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Deep Convolutional Backbone Comparison for 
Automated PET Image Quality Assessment 

 
Jessica B. Hopson, Anthime Flaus, Colm J. McGinnity, Radhouene Neji, Andrew J. Reader* and Alexander 

Hammers* 

Abstract— Pretraining deep convolutional network 
mappings using natural images helps with medical imaging 
analysis tasks; this is important given the limited number of 
clinically-annotated medical images. Many two-
dimensional pretrained backbone networks, however, are 
currently available. This work compared 18 different 
backbones from 5 architecture groups (pretrained on 
ImageNet) for the task of assessing [18F]FDG brain Positron 
Emission Tomography (PET) image quality (reconstructed 
at seven simulated doses), based on three clinical image 
quality metrics (global quality rating, pattern recognition, 
and diagnostic confidence). Using two-dimensional 
randomly sampled patches, up to eight patients (at three 
dose levels each) were used for training, with three separate 
patient datasets used for testing. Each backbone was 
trained five times with the same training and validation sets, 
and with six cross-folds. Training only the final fully 
connected layer (with ~6,000–20,000 trainable parameters) 
achieved a test mean-absolute-error of ~0.5 (which was 
within the intrinsic uncertainty of clinical scoring). To 
compare “classical” and over-parameterized regimes, the 
pretrained weights of the last 40% of the network layers 
were then unfrozen. The mean-absolute-error fell below 0.5 
for 14 out of the 18 backbones assessed, including two that 
previously failed to train. Generally, backbones with 
residual units (e.g. DenseNets and ResNetV2s), were suited 
to this task, in terms of achieving the lowest mean-absolute-
error at test time (~0.45 – 0.5). This proof-of-concept study 
shows that over-parameterization may also be important 
for automated PET image quality assessments.  

 
Index Terms— Convolutional neural networks, Deep learning, 

Image quality, Image reconstruction, Transfer learning  
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I. INTRODUCTION 

RANSFER-learning is defined as applying the features 
learned from an original problem to a new problem, 
often used when the new training dataset is too small 

[1]. Using a pretrained network (i.e. one that has been trained 
on a separate image database, for example, a natural image 
database such as ImageNet [2]), and then transfer-learning to a 
new dataset is a popular method in the computer vision field 
[3], [4]. Pretraining can also help to overcome the limited 
training data associated with the medical imaging field [5], for 
example in positron emission tomography (PET) imaging [6], 
arising from the associated processing and time costs [7].  

Pretrained convolutional neural network (CNN) backbones 
have been useful for the task of transfer learning from natural 
two-dimensional images to medical images [8]–[10]. There are 
multiple established backbones available that have been 
pretrained on the ImageNet database, however, there is debate 
over the best performing model and different conclusions are 
drawn for different tasks. For example, the Inception [11], [12] 
family of architectures was the most used in medical imaging 
classification tasks [13]. Tamilarasi and Gopinathan [14] 
showed that using the InceptionV3 architecture outperformed 
VGG16 [15] for the task of binary classification of 200 
magnetic resonance (MR) brain images into “abnormal” or 
“normal”, achieving an accuracy of 95.1% compared to 92.8%. 
The authors reasoned that the Inception architecture is wider 
(more and larger kernels) than and not as deep (fewer layers) as 
the VGG16 architecture and may have improved model 
performance on test data, as more feature maps were generated, 
hence, more image features were captured. However, other 
studies show that networks, such as VGG16 that are also used 
widely in the literature, may outperform Inception networks. 
For example, using a VGG16 architecture with pretraining via 
ImageNet achieved a 97.7% accuracy when classifying 
cytological images as papillary thyroid carcinoma or benign, 
compared to 92.8% for InceptionV3 [16]. In contrast to 
Tamilarasi and Gopinathan [14], Yadav and Jadhav [17] 
showed VGG16 pretrained via ImageNet, outperformed 
InceptionV3 when classifying chest x-rays into “Normal” or 
“Pneumonia present”. Other studies showed pretraining may 
not be required, for example, He et al. [18], suggested that 
pretraining may not be required at all, based on detection of the 
COCO dataset, with random initialisation of models performing 
no worse than using ImageNet pretraining. Both VGG16 and 
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InceptionV3 backbones have also been used in histopathology 
image classification. It was shown that networks pretrained on 
natural images gave comparable performances to those trained 
with a large number (27,055) of histopathological images 
without pretraining [19].  

Other studies have compared multiple established backbones 
for medical imaging tasks, specifically for classification tasks. 
For example, Rahaman et al. [20] compared 15 CNN backbones 
pretrained on ImageNet in the task of classifying 2D chest X-
rays into “normal”, “pneumonia” or “COVID-19”. The authors 
used a total of 860 images for this task (a 
training:validation:testing split of 70:15:15 percent), and found 
that VGG19 [15] performed the best for this task [20]. This is 
in agreement with Naz et al. [21], who compared 11 different 
CNN backbones and froze only the first few layers to obtain 
general features. The task was classifying MRI brain images 
into “mild cognitive impairment vs. Alzheimer’s disease”, 
“Alzheimer’s disease vs. normal controls” and “mild cognitive 
impairment vs. normal controls”. The authors found that 
VGG19 [15] performed best for mild cognitive impairment vs. 
Alzheimer’s disease (99.27% accuracy), and VGG16 [15] 
performed best for the other two classifications (98.89% and 
97.06% accuracy, respectively). Work by Shakhovska and 
Pukach [22] compared 5 different pretrained backbones for the 
task of diagnosing MRI knee images. This work found that 
different backbones worked best for different slice orientations 
and specific diagnoses. Similarly, Zebin and Rezvy [23] 
compared three different pretrained backbones (VGG16 [15], 
ResNet50 [24] and EfficientNetB0 [25]) for the task of 
classifying 2D chest X-rays into either “COVID-19” or 
“Pneumonia”. This study used these pretrained backbones as 
feature extractors, adding a new encoding layer, and found 
accuracies of 90%, 94.3% and 96.8% for VGG16, ResNet50 
and EfficientNetB0, respectively. This was in contrast to 
Shakhovska and Pukach [22] who found that EfficientNet 
performed the worst for their task. However, in both studies, the 
number of backbones compared was limited. 

Most research has been carried out in fields such as computed 
tomography (CT), MRI and microscopy [13], but there is very 
little work carried out on positron emission tomography (PET) 
[26]–[29] imaging and on image quality assessment tasks. 
However, clinical PET image quality assessment is important, 
especially in low-count PET reconstructions as this can cause a 
loss of resolution and increased noise [28], [30], [31], resulting 
in the image being unable to be used clinically. Low-count 
imaging may become an important tool to overcome radiation 
dose concerns. Reducing the radiation dose decreases the 
associated cancer risk for the patients [32], and the amount of 
radioligand needed, lowering the cost of manufacturing to Good 
Manufacturing Practice standards [33]. Automated evaluation 
of these low-count PET images alleviates organisational 
pressures on clinicians to read these images, and provides rapid 
assessments for large-scale reconstruction studies. 

This work builds upon previous work by the authors [6], 
whereby an in-depth study into the impact of pretraining of the 
VGG16 backbone was carried out. The conclusion of Hopson 
et al. [6] was that including pretraining from a natural image 

database outperformed no pretraining for the task of automated 
PET image quality assessment. Retraining the last two 
convolutional blocks of the VGG16 backbone further improved 
model performance. This was in agreement with Singh et al. 
[34], who showed that for the task of detection of critical enteric 
feeding tube malposition in radiographs, pretraining the 
InceptionV3 architecture via the ImageNet database improved 
the area under the curve by 0.27 compared to training the same 
architecture without pretraining. These findings are also in 
agreement with Zhou et al. [35], who showed that unfreezing 
some of the weights of the InceptionV3 network (those after the 
“mixed 6” layer), improved model performance, achieving a 
maximum accuracy of 0.97.  

The aim of this work was to provide a comprehensive 
comparison of the available CNN backbones pretrained via 
ImageNet for transfer learning from the natural image to the 
medical imaging field, specifically for the task of automated 
PET clinical quality assessment, for two-dimensional images. 
This will both target the paucity of literature for PET, and 
analyse multiple backbones, building on previous literature 
where only a few pretrained backbones were compared. 
Previous work [6] demonstrated that a balance between 
pretraining on ImageNet and re-training the architecture gave 
the best performance, thus, the impact of the level of pretraining 
for different backbones will also be investigated. This study 
aims to quantify what drives performance improvements of 
transfer-learned models from natural images to medical images, 
including model performance as a function of the number of 
trainable parameters, architecture and training regime. 

II. METHODS AND MATERIALS  

A. Patient Dataset and Reconstruction 

The same memory clinic patient dataset consisting of 13 
patients was used as in Hopson et al. [6]. Each patient 
underwent both a PET-CT scan (acquired on a Discovery 710 
PET-CT (General Electric, Chicago, USA)) and a PET-MR 
scan (acquired on a Biograph mMR simultaneous PET-MR 
(Siemens, Erlangen, Germany, field strength = 3T)), at the 
King’s College London & Guy’s and St Thomas’ PET Centre, 
as part of a wider study. The dataset was acquired by Dr Colm 
J. McGinnity and [18F]FDG was used as the radioligand in both 
the PET-CT and PET-MR scans. PET-MR scanning 
commenced 98±26 minutes post-injection of [18F]FDG. The 
MR images were acquired using a 3D T1-magnetisation-
prepared gradient-echo (MP-RAGE) sequence for a duration of 
30 minutes per patient. The patient demographics are shown in 
Table I.  

To reconstruct each patient dataset, Siemens e7 tools was 
used, using ordered subset expectation maximization (OSEM) 
with 2 iterations and 21 subsets to reconstruction into a matrix 
size of 344 × 344 × 127 voxels (voxel size of 2.09 × 2.09 × 2.09 
mm3). The reconstructions has a 4mm post-reconstruction 
Gaussian filter applied, as per clinical standard. Each patient 
dataset was reconstructed at seven different count levels (0.5%, 
1%, 5%, 10%, 25%, 50% and 100%), by resampling the list-
mode PET data [36] (Fig. 1), simulating a range of lower 
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injected doses administered to each patient. The clinicians were 
given 3 of the 7 count levels for each patient for clinical scoring 
(section II.C).  

 
 

TABLE I 
PATIENT DEMOGRAPHICS 

 

 

 
Fig. 1.  The same example cropped slice reconstructed with 
different percentages of counts, simulating 7 dose levels. The 
units of the values given in the colour bar are Bq/ml. 

B. Preprocessing Protocol  

Once reconstructed, all 3-D images were normalised between 
0 and 1, to preserve the relationships among the original data 
values and bring all reconstructions to the same range prior to 
presentation to the network. The data were presented to the 
network as randomly extracted 2-D patches of size 80 × 80 to 
reduce the computational time of model training. Per 
reconstruction, 1000 patches were extracted from each of the 
sagittal, coronal and transverse planes, ensuring the whole of 
the 3-D volume was represented. A thresholding algorithm, 
inspired by [37] was applied, preventing the use of background-
dominated patches. The average pixel value of both the patch 
and the whole image volumes were compared: if the average 
pixel value of the patch was <1/8th of that of the whole image 
volume, then the patch was deemed as background and rejected. 
Within the initial 1000 patches per plane per reconstruction, 

~200-500 were deemed non-background, thus 300 patches (100 
per plane) per reconstruction were randomly chosen.  

C. Clinical Evaluations  

The whole image volumes were randomized and blinded upon 
presentation to 2 experienced clinicians. To reduce the time 
taken to carry out the clinical evaluations, the count levels were 
grouped into “low quality” (0.5% and 1%), “medium quality” 
(5% and 10%) and “high quality” (25%, 50% and 100%). A 
total of 13 patients at 3 different count levels (1 per group) 
were assessed by the 2 clinicians. This study could be 
classified as covering proof-of-concept evaluation and 
technical evaluation in the RELIANCE framework and used 
objective tasked-based clinical assessment [38], with the 
clinician defining the task on which the models were clinically 
evaluated. The clinicians scored each of the images based on 3 
clinical quality scores designed by the authors [6]. These 
metrics were designed specifically by the authors in order to 
incorporate what the clinicians need to observe in a 
reconstruction to make a diagnosis. All three metrics have 
equal clinical relevance, as they all provide a different aspect 
of what is important about a reconstruction. These metrics 
were global quality rating (GQR), dominated by visual 
qualities such as sharpness and noise, pattern recognition (PR) 
used to judge whether any pathological patterns associated 
with memory problems were detectable, and diagnostic 
confidence (DC), used to determine if the image can be used 

to make an accurate diagnosis. These clinical metrics were 
scored as: 0 (“unacceptable”), 1 (“poor but useable”), 2 
(“acceptable”) or 3 (“good/excellent”), with 0.5 scores allowed. 
The clinicians agreed within 0.5 (within label noise) for 91% of 
the images. A consensus reading session was carried out with 
both clinicians to discuss the images with the greatest 
discrepancies (i.e. ≥1). These agreed scores were then used (10 
out of 117 total clinical scores); all other images used an 
average of the 2 clinicians’ scores (107 out of 117 total clinical 
scores).  

D. Training the Deep Learning Backbones  

A total of 18 different established backbones were 
investigated (Table II). These backbones were chosen to ensure 
that 5 different architecture groups were investigated, and 
networks within in each group had with a different number of 
layers. For each of the models, the original encoding layers 
were replaced by a single flatten layer and fully connected 
layer. The encoding layers were changed to predict the 3 
clinical metrics for this medical imaging task, instead of 
classifying natural images into 1000 different classes 
(summarised in Fig. 2). An Adam optimizer with a learning rate 
of 10-4 was used, with a batch size of 10 and a mean-squared-
error loss function (given by Equation 1).  
 

𝑀𝑆𝐸 =  
1

𝑛
෍(𝑦௜ − 𝑦ො௜)

ଶ

௡

௜ୀଵ

 (1) 

 
Where ŷi is the ith estimated value, y is the corresponding true 

value, and n is the number of samples. 

Patient 
Number Sex Age Weight (kg) 

Injected 
FDG Dose 

(MBq) 
1 Female 61 64 221.71 
3 Female 64 58 240.00 
5 Female 71 51 213.18 
6 Male 68 100 234.8 
10 Male 51 74 244.37 
17 Male 58 83 189.76 
27 Female 51 77 242.72 
32 Male 62 92 229.15 
37 Male 46 91 233.41 
48 Female 58 94 212.82 
54 Male 61 103 246.00 
60 Male 43 77 234.34 
64 Male 77 80 228.75 
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Models were trained for 1000 epochs and saved only at the 

epoch where the validation loss was lowest. Initially, only the 
fully connected layer was retrained, with all weights initialised 
from ImageNet. The training dataset consisted of a maximum 
of 8 different patients at 3 dose levels each (24 reconstructions, 
equating to 7200 80 × 80 patches). A validation dataset 
consisting of two different patients at three dose levels each 
(total of six reconstructions, equating to 1800 patches of size 80 
× 80) was used. Both cross-fold validation (running each model 
6 times each with 2 different patients used for validation each 
time) and ensemble (running the same model 5 times with the 
same training and validation sets) methods were used (leave-
one-out cross-fold validation). A further 3 unseen patients at 3 
dose levels each (2700 patches) who were not included in the 
model training were used for testing. 

 
TABLE II 

TRAINABLE PARAMETERS WHEN ONLY THE FULLY CONNECTED 

LAYER WAS TRAINABLE 
Model Name # Trainable Parameters 

DenseNet121 [39] 12,291 

DenseNet169 [39] 19,971 

DenseNet201 [39] 23,043 

InceptionResNetV2 [12] 4,611 

InceptionV3 [11] 6,147 

MobileNet [40] 12,291 

MobileNetV2 [41] 34,563 

MobileNetV3Large [42]  3,843 
MobileNetV3Small [42] 3,075 

ResNet101 [24]  55,299 
ResNet101V2 [43] 55,299 

ResNet152 [24] 55,299 
ResNet152V2 [43] 55,299 

ResNet50 [24] 55,299 
ResNet50V2 [43] 55,299 

VGG16 [15]  6,147 
VGG19 [15] 6,147 
Xception [44] 55,299 

E. Modifications to Training  

The training protocol was adapted to investigate the impact of 
pretraining level. This was achieved by initializing the network 
with ImageNet weights and freezing the weights of the first 
60% of network layers (Table III), in line with Hopson et al. 
[6], which found that unfreezing the last 2 blocks of a VGG16 
backbone (i.e. the last 40% of layers) achieved the best 
performance on unseen data. The same training and validation 
sets as in section II.D were used, enabling a direct comparison.  

F. Evaluation Metric and Implementation 

Each model was tested on the same 3 patients at 3 dose levels 
each, with the mean-absolute-error (MAE) used for evaluation 
(given by Equation 2). 

𝑀𝐴𝐸 =  
1

𝑛
෍|𝑦௜ − 𝑦ො௜|

௡

௜ୀଵ

 (2) 

 
Where ŷi is the ith estimated value, y is the corresponding true 

value, and n is the number of samples. 
 
Siemens e7 tools implemented in MATLAB (The 

Mathworks, Inc.) was used for reconstruction. All models were 
trained in TensorFlow [45] using the Keras [1] application 
programming interface. An NVIDIA Quadro RTX6000 24GB 
GPU or an NVIDIA DGX system was used. 

 
TABLE III 

TRAINABLE PARAMETERS AFTER FREEZING THE WEIGHTS OF 

THE FIRST 60% OF LAYERS 

III. RESULTS 

A. Comparison of Backbones as a Function of the Number of 
Trainable Parameters and Training Pairs 

For the 18 different architectures considered in this work 
(Table II), Fig. 3 shows the minimum validation loss during 
training when all pretrained ImageNet weights were frozen and 
only the final fully connected layer was trained with 8 patients. 
A minimum validation loss of ~ 0.5 (within label noise) was 
achieved for 14/18 backbones. Fig. 4 shows the impact of the 
number of training pairs on the training MAE for the 18  
backbones. The boxplots were calculated over 6 cross-folds. 
The subplots have also been ordered to left-to-right, and top-to-
bottom in terms of number of trainable parameters, when only 
training the fully connected layer, such that MobileNetV3Small 
(top-left) has the fewest trainable parameters, whereas from 
ResNet101 to Xception have the largest number of trainable 
parameters (bottom-right).

 
 
 

Model Name # Trainable Parameters 
DenseNet121 [39] 3,811,075 

DenseNet169 [39] 6,958,019 

DenseNet201 [39] 10,425,859 

InceptionResNetV2 [12] 36,295,171 
InceptionV3 [11] 15,106,307 
MobileNet [40] 2,675,715 

MobileNetV2 [41] 1,993,731 
MobileNetV3Large [42]  2,645,491 

MobileNetV3Small [42] 770,755 
ResNet101 [24]  26,484,227 

ResNet101V2 [43] 26,471,939 
ResNet152 [24] 34,314,755 

ResNet152V2 [43] 34,298,883 
ResNet50 [24] 19,243,267 

ResNet50V2 [43] 19,234,307 
VGG16 [15]  12,985,347 
VGG19 [15] 16,524,803 

Xception [44] 12,761,595 



5 
 

 
Fig. 2.  Schematic of the deep-learned network. A patch is inputted into the CNN backbone (Table II), which extracts features that 
lie in a low-dimensional space (latent space). A flatten layer is then used to change the dimensionality. The fully connected layer 
connects the latent space with the final output. 

 
For each backbone, the boxplots for training error at the point 

of lowest validation loss are shown for n = 1, 4 and 8 patients 
in the training dataset. The x-axis represents the number of 
patients from which the patches were extracted for training. For 
example, n = 1 was equivalent to 900 individual patches, and 
n=8 was equivalent to 7200 individual patches. If the model 
failed to train (i.e. did not fit to the training data), then the MAE 
oscillated close to the theoretical maximum (~1.3) (random 
labels). If the model succeeded in training, the error reduced 
close to 0, regardless of the number of patients in the training 
dataset. For example, the MAE for ResNet152 consistently 
oscillated around 1.3, compared to below 0.5 for e.g. 
DenseNet121. ResNetV2s had a training error close to 0, 
whereas the ResNetV1s failed to train (except for ResNet101). 

Fig. 5 shows the impact of the amount of training data (up to 
and including 8 patients) on the generalisation to unseen test 
data, over the same 6 cross-folds as used in Fig. 4. A decreasing 
MAE with more data in the training dataset was expected. For 
the majority of the architectures, the MAE did decrease with an 
increasing number of training pairs. There were a few 
exceptions, for example, ResNet152 and ResNet50, whereby 
the test MAE tended to oscillate around the theoretical 
maximum MAE of 1.3, consistent with their failure to train 
(Fig. 4). The graphs were ordered by the number of trainable 
parameters in the network, with the fewest in the top left, and 
most in the bottom right. Generally, for all sizes of the training 
dataset, the MAE tended to decrease between InceptionV3 and 
DenseNet169, corresponding to a number of trainable 
parameters of 6,147 to 19,971, with the exception of Xception. 
By comparing Figs. 4 and 5 those models that were able to train 
(low training MAE) resulted in a better test MAE and had a 
much smaller interquartile range than those that did not (Fig. 5). 

The CoV measured the spread in the predictions for each 
metric (Fig. 6). A CoV of 0 for MobileNetV3Small, VGG16, 
VGG19, ResNet152, and ResNet50, indicated a failure to train 
for all or some metrics (grey in Figs. 4 and 5); these models 
were omitted from Fig. 6. As the number of patients in the 
training dataset increased, the CoV decreased for all metrics. 

A single cross fold training was run 5 times (Fig. 7) for further 
validation. Similarly to Fig. 5, the MAE decreased with more 
patients, for models between VGG16 to DenseNet169 (6147 to 
19971 trainable parameters), where the MAE consistently fell 
below 0.5 i.e. within label noise. The error was more erratic 
outside this range, again with the exception of Xception. 

 

Fig. 3.  Minimum validation loss (mean-squared-error) of 
models. Pretrained weights were frozen and only the fully 
connected layer was trained. 

B. Training as a Function of Frozen Weights 

  Fig. 8 shows the impact of freezing only the pretrained weights 
of the first 60% of layers for a single cross-fold. Apart from 
4/18 backbones tested (VGG19, ResNetV1s), freezing the 
weights of the first 60% of layers improved the MAE to ≤0.5, 
compared to 7 when training only the fully connected layer. 
MobileNetV3Small showed the largest improvement (from 
0.89 to 0.44).  

IV. DISCUSSION 

Each backbone was initially evaluated on a validation dataset 
consisting of two patients. With the exception of 
MobileNetV3Small, ResNet101, ResNet50 and VGG19, all 
other backbones achieved a minimum validation loss of ~0.5 
(Fig. 3). Later versions of architectures performed better on the 
validation dataset than their earlier counterparts. Increasing the 
number of patients in the training dataset, caused the test MAE 
to decrease (Fig. 4). This was the case for most architectures, 
but was most clearly shown for VGG16 and MobileNet. A 
larger dataset can improve model performance because it 
reduces the risk of overfitting to the training dataset [46]. For 
VGG16, Fig. 4 is in line with Hopson et al. [6], which showed 
that only training the fully connected layer of the VGG16 
backbone network failed to generalise well to unseen data, 
which was due to the model failing to fit to the training data. 
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Fig. 4.  Training mean-absolute-error (MAE) at minimum validation loss for each of the architectures, training only the fully 
connected layer for n = 1, 4 and 8 patients in the training dataset, for 6 cross-folds. The brackets indicate the number of trainable 
parameters. Dashed lines: theoretical maximum MAE of 1.3 (random labels) and theoretical minimum MAE of 0.5 (label leniency) 
.Orange line = median, outliers = circles. All models are ordered in terms of the number of trainable parameters, (fewest in top 
left, most in bottom right). Greyed plots = failed to train correctly, not used in Fig. 6. 
 

 
 
Fig. 5.  The impact of the amount of training data (up to and including 8 patients) on the generalisation (in terms of mean-absolute-
error (MAE)) to unseen test data, over the same 6 cross-folds as used in Fig. 4. Only the fully connected layer was trained. The 
model backbone name is given above each plot, with the brackets indicating the number of trainable parameters in each model. 
Dashed lines: theoretical maximum MAE of 1.3 (random labels) and theoretical minimum MAE of 0.5 (label leniency). Orange 
line = median, outliers = circles. All models are ordered in terms of the number of trainable parameters, (fewest in top left, most 
in bottom right). Greyed plots = failed to train correctly, not used in Fig. 6. 
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Fig. 6.  Coefficient of variation (CoV) of the predicted quality 
metrics (global quality rating (GQR), pattern recognition (PR) 
and diagnostic confidence (DC)) averaged over all backbones 
as a function of the number of patients in the training dataset. 
Those with a CoV of 0 were omitted (see section III.A). 

 
  
The CoV for each metric, and so the variation in the 

predictions, decreased with more patients (Fig. 6), in line with 
Sharma and Mehra [47], who showed larger training datasets 
improved model robustness.  

When only training the fully connected layer, the model 
performance was best in terms of MAE between approximately 
6,000 to 20,000 trainable parameters (Fig. 5). Some backbones, 
such as DenseNet201, had an increase in MAE with an 
increasing number of patients in the training dataset. This was 
perhaps because the model did not have enough capacity to fit 
to an increased amount of training data. However, this may also 
be due to random variation in the multiple training runs, as there 
was no difference in the training errors between different 
numbers of patients, i.e. the standard deviations overlapped. 
The worst performing models were outside of this range, 
creating a “U-shape”, with ResNet152 and ResNet50 having the 
highest MAEs. The only exceptions were for the ResNetV2s 
and Xception. This high MAE can be explained by the training 
error (Fig. 4). For these models, the training error oscillated 
around the theoretical maximum MAE of ~1.3, i.e. they failed 
to fit to the training data, meaning that the resulting test error 
also oscillated around this MAE. For all six cross-folds, the 
training and test error still oscillated around the theoretical 
maximum MAE of ~1.3. Conversely, for the models with 6,000 
to 20,000 trainable parameters, the training MAE was 
consistently ≤ 0.5 (Fig. 4), within the leniency for the labels, 
suggesting an optimal number of trainable parameters to 
achieve the best model performance for this task. This was 
perhaps because with fewer trainable parameters, the model did 
not have capacity to generalise well to the unseen data. 
Classically, however, too many trainable parameters can cause 
overfitting to the training data [48], and generalisation issues 
[49], to unseen test data. 

A similar trend was shown when using ensembles (Fig. 7), 
with the variation in each trained backbone arising from 
stochastic optimisation and the varied presentation order of the 
data. Generally, with more patient in the training dataset, the 

lower the test MAE. Similarly to Fig. 5, a “U-shape” curve was 
shown as a function of the number of trainable parameters, 
supporting the idea that too few or too many trainable 
parameters may be detrimental to the model performance at 
test-time. Thus, it could be concluded from this result that when 
using established networks and only modifying the encoding 
layers, trainable parameters are one of the driving forces that 
improve performance at test-time. The lower MAE achieved by 
the ResNetV2 architectures compared to their corresponding 
V1s (Figs. 5 and 7) may be explained by the fact that these 
architectures were designed to overcome the problem of model 
performance degradation with increasing model depth [24]. 
Compared to ResNetV1s, ResNetV2s remove the last non-
linearity from the residual unit, creating a direct path between 
the input and output as an identity mapping, improving the 
accuracy of the model [43]: model performance should not 
degrade with increasing depth, improving generalization to 
unseen data. This explains [39] the lower MAE achieved by the 
DenseNets, as they were designed such that the feature maps 
from all preceding layers were the inputs into subsequent 
layers. Xception also makes use of residual connections and 
removes intermediate activation functions. Thus, backbones 
with residual connections and that remove non-linearity 
functions are important for use as feature extractors.  

However, one limitation of this study is that perhaps there 
may be some overlap in the appearance of some patches, as they 
were extracted from similar regions, which may cause some 
overfitting of the model to the training data. Additionally, it 
would be preferable to have greater than 13 independent 
patients, to draw more robust conclusions, but this study may 
be used as a proof-of-concept study. Nevertheless, this number 
of patients is comparable to other studies, such as Corda et al. 
[50]. 

By pretraining on ImageNet but unfreezing the weights of the 
last 40% of layers, the MAE at test-time decreased for 14/18 
architectures (Fig. 8). This was in agreement with Hopson et al. 
which used the VGG16 backbone [6], but this study also 
showed it held true for other backbones. Unfreezing some 
weights achieved a balance between using ImageNet-specific 
features, whilst also maintaining the benefit of pretraining on a 
large number of images [6], [51], [21]. We speculate that whilst 
very numerous, the number of possible smaller-scale lower-
level features (such as noise textures) is ultimately relatively 
limited for images coming from any domain, and therefore 
these low-level features (captured by the early layers of the 
CNN) are generally shared by both natural and medical images. 
The relative amounts of these small scale features differ 
between natural images and PET images, but detection of these 
small common features can be learned even by considering only 
natural images. It is only the later layers of the CNN encoder 
that need to be different to accommodate the different broader 
level feature differences of brain PET images, and therefore, 
this could be why we found that unfreezing and fine tuning 
these later layers gave performance improvements. The models 
were then in the “modern” regime [52] [49] (training data was 
memorised [53]), as the maximum number of samples (7200) 
was much lower than the number of trainable parameters. In the 
“classical” regime, the training data is not memorised [54]. 
Thus, the “modern” regime may improve model performance. 
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Fig. 7.  The mean-absolute-error (MAE) for an ensemble of retrained networks (retrained 5 times) for unseen test data at minimum 
validation loss for each architecture, as a function of the number of patients in the training dataset. Dashed lines: theoretical 
maximum and minimum MAE. Coloured sets: different training runs. Solid line: average of the 5 training runs. 

 
Fig. 8.  Mean-absolute-error (MAE) for test data at minimum validation loss for each architecture, when freezing the weights of 
all layers except the fully connected (FC) layer (dark grey) or of the 1st 60% of layers (light grey). Orange dashed line = number 
of trainable parameters when unfreezing the weights of the last 40% of layers. 
 

V. CONCLUSION 

Multiple backbones can be used for transfer-learning from a 
natural image database to a small medical imaging dataset. 
When pretraining via ImageNet and freezing all weights, 
models with ~6000-20000 trainable parameters achieved the 
lowest MAE. When unfreezing the weights of the last 40% of 
layers, model performance improved for 14/18 architectures. 
Models with residual units (e.g. DenseNets and ResNetV2s), 
were suited to this task, as was the over-parameterized regime. 
Future work may include applying these initial findings to other 
similar tasks, to determine their generalisability, and potentially 
comparing to handcrafted features. Future work may also cross 
into explainable artificial intelligence [55]–[57], whereby the 
interpretation of the images by the model could be explored. 
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