-vascularized LLC-1 lung cancer 
xenografts [88]. However, tumor-specificity and utility of this 
system in CAR T-cells remain to be tested.

In conclusion, CAR T-cell targeting of the tumor-associated 
vasculature offers several advantages over tumor-associated tar
gets. First, tumor-associated endothelial cells are in direct contact 
with circulating CAR T-cells unlike malignant cells which are 
protected by the stroma. Second, vascular endothelial cells are 
genetically stable and therefore much less susceptible to muta
tion and subsequent antigen escape. Third, tumor endothelial 
markers are largely conserved and broadly expressed in a variety 
of tumors. Finally, destroying or impeding the tumor vasculature 
may also hinder nutrient provision to tumor cells supplied by the 
targeted vessels and limit metastasis. However, due to the ability 
of the tumors to upregulate VEGF-A production in response to 
targeting of VEGFR-2, it may be necessary to target all three 
VEGFR receptors in concert or to simultaneously neutralize 
VEGF-A to resist this countermeasure. Moreover, although 
a benefit is observed when targeting VEGFR receptors with CAR 
T-cells, responses are often not durable. This provides a rationale 
to combine VEGFR-specific with tumor antigen-specific CAR 
T-cells. Furthermore, while most tumor vasculature-associated 
markers are reasonably specific, expression can be observed at 
low levels within the normal vasculature or during physiological 
angiogenesis and thus off-tumor toxicity should be monitored 
for with caution. Options that may mitigate such risk include the 
targeting of the tumor vasculature using a chimeric costimula
tory receptor (CCR) or engineering the regulated expression of 
the CAR under the control of activation-specific markers such as 
NFAT or a mechanism that is activated by tumor-associated 
hypoxia [89].

2.2.2. Disruption of tumor-associated stroma
In solid tumors such as pancreatic cancer, stroma can account 
for up to 90% of the total tumor mass [90]. In addition to the 

vasculature, other components of the stroma can also hinder 
successful CAR T-cell tumor infiltration. Mesenchymal cells such 
as CAFs produce the majority of ECM proteins within the TME 
and exert potent immunosuppressive effects [91,92]. These are 
mediated in part through inhibitory cytokines such as IL-6 and 
TGF-β that limit CAR T-cell function, in addition to CXCL12 and 
IL-8 which recruit inhibitory immune cells [93,94]. Targeting 
CAFs and the ECM offers key advantages including shared 
target expression across a spectrum of different tumor types 
and genetic stability. Consequently, approaches that target 
tumor-associated stroma may in principle be applicable to 
multiple solid cancers while reducing the possibility of antigen 
escape through mutation. Furthermore, targeting these ele
ments simultaneously relieves the physical barrier and a key 
source of immunosuppression that operates within the TME.

The ECM represents a diverse network of components includ
ing fibrous proteins, proteoglycans, glycoproteins, and glycosa
minoglycans that shield the tumor from immune attack. 
Collagen forms a major part of the ECM, comprising up to 90% 
of the total ECM protein content [95]. T-cell proliferation and 
infiltration are both reduced in tumors with a high collagen 
density [96]. Moreover, collagen fragments generated as 
a result of enhanced matrix metalloproteinase activity within 
the TME exert immunosuppressive effects on local T-cells [97]. 
Another significant ECM component is the glycosaminoglycan, 
hyaluronan, which impedes CAR T-cell efficacy by limiting cell 
motility, cytotoxicity, and cytokine production [98]. Hyaluronan is 
synthesized by hyaluronan synthase, which correlates with poor 
prognosis in cancer patients [98]. Mesothelin- or GPC3-targeted 
CAR T-cells engineered to co-express the hyaluronidase enzyme, 
PH20, demonstrated improved efficacy with increased T-cell infil
tration, proliferation and efficacy in BGC823, MKN28 (both gastric 
cancer derived), or Huh7-HSA2 hepatoma xenografts [98,99]. 
Heparan sulfate proteoglycans also form part of the complex 
ECM network and can be degraded by heparanase. Caruana et al. 
demonstrated that heparanase is downregulated in cultured CAR 
T-cells and further depleted following chronic activation [100]. 
GD2-specific CAR T-cells engineered to co-express heparanase 
degraded the ECM resulting in increased T-cell infiltration and 
anti-tumor responses in neuroblastoma xenograft models [100].

Matrix metalloproteases (MMPs) contribute to the repair 
of tissue damage and fibrosis, but also efficiently degrade 
many tumor-associated ECM components. Macrophages are 
a major source of MMPs, the secretion of which is enhanced 
by CD147. To exploit this, a HER2-specific CAR was engi
neered in which the transmembrane and intracellular 
domains were derived from CD147. Macrophages engi
neered to express this CAR were found to increase expres
sion of several MMPs but had no additional effect on 
in vitro tumor growth when compared to unmodified 
macrophages [101]. Infusion of such CAR macrophages 
into HER2+ 4T1 orthotopic tumor-bearing mice resulted in 
increased T-cell tumor infiltration, cytokine secretion (IFN-γ, 
IL-12), and tumor control, accompanied by reduced ECM- 
associated collagen and tumor-infiltrating inhibitory mye
loid cells [101].

Although several studies have demonstrated a benefit of 
directly targeting ECM proteins, many strategies are directed 
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against a single protein and thus other ECM components can 
still maintain a locally immunosuppressive environment. 
Additionally, ECM proteins are not specific to the TME and 
therefore toxicity may be observed. For these reasons, the 
direct targeting of CAFs themselves may represent 
a preferred approach.

Several approaches have been described to target CAFs in 
the content of CAR T-cell immunotherapy of solid tumors. 
Small-molecule inhibitors such as the platelet-derived growth 
factor receptor beta (PDGFRB) inhibitor, nintedanib, provide 
one such strategy. When co-administered with mesothelin- 
specific CAR-NK cells, this combination was found to limit 
CAF growth and CAF-derived IL-6 release [102]. Moreover, 
anti-tumor responses in mice engrafted with Capan2 pancrea
tic tumor xenografts were also enhanced [102].

The most well-documented cell surface CAF target is fibro
blast activation protein (FAP). FAP is a serine protease involved 
in ECM remodeling and is expressed by almost all solid tumors 
making FAP an attractive stromal target [103]. Furthermore, 
only low to moderate expression is observed in healthy tissue, 
minimizing risk of on-target, off-tumor toxicity [103]. Patients 
receiving FAP-targeting F19 monoclonal antibodies or huma
nized sibrotuzumab tolerated treatment well without evi
dence of toxicity, but unfortunately with limited anti-tumor 
efficacy [104–106]. FAP-targeting CAR T-cells were found to 
efficiently kill CAFs, reduce ECM expression, increase T-cell 
tumor infiltration, activation, and subsequently delay tumor 
growth in a range of animal models [93,107–118]. CAF deple
tion was also associated with a reduction in CXCL12 and, as 
a result, limited MDSC recruitment to the TME [114,115]. 
Although most pre-clinical studies did not report any toxicity, 
Roberts et al. and Tran et al. identified toxic effects of target
ing FAP in mice including loss of skeletal muscle mass and 
diminished hematopoiesis due to targeting FAP-expressing 
stromal cells in the muscles and bone marrow [109,119]. 
Nevertheless, the potential therapeutic benefit of targeting 
FAP using CAR T-cells was investigated in a Phase I trial of 
patients with pleural mesothelioma (NCT01722149) [120,121]. 
Despite the intrapleural administration of a subtherapeutic 
dose, systemic CAR T-cell expansion was observed without 
adverse impact [120]. To enhance safety, fluorescein-specific 
universal CAR T-cells were engineered which only become 
activated in the presence of fluorescein-conjugated 
OncoFAP, a high affinity organic FAP binder [122]. This strat
egy has also been pursued using a second universal CAR 
system known as UniCAR T-cells which have specificity for 
a cryptic nuclear autoantigen, La/SS-B. The corresponding 
epitope was fused to a FAP-specific scFv, meaning that FAP- 
dependent CAR activation only occurs when the binder frag
ment is also present [123]. Using both approaches, CAR activa
tion is therefore more tightly controlled, dependent on 
targeting module infusion.

Since FAP is predominantly expressed on CAFs, simulta
neous targeting of tumor cells may be required for optimal 
efficacy. Accordingly, the combination of FAP-specific CAR 
T-cells with CAR T-cells directed against tumor-associated anti
gens EphA2 [107], Nectin-4 [112], BCMA [93], Mesothelin 
[113,115], or Claudin 18.2 [114] have all been used to achieve 
additive therapeutic effects. Co-targeting of FAP- and Nectin-4 

was explored in a Phase I clinical trial in patients with Nectin- 
4-expressing solid tumors (NCT03932565). However, no clinical 
outcome data have been released as yet. Anti-tumor responses 
have also been enhanced by combination of FAP-targeting with 
other activating agents such as IL-7, CCL19, and PD-1 blockade 
in pre-clinical studies [112,113,115]. Alternatively, mesothelin- 
specific CAR T-cells have been engineered to secrete anti-FAP 
/anti-CD3 bispecific T-cell engagers to simultaneously recruit 
CAR T-cells to FAP+ CAFs and mesothelin+ tumor cells [124].

In addition to FAP, a number of novel CAF markers have 
been identified. As mentioned above, TEM1 is expressed by 
CAFs and tumor-associated pericytes [79–85]. TEM1-directed 
CAR T-cells resulted in CAF cell death, disruption of the tumor 
vasculature, tumor necrosis, and reduced metastasis [85]. 
Moreover, CD70 has been identified as a marker of both 
solid tumor cells and tumor-promoting CAFs, providing addi
tional opportunities for co-targeting [125]. One of the 14 renal 
cell carcinoma patients treated in the COBALT clinical trial with 
allogeneic CD70-specific CAR T-cells has achieved a complete 
response that remains stable beyond 18 months [126].

Despite the benefit observed when CARs are directed 
against different ECM components, efficacy is often limited 
due to expression of alternative ECM proteins and the risk of 
off-tumor toxicity. However, CAF-associated FAP is present in 
most solid tumors with negligible expression in normal tissue. 
Despite some instances of toxicity, targeting FAP is generally 
well tolerated in patients, but with limited anti-tumor activity. 
FAP-targeting can be limited to the TME by instead generating 
a FAP-targeting CCR or by expressing a TME-inducible CAR 
and complementing with tumor antigen-targeting.

2.3. Tumor-associated immunosuppression

Following successful tumor infiltration, CAR T-cells must resist 
the highly immunosuppressive TME and retain capacity for 
serial tumor cell killing. However, this ability is limited by 
CAR T-cell exhaustion. During exhaustion, T-cells undergo 
terminal differentiation, upregulate inhibitory immune check
point proteins, and undergo altered transcriptomic and epige
netic programming (Figure 2). This includes a reduction in 
TCF1-driven gene expression and a transition into a more 
TOX-, TOX2- and NR4A-associated transcriptomic profile 
[127–135]. Following persistent antigen exposure within the 
TME, exhausted CAR T-cells enter a hyporesponsive state with 
significantly diminished effector cell function in terms of cyto
toxicity, proliferation, and cytokine production. This is further 
potentiated by immunosuppressive mechanisms including 
secretion of TGF-β, adenosine, IL-10, Indoleamine-pyrrole 
2,3-dioxygenase (IDO), and prostaglandin E2 (PGE2) or 
through expression of immune checkpoint ligands, such as 
programmed death-ligand 1 (PD-L1). However, several CAR 
T-cell armoring strategies have been developed to combat 
these mechanisms of exhaustion.

2.3.1. Immune checkpoints
Chronic T-cell activation leads to the increased cell surface 
expression of inhibitory immune checkpoint proteins includ
ing cytotoxic T-lymphocyte associated protein 4 (CTLA-4), 
programmed cell death protein 1 (PD-1), lymphocyte- 
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activation gene 3 (LAG-3), and T-cell immunoglobulin and 
mucin domain-containing protein 3 (TIM-3). Clinical inter
vention using immune checkpoint blockade has revolutio
nized the treatment of highly immunogenic tumors, such as 
metastatic melanoma, through neutralization of these 
immune checkpoints and subsequent T-cell reinvigoration. 
CAR T-cells are similarly susceptible to upregulation of 
immune checkpoints in response to antigen-specific stimu
lation, which renders them hypofunctional and thus limits 
the extent of anti-tumor responses [136–138]. Jacobson 
et al. pooled patient data from different CAR T-cell clinical 
trials and reported that patients who were refractory to 
treatment frequently incurred elevated tumor expression 
of the PD-1 ligand, PD-L1 [139]. Correspondingly, PD-L1 
has been found to directly inhibit CAR T-cell function 
[140,141]. Additional clinical data also support the notion 
that non-responding patients have higher levels of PD-1, 
PD-L1, LAG-3, and TIM-3 [142–144]. Consequently, immune 
checkpoint blockade has been explored as an avenue to 
rescue CAR T-cell function.

Inhibition of the PD-1/PD-L1 signaling axis represents the 
most common immune checkpoint intervention used in 

combination with CAR T-cells. The combination of PD-1 neu
tralizing antibodies with CAR T-cells targeted against a host of 
different tumor-associated antigens, including HER2 [136,145– 
148], GD2 [149], mesothelin [138,140], PSMA [150], FAP [116], 
EGFR [151], and ROR1 [152], have demonstrated enhanced 
pre-clinical anti-tumor activity. Studies demonstrated an 
increase in CAR T-cell activation, proliferation, cytokine pro
duction, tumor infiltration, and anti-tumor responses in vivo. 
Several clinical trials combining the PD-1-targeting agents 
pembrolizumab, nivolumab, or tislelizumab with CAR T-cells 
highlight that the combination has been well-tolerated 
(Table 1) [156–159,170–174]. In the context of CD19-specific 
CAR T-cell treatment of lymphoma patients, anti-PD-1 therapy 
has induced responses in some lymphoma patients who fail 
CAR T-cell treatment [158]. However, it is generally acknowl
edged that combined treatment with CD19 CAR T-cells and 
anti-PD1 drugs has not achieved significant additional clinical 
impact in patients reported thus far [141]. Notably, recent data 
suggest that CAR affinity may influence susceptibility to PD-1 
mediated inhibition [175].

PD-L1-blocking antibodies can similarly restore activation 
of previously hypofunctional CAR T-cells targeted against 

Figure 2. Comparison between activated CAR T-cells with sustained effector function and dysfunctional, exhausted CAR T-cells.
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Table 1. Strategies undergoing clinical investigation to improve tumor recruitment, infiltration, or promote CAR T-cell function against solid tumors.

Armouring CAR specificity Cancer type Phase Clinical trial number References

CXCR2 CD70 Adult glioblastoma Phase I NCT05353530
CXCR4 BCMA Multiple myeloma Phase I NCT04727008
CXCR5 EGFR Advanced non-small cell lung cancer Phase I NCT04153799, 

NCT05060796
CCR4 CD30 Relapsed/refractory Hodgkin and cutaneous T-cell lymphoma Phase I NCT03602157 [153]
CCL19/IL-7 CD19 

BCMA/CD38/ 
CD138/CS1/ 
Integrin β7

Relapsed/refractory B-cell lymphoma 
Relapsed/refractory multiple myeloma

Phase II 
Phase I

NCT03929107, 
NCT04833504 
NCT03778346

[154,155]

VEGFR-2 CAR VEGFR-2 Metastatic cancer Phase I/II NCT01218867 [49,61]
VEGFR-1 CAR/ 
PD-L1 CAR

VEGFR-1/PD-L1 Pleural or peritoneal metastasis Phase I NCT05477927

FAP CAR FAP Pleural mesothelioma Phase I NCT01722149 [120,121]
FAP CAR/IL-12/ 
CCL19/IL-7

Nectin-4/FAP Nectin-4+ malignant solid tumors Phase I NCT03932565 [112]

Anti-PD-1 CD19 ±CD22 
CD30 
EGFRvIII 
GD2 
HER2 
Mesothelin

Relapsed/refractory B-cell lymphoma 
Relapsed/refractory Hodgkin lymphoma 
Glioblastoma 
Neuroblastoma 
Advanced sarcoma 
Pleural mesothelioma

Phase I/II 
Phase I 
Phase I 
Phase I 
Phase I 
Phase I/II

NCT02650999, 
NCT03630159, 
NCT05871684, 
NCT03287817, 
NCT04539444 
NCT04134325, 
NCT05352828 
NCT03726515 
NCT01822652 
NCT04995003 
NCT02414269

[156–162]

Secretable 
anti-PD-1

BCMA 
CD19 
EGFR 
Mesothelin

Relapsed/refractory multiple myeloma 
Relapsed/refractory B-cell lymphoma 
Advanced EGFR+ solid tumors (lung, liver, stomach) 
Mesothelin+ advanced solid tumors

Phase II 
Phase II 
Phase I/II 
Phase I

NCT04162119 
NCT04163302 
NCT02862028, 
NCT02873390 
NCT04489862

Anti-PD-1/ 
anti-CTLA-4

IL-13 Rα2 Glioblastoma Phase I NCT04003649

Secretable 
anti-PD-1/ 
anti-CTLA-4

EGFR 
Mesothelin 
MUC1

Advanced EGFR+ solid tumors 
Mesothelin+ advanced solid tumors 
Advanced MUC-1+ solid tumors

Phase I/II 
Phase I/II 
Phase I/II

NCT03182816 
NCT06248697, 
NCT03182803 
NCT03179007

Anti-PD-1/ 
CCL19/IL-7

CD19 Relapsed/refractory diffuse large B-cell lymphoma Phase I NCT04381741, 
NCT05659628

Secretable 
anti-PD-1/IL-21 fusion protein

GPC3/GUCY2C/ 
Mesothelin

Target+ cancers Phase I NCT05779917

Silent PD-1 PSMA/PSCA Prostate cancer Phase I NCT05732948
PD-1 DNR Mesothelin Mesothelioma Phase I NCT04577326
PDCD1 knockout CD19 

Mesothelin 
MUC-1 
MUC-1 
MUC-1 
PSMA

Relapsed/refractory B-cell leukemia or lymphoma 
Mesothelin+ solid tumors 
Advanced breast cancer 
Non-small cell lung cancer 
Advanced esophageal cancer 
Castration-resistant prostate cancer

Phase I 
Phase I 
Phase I/II 
Phase I/II 
Phase I 
Phase I

NCT04213469, 
NCT03298828 
NCT03545815, 
NCT03747965 
NCT05812326 
NCT03525782 
NCT03706326 
NCT04768608

[163,164]

PD-1/anti-PD-L1 switch receptor CD19 
HER2

Relapsed/refractory B-cell lymphoma 
Pleural or peritoneal metastasis

Phase I/II 
Phase I

NCT03258047 
NCT04684459

[165,166]

Anti-PD-L1 CD19 Relapsed/refractory B-cell lymphoma Phase I/II NCT02706405, 
NCT02926833

[141,167]

Secretable 
anti-PD-L1

CD22 Solid tumors Phase I NCT04556669

PD-L1 CAR PD-L1 
PD-L1/c-Met 
PD-L1 

/Claudin18.2

PD-L1+ non-small cell lung cancer 
Hepatocellular carcinoma 
Claudin18.2+ advanced solid tumors

Phase I 
Phase I 
Phase I

NCT03330834 
NCT03672305 
NCT06084286

[168]

PD-L1 switch receptor PD-L1/DLL3 Relapsed/refractory small cell lung cancer Phase I NCT06348797
TIM-3 CAR TIM-3/CD123 Relapsed/refractory acute myeloid leukemia Phase I/II NCT06125652
TGFβRII DNR BCMA 

HER2 
PSMA

Relapsed/refractory myeloma 
HER2+ malignancy 
Castration-resistant prostate cancer

Phase I 
Phase I 
Phase I

NCT05976555 
NCT00889954 
NCT03089203, 
NCT04227275

[169]

TGFβR2 knockout EGFR Advanced EGFR+ solid tumors Phase I NCT04976218
TGF-β CAR 
± CCL19/IL-7

TGF-β 
TGF-β/GPC3

TGF-β+ positive cancers 
GPC3+ hepatocellular carcinoma

Phase I 
Phase I

NCT03198052 
NCT03198546

Abbreviations: BCMA – B-cell maturation antigen; EGFR – epidermal growth factor receptor; IL – interleukin; VEGFR – vascular endothelial growth factor receptor; 
FAP – fibroblast activation protein; EGFRVIII – epidermal growth factor receptor variant III; MUC1 – mucin 1; GPC3;– glypican 3; PSMA – prostate specific 
membrane antigen; PSCA – prostate stem cell antigen; TGF – transforming growth factor. 
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CD19 [176], HER2 [177], mesothelin [117,178], PSCA [176] and 
FAP [117]. More specifically, PD-L1 blockade conferred resis
tance to type 2 tumor-associated macrophage (TAM)- 
mediated suppression and additionally resulted in loss of 
TAM populations through IFN-γ signaling [176]. Similarly, 
CD22-specific CAR T-cells have been engineered to secrete 
anti-PD-L1 antibodies and efficacy is currently being explored 
in a Phase I clinical trial (NCT04556669). However, the timing 
of anti-PD-1/PD-L1 treatment appears to be crucial in the 
sense that early immune checkpoint blockade may compro
mise efficacy, whereas ongoing delayed treatment may favor 
CAR T-cell re-expansion [141,159]. Combined use of PD-1 
blockade and CAR T-cell immunotherapy in the context of 
solid tumors has also proven disappointing to date [156,160], 
although 2 complete metabolic responses were reported in 
a series of 18 mesothelioma patients who received intrapleural 
mesothelin-specific CAR T-cells in combination with pembro
lizumab [157].

It is well known that systemic PD-1/PD-L1 blockade can 
result in autoimmune disease. To reduce the incidence of 
such toxicities, CAR T-cells have been engineered to directly 
secrete anti-PD-1/PD-L1 antibodies, thereby restricting these 
drugs to local tumor-infiltrating immune cells. This approach 
was found to limit expression of inhibitory immune check
points, increase CAR T-cell proliferation, cytokine production, 
and tumor infiltration when using CAR T-cells targeted against 
CD19 [179–181], CD20 [182], mesothelin [183], EGFR [184], 
MUC-16 [180], IL-13 Rα2 [151], carcinoembryonic antigen 
(CEA) [185], ROR1 [152], CAIX [186,187] or CD44v6 [188]. Li 
et al. demonstrated that CD19-specific CAR T-cells which 
directly secrete anti-PD-1 antibodies had superior efficacy 
when infused into mice bearing H292-CD19 tumors as com
pared to anti-PD-1 antibody co-treatment in terms of IFN-γ 
production, tumor immune cell infiltration and overall survival 
[179]. This benefit may stem from the rescue of tumor- 
infiltrated immune cells from exhaustion and subsequent epi
tope spreading. To further enhance specificity of PD-1/PD-L1 
blockade to the TME, an anti-PD-1 scFv gene has been placed 
downstream of an NFAT-based promoter system to achieve 
antigen-specific activation-dependent expression [152].

Rather than limiting PD-1/PD-L1-mediated immunosuppres
sion through antibody blockade, PD-1 sensitivity can be transcrip
tionally reduced in CAR T-cells themselves. Engineering CAR 
T-cells to co-express siRNA/shRNA achieved substantial PD-1 
knockdown, which resulted in enhanced proliferation, cytokine 
production (IFN-γ, TNF-α), and cytotoxicity [140,189–192]. 
However, anti-tumor responses were often limited due to 
a sustained low level of PD-1 expression which maintained sensi
tivity to PD-L1. As a result, CRISPR/Cas9 was implemented to 
knockout PDCD1 in CAR T-cells and thereby completely abrogate 
PD-1 signaling. Although most studies have demonstrated 
a benefit of this approach [137,193–196], this has not been 
observed consistently [197,198]. Agarwal et al. suggest that PD-1 
is essential for CD28 signaling with deletion nullifying the benefit 
of CTLA4 knockout in CAR T-cells [197]. Furthermore, Wei et al. 
have reported that PD-1 silencing may inhibit CAR T-cell responses 
by limiting proliferation [199]. Consequently, rather than deleting 
PDCD1 altogether, other approaches have implemented co- 

expression of the PD-1 dominant negative receptor (DNR) which 
lacks the PD-1 intracellular signaling domain and thus facilitates 
PD-L1 binding but does not initiate downstream signaling. 
Although CAR T-cells maintain a low level of PD-1 signaling 
through endogenous PD-1, expression of the PD-1 DNR improved 
mesothelin-specific CAR T-cell expansion, cytokine production, 
and cytotoxicity both in vitro and in MSTO-MSLN tumor-bearing 
mice [140]. The PD-1 DNR was further enhanced by the addition of 
the intracellular tail of CD28, thereby coupling the binding of PD- 
L1 to the delivery of a costimulatory signal. Expression of this PD- 
1/CD28 switch receptor in CAR T-cells resulted in improved cyto
kine production, activation, persistence, tumor infiltration, and 
anti-tumor responses in vivo [200–202]. When co-expressed in 
SS1-directed CAR T-cells, superior efficacy was observed in 
EMMESO-bearing mice when compared to co-treatment with 
PD-1 neutralizing antibodies [200]. In a similar fashion, the fusion 
of a PD-L1-binding scFv and CD28 intracellular domain has 
demonstrated enhanced efficacy in mesothelin-specific CAR 
T-cells in which CAR T-cell PD-L1 can engage the switch receptor 
and promote a favorable phenotype through the CD70/CD27 axis 
[203]. The PD-1/CD28 switch receptor has since undergone eva
luation in two Phase I clinical trials (NCT03258047, NCT04684459) 
[165,166].

In addition to PD-1-based chimeric switch receptors, PD-1/PD- 
L1-targeting CARs have been described [69,204–208]. PD-1 tar
geting has also been combined with tumor antigen targeting 
whereby anti-GPC3 and anti-PD-1 scFv molecules were fused 
together to allow CAR T-cell activation in the presence of either 
GPC3 or PD-1 [209]. Unfortunately, however, a Phase I clinical trial 
testing the efficacy of a PD-L1-targeting CAR in patients with PD- 
L1+ non-small cell lung cancer resulted in significant pulmonary 
toxicity which led to early termination of the trial (NCT03330834) 
[168]. PD-1/PD-L1 expression is not confined to the tumor and 
hence on-target, off-tumor toxicity is a risk of this approach.

Despite the potential promise that PD-1 inhibition offers to 
CAR T-cell immunotherapy, PD-L1 is not consistently expressed 
by all tumors and other T-cell immune checkpoints can compen
sate for the loss of PD-1-mediated immunosuppression. 
Furthermore, T-cells also demonstrate a high level of heteroge
neity in terms of immune checkpoint expression. For example, 
PD-1 or TIM-3 blockade improved EGFRvIII-specific CAR T-cell 
anti-tumor responses to a greater extent than CTLA-4 inhibition 
in D270 tumor-bearing mice [151]. By contrast, CTLA-4 blockade 
achieved superior impact when combined with IL-13  
Rα2-directed CAR T-cells which correlated with distinct check
point expression by the CAR T-cells [151]. Thus, optimal CAR 
T-cell function may require simultaneous inhibition of multiple 
immunosuppressive molecules or selective and context- 
dependent disablement of specific immune checkpoints.

Targeting alternative immunosuppressive markers can also 
relieve CAR T-cell immunosuppression in certain contexts. This 
includes the use of CTLA-4/TIM-3 inhibitors, CTLA-4/Fas/LAG-3 
deletion, and an ‘AND’ switch CAR which co-expresses a first- 
generation anti-CD19 CAR with a CTLA-4/4-1BB switch receptor 
[151,197,198,210,211]. However, the benefit of CTLA-4-targeting 
siRNA or shRNA was limited in the absence of CD80 co- 
expression or dual CTLA-4/PD-1 knockdown and further demon
strates the need in some circumstances to target multiple 
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immune checkpoints simultaneously [189,212]. Indeed, triple 
knockdown of PD1, LAG-3, and TIM-3 using specific shRNA 
sequences in HER2-specific CAR T-cells improved CAR T-cell 
tumor infiltration in addition to both cytokine and chemokine 
production in SKOV3-bearing mice, when compared to single 
(PD-1) and double (PD-1/LAG-3) gene knockdowns [190]. 
Moreover, the combination of a truncated, signaling-deficient 
TIM-3 mutant with the TGFβRII dominant negative receptor or 
combining a PD-1 inhibitor with an adenosine A2AR inhibitor also 
had additive effects [146,213].

While immune checkpoint inhibition has the potential to 
promote enhanced CAR T-cell function, it may also promote 
autoimmunity. It is therefore desirable to restrict immune 
checkpoint blockade to the TME, where tumor-infiltrating lym
phocytes can regain tumor targeting potential which can con
tribute to epitope spreading. While complete PDCD1 knockout 
or PD-1 knockdown in CAR T-cells can be inhibitory, expression 
of dominant negative receptors and chimeric switch receptors 
can simultaneously deliver co-stimulation while avoiding sys
temic PD-1 inhibition. Simultaneous targeting of more than one 
immune checkpoint may also be required in some instances to 
enable optimal efficacy of this approach.

2.3.2. Transforming growth factor-β
Transforming growth factor beta (TGF-β) is secreted by stro
mal cells and inhibitory immune cells within the TME. This 
pleiotropic cytokine limits proliferation, cytotoxicity, and dif
ferentiation of Th1, Th2, and Th17 T-cell subsets and promotes 
the generation of suppressive Tregs. Similarly, TGF-β signaling 
has been found to dampen CAR T-cell cytotoxicity and cyto
kine production [213–223]. Since TGF-β represents one of the 
major immunosuppressive factors in the TME, considerable 
effort has been expended into the development of solutions 
to antagonize TGF-β in order to reinvigorate CAR T-cells.

Co-administration of TGF-β inhibitors with CAR T-cell ther
apy was found to reduce phosphorylation of SMAD2 
(pSMAD2), the initiating step of TGF-β downstream signaling, 
and hence limited the immunosuppressive effects of TGF-β. 
This resulted in increased CAR T-cell cytokine production, 
activation, proliferation, overall anti-tumor response, and 
reduced exhaustion [223,224]. Inhibition of the TGFβR com
plex in CAR T-cells displayed similar benefits [221,225]. Similar 
results have been achieved via the secretion of TGF-β traps, 
including soluble TGFβRII or bispecific proteins which simulta
neously neutralize both TGF-β and PD-1 [226,227]. 
Alternatively, TGF-β-targeted CAR T-cells and TGF-β-inhibitory 
adenoviruses have been developed, both of which were found 
to improve T-cell activation, cytokine production, expansion, 
and cytotoxicity [228–230]. Adaptor CAR T-cells have also 
been directed against latency-associated peptide (LAP) which 
can be found bound to precursor TGF-β [231]. Targeting TGF-β 
or LAP directly may also have the additional benefit of rescu
ing tumor-infiltrating lymphocytes (TILs) from exhaustion and 
favoring epitope spreading. Conceptually however, TGF-β inhi
bition could also lower the threshold for onset of autoimmu
nity and should ideally be confined to the tumor site.

CAR T-cells have also been engineered to express cell surface 
TGF-β traps. These include the TGFβRII DNR truncated mutant 
which maintains TGF-β binding through expression of the 

extracellular domain but is dysfunctional due to deletion of the 
essential intracellular signaling domain [232,233]. Expression of 
this TGFβRII DNR by Epstein Barr virus- or gp100-specific T-cells 
counteracted the inhibitory effects of TGF-β with reduced 
pSMAD2 and overall improved CAR T-cell function 
[226,234,235]. Similar findings were obtained in CAR T-cells, 
accompanied by enhanced CAR T-cell stemness, tumor infiltra
tion, and anti-tumor responses [29,214,217,218,220,230,236– 
239]. TGFβRII DNR+ CAR T-cells outperformed their counterparts 
which secreted soluble TGFβRII or soluble TGFβRII-IgG2a Fc TGF- 
β traps [226]. This pre-clinical success led to in-human clinical 
trials, whereby the TGFβRII DNR was co-expressed in PSMA- 
(NCT03089203, NCT04227275), HER2- (NCT00889954), or BCMA- 
(NCT05976555) targeted CAR T-cells and infused into cancer 
patients [169]. Unfortunately, however, the PSMA trial was 
stopped because two patients died due to neurotoxicity [240].

Although CAR T-cell expression of TGF-β traps improves 
CAR T-cell function, efficacy can be potentiated by harnessing 
TGF-β to deliver an activating stimulus. First-generation CAR 
T-cells were generally found to be susceptible to TGF-β- 
mediated suppression [241]. The same was true for second- 
generation CAR T-cells containing a 4-1BB costimulatory 
domain. However, second-generation CAR T-cells expressing 
a CD28 costimulatory domain were found to be largely resis
tant to the effects of TGF-β through their ability to bind Lck 
[216,241]. In the absence of CD28 Lck binding motifs, CAR 
T-cells were re-sensitized to TGF-β, but became impervious 
once again upon addition of IL-2, IL-7 or IL-15 [216]. The use 
of TGFβRII/IL-7 R or TGFβRII/4-1BB switch receptors, composed 
of the TGFβRII extracellular domain and either IL-7 R or 4-1BB 
intracellular domains, has been shown to further enhance CAR 
T-cell proliferation, cytokine production, tumor infiltration, and 
survival compared to truncated TGFβRII alone [220,242,243].

An alternative strategy to counteract TGF-β mediated 
immunosuppression entails the targeting of downstream sig
naling components. SMAD7 is a negative regulator of the TGF- 
β signaling cascade. When overexpressed, it has been shown 
to increase cytokine production, stemness, proliferation, tumor 
infiltration, anti-tumor responses and to reduce exhaustion, 
Tregs, and TGFβR expression [218,219].

Insufficient inhibition of the TGF-β signaling axis may ren
der T-cells prone to low level TGF-β-mediated immunosup
pression. To address this, CAR T-cells have also been subjected 
to TGFBR2 knockout using CRISPR/Cas9-mediated knockout. 
Improved CAR T-cell cytokine production, cytotoxicity, stem
ness, and proliferation were observed, accompanied by resis
tance to TGF-β immunosuppression [215,222].

A further approach whereby CAR T-cell insensitivity to TGF- 
β may be achieved entails the use of γδ T-cells as a vehicle for 
CAR expression. When these cells are expanded in the pre
sence of TGF-β, intrinsic anti-tumor activity is paradoxically 
enhanced while sensitivity to immunosuppressive effects of 
TGF-β is nullified [244].

2.3.3. Adenosine
Adenosine is crucial for nucleic acid synthesis and energy meta
bolism but contributes to immunosuppression when secreted 
into the extracellular space during inflammation and hypoxia. 
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Adenosine originates from the dephosphorylation of ATP 
through the activity of ectonucleases, CD39 and CD73 [245– 
248]. Binding of adenosine to the adenosine receptor, A2AR, on 
T-cells results in the activation of protein kinase A (PKA) which 
interferes with NFκB signaling and therefore optimal T-cell acti
vation. Accordingly, A2AR signaling has been found to limit cyto
kine production, proliferation, and cytotoxicity in CAR T-cells 
[146,249–254]. Upon activation or PD-1 blockade, CAR T-cells 
have been demonstrated to upregulate expression of A2AR as 
an immune checkpoint mechanism to avoid overactivation 
[146,249,251,253,254]. Several strategies have therefore been 
developed to enable CAR T-cells to resist adenosine-mediated 
suppression. For instance, addition of A2AR inhibitors reverses 
the suppressive effects of adenosine through increased CAR 
T-cell cytokine production, proliferation, and cytotoxicity 
[146,249,253,254]. Similarly, CD19-specific CAR T-cells designed 
to deliver liposome-encapsulated A2AR inhibitors to both TILs 
and CAR T-cells alike boosted T-cell persistence and anti-tumor 
responses in SKOV3.CD19-bearing mice [255].

Despite improved anti-tumor responses, these agents may 
only achieve transient and incomplete A2AR inhibition. 
Consequently, direct modification of A2AR expression in CAR 
T-cells may be more favorable. This has been achieved through 
expression of A2AR-targeting shRNA or complete knockout of the 
gene encoding A2AR, ADORA2A. Constitutive expression of A2A 

R-targeting shRNA by CAR T-cells was associated with reduced 
A2AR expression and increased CAR efficacy in terms of cytokine 
production and tumor control in both in vitro and in vivo studies 
[146,250,252,253]. However, CRISPR/Cas9-mediated knockout of 
ADORA2A had superior effects compared to the use of A2A 

R inhibitors and targeted shRNAs [250]. Giuffrida et al. generated 
both heterozygous ADORA2A± and homozygous knockout 
ADORA2A-/- CAR T-cells and revealed that partial expression of 
the A2AR is insufficient to rescue T-cells from adenosine- 
mediated suppression [250]. Furthermore, CAR T-cells expressing 
A2AR-targeted shRNAs were associated with a more differen
tiated phenotype and reduced persistence compared to their 
ADORA2AKO counterparts [250].

Aside from adenosine receptor modulation, altered adeno
sine metabolism has also shown benefit in CAR T-cells. An in 
silico screen of T-cell metabolic regulators identified the 
importance of adenosine deaminase (ADA) in transcriptomic 
expression and cytokine production [256]. ADA is an enzyme 
that irreversibly deaminates adenosine to produce inosine, 
a nucleoside involved in promoting stemness and reducing 
terminal differentiation in CAR T-cells [257]. ADA overexpres
sion (ADAOE) was found to protect CAR T-cells from the sup
pressive effects of adenosine through improved cytokine 
production and cytotoxicity as compared to ADA wild type 
and ADA knockout versions [256]. In addition, ADAOE CAR 
T-cells were less differentiated and exhausted [256,258]. 
Furthermore, infusion of ADAOE CAR T-cells was associated 
with a reduced Treg population within the tumor and 
improved tumor responses in vivo [256,258]. The benefit of 
ADA overexpression was enhanced through conjugation to 
a collagen-binding domain to increase recruitment and reten
tion in the TME [258]. ADA exists in two different isoforms with 
isoform ADA1 having a greater adenosine degradation rate 
than the ADA2 isoform [259]. However, ADA1 is not readily 

secreted and is largely intracellular [259]. In contrast, the lower 
activity ADA2 isoform is naturally secreted [259]. As a result, an 
ADA2 mutant with enhanced activity was developed and 
introduced into CAR T-cells which increased the adenosine 
degradation rate [259]. Although there was a reduction in 
adenosine, the impact of this ADA2 mutant on CAR T-cell anti- 
tumor responses remains to be explored.

Inhibition of the adenosine pathway is potentially only 
beneficial for tumors where there is accumulation of adeno
sine. Several tumors have an adenosine-enriched TME, but the 
extent to which this is cancer type- or patient-specific remains 
to be determined. There is clear evidence that a reduction in 
A2AR expression and/or an increase in ADA limits adenosine- 
mediated suppression in CAR T-cells. However, while targeting 
the CD39/CD73 axis may reduce adenosine accumulation, 
compensatory mechanisms of ATP dephosphorylation into 
adenosine may occur through the NAD+/CD38 axis. 
Overexpression of ADA by CAR T-cells is simultaneously ben
eficial to local TILs, but owing to expression of A2AR, cells may 
retain some sensitivity to adenosine. Interruption of A2A 

R expression therefore represents the preferred method to 
resist adenosine-mediated suppression.

2.3.4. Other immunosuppressive molecules
Prostaglandin E2 (PGE2) represents another abundant immu
nosuppressive factor within the TME. PGE2 can limit T-cell 
proliferation through PKA activation, which can be rescued 
using PGE2 receptor (EP2, EP4) inhibitors [260]. Indeed, EP2/ 
EP4 inhibition improved mesothelin-specific CAR T-cell cyto
kine production (IL-2, IFN-γ) and cytotoxicity against the AsPC- 
1 tumor cell line [260]. As both adenosine and PGE2 activate 
PKA, interfering with PKA directly may simultaneously reduce 
signaling by both immunosuppressive mediators. To achieve 
this, mesothelin-specific CAR T-cells were engineered to 
express a small peptide, RIAD, which interferes with PKA loca
lization at the immune synapse. This was associated with 
improvements in cytokine production (IFN-γ), cytotoxicity, 
and resistance to both adenosine and PGE2-mediated sup
pression [38]. Additionally, co-expression of RIAD by anti- 
mesothelin CAR T-cells resulted in superior tumor control 
and enhanced CAR T-cell persistence in mice engrafted with 
EMmeso, AE17meso, or PDA4662 tumors [38].

IL-10 is an anti-inflammatory cytokine typically secreted 
by Tregs to inhibit T-cell activation. To counteract Treg- 
mediated suppression, anti-CEA CAR T-cells were co- 
administered with IL-10 blockade which was found to rescue 
CAR T-cell proliferation, activation, and anti-tumor cytotoxi
city [261]. In addition to Tregs, activated T-cells, including 
CD28-based CAR T-cells, also secrete IL-10 to avoid pro
longed activation [262]. However, this may be controlled 
by replacing the CD28 costimulatory domain for OX40 
[262]. Although IL-10 is generally considered to be suppres
sive to T-cells, it can be beneficial in limiting exhaustion. In 
fact, expanding CAR T-cells with IL-10 has been found to 
improve anti-tumor cytotoxicity [263] and engineering CAR 
T-cells to directly secrete IL-10 has improved CAR T-cell 
effector function, proliferation, stemness, and anti-tumor 
efficacy [264].
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Indoleamine-pyrrole 2,3-dioxygenase 1 (IDO1) promotes 
the catalysis of tryptophan into kynurenine and is highly 
expressed by myeloid cells and various cancers which can 
induce T-cell immunosuppression through tryptophan deple
tion. IDO1 is present at high levels within the TME but can be 
further induced upon exposure to CAR T-cell-derived IFN-γ 
[265]. It inhibits CAR T-cell cytotoxicity, cytokine production, 
expansion, and induces a senescent phenotype [265–267]. As 
a result, CD19-directed CAR T-cells lose responsivity against 
IDO1-overexpressing Raji cells which is restored upon IDO1 
inhibition [266]. In a similar fashion, IDO1 downregulation in 
colorectal cancer cell lines using targeted miRNAs improves 
CAR T-cell cytokine production, proliferation, and anti-tumor 
activity [265].

Finally, other immunosuppressive cytokines found in the 
TME may be also harnessed locally to boost CAR T-cell func
tion. For example, colony-stimulating factor (CSF)-1 is over- 
produced by a range of solid tumors and promotes the 
formation of immunosuppressive M2 polarized macrophages 
[268]. However, co-expression of the c-fms encoded receptor 
in CAR T-cells enabled their chemotactic migration in 
response to CSF-1 gradients, accompanied by the co- 
stimulation of proliferation and cytokine release [269]. 
Similarly, IL-4 is overproduced in the TME of a number of 
solid tumors and also contributes to the development of 
immunosuppressive myeloid cells [270]. This can similarly 
be harnessed to foster local CAR T-cell proliferation by co- 
expression of a chimeric cytokine receptor in which the IL-4 
receptor α ectodomain is fused to the shared β chain 
employed by the receptors for IL-2 and IL-15 [271].

2.3.5. Exhaustion
TME-mediated immunosuppression contributes to CAR T-cell 
exhaustion, but armoring strategies can be implemented to 
resist individual suppressive mechanisms. However, reducing 
CAR T-cell susceptibility to exhaustion as a whole through altered 
transcriptional programming may have superior outcomes. 
Transcription factors TOX, TOX2 and the three NR4A variants 
(NR4A1, NR4A2, NR4A3) all contribute to the indication of 
a dysfunctional CAR T-cell phenotype [135]. Methylation profiling 
of anti-CD19 CAR T-cells isolated from patients with acute lym
phoblastic leukemia post-infusion revealed important epigenetic 
changes [272]. Specifically, the TCF7 locus (encoding TCF1) was 
found to be hypermethylated resulting in repression of TCF1; yet 
the TOX locus remained hypomethylated suggesting a dynamic 
shift in chromatin accessibility which associates with exhaustion. 
Correspondingly, exhausted PD-1hi TIM-3hi CAR T-cells express 
a high level of TOX, TOX2, and NR4A1–3 [132,135].

Owing to the importance of TOX, TOX2 and NR4A in main
taining CAR T-cell dysfunction, inhibiting the expression of 
these transcription factors has been explored as an avenue 
to limit exhaustion. Although TOX2 is found to have a role in 
central memory T-cell development, TOX knockdown is asso
ciated with a less differentiated and exhausted phenotype 
[273]. Given this indication, a complete double knockout of 
both TOX and TOX2 or triple knockout of NR4A1, NR4A2, and 
NR4A3 in CD19-reactive CAR T-cells resulted in reversal of the 
exhausted phenotype accompanied by a notable reduction in 
inhibitory receptor expression (PD-1, TIM-3, LAG-3), an 

increase in cytokine secretion and enhanced cytotoxicity 
with improved survival when infused into tumor-bearing 
mice [132,135]. The importance of NR4A in exhaustion has 
also been exploited by placing pro-inflammatory cytokines 
under the control of an NR4A promoter so that upon exhaus
tion, stimulatory cytokines will be secreted to improve CAR 
T-cell persistence and activation [274].

2.4. Hypoxia and oxidative stress

Due to their high proliferative and metabolic activity, solid 
tumors often rapidly outgrow their blood supply. Despite the 
accelerated angiogenesis that is frequently observed in solid 
tumors, oxygenation levels can dip as low as 0.02–2% O2 

resulting in regions of hypoxia within the TME. Furthermore, 
this inadequate oxygen supply generates an acidified environ
ment with redox imbalances. Together with acidosis and oxi
dative stress, hypoxia induces T-cell anergy and thus limits 
anti-tumor responses. Similarly, this environment impairs CAR 
T-cell expansion and activity [275–278]. However, CAR T-cells 
can be modified to resist such a hostile environment.

HIF-1α is a master regulator of hypoxia and accumulates at 
low oxygen levels. The HIF-1 complex, consisting of HIF-1α and 
HIF-1β, binds to hypoxia response elements (HRE) to promote 
gene expression. HIF-1α contains oxygen-dependent degrada
tion (ODD) domains, restricting protein expression to conditions 
of hypoxia. Tumors significantly upregulate expression of HIF-1α 
to survive in the hypoxic TME in which high levels of HIF-1α 
confer a poorer prognosis in cancer patients [279]. To counteract 
this, Meymandi et al. combined mesothelin-specific CAR T-cells 
with the HIF-1α inhibitor PX-478 [279]. Surprisingly, however, PX- 
478 was found to reduce anti-tumor responses by limiting CAR 
T-cell proliferation and cytotoxicity, highlighting a key role of 
HIF-1α in CAR T-cell function [279]. In keeping with this, hypoxia 
pre-conditioned HER2-specific CAR T-cells upregulated HIF-1α 
which improved CAR T-cell expansion and anti-tumor responses 
against hypoxic SKOV3 tumors [280]. Deletion of the HIF-1α 
negative regulator, VHL, in CAR T-cells also resulted in constitu
tive HIF-1α expression, leading to a more activated, cytotoxic and 
resident memory-like phenotype, enhanced CAR T-cell expan
sion and favorable transcriptomic expression [281]. Similarly, 
when HER2-specific CAR T-cells were either treated with VHL 
inhibitors or transduced to express VHL-targeting miRNA, 
improved CAR T-cell expansion and survival was achieved in 
SKOV3 xenograft-bearing mice [280].

The specificity of HIF-1α expression for hypoxia can be 
exploited to confine CAR T-cell activation to the tumor. 
Using a HRE to direct gene expression and/or fusion of an 
ODD to the CAR endodomain, selective CAR expression under 
conditions of hypoxia can be achieved [89,282–286]. By this 
means, risk of on-target, off-tumor toxicity can be mitigated 
[89,285]. Moreover, hypoxia-inducible CAR T-cells performed 
better than their non-engineered counterparts in hypoxia and 
demonstrated hypoxia-specific tumor lysis and cytokine pro
duction with greatest stringency of hypoxia-dependent 
expression achieved when combining both HRE and ODD 
elements [89,282,283,285,286]. In addition to tumor-specific 
CAR T-cell activation, hypoxia-responsive CAR T-cells can also 
be engineered to specifically secrete typically toxic pro- 
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inflammatory cytokines such as IL-12 during hypoxia, while 
maintaining safety. Co-expression of IL-12 boosts CAR T-cell 
efficacy [287], but results in substantial toxicity. To localize IL- 
12 to the tumor site, CD19-directed CAR T-cells were co- 
expressed with an IL-12-ODD fusion protein [287]. Although 
minimal differences were observed in anti-tumor responses 
when infused into OCI-Ly3-bearing hamsters, toxicity was 
reduced when IL-12 was fused to an ODD domain [287].

Oxygen depletion within the TME causes an increase in 
reactive oxygen species (ROS) provoking oxidative stress due 
to an imbalance in ROS generation and anti-oxidant defense 
mechanisms. ROS is secreted during oxidative phosphoryla
tion as part of aerobic respiration. Due to the increased pro
liferation and metabolism observed in cancer, ROS accumulate 
within the TME. ROS is also secreted by tumor-infiltrating 
myeloid cells and neutrophils. However, excessive ROS are 
inhibitory to lymphocytes. Among all TME-derived ROS mole
cules, H2O2 is the most stable and highly produced and 
reduces both lymphocyte viability and CAR T-cell/tumor 
immunological synapse formation [276,288]. H2O2 can be neu
tralized by anti-oxidant molecules. However, T-cells express 
minimal anti-oxidants and this renders them susceptible to 
the detrimental effects of oxidative stress [288]. It is therefore 
of interest to armor CAR T-cells with anti-oxidant defense 
mechanisms.

Nrf2 is a master regulator of the anti-oxidant response and 
can be stimulated by auranofin. As expected, auranofin reduces 
ROS and, in combination with CD19-specific CAR T-cells, 
improves CAR T-cell-mediated tumor killing of Raji and N6/ADR 
cells in the presence of H2O2 [278]. Catalase is the predominant 
enzyme responsible for H2O2 breakdown and thus can help 
shield T-cells from H2O2-induced oxidative stress. Indeed, over
expression of catalase by HER2-specific CAR T-cells reduced ROS 
production and improved CAR T-cell survival, proliferation, and 
cytotoxicity in the presence of H2O2 when co-cultured with 
SKOV-3 tumor cells [289]. Additionally, CAR T-cell expression of 
catalase rescued bystander immune cells from the immunosup
pressive effects of oxidative stress [289]. Likewise, CAR T-cells and 
CAR-NK cells demonstrated enhanced immune cell expansion, 
cytokine production, and anti-tumor cytotoxicity in the presence 
of H2O2 or glucose oxidase when supplemented with other anti- 
oxidants including TRX1, PRDX1, and manganese dioxide 
[276,288,290].

Finally, hypoxia also causes acidification of the TME which 
limits CAR T-cell responses and cytokine production [291]. 
Countermeasures that may help to reverse this include the 
inhibition or deletion of anion exchanger Ae2, which was 
found to enhance CAR T-cell function at low pH [291]. 
Conversely, co-expression of proton extruder Hvcn1 in GPC3- 
specific CAR T-cells improved anti-tumor responses when 
engrafted into mice bearing PM299L-GPC3 tumors [291].

3. Conclusion

In this review, we have considered a range of interactions 
between CAR T-cells and the TME and how engineering/ 
armoring strategies may be used to perturb these. 
Engineering CAR T-cells to express specific chemokine recep
tors improves tumor recruitment. Furthermore, CAR T-cell 

secretion of immune cell recruiting chemokines can reinstate 
the host immune response and contribute to epitope spread
ing. Targeting of neo-angiogenesis or the tumor vasculature 
directly can not only starve the tumor of oxygen and nutri
ents but also improve CAR T-cell access to the tumor. CAR 
T-cell targeting of CAFs can both alleviate immunosuppres
sion and reduce the physical barrier generated by the ECM. 
A combination of CAR T-cells and immune checkpoint block
ers can also reduce CAR T-cell inhibition and has been exten
sively explored clinically, although the best way to deploy 
this strategy remains uncertain. Inhibition of immune check
point signaling can also be achieved through CAR T-cell 
secretion of neutralizing antibodies, immune checkpoint 
gene knockout, or expression of dominant negative and 
switch receptors. Additionally, transgenic expression of TGF- 
β and adenosine dominant negative receptors, switch recep
tors, or genetic ablation may also attenuate immunosuppres
sion. To counteract the suppressive activity of oxidative 
stress, CAR T-cells can be engineered to overexpress compo
nents of the anti-oxidant pathway. Hypoxia-dependent CAR 
expression can limit on-target, off-tumor toxicity and can 
also be utilized to confine expression of typically toxic pro- 
inflammatory cytokines to the hypoxic tumor site. 
Implementation of one or more of the strategies described 
here may enable the development of more effective CAR 
T-cell solutions for patients with solid tumors (Figure 3).

4. Expert opinion

CAR T-cell targeting of solid tumors remains insufficiently 
effective. Key challenges include the array of physical, chemi
cal, and biological barriers that operate within the TME battle
ground where these cells must operate. This has been 
considered in detail in this review together with armoring 
strategies that may be utilized to favorably influence thera
peutic impact. Indeed, many of the approaches presented 
here are now undergoing clinical investigation in cancer 
patients (Table 1). Since these concepts have generally been 
derived from imperfect pre-clinical model systems, these 
emerging clinical data will provide invaluable insights into 
next steps required to bridge the gap toward successful 
solid tumor CAR T-cell immunotherapy.

Although most of the approaches described here are direc
ted against a single molecular target or a specific TME feature, 
it is evident that tumors exhibit substantial inter- and intra- 
tumoral heterogeneity. Consequently, strategies will probably 
need to be individualized for specific cancer types. 
Furthermore, not all tumors are encumbered by a profound 
stromal component or hypoxia and thus not all cancers may 
benefit from enhancements in these areas.

CAR T-cells also demonstrate significant intra- and inter- 
donor heterogeneity. While limiting CAR T-cell immunosup
pression using a single targeted intervention may improve 
their activity, expression of alternative inhibitory molecules 
may facilitate tumor counter-evasion and restore CAR T-cell 
inhibition. Simultaneous targeting of multiple immunosup
pressive pathways may consequently be required to avoid 
resistance and sustain CAR T-cell responses.
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It should also be appreciated that despite the breakthrough 
made by second-generation CAR T-cells in the treatment of 
hematological malignancies, this 25-year-old technology may 
not be sufficiently robust for the treatment of solid tumors. 
Rather than focussing on armoring alone, there may also be 
a need to develop better CAR systems that achieve greater 
functional persistence of CAR T-cells in vivo. Recently, this has 
been exemplified through the delivery of synergistic dual co- 
stimulation using a parallel CAR format [292,293].

Although CAR T-cells have demonstrated a significant abil
ity to specifically kill tumors and to persist long term, over 
time tumors can become refractory through target downregu
lation or mutation and hence previously responding patients 
may relapse. To circumvent this, CAR T-cells can be targeted 
against multiple target antigens simultaneously or engineered 
to stimulate the host immune response in concert. CAR T-cell 
secretion of dendritic cell and T-cell recruiting chemokines, 
production of immunosuppressant blockers and expression 
of anti-oxidant enzymes can reinvigorate local host immune 
cells. Armoring strategies may also be focussed on the stimu
lation of epitope spreading to harness endogenous tumor- 
reactive T-cells. Such strategies include the co-expression of 
pro-inflammatory cytokines such as IL-12 [294,295] or IL-18 
[296–299]. Alternatively, Flt3 ligand armoring may be 
employed to stimulate cross-presenting dendritic cells [300]. 
Together, these approaches may result in enhanced host anti- 
tumor immunity and contribute to epitope spreading, thereby 
removing any reliance upon a single tumor antigen.

Finally, although improvements can be achieved in tumor 
recruitment, infiltration, and CAR T-cell activity independently, 
a mixture of approaches may be required to ensure adequate 
CAR T-cell efficacy for solid tumors. Therefore, improvements 
should be made in tumor recruitment, infiltration, and resis
tance to suppression concurrently. Personalization to the 

specific cancer type and stimulation of host immunity are 
also desirable endpoints that may rescue CAR T-cell hypore
sponsiveness when targeting solid tumors.
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