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Abstract

We focus on explaining image classifiers, taking the work of
Mothilal et al. (2021) (MMTS) as our point of departure.
We observe that, although MMTS claim to be using the def-
inition of explanation proposed by Halpern (2016), they do
not quite do so. Roughly speaking, Halpern’s definition has
a necessity clause and a sufficiency clause. MMTS replace
the necessity clause by a requirement that, as we show, im-
plies it. Halpern’s definition also allows agents to restrict the
set of options considered. While these difference may seem
minor, as we show, they can have a nontrivial impact on ex-
planations. We also show that, essentially without change,
Halpern’s definition can handle two issues that have proved
difficult for other approaches: explanations of absence (when,
for example, an image classifier for tumors outputs “no tu-
mor”) and explanations of rare events (such as tumors).

1 Introduction

Black-box Al systems and, in particular Deep Neural Net-
works (DNNG5), are now a primary building block of many
computer vision systems. DNNs are complex non-linear
functions with algorithmically generated coefficients. In
contrast to traditional image-processing pipelines, it is dif-
ficult to retrace how the pixel data are interpreted by the lay-
ers of a DNN. This “black box” nature of DNNs creates a
demand for explanations. A good explanation should an-
swer the question “Why did the neural network classify the
input the way it did?” By doing so, it can increase a user’s
confidence in the result. Explanations are also useful for
determining whether the system is working well; if the ex-
planation does not make sense, it may indicate that there is
a problem with the system.

Unfortunately, it is not clear how to define what an ex-
planation is, let alone what a good explanation is. There
have been a number of definitions of explanation given by
researchers in various fields, particularly computer science
(Chajewska and Halpern 1997; Halpern 2016; Halpern and
Pearl 2005b; Pearl 1988) and philosophy (Gérdenfors 1988;
Hempel 1965; Salmon 1970; Salmon 1989; Woodward
2014), and a number of attempts to provide explanations
for the output of DNNs (Ribeiro, Singh, and Guestrin 2016;
Selvaraju et al. 2017; Lundberg and Lee 2017; Sun et al.
2020; Chockler, Kroening, and Sun 2021) ((Molnar 2022)
provides an overview). Here we focus on one particular def-

inition of explanation, that was given by Halpern (2016),
which is in turn based on a definition due to Halpern and
Pearl (2005b). Mothilal et al. (2021) (MMTS from now
on) already showed that this definition could be usefully ap-
plied to better understand and evaluate what MMTS called
attribution-based explanation approaches, such as LIME
(Ribeiro, Singh, and Guestrin 2016) and SHAP (Lundberg
and Lee 2017), which provide a score or ranking over fea-
tures, conveying the (relative) importance of each feature to
the model’s output, and contrast them with what they called
counterfactual-based approaches, such as DICE (Mothilal,
Tan, and Sharma 2020) and that of Wachter et al. (2017),
which generate examples that yield a different model output
with minimum changes in the input features.

In this paper, we take MMTS as our point of departure
and focus on explaining image classifiers. We first observe
that, although MMTS claim to be using Halpern’s defini-
tion, they do not quite do so. Roughly speaking, Halpern’s
definition (which we discuss in detail in Section 2) has a
necessity clause and a sufficiency clause. MMTS replace
the necessity clause by a requirement that, as we show, im-
plies it. Halpern’s definition also allows agents to restrict
the set of options considered. While these difference may
seem minor, as we show, they can have a nontrivial im-
pact on explanations. We also show that, essentially with-
out change, Halpern’s definition can handle two issues that
have proved difficult for other approaches: explanations of
absence (when, for example, an classifier for tumors outputs
“no tumor”) and explanations of rare events (again, a clas-
sifier for tumors can be viewed as an example; a tumor is a
relatively rare event). The upshot of this discussion is that,
while the analysis of MMTS shows that a simplification of
Halpern’s definition can go a long way to helping us under-
stand notions of explanation used in the literature, we can
go much further by using Halpern’s actual definition, while
still retaining the benefits of the MMTS analysis. MMTS
conduct an empirical evaluation of the main approaches to
causal explanations. Their results apply essentially without
change to this paper, apart from the new work discussed in
Section 4.

We note that the problem of actual causality, and
hence also the problem of computing explanations, are in-
tractable (Halpern 2016). For image classifiers, which are
the topic of this paper, the models are large, so brute-



force computation is infeasible for all but very small im-
ages. However, efficient approximation algorithms compute
explanations that are very close to the precise ones for all
but very convoluted inputs; we mentioned these tools above
(see also the analysis in MMTS). Of particular interest is
the work of Chockler et al. 2021, who compute an efficient
approximation of an explanation, treating the classifier as a
black-box causal model. We thus believe that, in practice,
complexity considerations will not be an obstacle to using
these tools.

The rest of the paper is organized as follows: In Section 2,
we review the relevant definitions of causal models and ex-
planations; in Section 3, we discuss explanations of image
classifiers and show their relation to explanations in actual
causality; and in Section 4, we discuss explanations of ab-
sence and of rare events.

2 Causal Models and Relevant Definitions

In this section, we review the definition of causal models
introduced by Halpern and Pearl (2005a) and relevant defi-
nitions of causes and explanations given by Halpern (2016).
The material in this section is largely taken from (Halpern
2016).

We assume that the world is described in terms of vari-
ables and their values. Some variables may have a causal
influence on others. This influence is modeled by a set of
structural equations. It is conceptually useful to split the
variables into two sets: the exogenous variables, whose val-
ues are determined by factors outside the model, and the en-
dogenous variables, whose values are ultimately determined
by the exogenous variables. The structural equations de-
scribe how these values are determined.

Formally, a causal model M is a pair (S, F), where S is a
signature, which explicitly lists the endogenous and exoge-
nous variables and characterizes their possible values, and
F defines a set of (modifiable) structural equations, relat-
ing the values of the variables. A signature S is a tuple
(U,V,R), where U is a set of exogenous variables, V is
a set of endogenous variables, and R associates with ev-
ery variable Y € U UV a nonempty set R(Y") of pos-
sible values for Y (i.e., the set of values over which Y
ranges). For simplicity, we assume here that V is finite, as is
R(Y) for every endogenous variable Y € V. F associates
with each endogenous variable X € V a function denoted
Fx (e, Fx = .F(X)) such that Fx : (XUEL{R(U)) X
(Xyev—ix3R(Y)) = R(X). This mathematical notation
just makes precise the fact that F'x determines the value of
X, given the values of all the other variables in &/ U V. If
there is one exogenous variable U and three endogenous
variables, X, Y, and Z, then F'x defines the values of X
in terms of the values of Y, Z, and U. For example, we
might have Fx (u,y,2) = u + y, which is usually written
as X =U+Y. Thus,if Y =3and U = 2, then X = 5,
regardless of how Z is set.!

'The fact that X is assigned U + Y (i.e., the value of X is the
sum of the values of U and Y') does not imply that Y is assigned
X — U thatis, Fy (U, X, Z) = X — U does not necessarily hold.

The structural equations define what happens in the pres-
ence of external interventions. Setting the value of some
variable X to x in a causal model M = (S, F) results in a
new causal model, denoted M x .., which is identical to M,
except that the equation for X in F is replaced by X = z.

We can also consider probabilistic causal models; these
are pairs (M, Pr), where M is a causal model and Pr is a
probability on the contexts in M.

The dependencies between variables in a causal model
M = (U,V,R),F) can be described using a causal net-
work (or causal graph), whose nodes are labeled by the en-
dogenous and exogenous variables in M, with one node for
each variable in &/ U V. The roots of the graph are (labeled
by) the exogenous variables. There is a directed edge from
variable X to Y if Y depends on X; this is the case if there
is some setting of all the variables in ¢/ UV other than X and
Y such that varying the value of X in that setting results in
a variation in the value of Y'; that is, there is a setting Z’ of
the variables other than X and Y and values = and 2’ of X
such that Fy (z, 2) # Fy (2, 2).

A causal model M is recursive (or acyclic) if its causal
graph is acyclic. It should be clear that if M is an acyclic
causal model, then given a context, that is, a setting  for the
exogenous variables in U, the values of all the other vari-
ables are determined (i.e., there is a unique solution to all
the equations). In this paper, following the literature, we
restrict to recursive models.

We call a pair (M, @) consisting of a causal model M and
a context i a (causal) setting. A causal formula 1 is true or
false in a setting. We write (M, @) = 4 if the causal formula
1 is true in the setting (M, @). The = relation is defined in-
ductively. (M, %) | X = =z if the variable X has value
z in the unique (since we are dealing with acyclic models)
solution to the equations in M in context @ (i.e., the unique
vector of values for the exogenous variables that simultane-
ously satisfies all equations in M with the variables in I/ set

to @). Finally, (M, i) |= [V « flg if (My_, @) = ¢,
where Mg i is the causal model that is identical to M, ex-

cept that the equations for variables in Y in F are replaced
by Y = yforeachY € Y and its corresponding value
yey.

A standard use of causal models is to define actual cau-
sation: that is, what it means for some particular event
that occurred to cause another particular event. There have
been a number of definitions of actual causation given for
acyclic models (e.g., (Beckers 2021; Glymour and Wim-
berly 2007; Hall 2007; Halpern and Pearl 2005a; Halpern
2016; Hitchcock 2001; Hitchcock 2007; Weslake 2015;
Woodward 2003)). In this paper, we focus on what has be-
come known as the modified Halpern-Pearl definition and
some related definitions introduced by Halpern (2016). We
briefly review the relevant definitions below (see (Halpern
2016) for more intuition and motivation).

The events that can be causes are arbitrary conjunctions of
primitive events (formulas of the form X = x); the events
that can be caused are arbitrary Boolean combinations of
primitive events.



Definition 1. [Actual cause] X = 7 is an actual cause of ¢
in (M, @) if the following three conditions hold:

ACL. (M,%) |= (X = &) and (M, @) = .

AC2. There is a a setting T of the variables in X, a (pos-
sibly empty) set W of variables inV — X', and a setting
W of the variables in W such that (M, @) = W = & and
(M, %) = [X « &, W « @]—, and moreover

AC3. X is minimal; there is no strict subset X' of X such
that X' = & can replace X = &' in AC2, where T is
the restriction of T’ to the variables in X'.

AC1 just says that X = & cannot be considered a cause
of ¢ unless both X = Zand o actually holds. AC3 is a
minimality condition, which says that a cause has no irrele-
vant conjuncts. AC2 extends the standard but-for condition
(X = & is a cause of ¢ if, had X been ', o would have
been false) by allowing us to apply it Whlle keeping some
variables fixed to the value that they had in the actual setting
(M, @). In the special case that W =0, we get the but-for
definition.

To define explanation, we need the notion of sufficient
cause in addition to that of actual cause.

Definition 2. [Sufficient cause] X = 7 is a sufficient cause
of ¢ in (M, @) if the following four conditions hold:

SC1. (M, @) = (X = &) and (M, ) |= ¢.

SC2. Some conjunct of)z" = Z is part of an actual cause of
pin (M @). More precisely, there exists a conjunct X =

x of X = 7 and another (possibly empty) conjunction

Y = iy such that X = x N'Y = ¢ is an actual cause of ¢
in (M, Q).

SC3. (M, @) |= [X = & for all contexts @' € R(U).

SC4. X is minimal; there is no strict subset X' of X such
that X' = T’ satisfies conditions SC1, SC2, and SC3,
where & is the restriction of T to the variables in X'

Note that this definition of sufficient cause (which is taken
from (Halpern 2016)) is quite different from that in (Halpern
and Pearl 2005a). Like the necessity clause used by MMTS,
the definition of (Halpern and Pearl 2005a) requires only that
some subset of X = # be an actual cause of , without
allowing the subset to be extended by another conjunction
Y = 4/ (and uses a different definition of actual cause—
that of (Halpern and Pearl 2005b)), but (somewhat in the
spirit of SC3) requires that this necessity condition hold in
all contexts. It has no exact analogue of SC3 at all. An
example might help clarify the definition.

Suppose that we have a dry forest and three arsonists.
There are three contexts: in wuj, it takes just one dropped
match to burn the forest down, but arsonist 1 and arsonist
2 drop matches; in us, it takes just one dropped match to
burn the forest down, and all three arsonists drop a match;
finally, in w3, it takes two dropped matches to burn the for-
est down, and arsonists 1 and 3 drop matches. To model this,
we have binary variables M L1, M Lo, and M L3, denoting

which arsonist drops a match, and F'B denoting, whether the
forest burns down. (Note that we use the structural equation
for F'B to capture these differences; for example, if x; is
the value of M L, then Fpp (1, z2,23,ur) = 1iff at least
one of x1, xo, and x3 is 1, and Frp(z1,z2,23,u3) = 1
iff at least two of z1, xo, and xz3 are 1.) We claim that
MLy = 1N MLy = 1 is a sufficient cause of FB =1
in (M,uy) and (M, uz), but not (M, us). To see that it is
not a sufficient cause in (M, us), note that SC1 does not
hold: arsonist 2 does not drop a match. It is also easy to
see that (M,w;) = [ML; = 1A MLy = 1)(FB = 1) for
1 =1,2,3,50SC3 holds. Now in (M, u1), ML1AMLy =1
is an actual cause of F'B = 1 (since the values of both M L,
and M Lo have to be changed in order to change the value of
FB). Similarly, in (M, us), ML1 NANMLy =1ANML3 =1
is an actual cause of F'B = 1 (so we get SC2 by taking
Y = ML3). Thus, SC2 holds in both (M, u;) and (M, us).

While SC3 is typically taken to be the core of the suffi-
ciency requirement, to show causality, we also need SC2,
since it requires that —¢ hold for some setting of the vari-
ables. We might hope that if there were a setting where ¢
was false, SC3 would imply SC2. As the following example
shows, this is not the case in general.

Example 1. Consider a causal model M with three binary
variables A, B, and C, and the structural equations A = B
and C = AV (A A B). Let i be a context in which all
variables are set to 1, and let p be the formula C =

In context i, A = 1 satisfies SC1, SC3, and SC4 for .
There is also some setting of the variables for which C = 0 :
(M,d) = [A + 0,B + 0](C = 0). However, A = 1 does
not satisfy SC2. Indeed, A = 1 by itself is not an actual
cause of C = 1, as B=1 holds as well, nor is A = 1 part
of an actual cause, as B = 1 is already an actual cause of
C=1

On the other hand, if there are no dependencies between
the variables and some other assumptions made by MMTS
in their analysis of image classifiers hold, then, roughly
speaking, SC1, SC3, and SC4 do imply SC2. To make this
precise, we need two definitions.

Definition 3. The variables in a set X of endogenous vari-
ables are causally independent in a causal model M if, for

all contexts i, all strict subsets Y of X , all assignments
GtoY, andall Z € X —Y, (M,@) = Z = z iff
(M@ = [V §1(Z = =)

Intuitively, the variables in X are causally independent if
setting the values of some subset of the variables in X has
no impact on the values of the other variables in X.

Definition 4. X is determined by the context if for each
setting T of X, there is a context @z such that (M, iiz) =
X ==

Theorem 1. Given a set X' of endogenous variables in
a causal model M such that (a) the variables in X' are
causally independent, (b) X' is determined by the context,
(c) X' includes all the parents of the variables in ¢, (d) there
is some setting &' of the variables in X' that makes o false in



context i (i.e., (M, @) = [X' + &)~p), and (¢) X C X,
then X = T is a sufficient cause of p in (M, Q) iff it satisfies
SC1, SC3, and SC4 (i.e., SC2 follows).

Proof. By assumption, there is some setting Z’ such that

X’ that makes ¢ false in context @ (i.e., (M, @) = [X' «
Z']—¢). Choose &’ to be such a setting that differs minimally
from the values that variables get in u; that is, the set of

variables Y € X such that (M, @) = Y = y, and the value
of Y in & is different from Y is minimal. Let Y be the set of
variables in this minimal set. Let i@z be a context such that
(M, z) = X' = #; by assumption, such a context exists.
Since X' includes all the parents of the variables in ¢, we
must have (M, @z) = [X' « &]—p. Since (M, iz) =
X'« &, it follows that (M, @iz |= .

Y must contain a variable in X . For suppose not. By SC1,
(M, @) = X = &, soif Y does not contain a variable in X,
the values that the variables in X get in the setting X' = &’
is the same as their value in (M, @). Thus, (M, @z ) ): X =
Z. By SC3, (M,iz) = [X = e, from which it would
follow that (M, @z ) = , a contradiction.

Let i be the restriction of &’ to the variables in Y, and
let i/ be the values of the variables in Y in (M, @), that is
(M,@) = Y = §. We claim that Y = 7 is a cause of
¢ in (M, @). By assumption, (M, %) = Y = i; by SCI,
(M i) E . Thus, AC1 holds. By construction, (M, 1) E
== -y ' |-, so AC2 holds (with W = 0)). Finally, suppose
that W is such that (M, @) = W = 1 and for some subset
Y’ of Y, we have that (M, @) |= [Y' « ¢/, W + @],
where ¢ is the restriction of ¢ to the variables inY’. We

can assume that W is a subset of X' , since X’ includes all
the parents of the variables in . By causal independence,

(M, @) = [Y' « 7)(W = &). Thus, (M, @) = [Y'
7']-¢. But this contradicts the minimality of Y. It follows
that AC3 holds.

We have shown that ¥ = i is a cause of ¢ in (M, ).
Since Y includes a variable in X , it follows that some con-
junct of X =7is part of a cause of ¢ in (M, ), so SC2
holds, as desired.

The notion of explanation builds on the notion of suffi-
cient causality, and is relative to a set of contexts.

Definition 5. [Explanation] X = Zisan explanation of ¢
relative to a set IC of contexts in a causal model M if the
following conditions hold:

EXl. X = Zisa sufficient cause of o in all contexts in I
satisfying (X = Z) A ¢. More precisely,

e Ifi e Kand (M,4) = ()? = Z) A i, then there exists
a conjunct X = x ofX = Zand a (posszbly empty)

conjunction Y = y such that X = x A Y = i is an
actual cause of ¢ in (M, @). (This is SC2 applied to all

contexts it € K where (X = &) A ¢ holds.)

o (M, @) = [X = Z|g for all contexts @'
SC3 restricted to the contexts in K.)

EX2. X is minimal; there is no strict subset X' of X such
that X' = 7' satisfies EX1, where T is the restriction of
T to the variables in X'. (This is SC4).

EX3. (M,u) = X = Z A @ for some u € K.

Note that this definition of explanation (which is taken
from (Halpern 2016)) is quite different from that in (Halpern
and Pearl 2005a). What is called EX2 in (Halpern and Pearl
2005a) is actually an analogue of the first part of EX1 here;
although it is called “sufficient causality”, it is closer to the
necessity condition. But, like the necessity clause used by
MMTS, it requires only that some subset of X = Zbeanac-
tual cause of ¢ (without allowing the subset to be extended
by another conjunction Y = ) (and uses a different defi-
nition of actual cause—that of (Halpern and Pearl 2005b)).
The definition of (Halpern and Pearl 2005a) has no analogue
to the second part of EX1 here.

Of course, if the assumptions of Theorem 1 hold, then we
can drop the requirement that the first part of EX1 holds.
(Note that if the assumptions of Theorem 1 hold for some
context, they hold for all contexts; in particular, assumption
(d) holds, since X’ includes all the parents of the variables
in .) Although the changes made by MMTS to Halpern’s
definition seem minor, they are enough to prevent Theorem 1
from holding. We show this in Example 3 in the next section,
after we have discussed the assumptions made by MMTS in
more detail.

The requirement that the first part of condition EX1 as
given here holds in all contexts in /C that satisfy X=7A %)
and that the second part holds in all contexts in K is quite
strong, and often does not hold in practice. We are often
willing to accept X = Zasan explanation if these require-
ments hold with high probability. Given a set K of contexts
in a causal model M, let ICy, consist of all contexts @ in K

such that (M, @) k= 1, and let K(X = &, ¢, SC2) consist

of all contexts 4 € /C that satisfy X =ZA  and the first
condition in EX1 (i.e., the analogue of SC2).

€ K. (This is

Definition 6. [Partial Explanation] X =Zisa partial ex-
planation of ¢ with goodness («, ) relative to K in a prob-
abilistic causal model (M, Pr) if

EXI'. a < Pr(K(X = Z,¢,5C2) | Kg_.,
PT(K[X:f]w)'

EX2'. X is minimal; there is no strict subset X' of)? such
that o < Pr(K(X' = &,¢,5C2) | K _zn,) and

B8 < Pr(IC[X,:f,]@), where x' is the restriction of T to

the variables in X.

EX3. (M,u) = X = Z A ¢ for some u € K.

Theorem 1 has no obvious counterpart for partial expla-
nations. The problem is that the conjuncts in EX1’ can be
satisfied by different contexts in the set K, while still satis-
fying the probabilistic constraint. (The theorem would hold

with « = g if both conjuncts were satisfied by the same
subset of .)

) and B <

o\



3 Using Causality to Explain Image
Classification

Following MMTS, we view an image classifier (a neural
network) as a probabilistic causal model. MMTS make a
number of additional assumptions in their analysis. Specif-
ically, MMTS take the endogenous variables to be the set

V of pixels that the image classifier gets as input, together

with an output variable that we call O. The variable V; € 1%
describes the color and intensity of pixel ¢; its value is de-
termined by the exogenous variables. The equation for O
determines the output of the neural network as a function
of the pixel values. Thus, the causal network has depth 2,
with the exogenous variables determining the feature vari-
ables, and the feature variables determining the output vari-
able. Following MMTS, we assume that there are no de-
pendencies between the feature variables. This is a non-
trivial assumption and, in general, is not true in practice,
where we expect the color and intensity of a pixel to be
causally related to color and intensity of other pixels: if a
group of pixels captures, say, a cat’s ear, then a group of
pixels below it should capture a cat’s eye. That said, assum-
ing independence greatly simplifies explanation extraction,
hence we adopt the assumption. Moreover, for each setting
¥ of the feature variables, there is a setting of the exogenous

variables such that V = #. That i is, the variables in V are
causally independent and determined by the context, in the
sense of Theorem 1. Moreover, all the parents of the out-

put variable O are contained in V. So for any explanation
of the output involving the pixels, conditions (a), (b), (c),
and (e) of Theorem 1 hold if we take ¢ to be some setting
of O. While a neural network often outputs several labels,
MMTS assume that the output is unique (and a determinis-
tic function of the pixel values). Given these assumptions,
the probability on contexts directly corresponds to the prob-
ability on seeing various images (which the neural network
presumably learns during training).

Although they claimed to be using Halpern’s definition,
the definition of (partial) explanation given in MMTS dif-
fers from that of Halpern in three respects. The first is that,
rather than requiring that a conjunct of the explanation can
be extended to an actual cause (i.e., the first part of EX1),
they require that in each context, some subset of the expla-
nation be an actual cause. Second, they do not use Halpern’s
definition of actual cause; in particular, in their analogue of
AC2, they do not require that W = @ be true in the context
being considered. This appears to be an oversight on their
part, and is mitigated by the fact that they focus on but-for
causality (for which W = 0, as we observed, so that the
requirement that W = @ in the context being considered
has no bite). Finally, they take K = R(U). Since we have
identified contexts and images, this amounts to considering
all images possible. As we shall see in Section 4, there are
some benefits in allowing the greater generality of having
K be an arbitrary subset of R(U). We now show that the
conditions considered by MMTS suffice to give Halpern’s
notion.

Theorem 2. For the causal model (M, Pr) corresponding to

the image classifier, X =~Fisa partial explanation of O =
o with goodness («, 8), where a, 8 > 0, if the following
conditions hold:

* B< Pr(Kig_so=0)

o there is no strict subset X' of X such that b8 <
PT(IC[X":i’](O:o)])’ where 1’ is the restriction of T to
the variables in X';

ca < Pr({@: IW(M,0) = [X =

X=FAO=0/"
Proof. The first condition in the theorem clearly guaran-

tees that the second part of EX1’ holds; the second condition
guarantees that EX2’ holds. The fact that 8 > 0 means that
for some @, we must have (M, @) |= [X « ©](O = o). Let
4’ be a context that gives the pixels in X the value 7 and
agrees with @ on the pixels in Y. Clearly (M, @) = X =
Z A O = o0, so EX3' holds.

It remains to show that the first part of EX1’ holds. Sup-
pose that 4 is a context for which there exists a setting &’
of the pixels in X such that (M, @) = [X = &](0O # o).
(Since a > 0, there must exist such a context.) Let X'bea
minimal subset of X for which there exists a setting Z such
that (M, @) = [X' = @')(O # o). Itis easy to see that
X' = # is a cause of O = o, where T* is the restriction of

Zto X'. Thus, the first part of EX1’ holds for . The desired
result follows. I

O # o))} |

The following example illustrates Theorem 2.

Example 2. Consider an image, defined by a context 1y,
that is classified as “cat” by the image classifier. Let X be
a set of pixels corresponding to the cat’s head, with their
values T determined by u. Intuitively, X = Zis a small
picture of a cat’s head. In the absence of other information,
we assume a uniform probability distribution over all im-
ages. Then (3 is bounded by the fraction of the images that
would be classified as “cat” if the cat’s head is superim-
posed on top of the image. If X is small, this might happen
only with the original image, in which case 3 is going to be
quite small. If X occupies a large area of the image, super-
imposing it on top of another image is more likely to change
the classification to “cat”, hence 3 would be higher. The
probability a is bounded by the fraction of images in which
changing the values of X to @ leads to a change in classi-
fication. As K contains all images, in particular it contains
images that are classified as cats, but would not be classified
as cats if not for the subset X=7z (e.g., only a cat’s head
is visible, and the rest is hidden in the image). For those im-
ages, setting the values of Xtod changes the classification
to “not cat”.

We note that it is crucial that K contains all images, oth-
erwise it is possible that there is no U for which setting X
to ¥ leads to a “not cat” classification. Indeed, consider,
for example, a set of images of cats where, in all images,
the whole cat is clearly visible. Let iy depict one such im-
age, and assume that the cat in this image is quite small.



It might be that X, the cat’s head, while for a human a per-
fectly plausible explanation of the classification, is too small
to lead to a change in the classification for any image in K if
these pixels’ values are changed. Note that it would not even
lead to a change in the classification of the original image
iy, as it is quite possible that the image would be classified
as “cat” due to its body shape, even if its head were not
visible. Hence, o = 0.

How reasonable are the assumptions made by MMTS?
The following example shows that their assumption that, in
each context, some subset of the explanation be an actual
cause (as opposed to some conjunct of the explanation being
extendable to an actual cause, as required to EX1) leads to
arguably unreasonable explanations.

Example 3. Consider the following voting scenario. There
are three voters, A, B, and C, who can vote for the candi-
date or abstain, just one vote is needed for the candidate to
win the election. The voters make their decisions indepen-
dently. By Definition 5, A = 1 (the fact that A voted for
the candidate) is an explanation of the outcome (as well as
B = 1and C = 1, separately). By assumption, A = 1 is
sufficient for the candidate to win in all contexts. Now con-
sider any context i where the candidate wins and A = 1. It
is easy to see that the conjunction of voters for the candidate
in U is a cause of the candidate winning. So, for example, if
A and C' voted for the candidate in context u, but B did not,
then A = 1 AN C = 1 is a (but-for) cause of the candidate
winning; if both votes change, the candidate loses.

On the other hand, A = 1 is not an explanation of the
candidate winning according to the MMTS definition. To see
why, note that in the context U above, no subset of A = 1 is
an actual cause of the candidate winning. Rather, according
to the MMTS definition, A = 1 AN B = 1 ANC = 1is the only
explanation (since there are contexts—namely, ones where
all three voters voted for the candidate)—where A = 1 A
B = 1AC =1 is the only actual cause). This does not
match our intuition. (Of course, we can easily convert this
to a story about image classification, where the output is 1 if
any of the pixels A, B, and C fire.)

As we observed, the assumptions of MMTS imply that con-
ditions (a), (b), (c), and (e) of Theorem 1 hold, if we take X
to be the pixels, X to be some subset of pixels, and ¢ to
be some setting of the output variable O. They also hold in

this example, taking X' to be the set of voters, X to be any
subset of voters, and ¢ to be the outcome of the election.
Moreover, condition (d) holds. So in this example, we do not
need to check the first part of EXI to show that A = a is an
explanation of the candidate winning, given that the second
part of EX1 and EX2 hold. But this is not the case for the
MMTS definition. Although A = 1 is a sufficient cause of
the candidate winning and is certainly minimal, as we ob-
served, it is not an explanation of the outcome according to
the MMTS definition. This is because MMTS require a sub-
set of the conjuncts in the explanation to be an actual cause,
which is not the case for SC2.

Example 4. For another, perhaps more realistic, example
of this phenomenon in image classification, as observed by

Shitole et al. (2021) and Chockler et al. (2023), images usu-
ally have more than one explanation. Assume, for example,
that the input image I is an image of a cat, labeled as a
cat by the image classifier. An explainability tool might find
several explanations for this label, such as the cat’s ears
and nose, the cat’s tail and hind paws, or the cat’s front
paws and fur. All those are perfectly acceptable as expla-
nations of why this image was labeled a cat, but only their
conjunction is an explanation according to MMTS. Most of
the existing explainability tools for image classifiers output
a saliency map as an explanation. This saliency map can
be used to isolate a part of the input image that is sufficient
for the classification—in other words, one explanation (i.e.,
a single conjunct). Thus, these explanations match Defini-
tion 5 (rather than that of MMTS) for the set of contexts that
includes the original image and all partial coverings of this
image.

MMTS’s restriction to but-for causality is reasonable if
we assume that there are no causal connections between the
setting of various pixels. However, there are many exam-
ples in the literature showing that but-for causality does not
suffice if we have a richer causal structure. Consider the
following well-known example due to Hall (2004):

Example 5. Suzy and Billy both pick up rocks and throw
them at a bottle. Suzy’s rock gets there first, shattering the
bottle. Since both throws are perfectly accurate, Billy’s rock
would have shattered the bottle had it not been preempted by
Suzy’s throw. The standard causal model for this story (see
(Halpern and Pearl 2005a)) has endogenous binary vari-
ables ST (Suzy throws), BT (Billy throws), SH (Suzy’s rock
hits the bottle), BH (Billy’s rock hits the bottle), and BS
(the bottle shatters). The values of ST and BT are deter-
mined by the exogenous variable(s). The remaining equa-
tions are SH = ST (Suzy’s rock hits the bottle if Suzy
throws), BH = BT A —-BH (Billy’s rock hits the bottle
if Billy throws and Suzy’s rock does not hit the bottle—this is
how we capture the fact that Suzy’s rock hits the bottle first),
and BS = SHV BH (the bottle shatters if it is hit by either
rock).

In Example 5, suppose that K consists of four contexts,
corresponding to the four possible combinations of Suzy
throwing/not throwing and Billy throwing/not throwing, and
Pr is such that all context have positive probability. In this
model, Suzy’s throw (i.e., ST" = 1) is an explanation for the
bottle shattering (with goodness (1,1)). Clearly the second
part of EX1 holds; if Suzy throws, the bottle shatters, inde-
pendent of what Billy does. The first part of EX1 holds be-
cause ST = 1 is a cause of the bottle shattering; if we hold
BT fixed at O (its actual value), then switching ST from 1
to O results in the bottle not shattering. But ST=1 is not a
but-for cause of BS = 1. Switching ST to O still results in
BS =1, because if Suzy doesn’t throw, Billy’s rock will hit
the bottle.

We can easily convert this story to a story more appropri-
ate for image classification, where we have an isomorphic
model. Suppose that we have two coupled pixels. ST and
BT correspond to whether we turn on the power to the pix-
els. However, if we turn the first one (which corresponds to



SH) on, the second (which corresponds to BH) is turned
off, even if the power is on. We classify the image as “ac-
tive” if either pixel is on. Since this model is isomorphic to
the Suzy-Billy story, turning on the first pixel is an expla-
nation for the classification, but again, the second condition
of Theorem 2 does not hold. Given a context (an input im-
age) in which the first pixel is on, the explainability tools
for image classifiers would output the first pixel being on as
an explanation for the classification. This is because they
do not take the dependencies between pixels into account.
These systems would not call the second pixel part of an
explanation, as it is off in the input image.

The following example shows that even without assuming
causal structure between the pixels, the second condition in
Theorem 2 may not hold.

Example 6. Suppose that pixels have values in {0,1}. Let
an image be a (2n + 1)-tuple of pixels. Suppose that an
image is labeled 0 if the first pixel is a 0 and the number
of Os in the remaining 2n pixels is even (possibly 0), or
the first pixel is a 1, and the number of Os in the remain-
ing pixels is even and positive. Suppose that the probability
distribution is such that the set of images where there is an
even number of Os in the final 2n pixels has probability .9,
Moreover, suppose that X1 = 0 with probability 1/2, where
X, denotes the first pixel. Now the question is whether
X1 = 0 is a partial explanation of O = 0 with goodness
(a,.9) for some o > 1/22"~1. Clearly the probability that
O = 0 conditional on X1 = 0 is .9, while conditional on
X1 = 1 and unconditionally, the probability that O = 0 is
less than .9. Thus, the second part of EX1' and EX2' both
hold. Now consider the first part of EXI’. Suppose that
(M, %) = X1 =0A0O =0, so in U, an even number of the
last 2n pixels are 0. Suppose in fact that a positive number
of the last 2n pixels are 0. Then we claim that there is no Y
and i such that X, = OAY = i is a cause of O = 0 in
(M, @0). Clearly, X1 = 0 is not a cause (since setting it to 1
does not affect the labeling). Moreover, if Y is nonempty, let
Y €Y and let y be the value of Y in Y. Then it is easy to
see that Y = y is a cause of O = 0 (flipping the value of Y
results in changing the value of O to 1), so X1 = 0N Y = v
is not a cause of O = o (AC3 is violated). Thus, X1 = 0isa
cause of O = 0 only in the context i where X1 = 0 and all
the last 2n pixels are 1. Using Pascal’s triangle, it is easy to
show that this context has probability 1/2*"~1 conditional
on X1 = 0A O = 0. Note that this is also the only context
where changing the value of X1 affects the value of O.

Example 6 is admittedly somewhat contrived; it does not
seem that there are that many interesting examples of prob-
lems that arise if there is really no causal structure among
the pixels. But, as Example 5 suggests, there may well be
some causal connection between pixels in an image. Un-
fortunately, none of the current approaches to explanation
seems to deal with this causal structure. We propose this as
an exciting area for future research; good explanations will
need to take this causal structure into account.

4 Beyond Basic Explanations:
Rare Events and Explanations of Absence

So far we have considered classifiers that output only pos-
itive labels, that is, labels that describe the image. How-
ever, there are classifiers that output negative answers. These
are especially common in healthcare, where image classi-
fiers are used as a part of the diagnostic procedure for MRI
images, X-rays, and mammograms (Amisha, Pathania, and
Rathaur 2019; Payrovnaziri et al. 2020). In these cases, a
diagnosis of absence of abnormalities is a possible output of
a classifier: a brain tumor detector based on an MRI outputs
either “tumor” or “no tumor”.

There are many papers in the medical domain pointing out
the importance of explanations in terms of justifying clinical
decisions to patients and colleagues (see, e.g2., (Amann et al.
2022)). A “right to explanation” is also defined in the EU Al
Act. Hence, explanations, and in particular, explanations of
absence, are essential, in particular, for clinical diagnosis.
However, they have not been addressed up to now.

While the discussion above shows what would it would
take for X = & to be an explanation of “tumor”, what would
count for X = 7 to be an explanation of “no tumor”? We
claim that actually the same ideas apply to explanations of
“no tumor” as to tumor. For the second part of EX1, X=7
would have to be such that, with high probability, setting X
to Z would result in an output of “no tumor”. For the first
part of EX1, we need to find a minimal subset of pixels that
includes a pixel in X such that changing the values of these
pixels would result in a label of “tumor”.

There is a subtlety here though. A tumor is a rare event.
Overall, the probability that someone develops a brain tumor
in their lifetime is less than 1%, and the probability that a
random person on the street has a brain tumor at this moment
is much lower than that. Suppose that the classifier derived
its probability using MRI images from a typical population.
Given an image [ that is (correctly) labeled “no tumor”, let
X be a single pixel whose value in [ is = such that X is part
of an explanation X = Z of the label “tumor” in a different
image I’, and in I’ X = 2’ # x. Then X = =z is an
explanation of “no tumor” with goodness («, 3) for quite
high values of « and /3: in most images where X = z, the
output is “no tumor” (because the output is “no tumor” with
overwhelming probability), and changing X to 2/, as well as
the values of other pixels in X, we typically get an output of
“tumor”. But X = x does not seem like a good explanation
of why we believe there is no tumor!

To deal with this problem (which arises whenever we are
classifying a rare event), we (a) assume that the probability
is derived from training on MRI images of patients who doc-
tors suspect of having a tumor; thus, the probability of “tu-
mor” would be significantly higher than it is in a typical sam-
ple of images; and (b) expect an explanation of “no tumor”
to have goodness («, 3) for « and S very close to 1. With
these requirements, an explanation X = 7 of “no tumor”
would include pixels from all the most likely tumor sites,
and these pixels would have values that would allow us to
preclude there being a tumor at those sites (with high proba-



bility). This is an instance of a situation where /C would not
consist of all contexts.

The bottom line here is that we do not have to change
the definitions to accommodate explanations of absence and
rare events, although we have to modify the probability dis-
tribution that we consider. That said, finding an explanation
for “no tumor” seems more complicated than finding an ex-
planation for “tumor”. The standard approaches that have
been used do not seem to work. In fact, none of the existing
image classifiers is able to output explanations of absence.
The reason for this is that, due to the intractability of the ex-
act computation of explanations, all existing black-box im-
age classifiers construct some sort of ranking of pixels of
an input image, which is then used as a (partially) ordered
list from which an approximate explanation is constructed
greedily. Unfortunately, for explaining absence, there is no
obvious ranking of pixels of the image: since a brain tumor
can appear in any part of the brain, all pixels are equally
important for the negative classification.

In general, people find it difficult to explain absences.
Nevertheless, they can and do do it. For example, an expert
radiologist might explain their decision of “no tumor” to an-
other expert by pointing out the most suspicious region(s) of
the brain and explaining why they did not think there was a
tumor there, by indicating why the suspicious features did
in fact not indicate a tumor. But this is exactly what Defi-
nition 6 provides, for appropriate values of the probabilistic
bounds («, 3).

Indeed, note that we can get an explanation to focus on
the most suspicious regions by making (3 sufficiently small.
Since explanations must be minimal, the explanation will
then return a smallest set of regions that has total probability
(at least) 3.2 Alternatively, we can just restrict K to the most
suspicious regions, by considering only contexts where non-
suspicious regions have all their pixels set to white, or some
other neutral color (this is yet another advantage of consider-
ing K rather than all of R(l{)). In addition, to explain why
there is no tumor in a particular region, the expert would
likely focus on certain pixels and say “there’s no way that
those pixels can form part of a tumor”; that’s exactly what
the “sufficiency” part of the explanation does. The expert
might also point out pixels that would have to be different
in order for there to be a tumor; that’s exactly what the “ne-
cessity” part of the explanation does. Of course, this still
must be done for a number of regions, where the number is
controlled by S or the choice of K. Thus, it seems to us that
the definition really is doing a reasonable job of providing
an explanation in the spirit of what an expert would provide.

We can get simpler (although perhaps not as natural) ex-
planations for the absence of tumors by taking advantage of
domain knowledge. For example, if we know the minimal
size of a tumor, explaining the absence of a tumor can be
done by covering the image with a “net” of pixels, none of
which can be part of a tumor, such that the distance between
neighboring pixels in the net is smaller than the size of a

There will be may be many choices for this; we can add code
to get the choice that involves the smallest set of pixels. These will
be the ones of highest probability.

minimal tumor.

The upshot of this discussion is that the techniques we
have presented can be used to find explanations of absence.

Computing explanations of absence as defined in this sec-
tion is quite nontrivial, and is quite domain-dependent. For
example, we can explain “no tumor’™ by providing a grid
of sufficiently small dark grey patches (as tumors appear on
the MRI as light in color) such that the distance between
the patches is too small to contain the smallest tumor recog-
nised by the model. But this approach would not work for
other domains, as there is no clear distinction between the
colors of the absent object and the colors of other possible
objects in the image. (For example, it would not work to
explain why there is no cat in an image, as images of cats
contain many colors.) A full implementation of an algorithm
to compute explanations of absence (even approximately) is
beyond the scope of the paper, and is the subject of ongoing
work.

5 Conclusions

We conclude by repeating the point that we made in the
introduction (now with perhaps more evidence): while the
analysis of MMTS shows that a simplification of Halpern’s
definition can go a long way to helping us understand no-
tions of explanation used in the literature, we can go much
further by using Halpern’s actual definition, while still re-
taining the benefits of the MMTS analysis. In particular, we
can use the definition to provide explanations of absence and
explanations of rare events, both of which arise frequently in
practice.

However, there is still more to be done. For one thing,
dealing with the full definition may involve added computa-
tional difficulties. We believe that using domain knowledge
may well make things more tractable, although this too will
need to checked. For example, We showed above how do-
main knowledge could be used to provide simpler explana-
tions of the absence of tumors. For another example, if we
are explaining the absence of cats in an image of a seascape,
knowledge of zoology allows to eliminate the sea part of the
image as a possible area where cats can be located, as cats
are not marine animals. This seems doable in practice.
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