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Abstract

Two of the main principles underlying the life cycle of an artificial intelligence (AI) module
in communication networks are adaptation and monitoring. Adaptation refers to the need to
adjust the operation of an AI module depending on the current conditions; while monitoring
requires measures of the reliability of an AI module’s decisions. Furthermore, the dynamic
nature of a communication system imposes short coherent resources due to rapid conditions
changes. This makes the available data for module training, e.g., known pilot transmission,
to be of small size, requiring the AI module to be sample-efficient.

In the first part of this thesis, we integrate both meta-learning and Bayesian learning
for these challenges. Meta-learning addresses sample-efficiency by extracting useful shared
properties across different channel conditions by learning how to learn when facing a new
condition with few pilots. Bayesian learning increases reliability by producing better-
calibrated, e.g., less overconfident, decisions. A well-calibrated AI model is one that can
reliably quantify the uncertainty of its decisions, assigning high confidence levels to decisions
that are likely to be correct and low confidence levels to decisions that are likely to be
erroneous. As an application, we apply the integration of meta-learning and Bayesian
learning to symbol demodulation and validate its improvements. The capacity to quantify
uncertainty in the model parameter space is further leveraged by extending Bayesian
meta-learning to an active setting. In it, the designer can select in a sequential fashion
channel conditions under which to generate data for meta-learning from a channel simulator.
Bayesian active meta-learning is seen in experiments to significantly reduce the number of
frames required to obtain efficient adaptation procedure for new frames of an equalization
problem.

While Bayesian meta-learning is better than frequentist learning, it is a best-effort
approach with no formal guarantees. To obtain mathematical reliability guarantees, we in-
corporate in the second part of the thesis the framework of conformal prediction. Conformal
prediction post-processes in an ad-hoc manner a probabilistic predictor into set predictor,
producing set of labels that is guaranteed to contain the correct label with a probability
chosen by the designer. This is done irrespectively of the true, unknown, distribution
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underlying the generation of the variables of interest, and can be defined in terms of
ensemble or time-averaged probabilities. We apply recent conformal prediction advances,
including cross-validation-based schemes that reduce average set sizes, to communication
problems such as symbol demodulation and modulation classification. As a communication
system may have its data distribution change over time, online conformal prediction is used
and investigated for received signal strength prediction, as well for 5G dynamic scheduling
of ultra-reliable and low-latency communication traffic. Experiments compare empirical
coverage rate and averaged set sizes of different schemes.

Conformal prediction is a special case of conformal risk control for which the risk is the
miscoverage indicator. We develop a novel cross-validation-based conformal risk control
and show its ability to meet a target risk while keeping the average predictive set sizes
smaller than the validation-based counterparts.
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Chapter 1

Introduction

1.1 Motivation

Artificial intelligence (AI) is seen as a key enabler for next-generation wireless systems
[3]. Emerging solutions, such as Open-Radio Access Network (O-RAN), incorporate AI
modules as native components of a modular architecture that can be fine-tuned to meet
the requirements of specific deployments [4]. Two of the main principles underlying the
life cycle of an AI module in communication networks are adaptation and monitoring [5].
Adaptation refers to the need to adjust the operation of an AI module depending on the
current conditions, particularly for real-time applications at the frame level. At run time,
an AI model should ideally enable monitoring of the quality of its outputs by providing
measures of the reliability of its decisions. The availability of such reliability measures
is instrumental in supporting several important functionalities, from the combination of
multiple models to decisions about retraining [6].

The most common metric to design an AI model and to gauge its performance is the
average accuracy. However, in applications in which AI decisions are used within a larger
system, AI models should not only be as accurate as possible, but they should also be able
to reliably quantify the uncertainty of their decisions. As an example, consider an unlicensed
link that uses AI tools to predict the best channel to access out of four possible channels. A
predictor that assigns the probability vector of [90%, 2%, 5%, 3%] to the possible channels
predicts the same best channel – the first – as a predictor that outputs the probability
vector [30%, 20%, 25%, 25%]. However, the latter predictor is less certain of its decision,
and it may be preferable for the unlicensed link to refrain from accessing the channel when
acting on less confident predictions, e.g., to avoid excessive interference to licensed links
[7, 8].
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As in the example above, AI models typically report a confidence measure associated
with each prediction, which reflects the model’s self-evaluation of the accuracy of a decision.
Notably, neural network models implement probabilistic predictors that produce a probability
distribution across all possible values of the output variable. The self-reported model
confidence, however, may not be a reliable measure of the true, unknown, accuracy of a
prediction. In such situations, the AI model is said to be poorly calibrated.

Classical frequentist learning methods for the design of AI modules fall short on both
counts of adaptation and monitoring (see, e.g., [9, 10]). First, conventional frequentist
learning is well known to provide inaccurate measures of reliability, typically producing
overconfident decisions [10]. Second, the standard learning approach prescribes the one-off
optimization of an AI model, hence failing to capture the need for adaptation. We start
by investigating the integration of meta-learning and Bayesian learning as a means to
address both challenges. As we detail later, Bayesian learning can provide well-calibrated,
and hence reliable, measures of uncertainty of a model’s decision; while meta-learning can
reduce the amount of data required for adaptation to a new task, thus improving efficiency.
As a specific use case, we focus on the problems of demodulation and equalization over a
fading channel based on the availability of few pilots (see Fig. 1.3). The goal is to develop
AI solutions that are capable of adapting the demodulator/equalizer to changing conditions
based on few training symbols, while also being able to quantify the uncertainty of the AI
model’s output.

Deep learning models tend to produce either overconfident decisions [10], or calibration
levels that rely on strong assumptions about the ground-truth, unknown, data generation
mechanism [11–16]. This dissertation further investigates the use of conformal predic-
tion (CP) [17–19] as a framework to design provably well-calibrated AI predictors, with
distribution-free calibration guarantees that do not require making any assumption about
the ground-truth data generation mechanism.

1.2 Research Questions

This research addresses the following questions

• Research Question 1: Is it possible to enhance the reliability of learning-
based communication algorithms in the challenging regime of few pilot
symbols?

Chapter 3 reviews Bayesian learning and shows it can quantify its uncertainty better than
conventional learning. Moreover, we explore the integration of Bayesian learning and
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meta-learning, to show how knowledge acquired over past communication frames can be
utilized for a new frame, in a way that requires few pilots for symbol demodulation.

• Research Question 2: Can an active selection of training conditions speed
up training for new communication settings?

In Chapter 3 we show that by actively selecting the conditions governing how data is
generated, an equalizer can be trained faster by requiring less channel uses than the case
when conditions are drawn at random.

• Research Question 3: Is it possible to provide formal guarantees of relia-
bility for learning-based communication protocols?

The answer to this question is yes. In Chapter 4 we adopt predictions that are sets of
labels, and employ several schemes with the goal of reducing the predictive set sizes. By
using conformal prediction, formal guarantees are achieved. In Chapter 5 we apply this to
a 5G dynamic services scheduling, and show that both the stringent ultra-reliability and
the low-latency constraints are met. Furthermore, in Chapter 6 we develop a more efficient
setting, which keeps a formal guarantee while bounding an arbitrary risk.

1.3 Overview

In this work, we are interested in tools that increase the reliability of AI predictors. The
thesis can coarsely be divided into two frameworks:

1. The first framework is probabilistic predictors, as depicted in the top panel of Fig. 1.1,
which is upgraded using three mathematical tools:

(a) Bayesian learning, that treats the network parameters as random variables
drawn according to a learnable distribution, rather than scalar values.

(b) Meta-learning that leverages experience acquired over related learning tasks,
requiring few labeled samples from the unseen test task before prediction.

(c) Bayesian active meta-learning that actively selects which learning task’s
data should be available for the learning model next, aiming to learn as fast as
possible using few tasks in total.

We integrate all of these tools and produce an Bayesian active meta-learning which is
able to learn how to learn, in a way that reflects uncertainties it has regarding its
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predictions, and does so using small amount of labeled test data. This integration is
depicted in Fig. 1.2. This is studied in Chapter 3.

2. The second framework is conformal prediction, which builds on top of probabilistic
predictors as a calibration post-process, in a way that formal guarantees about the loss
are achieved. The bottom panel of Fig. 1.1 shows that set predictors produce a set of
labels rather than a probability vector, and shows the two important prediction metrics
characterizing them: coverage and efficiency. This is studied in Chapters 4 - 5, and
is extended in Chapter 6.

1.4 Literature Survey

In this section, we review the various mathematical frameworks that are pillar to answer
the research questions listed in Section 1.2, as well as closely related fields

1.4.1 Mathematical Tools Directly Used

Most work on AI for communications relies on conventional frequentist learning tools (see,
e.g., the review papers [20–23]). Frequentist learning is based on the minimization of
the (regularized) training loss, which is interpreted as an estimate of the ground-truth
population loss. Frequentist learning assigns a single value to each model parameter as a
result of training. This neglects (epistemic) uncertainty that exists at the level of model
parameters due to the limited availability of data. When data is scarce, this estimate
is unreliable, and hence the focus on a single, optimized, model parameter vector often
yields probabilistic predictors that are poorly calibrated, producing overconfident decisions
[10, 24–26].

Bayesian learning offers a principled way to address this problem [27, 28]. This is done
by producing as the output of the learning process not a single model parameter vector, but
rather a distribution in the model parameter space, which quantifies the model’s epistemic
uncertainty caused by limited access to data. A model trained via Bayesian learning
produces probabilistic predictions that are averaged over the trained model parameter
distribution. This ensembling approach to prediction ensures that disagreements among
models that fit the training data (almost) equally well are accounted for, substantially
improving model calibration [29, 30]. Bayesian learning can express uncertainty about the
true value of the model parameter vector by optimizing over a distribution, rather than
over a single point value [31]. By averaging predictions over the distribution of the model
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Fig. 1.1 Thesis overview. (top) probabilistic predictor. (a) frequentist learning is known
to be accurate and well-calibrated for large data. For limited availability of data, they
tend to produce low quality of uncertainty quantification. (b) Bayesian learning learns an
ensemble of models, and in general better calibrated. (c) Bayesian meta-learning enables
to adapt using very small data set, by transferring knowledge acquired over related tasks.
(d) Bayesian active meta-learning selects the next data set, converging with less data sets.
(bottom) Conformal prediction uses set predictions. (f) formal guarantees on validity,
while aiming for efficiency reflected by small predictive set sizes.
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active learning

Bayesian learning

meta-learning Bayesian meta-learning

Bayesian active meta-learning

learning

Fig. 1.2 Illustration of the three frameworks encompassing Bayesian active meta-learning.
Originating from the base “learning”, three frameworks are discussed in this paper: (red)
Bayesian learning; (green) meta-learning; and (blue) active learning. Integration of all
three yields “Bayesian active meta-learning”.

parameters, Bayesian learning is known to be capable of providing decisions that are well
calibrated [29, 32, 33]. Calibration refers to the capacity of a model to produce confidence
levels that reproduce well the actual accuracy of the decisions.

Bayesian learning can be implemented either via parametric or non-parametric approxi-
mations. Adopting a parametric formulation offers computational advantages, scalability,
flexibility, interpretability, and enables efficient optimization techniques. On the one hand,
parametric variational inference (VI), which approximate the exact Bayesian posterior
distribution with a tractable variational density [29, 34–37], yields simple and tractable
solutions which can scale to large data sets and complex models, while still retaining
expressiveness and flexibility of the solution. A key advantage is the efficient optimization
of a well defined optimization problem. On the other hand, non-parametric variational
inference methods do not impose any restriction of the variational distribution to be a
member of a predefined parametric family. These methods offer greater flexibility, capture
more complex dependencies of the data, and may improve generalization. A widely used
non-parametric VI method is the Stein variational gradient descent (SVGD) [38], which
optimize over deterministic and interacting particles. For Monte Carlo (MC) techniques,
solutions range from first-order Langevin dynamics techniques [39] to more complex meth-
ods such as cyclical stochastic gradient Markov chain Monte Carlo [40] and Hamiltonian
Monte Carlo (HMC) [41]. Implementing any of these schemes for a specific engineering
application is a non-trivial task. Each class of methods comes with its own set of technical
challenges and engineering choices. For instance, VI requires the selection of a variational
distribution family, such as mean-field Gaussian models, and the specification of a stochastic
optimization algorithm. The limitation of the parametric VI lies in the low expressiveness
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levels of parametric distributions, which is an inherent property by limiting to a family of
structured distributions. This requires to strike a balance between model expressiveness and
computational efficiency when choosing the parametric variational family to be versatile
enough. Non-parametric VI may turn to be computational complex and it scales poorly
to high dimensions or large data. In this dissertation, the parametric VI is chosen over
non-parametric VI due to its practically and applicability.

Meta-learning, also known as learning to learn, optimizes training strategies that can
fine-tune a model based on few samples for a new task by transferring knowledge across
different learning tasks [42–48]. Meta-learning is a natural tool to produce AI solutions
that are optimized for adaptation. Prior work on meta-learning for communication systems,
including [49–58], is limited to standard frequentist learning. Therefore, existing art is
unable to produce models that provide well-calibrated estimations of reliability. Most
related to our work is [49], which proposes to leverage pilot information from previous
frames in order to optimize training procedures to be applied to the pilots of new frames
(see Fig. 1.3).

Bayesian meta-learning aims at optimizing the procedure that produces the posterior
distribution for new learning tasks. Accordingly, the goal of Bayesian meta-learning is to
enhance the efficiency of Bayesian learning by reducing the number of training points needed
to obtain accurate and well calibrated Bayesian models. The optimization of the Bayesian
learning process is carried out by transferring knowledge from previously encountered tasks
for which data are assumed to be available [59, 60, 24].

Beside meta-learning, another approach to reduce the number of required training data
points is active learning [61–65]. Active learning amounts to the process of choosing
which samples should be annotated next and incrementally added to the training set [66].
Through this process, active learning can select relevant samples at which the model is
currently most uncertain in order to speed up the training process.

A much less studied area is active meta-learning, which aims at reducing the number
of tasks a meta-learner must collect data from, before it can adapt efficiently to new tasks
[65, 67]. Reference [65] proposes a method based on Bayesian meta-learning via empirical
Bayes; while the paper [67] takes a hierarchical Bayesian approach, generalizing the Bayesian
active learning by disagreements (BALD) criterion introduced in [61] to meta-learning.
While [65] assumes labeled training sets, reference [67] considers unlabeled data during
active meta-learning. As such, the setting in it is not applicable to the problem under study
here in which data consists of supervised pairs of pilots and received signals (see Fig. 1.3).
A summary of the relevant approaches built upon in this work is given in Table 1.1.
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Fig. 1.3 Illustration of the meta-learning problem studied in this work for the example of
16-ary quadrature amplitude modulation (16-QAM). A receiver has available data corre-
sponding to frames previously received from multiple devices, each possibly experiencing
different channel conditions. Given meta-training data sets {Dτ}tτ=1 of pilots from previous
frames, partitioned into training data and test data, the demodulator optimizes a hyper-
parameter vector ξ. For a newly received frame, the receiver uses the few pilots therein
to adapt the demodulator/equalizer parameter vector ϕ∗. In the Bayesian meta-learning
framework, instead of a single parameter vector ϕ∗, the receiver optimizes over an ensem-
ble of parameter vectors through the hyperparameter vector ξ of a posterior distribution
p(ϕ∗|Dtr

∗ , ξ).
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Table 1.1 A Summary of the relevant techniques considered in this work

Approach Goal Methodology

frequentist learning accurate data-driven pre-
dictions

minimize the training loss over the
model parameter vector ϕ

Bayesian learning
via variational inference

reliable and accurate
data-driven predictions

minimize the free energy over the pa-
rameters φ of the variational distribu-
tion q(ϕ|φ)

frequentist meta-learning sample efficiency minimize the meta-training loss over
hyperparameters ξ to be used for fre-
quentist learning

Bayesian meta-learning sample efficiency and re-
liability

minimize the meta-training loss over hy-
perparameters ξ to be used for Bayesian
learning

Bayesian active
meta-learning

task efficiency, sample ef-
ficiency, and reliability

minimize the meta-training loss over
the hyperparameters ξ and over the se-
quential selection of meta-learning tasks

conformal prediction coverage guarantees produce a predictive set of labels, and
regulate its size via a validation set

cross-validation conformal
prediction

efficient conformal pre-
diction

produce efficient predictive sets via
folds

online conformal prediction coverage guarantees regulate in an online fashion a calibra-
tion parameter to produce smallest set
to meet miscoverage

conformal risk control risk guarantees produce a predictive set of labels while
bounding arbitrary risk

cross-validation conformal
risk control

efficient conformal risk
controlling

produce efficient predictive sets with
bound arbitrary risk via folds
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Exact Bayesian learning offers formal guarantees of calibration only under the assump-
tion that the assumed model is well specified [12, 11]. In practice, this means that the
assumed neural network models should have sufficient capacity to represent the ground-truth
data generation mechanism, and that the predictive uncertainty should be unimodal for
continuous outputs (since conventional likelihoods are unimodal, e.g., Gaussian) [12, 29, 28].
These assumptions are easily violated in practice, especially in communication systems in
which lower-complexity models must be implemented on edge devices, and access to data
for specific network configurations is limited. Specific examples are provided in [26] for
applications including modulation classification [68, 69] and localization [70, 71].

Robustified versions of Bayesian learning that are based on the optimization of a
modified free energy criterion were shown empirically to partly address the problem of
model misspecification [11, 12], with implications for communication systems presented
in [26]. However, robust Bayesian learning solutions do not have formal guarantees of
calibration in the presence of misspecified models.

Another family of methods that aim at enhancing the calibration of probabilistic models
implement a validation-based post-processing phase. Platt scaling [72] and temperature
scaling [10] find a fixed parametric mapping of the trained model output that minimizes
the validation loss, while isotonic regression [73] applies a non-parametric binning approach.
These recalibration-based approaches cannot guarantee calibration, as they may overfit the
validation data set [74] and they are sensitive to the inaccuracy of the starting model [75].

Conformal prediction is a general framework for the design of set predictors that satisfy
formal, distribution-free, guarantees of calibration [17, 18]. Given a desired miscoverage
probability α, CP returns set predictions that include the correct output value with
probability at least 1−α under the only assumption that the data distribution is exchangeable.
A sequence of random variables is considered exchangeable if the order in which the random
variables are observed does not affect their joint distribution. This condition is less stringent
than the standard assumption of “i.i.d.” data made in the design of most machine learning
systems, with the latter being a special case of the former.

The original work on CP, [17], introduced validation-based CP (VB-CP) and full CP.
Since then, progress has been made on reducing computational complexity, minimizing the
size of the prediction sets, and further alleviating the assumptions of exchangeability. The
authors of [76, 77] proposed the optimization of a CP-aware loss to improve the efficiency
of validation-based CP, while avoiding the larger computational cost of cross-validation.
The work [78] proposed reweighting as a means to handle distribution shifts between the
examples in the data set and the test point. Other research directions include improvements
in the training algorithms [79, 80], and the introduction of novel calibration metrics [81, 82].
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Finally, online CP, presented in [83, 84], was shown to achieve long-term calibration over
time without requiring statistical assumptions on the data generation.

CP provably guarantees calibration at the cost of relaxing point predictions to sets of
point predictions. Another line of work on formal, distribution-free, post-hoc calibration
introduces Venn predictors which relax probabilistic predictors to sets of probabilistic
predictors [17, Sec. 6], [85–87]. Such sets contain at least one well-calibrated probabilistic
predictor, and the size of each set is no larger than the number of possible labels. In general,
the sets of probabilistic predictor produced by Venn predictors, unlike those output by
CP, do not appear to offer actionable information for decision processes. In contrast, Venn
predictors have been explored in [88] for explanation purposes via perturbations of input
features [89].

Cross-validation-based CP (CV-CP) was proposed in [90] to reduce the computa-
tional complexity as compared to full CP, while improving the efficiency of validation-based
CP. This is done by partitioning the available data set into folds, each acting as a calibration
set of the leave-fold-out data, and as such requires more models to be trained than VB-CP.

Conformal risk control (CRC) [91] generalized the CP framework to arbitrary risks,
beyond the miscoverage loss. By introducing a threshold parameter that controls the
predictive set size, it was proved that CP is a private case of CRC. Most importantly, the
predictive set is built upon a black-box predictor as a post-processing procedure. This line
of research includes also distribution-free CRC [92], online CRC [84], diffusion models [93],
and calibration algorithms [94].

1.4.2 Closely Related Fields

A useful and practical statistical tool for uncertainty quantification when the population
distribution is unknown is bootstrapping. Provided generated data of limited size,
bootstrapping may be used to estimate distributional properties, like confidence intervals
or mean. Three steps are performed repeatedly in it. The first step is resampling with
replacement, whereby each data point is selected at random with replacement from the
original data set, producing a resampled data set with some points occurring more than
once, while others are absent. The second step involves computation of a desired statistic for
each of the resampled sets. The third, last, step includes computing the distribution of the
bootstrapped statistics. This allows empirical estimation without any strong assumptions.
A meta-learning scheme that leverages bootstrapping is in [95].

Transfer learning supports fast adaptation of systems to new tasks. It involves two
related learning tasks: the source task; and the target task. Typically, the available data
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corresponding the target task is too small to allow proper generalization by relying solely
on it while learning. The main idea of transfer learning is that knowledge extracted from
source task generated data is useful, hence transferable, to enhance the generalization
performance of the target task. In order to reuse experience gained over the source task in
the target task, the two tasks should be related to some extend, ranging from covariate shift
for which only the covariate distribution shift between the two tasks while the distribution
of the label conditioned on the covariate stays the same, to the less restrictive general
shift, where there is no discriminative common model. Transfer learning is useful in various
real-life domains, including computer vision [96], natural language processing [97], and
speech recognition [98]. Surveys of Transfer learning are in [99] and [28]. Most approaches
of transfer learning include a fine-tuning of the transferred parameters which were trained
over the source task data, using a training objective associated with the source task. Hence,
adaptation to the target task is done independently after extracting information of the
source task. In contrast, meta-learning considers a meta-objective while it meta-trains over
the meta-training. This meta-objective governs the learning to adapt to a new task.

Meta-learning methods can be categorized into three main approaches. The first
approach, optimization-based meta-learning, solves via optimization a task-specific
problem, and extracts meta-knowledge in a way that helps the optimization across the
meta-tasks. The meta-knowledge is acquired by optimizing a meta-objective that guides the
meta-learning process. Predominant examples for this are the MAML [43], which learn an
initialization of model parameters that facilitates rapid adaptation to new tasks or datasets
through optimization processes, and REPTILE [100]. These algorithms usually are more
computational complex than the other approaches due to second-order optimization, with
first-order approximations reported in [43]. The second approach is model-based meta-
learning, also known as black box meta-learning. In it, a flexible model-agnostic generic
representation that captures similarities between tasks is learned. Efficient generalization is
done by mapping data points to task-specific representations. Methods of this approach
support different model architectures across tasks and are easily combined with learning
problems like supervised learning reinforcement learning. In this approach, the lack of
inductive bias makes the optimization non-trivial and data-inefficient. Examples for this
approach were reported using recurrent networks in [101] and by prediction parameters
from activations in [102]. The third approach is metric-based meta-learning, also known
as non-parametric meta-learning. This expressive and computational-fast approach
focuses on learning a metric space where task similarities can be measured, enabling
efficient generalization across tasks by comparing validation points with training points.
Predominant examples of the the metric-based meta-learning are Siamese Networks [103]
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and Matching Networks [104]. A survey of these three categories, as well as other related
topics, can be found in [105].

An intermediate solution between the two extremes of physics-based modeling and
pure data-driven machine learning, is physics-informed machine learning. It leverages
physical principles and information known about the problem to guide a learning process by
regularizing or constraining. This integration of physical knowledge penalizes solutions that
do not adhere to physical models, and may increase model prediction and explainability
of the solution. Physics-informed machine learning is able to solve complex problems by
unlocking the powerful capabilities of machine learning of capturing patterns, with guidance
and regularization by the physics model. More ways to enrich models’ understanding
are expert knowledge embedding techniques. These methods incorporate expert
knowledge or domain-specific information into machine learning models, typically through
embedding representations. Some examples include: manually crafting features which are
later used in machine learning models; wrapping a learned model with logic such that
the total behavior comply to some constraints; and expert-guided embedding learning
techniques that leverage expert-provided supervision to guide the learning process [106].
Expert knowledge embedding techniques leverage domain-specific insights and aim to
enhanced robustness and reliability of predictions in real-world problems.

1.5 Contributions

Chapter 3 introduces the use of Bayesian meta-learning to enable both adaptation and
monitoring for the tasks of demodulation and equalization. Unlike prior works that
considered either frequentist meta-learning [49, 9, 50–53, 56, 54, 55] or Bayesian learning
[107–110], the proposed Bayesian meta-learning methodology enables both resource-efficient
adaptation and a reliable quantification of uncertainty. To further improve the efficiency
of Bayesian meta-learning we propose the use of active meta-learning, which reduces
the number of required meta-training data from previously received frames. Specific
contributions are as follows.

• We introduce Bayesian meta-learning for the problems of demodulation and equaliza-
tion from few pilots. The proposed implementation is derived based on parametric
VI.

• We introduce Bayesian active meta-learning as a solution to reduce the number of
frames required by meta-learning. Active meta-learning selects in a sequential fashion
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channel conditions under which to generate data for meta-learning from a channel
simulator.

• Extensive experimental results demonstrate that Bayesian meta-learning produces
demodulators and equalizers that offer better calibrated soft decisions. Furthermore,
they show that for a target meta-testing loss, active meta-learning can reduce the
number of simulated meta-training frames required.

Chapter 4 is built to be self-contained, presenting CP from first principles and
including both offline and online CP schemes. We investigate applications of CP to
symbol demodulation, modulation classification and to channel prediction by leveraging
real-world data sets. To the best of our knowledge, our works [111, 112] are the first to
investigate the application of CP to the design of AI models for communication systems.
The main contributions of this chapter are as follows.

• We provide a self-contained introduction to CP by focusing on validation-based
CP [17], cross-validation-based CP [90], and online conformal prediction [84]. The
presentation details connections to conventional probabilistic predictors, as well as
the performance metrics used to assess calibration and efficiency.

• We propose the application of offline CP to the problems of symbol demodulation and
modulation classification. The experimental results validate the theoretical property
of CP methods of providing well-calibrated decisions. Furthermore, they demonstrate
that naïve predictors that only rely on the output of either frequentist or Bayesian
learning tools often result in poor calibration.

• Finally, we study the application of online CP to the problem of predicting received
signal strength for over-the-air measured signals [1, 2]. We demonstrate that online
CP can obtain the predefined target long-term coverage rate at the cost of negligible
increase in the prediction interval as compared to naïve predictors.

In Chapter 5, we propose for the first time the application of CP as a design methodology
to ensure reliability requirements that hold irrespectively of any modeling or data availability
assumptions. Specifically,

• We introduce a CP-based resource allocation scheme for URLLC traffic that makes use
of any existing model-based or data-driven predictor, offering theoretical reliability
guarantees that apply even when the predictor is poorly designed, e.g., due to limited
availability of data.
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• The proposed CP-based scheduler is shown via experiments to be capable of efficiently
adapting to URLLC traffic, providing eMBB users with a larger fraction of spectral
resources as compared to conventional schedulers.

In Chapter 6, we contribute by integrating for the first time advances made on conformal
risk control (CRC) [91] with the cross-validation (CV) paradigm that was reported for CP.

• We propose a new design, that leverages CV into the control of the threshold for the
conformal risk control that is used for losses beyond the miscoverage loss.

• By partitioning available data into folds, we numerically show a setting for which this
proposal ends with more efficient set predictor for the small amount of data regime.

1.5.1 Reproducibility

For reproducibility purposes, we have made all of our code publicly available, as in Table 1.2.
Note that the code of Chapter 3 is aligned to [25] which uses the information theory
notations: x is the channel input, and also the predictor’s target; while y is the channel
output, and hence the predictor covariate. In this dissertation, we use machine learning
notations, to be aligned with the consecutive chapters on conformal prediction.

Table 1.2 Available code

description repository

Chapter 3 Bayesian active meta - learning github.com/kclip/bayesian_active_meta_learning
Chapter 4 conformal prediction github.com/kclip/cp4wireless
Chapter 5 online CP for URLLC github.com/kclip/online_cp_urllc
Chapter 6 cross-validation CRC github.com/kclip/cvcrc

github.com/kclip/bayesian_active_meta_learning
github.com/kclip/cp4wireless
github.com/kclip/online_cp_urllc
github.com/kclip/cvcrc
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Chapter 2

Background

In this chapter, we detail the mathematical tools listed in Chapter 1.4.1. The basics covered
here, as well as the performance metrics reviewed, are used as a background for the chapters
to follow.

2.1 Probabilistic Predictors

Probabilistic predictors implement a parametric conditional distribution model p(y|x, ϕ) on
the output y ∈ Y given the input x ∈ X , where ϕ ∈ Φ is a vector of model parameters.
Given the training data set D, frequentist learning produces an optimized single vector
ϕ∗
D, while Bayesian learning returns a distribution q∗(ϕ|D) on the model parameter space

Φ [29, 28]. In either case, we will denote as p(y|x,D) the resulting optimized predictive
distribution

p(y|x,D) =

p(y|x, ϕ
∗
D) for frequentist learning

Eϕϕϕϕϕϕϕϕϕ∼q∗(ϕ|D)[p(y|x,ϕϕϕϕϕϕϕϕϕ)] for Bayesian learning.
(2.1)

Note that the predictive distribution for Bayesian learning is obtained by averaging, or
ensembling, over the optimized distribution q∗(ϕ|D).

From (2.1), one can obtain a point prediction ŷ for output y given input x as the
probability-maximizing output as

ŷ(x|D) = argmax
y′∈Y

p(y′|x,D). (2.2)
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In the case of a discrete set Y , the hard predictor (2.2) minimizes the probability of detection
error under the model p(y|x,D). The probabilistic prediction p(y|x,D) also provides a
measure of predictive uncertainty for all possible outputs y ∈ Y . In particular, for the point
prediction ŷ(x|D) in (2.2), we have the predictive, self-reported, confidence level

conf(x|D) = max
y′∈Y

p(y′|x,D) = p
(
ŷ(x|D)

∣∣∣x,D). (2.3)

2.2 Properties of Probabilistic Predictors

As illustrated in Fig. 2.1, the performance of a probabilistic predictor can be evaluated in
terms of both accuracy and calibration, with the latter quantifying the quality of uncertainty
quantification via the confidence level (2.3) [10].

Specifically, a probabilistic predictor p(y|x,D) is said to be accurate if its hard predictors
ŷ(x|D) (2.2) equal the true label y with high probability. The more likely for it to happen,
the more accurate the predictor is.

A probabilistic predictor p(y|x,D) is said to be well calibrated [10] if the probability
that the hard predictor ŷ = ŷ(x|D) equals the true label matches its confidence level π for
all possible values of probability π ∈ [0, 1]. Mathematically, calibration is defined by the
condition

P
(
y = ŷ

∣∣∣p(ŷ|x,D) = π
)

= π, for all π ∈ [0, 1] (2.4)

where the probability P(·) follows the ground-truth distribution p0(x, y). Stronger definitions,
like that introduced in [118], require the predictive distribution to match the ground-truth
distribution also for values of y that are distinct from (2.2).

The most common metric used to quantify the performance of a probabilistic predictor
is its accuracy, which is measured by the probability that the hard decision ŷ(x|D) in (2.2)
coincides with the true label y on test data

acc(D) = P
(
y = ŷ(x|D)

)
(2.5)

with the random variables following the population distribution (x,y) ∼ p0(x, y). The
accuracy, however, does not capture the quality of the confidence level (2.3) in terms of
uncertainty quantification. This aspect is instead quantified by means of calibration metrics.
A predictor is well-calibrated if its reported confidence levels (2.3) reflect the ground-truth
probability of correct detection for each input x. Denote by π some probability mass value
in the segment [0, 1]. The per-value accuracy accounts for the probability that the model
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Fig. 2.1 (a) Examples of probabilistic predictors for two inputs x1 and x2: As compared to
the ground-truth distribution in the second column, the first predictor (third column) is
accurate, assigning the largest probability to the optimal decision (indicated as “opt” in the
second column) and also well calibrated, reproducing the true accuracy of the decision; the
second predictor (fourth column) is still accurate, but it is underconfident on the correct
decision (for input x1) and overconfident on the correct decision (for input x2); the third
predictor (fifth column) is not accurate, producing a uniform distribution across all output
values, but is well calibrated if the data set is balanced [119]; and the last predictor (sixth
column) is both inaccurate and poorly calibrated, providing overconfident decisions. (b)
Confidence versus accuracy for the decisions made by the corresponding predictors.

predicts the correct label, provided the model is π-confident for the input x, i.e.

acc(π|D) = P
(

y = ŷ(x|D)
∣∣∣∣conf(x|D) = π

)
. (2.6)

As illustrated in the example in Fig. 2.1, accuracy and calibration are distinct criteria,
with neither criterion implying the other. It is, for instance, possible to have an accurate
predictor that consistently underestimates the accuracy of its decisions, and/or that is
overconfident where making incorrect decisions (see fourth column in Fig. 2.1). Conversely,
one can have inaccurate predictions that estimate correctly their uncertainty (see fifth
column in Fig. 2.1).

Notable calibration metrics include reliability diagram and expected calibration error
(ECE) [10], and are reviewed next.
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Reliability diagrams plot accuracy with respect to confidence level π, providing a visual
depiction of calibration performance. Using this metric, a predictor p(y|x,D) would be
considered as perfectly calibrated if it satisfies

acc(π|D) = π, ∀π ∈ [0, 1]. (2.7)

In contrast, the predictor is considered to be over-confident for confidence level π when the
inequality acc(π|D) < π holds, since it exhibits poorer accuracy level than self-reported
confidence level, and to be under-confident when the inequality acc(π|D) > π holds.

While the reliability diagram provides a fine-grained evaluation of the calibration
performance of a probabilistic predictor, the expected calibration error (ECE) provides a
single scalar measure obtained as the weighted average of the differences between accuracy
and confidence levels across all possible confidence level, i.e.

ECE(D) =
∫ 1

π=0
P
(
conf(x|D) = π

)∣∣∣∣acc(π|D)− π
∣∣∣∣ dπ. (2.8)

A smaller ECE indicates a better calibrated probabilistic predictor.
Since the population distribution is unknown for real life problems, a data-driven

estimation of the accuracy (2.5) using a held-out test set Dte = {(x[i], y[i])}Nte
i=1 with N te

samples provides the unbiased estimation

acc(Dte|D) = 1
Nte

Nte∑
i=1

1

(
ŷ(xte[i]|D) = yte[i]

)
. (2.9)

To visualize Reliability diagrams using data sets rather than the population loss, the
probability interval [0, 1] is partitioned into M equal length intervals, with the m-th interval
(m−1
M
, m
M

] referred to as the m-th bin henceforth. Now let us denote as Bm the subset of
sample indices whose associated confidence level conf(x[i]|D) lie within the m-th bin, i.e.,

Bm =
{
i
∣∣∣∣conf(xte[i]|D) ∈

(
m−1
M
, m
M

]
, with i = 1, 2, . . . , N te

}
. (2.10)

Evaluating measures within particular bin Bm amounts for approximation of conditioning
on confidence level π ∈ (m−1

M
, m
M

]. Note that the bins partition the data set Dte into disjoint
subsets, since we have ⋃Mm=1 Bm = { 1, 2, . . . , N te} and Bm ∩ Bm′ = ∅ for any m′ ̸= m.
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Accordingly, the within-bin accuracy of the predictor for the m-th bin measures the
fraction of within-bin test examples that are correctly detected, i.e.,

acc(Bm|D) = 1
|Bm|

∑
i∈Bm

1(yte[i] = ŷ(xte[i]|D)), (2.11)

with |Bm| denoting the number of total samples in Bm. Furthermore, the within-bin
confidence of the predictor for the m-th bin is defined as the average within-bin confidence
level, i.e.,

conf(Bm|D) = 1
|Bm|

∑
i∈Bm

p
(
ŷ(xte[i]|D)

∣∣∣xte[i],D
)
. (2.12)

A perfectly calibrated predictor p(y|x,D) would have acc(Bm|D) = conf(Bm|D) for all
m ∈ {1, . . . ,M} in the limit of a sufficiently large test data set, i.e., N te

∗ →∞.
Reliability diagrams plot the accuracy acc(Bm|D) and the confidence conf(Bm|D) over

the binned probability interval [0, 1]. Using these metrics, a predictor p(y|x,D) would be
considered as perfectly calibrated if it satisfies the equalities acc(Bm|D) = conf(Bm|D)
for all m ∈ {1, . . . ,M}. In contrast, the predictor is considered to be over-confident for
bin m when the inequality conf(Bm|D) > acc(Bm|D) holds and to be under-confident in
bin m when the inequality conf(Bm|D) < acc(Bm|D) holds. Fig. 2.2 illustrates reliability
diagrams of these kind of predictors.

Finally, the data-driven ECE (2.8) is accordingly estimated by

ECE(Dte|D) = 1
N te

M∑
m=1

∣∣∣Bm∣∣∣∣∣∣∣acc(Bm|D)− conf(Bm|D)
∣∣∣∣. (2.13)

2.3 Frequentist Learning

Given access to training data set D =
{
z[i] = (x[i], y[i])

}N
i=1

with N examples, frequen-
tist learning finds a model parameter vector ϕ∗

D by tackling the following empirical risk
minimization (ERM) problem

min
ϕ

{
LD(ϕ) = − 1

N

∑
(x,y)∈D

log p(y|x, ϕ) = E(x,y)∼pD(x,y)
[
− log p(y|x, ϕ)

]}
, (2.14)

with empirical distribution pD(x, y) defined by the data set D.
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Fig. 2.2 Illustration of reliability diagrams. Provided a data set, the prediction levels are
grouped into M bins (10 for this case). The within-bin test confidence and test accuracy are
then plotted overlaid on on the other. (a) Ideal calibrated for which all predictions coincide
over the identity line. (b) Underconfident predictor, whose self reporting confidence is
lower than the actual accuracy, hence poor-calibrated. (c) Overconfident predictor, also
poor-calibrated. (d) Well-calibrated predictor, having a small gap between test accuracy
and confident.

This approach is statistically well-justified [28] if the training loss is a good approximation
of the context-specific population loss Lp(ϕ|c∗), i.e.,

LD(ϕ) ≈ Lp(ϕ|c∗) = E(x,y)∼p0(x,y|c∗)
[
− log p(y|x, ϕ)

]
, (2.15)

with ground-truth sampling distribution p0(x, y|c∗) defined using the (unknown) ground-
truth context variable c∗ that was used to generate the data set D. In other words,
frequentist learning aims at minimizing the population loss assuming a single context
variable c∗.

An ideal learner will train a model parameter vector ϕ∗ that yields a well-calibrated
predictor with predictive capabilities matching those of the context-based population law,
i.e.,

p(y|x, ϕ∗) ≈ p0(y|x, c∗) = p0(x, y|c∗)∑
y′∈Y p0(x, y′|c∗) (2.16)

for every pair (x, y). Note that this is a sufficient condition for satisfying the well-calibration
condition (2.4). To achieve this via frquentist learning, two assumptions are made. The
first assumption, known as well specificity [11], assumes the discriminative model is capable
enough to express the true unknown context-based likelihood. Mathematically, this amounts
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to the assumption of existence of the equality condition

p(y|x, ϕ∗) = p0(y|x, c∗) (2.17)

for some ϕ∗ in the model parameter space Φ. The second assumption regards to the learning
process using the data set D, assuming the empirical risk in (2.14) has been obtained
from abundant examples so that (2.15) holds and hence the estimation error for the model
parameter vector ϕ is low, i.e.,

ϕD ≈ ϕ∗. (2.18)

However, the second assumption is easily broken in the presence of limited training
samples [28], which brings inevitable epistemic uncertainty [120, 28] that corresponds
to existence of multiple context variables c that are (almost) equally well accounted for
generating the finite data set D.

2.4 Bayesian Learning

Bayesian learning addresses epistemic uncertainty by treating the model parameter vector
as a random vector ϕϕϕϕϕϕϕϕϕ with prior distribution ϕϕϕϕϕϕϕϕϕ ∼ p(ϕ). Ideally, Bayesian learning updates
the prior p(ϕ) to produce the posterior distribution p(ϕ|D) as

p(ϕ|D) ∝ p(ϕ)
N∏
i=1

p
(
y[i]

∣∣∣x[i], ϕ
)

(2.19)

and obtains the ensemble predictor for the test point (x, y) by averaging over multiple
models, i.e.,

p(y|x,D) = Eϕϕϕϕϕϕϕϕϕ∼p(ϕ|D)[p(y|x,ϕϕϕϕϕϕϕϕϕ)]. (2.20)

We further assume the ground-truth distribution of the N + 1 samples of {D, (x, y)} to
be independent when conditioned on a particular state, i.e.,

p0(D, (x, y)|c) = p0(x, y|c)
N∏
i=1

p0(x[i], y[i]|c).

This is justified in the case where there is a state c, stationary over a coherence interval and
changes between intervals, which sets the behavior of samples within its coherence interval.
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The joint population distribution of the N + 1 of {D, (x, y)} points follows

p0(D, (x, y)) = Ec∼p0(c)[p0(D, (x, y)|c)]. (2.21)

By marginalization, we have the prediction of label y using input x and data set D by

p0(y|x,D) = p0(D, (x, y))∑
y′∈Y p0(D, (x, y′)) . (2.22)

An ideal Bayesian predictor will be well-calibrated, meaning its prediction approximates
the ground-truth discriminative distribution

p(y|x,D) ≈ p0(y|x,D) (2.23)

for every pair (x, y). Note again that (2.23) is a sufficient condition to satisfy the condition
(2.4). In (2.23), unlike (2.16), Bayesian learning admits the possibility of the data set D
being generated from different context variables c to capture epistemic uncertainty raised
from the finite number of training samples N .

As long as the model likelihood is well specified (2.17) and also the prior is well specified,
which essentially yields the following equality

p(D, (x, y)) = p0(D, (x, y)), (2.24)

where the model-based joint distribution is defined as

p(D, (x, y)) = Eϕϕϕϕϕϕϕϕϕ∼p(ϕ)

[
p0(x)p(y|x,ϕϕϕϕϕϕϕϕϕ)

N∏
i=1

(
p0(x[i])p

(
y[i]

∣∣∣x[i],ϕϕϕϕϕϕϕϕϕ
))]

, (2.25)

the Bayesian predictor is well-calibrated [11].
The comparison between frequentist learning and Bayesian learning in terms of reliable

prediction is summarized in Fig. 2.3.

2.4.1 Approximate Posterior

In practice, as the true posterior distribution is generally intractable due to the normalizing
factor in (2.19), approximate Bayesian approaches are considered via VI or MC techniques
(see, e.g., [28]).



2.4 Bayesian Learning 27

well specified model s.t.

well calibrated model:

p (y|x, ϕ∗) ≈ p0 (y|x, c∗)
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uncertainty:

well specified model:
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frequentist learning Bayesian learning

ϕD ≈ ϕ∗
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with p0(D, (x, y)|c) = p0(x, y|c)

∏N
i=1 p0(x[i], y[i]|c)

exchangeability asumption:

∃ϕ∗

Fig. 2.3 Assumptions required for well-calibrated probabilistic models trained via frequentist
and Bayesian learning given training data D. The pair (x, y) represents a test data point.
The variable c can be interpreted as a context variable determining the learning task, e.g., a
channel realization for communication systems. Frequentist learning requires the likelihood
models to be well specified, as well as abundant training data to identify the optimal
parameter vector ϕ∗; whereas Bayesian learning only requires the model, including the prior
distribution, to be well specified.

Denoting the approximate Bayesian posterior of p(ϕ|D) distribution as q(ϕ|D), the
Bayesian ensemble predictor (2.20) can be approximated as

q(y|x,D) = Eϕϕϕϕϕϕϕϕϕ∼q(ϕ|D)[p(y|x,ϕϕϕϕϕϕϕϕϕ)]. (2.26)

One common way to tract (2.26) is to use Monte Carlo sampling, namely using R model
parameters, each drawn from ϕ[r] ∼ q(ϕ|D) for all r = 1, . . . , R to obtain

q(y|x,D) ≈ 1
R

R∑
r=1

p(y|x, ϕ[r]), (2.27)

as illustrated in Fig. 2.4. The epistemic uncertainty is embedded via disagreement [61]
among R models. In Appendix B.3, we detail one of the most popular MC technique,
stochastic gradient Langevin dynamics (SGLD) [39].

2.4.2 Why Well-Specificity leads to Well-Calibrated Predictor

Now we detail how assuming well specificity (2.24) leads to well-calibrated Bayesian
predictors (2.20). As a special case of (2.24) with one sample less, p(D) ≈ p0(D) follows
immediately.
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combine

...

q(y|x,D) = Eϕϕϕϕϕϕϕϕϕ∼q(ϕ|D)[p(y|x,ϕϕϕϕϕϕϕϕϕ)] ≈ 1
R
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x
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x

Fig. 2.4 Bayesian neural network yields an approximated ensembling prediction q(y|x,D)
via the combination of the R outcomes from the model distribution q(ϕ|D).

p
(
y
∣∣∣x,D) = Eϕϕϕϕϕϕϕϕϕ∼p(ϕ|D)[p(y|x,ϕϕϕϕϕϕϕϕϕ)]

= Eϕϕϕϕϕϕϕϕϕ∼p(ϕ)

[
p(D|ϕϕϕϕϕϕϕϕϕ)
p(D) p(y|x,ϕϕϕϕϕϕϕϕϕ)

]

= p(D, (x, y))
p0(x)p(D)

≈ p0(D, (x, y))
p0(x)p0(D) (2.28)

= Ec∼p0(c)

[
p0(D|c)
p0(D) p0(y|x, c)

]
= Ec∼p0(c|D)[p0(y|x, c)]
= p0(y|x,D).

Hence, calibration in Bayesian learning does not hinge on the availability of a large data
set, but only on the model well specificity.

2.5 Frequentist Meta-Learning

The most prominent shortcoming of conventional learning is its potentially high sample
complexity, which translates into the need for a large number of labeled training points,
N tr
τ , per task. Meta-learning addresses this issue by transferring knowledge acquired

over previous tasks. Specifically, frequentist meta-learning, as proposed in [49], treats an
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initialization ξ of the model parameter vector as a hyperparameter vector to be optimized
based on the availability of labeled data from t previous tasks.

As a preliminary step, we decompose the available labeled points from each task τ into
a disjoint training set Dtr

τ and test set Dte
τ as Dτ = {Dtr

τ ,Dte
τ }. Furthermore, the data sets

for all previous t tasks are stacked as D1:t = {Dτ}tτ=1, and similarly for Dte
1:t = {Dte

τ }tτ=1,
having a total of N te

1:t = ∑t
τ=1 N

te
τ samples. Meta-learning has two phases: meta-training

and meta-testing. These are defined next by following the frequentist meta-learning strategy
of [49].

Meta-training tackles the bi-level optimization problem

min
ξ

1
Nte

1:t

t∑
τ=1

N te
τ LDte

τ

(
ϕτ (Dtr

τ |ξ)
)

(2.29a)

s.t. ϕτ (Dtr
τ |ξ) = argmin

ϕ(ξ)
LDtr

τ
(ϕ), τ = 1, . . . , t. (2.29b)

The notation ϕ(ξ) in (2.29b) indicates the dependence of the optimizer on the initialization
vector ξ, and LD(ϕ) stands for the empirical loss of model parameter ϕ using data set
D, e.g., the log-loss (2.14). By (2.29), the goal of frequentist meta-training is to find a
hyperparameter vector ξ such that for any task τ , the optimized model parameter vector
ϕτ (Dtr

τ |ξ) fits well the test data set Dte
τ .

Problem (2.29) is addressed via a nested loop optimization involving Gradient Descent
(GD)-based inner updates and Stochastic Gradient Descent (SGD)-based outer updates,
which are also referred as meta-iterations. The inner loop tackles the inner optimization
(2.29b) in a per-task manner, as detailed in the next chapter via (3.6), for a randomly
selected subset T ⊂ {1, . . . , t} of tasks, which are redrawn independently at each meta-
iteration. The outer loop addresses the outer optimization (2.29a) via an SGD step of the
meta-loss with learning-rate κ > 0, i.e.,

ξ ← ξ − κ 1
N te

T

∑
τ∈T

N te
τ ∇ξLDte

τ

(
ϕGD(Dtr

τ |ξ)
)
, (2.30)

based on data from the batch T of selected tasks, and using the notation N te
T = ∑

τ∈T N
te
τ for

the total samples within the batch of selected tasks. Meta-training updates the initialization
vector ξ across multiple meta-iterations. When meeting some stopping criterion, here
determined by a predefined number of meta-iterations Imeta, meta-training stops, and the
hyperparameter vector ξ is stored to be used for future learning tasks.

Upon deployment, i.e., during meta-testing, the meta-test tasks also include labeled
points and unlabeled payload data as the meta-training tasks. Accordingly, each meta-test
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device loads the hyperparameter vector ξ for initialization, and produces the adapted model
parameter vector ϕ∗ = ϕGD(Dtr

∗ |ξ), as detailed in the next chapter (3.6), using N tr
∗ labeled

symbols Dtr
∗ = {(xtr

∗ [i], ytr
∗ [i])}N

tr
∗

i=1. Then, it applies the learned model to the payload data
symbols {xte

∗ [i]}N
te
∗

i=1 to carry out demodulation or equalization

p(yte
∗ [i]|xte

∗ [i], ϕ∗). (2.31)

2.6 Set Predictors

A set predictor is defined as a set-valued function Γ(·|D) : X → 2Y that maps an input x
to a subset of the output domain Y based on data set D. We denote the size of the set
predictor for input x as |Γ(x|D)|. As illustrated in the example of Fig. 4.1, the set size
|Γ(x|D)| generally depends on input x, and it can be taken as a measure of the uncertainty
of the set predictor.

The performance of a set predictor is evaluated in terms of calibration, or coverage, as
well as of inefficiency. Coverage refers to the probability that the true label is included
in the predicted set; while inefficiency refers to the average size |Γ(x|D)| of the predicted
set. There is clearly a trade-off between two metrics. A conservative set predictor that
always produces the entire output space, i.e., Γ(x|D) = Y , would trivially yield a coverage
probability equal to 1, but at the cost of exhibiting the worst possible inefficiency of |Y|.
Conversely, a set predictor that always produces an empty set, i.e., Γ(x|D) = ∅, would
achieve the best possible inefficiency, equal to zero, while also presenting the worst possible
coverage probability equal to zero.

Let us denote a set predictor Γ(·|·) for short as Γ. Formally, the coverage level of set
predictor Γ is the probability that the true output y is included in the prediction set Γ(x|D)
for a test pair z = (x, y). This can be expressed as coverage(Γ) = P

(
y ∈ Γ(x|DDD)

)
, where

the probability P(·) is taken over the ground-truth joint distribution p0(D, (x, y)) in (4.2).
The set predictor Γ is said to be (1− α)-valid if it satisfies the inequality

coverage(Γ) = P
(
y ∈ Γ(x|DDD)

)
≥ 1− α. (2.32)

When the desired coverage level 1 − α is fixed by the predetermined target miscoverage
level α ∈ [0, 1], we will also refer to set predictors satisfying (2.32) as being well calibrated.

Following the discussion in the previous paragraph, it is straightforward to design a
valid, or well-calibrated, set predictor, even for the restrictive case of miscoverage level
α = 0. This can be, in fact, achieved by producing the full set Γ(x|D) = Y for all inputs x.
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Fig. 2.5 (a) The validity condition (2.32) assumed in offline CP is relevant if one is interested
in the average performance with respect to realizations (DDD, z) ∼ p0(D, z) of training set D
and test variable z = (x, y). Input variable x is not explicitly shown in the figure, and the
horizontal axis runs over the training examples in D and the test example z. (b) In online
CP, the set predictor Γi uses its input x[i] and all previously observed pairs z[1], . . . , z[i− 1]
with z[i] = (x[i], y[i]) to produce a prediction set. The long-term validity (4.16) assumed by
online CP is defined as the empirical time-average rate at which the predictor Γi includes
the true target variable y[i].

One should, therefore, also consider the inefficiency of predictor Γ. The inefficiency of set
predictor Γ is defined as the average prediction set size

inefficiency(Γ) = E(D,x,y)∼p0(D,(x,y)

[∣∣∣Γ(x|DDD)
∣∣∣], (2.33)

where the average is taken over the data set DDD and the test pair (x,y) following their
exchangeable joint distribution p0(D, (x, y)).

In practice, the coverage condition (2.32) is relevant if the learner produces multiple
predictions using independent data set D, and is tested on multiple pairs (x, y). In fact,
in this case, the probability in (2.32) can be interpreted as the fraction of predictions for
which the set predictor Γ(x|D) includes the correct output. This situation, illustrated in
Fig. 2.5(a), is quite common in communication systems, particularly at the lower layers
of the protocol stack. For instance, the data D may correspond to pilots received in a
frame, and the test point z to a symbol within the payload part of the frame (see Sec. 4.7).
While the coverage condition (2.32) is defined under the assumption of a fixed ground-truth
distribution p0(D, z), in Sec. 4.5 we will allow for temporal distributional shifts and we will
focus on validity metrics defined as long-term time averages (see Fig. 2.5(b)).





Chapter 3

Bayesian Active Meta-Learning

In this chapter, we rely on the background provided by Section 3.1, specifically the channel
model and soft demodulation and equalization as in Section 3.1.1, with standard frequentist
learning and frequentist meta-learning, as in Section 2.3 and Section 2.5 respectively. As
an overview of this chapter, we illustrate in Fig. 3.1 a comparison between learning and
meta-learning, for both the frequentist and Bayesian learning.

The rest of the chapter is organized as follows. We review in detail Bayesian meta-
learning in Section 3.2.2, starting off with Bayesian-learning and then expanding on Bayesian
meta-learning. Then, we present Bayesian active meta-learning in Section 3.3. Numerical
results are presented in Section 3.4, and Section 3.6 concludes the chapter.

3.1 Channel Model and Background

3.1.1 Channel Model and Soft Demodulation or Equalization

In this chapter, we consider frame-based transmission over a memoryless block fading
channel model with constellation Y and channel output’s alphabet X . The channel is
characterized by a conditional distribution p0(x|y, c) of received symbol x ∈ X given
transmitted symbol y ∈ Y and channel state c. In the case of demodulation, we treat the
set Y as discrete; while for equalization we view it as the space of vectors of a certain size.
In both cases, we will refer to channel input y as symbol. The channel state c is constant
within each frame, and it is independently and identically distributed (i.i.d.) across frames
according to an unknown distribution p(c). At frame τ , the transmitter sends a packet
consisting of Nτ symbols yτ = {yτ [i]}Nτ

i=1. In this chapter a frame is considered as a learning
task in the notation of Sec. 2.5. Given the channel state cτ and the transmitted symbols,
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Fig. 3.1 Learning and meta-learning for Frequentist and Bayesian frameworks. (a) learning
produces a prediction model using a training data set Dtr

∗ and a hyperparameter vector ξ.
This model is then used over the test inputs of Dte

∗ . (b) meta-learning produces a prediction
model using a training data set Dtr

∗ and a hyperparameter vector ξ which is trained over
available data sets of other T frames D1, . . . ,DT .
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collected in a vector xτ , the received samples xτ = {xτ [i]}Nτ
i=1 are conditionally independent

and each received i-th sample is distributed as xτ [i] ∼ p0(xτ [i]|yτ [i], cτ ).
A soft demodulator/equalizer is a conditional distribution p(y|x, ϕ) that maps channel

outputs x ∈ X to estimated probabilities for channel input symbol y ∈ Y. The demod-
ulator/equalizer depends on a vector of parameters ϕ, and is applied separately to each
received sample x[i] in a memoryless fashion as p(y|xτ [i], ϕ). The ideal frame-specific pa-
rameter vector ϕτ for the frame τ is the one that best approximates the channel conditional
distribution p0(yτ |xτ , cτ ), within its model class, obtained from the Bayes rule as

p(yτ |xτ , ϕτ ) ≈ p0(yτ |xτ , cτ ) = p0(xτ |yτ , cτ )p0(yτ )∑
y′

τ ∈Y p0(xτ |y′
τ , cτ )p0(y′

τ )
, (3.1)

where p0(yτ ) is the distribution of the input symbol vector yτ . In practice, as we detail
below, the demodulator/equalizer is optimized based on pilot symbols. To simplify the
terminology, we will also refer to demodulation/equalization as prediction henceforth.

3.1.2 Conventional Data-Driven Demodulators/Equalizers

Pilot-aided schemes utilize available pilot symbols to adapt the predictor p(y|x, ϕ) to the
unknown channel state c in each frame τ . A typical choice for a predictor is a multi-layer
neural-network [121]. With L layers, given received sample x, this class of models produces
a vector

a(x|ϕ) = WL · fWL−1,bL−1 ◦ · · · ◦ fW1,b1(x) + bL, (3.2)

where ◦ is the composition operator; the weights {Wl}Ll=1 and biases {bl}Ll=1 define the model
parameter vector ϕ := {Wl, bl}Ll=1 for a total of D parameters; and the function for the
l-th layer fWl,bl

is a linear mapping followed by an entry-wise activation function h(·), i.e.,
xl = fWl,bl

(xl−1) = h(Wl · xl−1 + bl) with x0 = x. In the last, L-th layer, a soft demodulator
applies the softmax function to vector a(x|ϕ), producing the probability distribution

p(y|x, ϕ) =
[
softmax(a(x|ϕ))

]
y

(3.3)

= exp([a(x|ϕ)]y)∑
y′∈Y exp([a(x|ϕ)]y′) ,

using [·]y as the y-th element of the vector. In contrast, a soft equalizer typically defines
the conditional distribution

p(y|x, ϕ) = N (y|a(x|ϕ), β−1), (3.4)
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where the precision β is fixed. Throughout, we use N (y|µ,Σ) to indicate the probability
density function of a Gaussian vector with mean µ and covariance matrix Σ.

In each frame τ , conventional learning optimizes the model parameters ϕτ using N tr
τ

i.i.d. pilots Dtr
τ = {(xtr

τ [i], ytr
τ [i])}N

tr
τ

i=1 as training data. Optimization of the prediction aims
at minimizing the training log-loss

LDtr
τ

(ϕτ ) := − 1
Ntr

τ

Ntr
τ∑

i=1
log p(ytr

τ [i]|xtr
τ [i], ϕτ ), (3.5)

which amounts to the cross entropy for demodulation (3.3) and the quadratic prediction
loss for equalization (3.4). Minimization of (3.5) can be done via gradient descent (GD), or
stochastic GD (SGD), a variant thereof [122].

GD updates model parameter vector ϕτ for I iterations with learning rate η > 0 starting
from an initialization vector ξ. Accordingly, the updated parameters ϕτ := ϕGD(Dtr

τ |ξ) are
obtained via the iterations

ϕ(0)
τ = ξ,

∀i = 1, . . . , I : ϕ(i)
τ ← ϕ(i−1)

τ − η∇
ϕ

(i−1)
τ

LDtr
τ

(ϕ(i−1)
τ ),

ϕGD(Dtr
τ |ξ) = ϕ(I)

τ . (3.6)

The resulting prediction for a test input-output pair (xte
τ [i], yte

τ [i]) is given as

p(yte
τ [i]|xte

τ [i], ϕGD(Dtr
τ |ξ)). (3.7)

3.2 From Bayesian Learning to Bayesian Meta-Learning

3.2.1 Bayesian Learning

Bayesian learning treats the model parameter vector ϕτ for some frame τ as a random
vector, rather than as a deterministic optimization variable as in frequentist learning
framework. As illustrated in Fig. 3.2, instead of producing a single demodulator parameters
ϕτ = ϕGD(Dtr

τ |ξ) as in (3.6), Bayesian learning produces a distribution p(ϕτ |Dtr
τ , ξ) over the

space of the demodulator parameters ϕτ . This distribution is computed based on training
data Dtr

τ and on predetermined prior distribution p(ϕτ |ξ), which depends in turn on the
hyperparameter vector ξ, also fixed a priori.
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Fig. 3.2 Network weights in frequentist and Bayesian learning: (a) in frequentist learning,
each weight is described by a scalar value; (b) the scalar value can be viewed as random
variable having a degenerated probabilistic distribution concentrated at a simple prior; (c)
in Bayesian learning, the weights are assigned a probability distribution, which, unlike the
frequentist point estimate (dashed vertical line), provides information about the uncertainty
on the weight; (d) in variational inference (VI), the posterior is approximated with a
parameter distribution.

Having obtained the distribution p(ϕτ |Dtr
τ , ξ), the ensemble prediction of a test point

(xte
τ [i], yte

τ [i]) is given by the ensemble average of the predictions p(yte
τ [i]|xte

τ [i], ϕτ ) with
random vector ϕτ having distribution p(ϕτ |Dtr

τ , ξ), i.e.,

p
(
yte
τ [i]

∣∣∣xte
τ [i],Dtr

τ , ξ
)

= Eϕϕϕϕϕϕϕϕϕτ ∼p(ϕτ |Dtr
τ ,ξ)

[
p
(
yte
τ [i]

∣∣∣xte
τ [i],ϕϕϕϕϕϕϕϕϕτ

)]
. (3.8)

The frequentist prediction (2.31), reviewed in the previous section, can be viewed as a
special case in which one is limited to the choice p(ϕτ |Dtr

τ , ξ) = δ(ϕτ −ϕGD(Dtr
τ |ξ)), with δ(·)

indicating the Dirac Delta. With this choice, the distribution p(ϕτ |Dtr
τ , ξ) is concentrated at

one point, namely the GD solution (3.6). The frequentist approach is therefore inherently
limited in its capacity to express uncertainty on the model parameters due to limited data.

Ideally, the distribution p(ϕτ |Dtr
τ , ξ) should be obtained as the posterior distribution

p(ϕτ |Dtr
τ , ξ) ∝ p(ϕτ |ξ)p(Dtr

τ |ϕτ ), (3.9)

where p(Dtr
τ |ϕτ ) = ∏Ntr

τ
i=1 p(ytr

τ [i]|xtr
τ [i], ϕτ ) is the likelihood function for the training data.

However, computing the posterior p(ϕτ |Dtr
τ , ξ) in (3.9) is generally intractable for high

dimensional vector ϕτ .
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To address this challenge, we follow VI and introduce a variational distribution approxi-
mation

q(ϕτ |φτ ) ≈ p(ϕτ |Dtr
τ , ξ), (3.10)

which depends on a variational parameter vector φτ . A typical choice is given by the
Gaussian mean-field approximation [27] which can be expressed as

q(ϕτ |φτ ) = N (ϕτ |ντ ,Diag(exp(2ϱτ ))), (3.11)

with variational parameter vector φτ = [ν⊤
τ , ϱ

⊤
τ ]⊤, and the exponent function is applied

element-wise. The variational parameter vector includes the mean vector ντ ∈ RD and
the vector of the logarithm of the standard deviations ϱτ ∈ RD for the Gaussian random
vector ϕϕϕϕϕϕϕϕϕτ . Note that vector ϱτ models uncertainty in the model parameter space. The
Gaussian expression (3.11) is termed “mean-field” since the distribution is approximated
via factorization across the elements of the random vector, hence the mean. This practice
is common in Bayesian networks [29, 123, 30, 59], as well as in other fields of study such as
statistical physics and probability theory, due to the dimension reduction and enhanced
tractability. While this simplistic variational approximation may impose limitations such
as an irreducible bias, it is expressive enough to reflect uncertainty via the variance of each
variable. More complex approximations can be considered, as long as they are differentiable
with the variational parameter vector. Details on mean-field variational inference can be
found in [28, Chapter 10.6].

To describe VI, we will use the Kullback-Liebler (KL) divergence KL(q(z)||p(z)) [124],
which is a measure of the distance between two distributions q(z) and p(z). It is defined as
the average of the log-likelihood ratio log(q(z)/p(z)) as

KL(q(z)||p(z)) = Ez∼q(z)

[
log

(
q(z)
p(z)

)]
. (3.12)

VI-based Bayesian learning prescribes that the variational parameter vectors φτ be obtained
via the minimization of the KL divergence KL(q(ϕτ |φ)||p(ϕτ |Dtr

τ , ξ)) between the variational
distribution q(ϕτ |φ) and the posterior distribution p(ϕτ |Dtr

τ , ξ). This problem can be
equivalently formulated as the minimization [27, 122]

φτ = argmin
φ

FDtr
τ

(φ|ξ), (3.13)
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where the variational free energy [125] is defined as

FDtr
τ

(φτ |ξ) = N tr
τ Eϕϕϕϕϕϕϕϕϕτ ∼q(ϕτ |φτ )[LDtr

τ
(ϕϕϕϕϕϕϕϕϕτ )] + KL(q(ϕτ |φτ )||p(ϕτ |ξ))

= N tr
τ LDtr

τ
(φτ ) + KL(q(ϕτ |φτ )||p(ϕτ |ξ)). (3.14)

The variational free energy (3.14) is a sum of two terms, the first, LDtr
τ

(φτ ), which we
have defined as the expectation of loss function LDtr

τ
(ϕτ ) (3.5) over variational distribution

q(ϕτ |φτ ), i.e.,
LDtr

τ
(φτ ) = Eϕϕϕϕϕϕϕϕϕτ ∼q(ϕτ |φτ )[LDtr

τ
(ϕϕϕϕϕϕϕϕϕτ )]. (3.15)

represents an average training loss. In contrast, the second term in (3.14) is an information-
theoretic regularizer that restricts the variational distribution to be close to the prior
distribution. Note that, if the variational distribution has ability to express the posterior
distribution in (3.9), the minimizer of the problem (3.13) becomes the Bayesian posterior
p(ϕτ |Dtr

τ , ξ), since the KL divergence KL(q(ϕτ |φ)||p(ϕτ |Dtr
τ , ξ)) is minimized (and it equals

zero) when the two distributions are the same. Other regularizers can be considered for
different settings, for examples the total variation distance, or the mutual information which
can be used to bound generalization error of a learning algorithm [126].

A typical choice for the prior distribution p(ϕτ |ξ) is the Gaussian distribution. In this
case, we have

p(ϕτ |ξ) = N (ϕτ |ν,Diag(exp(2ϱ))), (3.16)

which is defined by the hyperparameter vector ξ = [ν⊤, ϱ⊤]⊤, where ν ∈ RD and ϱ ∈ RD

stand for the mean and logarithm of the standard deviation vector of the Gaussian random
vector ϕϕϕϕϕϕϕϕϕτ .

Assuming the Gaussian variational distribution in (3.11) and the Gaussian prior (3.16),
the regularizer term in (3.14) can be computed in closed-form as

KL(q(ϕτ |φτ )||p(ϕτ |ξ)) = 1
2

D∑
d=1

(
2(ϱ[d]− ϱτ [d]) + exp(2ϱτ [d]) + (ντ [d]− ν[d])2

exp(2ϱ[d]) − 1
)
,

which is a differentiable function for φτ .
With these choices of variational posterior and prior, problem (3.13) can be addressed

via gradient-descent methods by using the reparametrization trick [127]. This is done by
writing the random model parameter vector ϕϕϕϕϕϕϕϕϕτ ∼ q(ϕτ |φτ ) as ϕϕϕϕϕϕϕϕϕτ = ντ + exp (ϱτ )⊙ e,
with random vector e ∼ N (0, ID) and ⊙ being the element-wise multiplication. An estimate
of the gradient of the objective (3.15) using the reparametrization trick is done with the
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aid of R drawn independently samples of the standard normal Gaussian random vector e,
and differentiating the resulting empirical estimate of (3.15).

Algorithm 1: Reparametrization Trick [127]
Inputs : G(·) = a function over vector ϕτ

φτ = variational parameter
Parameters : R = ensemble size
Output : Ĝ(φτ ) = approximation of Eϕϕϕϕϕϕϕϕϕτ ∼q(ϕτ |φτ )[G(ϕϕϕϕϕϕϕϕϕτ )]

1 for r = 1, . . . , R do
2 Draw eτ,r ∼ N (0, ID)
3 ϕτ,r(φτ , eτ,r)← ντ + exp (ϱτ )⊙ eτ,r

4 return Ĝ(φτ )← 1
R

∑R
r=1 G

(
ϕτ,r(φτ , eτ,r)

)
Specifically, we estimate the free energy in (3.14) by replacing the training loss LDtr

τ
(φτ )

with the empirical estimate

L̂Dtr
τ

(φτ ) = 1
R

R∑
r=1

LDtr
τ

(
ντ + exp (ϱτ )⊙ eτ,r

)
, (3.17)

obtained by drawing samples eτ,r ∼ N (0, ID) for r = 1, 2, . . . , R. This yields the estimated
free energy

F̂Dtr
τ

(φτ |ξ) = N tr
τ L̂Dtr

τ
(φτ ) + KL(q(ϕτ |φτ )||p(ϕτ |ξ)). (3.18)

This is a special case of Algorithm 1 with input G(ϕτ ) = LDtr
τ

(ϕτ ). The function (3.18) can
be directly differentiated and used in SGD updates.

Once the variational parameter φτ is inferred using Bayesian training, ensemble pre-
diction for a payload data symbol (xte

τ [i], yte
τ [i]) can be obtained via (3.8) by replacing

p(ϕτ |Dtr
τ , ξ) with q(ϕτ |φτ ) to yield the ensemble predictor

p(yte
τ [i]|xte

τ [i], φτ ) = Eϕϕϕϕϕϕϕϕϕτ ∼q(ϕτ |φτ )
[
p(yte

τ [i]|xte
τ [i],ϕϕϕϕϕϕϕϕϕτ )

]
. (3.19)

Practically, it uses Monte Carlo sampling with R model vectors, producing the approximated
soft predictor p̂(yte

τ [i]|xte
τ [i], φτ ) via Algorithm 1 with G(ϕτ ) = p(yte

τ [i]|xte
τ [i], ϕτ ).

3.2.2 Bayesian Meta-Learning

While conventional Bayesian learning assumes that the random model parameter vector ϕϕϕϕϕϕϕϕϕτ
has a fixed prior distribution p(ϕτ |ξ) parametrized by a predefined hyperparameter vector
ξ, Bayesian meta-learning leverages the stronger assumption that there is a shared prior
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distribution p(ϕτ |ξ) across all frames that can be optimized through a hyperparameter
vector ξ.

In this section, we formulate Bayesian meta-learning by following empirical Bayes [128],
with the aim of selecting a distribution p(ϕτ |ξ) that provides a useful prior for the design
of the predictor on new frames. Mathematically, Bayesian meta-training optimizes over the
hyperparameter vector ξ by addressing the bi-level problem

min
ξ

1
Nte

1:t

t∑
τ=1

N te
τ Eϕϕϕϕϕϕϕϕϕτ ∼q(ϕτ |φτ (Dtr

τ |ξ))
[
LDte

τ
(ϕϕϕϕϕϕϕϕϕτ )

]
(3.20a)

s.t. φτ (Dtr
τ |ξ) = argmin

φ
FDtr

τ
(φ|ξ), τ = 1, . . . , t. (3.20b)

Problem (3.20) chooses the hyperparameter vector ξ that minimizes the average test loss
on the meta-training frames τ ∈ {1, . . . , t} that is obtained with the variational posterior
via (3.13). The subproblems in (3.20b) correspond to Bayesian learning applied separately
to each frame as explained in Section 3.2.1. An illustration of all the quantities involved in
problem (3.20) can be found in Fig. 3.3 by using the formalism of Bayesian networks [129].

To address problem (3.20) in a tractable manner, we apply the reparametrization trick
for both outer (3.20a) and inner optimization (3.20b) by following the same steps described
in Section 3.2.1. Details on the optimization can be found in Algorithm 2. In short, the inner
loop updates the frame-specific variational parameters φτ by minimizing the approximated
free energy (3.18) separately for each frame τ within a mini-batch T via GD (dashed blue
line in Fig. 3.3b). Following [59, 30], the prior’s parameter vector ξ plays two roles in
the inner loop, namely (i) as the initialization for the inner GD update in Algorithm 2
line 9; and (ii) as the regularizer for the same update via the prior p(ϕτ |ξ). The outer
optimization (3.20a) is addressed via SGD to minimize the average log-likelihood for test
set using Algorithm 1 with G(ϕτ ) = LDte

τ
(ϕτ ), shown as dashed green line in Fig. 3.3b.

After obtaining meta-trained hyperparameter ξ, meta-testing takes place, starting with
the adaptation of the variational parameter φ∗(Dtr

∗ |ξ) via (3.20b) using the available pilot
data Dtr

∗ at the current frame, to obtain ensemble prediction

p(yte
∗ [i]|xte

∗ [i], φ∗) = Eϕϕϕϕϕϕϕϕϕ∗∼q(ϕ∗|φ∗)
[
p(yte

∗ [i]|xte
∗ [i],ϕϕϕϕϕϕϕϕϕ∗)

]
, (3.21)

as done in (3.19). Bayesian meta-learning is illustrated comparatively to meta-learning in
Fig. 3.4.
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Fig. 3.3 Probabilistic graphical model (Bayesian network) [129] for Bayesian meta-learning.
Circles represent random variables; double-lined circles represent deterministic variables
or (hyper)parameters; shaded circles represent observations; dashed diamonds represent
variational parameter vectors; and plaques indicate multiple instances (the outer plaques
represent frames, whereas the inner represent multiple sample, e.g., symbols across time):
(a) High level representation, assuming a prior p(ϕ|ξ) and predictor p(y|x, ϕ); (b) Model
using the train/test splits, with variational inference q(ϕτ |φτ ) ≈ p(ϕτ |Dtr

τ , ξ) indicated as
dashed arrows.

3.2.3 Computational Complexity

We now briefly elaborate on the complexity of meta-learning by analyzing the complexity
of meta-training and of meta-testing. To this end, let us define as C the complexity
of obtaining the probability p(y|x, ϕ) for a data sample (x, y). This baseline complexity
depends on the model dimensionality, and it accounts for the amount of time needed to carry
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Algorithm 2: Bayesian Meta-Training
Inputs : D1:t = labeled data sets of t meta-training frames
Parameters : B = number of frames per meta-update batch

I = number of inner update steps
η, κ = inner/outer updates learning rates

Output : ξ = learned hyperparameter vector
1 initialize ξ
2 while meta-learning not done do
3 T ← random batch of B frames
4 for τ ∈ T do
5 randomly divide Dτ = {Dtr

τ ,Dte
τ }

6 ◁ frame-specific update ▷

7 φ
(0)
τ ← ξ

8 for i = 1, 2, . . . , I inner update steps do
9 φ

(i)
τ ←φ

(i−1)
τ − η

Ntr
τ
∇φτ F̂Dtr

τ

(
φ

(i−1)
τ

∣∣ξ) using (3.18)

10 φGD(Dtr
τ |ξ)← φ

(I)
τ

11 ◁ meta-update ▷

12 ξ ← ξ − κ 1
Nte

T

∑
t∈T N te

τ ∇ξL̂Dte
τ

(
φGD(Dtr

τ |ξ)
)

13 return ξ

out the forward pass on the neural network implementing the model p(y|x, ϕ). Accordingly,
as seen in Table 3.1, the per-data point complexity of meta-testing equals C for frequentist
learning, and CRte for Bayesian learning, where Rte is the size of the ensemble used for
inference.

The meta-update step (2.30) is unrolled via backpropagating I times, as each model
parameter ϕ(i)

τ is connected via i local GD updates starting from initialization ξ (3.6).
While mathematically the Jacobian should be considered for each step, the overall update
rule requires only I Hessian-vector products (HVP). The full unrolling trace is detailed in
[49]. The complexity of computing the first-order gradient via backpropagation per-sample
is given by G1C, with G1 being a constant in the range between 2 and 5 [28, 130]. Each
HVP has a complexity of the order G2G1C, where constant G2 is also between 2 to 5 [49,
Appendix A],[131, Appendix C]. Assume that all tasks have data sets of equal size, i.e.,
N tr
τ = N tr and N te

τ = N te for any task τ . Therefore, for each meta-training iteration, for a
batch of B tasks with I local updates, the complexity of the frequentist meta-update (2.30)
is of the order

B
(

IN trG1C︸ ︷︷ ︸
frame-specific update

+ IN trG2G1C︸ ︷︷ ︸
HVPs in meta-update

+ N teG1C︸ ︷︷ ︸
gradient in meta-update

)
. (3.22)
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Fig. 3.4 Bayesian meta-learning (blue) as compared to frequentist meta-learning (red). The
frequentist predictor uses a single predictor, depicted as a neural network (NN), whereas
Bayesian meta-learning uses an ensemble of predictors, e.g., a Bayesian NN (BNN). The
dashed line represents the operation of the active meta-learning introduced in Section 3.3.
The data for each frame is generated by following the distribution p0(x, y|c) = p0(x)p0(y|x, c),
with input distribution p0(x) and conditional distribution p0(y|x, c) for channel state c.

As calculating the HVPs may burden the computational complexity, a first-order approx-
imation named first-order model-agnostic meta-learning was suggested in [43], where all
second-derivative terms are ignored, leading to a reduced computational complexity with-
out the contributions of the HVPs of the meta-update in (3.22). While there are some
reports the performance degradation may be limited while using the approximation, in our
simulations we use the full, second-order-based, meta-learning.

For Bayesian meta-learning, the complexity increases linearly with the training ensemble
size that is used for estimating the loss functions in (3.20a) and (3.20b). Note that the
impact of the size Rtr of the training ensemble used for meta-training is different from
the size Rte used for inference, as the first determines the variance of the stochastic loss
functions, while the latter determines the quality of Bayesian prediction (see, e.g., [132]
and references therein). Ignoring the constant cost of differentiating the KL term in the
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free energy and for sampling from the Gaussian distribution, the complexity analysis is
summarized in Table 3.1.

Table 3.1 Computational complexity of frequentist and Bayesian meta-learning. (See text
in Sec. 3.2.3 for details)

inference [per-test sample] meta-training [per-meta-iteration]

frequentist C BG1C
(
IN tr(G2 + 1) +N te

)
Bayesian CRte BG1C

(
IN tr(G2 +1)Rtr +N teRte

)

3.3 Bayesian Active Meta-Learning

In the previous sections, we have considered a passive meta-learning setting in which the
meta-learner is given a number of meta-training data sets, each corresponding to a different
channel state c. In this section, we study the situation in which the meta-learner has access
to a simulator that can be used to generate random data sets for any channel state c via
the channel p0(x|y, c). The problem of interest is to minimize the use of the simulator by
actively selecting the channels {cτ} for which meta-training data is generated. To this end,
we devise a sequential approach, whereby the meta-learner optimizes the next channel state
ct+1, given all t meta-training data sets of frames τ = 1, . . . , t.

At the core of the proposed active meta-learning strategy, are mechanisms used by the
meta-learner to discover model parameter vectors ϕ that have been underexplored so far,
and to relate model parameter vector ϕ to a channel state.

3.3.1 Active Selection of Channel States

After having collected t meta-training data sets D1:t = {Dτ}tτ=1, the proposed active meta-
learning scheme selects the next channel state, ct+1, to use for the generation of the (t+1)-th
meta-training data set Dt+1. We adopt the general principle of maximizing the amount of
“knowledge” that can be extracted from the data set associated with selected channel ct+1,
when added to the t available data sets D1:t. This is done via the following three steps: (i)
searching in the space of model parameter vectors for a vector ϕt+1 that is most “surprising”
given the available meta-training data D1:t; (ii) translating the selected model parameter
vector ϕt+1 into a channel ct+1; and (iii) generating data set Dt+1 by using the simulator
with input ct+1.
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Fig. 3.5 Illustration of how model parameter vectors are scored to enable active meta-learning
provided t = 3 meta-training sets. (a) Frequentist meta-learning relies on point estimates,
and is hence unable to score as-of-yet unexplored model parameters; (b) Bayesian meta-
learning can associate a score to each model parameter vector ϕ based on the variational
distributions

{
q(ϕ|φτ )

}
evaluated in the previously observed frames τ = 1, . . . , t; (c) The

scoring function can be maximized to obtain the next model parameter vector ϕt+1 as the
most “surprising” one.

As illustrated in Fig. 3.5, in step (i), we adopt the scoring function introduced in [65],
i.e.,

st(ϕ|φ1:t) := − log
1
t

t∑
τ=1

q(ϕ|φτ )
 (3.23)

in order to select the next model parameter vector as

ϕt+1 = argmax
ϕ

st(ϕ|φ1:t). (3.24)

The criterion (3.23) measures how incompatible model parameter vector ϕ is with the
available data D1:t. In fact, by the derivations in the previous section: the mixture of
variational distributions 1

t

∑t
τ=1 q(ϕ|φτ ) quantifies how likely a vector ϕ is on the basis of

the data D1:t (Fig. 3.5b); and the negative logarithm in (3.23) evaluates the information-
theoretic “surprise” associated with that mixture. Problem (3.24) can be addressed either
by grid search for low-dimensional model parameter space, or by using gradient ascent due
to the differentiability nature of the scoring function (3.23), as illustrated in Fig. 3.5c.

In step (ii), we need to convert the selected model parameter vector ϕt+1, i.e., the
outcome of (3.24), into channel state ct+1. We choose the channel state ct+1 that minimizes
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the cross entropy loss when evaluated at ϕt+1, i.e.,

ct+1 ∈ argmin
c

{
Lp(ϕt+1|c) = E(x,y)∼p0(x,y|c)[− log p(y|x, ϕt+1)]

}
, (3.25)

where we set p0(x, y|c) = p0(y)p0(x|y, c), with p0(y) being some fixed distribution and
p0(x|y, c) being the distribution of the output of the simulator. In (3.25), we have emphasized
that there may be more than one solution to the problem. The rational behind problem
(3.25) is that data generated from the distribution p0(y, x|ct+1) can be interpreted as being
the most compatible with the demodulator p(y|x, ϕt+1), where compatibility is measured
by the average of the cross entropy Ex∼p(x|ct+1)

[
H
(
p0(y|x, ct+1), p(y|x, ϕt+1)

)]
.

We emphasize that the proposed approach is different from the methodology introduced
by [65], which uses another variational distribution in problem (3.20). In our experiments,
we found the method in [65] to be ineffective and complex for the problem under study
here. The main issue appears to be overfitting for the additional variational distribution,
which is overcome by leveraging the availability of the channel simulator implementing the
model p0(x|y, c).

In some models, problem (3.25) can be solved analytically. For more complex models,
SGD-based approaches can be used, either by differentiating an estimate of the loss in a
manner similar to the discussion in Sec. 3.2.2

(
i.e., Algorithm 1 with G(ϕt+1) = Lp(ϕt+1|c)

)
,

or by directly estimating its gradient [133].
Finally, in step (iii), meta-training data set Dt+1 = {(xt+1[i], yt+1[i])}Nt+1

i=1 is generated
using the simulator in an i.i.d. fashion following the distribution

p(Dt+1|ct+1) =
Nt+1∏
i=1

p0(yt+1[i])p0
(
xt+1[i]

∣∣∣yt+1[i], ct+1
)
. (3.26)

As a final note, we adopt the proposal in [65] of implementing active selection only after
tinit > 1 channel states that are generated at random, as a means to avoid being overconfident
at early stages. The overall proposed Bayesian active meta-learning scheme is summarized
in Algorithm 3.

3.4 Experiments

In this section, we present experimental results to evaluate the performance of Bayesian
meta-learning for demodulation/equalization.
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Algorithm 3: Bayesian Active Meta-Training
Inputs : p0(x|y, c) = channel model

p0(y) = generative symbols distribution
Parameters : tinit = number of prior-based first frames
Output : ξ = shared hyperparameter vector

1 ◁ Generate initial experience ▷
2 for t = 1, 2, . . . , tinit do
3 Draw using the prior ct ∼ p(ct)
4 Acquire data Dt ∼

∏Nt
i=1 p0(yt[i])p0(xt[i]|yt[i], ct)

5 while data acquisition not done do
6 ξ ← BayesianMetaTraining(D1:t) using Algorithm 2
7 ◁ frame-specific update with updated ξ ▷
8 for τ = 1, 2, . . . , t do
9 φτ ← φGD(Dtr

τ |ξ) using (3.18)
10 ◁ step (i), choose surprising model parameter ▷
11 ϕt+1 = argmaxϕ st(ϕ|φ1:t) using (3.23)
12 ◁ step (ii), choose next channel ▷
13 ct+1 ∈ argminc Lp(ϕt+1|c) as in (3.25)
14 ◁ step (iii), generate data set ▷

15 Draw Dt+1 ∼
∏Nt+1
i=1 p0(yt+1[i])p0(xt+1[i]|yt+1[i], ct+1)

16 t← t + 1
17 return ξ

3.4.1 Performance Metrics

Apart from the standard measures of symbol error rate (SER) and mean squared error
(MSE), we will also evaluate metrics quantifying the performance in terms of the reliability of
the confidence measures provided by the predictor. While such measures can be defined for
both classification and regression problems, we will focus here on uncertainty quantification
for demodulation via calibration metrics (see [134] for discussion on regression).

As discussed in the previous sections, for a new frame, we need to make a prediction
for the payload symbols {xte

∗ [i]}N
te
∗

i=1 via the demodulator p(yte
∗ [i]|xte

∗ [i], ϕ∗) for frequentist
meta-learning (2.31), or p(yte

∗ [i]|xte
∗ [i], φ∗) for Bayesian meta-learning (3.19)

p(yte
∗ [i]|xte

∗ [i],Dtr
∗ , ξ) =

p(y
te
∗ [i]|xte

∗ [i], ϕGD(Dtr
∗ |ξ)), frequentist learning

p(yte
∗ [i]|xte

∗ [i], φ∗(Dtr
∗ |ξ)), Bayesian learning.

(3.27)
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The confidence level assigned by the model to the hard predicted symbol

ŷte
∗ [i] = argmax

y′∈Y
p(y′|xte

∗ [i],Dtr
∗ , ξ) (3.28)

given the received symbol xte
∗ [i], can be defined as the corresponding probability [10]

p̂[i] = max
y′∈Y

p(y′|xte
∗ [i], θ) = p(ŷte

∗ [i]|xte
∗ [i], θ), (3.29)

Perfect calibration [10] can be defined as the condition where symbols that are assigned a
confidence level p̂[i] are also characterized by a probability of correct detection equal to p.

3.4.2 Frequentist and Bayesian Meta-Learning for Demodulation

For the first set of experiments, we focus on a demodulation problem at the symbol level in
the presence of transmitter I/Q imbalance [135, 136], as considered also in [49]. The main
reason for this choice is that channel decoding typically requires a hard decision on the
transmitted codeword, whose accuracy can be validated via a cyclic redundancy check. In
contrast, demodulation is usually a preliminary step at the receiver side, and downstream
blocks, such as channel decoding, expect soft inputs that are well calibrated. For each
frame τ , the transmitted symbols yτ [i] are drawn uniformly at random from the 16-QAM
constellation Y = 1/

√
10({±1,±3}+ ȷ{±1,±3}). The received symbol xτ [i] ∈ X = C is

given as
xτ [i] = hτfIQ,τ (yτ [i]) + vτ [i], (3.30)

for a unit energy fading channel coefficient hτ , where the additive noise is vτ [i] ∼ CN (0, SNR−1)
for some signal-to-noise ratio (SNR) level SNR, and the I/Q imbalance function [137]
fIQ,τ : Y → Ȳτ is

fIQ,τ (yτ [i]) = ȳI,τ [i] + ȷȳQ,τ [i] (3.31) ȳI,τ [i]
ȳQ,τ [i]

 =
1 + ϵτ 0

0 1− ϵτ

 cos δτ − sin δτ
− sin δτ cos δτ

  yI,τ [i]
yQ,τ [i]

 ,
which depends on the imbalance parameters ϵτ and δτ . In (3.30), yI,τ [i] and yQ,τ [i] refer to
the real and imaginary parts of the modulated symbol yτ [i]; and ȳI,τ [i] and ȳQ,τ [i] stand
for the real and imaginary parts of the transmitted symbol fIQ,τ (yτ [i]). Note that the
constellation Ȳτ of the transmitted symbols ȳτ [i] is also composed of 16 points via (3.31).
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By (3.30) and (3.31), the channel state cτ consists of the tuple: (a) amplitude imbalance
factor ϵϵϵτ ∈ [0, 0.15]; (b) phase imbalance factor δδδτ ∈ [0, 15◦]; and (c) channel realization
hτ ∈ C. All of the variables are drawn i.i.d. across different frames and are fixed during
each frame. We consider the channel state distribution for frame τ as

p0(cτ ) = Beta
(

ϵτ
0.15

∣∣∣∣5, 2)Beta
(

δτ

0.15◦

∣∣∣∣5, 2)CN (hτ |0, 1). (3.32)

We set our base learner to be a multi-layer fully-connected neural network (3.3) with
L = 5 layers. The real and imaginary parts of the input xτ [i] ∈ C are treated as a vector in
R2, which is fed to layers with 10, 30, and 30 neurons, all with ReLU activations, while the
last linear layer implements a softmax function that produces probabilities for the 16QAM
constellation points.

To address the ability of meta-learning to adapt the demodulator using only few pilots,
we set the number of pilots as N tr

τ = 4 during meta-training and N tr
∗ = 8 for meta-testing

[49]. Fig. 3.6 shows the SER as a function of the number of total meta-training frames t.
Since only half of the constellation points are available as pilots during meta-test (N tr

∗ = 8
different symbols out of 16), conventional learning cannot obtain a SER lower than of
0.5. In fact, conventional learning performs worse than a standard model-based receiver
applying linear minimal mean square error (LMMSE), followed by maximum likelihood
(ML) demodulation, while disregarding the presence of I/Q imbalance function fIQ. Both
meta-learning schemes are clearly superior to conventional learning and to the mentioned
model-based solution, showing that useful knowledge has been transferred from previous
frames to a new frame. Furthermore, Bayesian meta-learning obtains a slightly lower SER
as compared to frequentist meta-learning. This advantage stems from the capacity of
ensemble predictors to implement more complex decision boundaries [132].

To gain insights into the reliability of the uncertainty quantification provided by the
demodulator, we use the metrics defined in Sec. 2.2, by setting the total number of bins
which partition the [0, 1] probability values to M = 10. We plot the ECE as a function of
the number of total meta-training frames t in Fig. 3.7. Bayesian meta-learning is seen to
achieve a lower ECE than frequentist meta-learning, indicating that Bayesian meta-learning
provides more reliable estimates of uncertainty. Furthermore, the increase in ECE as the
number t of available meta-training frames increases may be interpreted as a consequence
of meta-overfitting [138]. This suggests that meta-learning may be considered as complete
after a number of frames that depends on the complexity of the propagation environment.
In practice, this can be assessed by evaluating the performance of the demodulator on
pilots (see the online strategy in [49] for further discussion on this point). More meta-
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Fig. 3.6 Symbol error rate (SER) as a function of the number t of meta-training frames
with 16-QAM, Rayleigh fading, and I/Q imbalance for N tr

τ = 4, N tr
∗ = 8. The symbol error

rate is averaged over by N te
∗ = 4000 data symbols and 50 meta-test frames with ensemble

of size 100.

training tasks means higher diversity and complexity. If the meta-training tasks vary one
from the other, the meta-learner may find it harder to capture the common patterns that
generalize across tasks, and may turn unsuccessful to adapt effectively to the range of
tasks encountered during meta-testing. Fine-tuning of the model architecture, choice of
optimization algorithm, hyperparameters, and convergence criteria, can help to mitigate
this effect, and is outside of the scope of this frequentist-Bayesian comparative work.

To further elaborate on the quality of uncertainty quantification, Fig. 3.8 depicts
reliability diagrams for frequentist and Bayesian meta-learning. The within-bin accuracy
levels acc(Bm) in (2.11) and the within-bin empirical confidence conf(Bm) in (2.12) are
depicted as dark (blue) and light (red) bars, respectively. Frequentist meta-learning is
observed to produce generally over-confident predictions, while Bayesian meta-learning
provides better calibrated predictions with well-matching confidence and accuracy levels.

3.4.3 Bayesian Active Meta-Learning for Equalization

In this section, we illustrate the operation of active meta-learning by investigating a single-
input multiple-output (SIMO) Rayleigh block fading real channel model. At frame τ ,
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Fig. 3.7 Expected calibration error (ECE) over meta-test data Dte
∗ as a function of the

number t of meta-training frames, for the same setting as in Fig. 3.6.

the modulator uses a 4-PAM to produce symbols yτ [i], i = 1, 2, . . . , Nτ , taken uniformly
from the set Y ∈ 1/

√
5{−3,−1,+1,+3}. Given channel state cτ = [c0

τ , c
1
τ ]⊤ ∈ R2, the i-th

channel output symbol xτ [i] ∈ R2 for i = 1, 2, . . . , Nτ is defined as the two-dimensional real
vector

xτ [i] = cτyτ [i] + vτ [i], (3.33)

where both the additive noise vτ [i] ∼ p0(v) = N
(
0, 1

2SNRI2
)

and the normalized real block
fading coefficients cτ ∼ p0(c) = N (c|0, I2) are i.i.d. We adopt the linear equalizer

ŷτ [i] = ϕ⊤
τ · xτ [i] (3.34)

with linear equalizer weight vector ϕτ = [ϕ0
τ , ϕ

1
τ ]⊤ ∈ R2. To obtain a soft equalization, we

account for a precision level β via the conditional distribution

p(yτ [i]|xτ [i], ϕτ ) = N (yτ [i]|ϕ⊤
τ · xτ [i], β−1). (3.35)

The next model parameter ϕt+1 is chosen to maximize the scoring function as in (3.24)
by restricting the optimization to the domain ||ϕ|| ≤ 1. This restricted optimization domain
is selected in order to match the circular symmetry of the problem. Furthermore, the
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Fig. 3.8 Reliability diagrams (top) for frequentist meta-learning (left) and Bayesian meta-
learning (right) with SNR = 18 dB, using t = 16 meta-training frames and predictions
averaged over 50 meta-test frames. Frequentist meta-learning tends to be over-confident,
whereas the Bayesian soft predictions are better matched to the true accuracy. The bottom
figure shows the histogram of |Bm|/N of prediction over M = 10 bins. Full details in
Appendix A.
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corresponding next channel state ct+1 is selected by tackling problem (3.25), which amounts
to the minimization

ct+1(ϕ) ∈ argmin
c

E(x,y)∼p0(y)p0(x|y,c)[− log p(y|x, ϕ)] (3.36a)

= argmin
c

E(y,v)∼p0(y)p0(v)[β2 (y− ϕ⊤ · (cy + v))2]

= argmin
c

E(y,v)∼p0(y)p0(v)[β2
(
(1− ϕ⊤ · c)y− ϕ⊤v

)2
]

=
{
c
∣∣∣ϕ⊤ · c = 1

}
. (3.36b)

In the set of solutions of problem (3.36b), we select the minimum-norm solution ct+1 =
ϕt+1/∥ϕt+1∥2. This way, the selected channel focuses on the more challenging low-SNR
regime. Details of this experiment are provided in Appendix A.

Fig. 3.9 illustrates the scoring function (3.23) used to select the next model parameter
ϕt+1 as a heat map in the space of model parameter ϕ. Specifically, the figure shows the
scoring functions after observing t = 4 and t = 5 meta-training frames. The optimized next
model parameter vector ϕt+1 (3.24) is shown as a star, while the previously selected model
parameter vectors ϕ1:t are shown as squares. Fig. 3.9 illustrates how active meta-learning
efficiently explores the model parameter space. It does so by avoiding the inclusion of
channel states that are similar to those already considered (i.e., the squares in the figure).
This way, the model parameter space can be covered with fewer meta-training frames t,
leading to a larger frame efficiency of active meta-learning.

Finally, to numerically validate the advantage of active meta-learning, we plot the
meta-test MSE loss in Fig. 3.10 for both passive and active Bayesian meta-learning versus
the number of frames t. For passive meta-learning, we have generated random channel
realizations by drawing from the distribution p0(c) = N (c|0, I2). We have repeated the
experiment 100 times, and show the confidence interval of one standard deviation for the
meta-test loss. The results in the figure confirm that active meta-learning requires far fewer
meta-training frames. Furthermore, the increased randomness of passive meta-learning is
due to the random selection of channel states at each iteration.

3.5 Related Work

Bayesian learning has been applied to communication systems in various works. The work
[139] applied it to the problem of predicting the number of active users in LTE system;
papers [140, 141] applied MC-based Bayesian learning for MIMO detection; the works [142–
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Fig. 3.9 Scoring function (3.23) used by Bayesian active meta-learning to select the next
model parameter vector ϕt+1 at the fourth and fifth iterations. The scoring function is
shown as a heat map over the two dimensional space of the model parameter vector ϕ for
the example detailed in Sec. 3.4.3.

Fig. 3.10 Meta-test mean squared error (MSE) loss as function of the number of frames
t. Bayesian active meta-training is able to achieve lower meta-test loss levels by using
fewer meta-training tasks t. Solid lines are the mean test loss over 100 channel states. The
confidence levels account for one standard deviation across the experiments.
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144] addressed channel prediction/estimation for massive MIMO systems; reference [145]
studied the identification of IoT transmitters; multi user detection was applied in [107, 108];
and the authors of [132] proposed the use of robust Bayesian learning for modulation
classification, localization, and channel modeling.

As for active learning, applications to communication systems include paper [146], which
proposed a sample-efficient retransmission protocol; reference [147], which tackled initial
beam alignment for massive MIMO system; work [148], which aimed at mitigating the
problem of scarce training data in wireless cyber-security attack; and reference [149], which
addressed resource allocation problems in vehicular communication systems.

Like Bayesian learning, meta-learning also provides a general design principle, which
can be implemented by following different approaches. Optimization-based methods design
the hyperparameters used by training algorithms; model-based techniques optimize an
additional neural network model to guide adaptation of the main AI model; and metric-
based schemes identify metric spaces for non-parametric inference (see, e.g., [105] and
references therein).

The integration of meta-learning and Bayesian learning is highly non-trivial, and is an
active topic of research in the machine learning literature. References [150, 30, 151–153]
addressed Bayesian meta-learning via empirical Bayes using parametric VI [150, 30], particle-
based VI [151], deep-kernels [152], and expectation-maximization [153]; while the papers
[123, 154–156] studied full Bayesian meta-learning that treats also the hyperparameters as
random variables. Lastly, the work [157] proposed the use of quantum machine learning
models as parameterized variational distributions.

3.6 Conclusions

In this chapter, we have introduced tools for reliable and efficient AI in communication
systems via Bayesian meta-learning. Bayesian learning has the advantage of producing
well-calibrated decisions whose confidence levels are a close match for the corresponding
test accuracy. This property facilitates monitoring of the quality of the outputs of an
AI module. Meta-learning optimizes models that can quickly adapt based on few pilots,
producing sample-efficient AI solutions. This paper has focused on the application of
Bayesian meta-learning to the basic problems of demodulation/equalization from few
pilots. We have demonstrated via experiments that the demodulator/equalizer obtained
via Bayesian meta-learning not only achieves a higher accuracy, but it also enjoys better
calibration performance than its standard frequentist counterpart. Furthermore, thanks to
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meta-learning, such performance levels can be obtained based on a limited number of pilots
per frame.

To reduce the number of past frames required by meta-learning, we have also introduced
Bayesian active meta-learning, which leverages the uncertainty estimates produced by
Bayesian learning to actively explore the space of channel conditions. We have shown via
numerical results that active meta-learning can indeed significantly speed up meta-training
in terms of number of frames.





Chapter 4

Calibrating AI Models via Conformal
Prediction

4.1 Introduction

4.1.1 Conformal Prediction for AI-based Wireless Systems

CP leverages probabilistic predictors to construct well-calibrated set predictors. Instead of
producing a probability vector, as in the examples in Fig. 2.1, a set predictor outputs a
subset of the output space, as exemplified in Fig. 4.1. A set predictor is well calibrated if it
contains the correct output with a pre-defined coverage probability selected by the system
designer. For a well-calibrated set predictor, the size of the prediction set for a given input
provides a measure of the uncertainty of the decision. Set predictors with smaller average
prediction size are said to be more efficient [17].

This chapter investigates CP as a general mechanism to obtain AI models with formal
calibration guarantees for communication systems. The calibration guarantees of CP hold
irrespective of the true, unknown, distribution underlying the generation of the variables of
interest, and are defined either in terms of ensemble averages [17] or in terms of long-term
averages [83]. CP is applied in conjunction to both frequentist and Bayesian learning, and
specific applications are discussed to demodulation, modulation classification, and channel
prediction.
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Fig. 4.1 Set predictors produce subsets of the range of the output variable (here { } )
for each input. Calibration is measured with respect to a desired coverage level 1−α: A set
predictor is well calibrated if the true label is included in the prediction set with probability
at least 1 − α. A well-calibrated set predictor can be inefficient if it returns excessively
large set predictions (forth column). In contrast, a poorly-calibrated set predictor (fifth
column) returns set predictions that include the true value of the label with a probability
smaller than 1− α.

4.2 Data-Generation Model

We consider the standard supervised learning setting in which the learner is given a data set
D = {z[i]}Ni=1 of N examples of input-output pairs z[i] = (x[i], y[i]) for i = 1, . . . , N , and
is tasked with producing a prediction on a test input x with unknown output y. Writing
z = (x, y) for the test pair, data set D and test point z follow the unknown ground-truth, or
population, distribution p0(D, z). Apart from Sec. 4.5, we further assume throughout that
the population distribution p0(D, z) is exchangeable – a condition that includes as a special
case the traditional independent and identically distributed (i.i.d.) data-generation setting.

Mathematically, exchangeability requires that the joint distribution p0(D, z) does not
depend on the ordering of the N + 1 variables {z[1], . . . , z[N ], z}. Equivalently, by de
Finetti’s theorem [158], there exists a latent random vector c with distribution p0(c) such
that, conditioned on c, the variables {z[1], . . . , z[N ], z} are i.i.d. Writing the conditional
i.i.d. distribution as

p0(D, z|c) = p0(z|c)
N∏
i=1

p0
(
z[i]

∣∣∣c) (4.1)
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for some ground-truth sampling distribution p0(z|c) given the variable c, under the ex-
changeability assumption, the joint distribution can be expressed as

p0(D, z) = Ec∼p0(c)

[
p0(D, z|c)

]
. (4.2)

The vector c in (4.2) can be interpreted as including context variables that determine
the specific learning task. For instance, in a wireless communication setting, the vector
c may encode information about channel conditions such as distortion and channel gain,
while the data set D and point z account for payload symbols which are distorted and
noised in an identical and independent manner when facing the same channel conditions
within a transmission packet. This setting is investigated in Sec. 4.7. In Sec. 4.5, we will
consider a more general setting in which no assumptions are made on the distribution of
the data.

4.3 Naïve Set Predictors

Before describing CP in the next section, in this section we review two naïve , but natural
and commonly used, approaches to produce set predictors, that fail to satisfy the coverage
condition (2.32).

4.3.1 Naïve Set Predictors from Probabilistic Predictors

Given a probabilistic predictor p(y|x,D) as in (2.1), one could construct a set predictor by
relying on the confidence levels reported by the model. Specifically, aiming at satisfying
the coverage condition (2.32), given an input x, one could construct the smallest subset
of the output domain Y that covers a fraction 1− α of the probability designed by model
p(y|x,D). Mathematically, the resulting naïve probabilistic-based (NPB) set predictor is
defined as

ΓNPB(x|D) = argmin
Γ∈2Y

|Γ| s.t.
∑
y′∈Γ

p(y′|x,D) ≥ 1− α (4.3)

for the case of a discrete set, and an analogous definition applies in the case of a continuous
domain Y . Fig. 4.2 illustrates the NPB for a prediction problem with output domain size
|Y| = 4. Given that, as mentioned in Sec. 4.1, probabilistic predictors are typically poorly
calibrated, the naïve set predictor (4.3) does not satisfy condition (2.32) for the given
desired miscoverage level α, and hence it is not well calibrated. For example, in the typical
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Fig. 4.2 A naïve probabilistic-based (NPB) set predictor uses a pre-trained probabilistic
predictor to include all output values to which the probabilistic predictor assigns the
largest probabilities that reach the coverage target 1− α. This naïve scheme has no formal
guarantee of calibration, i.e., it does not guarantee the coverage condition (2.32), unless
the original probabilistic predictor is well calibrated.

case in which the probabilistic predictor is overconfident [10], the predicted sets (4.3) tend
to be too small to satisfy the coverage condition (2.32).

4.3.2 Naïve Set Predictors from Quantile Predictors

While the naïve probabilistic-based set predictor (4.3) applies to both discrete and continuous
target variables, we now focus on the important special case in which Y is a real number,
i.e., Y = R. This corresponds to scalar regression problems, such as for channel prediction
(see Sec. 4.9). Under this assumption, one can construct a naïve set predictor based on
estimates of the α/2- and (1 − α/2)-quantiles yα/2(x) and y1−α/2(x) of the ground-truth
distribution p0(y|x) (obtained from the joint distribution p0(D, z)). In fact, writing as

yq(x) = inf
{
y ∈ R :

∫ y

−∞
p0(y′|x) dy′ ≤ q

}
(4.4)

the q-quantile, with q ∈ [0, 1], of the ground-truth distribution p0(y|x), the interval[
yα/2(x), y1−α/2(x)

]
contains the true value y with probability 1− α.

Defining the pinball loss as [159]

ℓq(y, ŷ) = max
{
− (1− q)(y − ŷ), q(y − ŷ)

}
(4.5)

for q ∈ [0, 1], the quantile yq(x) in (4.4) can be obtained as [160]

yq(x) = argmin
ŷ∈R

Ey∼p0(y|x)
[
ℓq(y, ŷ)

]
. (4.6)
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Therefore, given a parametrized predictive model ŷ(x|ϕ), the quantile yq(x) can be estimated
as ŷ(x|ϕD,q) with optimized parameter vector

ϕD,q = argmin
ϕ

{
1
N

∑
(x,y)∈D

ℓq
(
y, ŷ(x|ϕ)

)}
. (4.7)

With the estimate ŷ(x|ϕD,α/2) of quantile yα/2(x) and estimate ŷ(x|ϕD,1−α/2) of quantile
y1−α/2(x), we finally obtain the naïve quantile-based (NQB) predictor

ΓNQB(x|D) =
[
ŷ(x|ϕD,α/2), ŷ(x|ϕD,1−α/2)

]
. (4.8)

The naïve set prediction in (4.8) fails to satisfy the condition (2.32), since the empirical
quantiles ŷq(x) generally differ from the ground-truth quantiles yq(x).

4.4 Conformal Prediction

In this section, we review CP-based set predictors, which have the key property of guar-
anteeing the (1− α)-validity condition (2.32) for any predetermined miscoverage level α,
irrespective of the ground-truth distribution p0(D, z) of the data. We specifically focus
on validation-based CP [17] and cross-validation-based CP [90], which are more practical
variants of full CP [17, 161]. For completeness, two full conformal predictions are presented
in Appendix B.1. In Sec. 4.5, we cover online CP [83, 84].

4.4.1 Validation-based CP (VB-CP)

In this subsection, we describe validation-based CP (VB-CP), which partitions the available
set D = Dtr ∪Dval into a training set Dtr with N tr samples and a validation set Dval with
Nval = N −N tr samples (Fig. 4.3(a)). This class of methods is also known as inductive CP
[17] or split CP [90].

VB-CP operates on any pre-trained probabilistic model p(y|x,Dtr) obtained using the
training set Dtr as per (2.1). At test time, given an input x, VB-CP relies on a validation
set to determine which labels y′ ∈ Y should be included in the predicted set. Specifically,
for any given test input x, a label y′ ∈ Y is included in set ΓVB(x|D) depending on the
extent to which the candidate pair (x, y′) “conforms” with the examples in the validation
set.
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Fig. 4.3 Validation-based conformal prediction (VB-CP): (a) The data set is split into
training and validation set; (b) A single model is trained over the training data set; (c)-(d)
Post-hoc calibration is done by evaluating the NC scores on the validation set (c) and
by identifying the (1 − α)-quantile of the validation NC scores. This divides the axis
of NC scores into a “keep” region of NC scores smaller than the threshold, and into a
complementary “discard” region (d). (e) For each test input x, VB-CP includes in the
prediction set all labels y′ ∈ Y for which the NC score of the pair (x, y′) is within the “keep”
region.

This “conformity” test for a candidate pair is based on a nonconformity (NC) score.
An NC score for VB-CP can be obtained as the log-loss

NC(z = (x, y)|Dtr) = − log p(y|x,Dtr) (4.9)

or as any other score function that measures the loss of the probabilistic predictor p(y|x,Dtr)
on example (x, y). It is also possible to define NC scores for quantile-based predictors as in
(4.8), and we refer to [84] for details.

VB-CP consists of a training phase (Fig. 4.3(a)-(d)) and of a test phase (Fig. 4.3(e)).
During training, the data set Dtr is used to obtain a probabilistic predictor p(y|x,Dtr) as in
(2.1) (Fig. 4.3(b)). Then, NC scores NC(zval[i]|Dtr), as in (4.9), are evaluated on all points
zval[i], i = 1, . . . , Nval in the validation set Dval (Fig. 4.3(c)). Finally, the real line of NC
scores is partitioned into a “keep” region and a “discard” region (Fig. 4.3(d)), choosing
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as a threshold the (1− α)-empirical quantile of the Nval NC scores {NC(zval[i]|Dtr)}Nval
i=1 .

Accordingly, we “keep” the labels y′ with NC scores that are smaller than the (1 − α)-
empirical quantile of the validation NC scores, and “discard” larger NC scores.

During testing (Fig. 4.3(e)), given a test input x, |Y| NC scores are evaluated, one for
each of the candidate labels y′ ∈ Y , using the same trained model p(y|x,Dtr). All candidate
labels y′ for which the NC score NC((x, y′)|Dtr) falls within the “keep” region are included
in the predicted set of VB-CP.

Mathematically, the VB-CP set predictor is obtained as

ΓVB(x|D) =
{
y′ ∈ Y

∣∣∣∣NC((x, y′)|Dtr) ≤ Qα

(
{NC(zval[i]|Dtr)}Nval

i=1

)}
, (4.10)

where the empirical quantile from the top for a set of N real values {r[i]}Ni=1 is defined as

Qα

(
{r[i]}Ni=1

)
=
⌈
(1− α)(N + 1)

⌉
th smallest value of the set {r[i]}Ni=1 ∪ {+∞}. (4.11)

4.4.2 Cross-validation-based CP (CV-CP)

VB-CP has the computational advantage of requiring the training of a single model, but the
split into training and validation data causes the available data to be used in an inefficient
way. This data inefficiency generally yields set predictors with a large average size (2.33).
Unlike VB-CP, cross-validation-based CP (CV-CP) [90] trains multiple models, each using
a subset of the available data set D. As detailed next and summarized in Fig. 4.4, during
the training phase, each data point z[i] in the validation set is assigned an NC score based
on a model trained using a subset of the data set D that excludes z[i], with i ∈ {1, ..., N}.
Then, for testing, the inclusion of a label y′ in the prediction set for an input x is based
on a comparison of NC scores evaluated for the pair (x, y′) with all the N validation NC
scores.

Specifically, as illustrated in Fig. 4.4, K-fold CV-CP [90], referred here as K-CV-CP,
first partitions the data set D into K disjoint folds {Sk}Kk=1, each with N/K points, i.e.,
∪Kk=1Sk = D (Fig. 4.4(a)), for a predefined integer K ∈ {2, . . . , N} such that the ratio
N/K is an integer.

During training, the K subsets D \ Sk are used to train K probabilistic predictors
p(y|x,D \ Sk) defined as in (2.1) (Fig. 4.4(b)). Each trained model p(y|x,D \ Sk) is used to
evaluate the |Sk| = N/K NC scores NC

(
zk
∣∣∣D \ Sk) for all validation data points zk ∈ Sk

that were not used for training the model (Fig. 4.4(c)). Unlike VB-CP, K-CV-CP requires
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keeping in memory all the N validation scores for testing. These points are illustrated as
crosses in Fig. 4.4(c).

During testing, for a given test input x and for any candidate label y′ ∈ Y, CV-CP
evaluates K NC scores, one for each of the K trained models. Each such NC score
NC

(
(x, y′)

∣∣∣D \ Sk) is compared with the N/K validation scores obtained on fold Sk. We
then count how many of the N/K validation scores are larger than NC

(
(x, y′)

∣∣∣D \ Sk). If
the sum of all such counts, across the K folds {Sk}Kk=1, is larger than a fraction α of all
N data points, then the candidate label y′ is included in the prediction set (Fig. 4.4(d)).
This criterion follows the same principle of VB-CP of including all candidate labels y′ that
“conform” well with a sufficiently large fraction of validation points.

Mathematically, K-CV-CP is defined as

ΓK-CV(x|D) =
{
y′ ∈ Y

∣∣∣∣∣
K∑
k=1

∑
zk∈Sk

1

(
NC

(
(x, y′)

∣∣∣D\Sk}) ≤ NC
(
zk
∣∣∣D\Sk)) ≥ ⌊α(N + 1)⌋

}
,

(4.12)
where 1(·) is the indicator function (1(true) = 1 and 1(false) = 0). The left-hand side of
the inequality in (4.12) implements the sums, shown in Fig. 4.4(d), over counts of validation
NC scores that are larger than the corresponding NC score for the candidate pair (x, y′).

K-CV-CP increases the computational complexity K-fold as compared to VB-CP, while
generally reducing the inefficiency [90]. The special case of K = N , known as jackknife+
[90], is referred here as CV-CP. In this case, each of the N folds Sk, k = 1, . . . , N uses a
single cross validation point. In general, CV-CP is the most efficient form of K-CV-CP, but
it may be impractical for large data set sizes due to need to train N models. The number
of folds K should strike a balance between computational complexity, as K models are
trained, and inefficiency.

4.4.3 Calibration Guarantees

VB-CP (4.10) satisfies the coverage condition (2.32) [17] under the only assumption of
exchangeability (see Sec. II-A).

The validity of CV-CP requires a technical assumption on the NC score. While in VB-CP
the NC score is an arbitrary score function evaluated based on any pre-trained probabilistic
model, for CV-CP, the NC score NC(z|D′) must satisfy the additional property of being
invariant to permutations of the data set D′ used to train the underlying probabilistic
model. Consider the log-loss NC(z = (x, y)|D′) = − log p(y|x,D′) (4.9), or any other score
function based on the trained model p(y|x,D′), as the NC score. CV-CP requires that the
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Fig. 4.4 K-fold cross-validation-based conformal prediction (K-CV-CP): (a) The N data
pairs of data set D are split into K-folds each with |Sk| = N/K samples; (b) K models are
trained, each using a leave-fold-out data set of |D \ Sk| = N −N/K pairs; (c) NC scores
are computed on the N/K holdout data points for each fold Sk; (d) For each test input x,
all labels y′ ∈ Y for which the number of “higher-NC” validation points exceeds a fraction
α of the total N points are considered in the prediction set. CV-CP is the special case with
K = N .
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training algorithm used to produce model p(y|x,D′) provides outputs that are invariant to
permutations of the training set D′.

Specifically, for frequentist learning, the optimization algorithm producing the parameter
vector ϕ∗

D′ in (2.1) must be permutation-invariant. This is the case for standard methods
such as full-batch gradient descent (GD), or for non-parametric techniques such as Gaussian
processes. For Bayesian learning, the distribution q∗(ϕ|D′) in (2.1) must also be permutation-
invariant, which is true for the exact posterior distribution [28], as well as for approximations
obtained via MC methods such as Langevin MC [39, 28].

The requirement on permutation-invariance can be alleviated by allowing for probabilistic
training algorithms such as stochastic gradient descent (SGD) [162]. With probabilistic
training algorithms, the only requirement is that the distribution of the (random) output
models is permutation-invariant. This is, for instance, the case if SGD is implemented
by taking mini-batches uniformly at random within the training set D′ [162–164]. With
probabilistic training algorithms, however, the validity condition (2.32) of CV-CP is only
guaranteed on average with respect to the random outputs of the algorithms.

Specifically, under the discussed assumption of permutation-invariance of the NC scores,
by [90, Theorems 1 and 4], CV-CP satisfies the inequality

P
(
y ∈ ΓCV(x|DDD)

)
≥ 1− 2α, (4.13)

while K-CV-CP satisfies the inequality

P
(
y ∈ ΓK-CV(x|DDD)

)
≥ 1− 2α−min

{
2(1−1/K)
N/K+1 ,

1−K/N
K+1

}
(4.14)

≥ 1− 2α−
√

2/N. (4.15)

Therefore, validity for both cross-validation schemes is guaranteed for the larger miscoverage
level of 2α. Accordingly, one can achieve miscoverage level of α, satisfying (2.32), by
considering the CV-CP set predictor ΓCV(x|D) with α/2 in lieu of α in (4.12). That said,
in the experiments, we will follow the recommendation in [90] and [163] to use α in (4.12).

4.4.4 Complexity and Validity Guarantees of Set Predictors

We now focus on the complexity and validity guarantees involved with the set predictors
reviewed in Section 4.4.1 and Section 4.4.2, along with Full CP which is given in detail in
Appendix B.1. Recall that N is the data set size, and N te stands for the total number of
prediction points (x, y). Table 4.1 shows the complexity of the different methods, in terms
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of the number of models being trained (a costly procedure); the number of predictions using
these models (a less costly procedure); and the formal guaranteed level. All complexity
values are associated with respect to a baseline of a single model training or prediction,
meaning that Bayesian learning using MC ensembling will include a multiplicative term of
the ensemble size. A typical method for regression problem is to consider candidate labels
on a grid, hence the number of model predictions in Table 4.1 uses grid size instead of label
cardinality |Y|.

set predictor # models trained # model predictions guarantees

naïve (4.3) 1 N te none
VB (4.10) 1 N te|Y|+Nval ≥ 1− α
K-CV (4.12) K N te|Y|K +N ≥ 1− 2α−

√
2/N

CV (N -CV) N N te|Y|N +N ≥ 1− 2α
IFC (B.1) N te|Y| N te|Y|(N + 1) ≥ 1− α
EFC (B.2) N te|Y|(N + 1) N te|Y|(N + 1) ≥ 1− α

Table 4.1 Computational Complexity and guarantees of Set predictions [90]

4.5 Online Conformal Prediction

In this section, we turn to online CP. Unlike the CP schemes presented in the previous
section, online CP makes no assumptions about the probabilistic model underlying data
generation [83, 84]. Rather, it models the observations as a deterministic stream of input-
output pairs z[i] = (x[i], y[i]) over time index i = 1, 2, . . . ; and it targets a coverage
condition defined in terms of the empirical rate at which the prediction set Γi at time i
covers the correct output y[i].

In the offline version of CP reviewed in the previous section, all N samples of the data
set D are assumed to be available upfront (see Fig. 2.5(a)). In contrast, in online CP, a
set predictor Γi for time index i is produced for each new input x[i] over time i = 1, 2, . . .
Specifically, given the past observations {z[j]}i−1

j=1, the set predictor Γi
(
x[i]

∣∣∣{z[j]}i−1
j=1

)
outputs a subset of the output space Y. Given a target miscoverage level α ∈ [0, 1], an
online set predictor is said to be (1− α)-long-term valid if the following limit holds

lim
I→∞

1
I

I∑
i=1

1

(
y[i] ∈ Γi

(
x[i]

∣∣∣{z[j]}i−1
j=1

))
= 1− α (4.16)
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for all possible sequences z[i] with i = 1, 2, . . . Note that the condition (4.16), unlike (2.32),
does not involve any ensemble averaging with respect to the data distribution. We will take
(4.16) as the relevant definition of calibration for online learning.

Rolling conformal inference (RCI) [84] adapts in an online fashion a calibration parameter
θ[i] across the time index i as a function of the instantaneous error variable

err[i] = 1

(
y[i] /∈ Γi(x[i])

)
, (4.17)

which equals 1 if the correct output value is not included in the prediction set Γi(x[i]), and
0 otherwise. This is done using the update rule

θ[i+ 1]← θ[i] + γ
(
err[i]− α

)
, (4.18)

where γ > 0 is a learning rate. Accordingly, the parameter θ is increased by γ(1 − α) if
an error occurs at time i, and is decreased by γα otherwise. Intuitively, a large positive
parameter θ[i] indicates that the set predictor should be more inclusive in order to meet
the validity constraint (4.16); and vice versa, a large negative value of θ[i] suggests that
the set predictor can reduce the size of the prediction sets without affecting the long-term
validity constraint (4.16).

Following [84], we elaborate on the use of the calibration parameter θ[i] in order to
ensure condition (4.16) for an online version of the naïve quantile-based predictor (4.8)
for scalar regression. A similar approach applies more broadly (see [83, 165], and [166]).
Denote the data set D[i] = {z[j]}i−1

j=1 as having all previously observed labeled data set up
till time i − 1. The key idea behind RCI is to extend the naïve prediction interval (4.8)
depending on the calibration parameter θ[i] as

ΓRCI
i

(
x[i]

∣∣∣D[i]
)

=
[
ŷ(x|ϕD[i],α/2)− φ(θ[i]), ŷ(x|ϕD[i],1−α/2) + φ(θ[i])

]
, (4.19)

where
φ(θ) = sign(θ)

(
exp|θ|−1

)
(4.20)

is the so-called stretching function, a fixed monotonically increasing mapping.
The set predictor RCI (4.19) “corrects” the NQB set predictor (4.8), via the additive

stretching function φ(θ[i]) based on the calibration parameter θ[i]. As the time index i rolls,
the calibration parameter θ[i] adaptively inflates and deflates according to (4.18). Upon
each observation of new label y[i], the quantile predictor model parameters ϕD[i],α/2 and
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ϕD[i],1−α/2 can also be updated, without affecting the long-term validity condition (4.16)
[84, Theorem 1]. We refer to Appendix B.2 for further details on online CP.

For the experimental part, we start with a toy regression problem, highlighting how
misspecification affect set prediction. We then investigate demodulation of symbols using a
moderate sized neural network, and later using deep learning modulation classification.

4.6 Toy Experiment for Regression

We investigate a regression example similar to [90]. Covariate x is in Rd and the target y is
a real number. N such pairs D = {(x[i], y[i])}Ni=1, and N te test evaluation pairs are drawn
using the ground-truth Gaussian hierarchical model

p0(D, ϕ) = p0(ϕ)
N∏
i=1

p0(x[i])p0(y[i]|x[i], ϕ) (4.21)

where

p0(ϕ) = N (ϕ|µ01d, γ−1
0 Id), (4.22a)

p0(x) = N (x|0, d−1Id), (4.22b)
p0(y|x, ϕ) = N (y|ϕ⊤x, β−1

0 ), (4.22c)

for ground-truth mean value µ0 = 1 and ground-truth precision values γ0 = 1 and β0 = 1,
and 1d being the d-vector of all ones. This is repeated for S = 100 independent runs, in
each a model parameter ϕs, N points data set Ds, and N te test pairs set

{
(xte

s [j], yte
s [j])

}Nte

j=1
are generated following (4.22). The set prediction coverage of any set prediction method is
approximated by using the empirical average over the S independent runs

P
(
y ∈ ΓDDD,α(x)

)
≈ 1

S

S∑
s=1

1
Nte

Nte∑
j=1

1

(
yte
s [j] ∈ ΓDs,α(xte

s [j])
)
, (4.23)

and the inefficiency, which is the set prediction average interval width, is similarly approxi-
mated as

E(DDD,x)∼p(D,x)

∣∣∣ΓDDD,α(x)
)∣∣∣ ≈ 1

S

S∑
s=1

1
Nte

Nte∑
j=1

∣∣∣ΓDs,α(xte
s [j])

)∣∣∣. (4.24)

For prediction using frequentist learning, the ML predictor assumes the model

p(y|x, ϕ) = N (y|ϕ⊤x, β−1), (4.25)



72 Calibrating AI Models via Conformal Prediction

which in general can be misspecified when the precision β ̸= β0. The frequentist ML
predictor under assumption (4.25) is given analytically for the overdetermined case (N ≥ d)
as the least squares solution

ϕML
D = (X⊤

DXD)−1X⊤
DyD, (4.26)

where the data matrix XD ∈ RN×d stacks the N input vectors {x[i]}Ni=1 on its rows, the
label vector yD ∈ RN stacks its targets. Further assuming a generally misspecified (when
the mean µ ̸= µ0 or precision γ ̸= γ0) model parameter prior

p(ϕ) = N (ϕ|µ1d, γ−1Id), (4.27)

and denoting the matrix
ΣMAP

D =
(
γId + βX⊤

DXD
)−1

, (4.28)

allow for exact MAP solution

ϕMAP
D = ΣMAP

D

(
γµ1d + βX⊤

DyD
)
. (4.29)

For the frequentist approach, any of the set predictors can use the NC scores with fitting
algorithm of either ML (4.26) or MAP (4.29).

For predictions using Bayesian learning, the predictive posterior p(y|x,D) can be
obtained analytically for this toy example. The posterior, using the MAP vector (4.29) and
MAP covariance matrix (4.28), is

p(ϕ|D) = N (ϕ|ϕMAP
D ,ΣMAP

D ). (4.30)

The predictive posterior p(y|x,D) follows

p(y|x,D) = Eϕϕϕϕϕϕϕϕϕ∼p(ϕ|D)[p(y|x,ϕϕϕϕϕϕϕϕϕ)]
= N

(
y
∣∣∣(ϕMAP

D )⊤x, β−1 + x⊤ΣMAP
D x

)
, (4.31)

whose log-loss leads to

NC((x, y)|D) = − log
(
p(y|x,D)

)
(4.32)

= − log
(
N
(
y
∣∣∣(ϕMAP

D )⊤x, β−1 + x⊤ΣMAP
D x

))
,

which can be used as the Bayesian NC score for any of the set predictions.
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We also include the set soft predictor, which is tractable for the hierarchical case. The
frequentist ML and MAP assume fixed variance β−1 around the linear predictors ϕML

D and
ϕMAP
D respectively, while the soft Bayesian compensates estimation error of the MAP linear

predictor by increasing the variance that now depends on the input X and data D to
β−1 + x⊤ΣMAP

D x. Since all distributions are Gaussian, the set lies in an interval with width
inversely proportional to the standard deviation. We have the set soft ML predictor

Γsoft-ML
D,α (x) =

[
(ϕML

D )⊤x− 1
2w

soft-ML, (ϕML
D )⊤x+ 1

2w
soft-ML

]
(4.33)

with set width
wsoft-ML = 2

√
2β−1erf−1(1− α) (4.34)

and erf−1(·) as the inverse to the error function

erf(y) = 2√
π

∫ y

0
e−t2dt. (4.35)

The soft-MAP is similar to (4.34), using MAP predictor in lieu of ML, and has the same
width wsoft-MAP = wsoft-ML. The soft-Bayes set predictor follows

ΓBay
D,α(x)=

[
(ϕMAP

D )⊤x− 1
2w

soft-MAP(x), (ϕMAP
D )⊤x+ 1

2w
soft-MAP(x)

]
(4.36)

and has a larger width

wsoft-MAP(x) = 2
√

2(β−1 + x⊤ΣMAP
D x)erf−1

(
1− α

)
, (4.37)

hence being more inefficient yet has better coverage.
Fig. 4.5 and Fig. 4.6 show how misspecification affects coverage and inefficiency. Specifi-

cally, we use assumed model prior mean parameter µ = 1 and assumed likelihood precision
β = 1, matched to the ground truth values µ0 = 1 and β0 = 1. We sweep the assumed
model prior precision γ around its ground truth value γ0 = 1. In the proximity of the
well-specified case (the central point), the Bayes set prediction in each conformal method is
more efficient than its frequentist-based set predictors. While the former depends on the
assumed parameter γ, the latter does not, which may result in ML solution more efficient
than the Bayesian when the prior is poorly set.

The soft set predictors produce more efficient sets, while its ML set achieves the genie-
aided inefficiency, governed by the residual noise of (4.22c). This however, is insignificant,
since the soft set predictor does not hold validity, excluding when well-specified which can
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Fig. 4.5 Set prediction interval width as function of misspecified for the toy regression
problem (Section 4.6). Total of S = 100 test trials and N te = 100 test points in each.
Confidence intervals are ± one standard deviation. For each set predictor, the frequentist
NC scores using ML are marked with circles, while the Bayesian NC score using the exact
Hessian are in triangles.

be achieved in toy examples but rarely in real life problems. Validity for all other methods
retains even for great misspecification levels, through the adaptation of wider prediction
sets.

4.7 Experiment of Symbol Demodulation

In this section, we focus on the application of offline CP, as described in Sec. 4.4, to the
problem of symbol demodulation in the presence of transmitter hardware imperfections.
This problem was also considered in [49, 25] by focusing on frequentist and Bayesian learning.
Unlike [49, 25], we investigate the use of CP as a means to obtain set predictors satisfying
the validity condition (2.32).
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Fig. 4.6 Set prediction coverage corresponding to Fig 4.5 setting.

4.7.1 Problem Formulation

The problem of interest consists of the demodulation of symbols from a discrete constellation
based on received baseband signals subject to hardware imperfections, noise, and fading.
The goal is to design set demodulators that output a subset of all possible constellation
points with the guarantee that the subset includes the true transmitted signal with the
desired target probability 1− α. Set-valued demodulation can be useful when combined
with channel decoders that can concurrently explore several paths [167]. Furthermore, while
we do not investigate this direction here, CP could be applied directly to decoding, yielding
a form of list decoding (see, e.g., [168]) with formal reliability guarantees.

To keep the notation consistent with the previous sections, we write as y[i] the i-th
transmitted symbols, and as x[i] the corresponding received signal. Each transmitted
symbol y[i] is drawn uniformly at random from a given constellation Y. We model I/Q
imbalance at the transmitter and phase fading as in [112]. Accordingly, the ground-truth
channel law connecting symbols y[i] into received samples x[i] is described by the equality

x[i] = eȷψψψψψψψψψfIQ(y[i]) + v[i], (4.38)
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for a random phase ψψψψψψψψψ ∼ U[0, 2π), where the additive noise is v[i] ∼ CN (0, SNR−1) for
signal-to-noise ratio level SNR. Furthermore, the I/Q imbalance function [137] is defined as

fIQ(y[i]) = ȳI[i] + ȷȳQ[i], (4.39)

where  ȳI[i]
ȳQ[i]

 =
1 + ϵϵϵ 0

0 1− ϵϵϵ

 cosδδδ − sinδδδ
− sinδδδ cosδδδ

yI[i]
yQ[i]

 , (4.40)

with yI[i] and yQ[i] being the real and imaginary parts of the modulated symbol y[i]; and
ȳI[i] and ȳQ[i] standing for the real and imaginary parts of the transmitted symbol fIQ(y[i]).
In (4.40), the channel state c consists of the tuple c = (ψψψψψψψψψ,ϵϵϵ, δδδ) encompassing the complex
phase ψψψψψψψψψ and the I/Q imbalance parameters (ϵϵϵ, δδδ).

4.7.2 Implementation

As in [49, 25], demodulation is implemented via a neural network probabilistic model
p(y|x, ϕ) consisting of a fully connected network with real inputs x[i] of dimension 2 as
per (4.38), followed by three hidden layers with 10, 30, and 30 neurons having ReLU
activations in each layer. The last layer implements a softmax classification for the |Y|
possible constellation points.

We adopt the standard NC score (4.9), where the trained model ϕD for frequentist
learning is obtained via I = 120 GD update steps for the minimization of the cross-entropy
training loss with learning rate η = 0.2; while for Bayesian learning we implement a
gradient-based MC method, namely Langevin MC, with burn-in period of Rmin = 100,
ensemble size R = 20, learning rate η = 0.2, and temperature parameter T = 20. We
assume standard Gaussian distribution for the prior distribution [39]. Details on Langevin
MC can be found in Appendix B.3.

In the experiments, we adopted Langevin MC to approximate the Bayesian posterior
[39, 28]. Langevin MC adds Gaussian noise to each standard GD update for frequentist
learning (see, e.g., [28, Sec. 4.10]). The noise has power 2η/T , where η is the GD learning
rate and T > 0 is a temperature parameter. Langevin MC produces R model parameters
{ϕ[r]}Rr=1 across R consecutive iterations. We specifically retain only the last R samples,
discarding an initial burn-in period of Rmin iterations. The temperature parameter T is
typically chosen to be larger than 1 [169, 170]. With the R samples, the expectation term
in (2.20) is approximated as the empirical average 1

R

∑R
r=1 p(y|x, ϕ[r]).
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We observe that Langevin MC is a probabilistic training algorithm, and that it satisfies
the permutation-invariance property in terms of the distribution of the random output
models discussed in Sec. 4.4.3.

We compare the naïve set predictor (4.3), also studied in [49, 25], which provides no
formal coverage guarantees, with the CP set prediction methods reviewed in Sec. 4.4.
VB-CP uses equal set sizes for the training and validation sets. We target the miscoverage
level as α = 0.1.

4.7.3 Results

We consider the Amplitude and Phase-Shift Keying (APSK) modulation with |Y| = 8.
The SNR level is set to SNR = 5 dB. The amplitude and phase imbalance parameters are
independent and distributed as ϵϵϵ ∼ Beta(ϵ/0.15|5, 2) and δδδ ∼ Beta(δ/15◦|5, 2), respectively
[49].

Fig. 4.7 shows the

empirical coverage = 1
Nte

Nte∑
j=1

1

(
yte[j] ∈ Γ(xte[j]|D)

)
, (4.41)

and Fig. 4.8 shows the

empirical inefficiency = 1
Nte

Nte∑
j=1

∣∣∣Γ(xte[j]|D)
∣∣∣, (4.42)

both evaluated on a test set Dte = {(xte[j], yte[j])}Nte
j=1 with N te = 100 data points, as a

function of the size of the available data set D. We average the results for 50 independent
trials, each corresponding to independent draws of the variables {D,Dte} from the ground
truth distribution. This way, the metrics (4.41)-(4.42) provide an estimate of the coverage
(2.32) and of the inefficiency (2.33), respectively [90].

From Fig. 4.7, we first observe that the naïve set predictor, with both frequentist and
Bayesian learning, does not meet the desired coverage level in the regime of a small number
N of available samples. In contrast, confirming the theoretical calibration guarantees
presented in Sec. 4.4, all CP methods provide coverage guarantees, achieving coverage rates
above 1− α. Furthermore, as seen in Fig. 4.8, coverage guarantees are achieved by suitably
increasing the size of prediction sets, which is reflected by the larger inefficiency. The size
of the prediction sets, and hence the inefficiency, decreases as the data set size, N , increases.
In this regard, due to their more efficient use of the available data, CV-CP and K-CV-CP
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Fig. 4.7 Coverage for naïve set predictor (4.3), VB-CP (4.10), CV-CP, and K-CV-CP (4.12)
with K = 4, for symbol demodulation problem (Section 4.7). For every set predictors, the
NC scores are evaluated either using frequentist learning (dashed lines) or Bayesian learning
(solid lines). The coverage level is set to 1 − α = 0.9, and each numerical evaluation is
averaged over 50 independent trials (new channel state c) with N te = 100 test points.
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Fig. 4.8 Average set prediction size (inefficiency) for the same setting of Fig. 4.7.
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predictors have a lower inefficiency as compared to VB predictors, with CV-CP offering the
best performance. Finally, Bayesian NC scores are generally seen to yield set predictors
with lower inefficiency, confirming the merits of Bayesian learning in terms of calibration.

4.8 Experiment of Modulation Classification

In this section, we propose and evaluate the application of offline CP to the problem of
modulation classification [68, 69].

4.8.1 Problem Formulation

Due to the scarcity of frequency bands, electromagnetic spectrum sharing among licensed
and unlicensed users is of special interest to improve the efficiency of spectrum utilization.
In sensing-based spectrum sharing, a transmitter scans the prospective frequency bands
to identify, for each band, if the spectrum is occupied, and, if so, if the signal is from a
licensed user or not. A key enabler for this operation is the ability to classify the modulation
of the received signal [171]. The modulation classification task is made challenging by
the dimensionality of the baseband input signal and by the distortions caused by the
propagation channel. Data-driven solutions [172] have shown to be effective for this problem
in terms of accuracy, while the focus here is on calibration performance.

Accordingly, we aim at designing set modulation classifiers that output a subset of the
set of all possible modulation schemes with the property that the true modulation scheme
is contained in the subset with a desired probability level 1− α. Set predictions provide
actionable information in several applications of modulation classifiers. For instance, in
cognitive radio systems, there may be protected modulation schemes adopted by a primary
user [173, 174]. If the predicted set produced by a secondary user includes such schemes,
the secondary user should, e.g., refrain from transmitting or use lower transmission powers,
guaranteeing that the primary user is not affected with probability at least 1 − α. As
another example, in military or emergency response applications, modulation classification
is used a preliminary step to synchronize a receiver [175, 176]. In this case, having a list
of possible modulation schemes enables the receiver to attempt decoding in parallel on
all possible identified schemes, with the guarantee that the correct modulation scheme is
evaluated with probability at least 1− α.

We adopt the data set provided by [69], which has approximately 2.5× 106 baseband
signals, each produced using one out of 24 possible digital and analog modulations across
different SNR values and channel models. The data set contains data for single-carrier
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modulations such as OOK, ASK, PSK, APSK, QAM, AM, FM, GMSK, and OQPSK,
including several modulation orders for each scheme. For each modulation, several short-
time signal observations of 1024 I/Q samples are synthesized using random realizations
of Rayleigh fading, carrier frequency mismatch, sampling rate mismatch, and shaping
roll-off values. Out of the whole data set, here we focus on the high SNR regime (≥ 6 dB).
Accordingly, the data set D consists of approximately 1.28× 106 pairs (x, y), where x is
the channel output signal of 2048 interleaved I/Q samples and y is the index of one of the
|Y| = 24 possible modulations. The SNR value itself is not available to the classifier.

4.8.2 Implementation

We use a neural network architecture similar to the one used in [69], which has 7 one-
dimensional convolutional layers with kernel size 3 and 64 channels for all layers, except for
the first layer which has 2 channels. The convolution layers are followed by 3 fully-connected
linear layers. A scaled exponential linear unit (SELU) is used for all inner layers, and a
softmax is used at the last, fully connected, layer. We assume availability of N = 4800
pairs (x, y) for the data set D, while gauging the empirical inefficiency and coverage level
with N te = 1000 held-out pairs. A total number of I = 4000 GD steps with fixed learning
rate of 0.02 are carried out, and the target miscoverage rate is set to α = 0.1. VB partitions
its available data into equal sets for training and validation.

4.8.3 Results

In this problem, due to computational cost, we exclude CV-CP and we focus on K-CV-CP
with a moderate number of folds, namely K = 6 and K = 12. In Fig. 4.9, box plots show
the quartiles of the empirical coverage (4.41) and of the empirical inefficiency (4.42) from
32 independent runs, with different realizations of data set and test examples. The lower
edge of the box represents the 0.25-quantile; the solid line within the box the median; the
dashed line within the box the average; and the upper edge of the box the 0.75-quantile.
As can be seen in the figure, the naïve set predictor is invalid (see average shown as dashed
line), and it exhibits a wide spread of the coverage rates across the trials. On the other
hand, all CP set predictors are valid, meeting the predetermined coverage level 1− α = 0.9,
and have less spread-out coverage rates.

As also noted in the previous section, VB-CP suffers from larger predicted set size as
compared to K-CV-CP, due to poor sample efficiency. A small number of folds, as low as
K = 6, is sufficient for K-CV-CP to outperform VB-CP. This improvement in efficiency
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1 − 𝛼

Fig. 4.9 Coverage and inefficiency for NPB (4.3), VB-CP (4.10), and K-CV-CP (4.12) with
K = 6 and K = 12, for the modulation classification problem (implementation details in
Section 4.8.2). The boxes represent the 25% (lower edge), 50% (solid line within the box),
and 75% (upper edge) percentiles of the empirical performance metrics evaluated over 32
different experiments, with average value shown by the dashed line.

comes at the computational cost of training six models, as compared to the single model
trained by VB-CP.

4.9 Experiment of RSS using Online Channel Predic-
tion

In this section, we investigate the use of online CP, as described in Sec. 4.5, for the problem
of channel prediction. We specifically focus on the prediction of the received signal strength
(RSS), which is a key primitive at the physical layer, supporting important functionalities
such as resource allocation [177, 178].

4.9.1 Problem Formulation

Consider a receiver that has access to a sequence of RSS samples from a given device. We
aim at designing a predictor that, given a sequence of past samples from the RSS sequence,
produces an interval of values for the next RSS sample. To meet calibration requirements,
the interval must contain the correct future RSS value with the desired rate level 1− α.
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Unlike the previous applications, here the rate of coverage is evaluated based on the time
average

1
t

t∑
i=1

1

(
y[i] ∈ Γi

(
x[i]

∣∣∣{z[j]}i−1
j=1

))
. (4.43)

This is computed as the fraction previous time instants i ∈ {1, ..., t} at which the set
predictor Γi includes the true RSS value y[i].

Interval predictions for communication channels can support resource allocation. For
instance, a scheduler may select users whose lowest possible RSS in the predicted set is
sufficiently large to enable communication at some desired level [179]. A scheduler may
also use larger values in the predicted set to facilitate exploration via optimism [180, 181].
Finally, set prediction can enable the detection of outage events, or anomalies, by checking
if the lowest allowed RSS is not in line with the past observations for a given link.

We consider two data sets of RSS sequences. The first data set records RSS samples
y[i] in logarithmic scale for an IEEE 802.15.4 radio over time index i [1]. We further use
the available side information on the time-variant channel ID, which determines the carrier
frequency used at time i out of the 16 possible bands, as the input x[i]. At time i, we
observe a sequence of RSS samples z[1], . . . , z[i− 1] with z[i] = (x[i], y[i]), and the goal is
to predict the next RSS sample y[i] via the online set predictor ΓRCI

i (4.19).
The second data set [2] reports samples y[i], measured in dBm, on a 5.8 GHz device-

to-device link without additional input. Hence, in this case, we predict the next RSS
sample y[i] using the previous RSS samples y[1], . . . , y[i − 1]. Note that the prior works
[1, 2] adopted standard probabilistic predictors, while here we focus on set predictors that
produce a prediction interval ΓRCI

i

(
x[i]

∣∣∣{z[j]}i−1
j=1

)
.

4.9.2 Implementation

We build the CP set predictor by leveraging the probabilistic neural network used in [84] as
the model class for the quantile predictors in (4.7)-(4.8). Each quantile predictor consists of a
multi-layer neural network that pre-processes the most recent K pairs {z[i−K], . . . , z[i−1]};
of a stacked long short-term memory (LSTM) [182] with two layers; and of a post-processing
neural network, which maps the last LSTM hidden vector into a scalar that estimates the
quantile used in (4.8). For details of the implementation, we refer to Appendix B.4.
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Fig. 4.10 CP for time-series Outdoor of [1]: (left) Time-average coverage (4.44) of naïve set
prediction and online CP; (right) Time-averaged inefficiency (4.45) of naïve set prediction
and online CP.

Fig. 4.11 CP for time-series NLOS_Head_Indoor_1khz in [2]: (left) Time-average coverage
(4.44) of naïve set prediction and online CP; (right) Time-average inefficiency (4.45) of
naïve set prediction and online CP.
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4.9.3 Results

Fig. 4.10 and Fig. 4.11 report the

time-average coverage = 1
I

I∑
i=1

1

(
y[i] ∈ Γi

(
x[i]

∣∣∣{z[j]}i−1
j=1

))
(4.44)

and the
time-average inefficiency = 1

I

I∑
i=1

∣∣∣∣Γi(x[i]
∣∣∣{z[j]}i−1

j=1

)∣∣∣∣ (4.45)

for online CP (4.19), compared to a baseline of the naïve quantile-based predictor (4.8),
as a function of the time window size I for data sets [2] and [2], respectively. We have
discarded 1000 samples for a warm-up period for both metrics (4.44) and (4.45).

In both cases, the naïve predictor is seen to fail to satisfy the coverage condition (4.16)
for both data sets, while online CP converges to the target level 1− α = 0.9. This result is
obtained by online CP with a modest increase of around 8% for both data sets in terms of
inefficiency.

4.10 Conclusion

AI in communication engineering should not only target accuracy, but also calibration, en-
suring a reliable and safe adoption of machine learning within the overall telecommunication
ecosystem. In this chapter, we have proposed the adoption of a general framework, known as
conformal prediction (CP), to transform any existing AI model into a well-calibrated model
via post-hoc calibration for communication engineering. Depending on the situation of
interest, post-hoc calibration leverages either an held-out (cross) validation set or previous
samples. Unlike calibration approaches that do not formally guarantee reliability, such as
Bayesian learning or temperature scaling, CP provides formal guarantees of calibration,
defined either in terms of ensemble averages or long-term time averages. Calibration is
retained irrespective of the accuracy of the trained models, with more accurate models
producing smaller set predictions.

To validate the reliability of CP-based set predictors, we have provided extensive
comparisons with conventional methods based on Bayesian or frequentist learning. Focusing
on demodulation, modulation classification, and channel prediction, we have demonstrated
that AI models calibrated by CP provide formal guarantees of reliability, which are practically
essential to ensure calibration in the regime of limited data availability.



Chapter 5

Guaranteed Dynamic URLLC
Scheduling via Conformal Prediction

5.1 Introduction

5.1.1 Motivation and overview

Servicing ultra-reliable and low-latency communication (URLLC) traffic typically calls for a
pre-emptive allocation of resources in order to meet stringent delay constraints [183–185].
A conservative static allocation of resources for URLLC may guarantee desired levels
of reliability and latency, but this comes at the expense of other services, most notably
enhanced mobile broadband (eMBB), which cannot use the resources reserved for URLLC.
A dynamic allocation of resources, while potentially more efficient, is made challenging
by the stochastic nature of URLLC data packet generation, particularly for the uplink
[186, 184, 187, 188]. A promising solution is the adoption of predictors of URLLC data
packet generation. Concretely, with reference to Fig. 5.1, a base station can deploy a
predictor of URLLC data packet generation for the following frame, so as to guide the
adaptive allocation of slots for URLLC packets, leaving the other slots available for eMBB
users.

Such predictors may be based on models that leverage domain knowledge [189] or
statistical information extracted from data [190]. In either case, predictions are bound to be
imperfect due to model misspecification or to an insufficient access to data [190]. Therefore,
predictors may consistently overestimate or underestimate the amount of URLLC data to
be generated. As a consequence, schedulers that operate on the basis of such predictors
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Fig. 5.1 (a) Data packet generation for URLLC traffic across successive frames (URLLC
packets are shown in the darker color). This information is unavailable at the scheduler,
which has access only to a predictor that may underestimate or overestimate the number of
URLLC packets to be generated (as in parts (b) and (c) respectively). (b) In the former
case, a conventional resource allocation scheme that trusts the predictor fails to reliably
serve URLLC data (slots allocated for URLLC are in darker color), resulting in an average
frame success ratio of 82% that falls short of the target of 90% (for illustrative purposes
we set the target unreliability rate to be modest using α = 0.1, our numerical part uses
a tighter value). Scheduling error are shown as darker slots in the sidebar. (c) With an
overestimating predictor, a conventional scheduler allocates excessive resources to URLLC
traffic, severely impairing eMBB efficiency. eMBB traffic can occupy all slots unassigned
to URLLC packets. In either case, the proposed CP-based scheduler is able to meet the
URLLC reliability target of 90% by properly adjusting the eMBB spectral efficiency.

would yield either an excessive or an insufficient amount of resources to be pre-emptively
allocated for URLLC packets in future frames (see Fig. 5.1 for an illustration).

In this chapter, we introduce a novel scheduler for URLLC packets that provides formal
guarantees on reliability and latency irrespective of the quality of the URLLC traffic predictor.
The proposed method leverages recent advances in online conformal prediction (CP) [83, 84],
by dynamically adjusting the amount of allocated resources so as to meet reliability and
latency requirements.
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5.1.2 Related work

Model-based URLLC traffic predictors, which assume perfect knowledge on the traffic model
for optimal allocation strategies, are studied in [191, 189, 186, 192–194, 149]. Data-driven
approaches [190, 195–199], which observe data for model training for resource allocation,
use tools including unsupervised learning [197], and online learning [198, 199].

CP is a class of post-hoc calibration methods that transform standard probabilistic
model into a set predictor that is guaranteed to contain the true target with probability no
smaller than a predetermined coverage level [200, 201]. CP is experiencing a renaissance
[162, 90, 202, 117], with novel applications in [203–206]. Online CP alleviates the limitation
of conventional CP of requiring a separate calibration data at the cost of providing time-
averaged, rather than ensemble, reliability guarantees [83, 84, 165, 207]. The adoption
of CP in communication engineering was proposed in [111], which focused on wireless
applications such as symbol demodulation, modulation classification, and received signal
strength prediction.

frame f − 1 f f + 1

slot 1 S

timefor eMBB
resource allocation:

for URLLC (Uf )

URLLC packets generated

transmitted

(a)

(b)

(c)

timeout

gf [1] gf [2] gf [3] gf [4]
slot 2 4 7 8

3 6 8 9

2 4 7 8

3 6 9

Fig. 5.2 (a) The assumed frame-based communication: each frame f contains S slots that
can be allocated for either eMBB or URLLC traffic. (b) Illustration of the generation
of Gf = 4 URLLC packets, with each packet generated at a slot marked by an upward
arrow incoming into the frame. Each URLLC packet must find an available slot within
a maximum delay of L = 2 slots in order to meet latency requirements. With the given
resource allocation, the first three packets are transmitted in the corresponding slots
indicated with an upward outgoing arrow, while the fourth packet does not find any
available slot within the delay constraint. (c) For the illustrated distinct slot allocation, all
URLLC packets are transmitted within the allowed latency of L = 2 slots.
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5.2 System Model and Problem Definition

Fig. 5.2 illustrates the assumed frame-based transmission setting. Each frame consists of a
set S = {1, . . . , S} of S slots, and each of the slots can be allocated either to URLLC or
eMBB packets. At the beginning of each frame f , a scheduler at the base station allocates a
subset Uf ⊆ S of slots for URLLC transmission, and remaining slots are devoted to eMBB
traffic. The main challenge is that the scheduler does not know in advance when URLLC
devices will generate packets [186, 184].

5.2.1 URLLC data generation

For any frame f = 1, 2, . . . , a total of Gf ≤ S URLLC packets are generated. The i-th
generated packet is produced in the gf [i] ∈ S slot of the frame. As in [208] we make the sim-
plifying assumption that no more than one URLLC packet can be generated in a slot. This
assumption encodes the requirement that URLLC traffic can be successfully served within
any desired degree of reliability by an ideal scheduler that knows the URLLC traffic pattern
(or by a trivial scheduler that allocates all slots to URLLC transmissions). The slot indices
at which URLLC packets are generated are collected in set Gf = {gf [1], . . . , gf [Gf ]}] ⊆ S.
Importantly, no further assumptions are made on the URLLC data generation mechanism.

5.2.2 URLLC latency and reliability constraints

The goal of the scheduler is to allocate the smallest number Uf = |Uf | of slots, while
ensuring that URLLC traffic is served with a prescribed level of latency and reliability.
Note that the proposed approach is in line with 3GPP’s preemptive scheduling of URLLC
traffic on top of eMBB transmissions [209]. Specifically, latency constraints impose that
an URLLC packet generated in time slot s ∈ S must be allocated a time slot in the
interval [s, s+ 1, . . . ,min{s+ L, S}] given maximum allowed latency of L slots. Reliability
is measured by the fraction of frames f in which all Gf URLLC packets are allocated a slot
within the described latency constraint of L slots. In particular, we impose that the fraction
of frames satisfying this condition is at least 1− α, for some unreliability rate α ∈ (0, 1).

To formalize the outlined latency and reliability constraints, we introduce the following
definition. We say that a subset Uf of allocated slots in frame f “L-covers” a subset Gf of
slots at which URLLC packets are generated if the following condition is met: For each
generated URLLC packet g ∈ Gf , there is a distinct allocated URLLC slot u ∈ Uf within
the latency constraint L, i.e., such that the inequalities 0 ≤ u− g ≤ L are satisfied. Note
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that this condition implies that the number of allocated slots is no smaller than the number
of generated packets, i.e., |Uf | ≥ |Gf |.

As an example, in Fig. 5.2(b) the allocation Uf = {1, 3, 6, 9, 11, 12} fails to “2-cover”
the generated set Gf = {2, 4, 7, 8} since the packet generated at gf [4] = 8 cannot be served
within the latency constraint L = 2. The allocated slot 9 “covers” the packet generated at
gf [3] = 7 and hence is unavailable for gf [4] = 8, while the remaining allocated slots 11 and
12 do not meet the latency constraint. In contrast, the URLLC allocation in Fig. 5.2(c)
succeeds in 2-covering the same generated packet Gf .

Given the set of generated packets Gf and the set of URLLC allocated sets Uf , the
reliability measure for frame f is set as the indicator

r(Uf |Gf ) =

1 if Uf L-covers Gf
0 otherwise.

(5.1)

Accordingly, given the sequence U1:F = {U1, . . . ,UF} of scheduled slots and the sequence
of generated packets G1:F = {G1, . . . ,GF}, the URLLC reliability rate over a window of F
frames is the average reliability measure

ρU
(
U1:F

∣∣∣G1:F
)

= 1
F

F∑
f=1

r(Uf |Gf ). (5.2)

The allocation U1:F is said to be (1− α)-URLLC reliable for the generation sequence G1:F if
the following limit holds

lim
F→∞

ρU
(
U1:F

∣∣∣G1:F
)
≥ 1− α. (5.3)

This imposes that over a sufficiently long time horizon, the fraction of frames which URLLC
packets are served in a timely manner is at least 1− α.

5.2.3 eMBB efficiency

A scheduler could easily obtain the highest coverage rate of 1 by allocating all S slots
to URLLC traffic. However, this would come at the cost of eMBB traffic. The eMBB
efficiency of an allocation strategy is measured by the fraction of slots available for eMBB
transmission over a window of F frames, i.e., as

ηe(U1:F ) = 1
F

F∑
f=1

S−|Uf |
S

= 1− 1
FS

F∑
f=1
|Uf |. (5.4)
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Since the reliability requirements of URLLC are more stringent, by many orders of magnitude,
as compared to eMBB, we focus on meeting URLLC reliability constraints, while serving
eMBB traffic is in a best-effort fashion.

5.2.4 URLLC predictor

The scheduler has access to an arbitrary probabilistic URLLC traffic predictor. The predictor
may be model-based, e.g., based on a Markov model, or data-driven, e.g., a recurrent neural
network, and we make no assumptions on its accuracy. The predictor outputs a probability
distribution qf (·) over all possible subsets of the slot set S. Accordingly, the predictor assigns
a probability qf (Gf ) to each subset Gf of possible slot indices containing URLLC packets in
frame f . This probability generally depends in arbitrary ways on the past observations of
the predictor. Such observations include the past decisions U1:f−1 of the scheduler, as well
as, possibly partial, information about the previous packet generation subsets G1:f−1. For
instance, the predictor may have access to the previous reliability indicators r(Uf ′ |Gf ′) with
f ′ = 1, ..., f − 1 providing information about whether past allocations have been successful
or not. Furthermore, while the probability qf (·) generally ranges over all possible 2S subsets
of slots, practical predictors may, e.g., factorize this distribution so as to reduce complexity
[210, 211].

5.3 CP-Based URLLC Resource Allocation

In this section, we introduce the proposed CP-based resource scheduler, proven to satisfy
the reliability constraint (5.3) irrespective of the quality of the predictor qf (·) on which its
decisions are based. This important result is obtained by suitably adjusting the number of
slots allocated to URLLC traffic, and hence the resulting eMBB efficiency (5.4). We start
by reviewing a naïve approach to scheduling that “trusts” the predictor to be accurate and
well-calibrated.

5.3.1 Naïve Prediction-Based Scheduler
Assume that the predictor qf (·) is well-calibrated, in the sense that it provides the actual
probability qf(Gf) that a certain URLLC traffic pattern Gf is realized. For model-based
predictors, this would be the case if the available domain knowledge is extremely precise;
and for data-driven predictors this condition may arise if one has access to large amount
of relevant data. Under such ideal conditions, a naïve scheduler would aim at minimizing
the number |Uf | of allocated slots under the constraint that the sum of probabilities qf (G)
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Algorithm 4: Greedy Slot Allocation
Input: latency constraint L, set of subsets Γ
Output: URLLC slot allocation U

1 initialize slot allocation U = ∅
2 ◁ Iterate backwards over slots ▷
3 for s = S, S − 1, . . . , 1 do
4 if s ∈ ∪G∈ΓG then
5 ◁ if slot in any of the predicted sets ▷
6 U ← U ∪ {s} ◁ Add the slot s to the allocation ▷
7 for G ∈ Γ do
8 ◁ Iterate over all predicted sets ▷
9 ◁ Remove a slot in traffic pattern G if the corresponding packet can be

transmitted in slot s while satisfying the latency condition L ▷
10 G ← G \

{
max

(
{s− L, . . . , s} ∩ G

)}
11 return U

across all arrivals G that are L-covered by Uf is no smaller than 1 − α. We propose to
address this combinatorial problem through a two-step heuristic approach. First, we find
the smallest set Γ of slot generation patterns Gf to which the predictor qf(·) assigns a
probability at least 1− α, i.e., we first solve the problem

Γ(α|qf ) = argmin
Γ⊆2S

|Γ| s.t.
∑
G∈Γ

qf (G) ≥ 1− α. (5.5)

This problem can be addressed by sorting the probabilities qf (·) in decreasing order. Note
that, in practice, problem (5.5) can be simplified by restricting the domain, e.g., by
considering only traffic patterns of no more than Gmax packets.

Once a set Γ(α|qf) of subsets is identified, the scheduler could find an allocation Uf
that guarantees that, for all patterns Gf ∈ Γ(α|qf), we have r(Uf |Gf) = 1 and hence all
URLLC packets are correctly transmitted within the latency condition. A greedy algorithm
satisfying this condition is detailed in Algorithm 4. The approach operates backwards from
slot S to slot 1. For any slot s that belongs to any of the traffic patterns in set Γ, the slot
s is added to the set of allocated slots U . Furthermore, for each pattern G ∈ Γ, one slot
s′ ≤ s is removed if it is the largest not yet considered and if it is within L time slots of the
allocated slot s.

Under suitable ergodicity conditions (see, e.g., [212]), making the strong assumption
that the predictor is indeed well-accurate, the reliability inequality (5.3) would be satisfied
by the naïve scheduler with probability 1.
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5.3.2 CP-Based Scheduler

In practice, one cannot rely on the accuracy of the predictor to guarantee the reliability
condition (5.3). Inspired by online CP [83, 84], we now introduce an approach that is
guaranteed to meet the condition (5.3) no matter what the accuracy of the predictor is and
for every realization of URLLC traffic patterns. While not affecting URLLC reliability, the
accuracy of the predictor dictates eMBB efficiency (5.4), with a more accurate predictor
yielding a higher eMBB efficiency.

The key idea is to adjust the threshold used in the definition of set (5.5) as a function
of the past reliability measures, so as to meet the reliability condition (5.3). Let us define
as αf the target unreliability rate for frame f , which is used in (5.5) to obtain the set
Γ(αf |qf ). A smaller value of αf yields a larger set Γ(αf |qf ). Once such a set is identified,
the CP-based scheduler applies the same greedy approach as the naïve scheme to identify
set Uf (see Algorithm 4). Intuitively, the target unreliability rate αf+1 for frame f + 1
should be chosen to be small when the average success rate f−1∑f

f ′=1 r(Uf ′|Gf ′) obtained
so far is smaller than 1− α; and one should increase αf+1 if the average success rate so far
is larger than 1− α.

To this end, we assume that at the end of the f -th frame the scheduler gains access
to the reliability measure r(Uf |Gf ). In practice, this requires some minimal feedback from
URLLC devices informing the base station of an unsuccessful attempt to transmit a packet.
Then, the target per-frame unreliability threshold αf+1 is set as αf+1 = φ(θf+1), where
φ(·) is a monotonically increasing function, known as the stretching function [84]. The
parameter θf+1 is updated as

θf+1 ← θf + γ
(
r(Uf |Gf )− (1− α)

)
, (5.6)

where γ > 0 is an update step. We adopt the stretching function

φ(θ) = 1
2

(
1 + sin

(
π
(

max
{
0,min{1, θ}

}
− 0.5

)))
, (5.7)

which satisfies the conditions in [84, Theorem 1].
By [83, Proposition 4.1], this choice ensures that the difference between the URLLC

reliability rate, ρU(U1:F |G1:F ), and the target rate 1− α satisfies the inequality
∣∣∣ρU(U1:F |G1:F )− (1− α)

∣∣∣ ≤ O(1/F ) (5.8)
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Algorithm 5: CP-Based Scheduler
Input: target unreliability rate α > 0, probabilistic predictor {qf}f∈N, latency constraint

L, update step γ > 0
Output: URLLC slot allocations U1,U2, . . .

1 initialize threshold θ1 ← φ−1(α)
2 for f = 1, . . . , do
3 retrieve previous pattern Gf−1
4 find Uf using Algorithm 4 for Γ(φ(θf )|qf ) using (5.5)
5 allocate slots Uf for URLLC traffic Gf in frame f
6 obtain reliability indicator r(Uf |Gf ) via (5.1)
7 ◁ Adapt calibration parameter ▷
8 θf+1 ← θf + γ

(
r(Uf |Gf )− (1− α)

)
9 return U1,U2, . . .

for any number of frames, F , and irrespective of the specific realized sequence of traffic
patterns. This condition yields the limit (5.3) as the number of frames, F , grows large.

5.4 Experiments and Conclusions

To validate the proposed approach, we conducted experiments under a Markov packet
generation mechanism. Recall that the proposed scheme provides guarantees that do not
depend on the statistics of the packet arrival process. The arrival process is defined by four
parameters (p−, p+, Gmin, Gmax). Accordingly, given the current traffic pattern Gf , the next
traffic pattern Gf+1 has a number of packets equal to Gf+1 = [Gf +Wf+1]Gmax

Gmin , where Wf is
a ternary variable that equals Wf+1 = 1 with probability p+, Wf+1 = −1 with probability
p−, and Wf+1 = 0 otherwise. The function [·]Gmax

Gmin clips the input argument within the range
[Gmin, Gmax]. Given a number Gf+1 ̸= Gf of packets, the traffic pattern Gf+1 is selected
uniformly among all subsets of cardinality Gf+1 that can be obtained from pattern Gf by
adding a slot (if Gf+1 > Gf ) or removing a slot (if Gf+1 < Gf ). Otherwise, if Gf+1 = Gf ,
we set Gf+1 = Gf . While simplistic, this mechanism allows us to draw insightful conclusions
on the role of predictors in the performance of schedulers.

To this end, we assume that the predictor qf (·) adopts the same Markov model of the
ground-truth packet generation mechanism, but with generally mismatched probabilities p̂+

and p̂− in lieu of the true probabilities p+ and p−.
Fig. 5.1 shows the generated packets {Gf} over the last 200 frames of a 2000 frames

run, along with the allocation {Uf} and reliability indicators (5.1) in the side bars. Each
frame consists of S = 12 slots, the URLLC latency is L = 1, the learning rate γ = 0.1,
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and traffic follows Gmin = 0 and Gmax = 6 and p+ = p− = 0.16. We consider two
predictors: The first underestimates the parameters with p̂+ = p̂− = 0.02, while the
second overestimates p̂+ = p̂− = 0.40. The conventional scheduler either fails to meet (5.3)
using the underestimating predictor (covering 82% instead of 1− α = 90%), or allocates
an excessively large number of slots using the overestimating predictor. In contrast, the
CP-based predictor can effectively adjust the eMBB efficiency to the quality of the predictor,
always meeting the reliability constraint (5.3). For example, it trades excessive coverage
(98% to 90%) into higher eMBB efficiency (45% to 66% as in Fig. 5.1(c)).

We now set α = 0.01 and γ = 0.05, and investigate the impact of a mismatch between
the URLLC traffic model assumed by the predictor and the ground-truth model. We set
p+ = p− = p and p̂+ = p̂− = p̂, and let both parameters vary. Fig. 5.3 shows the empirical
URLLC reliability rate (5.2) and the empirical eMBB efficiency (5.4) at the completion
of F = 4000 frames for both the naïve scheduler and the CP-based scheduler. The naïve
scheduler is significantly affected by a mismatch between predictor and ground-truth
packet generation mechanism, yielding either ill empirical coverage (below 1− α = 0.99)
or over coverage. In contrast, the CP-based predictor is able to flatten the coverage to
asymptotically reach the long-term target 1− α.
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Fig. 5.3 URLLC reliability rate (5.2) and eMBB efficiency (5.4) for conventional scheduler
(Sec. 5.3.1) and CP-based scheduler (Sec. 5.3.2) as a function of the ground-truth traffic
parameter and predictor parameter. The target rate is 1− α = 0.99 (dashed red line for
conventional scheduler; the CP-based scheduler always satisfies the reliability condition).





Chapter 6

Cross-Validation-Based Conformal
Risk Control

6.1 Introduction

6.1.1 Context and Motivation

One of the key requirements for the application of artificial intelligence (AI) tools to risk-
sensitive fields such as healthcare and engineering is the capacity of AI algorithms to quantify
their uncertainty [213, 214]. This requires guarantees on the adherence of the “error bars”
produced by the AI model to the true predictive uncertainty. The predictive uncertainty
encompasses both the epistemic uncertainty caused by limited availability of data and the
aleatoric uncertainty inherent in the randomness of data generation [28]. Without making
strong assumptions on the data generation mechanism it is generally impossible to provide
strict uncertainty quantification guarantees for any input, but assumption-free guarantees
can be established on average over validation and test data [215]. Conformal prediction
(CP) [17, 19], and its extension conformal risk control (CRC) [91], are widely established
methodologies for the evaluation of predictors with provable uncertainty quantification
properties.

To elaborate, assume access to a data set D of N pairs of examples consisting of input
x and output y. Based on the data set D and on a class of point predictors, CP and CRC
produce a set predictor Γ(x|D) mapping a test input x into a subset of the output space.
The size of the set predictor Γ(x|D) provides a measure of the uncertainty of the predictor
for input x [19]. On average over the data set D and over a test input-output pair (x, y),
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Fig. 6.1 Illustration of (top) the existing validation-based conformal risk control (VB-CRC)
[91]; and (bottom) the proposed method cross-validation-based conformal risk control
(CV-CRC), which aims at reducing the predictive sets sizes by reusing the available data D
more efficiently.
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we wish to guarantee the calibration condition

EDDD,x,y∼p0(D,x,y)
[
ℓ
(
y,Γ(x|DDD)

)]
≤ α, (6.1)

where boldface fonts denote random quantities, ℓ(·, ·) is a loss measure, and α a user-
specified maximum average loss level. In (6.1), under the joint distribution p0(D, x, y),
the examples in the data set DDD and the test pair (x,y) are assumed to be independent
identically distributed (i.i.d.), or, more generally exchangeable.

CRC can satisfy the requirement (6.1) for any user-specified target average loss level
α, as long as the loss function is bounded and it decreases as the predicted set grows.
Examples of such loss functions are the 0-1 miscoverage probability

ℓ(y,Γ) = 1(y /∈ Γ), (6.2)

which returns 1 if the true label y is not in the set Γ and 0 otherwise, and the false
negative rate, which returns the fraction of true values of y that are not included in set Γ
for multi-label problems [91].

The requirement (6.1) can be always satisfied for such monotonic loss functions by
returning as set predictor Γ the entire set of possible values for the output variable y.
However, a set predictor is useful only as long as it is of moderate average size. The
motivation of this work is to construct a set predictor that meets (6.1), while producing
small predictive sets even in the presence of a limited data set D.

6.1.2 State of the Art

CP addresses the design of set predictors satisfying the calibration condition (6.1) in the
special case of the miscoverage loss (6.2) [17–19]. There are several variants of CP, including
validation-based CP (VB-CP), cross-validation-based CP (CV-CP) [90], and full CP [17].
While full CP is considered to be impractical, requiring many rounds of retraining, VB-CP
splits the data set into training and validation data sets, and it operates over a single round
of training. However, the need to devote a separate data set for validation can significantly
reduce the quality of the trained model, resulting in predictive sets of large sizes when data
are limited [90].

CV-CP reduces the computational complexity as compared to full CP, while reducing
the predicted set size as compared to VB-CP. This is done by partitioning the available
data set into multiple folds, each acting as a validation data set for the model trained based
on leave-fold-out data. At the cost of increasing the complexity, requiring as many training
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rounds as the number of folds, CV-CP was shown to produce important savings in terms of
prediction set sizes [111, 216, 217].

Other extensions of CP include CP-aware training strategies [76, 77], prediction under
distributional shifts [78], improvements in the training algorithms [79, 80], novel calibration
metrics [81, 82], applications to engineering problems [111, 218], and online versions [83, 84]
with applications [219, 113].

CRC generalizes CP to address the calibration criterion (6.1) for a wider class of risks,
with the only constraints that the risk function be bounded and monotonic in the predicted
set size [91, 92, 94, 84]. The original CRC is validation-based, and hence it may be referred
to as VB-CRC for consistency with the terminology applied above for CP. Accordingly,
it relies on a split of the data set into training and validation sets, resulting in inefficient
predictive sets when data are limited.

6.1.3 Main Contributions

In this chapter, we introduce a novel version of CRC based on cross-validation. The proposed
CV-CRC method generalizes CV-CP, supporting arbitrary bounded and monotonic risk
functions. As we will demonstrate, the design and analysis of CV-CRC are non-trivial
extensions of CV-CP, requiring new definitions and proof techniques.

The rest of the chapter is organized as follows. Sec. 6.2 provides the necessary background,
while CV-CRC is presented in Sec. 6.3. Numerical experiments are reported in Sec. 6.4, and
Sec. 6.5 draws some conclusions. All proofs are deferred to the supplementary material.

6.2 Background

Consider N + 1 data points

(x[1],y[1])︸ ︷︷ ︸
=z[1]

, (x[2],y[2])︸ ︷︷ ︸
=z[2]

, . . . , x[N + 1],y[N + 1])︸ ︷︷ ︸
=z[N+1]

(6.3)

over the sample space X ×Y that are drawn according to an exchangeable joint distribution
p0(D, x, y) over index i = 1, . . . , N . The first N data points constitute the data set
D = {z[i] = (x[i], y[i])}Ni=1, while the last data point z[N + 1] is the test pair, which is also
denoted as z = (x, y). We fix a loss function ℓ : Y × 2Y → R, which, given any label y ∈ Y
and a predictive set Γ ⊆ Y , returns a loss bounded as

b ≤ ℓ(y,Γ) ≤ B (6.4)
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for some constants B <∞ and b ∈ {−∞}∪R. We further require that the loss is monotonic
in the predictive set Γ in the sense that the following implication holds

Γ1 ⊆ Γ2 ⇒ ℓ(y,Γ1) ≥ ℓ(y,Γ2) for each y ∈ Y . (6.5)

Note that the 0-1 miscoverage loss (6.2) assumed by CP satisfies (6.4) with b = 0 and
B = 1, and it also satisfies the implication (6.5).

For a given data set D, VB-CRC uses a two-step procedure to satisfy the constraint
(6.1) for some target average loss α in the interval

b ≤ α ≤ B. (6.6)

To start, as illustrated in the top panel of Fig. 6.1, the available data set D is split into N tr

examples forming the training set Dtr and Nval = N −N tr points forming the validation
set Dval with D = Dtr ∪Dval. In the first step of VB-CRC, a model is trained based on the
training set Dtr using any arbitrary scheme. Then, in the second step, VB-CRC determines
a threshold λ ∈ R by using the validation data set Dval. As explained next, the threshold λ
dictates which labels y ∈ Y are to be included in the prediction set Γλ(x|Dtr) for any test
input x as follows.

A nonconformity (NC) score NC((x, y)|Dtr) is selected that evaluates the loss of the
trained predictor on a pair (x, y). Examples of NC scores include the residual between
the label and a trained predictor for regression problems and the log-loss for classification
problems [220, 221, 19]. With the given NC score, the set prediction is obtained as

Γλ(x|Dtr) =
{
y′ ∈ Y

∣∣∣∣NC((x, y′)|Dtr) ≤ λ
}
, (6.7)

thus including all labels y′ ∈ Y with NC score smaller or equal to the threshold λ. By
design, the set (6.7) satisfies the nesting property

λ1 < λ2 ⇒ Γλ1(x|Dtr) ⊆ Γλ2(x|Dtr) (6.8)

for any input x and data sets Dtr.
We define the risk as the population, or test, loss of the predicted set (6.7) as

R(λ|Dtr) = Ex,y∼p0(x,y)

[
ℓ
(
y,Γλ(x|Dtr)

)]
. (6.9)
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Given the validation data set Dval = {(xval[i], yval[i])}Nval
i=1 , the risk (6.9) can be estimated as

R̂val(λ|Dtr,Dval) = 1
Nval+1

(
Nval∑
i=1

ℓ
(
yval[i],Γλ(xval[i]|Dtr)

)
+B

)
, (6.10)

which is a function of the threshold λ. This corresponds to a regularized, biased, empirical
estimate of the risk (6.9) that effectively adds an (N + 1)-th dummy validation example
with maximal loss B.

VB-CRC chooses the lowest threshold λ such that the estimate (6.10) is no larger than
the target average risk α as in

λVB(Dval|Dtr) = inf
λ

{
λ
∣∣∣∣R̂val(λ|Dtr,Dval) ≤ α

}
. (6.11)

With this threshold choice, as proven in [91], the set predictor (6.7) obtained via VB-CRC,
i.e.,

ΓVB(x|Dtr,Dval) = ΓλVB(Dval|Dtr)(x|Dtr) (6.12)

ensures the desired condition (6.1). More precisely, the condition (6.1) holds for any fixed
training set Dtr, i.e., we have the inequality

EDDDval,x,y∼p0(Dval,x,y)

[
ℓ
(
y,ΓVB(x|Dtr,DDDval)

)]
≤ α. (6.13)

Furthermore, in order for (6.13) to hold, VB-CRC only requires the validation data Dval

and test pair (x, y) to be exchangeable.

6.3 Cross-Validation Conformal Risk Control

While VB-CRC reviewed in the previous section guarantees the average risk condition
(6.13), splitting the available data set into training and validation sets may potentially lead
to inefficient set predictors, having large predictive sets on average. In this section, we
introduce the proposed CV-CRC scheme that aims at improving the efficiency of VB-CRC
[91] via cross-validation [90], while still guaranteeing condition (6.1).

To start, as illustrated in the bottom panel of Fig. 6.1, the available data set D = {z[i]}Ni=1

is partitioned using a fixed mapping into K folds D = {Dk}Kk=1 of N/K-samples each, which
is assumed to be an integer. We will write each k-th fold as

Dk = {(xk[1], yk[1]), . . . , (xk[N/K], yk[N/K])}, (6.14)
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and we will denote the mapping of the i-th data point z[i] to its fold index as k[i] :
{1, . . . , N} → {1, . . . , K}. Like VB-CRC, CV-CRC operates in two steps.

In the first step, for any k-th fold, a model is trained using the leave-fold-out training
set D−k = D \Dk of N −N/K samples. Accordingly, unlike VB-CRC, K training rounds
are required for CV-CRC. In the second step, as we will detail, CV-CRC determines a
threshold λ to determine which values of the output y to include in the predicted set.

Given a threshold λ, CV-CRC produces the predictive set

ΓCV
λ (x|D) =

{
y′ ∈ Y

∣∣∣∣ min
k∈{1,...,K}

{
NC((x, y′)|D−k)

}
≤ λ

}
, (6.15)

which includes all labels y′ ∈ Y with minimum, i.e., best case, NC score across the K folds,
that is not larger than λ.

To determine the threshold λ, CV-CRC estimates the population risk (6.9) using
cross-validation as

R̂CV(λ|D) = 1
K+1

(
K∑
k=1

K
N

N/K∑
j=1

ℓ
(
yk[j],Γλ

(
xk[j]

∣∣∣D−k
))

+B

)
. (6.16)

The cross-validation-based estimate (6.16) can be interpreted as the conventional cross-
validation loss evaluated on an augmented data set

Daug =
{
D1,D2, . . . ,DK︸ ︷︷ ︸

=D

,Ddummy
}
, (6.17)

with the first K folds being the available data set D = {D1, . . . ,DK}, and the additional
(K + 1)-th fold containing N/K dummy points with the maximal loss of B. In a manner
similar to VB-CRC, the addition to dummy data points acts as a regularizer for the estimate
(6.16), which is required to provide performance guarantees.

Finally, CV-CRC selects the threshold λ by imposing that the cross-validation based
estimate (6.16) of the loss is no larger than the target average loss value α as in

λCV(D) = inf
λ

{
λ
∣∣∣∣R̂CV(λ|D) ≤ α

}
. (6.18)

CV-CRC reduces to the jackknife-minmax scheme in [90] when evaluated with the
miscoverage loss (6.2) in the special case of K = N folds.

Theorem 1. Fix any bounded and monotonic loss function ℓ(·, ·) satisfying conditions (6.4)
and (6.5), and any NC score NC((x, y)|Dtr) that is permutation-invariant with respect to
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the ordering of the examples in the training set Dtr. For any number of folds satisfying
K ≥ B/(α − b) − 1, the CV-CRC predictive set ΓCV

λCV(D)(x|D) with (6.15) and (6.18)
guarantees the condition

EDDD,x,y∼p0(D,x,y)

[
ℓ
(
y,ΓCV(x|DDD)

)]
≤ α. (6.19)

The theorem thus confirms that CV-CRC meets the desired condition (6.1). In this
regard, we note that, as in (6.1), the average loss in (6.19) includes averaging over the entire
data set D, unlike the condition (6.13) satisfied by VB-CRC. Furthermore, Theorem 1
requires the NC score to be permutation-invariant with respect to the data points in the
training set, which is not the case for VB-CRC. Permutation-invariance is also needed for
CV-CP [90], as well as for full CP [17]. In practice, a permutation-invariant NC score can
be obtained by implementing permutation-invariant training schemes such as full gradient
descent, in which the final trained model does not depend on the ordering of the training
data points.

6.4 Examples

In this section, we numerically validate the proposed CV-CRC using two synthetic examples.
The first is a vector regression problem, whereas the second concerns the problem of
temporal point process prediction [222, 223].

6.4.1 Vector Regression

Inspired by the example in [90], we first investigate a vector regression problem in which
the output variable y = [y1, . . . , ym]⊤ is m-dimensional. The joint distribution of data set
D and test pair (x, y) is obtained as

p0(D, x, y)=
∫
p0(ϕ)

(
N+1∏
i=1

p0(x[i])p0(y[i]|x[i], ϕ)
)

dϕ, (6.20)

where (x[N + 1] = x, y[N + 1] = y) is the test example, and we have the Gaussian
distributions

p0(x) = N (x|0, d−1Id), (6.21a)
p0(y|x, ϕ) = N (y|ϕ⊤ · x, β−1

0 Im), (6.21b)
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Fig. 6.2 Empirical risk of VB-CRC and CV-CRC for the vector regression problem.
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Fig. 6.3 Empirical inefficiency of VB-CRC and CV-CRC for the vector regression problem.

while p0(ϕ) is a mixture of Gaussians with means determined by an i.i.d. Bernoulli vector
b as

p0(ϕ) = E
bi.i.d.∼ Bern(0.5)

[
N (ϕ|µ0b, γ−1

0 Id)
]
. (6.22)

We set µ0 = 10, γ0 = 1, β0 = 4, d = |X | = 50, and m = |Y| = 30. Note that the distribution
(6.20) is exchangeable.

Using maximum-likelihood learning, given a training data set Dtr, we obtain the model
parameter ϕML

Dtr used for the linear prediction model ŷ(x|Dtr) = (ϕML
D )⊤x as ϕML

Dtr = X†
DtrYDtr ,

where (·)† denotes the pseudo-inverse, (·)⊤ denotes transpose, and the input and label data
matrices XD ∈ RN×d and YD ∈ RN×m have input (xtr[i])⊤ and label (ytr[i])⊤ as their ith
rows, respectively.
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The NC score is set to the maximum prediction residual across the m dimensions of the
output variable y as

NC((x, y)|Dtr) = 2
∥∥∥y − ŷ(x|Dtr)

∥∥∥
∞
, (6.23)

where the infinity norm
∥∥∥ · ∥∥∥

∞
returns the largest magnitude of its input vector. This results

in predictive sets (6.12) and (6.15) with (6.18) in the form of Γ = Γ1 × · · · × Γm, with ×
being the Cartesian product and

ΓVB
j =

{
yj

∣∣∣∣ |yj − [ŷ(x|Dtr)]j| ≤ λVB(Dval|Dtr)/2
}

(6.24)

with [·]j standing for the jth element of its argument for VB-CRC, and

ΓCV
j =

K⋃
k=1

{
yj

∣∣∣∣ |yj − [ŷ(x|D−k)]j| ≤ λCV(D)/2
}

(6.25)

for CV-CRC. The loss function used in the risk (6.1) is defined as

ℓ(y,Γ) = 1
m

m∑
j=1

1

(
yj /∈ Γj

)
, (6.26)

which evaluates the fraction of entries of vector y that are not included in the predictive set.
This loss satisfies condition (6.4) with b = 0 and B = 1. Note that CP is not applicable to
this loss, since it is different from (6.2).

Lastly, we define the inefficiency as the size of the predictive set evaluated as the average
over all dimensions of the predictive intervals across the m dimensions of the output y, i.e.,
ineff(Γ) = 1

m

∑m
j=1

∣∣∣Γj∣∣∣.
For target risk α = 0.1, the empirical risk and empirical inefficiency of N te = 200 test

covariate-output pairs, averaged over 50 independent simulations, are shown in Fig. 6.2 and
Fig. 6.3. Fig. 6.2, validates the theoretical result that CRC schemes satisfy condition (6.1).
However, from Fig. 6.3, VB-CRC is observed to have a larger inefficiency than CV-CRC,
particularly in the small data set size regime. Thus, CV-CRC uses data more efficiently, with
K = 20 folds striking a good balance between inefficiency and computational complexity in
this regime.

6.4.2 Temporal Point Process Prediction

A temporal process consists of a sequence of events at random times t1, t2, . . . with t1 <

t2 < . . . As illustrated in Fig. 6.4, given the past d events’ timings x = {t1, . . . , td}, the goal
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Γ(x|D) ⊆ Rm
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Fig. 6.4 Temporal point process prediction: After observing the past d times t1, . . . , tn,
a point process set predictor outputs predictive intervals Γj(x|D) for each of the next m
points with j = 1, . . . ,m.

is to output intervals Γj(x|D) for each of the following m events with j = 1, . . . ,m. The
loss function is defined as in (6.26).

Data and test sequences of timings are generated following a self-exciting Hawkes process
[224] with intensity function

λ(t|Ht) = µ+
∑
i:ti<t

(
α1β1e

−β1(t−ti) + α2β2e
−β2(t−ti)

)
,

with µ = 0.2, α1 = α2 = 0.4, β1 = 1 and β2 = 20 [222]. The predictor is a recurrent
neural network that outputs a predictive density function p(ti+1|t1, . . . , ti, ϕDtr) with trained
parameter ϕDtr [222]. The median t̂i+1(t1, . . . , ti, ϕDtr) of the predictive distribution is used
as the point estimate for the (i+ 1)-th event. For i > d, estimates {t̂j}i−1

j=d+1 are used in
lieu of the correct timings in the point prediction.

VB-CRC (6.12) produces intervals

ΓVB
j =

{
yj

∣∣∣∣ |yj − t̂d+j(Dtr)| ≤ γjλVB(Dval|Dtr)/2
}
, (6.27)

where multiplication by the interval common ratio γ = 1.2 increases the interval sizes for
later predictions, and for the CV-CRC (6.15), we have

ΓCV
j =

K⋃
k=1

{
yj

∣∣∣∣ |yj − t̂d+j(D−k)| ≤ γjλCV(D)/2
}
. (6.28)
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Fig. 6.5 Empirical risk (top) and inefficiency (bottom) of VB-CRC and N -CV-CRC for the
temporal point process prediction problem.

We set the length of the observed sequence as d = 60, and predict the next m = 6 events.
We allow one event on average to lie outside the predicted intervals, i.e., α = 1/6. We
average over 200 independent simulations with N te = 1000 test points in each run.

The top panel of Fig. 6.5 illustrate the test risk (6.26) as function of data set size N ,
validating that both scheme attain risks lower than the desired level α. The bottom panel
of the figure shows that CV-CRC with K = N reduces the average size of the predicted
intervals.

6.5 Conclusion

In this chapter, we have introduced a novel conformal risk control (CRC) scheme based
on cross-validation, generalizing cross-validation CP to losses beyond miscoverage. The
proposed CV-CRC was shown to provably control the average risk, with experiments
demonstrating it to be more efficient than VB-CRC when the available data for training
and calibration are scarce. Further work may consider using the jackknife+ of [90] instead
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of the jackknife-minmax for more efficient predictive sets; and extending the scheme to
meta-learning [116].





Chapter 7

Conclusions

7.1 Main Conclusions and Thesis Achievements

In this dissertation, we focused on ways to enhance the reliability and sample-efficiency
of AI models. Both of these performance metrics go beyond the well-studied “accuracy”
that characterizes many of the early deep-learning solutions. Reliable prediction means
the models quantify better the uncertainty associated with their predictions, in light of
the amount and test-data similarity to the training data. Sample-efficiency means that
predictors are trained using small amount of labeled test-data. Numerical experiments of
various communication systems predictors validated the theoretical claims.

We now restate the research questions as in Section 1.2 and list the main conclusions
drawn while addressing each one.

• Research Question 1: Is it possible to enhance the reliability of learning-
based communication algorithms in the challenging regime of few pilot
symbols?

– It is possible to enhance the reliability of predictors, by applying Bayesian learning
that leverages disagreements among multiple models, projecting uncertainties
regarding the model into the confidence level of the predictions.

– For the symbol demodulation problem, we show that training a Bayesian neu-
ral network via ensembling, results in a more accurate and better-calibrated
demodulators.

– By applying meta-learning, we show that a symbol demodulator can adapt
quickly, meaning few pilots are needed for the test frame, when past frames with
different channel conditions is available.
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– When integrating Bayesian learning and meta-learning, we can enjoy the merits
of reliability and sample-efficiency, on the expense of increased computational
complexity.

– The ability to demodulate using few pilots can be utilized by allocating less
symbols of the frame into pilots and freeing them for data symbols, hence
increasing the net spectral efficiency.

• Research Question 2: Can an active selection of training conditions speed
up training for new communication settings?

– It is possible to wisely select the training conditions. By generating data that is
more “surprising” with respect to what has already been observed, the training
speeds up.

– We show that when a meta-learning equalizer has access to characterize the
conditions of how the next data is generated, it can lead to a reduction in the
total number of frames needed to achieve a target performance value.

– This translates into fewer channel simulation calls, and reduced training com-
plexity.

• Research Question 3: Is it possible to provide formal guarantees of relia-
bility for learning-based communication protocols?

– Formal guarantees can be provided, once the scope changes from probabilistic
prediction into predictive sets, with the set size reflecting the self-confidence of
the prediction.

– We apply conformal prediction for several communication systems problems, and
validate the prediction reliability, specifically that the true label is indeed part
of the predictive set in probability of no less than a target coverage rate.

– We calibrate communication systems such as symbol demodulation and modula-
tion classification for both VB-CP and CV-CP, and compare the performance
of the schemes. The maximal number of folds K for N data points, as is set
in N -CV-CP for K = N , is indeed the most efficient one. K-CV-CP, for some
fixed K < N , is observed to be smaller in size than VB-CP, striking a balance
between efficiency and computational complexity.

– We exemplify online CP via RSS channel prediction, and show it is more efficient
than the naïve -quantile-based predictor.
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– As a use-case, we show that URLLC scheduling via CP results in both a
guaranteed reliability within the latency constraint of the URLLC service, while
freeing resources for the eMBB traffic.

– Lastly, we provide mathematical proof that CV-CRC, which is the outcome of
the integration of CV-CP and VB-CRC, does indeed meet risk guarantees, and
might lead to more efficient prediction sets than the state of the art CRC.

7.2 Open Research Questions

In this research, we have covered tools and applications for reliable learning-based communi-
cation systems. We investigated several communication problems like symbol demodulation,
equalization, modulation classification, RSS prediction, and URLLC dynamic scheduling.
Apart from the direct extensions for other communication systems and services, there are
many other aspects, both in a machine learning prospective and in a communication system
prospective, that can be the subject of future work. They will help to understand better
how one can try and to have a reliable predictor, when faced with small amount of pilots,
that serve as labeled data. At the same time, it is desired to do so while considering the
predictors to be of good quality, for example high-accuracy or well-coverage. We detail
questions that are still open, grouped into research fields.

• Bayesian meta-learning: Future work expanding Chapter 3 may consider a fully
Bayesian meta-learning implementation that also accounts for uncertainty at the level
of hyperparameters (see, e.g., [156] and references therein). This may be particularly
useful in the regime of low number of frames. A study on the impact of well-calibrated
decisions obtained via Bayesian learning on downstream blocks at the receiver, such
as channel decoding, is also of interest. Moreover, the proposed tools of Bayesian
meta-learning may find applications to other problems in communications, such as
power control [54] and channel coding [57, 225].

• Bayesian active meta-learning: One possible extension of active learning discussed
in Chapter 3, is the integration of both active learning and active meta-learning,
forming Bayesian active meta-active learning. This will target reduction in the number
of learning tasks, while reducing the number of samples within each learning task, with
early work reported in [226]. Another direction for research would be to investigate
different scoring functions for active meta-learning (see, e.g., [67]).
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• Conformal prediction: A future research for this exciting field used in Chapter 4 can
try to reduce the 1−2α miscoverage guarantee of CV-CP into 1−α, as conjectured by
[90] to be some kind of artifact of the proof. The applications of CP to other use cases
in wireless communication systems, as well as extension of involving training-based
calibration [80, 77] and/or meta-learning [117] is also of interest.

• Conformal risk control For the CV-CRC problem discussed in Chapter 6, one
can try to use the jackknife+ of [90] instead of the jackknife-minmax used as we
use in this work, possibly resulting in more efficient sets. Incorporating a cross-
validation approach into time series CP [207] can further be explored. Relaxation
of the exchangeability assumption for CRC as in [227] can be integrated with cross-
validation techniques as well. Another possible direction of research can be integration
of the softening mechanism as in meta-learning CV-CP [116] with the framework of
an arbitrary risk as in CRC. This will result in meta-learning CV-CRC, aiming for
small predictive set of arbitrary risk, when the per-task availability of data is limited.

• Explainable AI: In recent years, explainable AI gained interest, due to the desire of
decision-makers to rely on AI predictions in a way that “makes sense” to a human, or
provides information on how the prediction was made. For example, as reviewed in
[89] and studied from an information-theoretic perspective in [228], the need to assess
the influence of each input feature to the prediction output is one way to address
explainability. The residual perturbation of the output, provided input features
perturbation, suffers greatly from the predictor which is usually poorly-calibrated.
Incorporating CP to explainable AI so the output is a set of labels can reflect the
uncertainty via the set size. Several researchers have begun to explore some integration
of CP and explainable AI [229], and this can be further elaborated as mentioned
above.



Appendix A

Experiments Details for Chapter 3

Table A.1 summarizes the parameters used for the numerical experiments in Sec. 3.4
for demodulation and equalization. Throughout the simulations, we used PyTorch [230]
adopting autograd’s option create_graph = True to allow the computational graph to
calculate second-order derivatives.

For the demodulation problem in Sec. 3.4.2 (Figs. 3.6 – 3.8), the complex input space
X = C is treated as a two-dimensional real vector space R2 when is fed into the neural
network demodulator. The KL term in (3.18) is suppressed by a multiplicative coefficient
of 0.1, as a means to emphasize the average log-likelihood term should have over the prior.
This is an approach known as generalized Bayesian inference [231, 125]. To handle the
discrepancy in the number of pilots for adaptation during meta-training and meta-testing,
i.e., N tr

∗ > N tr
τ , we consider the following strategy akin to burn-in phase [39] during meta-

testing as done in [49]: (i) start with I updates using learning rate η utilizing N tr
τ pilots

among the available N tr
∗ pilots; (ii) then, additional I∗ − I updates are performed with

reduced learning rate (5% of the original learning rate) with all available N tr
∗ pilots. This

strategy becomes particularly useful in practical scalable systems in which the number of
pilots may change depending on the deployment environments.

As for the equalization setting in Sec. 3.4.3 (Figs. 3.9 – 3.10), we observe that reinitializing
the hyperparameter ξ to a random value at each data acquisition iteration benefits meta-
training in practice. While using the previous iteration’s optimized hyperparameter vector
ξ as the starting point for the current iteration is useful in reducing the computational
complexity [232, 49], we found it beneficial not to do so in our equalization problem to
avoid meta-overfitting especially in the few-frames (e.g., 10 frames) regime of interest.
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Supplementary Material for
Chapter 4

B.1 Full-Conformal Prediction

Unlike validation-based and cross-validation-based set predictions, full-conformal (FC)
prediction [90] needs retraining of a model using the augmented data set D ∪ {(x, y′)}
for every possible candidate pair (x, y′). More precisely, given a test input x, an FC set
predictor is constructed by choosing all candidate labels y′ that has a lower NC scores than
a portion of (at least) α of the N examples, using the model that has been trained with the
corresponding augmented data set D ∪ {(x, y′)}. Mathematically, this yields the following
inclusive full-conformal (IFC) set predictor

ΓIFC(x|D) =
{
y′ ∈ Y

∣∣∣∣ NC((x, y′)|D ∪ {(x, y′)}) (B.1)

≤ Qα

{
NC(z[i]|D ∪ {(x, y′)})

}N
i=1

}
.

The term “inclusive” emphasizes that the points for which the NC scores apply ((x, y′) and
z[i] for i = 1, 2, . . . , N) are inclusive to the fitting sets. It mandates training N te|Y| models,
and predicting N te|Y|(N + 1) times, which requires far more computations as compared to
VB CP and CV CP predictors introduced in Sec. 4.4. By [161, Theorem 1], inclusion-based
full-conformal predictor (B.1) is valid (2.32).

Since inclusive full-conformal (B.2) may suffer from overfitting due to inclusive nature,
alternatively, the full-conformal approach can also use a leave-one-out data set from the
augmented set D ∪ {(x, y′)} [17, 201, 18], meaning that the NC scores associated with
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point z[i] excludes itself during training, i.e., D ∪ {(x, y′)} \ {z[i]}, whereas NC score of the
prospective pairs {(x, y′)} uses plainly D for training (the augmented leaving the prospective
pair out). We term this as exclusive full-conformal (EFC), which is formally given as

ΓEFC(x|D) =
{
y′ ∈ Y

∣∣∣∣ (B.2)

NC((x, y′)|D) ≤ Qα

{
NC(z[i]|D ∪ {(x, y′)} \ {z[i]})

}N
i=1

}
.

Obtaining (B.2) is highly computational complex, since the fitting algorithm needs to rerun
N + 1 times for each prospective pair, summing to a total of N te|Y|(N + 1) training phases,
which may be impractical to even moderate size problems. The number of model predictions
is N te|Y|(N + 1), same with IFC (B.1), yet this is far less computational complex than
fitting. On the upside, the exclusive FC (B.2) is less prone to overfitting than the (inclusive)
FC (B.1), due to its out of set nature. By [78, Theorem 1], exclusion-based full-conformal
predictor (B.2) is valid (2.32).

B.2 Algorithmic Details for Rolling Conformal Infer-
ence

The RCI algorithm is reproduced from [233] in Algorithm 6.

B.3 Langevin Monte Carlo Approximation

One MC method to approximate the Bayesian predictor is to use the stochastic gradient
Langevin dynamics (SGLD) [39], which is a first order scheme, hence less complex than other
approaches, e.g., Hamiltonian Monte Carlo [41]. As we deal with exchangeable distributions,
we focus on the full batch variant of it, which is known as Langevin Monte Carlo (LMC).
It is an ensemble MC approximation as in (2.27), with the R model parameters being the
consecutive outcomes of a noise injected gradient descent update steps for the optimization
of the regularized log-loss that takes into account for the prior p(ϕ) as follows

ϕ̄r+1 ← ϕ̄r − η
(
∇ϕLD(ϕ̄r)− 1

N
∇ϕ log p(ϕ̄r)

)
+
√

2η
NT
vr. (B.3)

In the SGLD update of (B.3), ϕ̄r stands for the model parameter vector; vr is a realization of
the Gaussian random vector vr ∼ N (0, I); η is the learning rate; and T is the temperature
[140] that balances between the empirical loss and the injected noise power.
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Algorithm 6: Rolling Conformal Inference (for Regression) [233]
Inputs : α = long-term target miscoverage level

θ[1] = initial calibration parameter
ϕlo[1], ϕhi[1] = initial models

Parameters : I = number of online iterations
γ = learning rate for calibration parameter
η = learning rate for model updates

Output : {ΓRCI
i

(
x[i]

∣∣{z[j]}i−1
j=1
)
}Ii=1 = predicted sets for {x[i]}Ii=1

1 for i = 1, . . . , I time instants do
2 Retrieve a new data sample (x[i], y[i])
3 ◁ Set prediction of new input ▷

4 Calculate set ΓRCI
i

(
x[i]

∣∣{z[j]}i−1
j=1
)

using (4.19)
5

[
ŷ
(
x[i]

∣∣ϕlo[i]
)
− φ(θ[i]), ŷ

(
x[i]

∣∣ϕhi[i]
)

+ φ(θ[i])
]

6 ◁ Check if prediction is unsuccessful ▷

7 err[i]← 1
(
y[i] /∈ ΓRCI

i

(
x[i]

∣∣{z[j]}i−1
j=1
))

8 ◁ Update calibration parameter ▷
9 θ[i + 1]← θ[i] + γ

(
err[i]− α

)
10 ◁ Update models using new sample ▷

11 ϕlo[i + 1]← ϕlo[i]− η∇ϕℓα/2
(
y[i], ŷ

(
x[i]

∣∣ϕlo[i]
))

12 ϕhi[i + 1]← ϕhi[i]− η∇ϕℓ1−α/2
(
y[i], ŷ

(
x[i]

∣∣ϕhi[i]
))

13 return predicted sets {ΓRCI
i

(
x[i]

∣∣{z[j]}i−1
j=1
)
}Ii=1

The initial model parameter ϕ̄1 is set at random, and total of I gradient descent updates
take place. The first updates are characterized by high absolute values of gradients, moving
towards the maximum a posteriori (MAP) solution. As getting closer to it, the last noise
injection term of (B.3) makes the model parameter vector to oscillate around it. It is
a common practice to discard a burn-in period, the first Rmin so that the ensemble is
composed by the model parameter vectors of the last R = I − Rmin iterations, using the
ensemble {ϕr = ϕ̄Rmin+r}Rr=1. This is a MC approximation, as the model parameter vectors
forming the ensemble are considered to be drawn from the posterior p(ϕ|D). The noise
injection in the update step (B.3) enables the exploration of the proximity around the
minima, and the ensemble sampling allows to maintain some quantity of uncertainty around
the frequentist solution.
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B.4 Implementation of Online Channel Prediction

The architecture of the set predictor is inspired by [233], and made out of three artificial
neural networks. The first, fpre(·), is a multi-layer perceptron (MLP) network with hidden
layers of 16, 32 neurons each, parametrized by vector ϕpre[i]. It is meant to apply a pre-
process over the most recent observed K = 20 pairs {z[i−K], . . . , z[i−1]} to be transformed
element-wise into a length-K vector w[i] =

[
w1[i], . . . , wK [i]

]⊤
, in which the k-th element

(k = 1, . . . , K) is wk[i] = fpre
(
z[i − K + k − 1]

∣∣∣ϕpre[i]
)
. Effectively, this will serve as a

temporal sliding K-length window, with a time-evolving pre-processing function. The
second neural network, fLSTM(·) has two layers with model parameter vectors ϕ1

LSTM[i] (first
layer) and ϕ2

LSTM[i] (second layer), which retains a memory via the hidden state vectors
h and c, initialized at every time index i as c1

0[i] = c2
0[i] = h1

0[i] = h2
0[i] = 0. By accessing

the previous K pairs via the vector w[i], this recurrent neural network extracts temporal
patterns by sequentially transferring information via LSTM cells (with shared parameter
vectors) in the image of hidden and cell state vectors ck[i], hk[i] via the LSTM cells. These
vectors flow along the LSTM by concatenating k = 1, . . . , K cells, and forming vectors of
length 32 each

[c1
k[i], h1

k[i]] = fLSTM
(
wk[i], c1

k−1[i], h1
k−1[i]

∣∣∣ϕ1
LSTM[i]

)
(B.4)

[c2
k[i], h2

k[i]] = fLSTM
(
h1
k[i], c2

k−1[i], h2
k−1[i]

∣∣∣ϕ2
LSTM[i]

)
. (B.5)

The third and last network is a post-processing MLP fpost(·) with one hidden layer of 32
neurons, and with parameter vector ϕpost[i], which maps the last LSTM hidden 64-length
vector hK [i] = [h1

K [i], h2
K [i]]⊤ into a scalar fpost

(
x[i], hK [i]

∣∣∣ϕpost[i]
)
∈ R that estimates the

quantile for the output y[i]. Accordingly, the time evolving model parameter is the tuple

ϕ[i] = (ϕpre[i], ϕ1
LSTM[i], ϕ2

LSTM[i], ϕpost[i]). (B.6)

This model is instantiated twice for the regression problem: one for the α/2 lower quantile
and the other for 1− α/2 upper quantile. For every time instant i, after the new output
y[i] is observed, continual learning of the models is taken place by training the models
with corresponding pinball losses (4.5) using the new pair (x[i], y[i]), while initializing the
models as the previous models at time instant i− 1. Full design details are in Table B.1.

The miscoverage rate was set to α = 0.1, the learning rate to η = 0.01, and we chose
γ = 0.03 for the calibration parameter θ in (4.18).
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parameter symbol Zanella [1] Simmons [2]

sequence length K 20 20
input size dim(x[i]) 1 0
fpre input size dim(z[i− k]) 2 1
fpre hidden layers - [16, 32] [16, 32]
fLSTM hidden size dim(hk[i]) = dim(ck[i]) 32 32
fLSTM number of layers - 2 2
fpost input size dim(hK [i]) 64 64
fpost hidden layers - [32] [32]

Table B.1 RSS prediction neural networks hyperparameters
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C.1 Proof that VB-CRC achieves target risk

In this appendix, we prove condition (6.13) for VB-CRC. While this result was originally
shown in [91], here we provide an equivelant proof that is more convenient to support the
proof of Theorem 1 in Appendix C.3. We start by bounding the VB-CRC threshold (6.11)
using the following steps

λVB(Dval|Dtr) = inf
λ

λ
∣∣∣∣∣∣ 1
Nval+1

(
Nval∑
i=1

ℓ
(
yval[i],Γλ(xval[i]|Dtr)

)
+B

)
≤ α


≥ inf

λ

λ
∣∣∣∣∣∣ 1
Nval+1

(
Nval∑
i=1

ℓ
(
yval[i],Γλ(xval[i]|Dtr)

)
+ ℓ

(
y,Γλ(x|Dtr)

))
≤ α


=: λ′(Dval, x, y|Dtr), (C.1)

where the inequality in (C.1) follows from (6.4). The ground-truth risk averaged over test
example (x, y) and validation set Dval is upper bounded as

EDDDval,x,y∼p0(Dval,x,y)

[
ℓ
(
y,ΓλVB(DDDval|Dtr)(x|Dtr)

)]
≤ EDDDval,x,y∼p0(Dval,x,y)

[
ℓ
(
y,Γλ′(DDDval,x,y|Dtr)(x|Dtr)

)]
(C.2a)

≤ α, (C.2b)
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where the first inequality (C.2a) follows the nesting property (6.8) given inequality (C.1).
The second inequality (C.2b) is an application of the following lemma, whose proof is
deferred to Appendix C.2.

Lemma 2. Let v1, . . . ,vM be random variables with an exchangeable joint distribution
such that the equation P

(
1
M

∑M
i=1 vi ≤ α

)
= 1 holds. Then, we have the inequality

Ev1:M ∼p0(v1:M )[vm] ≤ α for all m ∈ {1, ...,M}.

To apply Lemma 2 in (C.2b), we define M = Nval + 1 variables by

vi =

ℓ
(
yval[i],Γλ′(DDDval,x,y|Dtr)(xval[i]|Dtr)

)
i = 1, . . . , Nval

ℓ
(
y,Γλ′(DDDval,x,y|Dtr)(x|Dtr) i = Nval + 1,

(C.3)

whose empirical average is, by (C.1), no greater than α. Furthermore, to comply with the
technical conditions of Lemma 2, variables v1:M need to be exchangeable. This is justified
by the following lemma, which is a corollary of [234, Theorem 3] or [235, Theorem 4].

Lemma 3. Let w1, . . . ,wM ∈W be a collection of exchangeable random vectors, f : W → R
be a fixed mapping, and g : WM → R be a fixed mapping that is permutation-invariant, i.e.,
oblivious to the ordering of its M input values. Then, the M random variables formed as
v1 = f(w1, g(w1:M)), . . . ,vM = f(wM , g(w1:M)) are exchangeable.

Lemma 3 implies the exchangeability of variables (C.3) by defining the Nval + 1 ex-
changeable vectors as

wi =

zval[i] i = 1, . . . , Nval

(x,y) i = Nval + 1;
(C.4)

the permutation invariant function is set as g(·) = λ′(·|Dtr); the fixed mapping is

vi = f
(
wi = (xi,yi), g(w1:M)

)
= ℓ(yi,Γg(w1:M )(xi|Dtr)); (C.5)

and we focus on the average risk of the last term, i.e., m = M = Nval + 1. This completes
the proof of (6.13).

C.2 Proof of Lemma 2

In this appendix, we prove Lemma 2. To start, define a bag u = Hu1, . . . , uMI of M elements
u1 . . . , uM as a multiset, i.e., as an unordered list with allowed repetitions [17]. By definition,
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two bags u and v are equal if they contain the same elements, irrespective of the ordering of
their identical items, which we write as u bag= v. One can form a bag out of a random vector
v1, . . . ,vM ∼ p0(v1:M) by discarding the order of the items. Accordingly, the distribution
of the bag u is given by

p0(u) = P
(
Hv1, ...,vMI bag= Hu1, . . . , uMI

)
=

∑
π∈ΠM

P
(
v1 = uπ(1), ...,vM = uπ(M)

)
, (C.6)

where the sum is over the set ΠM of all M ! permutations. For example, three Bernoulli
variables v1,v2,v3 ∼i.i.d.

Bern(q) with parameter q ∈ [0, 1] can constitute four different bags.

In fact, bag u bag= Hv1,v2,v3I equals H0, 0, 0I with probability (w.p.) (1− q)3, H0, 0, 1I w.p.
3(1− q)2q, H0, 1, 1I w.p. 3(1− q)q2, and H1, 1, 1I w.p. q3.

With these definitions, we obtain the following chain of inequalities

Ev1:M ∼p0(v1:M )[vm] = Eu∼p0(u)

[
Ev1:M ∼p0(v1:M |u)

[
vm
∣∣∣∣Hv1, ...,vMI bag= u

]]
(C.7a)

= Eu∼p0(u)

[
1
M

M∑
l=1

ul
]

(C.7b)

= Ev1:M ∼p0(v1:M )

[
Eu∼p0(u|v1:M )

[
1
M

M∑
l=1

ul
∣∣∣∣u bag= Hv1, . . . ,vMI

]]
(C.7c)

= Ev1:M ∼p0(v1:M )

[
Eu∼p0(u|v1:M )

[
1
M

M∑
l=1

vl
∣∣∣∣u bag= Hv1, . . . ,vMI

]]
(C.7d)

= Ev1:M ∼p0(v1:M )

[
1
M

M∑
l=1

vl
]

(C.7e)

≤ α. (C.7f)

The inequalities of (C.7) are justified as follows: (C.7a) and (C.7c) stem from the law of
iterated expectations over all possible bags of M items; (C.7b) arises from the fact that
each item in the bag has an equal likelihood to be the realization of the m-th variable vm; is
again the law of iterated expectation with the reintroduction of the random vector; (C.7d)
stems from the fact that if two bags have the same items, their sum is identical; (C.7e)
leverages the fact that the bag given its random variables is a deterministically specified;
and lastly, (C.7f) is by the assumption in Lemma 2. This concludes the proof of Lemma 2.
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C.3 Proof of Theorem 1

To prove Theorem 1, let us introduced an augmented data set, such that the last, (K+1)-th,
fold Dte = DK+1 is composed of N/K arbitrary test points

D̃ =
{
D1,D2, . . . ,DK︸ ︷︷ ︸

=D

,DK+1︸ ︷︷ ︸
=Dte

}
(C.8)

with the test point (x, y) included as the first point in the test set, i.e., (x, y) = (xte[1], yte[1]) =
(xK+1[1], yK+1[1]). By construction, all N +N/K points in the augmented data set D̃ are
exchangeable and distributed according to joint distribution p0(D̃) = p0(D,Dte). We denote
the elements of the augmented set D̃ in (C.8) as

(x̃k[j], ỹk[j]) = (xk[j], yk[j]) for k ∈ {1, . . . K} (C.9a)
(x̃K+1[j], ỹK+1[j]) = (xte[j], yte[j]). (C.9b)

Note that the augmented set D̃ in (C.8) is different than the augmented set using dummy
points Daug (6.17). For a pair of folds indices k′, k ∈ {1, . . . , K + 1} with k ≠ k′, we also
define the augmented leave-two-folds-out (L2O) set as the augmented set without the two
indexed folds, i.e.,

D̃−(k′,k) = D̃ \ {Dk′ ,Dk}. (C.10)

As a special case, when one of the indices points to the (K + 1)-th fold, which is the test
fold, the L2O reduces to the leave-one-out of the available data set D̃−(K+1,k) = D−k. For
every fold within the augmented data set D̃ (C.8), we evaluate the average L2O loss (C.10),
minimized over the second fold index as

R̂CV
L2O(λ|D̃) = 1

K+1

K+1∑
k=1

K
N

N/K∑
j=1

min
k′∈{1,...,K+1}\{k}

{
ℓ
(
ỹk[j],Γλ(x̃k[j]|D̃−(k,k′))

)}
. (C.11)

Finally, we define the L2O threshold as the minimal threshold value for which the estimated
average L2O risk (C.11) is no larger than α, i.e.,

λCV
L2O(D̃) = inf

λ

{
λ

∣∣∣∣R̂CV
L2O(λ|D̃) ≤ α

}
. (C.12)
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Corollary 4. The L2O threshold λCV
L2O(D̃) in (C.12) is fold-permutation-invariant, i.e., for

any of the (K + 1)! possible fold-permutation mappings π, we have

λCV
L2O

(
D̃
)

= λCV
L2O

(
{D̃k}K+1

k=1

)
= λCV

L2O

(
{D̃π[k]}K+1

k=1

)
. (C.13)

This is due to the commutative property of the outer fold-summation and of the inner,
within-fold, summation in (C.11).

Lemma 5. The L2O threshold λCV
L2O(D̃) in (C.12) lower bounds the K-CV-CRC threshold

(6.18)
λCV

L2O(D̃) ≤ λCV(D). (C.14)

The proof of Lemma 5 is given in Appendix C.4.
We now define K+1 random variables v1, . . . ,vK+1, whose randomness stems from their

dependence on the augmented data set D̃DD. Each k-th random variable vk is the minimal
leave-two-fold-out empirical risk averaged over the N/K examples in the validation fold
DDDk, i.e.,

vk = K
N

N/K∑
j=1

min
k′∈{1,...,K+1}\{k}

{
ℓ
(
ỹk[j],ΓλCV

L2O(D̃̃D̃D)(x̃k[j]|D̃̃D̃D−(k′,k))
)}

for k = 1, . . . , K + 1.

(C.15)
The random variables

{
v1, . . . ,vK+1

}
=
{
v1(λ, D̃̃D̃D), . . . , vK+1(λ, D̃̃D̃D)

}
are exchangeable for

any fixed threshold due to the exchangeability of the folds in the augmented data set.
Therefore, by Lemma 2, we have the inequality

ED̃̃D̃D∼p0(D̃)

[
vK+1(λCV

L2O(D̃̃D̃D), D̃̃D̃D)
]
≤ α. (C.16)

We are now ready to follow the steps

EDDD,x,y∼p0(D,x,y)

[
ℓ
(

y,ΓCV(x|DDD)
)]

= EDDD,x,y∼p0(D,x,y)

[
ℓ
(
y,

K⋃
k′=1

ΓλCV(DDD)(x|DDD−k′)
)]

(C.17a)

≤ EDDD,x,y∼p0(D,x,y)

[
min

k′∈{1,...,K}

{
ℓ
(
y,ΓλCV(DDD)(x|DDD−k′)

)}]
(C.17b)

= EDDD,DDDte∼p0(D,Dte)

[
min

k′∈{1,...,K}

{
ℓ
(
yte[1],ΓλCV(DDD)(xte[1]|DDD−k′)

)}]
(C.17c)

= EDDD,DDDte∼p0(D,Dte)

[
K
N

N/K∑
j=1

min
k′∈{1,...,K}

{
ℓ
(
yte[j],ΓλCV(DDD)(xte[j]|DDD−k′)

)}
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(C.17d)

= ED̃̃D̃D∼p0(D̃)

[
min

k′∈{1,...,K}

{
K
N

N/K∑
j=1

ℓ
(
ỹK+1[j],ΓλCV(DDD)(x̃K+1[j]|D̃̃D̃D−(k′,K+1))

)}]
(C.17e)

≤ ED̃̃D̃D∼p0(D̃)

[
min

k′∈{1,...,K}

{
K
N

N/K∑
j=1

ℓ
(
ỹK+1[j],ΓλCV

L2O(D̃̃D̃D)(x̃K+1[j]|D̃̃D̃D−(k′,K+1))
)}]

(C.17f)
≤ α, (C.17g)

where (C.17a) is a consequence of (6.15), which is equivalent to ΓCV
λ (x|D) = ⋃K

k=1 Γλ(x|D−k);
inequality (C.17b) is due to the nesting property (6.5) applied on a particular left-fold-out
k′ which is a subset of the union of all left-fold-out sets; (C.17d) leverages exchangeability as
all test points have the same expected loss; (C.17e) uses the augmented data set notations
(C.9b); inequality (C.17f) is an outcome of the nesting properties (6.8) and (6.5) with
inequality (C.14); in inequality (C.17g), we have used (C.16), alongside Corollary 4, stating
that the L2O threshold is fold-invariant. This completes the proof of Theorem 1.

C.4 Proof of Lemma 5

The proof of Lemma 5 stated in Appendix C.3 follows the steps

λCV
L2O(D̃) = inf
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ỹk[j],Γλ(x̃k[j]|D̃−(k,k′))

)}
(C.18b)

+K
N

N/K∑
j=1

min
k′∈{1,...,K}

{
ℓ
(
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= λCV(D), (C.18f)

where (C.18a) stems from the definition in (C.12); (C.18b) is obtained by decomposing the
first sum into its first K summation terms, and by listing the last term, the (K + 1)-th, on
its own; and (C.18f) follows the definition in (6.18). This completes the proof of Lemma 5.
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