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Deep Domain Adaptation Regression for
Force Calibration of Optical Tactile Sensors

Zhuo Chen1, Ni Ou1,2, Jiaqi Jiang1 and Shan Luo1

Abstract— Optical tactile sensors provide robots with rich
force information for robot grasping in unstructured environ-
ments. The fast and accurate calibration of three-dimensional
contact forces holds significance for new sensors and existing
tactile sensors which may have incurred damage or aging.
However, the conventional neural-network-based force calibra-
tion method necessitates a large volume of force-labeled tactile
images to minimize force prediction errors, with the need for
accurate Force/Torque measurement tools as well as a time-
consuming data collection process. To address this challenge,
we propose a novel deep domain-adaptation force calibration
method, designed to transfer the force prediction ability from a
calibrated optical tactile sensor to uncalibrated ones with var-
ious combinations of domain gaps, including marker presence,
illumination condition, and elastomer modulus. Experimental
results show the effectiveness of the proposed unsupervised
force calibration method, with lowest force prediction errors
of 0.102N (3.4% in full force range) for normal force, and
0.095N (6.3%) and 0.062N (4.1%) for shear forces along the
x-axis and y-axis, respectively. This study presents a promising,
general force calibration methodology for optical tactile sensors.

I. INTRODUCTION

Optical tactile sensors [1] with high sensitivity in per-
ceiving object geometry, slip and position have now been
widely studied. With the superiority of directly capturing
tactile information with high-resolution images, optical tac-
tile sensors like GelSight [2], GelTip [3] and Digit [4]
significantly enhance the capabilities of robots, particularly
when integrated with machine learning models. Among
those touch sensations applicable for measurement by optical
tactile sensors, force sensing stands out as it is crucial for
monitoring dynamic contact status and providing feedback
for robot control [5] and in-hand manipulation [6].

Force calibration in optical tactile sensing faces three
primary challenges. Firstly, deep neural networks are often
preferred over physical models to estimate forces from
tactile images, necessitating a substantial volume of tactile
images paired with labeled forces for model training [7].
This demanding data collection process has to be repeated
for new sensors. As a result, deploying force calibration
models, especially for users of commercial tactile sensors
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Fig. 1. Deep domain adaptation for force calibration of optical tactile
sensors. Upon completing domain adaptation, the feature space of the
unlabeled tactile images It from the target domain and the labeled tactile
images Is from the source domain are aligned. A shared regressor trained
with ground truth forces F s in source domain can be used to predict F t

in target domain. I1t , I2t and I3t denote tactile images in target domain
with varying combinations of domain gaps. FT represents the total force,
Fz denotes the normal force, Fx and Fy denote the shear forces, and θ
represents the force angle, respectively.

lacking accurate calibration tools like the Nano17 F/T sen-
sors, becomes challenging. Secondly, alternations in sensor
components, such as degradations of soft elastomers, can
lead to inaccuracies in force predictions. Thirdly, differences
in marker presence/distributions, illumination conditions and
elastomer modulus in different optical tactile sensors prevent
force prediction models from being adapted from calibrated
sensors to uncalibrated ones.

Transfer learning presents a promising approach for mod-
els trained on existing sensors (source domain) to adapt
to new sensors (target domain). However, current transfer-
learning methods used for this task, such as fine-tuning [8],
are supervised, which requires extensive labeled force infor-
mation from both domains. Hence, there remains a significant
demand for a dedicated model utilizing unsupervised transfer
learning methods in the force calibration of optical tactile
sensors.

In this study, we propose a novel domain adaptation
regression model to address the unsupervised force cali-
bration challenge in optical tactile sensors, illustrated in
Fig. 1. This approach can eliminate the need for costly
force/torque measurement tools in force calibration of optical
tactile sensors and significantly reduce the calibration time
through domain adaptation. Experimental results demonstrate
the successful adaptation of pretrained models on force-
labeled tactile images to sensors with diverse domain gaps
and unlabeled images. To our best knowledge, this is the



first work that utilizes the deep domain adaptation regression
method to address this challenge. The contributions of this
work are summarized as follows:

1) A novel domain adaptation regression method is intro-
duced to address the challenge of unsupervised force
calibration in optical tactile sensors;

2) The impact of different combinations of three key
domain gaps on domain adaptation performance is
investigated, and the effectiveness of our model is
verified;

3) A dataset has been made publicly accessible for unsu-
pervised force calibration of optical tactile sensors.

The rest of the paper is structured as follows: Section II
provides an overview of related works; Section III introduces
our methodology; Section IV details our data collection and
implementation; Section V analyses the experimental results.
Finally, Section VI presents the discussion and summarises
the work.

II. RELATED WORK

A. Optical Tactile Sensors

Optical tactile sensors are characterized by utilizing com-
pact cameras to capture high-resolution images of deformed
soft elastomers when contacting with objects. By exploiting
image processing techniques or machine learning models,
tactile images can be used for various downstream robotic
manipulation tasks, including force estimation [7], slip de-
tection [9], object recognition [10], and object localiza-
tion [11]. Optical tactile sensors can be broadly categorized
into marker-motion-based sensors like TacTip [3] and high-
resolution image-based sensors like GeSight [1]. TacTip-like
sensors consist of physical pins on the sensing elastomer
and primarily detect shear information and contact position
by capturing marker displacement. In contrast, GelSight-
like sensors utilize RGB cameras to capture images with
detailed textures and reconstruct contact height maps using
photometric stereo methods. The black marker dots can
also be painted on the gel elastomer for shear displace-
ment estimation [12]. Over the past decades, GelSight-like
sensors have been developed into different variants, such
as GelSlim [13], GelWedge [14] and GelSvelte [15]. In
this work, we primarily focus on force calibration using
GelSight sensors, but it’s worth noting that this method is
also applicable to TacTip-like sensors and other types of
optical tactile sensors.

B. Force Calibration of Optical Tactile Sensors

Force calibration of optical tactile sensors involves es-
tablishing the mapping relationship between tactile images
and contact forces [1]. This process can be achieved either
by applying a physical-based model/mechanical calibration
method to compute contact force, or by directly constructing
an end-to-end image-to-force mapping using a deep neural
network [7]. However, due to the hyperelastic properties
of gel elastomer membranes, the mechanical calibration

method, which assumes linear elastic behavior, is only accu-
rate for small deformations, and its force prediction perfor-
mance significantly deteriorates with large deformations [16].
In contrast, data-driven deep neural networks exhibit im-
pressive performance in non-linear regression tasks and can
maintain accurate force prediction across the full working
range of deformation [7]. Nevertheless, the neural network-
based approach is data-driven and sensitive to the feature
distribution of tactile images, necessitating data collection
and model re-training whenever the sensor’s physical factors
change. There is a pressing need for a method that simplify
the cumbersome data collection process and expedites the
calibration process on new or aging sensors by adapting
trained models on existing sensors .

C. Domain Adaptation Regression

Domain adaptation [17] aims at mitigating the distribution
shifts between the labeled source domain and the unlabeled
target domain. Adversarial domain adaptation techniques,
such as DANN [18] and Deep-CORAL [19], are widely used
to learn an embedding feature space where the source and
target domains cannot be distinguished. While instance-based
methods primarily correct the shift by re-weighting source
instances or minimizing specific distances between the two
distributions, such as KL-divergence [20] and Maximum
Mean Discrepancy (MMD) [21]. However, these methods are
typically applied to classification [22] and segmentation [23]
tasks and are not directly applicable to regression problems.
While recent methods like RSD [24] and DARE-GRAM [25]
have been proposed to tackle domain adaptation regression
problems, they have only been tested on a few benchmark
datasets with simple domain gaps. In contrast, our domain
adaptation regression task for force calibration will consider
different combinations of domain gaps in optical tactile
sensors, which is more complex and problem-specific.

III. METHODOLOGY

A. Problem Definition

In the domain adaptation regression problem for the force
calibration of optical tactile sensors, we are provided with
a labeled tactile image dataset Ds = {(Iis, (Fi

s,C
i
s))}

ns
i=1

including the source domain with ns samples, and an unla-
beled dataset Dt = {(Iit)}

nt
i=1 with nt samples. Here, Iis and

Iit represent the tactile images from the source domain and
the target domain, respectively. Fi

s = (F i
x, F

i
y, F

i
z)s denotes

the ground truth of the applied normal force vector F i
z and

shear forces vector F i
x and F i

y in source domain, while Ci
s

indicates the contact class of the tactile images in the source
domain, as described in Section IV-A.

The primary challenge in this task is that Ds and Dt

are sampled from different sensors or the same sensor with
varying marker presence, illumination conditions, or elas-
tomer modulus. Consequently, tactile images collected from
sensors with different combinations of domain gaps exhibit
distinct feature distributions, i.e., P (Is) ̸= P (It), whereas
the objective is to learn a shared regressor h : I→ F capable
of directly mapping the ith unlabeled tactile images Iit to
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Fig. 2. Deep domain adaptation regression model for force calibration. The model comprises four components: a feature encoder, a contact classification
head, a force regression head, and a domain transfer head. The model takes batches of tactile images from the source domain Is and the target domain It
as inputs. Both Is and It consist of concatenated tactile images comprising a current contact image Ic and a reference image Ir . The domain transfer head
accepts features (fs and ft) and ground truth contact labels Cs from the source domain, as well as the pseudo labels Ct predicted from the classifier. The
overall loss Lh is weighted sum of the regression loss Lr , classification loss Lc and domain adaptation loss Lt.

calibrated forces vector Fi
t in the target domain. Therefore,

our goal is to minimize the mean force prediction error in
the target domain:

arg
h

minE(Iit,F
i
t)

∥∥h(Iit),Fi
t

∥∥2
2

(1)

However, since we only possess labeled images in the
source domain, this optimization problem described in Equa-
tion 1 is reformulated to minimize the Mean Square Error
(MSE) between the predicted force and ground truth forces
on the labeled source samples. Additionally, we aim to
minimize the domain distribution discrepancy between the
source domain and target domain:

arg
h

minλr
1

ns

ns∑
i=1

∥∥∥F̂i
s − Fi

s

∥∥∥2
2︸ ︷︷ ︸

Lr

+λt d̂H(fs,Cs, ft,Ct)︸ ︷︷ ︸
Lt

(2)

where λr ≥ 0, λt ≥ 0 represent the weights assigned
to the regression loss Lr and domain transfer loss Lt. F̂i

s

denotes the predicted forces using source images, while fs
and ft denote the features extracted from the source domain
and target domain, respectively. d̂H(·, ·) is the esitimation of
Local Maximum Mean Discrepancy (LMMD) [22], with H
being the Reproducing Kernel Hillbert Space (RKHS). This
equation aims to learn a shared feature space and a shared
regressor simultaneously so that forces in images from both
the source or target domains can be predicted.

To compute the domain transfer loss Lt, we refer to the
Deep Subdomain Adaptation Network (DSAN) [22], which
has demonstrated the capability to capture fine-grained infor-
mation for categories and align relevant domain distributions
to learn a shared classifier. Hence, we try to reduce the
discrepancy between source domain and target domain by
optimizing the following function:

arg
g

minλc
1

ns

ns∑
i=1

J(g(Iis),C
i
s)︸ ︷︷ ︸

Lc

+λtd̂H(fs,Cs, ft,Ct) (3)

where λc ≥ 0 represents the weight of classification loss Lc,
g(·) is a classifier for tactile images with different contact
class, and J(·, ·) denotes the cross-entropy error. Compared
to other domain adaptation regression methods that use a
single regression head, the classification head included in
this equation not only provides essential pseudo contact class
labels Ct for the unlabeled images to calculate the LMMD
but also benefits the regression task, as shown in [26].

Then, by combining Equations 2 and 3, we obtain the
overall loss function Lh of our model:

Lh = λrLr + λcLc + λtLt (4)

By optimizing the loss function in Equation 4, a shared
regressor can be learned for both the source domain and
target domain while maintaining a well-aligned feature space.



B. Deep Domain Adaptation Regression Network

Based on Section III-A, the deep domain adaptation
regression network in this task can be divided into four
components as depicted in Fig. 2: (1) feature encoder, (2)
contact classification head, (3) force regression head and (4)
domain transfer head. Firstly, the inputs from each domain
consist of the concatenation of tactile images with contact
Ic and reference tactile images without contact Ir, which
are then fed into the feature encoder. The feature encoder
with a ResNet-50 backbone and a linear bottleneck layer
jointly extracts the deep representations fs and ft of tactile
images from the source domain Is and the target domain It,
respectively. Next, the contact classification head composed
of a single linear layer with a ReLU activation function
classifies the contact cases of tactile images in the target
domain and provides pseudo labels Ct for target images,
which are then used for LMMD calculation with the ground
truth labels Cs of source images. The force regression head
using a linear layer with a Sigmoid activation function
minimizes the MSE between the predicted forces F̂s and
the ground truth forces Fs. The domain transfer head aligns
two domains in the feature space by minimizing LMMD.

By using this model, tactile images Is, contact forces Fs

and contact class Cs from existing sensors can be leveraged
as source domain, while adapting existing models to new
sensors or aging sensors by just collecting unlabeled tactile
images It as target domain. This process could eliminate
the need for force measurement tools, such as F/T sensors,
during the calibration stage. Furthermore, the new model
can be trained with fewer epochs by adapting existing
models, thereby reducing the time required compared to the
traditional supervised force calibration process.

IV. DATA COLLECTION AND IMPLEMENTATION

As reported in Section I, marker presence, illumination
condition, and gel elastomer are three essential domain
variables of different GelSight sensors, which are denoted
as wm/m, i and b respectively, as shown Table I. For
data collection, three different elastomers and illumination
conditions indexed by 0, 1, 2 are used. The elastomer b
indexed with higher number is with higher hardness. To
study the domain adaptation performance between sensors
with different combinations of these variables, we obtain four
types of labeled tactile images, i.e., mb0i0, wmb0i0, wmb1i1
and wmb2i2, and pair them into nine domain adaptation
groups listed in Table I. For example, in the case of mb0i0 →
wmb0i0, tactile images Is are with markers and collected
with elastomer-0 and illumination-0, while It are without
markers and collected with elastomer-1 and illumination-1.
It is worth noting that, for data collection, we only need to
collect mb0i0, wmb1i1 and wmb2i2 in real GelSight sensors
with corresponding physical properties. While wmb0i0 is
generated by applying an inpainting method [27] on the
mb0i0, which ensures only the marker-presence gap exists
between the two domains.
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Fig. 3. (a) Data collection setup with a robot arm, a GelSight sensor,
a sphere indenter and a Nano17 F/T sensor. (b) Programmed contact path
for data collection. Contact pixel denotes a point for indentation. (c) Real-
world setup. (d) Four groups of collected tactile images with different
combinations of domain gaps.

TABLE I
DOMAIN ADAPTATION GROUP

#Variable Domain Adaptation Group

one mb0i0 → wmb0i0, wmb0i0 → mb0i0

two wmb0i0 → wmb1i1, wmb0i0 → wmb2i2
wmb1i1 → wmb0i0, wmb1i1 → wmb2i2

three mb0i0 → wmb1i1, mb0i0 → wmb2i2
wmb1i1 → mb0i0

* m/wm: with/without markers
* b0, b1, b2: elastomer - 0, 1, 2
* i0, i1, i2: illumination condition - 0, 1, 2

A. Data Collection

As shown in Fig. 3a, the data collection setup comprises
a UR5e robotic arm with a two-finger Robotiq gripper, a
sphere indenter (d=3 mm), a flat-surface GelSight sensor, and
a Nano17 F/T sensor. The robot arm is programmed through
MoveIt to follow a planned path, as depicted in Fig. 3b. The
camera inside the GelSight sensor is synchronized with the
Nano17 sensor to capture tactile images and contact forces
simultaneously.

Regarding the indenter’s contact, 6×5 surface points are
pre-determinated in GelSight’s 10×8 mm2 surface. For each
contact point, the indenter is pressed into different depths
ranging from 0 to 1 mm with a step of 0.2 mm. To collect
shear forces, the motion of the robotic arm is divided into
two stages: moving downwards and then moving horizontally
shown in Fig. 3c. When moving at a specific depth, the
indenter follows the motion rules in Algorithm 1. Specif-
ically, it moves in a cyclical radial motion around a fixed
radius towards 12 different angles. After the 12 angles of
motions finished, the radius of the circle increases with a
step of 0.1 mm from 0.1 mm to 0.6 mm, and the next cycle
begins. There are k = 30 contact points on the surface, and
n = 361 contact points in depth (including one reference



position before contact). All the tactile images are collected
from a force range of -3 N to 0 N for normal force in the z-
axis and a range of -0.75 N to 0.75 N for shear forces in the
x-axis and y-axis. This is limited by the maximum thickness
of gel elastomer (3 mm) and the non-slip displacement (<0.6
mm) between the sphere indenter and the elastomer surface.
As described in Section III-A, we introduce contact class Ci

s

in the loss function. Here, we allocate the contact class for
each tactile image based on the index of the contact points
in depth, i.e., Ci

s ∈ R361 is a one-hot vector representing the
label of Iis, where Cij

s = 1 denotes Iis labeled with class j.
The contact class is only used in training stage, which will
not hinder the prediction of continuous force values in test.

Algorithm 1 Indenter’s Contact Motion
1: Input: Number of surface contact points k, surface con-

tact points P = {P1, ..., Pk}, where Pi = {p1, ..., pn}
contains all contact points in depth, pi = {x, y, z}
denotes the coordinate of a contact point.

2: procedure MOVE TO CONTACT POINTS(P, k)
3: for i = 0...k do
4: p0 ← Pi[0] ▷ origin point p0 without contact
5: moveTo(p0)
6: for j = 1...n do
7: p1 ← (p0[0], p0[1], Pij [2]), p2 ← Pij

8: moveTo(p1) ▷ Move downwards
9: moveTo(p2) ▷ Move horizontally

10: imageCapture(), forceRecord()
11: moveTo(p0) ▷ Move to origin
12: end for
13: end for
14: end procedure

Fig. 3d illustrates the collected tactile images within four
groups. It is evident that mb0i0, wmb1i1, and wmb2i2 ex-
hibit distinctive illumination conditions, also corresponding
to three real GelSight sensors with different elastomer modu-
lus. The data group wmb0i0 is directly generated from mb0i0
via the inpainting method, which controls the variables of
illumination and elastomer, and shares the same ground truth
force with mb0i0. Notably, we have three groups (mb0i0,
wmb0i0, wmb1i1) that comprise a total of 3×10, 830 images
collected by the path in Fig. 3b, along with 873 images
of wmb2i2. The last group of wmb2i2, containing only
873 images, is collected along a sparser path to test the
performance of our model when trained with a few unlabeled
images as target domain, while the other three data groups
with ten times more images are utilized to evaluate the model
performance across different domains with the same data
size. These four data groups hold promise for being leveraged
as source domains to extend our domain adaptation model
to new sensors by simply collecting unlabeled tactile images
without using force measurement tools.

B. Implementation & Evaluation Metrics

In the training stage, three models are first trained with
data groups mb0i0, wmb0i0, and wmb1i1, respectively,

where only the regression layer is used for source-domain
supervision (λr = 1, λc = 0, λt = 0), and an initial learning
rate η0 = 0.1 for 20 epochs. This step aims at offering
existing models for domain adaptation. In real-world use, we
usually have an existing sensor with the trained model, and
then the model and tactile images are used as source domain
in this task for adapting to new/old sensors in target domain.
For the second training stage, the corresponding pretrained
model of source domain is selected and adapted by adding
transfer loss and classification loss, i.e., λr = 1, λc = 1, λt =
1 with an initial learning rate η0 = 0.01 for 10 epochs. The
learning rate in the backbone layer is always set as 10 times
smaller than the initial learning rate. SGD optimizer is used
with a momentum of 0.9, along with a learning rate scheduler
η = η0 · (1 + 0.0003 · i)−0.75, where i is the number of
iterations. The batch size is set as 32, and all experiments
are trained on a NVIDIA RTX 3090 GPU.

All source-domain data are used in training stage, while
the target-domain tactile images are split into train, valid
and test dataset with a ratio of 0.6:0.2:0.2. The ground truth
forces Fs from the source domain are normalized using min-
max normalization to the range of [0, 1] in the training stage.
For testing, the model exclusively receives unlabeled tactile
image batches from the target domain. The calibrated force
Ft is then derived from the regression head and subsequently
subject to de-normalization for error calculation. The evalu-
ation metrics used in Section V are the Mean Absolute Error
(MAE) and the coefficient of determination R2, while tSNE
is used to visualize domain distances in the feature space.

V. EXPERIMENT RESULTS & ANALYSIS

In this section, we demonstrate the domain adaptation
performance of our model in force calibration of GelSight
sensors across different domain adaptation groups as shown
in Table I. The baseline of this task is the source-only
method, which directly predicts forces in the target domain
using the pretrained models from source domain. Two other
representative domain adaptation methods, including DANN
[18] and GRAM [25], are also compared with our method in
subsections V-A, V-B and V-C. The force prediction errors in
Tables II, III, and IV are calculated by the average of MAE
with shear forces and normal forces.

A. Marker Presence

The GelSight sensors with markers offer significant ad-
vantages in slip detection and force visualization, while the
sensors without markers show advantages in object classi-
fication. Given the wide use of both types of sensors, it
is desired to directly transfer the trained force prediction
model from one of those to its counterpart. However, if
we employ the source-only method directly from mb0i0 to
wmb0i0, as depicted in Fig. 4a-i and Fig. 4b-i, the force
prediction performance is unacceptable, with R2 values of
-4.3, -0.11, and -0.06 in the xyz-axis, respectively. The error
E for normal force can even reach up to 0.452N (15% of
the force range in the z-axis), while for the shear forces, the
errors are 0.279 N (18.6%) and 0.096 N (6.4%), respectively.



Conversely, in the transition from wmb0i0 to mb0i0, the R2

values are -0.13, 0.05, and 0.13 in the xyz-axis, and the
MAE errors are high. These results confirm the existence of
significant gaps of marker presence, leading to substantial
errors of force prediction across different domains.

After applying our method, as depicted in Fig. 4a-ii and
Fig. 4b-ii, the errors E of normal force in both groups
decrease to 0.102 N (3.4%), while the R2 values increase
to 0.92 and 0.91 respectively. This represents an increase
in accuracy of more than 10% after domain adaptation.
Although the R2 values for shear force still appear low, the
MAE errors in the x-axis decrease by 12.2% from 0.279
N (18.6%) to 0.096 N (6.4%) in the mb0i0 → wmb0i0
transition, which is acceptable when compared with the shear
force error of around 0.025 N in the supervised model. One
possible reason for the low R2 values in the shear force could
be that the collected shear forces are too small, mostly lying
in the range of -0.75 N to 0.75 N, compared with the normal
forces in -3 N to 0 N. Therefore, the static tactile images
with small deformations contain negligible information for
the shear forces, resulting in poorer transfer performance
than normal forces. Regarding the comparison results with
DANN and GRAM, our method shows an advantage in the
overall average error (0.086 N), as shown in Table II.

TABLE II
AVERAGE FORCE PREDICTION ERROR WITH ONE VARIABLE

(MARKER, UNIT N )

Method
mb0i0
→

wmb0i0

wmb0i0
→

mb0i0
Avg

source-only 0.276 0.196 0.236

DANN 0.098 0.118 0.108
GRAM 0.082 0.091 0.087

ours 0.086 0.086 0.086

B. Illmination & Elastomer

In this subsection, we study the influence of two domain
variables, i.e., illumination condition and elastomer modulus
on four domain adaptation groups listed in Table I. As
shown in Table III, the average errors using the source-only
method remain high, around 0.285 N on average across all
four groups. Upon utilizing our model, the average errors
improve significantly in all groups, with notable improve-
ments observed in the groups wmb1i1 → wmb0i0 and
wmb0i0 → wmb1i1, where the errors decrease from 0.226
N to 0.095 N and from 0.3 N to 0.138 N respectively. The
total average error of 0.145 N outperforms other models.

It is noteworthy that when wmb1i1 is used as the source
domain, the force prediction errors in the source-only method
are smaller compared to the other two groups. This is because
the sensor with elastomer b1 is harder than the counterpart
with elastomer b0, resulting in larger contact forces with the
same contact depth. Hence, more feature changes induced
by larger normal forces, such as elastomer’s deformation
and light intensity, contains in the source domain, leading to

better adaptation performance. Additionally, when wmb2i2
serves as the target domain, the transfer performance is the
poorest, shown in Table III and Fig. 4, with the R2 values
for the normal force in wmb1i1 → wmb2i2 improving from
0.47 to 0.67, compared to the improvement from 0.46 to 0.93
in wmb1i1 → wmb0i0. This discrepancy can be attributed
to the data size, as wmb2i2 has ten times fewer images than
the other three groups, as mentioned in Section IV-A. This
indicates that the size of both target and source data also
influences domain adaptation performance.

TABLE III
AVERAGE FORCE PREDICTION ERROR WITH TWO VARIABLES

(ELASTOMER & ILLUMINATION, UNIT N )

Methods
wmb1i1

→
wmb2i2

wmb1i1
→

wmb0i0

wmb0i0
→

wmb1i1

wmb0i0
→

wmb2i2
Avg

source-only 0.230 0.226 0.300 0.384 0.285

DANN 0.180 0.120 0.132 0.162 0.149
GRAM 0.242 0.102 0.143 0.186 0.168

ours 0.167 0.095 0.138 0.180 0.145

On the other hand, although the R2 values for shear forces
still remain relatively low, the improvement over the baseline
source-only method is significant. In the transition from
wmb1i1 to wmb0i0, the shear force errors decrease from
0.168 N (11.2%) to 0.095 N (6.3%) in Fx and from 0.195
N (13%) to 0.093N (6.2%) in Fy . Similarly, in the transition
from wmb1i1 to wmb2i2, the shear force errors decrease
from 0.148 N (9.8%) to 0.129 N (8.6%) in Fx and from
0.180 N (12.0%) to 0.136 N (9.0%) in Fy . The improvement
in normal force is also notable, decreasing from 0.315 N
(10.5%) to 0.097 N (3.2%) in wmb1i1 → wmb0i0, and from
0.361 N (12.0%) to 0.236 N (7.9%) in wmb1i1 → wmb2i2.

C. Marker Presence & Illmination & Elastomer

We finally combine all three domain variables and study
three adaptation groups listed in Table I. As shown in Table
IV, it is evident that with the increase of domain variables,
the average force prediction error rises, from 0.236 N (one
variable, in Table II) to 0.285 N (two variables, in Table
III) to 0.332 N (three variables) when using the source-
only method. This trend implies the increased complexity
of domain adaptation performance with more domain gaps.
Despite this, our method also outperforms the other two
methods and reduces the average error from 0.332 N to
0.153 N. Fig. 4 demonstrates the transfer performances in
the three axis. We observe that, even when combined with
three variables, the R2 value in normal force can be improved
from -0.39 to 0.89 in wmb1i1 → mb0i0. Although the R2

value in mb0i0 → wmb2i2 only shows changes from -0.59
to 0.47, the force error decreases from 0.637 N (21.2%) to
0.299 N (9.9%). For the shear force in wmb1i1 → mb0i0,
the force error get notably improved, with E decreasing from
0.296 N (19.7%) to 0.098 N (6.5%) in x-axis, from 0.362
N (24.1%) to 0.103 N (6.9%) in y-axis, and from 0.446 N
(14.9%) to 0.114 N (3.8%) in z-axis.
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Fig. 4. Force prediction errors compared among domain adaptation groups featuring one variable (a-b), two variables (c-d), and three variables (e-f). This
comparison is conducted using both the source-only method (i) and our domain adaptation method (ii).

TABLE IV
AVERAGE FORCE PREDICTION ERROR WITH THREE VARIABLES

(MAKER & ELASTOMER & ILLUMINATION, UNIT N )

Methods
mb0i0
→

wmb1i1

mb0i0
→

wmb2i2

wmb1i1
→

mb0i0
Avg

source-only 0.323 0.304 0.368 0.332

DANN 0.143 0.238 0.185 0.189
GRAM 0.159 0.198 0.129 0.162

ours 0.160 0.195 0.105 0.153

D. Discussion

The experimental results in Sections V-A, V-B, and V-
C have validated the feasibility of domain adaptation re-
gression methods in the force calibration of optical tactile
sensors. Particularly noteworthy is our method’s highest error
percentage improvement in group wmb0i0 → mb0i0, with
improvements of 13.2% and 17.2% in shear forces, and
11.1% in normal force. Additionally, in the wmb0i0 →
mb0i0 transition, the prediction error can be reduced to
lowest among nine groups as 0.102N (3.4%) in normal
force, and 0.095N (6.3%) and 0.062N (4.1%) in shear forces.
Fig. 5 further illustrates that the feature representations of
source and target domains are successfully aligned in feature
space after domain adaptation, compared with the distinctly
separated feature space observed when using the source-only
method. As such, considering the real-world deployment

of force prediction in robotic manipulation, the prediction
accuracy achieved by domain adaptation methods, especially
for normal forces, is accurate enough for force feedback
control by detecting the threshold of contact forces.

However, our method still exhibits inferior performance
in shear force calibration compared with the supervised
method. This phenomenon could be attributed to the use of
the sphere indenter with low friction coefficient, resulting
in slip occurring over a very small moving distance (<0.5
mm) thus cannot apply large shear forces on the elastomer.
This determines the collected tactile images containing neg-
ligible shear features, as they are applied with small lateral
forces. Furthermore, the method primarily focuses on ac-
cepting static contact images with reference images, which
inherently contain poor information about dynamic shear
forces. Promising methods to overcome these drawbacks
may involve introducing sequential tactile images to provide
temporal information about shear displacements.

VI. CONCLUSION
In this study, we propose a deep domain adaptation regres-

sion method for force calibration of optical tactile sensors.
This method is promising to reduce the time consumed
in the data collection process and eliminate the use of
labeled tactile images collected from expensive force/torch
sensors. We also study domain gaps of marker presence,
illumination conditions, and elastomer modulus on domain
transfer performance. We believe that this work not only
provides a method for force calibration of GelSight sensors
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Fig. 5. Feature spaces visualized using tSNE from the source-only method and our domain adaptation method in (a) one domain variable, (b) two domain
variables, (c) and three domain variables.

but also holds promise for enhancing the performance of
various optical tactile sensors and tactile sensors based on
different sensing principles.
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