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Abstract. This Supplementary Material is part of the main submis-
sion Explorative Imitation Learning: A Path Signature Approach for
Continuous Environments.

1 Environments and samples
In this work, we experiment with five different environments. We
now briefly describe each environment and how the expert samples
were gathered. We used Stable Baselines 3 [9] coupled with RL
Zoo3 [8] to gather expert samples and its weights loaded from Hug-
gingFaces 1. We believe this will facilitate reproducibility by allow-
ing future work to use the exact same experts. All expert results are
displayed in Table 1 in Section 4.2 of the paper. We used a random
sample pool of 50, 000 states for all environments (partitioned into
35, 000 states for training and the remaining 15, 000 for validation).
It is important to note, that in each environment, a dimension d of
these state vectors #»v represents an internal attribute of the robot.
Therefore, although they might share a similar number of dimen-
sions, they may carry different meanings. Since Is grows in size in
each iteration, unlike Torabi et al.’s work [11], CILO does not rely on
higher sample pools. Figure 1 shows a frame for each environment.

1.1 A note about the expert samples

During our experiments, we observed that not all experts are created
equally. Although most experts trained or loaded from HuggingFace
share similar results, the behaviour of each expert varies drastically.
One could argue that humans also deviate for each trajectory, but us-
ing episodes with a more human-like trajectory (less hectic) yielded
better results for all IL approaches. By presenting less hectic and
more constant movements, we think each policy receives trajectories
that vary more and generalise better. All samples used in this work
are available in https://github.com/NathanGavenski/CILO.

1.2 Ant-v2

Ant-v2 consists of a robot ant made out of a torso with four legs
attached to it, with each leg having two joints [10]. The goal of this
environment is to coordinate the four legs to move the ant to the right
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of the screen by applying force on the eight joints. Ant-v2 requires
eight actions per step, each limited to continuous values between −1
and 1. Its observation space consists of 27 attributes for the x, y and
z axis of the 3D robot. We use Stable Baselines 3’s TD3 weights.
The expert sample contains 10 trajectories, each with 1, 000 states
consisting of 111 attributes.2 Ant-v2 shares distribution behaviour
with InvertedPendulum-v2, and Hopper-v2, having action spaced in
a bell-curve.

1.3 InvertedPendulum-v2

This environment is based on the CartPole environment from Barto
et al. [1]. It involves a cart that can move linearly, with a pole attached
to it. The agent can push the cart left or right to balance the pole by
applying forces on the cart. The goal of the environment is to prevent
the pole from reaching a particular angle on either side. The con-
tinuous action space varies between −3 and 3, the only one within
the five environments outside of the −1 to 1 limit. Its observation
space consists of 4 different attributes. We use Stable Baselines 3’s
PPO weights. The expert sample size is 10 trajectories, which consist
of 10, 000 states (with their 4 attributes) and actions (with a single
action value per step). The invertedPendulum-v2 environment is the
only one that has an expert with the environment’s maximum reward.
Therefore achieving P higher than 1 is impossible.

1.4 Swimmer-v2

This environment was proposed by [3]. It consists of a robot with s
segments (s ⩾ 3) and j = s − 1 joints. Following [14], in our ex-
periments we use the default setting s = 3 and j = 2. The agent
applies force to the robot’s joints, and each action can range from
[−1, 1] ∈ R. A state is encoded by an 8-dimensional vector rep-
resenting the angle, velocity and angular velocity of all segments.
Swimmer distributions present the same distribution of HalfCheetah-
v2 (centred around the lower and upper limits). We used Stable Base-
lines 3’s TD3 weights. The expert sample contains 4 trajectories,
with 1, 000 states each plus actions for the j = 2 joints. The goal
of the agent in this environment is to move as fast as possible to-
wards the right by applying torque on the joints and using the fluid’s
friction.
2 With their 111 different attributes - MuJoCo implementation has 27 posi-

tions with values and the rest with 0).
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Figure 1. A single frame for each environment used in this work.

Table 1. Layers for each neural network used in this work, where d is the number of dimensions for each state, | a | is the number of actions, and | β | is
given by Eq. 6.

M πθ D
Layer Name Input × Output Layer Name Input × Output Layer Name Input × Output

Input 2d× 512 Input d× 512 Input | β | ×512
Activation (Tanh) - Activation (Tanh) - Activation (Tanh) -
Fully Connected 1 512× 512 Fully Connected 1 512× 512 Fully Connected 1 512× 512
Activation (Tanh) - Activation (Tanh) - Activation (Tanh) -
Self-Attention 1 512× 512 Self-Attention 1 512× 512 Dropout 0.5%
Fully Connected 2 512× 512 Fully Connected 2 512× 512 Fully Connected 2 512× 512
Activation (Tanh) - Activation (Tanh) - Activation (Tanh) -
Self-Attention 2 512× 512 Self-Attention 2 512× 512 Dropout 0.5%
Fully Connected 3 512× 512 Fully Connected 3 512× 512 Output 512× 2
Activation (Tanh) - Activation (Tanh) -
Fully Connected 4 512× 512 Fully Connected 4 512× 512
Output 512× | a | Output 512× | a |

1.5 Hopper-v2

Hopper-v2 is based on the work done by [4]. Its robot is a one-
legged two-dimensional body with four main parts connected by
three joints: a torso at the top, a thigh in the middle, a leg at the
bottom, and a single foot facing the right. The environment’s goal is
to make the robot hop and move forward (continuing on the right tra-
jectory). A state consists of 11 attributes representing the z-position,
angle, velocity and angular velocity of the robot’s three joints. We
used Stable Baselines 3’s TD3 weights and 10 expert episodes, each
with 1, 000 states and actions for the three joints. Each action is lim-
ited between [−1, 1] ∈ R.

1.6 HalfCheetah-v2

HalfCheetah-v2’s environment was proposed in [12]. It has a 2-
dimensional cheetah-like robot with two “paws”. The robot contains
9 segments and 8 joints. Its actions are a vector of 6 dimensions,
consisting of the torque applied to the joints to make the cheetah run
forward (“thigh”, “shin”, and “paw” for the front and back parts of
the body). All states consist of the robot’s position and angles, veloc-
ities and angular velocities for its joints and segments. HalfCheetah-
v2’s goal is to run forward (i.e., to the right of the screen) as fast
as possible. A positive reward is allocated based on the distance tra-
versed, and a negative reward is awarded when moving to the left of
the screen. We used Stable Baselines 3’s TD3 weights. The expert
sample size is 10 trajectories, each consisting of 1, 000 states and
actions. Each action is limited between the interval of [−1, 1] ∈ R.

2 Network Topology

We followed the same network topologies employed in the original
works. Each model (M and πθ) are MLP with 4 fully connected
layers, each with 512 neurons, with the exception of the last layer
whose size is the same as the number of environment actions, Table 1
displays the topologies alongside the input and output sizes of each
layer. Following the implementation in [5], we used a self-attention
module after the first and second layers. We experimented with nor-
malisation layers during development, which did not increase the
agents’ results but helped with weight updates. Although we un-
derstand that having more complex architectures could increase our
method’s performance, for consistency we used the same original ar-
chitecture to show that CILO achieves expert results and does not
rely on the architecture. The implementation of our method can be
found within https://github.com/NathanGavenski/CILO.

3 Training and Learning Rate

For training, we used a Nvidia A100 40GB GPU and PyTorch. Al-
though we used this GPU, such hardware is not strictly required since
CILO uses ≈ 2GB to train with a 1024 mini-batch size. The learn-
ing rates for M and πθ are shown in Table 2. We note that CILO is
robust to different learning rates for πθ . However, M is more sensi-
tive since Is changes at almost every iteration, assuming there is at
least one agent’s trajectory that D classifies as expert. Having a high
learning rate can make M’s weights update too harshly and result in
CILO never learning how to label the T πψ properly.



Table 2. Different learning rates for M and πθ for all environments.

Environment M πθ Signature k

Ant 1× 103 1× 103 2

InvertedPendulum 1× 103 1× 103 4

Swimmer 3× 103 7× 104 4

Hopper 5× 103 1× 103 4

HalfCheetah 1× 103 7× 104 4

4 Path Signatures
In this work we rely on several path signature definitions to discrim-
inate over agent and expert trajectories. In Section 3.2 of our paper,
we briefly defined a trajectory τ , in which each state is a vector #»v in
Rd, and how to compute the path signature β(τ)

i1,··· .ik
1,n , where n is

the length of the trajectory, and i1, · · · , ik ∈ {1, · · · , d} (k > 1) are
indices to elements in #»v . Here, we provide some additional informa-
tion on the process of computing a path signature and the intuition
behind it.

4.1 Computing the Path Signature

Given a trajectory τ and a function f that interpolates τ into a con-
tinuous map f : R → R, the integral of the the trajectory against f
can be defined as:∫ n

1

f(τt)dτt =

∫ n

1

f(τt)τ̇tdt, (1)

where τ̇t = dτt
dt

for any time t ∈ [1, n]. Note that f(τt) is a real-
valued path defined on [1, n], which can be considered the integral
of a trajectory τ . Moreover, if we consider that f(τt) = 1 for all t ∈
[1, n], then the path integral of f against any trajectory τ : [1, n] →
R is simply the increment of τ :∫ n

1

dτt =

∫ n

1

τ̇ dt = τn − τ1. (2)

Therefore, by assuming that β is a function of real-valued paths,
we can define the signature for any single index ik ∈ {1, · · · , d} as:

β(τ)
ik
1,n =

∫
1<s⩽n

dτ ik
s = τ ik

n − τ
ik
1 , (3)

which is the increment of the ik-th dimension of the path. Now, if we
move to any pair of indexes ik, jk ∈ {1, · · · , d}, we have to consider
the double-iterated integral:

β(τ)
ik,jk
1,n =

∫
1<s⩽n

β(τ)
ik
1,sdτ

jk
s =

∫
1<r⩽s⩽n

dτ
ik
t dτ jk

s , (4)

where β(τ)
ik
1,s is given by Eq. 3. Considering that β(τ)ik,jk1,n con-

tinues to be a real-values path, then we can define recursively the
signature function for any number of indexes k ⩾ 1 in the collection
of indexes i1, · · · , ik ∈ {1, · · · , d} as:

β(τ)
i1,··· ,ik
1,n =

∫
1<s⩽n

β(τ)
i1,··· ,ik−1
1,s dτ ik

s , (5)

which in our paper is Eq. 6. It is important to note that k is the depth
up to which the signature is generated (not its length). At each level
i ⩽ k, “words” of length i are generated from the alphabet D ac-
cording to Eq. 6 (main work) to produce the terms of the signature.

Figure 2c shows all possible terms for a trajectory τ : [1, n] → Rd

for different depths. For example, a signature with depth 2 will have
all the terms in the levels i = 0, 1, 2. In an alphabet with d letters,
we can construct one word of length 0, d words of length 1, and d2

words of length 2, giving 1 + d+ d2 words in total (i.e., the number
of terms in the signature). In general, the length of a signature with
alphabet size d and depth k is:

k∑
i=0

di =
dk+1 − 1

d− 1
. (6)

We observe that signatures can be computed for any depth k, and are
not restricted to k ⩽ d.

We give two examples to illustrate how the terms in a signature
are computed (we omit the level 0 whose single value 1 is fixed).
Figure 2a shows how to generate a signature of depth 1 (with the
terms in the first and second columns of Figure 2c). Considering that
the length of a signature grows exponentially with the depth k de-
sired ( d

k+1−1
d−1

), Figure 4 only shows how to calculate the terms of
a signature of depth 2 for a 2-dimensional dictionary, with the first
index fixed in 2.

s11 s21 · · · sd1

s12 s22 · · · sd2

...
...

...
...

s1n s2n · · · sdn

1 d· · ·

1

n

...

β(τ)1
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β(τ)2
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β(τ)d
1,n

(a) β(τ)i1,n | ∀i ∈ {1, · · · , d}.
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(c) Collection of signatures for τ , where k ∈ [0,∞).

Figure 2. Illustration of path signature.



4.2 A Numerical Example

Let us consider a trajectory τ with two two-dimensional states
{τ1

t , τ
2
t }, and the set of multi-indexes W = { (i1, · · · , ik) | k ⩾

1, i1, · · · , ik ∈ {1, 2} }, which is the set of all finite sequences of
1’s and 2’s. Given the trajectory τ : [1, 10] → R2 illustrated in Fig-
ure 3, where the path function for τ is computed according to the
function:

τt = {τ1
t , τ

2
t } = {5 + t, (5 + t)2 | t ∈ [1, 10]} (7)
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Figure 3. Trajectory τ : [1, 10] → R2.

For the depth k desired, the computation of the signature would be
computed as shown in Figure 4. For example, given that states in τ
are two-dimensional (d = 2), the path signature for τ with depth k =

2 will have the dk+1−1
d−1

= 23−1
1

= 7 terms in the vector β(τ)1,10 =
[ 1, 9, 189, 40.5, 970.5, 730.5, 17860.5 ].

β(τ)1,1,11,10 =

∫∫∫
1<t1⩽t2⩽t3⩽10

dτ1
t1dτ

1
t2dτ

1
t3 =

∫ t1

1

[∫ t2

1

[∫ t3

1

dt1

]
dt2

]
dt3 = 121.5

...

β(τ)1,11,10 =

∫∫
1<t1⩽t2⩽10

dτ1
t1 , dτ

1
t2 =

∫ 10

1

[∫ t2

1

dt1

]
dt2 = 40.5

β(τ)1,21,10 =

∫∫
1<t1⩽t2⩽10

dτ1
t1 , dτ

2
t2 =

∫ 10

1

[∫ t2

1

dt1

]
2(5 + t2)dt2 = 970.5

β(τ)2,11,10 =

∫∫
1<t1⩽t2⩽10

dτ2
t1 , dτ

1
t2 =

∫ 10

1

[∫ t2

1

2(5 + t)dt1

]
dt2 = 730.5

β(τ)2,21,10 =

∫∫
1<t1⩽t2⩽10

dτ2
t1 , dτ

2
t2 =

∫ 10

1

[∫ t2

1

2(5 + t)dt1

]
2(5 + t)dt1 = 17, 860.5

β(τ)11,10 =

∫
1<t⩽10

dt = τ1
10 − τ1

1 = 9

β(τ)11,10 =

∫
1<t⩽10

dt = τ2
10 − τ2

1 = 189

β(τ)1,n = 1
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Figure 4. Step-by-step computation of a path signature

4.3 Signature Properties

We now describe properties of path signatures that are most relevant
to our work. The description is not comprehensive. We recommend
the work from Yang et al. [13] and Chevyrev and Kormilitzin [2] for
a more in-depth approach to path signatures.

Uniqueness: This property relates to the fact that no two trajecto-
ries τ and τ ′ of bounded variation have the same signature unless

the trajectories are tree-equivalent. In light of the invariance under
reparametrisations [6], we note that path signatures have no tree-like
sections to monotone dimensions, such as acceleration.

Generic nonlinearity of the signature: The second property refers
to the product of two terms β(τ)i1,··· ,ik and β(τ)j1,··· ,jk , which can
also be expressed as:

β(τ)11,n · β(τ)21,n = β(τ)1,21,n + β(τ)2,11,n or,

β(τ)1,21,n · β(τ)11,n = β(τ)1,1,21,n + β(τ)1,2,11,n .
(8)

Thus, the nonlinearity of the signature in terms of low-level terms
can be expressed by the linear combination of higher-level terms,
which adds more nonlinear previous knowledge to the feature vector.
This behaviour is better exemplified in the second level of signatures
where for any β(τ)

ik,ik
1,n , the result will be

(
τ
ik
n −τ

ik
1

)2

/2.

Fixed dimension under length variations: The last property refers
to the path signature’s length invariance under different trajectory
lengths. In Section 4.1, we showed that the signature length is a func-
tion of the signature depth (k) and the number of dimensions in a
state (d). Therefore, path signatures become practical feature vectors
for trajectories in machine learning tasks, requiring different inputs
to share the same size without recurrent neural networks.

4.4 Motivation for Signatures

Given the nature of deep learning methods operating on vectorial
data, which requires the input data to be of a predetermined fixed
length, many techniques, such as word embeddings (where a word
is represented by a vector), are used to circumvent this length re-
quirement. Moreover, imitation learning tasks, by definition, have to
effectively represent expert demonstrations to capture relevant infor-
mation for learning a desired behaviour. Path signatures provide a
solution to represent sequential or trajectory-based expert demon-
stration in a principled and efficient manner.

In imitation learning, expert demonstration often takes the form
of trajectories or sequences of states over time. Path signatures of-
fer a way to encode these trajectories into high-dimensional feature
representations that capture the expert behaviour in a geometric and
analytic way. Furthermore, the uniqueness property ensures that es-
sential information about the expert demonstrations is preserved in
the path signature representation, enabling accurate discrimination
over different trajectories’ signatures. Lastly, path signatures provide
a single hyperparameter (the number of desired collections k). By
adjusting k, we can control the trade-off between representational
quality and computational complexity, allowing for efficient learning
and generalisation. However, we observe that increasing k leads to
an exponential increase in the length of the signature, which imposes
a limit to agents with limited computation resources.

4.5 Signature Time Complexity

We now briefly discuss the upper-bound complexity for computing
path signatures and compare it to Pavse et al.’s work [7], which com-
putes the averages of the trajectory states. Given Eq. 5 and Fig. 2, it
should be easy to see that path signatures can be computed in time
O(t · dk), where t is the number of samples in a trajectory, d is the
number of dimensions, and k is the depth of the signature. In con-
trast, Pavse et al.’s work [7] uses the average over the current and
previous states. This does not work well when different trajectories



average to the same value, but it is not an issue for signatures due to
their uniqueness. Using averages is not an issue in Pavse et al.’s work
(or in IRL in general), which computes an artificial reward signal at
each timestep. However, it also quickly becomes costly because the
method computes the average of all sub-trajectories t times at each
epoch and trajectories are traversed multiple times (O(d · t3)). The
cost of computing signatures increases linearly with respect to the
episode length, whereas the cost of computing Pavse et al.’s averages
increases exponentially. Moreover, path signatures increase exponen-
tially according to the number of dimensions d, which is constant
for all environments. The main parameter affecting the cost of com-
puting signatures in CILO is the depth k. Fig. 5 compares the costs
for Ant-v2 — the environment with the largest state representation
(d = 111). The figure shows that the cost of computing signatures
is lower than that of computing averages for signatures with depth
up to 5. In Ant-v2 (the environment with the highest number of di-
mensions) with signature depths up to 5 and episode length at least
729, the cost of computing signatures is lower than computing Pavse
et al.’s averages. Moreover, recall we only needed to use depth 2 to
obtain superior performance.
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Figure 5. Upper-bound time complexity for signature computation and
average.
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