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Abstract

In this work we explore a new framework for approximate Bayesian inference in large datasets
based on stochastic control. We advocate stochastic control as a finite time and low vari-
ance alternative to popular steady-state methods such as stochastic gradient Langevin dynam-
ics (SGLD). Furthermore, we discuss and adapt the existing theoretical guarantees of this
framework and establish connections to already existing VI routines in SDE-based models.

Keywords: Schrödinger Bridge Problem, Föllmer Drift, Stochastic Control, Bayesian Inference, Bayesian
Deep Learning.

1 Introduction

Steering a stochastic flow from one distribution
to another across the space of probability mea-
sures is a well-studied problem initially proposed
in Schrödinger [65]. There has been recent interest
in the machine learning community in these meth-
ods for generative modelling, sampling, dataset
imputation and optimal transport [4, 10, 12, 15,
39, 52, 61, 70, 72].

We consider a particular instance of the
Schrödinger bridge problem (SBP), known as the
Schrödinger-Föllmer process (SFP). In machine
learning, this process has been proposed for sam-
pling and generative modelling [39, 69] and in
molecular dynamics for rare event simulation and

Published at Statistics and Computing, 2022.

importance sampling [31, 32]; here we apply it
to Bayesian inference. We show that a control-
based formulation of the SFP has deep-rooted
connections to variational inference and is partic-
ularly well suited to Bayesian inference in high
dimensions. This capability arises from the SFP’s
characterisation as an optimisation problem and
its parametrisation through neural networks [69].
Finally, due to the variational characterisation
that these methods possess, many low-variance
estimators [54, 62, 64, 74] are applicable to the
SFP formulation we consider.

We reformulate the Bayesian inference prob-
lem by constructing a stochastic process Θt which
at a fixed time t = 1 will generate samples from
a pre-specified posterior p(θ|X), i.e. LawΘ1 =
p(θ|X), with dataset X = {xi}Ni=1, and where the
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2 Bayesian Learning via N-SFS

model is given by:

θ ∼ p(θ),

xi|θ ∼ p(xi|θ). iid (1)

Here the prior p(θ) and the likelihood p(xi|θ) are

user-specified. Our target is π1(θ) = p(X|θ)p(θ)
Z ,

where Z =
∫ ∏

i p(xi|θ)p(θ)dθ. This formula-
tion is reminiscent of the setup proposed in the
previous works [23, 28, 63, 73] and covers many
Bayesian machine-learning models, but our for-
mulation has an important difference. SGLD
relies on a diffusion that reaches the posterior as
its equilibrium state when time approaches infin-
ity. In contrast, our dynamics are controlled and
the posterior is reached in finite time (bounded
time). The benefit of this property is elegantly
illustrated in Section 3.2 of [39] where they rig-
orously demonstrate that even under an Euler
approximation the proposed approach reaches a
Gaussian target at time t = 1 whilst SGLD does
not.

Contributions: The main contributions of this
work can be detailed as follows:

• In this work we scale and apply the theoreti-
cal framework proposed in [13, 68] to sample
from posteriors in large scale Bayesian machine
learning tasks such as Bayesian Deep learn-
ing. We study the robustness of the predictions
under this framework as well as evaluate their
uncertainty quantification.

• More precisely we propose an amortised
parametrisation that allows scaling models with
local and global variables to large datasets.

• We explore and provide further theoretical
backing (Section 2.2) to the “sticking the land-
ing” estimator provided by [74].

• Overall we empirically demonstrate that the
stochastic control framework offers a promising
direction in Bayesian machine learning, strik-
ing the balance between theoretical/asymptotic
guarantees found in MCMC methods [9, 18,
33, 53] and more practical approaches such as
variational inference [7].

1.1 Notation

Throughout the paper we consider path measures
(denoted as Q or S) on the space of continuous

functions Ω = C([0, 1],Rd). Random processes
associated with such path measures Q are denoted
as Θ and their time-marginal distributions as
Qt = (Θt)#Q (which are just pushforward mea-
sures). Given two marginal distributions π0 and π1

we write D(π0, π1) = {Q : Q0 = π0,Q1 = π1} for
the set of all path measures with given marginal
distributions at the initial and final times. We
denote by Qu,π the path measure of the following
Stochastic Differential Equation (SDE):

dΘt = u(t,Θt)dt+
√
γdBt, Θ0 ∼ π (2)

(we drop the dependence on γ since it is fixed) and
we write Wγ = Q0,δ0 for the Wiener measure. We
will write dQ

dS for the Radon-Nikodym derivative
(RND) of Q w.r.t. S.

1.2 Schrödinger-Föllmer Processes

Definition 1 (Schrödinger-Bridge Process) Given a
reference process S and two measures π0 and π1 the
Schrödinger bridge distribution is given by

Q∗ = arg inf
Q∈D(π0,π1)

DKL

(
Q
∣∣∣∣S) , (3)

where S acts as a “prior”.
It is known [50] that if S = Qu,π, Q∗ is induced by

an SDE with a modified drift:

dΘt = u∗(t,Θt)dt+
√
γdBt, Θ0 ∼ π0, (4)

i.e. Q∗ = Qu∗,π0 . Solution of this SDE is called
the Schrödinger-Bridge Process (SBP).

Definition 2 (Schrödinger-Föllmer Process) The
SFP is an SBP where π0 = δ0 and the reference
process S = Wγ is the Wiener measure.

The SFP differs from the general SBP in that,
rather than constraining the initial distribution to
δ0, the SBP considers any initial distribution π0.
The SBP also involves general Itô SDEs associated
with Qu,π as the dynamical prior, compared to the
SFP which restricts attention to Wiener processes
as priors.

The advantage of considering this more limited
version of the SBP is that it admits a closed-form
characterisation of the solution to the Schrödinger
system [50, 58, 72] which allows for an uncon-
strained formulation of the problem. For accessible
introductions to the SBP we suggest [58, 70]. Now



Springer Nature 2021 LATEX template

Bayesian Learning via N-SFS 3

x1

x 2
N-SFS

0.00

0.15

0.30

0.45

0.60

0.75

0.90

1.05

x1

x 2

SGLD

0.00

0.15

0.30

0.45

0.60

0.75

0.90

1.05

x1

x 2

SGD

0.00

0.15

0.30

0.45

0.60

0.75

0.90

1.05

Fig. 1 Predictive posterior contour plots on the banana dataset [16]. Test accuracies: 0.8928 ± 0.0056, 0.8913 ±
0.0105, 0.8800 ± 0.0063 and test ECEs: 0.0229 ± 0.0062, 0.0253 ± 0.0042, 0.0267 ± 0.0083 for N-SFS, SGLD, and SGD
respectively. We observe that N-SFS obtains the highest test accuracy whilst preserving the lowest ECE.

we will consider instances of the SBP and the SFP
where π1 = p(θ|X).

1.2.1 Analytic Solutions and the Heat
Semigroup

Prior work [13, 39, 57, 69] has explored the prop-
erties of SFPs via a closed form formulation of
the Föllmer drift expressed in terms of expecta-
tions over Gaussian random variables known as
the heat semigroup. The seminal works [13, 57, 69]
highlight how this formulation of the Föllmer drift
characterises an exact sampling scheme for a tar-
get distribution and how it could potentially be
used in practice. The recent work by [39] builds on
[69] and explores estimating the optimal drift in
practice via the heat semigroup formulation using
a Monte Carlo approximation. Our work aims to
take the next step and scale the estimation of the
Föllmer drift to high dimensional cases [27, 37]. In
order to do this we must move away from the heat
semigroup and instead consider the dual formula-
tion of the Föllmer drift in terms of a stochastic
control problem [69].

In the setting when π0 = δ0 we can express the
optimal SBP drift as follows

u∗(t,x) = ∇x lnEΘ∼S

[
dπ1

dS1
(Θ1)

∣∣∣Θt = x

]
(5)

Definition 3 The Euclidean heat semigroup Qγt , t ≥
0, acts on bounded measurable functions f : Rd →
R as Qγt f(x) =

∫
Rd f

(
x+
√
tz
)
N (z|0, γI)dz =

Ez∼N (0,γI)
[
f
(
x+
√
tz
)]
.

In the SFP case where S = Wγ , the
optimal drift from Equation 5 can be writ-
ten in terms of the heat semigroup, u∗(t,x) =

∇x lnQγ1−t

[
dπ1

dN (0,γI) (x)
]
. Note that an SDE with

the heat semigroup induced drift

dΘt = ∇Θt
lnQγ1−t

[
dπ1

dN (0, γI)
(Θt)

]
dt+

√
γdBt

(6)
satisfies LawΘ1 = π1, that is, at t = 1 these
processes are distributed according to our target
distribution of interest π1.

1.2.2 Schrödinger-Föllmer Samplers

[39] carried out preliminary work on empirically
exploring the success of using the heat semi-
group formulation of SFPs in combination with
the Euler-Mayurama (EM) discretisation to sam-
ple from target distributions in a method they call
Schrödinger-Föllmer samplers (SFS). More pre-
cisely the SFS approach proposes estimating the
Föllmer drift via:

û∗(t,x) =
1
S

∑S
s=1 zsf(x+

√
1− tzs)

√
1−t
S

∑S
s=1 f(x+

√
1− tzs)

, (7)

where zs ∼ N (0, γI) and f = dπ1

dN (0,γI) . Whilst this

estimator enjoys sound theoretical properties [39]
it falls short in practice for the following reasons:

• The term f involves the product of PDFs eval-
uated at samples rather than a log product
and is thus often very unstable numerically. In
Appendix F we provide a more stable implemen-
tation of Equation 7 exploiting the logsumexp
trick and properties of the Lebesgue integral.

• In it’s current form the estimator does not
admit low variance estimators (e.g. Variatonal
Inference), being a Monte Carlo estimator it is
prone to high variance.
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Fig. 2 Comparison between MC-SFS and N-SFS under similar computational constraints. Target distribution is the
Gaussian posterior induced by a Bayesian linear regression model, we plot the error of the first and second posterior
predictive moments between the true posterior predictive and the listed approximations. We found increasing the number
of steps in SGLD drove the errors closer to 0 however when increasing the dimensions this threshold also increased notably.
This illustrates the advantages of having a target at a finite time rather than at equilibrium.

• Both empirically and theoretically we found
the computational running time of the above
approach to be considerably slower than the
other methods we compare to. At test time SFS
has a computational complexity of O(TS#f (d))
where T = ∆t−1 , S is the number of Monte
Carlo samples and #f (d) is the cost of evalu-
ating the RND f which at best is linear in d.
Meanwhile our proposed approach enjoys a cost
of O(T#uφ(d)) where #uφ(d) is the forward
pass through a neural network approximating
the Föllmer drift.

In practice we found this implementation to be
too numerically unstable and unable to produce
reasonable results even in low dimensional exam-
ples in order to carry out a fair comparison we
reformulated Equation 7 stably, the stable formu-
lation and its derivation can be found in Appendix
F.

In this work build on [39] by considering a for-
mulation of the Schrödinger-Föllmer process that
is suitable for the high dimensional settings aris-
ing in Bayesian ML. Our work will focus on a dual
formulation of the optimal drift that is closer to
variational inference and thus admits the scalable
and flexible parametrisations used in ML.

2 Stochastic Control
Formulation

In this section, we introduce a particular for-
mulation of the Schrödinger-Föllmer process in
the context of the Bayesian inference problem in
Equation 1. In its most general setting of sampling
from a target distribution, this formulation was
known to [13]. [69] study the theoretical proper-
ties of this approach in the context of generative
models [24, 43], finally [55] applies this formula-
tion to time series modelling. In contrast our focus
is on the estimation of a Bayesian posterior for a
broader class of models than Tzen and Raginsky
explore.

Corollary 1 Define

FDET(u,θ) =
1

2γ

∫ 1

0
‖u(t,θt)‖2dt− ln

p(X|θ1)p(θ1)

N (θ1|0, γId)

J(u) = EΘ∼Qu,δ0 [FDET(u,Θ)]



Springer Nature 2021 LATEX template

Bayesian Learning via N-SFS 5

Algorithm 1 Optimization of N-SFS with Stochastic Mini-batches.

1: Input: data set X = {xi}Ni=1, initialized drift NN uφ, parameter dimension d, # of iterations M ,
batch size B, # of EM discretization steps k, # of MC samples S , diffusion coefficient γ.

2: Initialise: ∆t← 1
k , tj ← j∆t for all j = 0, . . . , k

3: for i = 1, . . . ,M do
4: Initialize Θs

0 ← 0 ∈ Rd for all s = 1, . . . , S

5: {Θsφ
j }kj=1 ← Euler-Maruyama(uφ,Θ

s
0,∆t) for all s = 1, . . . , S

6: Sample xr1 , . . . ,xrB ∼X

7: g← ∇φ

(
1
S

S∑
s=1

k∑
j=0

(
||uφ(Θsφ

j , tj)||2∆t− ln
(

p(Θsφ
k )

N (Θsφ
k |0,γId)

)
+N
B

B∑
j=1

ln p(xrj |Θ
sφ
k )

))
8: φ← Gradient Step(φ, g)
9: end for

10: Return: uφ

Then the minimiser (with U being the set of
admissible controls1)

u∗=arg min
u∈U

J(u) (8)

satisfies Qγ,u
∗,δ0

1 =
p(X|θ)p(θ)

Z dθ.
Moreover, u∗ solves the SFP with π1 = p(θ|X).

The objective in Equation 8 can be estimated
using an SDE discretisation, such as the EM
method. Since the drift u∗ is Markov, it can
be parametrised by a flexible function estimator
such as a neural network, as in [69]. In addition,
unbiased estimators for the gradient of objective
in equation 8 can be formed by subsampling the
data. In this work we will refer to the above
formulation of the SFP as the Neural Schrödinger-
Föllmer sampler (N-SFS) when we parametrise
the drift with a neural network and implement
unbiased mini-batched estimators for this objec-
tive (Appendix C). This formulation of SFPs has
been previously studied in the context of gener-
ative modelling / marginal likelihood estimation
[69], while we focus on Bayesian inference.

We note that recent concurrent work [78] 2 pro-
poses an algorithm akin to ours based on [13, 69],
however their focus is on estimating the normalis-
ing constant of unnormalised densities, while ours
is on Bayesian ML tasks such as Bayesian regres-
sion, classification and LVMs, thus our work leads
to different insights and algorithmic motivations.

1Under appropriate conditions on the model in Equation 1,
U can be taken to be the set of C1-vector fields with linear
growth in space, see [54].

2This work was made public on arxiv within a month of our
arxiv pre-print release.

2.1 Theoretical Guarantees for
Neural SFS

While the focus in [69] is in providing guar-
antees for generative models of the form x ∼
qφ(x|Z1) , dZt = uφ(Zt, t)dt +

√
γdBt, Z0 = 0,

their results extend to our setting as they explore
approximating the Föllmer drift for a generic
target π1.

Theorem 4 in Tzen and Raginsky (restated as
Theorem 2 in Appendix A.2) motivates using neu-
ral networks to parametrise the drift in Equation
8 as it provides a guarantee regarding the expres-
sivity of a network parametrised drift via an upper
bound on the target distribution error in terms of
the size of the network.

We will now proceed to highlight how this error
is affected by the EM discretisation:

Corollary 2 Given the network v from Theorem
2 it follows that the Euler-Maruyama discretisation
of equation 2 with u = v induces an approximate
target π̂v1 that satisfies

DKL(π1||π̂v1 ) ≤
(
ε1/2 +O(

√
∆t)

)2
. (9)

This result provides a bound of the error in
terms of the depth ∆t−1 of the stochastic flow
[10, 77] and the size of the network that we
parametrise the drift with. Under the view that
NN parametrised SDEs can be interpreted as
ResNets [51] we find that this result illustrates
that increasing the ResNets’ depth will lead to
more accurate results.
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2.2 Sticking the Landing and Low
Variance Estimators

As with VI [62, 64], the gradient of the objective in
this study admits several low variance estimators
[54, 74]. In this section we formally recap what it
means for an estimator to “stick the landing” and
we prove that the estimator proposed in Xu et al.
satisfies said property.

The full objective being minimised in our
approach is (where expectations are taken over
Θ ∼ Qu,δ0):

J(u) = E[FDET(u,Θ)]

= E[F(u,Θ)]

=E

[
1

2γ

∫ 1

0

||ut(Θt)||2dt+
1
√
γ

∫ 1

0

ut(Θt)
>dBt

−ln
(p(X|Θ1)p(Θ1)

N (Θ1|0, γId)

)]
, (10)

noticing that in previous formulations we have
omitted the Itô integral as it has zero expecta-
tion (but the integral appears naturally through
Girsanov’s theorem). We call the estimator calcu-
lated by taking gradients of the above objective
the relative-entropy estimator. The estimator pro-
posed in [74] (Sticking the landing estimator) is
given by:

JSTL(u) = E[FSTL(u,Θ)]

=E

[
1

2γ

∫ 1

0

||ut(Θt)||2dt+
1
√
γ

∫ 1

0

u⊥t (Θt)
>dBt

−ln
(p(X|Θ1)p(Θ1)

N (Θ1|0, γId)

)]
, (11)

where ⊥ means that the gradient is stopped/de-
tached as in [64, 74].

We study perturbations of F around u∗ by
considering u∗+εφ, with φ arbitrary, and ε small.
More precisely, we set out to compute (where
dependence on θ is dropped):

d

dε
F(u∗ + εφ)

∣∣∣
ε=0

, (12)

through which we define the definition of “sticking
the landing”:

Definition 4 We say that an estimator “sticks the
landing” when

d

dε
F(u∗ + εφ)

∣∣∣
ε=0

= 0, (13)

almost surely, for all smooth and bounded perturba-
tions φ.

Notice that by construction, u∗ is a global min-
imiser of J , and hence all directional derivatives
vanish,

d

dε
J(u∗+εφ)

∣∣∣
ε=0

=
d

dε
E[F(u∗+εφ,Θ)]

∣∣∣
ε=0

= 0.

(14)
Definition 4 additionally demands that this quan-
tity is zero almost surely, and not just on average.
Consequently, “sticking the landing”-estimators
will have zero-variance at u∗.

Remark 1 The relative-entropy stochastic control
estimator does not stick the landing.

Proof See [54], Theorem 5.3.1, clause 3, Equation 133

clearly indicates d
dεF(u∗ + εφ)

∣∣∣
ε=0
6= 0. �

We can now go ahead and prove that the
estimator proposed by [74] does indeed stick the
landing.

Theorem 1 The STL estimator proposed in [74]
satisfies

d

dε
F(u∗ + εφ)

∣∣∣
ε=0

= 0, (15)

almost surely, for all smooth and bounded perturba-
tions φ.

The proof for the above result can be found in
Appendix E, and combines results from [54].

2.3 Structured SVI in Models with
Local and Global Variables

Algorithm 1 produces unbiased estimates of the
gradient3 as demonstrated in Appendix C only
under the assumption that the parameters are

3Gradients are computed automatically via reverse mode
differentiation [2, 22] using the pytorch library [56].
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global, that is when there is not a local parame-
ter for each data point. In the setting where we
have local and global variables we can no longer
do mini-batch updates as in Algorithm 1 since the
energy term in the objective does not decouple as a
sum over the datapoints [36, 37]. In this section we
discuss said limitation and propose a reasonable
heuristic to overcome it.

We consider the general setting where our
model has global and local variables Φ, {θi} sat-
isfying θi ⊥⊥ θj |Φ [37]. This case is particularly
challenging as the local variables scale with the
size of the dataset and so will the state space.
This is a fundamental setting as many hierachical
latent variable models in machine learning admit
such dependancy structure, such as Topic mod-
els [7, 60]; Bayesian factor analysis [1, 6, 14, 45];
Variational GP Regression [35]; and others.

Remark 2 The heat semigroup does not preserve con-
ditional independence structure in the drift, i.e. the
optimal drift does not decouple and thus depends on
the full state-space (Appendix D).

Remark 2 tells us that the drift is not struc-
tured in a way that admits scalable sampling
approaches such as stochastic variational inference
(SVI) [37]. Additionally this also highlights that
the method by [39] does not scale to models like
this as the dimension of the state space will be
linear in the size of the dataset.

In a similar fashion to Hoffman and Blei
[36], who focussed on structured SVI, we suggest
parametrising the drift via [ut]θi=uθi(t,θi,Φ,xi);
this way the dimension of the drift depends only
on the respective local variables and the global
variable Φ. While the Föllmer drift does not admit
this particular decoupling we can show that this
drift is flexible enough to represent fairly gen-
eral distributions, thus it is expected to have the
capacity to reach the target distribution. Via this
parametrisation we can sample in the same fashion
as SVI and maintain unbiased gradient estimates.

Remark 3 An SDE parametrised with a decoupled
drift [ut]θi = uθi(t,θi,Φ,xi) can reach transition
densities which do not factor (See Appendix D for
proof).

It is important to highlight that whilst the
parametrisation in Remark 3 may be flexible, it
may not satisfy the previous theory developed for
the Föllmer drift and SBPs, thus an interesting
direction would be in recasting the SBP such that
the optimal drift is decoupled. However, we found
in practice that the decoupled and amortised drift
worked very well, outperforming SGLD and the
non-decoupled N-SFS.

3 Connections Between SBPs
and Variational Inference in
Latent Diffusion Models

In this section, we highlight the connection
between the objective in Equation 8 to variational
inference in models with an SDE as the latent
object, as studied in [68]. We first start by mak-
ing the connection in a simpler case – when the
prior of our Bayesian model is given by a Gaus-
sian distribution with variance γ, that is p(θ) =
N (θ|0, γId).

Observation 1 When p(θ) = N (θ|0, γId), it follows
that the N-SFP objective in Equation 8 corresponds to
the negative ELBO of the model:

dΘt =
√
γdBt, Θ0 ∼ δ0,

xi ∼ p(xi|Θ1). (16)

While the above observation highlights a spe-
cific connection between N-SFP and traditional
VBI (Variational Bayesian Inference), it is limited
to Bayesian models that are specified with Gaus-
sian priors. In Lemma 1 of Appendix B we extend
this result to more general priors and reference
process via exploiting the general recursive nature
of Bayesian updates [42]. In short, we can view the
objective in Equation 8 as an instance of varia-
tional Bayesian inference with an SDE prior. Note
that this provides a succinct connection between
variational inference and maximum entropy in
path space [49]. In more detail, this observation
establishes an explicit connection between the
ELBO of an SDE-based generative model where
the SDE is latent and the SBP/stochastic-control
objectives we explore in this work.
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Fig. 3 Visual comparison on step function data. We can see how the N-SFS based fits have the best generalisation while
SGD and SGLD interpolate the noise.

Table 1 a9a dataset.

Method Accuracy ECE Log Likelihood

N-SFS 0.8498± 0.0002 0.0099± 0.0010 −0.3407± 0.0004
SGLD 0.8515± 0.0010 0.0010± 0.0020 −0.3247± 0.0002

Note that Lemma 1 induces a new two stage
algorithm in which we first estimate a prior ref-
erence process as in Equation B10 and then we
optimise the ELBO for the model in Equation
B11. This raises the question as to what effect
the dynamical prior can have within SBP-based
frameworks. In practice we do not explore this for-
mulation as the Föllmer drift of the prior may not
be available in closed form and thus may require
resorting to additional approximations.

4 Experimental Results

We ran experiments on Bayesian NN regres-
sion, classification, logistic regression and ICA
[1], reporting accuracies, log joints [40, 73] and
expected calibration error (ECE) [29]. For details
on exact experimental setups please see Appendix
H. Across experiments we compare to SGLD as
it has been shown to be a competitive baseline in
Bayesian deep learning [40]. Notice that we do not
compare to more standard MCMC methodologies
[17, 18, 53] as they do not scale well to very high
dimensional tasks such as Bayesian DL [40] which
are central to our experiments. However, [39] con-
trasts the performance of the heat semigroup SFS
sampler with more traditional MCMC samplers in
2D toy examples, finding SFS to be competitive 4.

4Supporting code at https://github.com/franciscovargas/
ControlledFollmerDrift.

Table 2 Step function
dataset.

Method MSE Log Likelihood

N-SFS 0.0028± 0.0010 −63.048± 8.2760
SGLD 0.1774± 0.1280 −1389.581± 834.9680

Table 3 MEG dataset.

Method Log Likelihood

N-SFS −5.1110± 0.1288
SGLD −4.9360± 0.0423

4.1 Bayesian Linear Regression and
Comparison with MC-SFS

In this section we explore a bayesian linear regres-
sion model with a prior on the regression weights.
As this model has a Gaussian closed form for
the posterior predictive distribution we report the
error of the MC-SFS and N-SFS posterior predic-
tive mean and variance with respect to the true
posterior predictive moments as is seen in Figure
2. The datasets where generated by sampling
the inputs randomly from a spherical Gaussian
distribution and transforming them via:

yi = 1>xi + 1

we then estimated the posterior of the model:

θ ∼ N (0, σ2
θI),

yi|xi,θ ∼ N (yi|θ>(xi ⊕ 1), σ2
yI),

Where we use x ⊕ 1 to denote adding an extra
dimension with a 1 to the vector x. We carried
out this experiment increasing the dimension of x
from 25 to 211. We observe that the N-SFS based
approaches have overall a notably smaller pos-
terior predictive error to the MC-SFS approach.
Finally we note the STL method is more con-
centrated in its predictions than the naive N-SFS
approach, whilst having similar errors.

https://github.com/franciscovargas/ControlledFollmerDrift
https://github.com/franciscovargas/ControlledFollmerDrift
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4.2 Bayesian Logistic Regression /
Independent Component
Analysis - a9a / MEG Datasets

Following [73] we explore a logistic regression
model on the a9a dataset. Results can be found
in Table 1 which show that N-SFS achieves a test
accuracy, ECE and log likelihood comparable to
SGLD. We then explore the performance of our
approach on the Bayesian variant of ICA studied
in [73] on the MEG-Dataset [71]. We can observe
(Table 3) that here N-SFS also achieves results
comparable to SGLD.

4.3 Bayesian Deep Learning

In these tasks we use models of the form

θ ∼ N (0, σ2
θI),

yi|xi,θ ∼ p(yi|fθ(xi)),

where fθ is a neural network. In these settings we
are interested in using the posterior predictive dis-
tribution p(y∗|x∗,X) =

∫
p(y∗|fθ(x∗))dP (θ|X)

to make robust predictions. Across the image
experiments we use the LeNet5 [47] architecture.
Future works should explore recent architectures
for images such as VGG-16 [66] and ResNet32 [34].
Non-linear Regression - Step Function: We
fit a 2-hidden-layer neural network with a total of
14876 parameters on a toy step function dataset.
We can see in Figure 3 how both the SGD and
SGLD fits interpolate the noise, whilst N-SFS has
straight lines, thus both achieving a better test
error and having well-calibrated error bars. We
believe it is a great milestone to see how an over-
parameterised neural network is able to achieve
such well calibrated predictions.
Digits Classification - LeNet5: We train the
standard LeNet5 [47] architecture (with 44426
parameters) on the MNIST dataset [48]. At test
time we evaluate the methods on the MNIST
test set augmented by random rotations of up
to 30°[21]. Table 4 shows how N-SFS has the
highest accuracy whilst obtaining the lowest cal-
ibration error among the considered methods,
highlighting that our approach has the most well-
calibrated and accurate predictions when consid-
ering a slightly perturbed test set. We highlight
that LeNet5 falls into an interesting regime as the
number of parameters is considerably less than the

size of the training set, and thus we can argue it is
not in the overparameterised regime. This regime
[3] has been shown to be challenging in achieving
good generalisation errors, thus we believe the pre-
dictive and calibrated accuracy achieved by N-SFS
is a strong milestone.

Additionally we provide results on the regu-
lar MNIST test set. We can observe that N-SFS
maintains a high test accuracy and at the same
time preserves a low ECE score. We believe the
reason SGD and SGLD obtain slightly better
ECE performances is that the MNIST test set
has very little variation to the MNIST training
set, and thus all results seem well calibrated. We
can see this observation confirmed by how the
distribution of ECE scores changes dramatically
on the Rotated MNIST set, a similar argument
to that developed in [21]. We note that across
both experiments SGLD achieves a slightly bet-
ter log likelihood which comes at the cost of
lower predictive performance and less calibrated
predictions.
Image Classification - CIFAR10: We fit a vari-
ation of the LeNet5 (Appendix H.4) architecture
with 62006 parameters on the CIFAR10 dataset
[46]. We note that the predictive test accuracies
and log-likelihoods of N-SFSstl, SGLD and SGD
are comparable. However, we can see that N-
SFSstl has an ECE an order of magnitude smaller.
We notice that the STL estimator made a signifi-
cant difference on CIFAR10, making the training
faster and more stable.

4.4 Hyperspectral Image Unmixing

To assess our method’s performance visually, we
use it to sample from Hyperspectral Unmixing
Models [5]. Hyperspectral images are high spectral
resolution but low spatial resolution images typi-
cally taken of vast areas via satellites. High spec-
tral resolution provides much more information
about the materials present in each pixel. How-
ever, due to the low spatial resolution, each pixel
of an image can correspond to a 50m2 area, con-
taining several materials. Such pixels will therefore
have mixed and uninformative spectra. The task
of Hyperspectral Unmixing is to determine the
presence of given materials in each pixel.
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Table 4 Test set results on MNIST, Rotated MNIST and CIFAR10. The Log-likelihood column is the mean posterior
predictive and is thus not estimated for SGD.

Dataset Method Accuracy ECE Log Likelihood

MNIST

N-SFS 0.9889± 0.0013 0.0080± 0.0013 −0.0883± 0.0076
N-SFSstl 0.9885± 0.0014 0.0092± 0.0017 −0.0629± 0.0057
SGLD 0.9837± 0.0007 0.0061± 0.0012 −0.0516± 0.0026
SGD 0.9884± 0.0007 0.0034± 0.0009 -

Rotated-MNIST

N-SFS 0.9479± 0.0043 0.0077± 0.0012 −0.3890± 0.0374
N-SFSstl 0.9461± 0.0039 0.0057± 0.0012 −0.2960± 0.0336
SGLD 0.9247± 0.0035 0.0141± 0.0018 −0.2439± 0.0118
SGD 0.9404± 0.0031 0.0284± 0.0021 -

CIFAR10

N-SFS 0.6156± 0.0021 0.0520± 0.0110 −1.3628± 0.0262
N-SFSstl 0.6264± 0.0286 0.0568± 0.0069 −1.2305± 0.0710
SGLD 0.6232± 0.0186 0.1493± 0.0170 −1.2740± 0.0854
SGD 0.6229± 0.0124 0.0626± 0.0163 -

Fig. 4 False-color composites with channels given by
the unmixed matrices A obtained via SGLD, N-SFS and
N-SFS with a decoupled drift. Speckles illustrate mode
collapse.

We use the Indian Pines image5, denoted as Y ,
which has a spatial resolution of P = 145× 145 =
21025 pixels and a spectral resolution of B = 200
bands, i.e. Y = [y1, . . . ,yP ] ∈ [0, 1]B×P . R = 3
materials have been chosen automatically using
the Pixel Purity Index and the collection of their
spectra will be denoted as M = [m1,m2,m3] ∈
[0, 1]B×3. The task of Hyperspectral Unmixing is

5taken from http://www.ehu.eus/ccwintco/index.php/
Hyperspectral Remote Sensing Scenes

to determine for each pixel p a vector ap ∈ ∆R in
the probability simplex, where [A]p,i = ap,i rep-
resents the fraction of the i-th material in pixel
p. To determine the presence of each material, we
use the Normal Compositional Model [19] as it is
a challenging model to sample from. Specifically,
it has parameters (Φ,Θ) = (σ2,A) and is defined
by:

p
(
σ2
)

= 1[0,1]

(
σ2
)
, p (A) =

P∏
p=1

1∆R
(ap) ,

p
(
Y |A, σ2

)
=

P∏
p=1

N
(
yp; Map; ||ap||2σ2I

)
,

First note that this model follows the structured
model setting discussed in Section 2.2 — it has
one global parameter σ2 and a local parameter
ap for each pixel. Finally, while all the param-
eters are constrained to lie on the probability
simplices, this sampling problem can be cast into
an unconstrained sampling problem via Lagrange
transformations as in [38]. The Normal Compo-
sitional Model [19] is primarily of interest to us
because the unusual noise scaling in the likelihood
can produce several modes in each pixel, making
it especially easy for sampling algorithms to get
stuck in modes.

We compared three approaches for this prob-
lem: 1) SGLD 2) N-SFS 3) N-SFS with decoupled

http://www.ehu.eus/ccwintco/index.php/Hyperspectral_Remote_Sensing_Scenes
http://www.ehu.eus/ccwintco/index.php/Hyperspectral_Remote_Sensing_Scenes
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drift, where the decoupled drift is defined as:

ut(σ
2,A)=[u0(t, σ2), u1(t, σ2,a1), . . . , uP (t, σ2,aP)].

Unmixing results are shown in Figure 4. We stress
that to run SGLD successfully we had to tune the
approach heavily — we used separate step sizes
(which acts as a preconditioning) and step size
schedules for parameters σ2 and A, only with one
combination of which we managed to get decent
unmixing results. Without the amortised drift,
N-SFS struggled with multiple modes in certain
patches of the image, however, decoupling the drift
resulted in almost perfect unmixing. With a slight
deviation from the optimal step size schedule,
SGLD fails to explore modes and produces speckly
images. In contrast, the only tunable parameter
for N-SFS was γ, which was giving similar results
for all tried values. Further sensitivity results for
SGLD/N-SFS are provided in Appendix G.

4.5 Analysis of N-SFS training
dynamics

In addition to the experiments above, we inves-
tigate our method’s performance in a synthetic
multi-modal scenario. Here, N-SFS is used to fit a
Gaussian Mixture posterior distribution that has
modes aligned on the x-axis, as shown in figure 5.
In one case, there are 4 modes – 2 inner modes
(those closer to 0) and 2 outer modes (those fur-
ther away from 0). We notice that in the presence
of the 2 inner modes N-SFS is unable to discover
the outer modes. In contrast, when considering a
posterior with only the 2 outer modes, the dis-
tribution is fit correctly. This phenomenon could
be explained by previously indicated connections
between stochastic control and agent-based learn-
ing via the Hamilton-Jacobi-Bellman equation [59]
and the exploration-exploitation tradeoff. More
concretely, the optimisation objective equation 8
implies the following training dynamics – ran-
dom samples are generated from a diffusion (a
Brownian motion to begin with) which is then
refined to produce more samples in areas where
previous samples had high posterior density. This
implies that after some modes are discovered,
the diffusion will be adjusted to fit them, i.e.
the algorithm immediately starts exploiting the
detected modes. Other modes will only be dis-
covered if some random sample accidentally hits

them, which is very unlikely if the modes are far
away. This indicates that the algorithm could be
improved by incorporating exploration techniques
found in agent-based learning literature.

Given the behaviour of N-SFS on this multi-
modal example, it is then natural to ask if it
happens in Bayesian Deep Learning applications.
To examine this, we look at the marginal dis-
tributions of a pair of weights of a Bayesian
Neural Network for MNIST classification given
by the samples of N-SFS and SGLD given in
Figure 6. Note that compared to SGLD, N-SFS
samples from a dramatically wider distribution,
while maintaining a comparable predictive log
likelihood score, and therefore does not suffer from
the lack of exploration.

5 Discussion and Future
Directions

Overall we achieve predictive performance com-
petitive to SGLD across a variety of tasks whilst
obtaining better calibrated predictions as mea-
sured by the ECE metric. We hypothesise that
the gain in performance is due to the flexible and
low variance VI parametrisation of the proposed
approach. We would like to highlight that these
results were achieved with minimal tuning and
simple NN architectures. We find that the decou-
pled and amortised drift we propose achieves very
strong results making our approach tractable to
Bayesian models with local and global structure.
Additionally we notice that the architecture used
in the drift network can influence results, thus
future work in this area should develop the drift
architectures further.

A key advantage of our approach is that
at training time the objective effectively min-
imises an ELBO styled objective parameterised
via a ResNet. This allows us to monitor train-
ing using the traditional techniques from deep
learning, without the challenges arising from
mixing times and correlation of samples found
in traditional MCMC methods; once N-SFS is
trained, generating samples at test time is a fast
forward pass through a ResNet that does not
require re-training. Finally, as we demonstrated,
our approach allows the learned sampler to be
amortised [76] which not only allows the drift
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Fig. 5 N-SFS performance on a gaussian mixture posterior distribution with several modes. Outer modes are only detected
when the posterior does not contain the interior modes indicating exploration failure of N-SFS.

Fig. 6 Distribution of log posterior values of samples from N-SFS and SGLD (left) and marginal distribution of a pair of
weights in a neural network obtained from samples of N-SFS and SGLD (right)

to be more tractably parameterised but also cre-
ates the prospects of meta learning the posterior
[20, 25, 26, 75]. We believe that this work moti-
vates how stochastic control paves a new exciting
and promising direction in Bayesian ML/DL.
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Appendix A Main Results

A.1 Posterior Drift

Corollary 1 The minimiser

u∗ = arg min
u∈U

EΘ∼Qu,δ0

[
1

2γ

∫ 1

0
‖u(t,Θt)‖2dt− ln

(
p(X|Θ1)p(Θ1)

N (Θ1|0, γId)

)]
(A1)

satisfies LawΘu∗

1 =
p(X|θ)p(θ)

Z .

Proof This follows directly after substituting the Radon-Nikodym derivative between the Gaussian distribution
and the posterior into Theorem 1 in [69] or Theorem 3.1 in [13]. �

A.2 EM-Discretisation Result

First we would like to introduce the following auxiliary theorem from [69]:

Theorem 2 [69] Given the standard regularity assumptions presented for f = dπ1

dN (0,γI) in [69], let L =

max{Lip(f),Lip(∇f)} and assume that there exists a constant c ∈ (0, 1] such that f ≥ c. Then for any

ε ∈
(

0, 16L
2

c2

)
there exists a neural net v : Rd× [0, 1]→ Rd with size polynomial in 1/ε, d, L, c, 1/c, γ, such that the

activation function of each neuron follows the regularity assumptions in [69] (e.g. ReLU,Sigmoid, Softplus) and

DKL(π1||πv1 ) ≤ ε, (A2)

where πv1 = Law(Θv1 ) is the terminal distribution of the diffusion process

dΘvt = v(Θvt ,
√

1− t)dt+
√
γdBt, t ∈ [0, 1]. (A3)

We can now proceed to prove the direct corollary of the above theorem when using the EM scheme
for simulation.

Corollary 2 Given the network v from Theorem 2 it follows that the Euler-Mayurama discretisation X̂vt of Xvt
has a KL-divergence to the target distribution π1 of:

DKL(π1||π̂v1 ) ≤
(
ε1/2 +O(

√
∆t)

)2
(A4)

Proof Consider the path-wise KL-divergence between the exact Schrödinger-Föllmer process and its EM-
discretised neural approximation:

DKL(Pu∗ ||Pv̂) =
1

2γ

∫ 1

0
EΘ∼Qu∗,δ0

∥∥u∗(Θt, t)− v̂(Θt,
√

1− t)
∥∥2
dt. (A5)

Defining d(x,y) :=
√

1
2γ

∫ 1
0 EΘ∼Qu∗,δ0 ‖x(Θt, t)− ŷ(Θt, t)‖2 dt, it is clear that d(x,y) satisfies the triangle

inequality as it is the L2(Qγ,u
∗,δ0) metric between drifts, thus applying the triangle inequality at the drift level

we have that (for simplicitly letting γ = 1):

d(u∗, v̂) ≤

(∫ 1

0
E
[
||u∗t − v√1−t||

2
]
dt

) 1
2

+

(∫ 1

0
E
∣∣∣|v√1−t − v̂√1−t||

2
]
dt

) 1
2

.

From [69] we can bound the first term resulting in:

d(u∗, v̂) ≤ ε1/2 +

(∫ 1

0
E
[
||v√1−t − v̂√1−t||

2
]
dt

) 1
2
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Now remembering that the EM drift is given by v̂√1−t(Θt) = v(Θ̂t,
√

1−∆tdt/∆te), we can use that v is
L’-Lipschitz in both arguments, thus:

d(u∗, v̂) ≤ ε1/2 +

(
L′2
∫ 1

0
E
[(∥∥∥Θt − Θ̂t

∥∥∥+ ∆t
)2
]
dt

) 1
2

≤ ε1/2 +

(
2L′2

(
E

[∫ 1

0

∥∥∥Θt − Θ̂t

∥∥∥2
dt

]
+ ∆t2

)) 1
2

≤ ε1/2 +

(
2L′2

(
E
[

max
0≤t≤1

∥∥∥Θt − Θ̂t

∥∥∥2
]

+ ∆t2
)) 1

2

,

which, using the strong convergence of the EM approximation [30], implies:

E
[

max
0≤t≤1

∥∥∥Θt − Θ̂t

∥∥∥2
]
≤ CL′∆t, (A6)

thus:

d(u∗, v̂) ≤ ε1/2 + L′
√

2
(√

CL′∆t+ ∆t
)
.

Squaring both sides and applying the data processing inequality completes the proof. �

Appendix B Connections to VI

We first start by making the connection in a simpler case – when the prior of our Bayesian model is given
by a Gaussian distribution with variance γ, that is p(θ) = N (θ|0, γId).

Observation 1 When p(θ) = N (θ|0, γId), it follows that the N-SFP objective in Equation 8 corresponds to the
negative ELBO of the model:

dΘt =
√
γdBt, Θ0 ∼ δ0,

xi ∼ p(xi|Θ1). (B7)

Proof Substituting p(θ) into Equation 8 yields

u∗ = arg min
u∈U

EΘ∼Q0,δ0

[
1

2γ

∫ 1

0
‖u(t,Θt)‖2 dt− ln p(X|Θ1)

]
. (B8)

Then, from [8, 68, 69] we know that the term E
[∫ 1

0 ‖ut‖
2 dt− ln p(X|Θ1)

]
is the negative ELBO of the model

specified in Equation B7. �

While the above observation highlights a specific connection between N-SFP and traditional VBI
(Variational Bayesian Inference), it is limited to Bayesian models that are specified with Gaussian priors.
To extend the result, we take inspiration from the recursive nature of Bayesian updates in the following
result.

Lemma 1 The SBP infQ∈D(δ0, p(θ|X))DKL

(
Q
∣∣∣∣S) with reference process S described by

Θ0 ∼ δ0 (B9)

dΘt=∇ lnQγ1−t

[
p(Θt)

N (Θt|0, γId)

]
+
√
γdBt, (B10)

corresponds to maximising the ELBO of the model:

Θ0 ∼ δ0,
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dΘt=∇ lnQγ1−t

[
p(Θt)

N (Θt|0, γId)

]
+
√
γdBt, ,

xi ∼ p(xi|Θ1). (B11)

Proof For brevity let u0(t,θ) = ∇ lnQγ1−t

[
p(θ)

N (θ|0,γId)

]
. First notice that the time-one marginals of S are given

by the Bayesian prior:

(Θ1)#S = p(θ)dθ

Now from [49, 58] we know that the Schrödinger system is given by:

φ0(θ0)

∫
p(θ0, 0,θ1, 1)φ̂1(θ1)dθ1 = δ0(θ0), (B12)

φ̂1(θ1)

∫
p(θ0, 0,θ1, 1)φ0(θ0)dθ0 = p(θ1|X), (B13)

where Equation B12 can be given a rigorous meaning in weak form (that is, by integrating against suitable
test functions). Notice φ0 = δ0 and thus it follows that

φ̂1(θ) =
p(θ|X)

p(0, 0,θ, 1)
=
p(θ|X)

p(θ)
=
p(X|θ)

Z . (B14)

By [13, 57, 58] the optimal drift is given by:

u∗(t,θ) = γ∇ lnE[p(X|Θ1)|Θt = θ], (B15)

where the expectation is taken with respect to the reference process S. Now if we let v(θ, t) =
− lnE[p(X|Θ1)|Θt = θ] be our value function then via the linearisation of the Hamilton-Bellman-Jacobi Equation
through Fleming’s logarithmic transform [41, 67, 69] it follows that said value function satisfies:

v(θ, t) = min
u∈U

E

[
1

2γ

∫ 1

t

∥∥∥u(t,Θt)− u0(t,Θt)
∥∥∥2
dt− ln p(X|Θ1)

∣∣∣Θt = θ

]
, (B16)

and thus u∗(t,θ) = γ∇ lnE[p(X|Θ1)|Θt = θ] is a minimiser to:

u∗ = arg min
u∈U

E

[
1

2γ

∫ 1

0

∥∥∥u(t,Θt)− u0(t,Θt)
∥∥∥2
dt− ln p(X|Θ1)

]
. (B17)

�

Appendix C Stochastic Variational Inference

For a Bayesian model having the structure specified by equation 1 the objective in equation 8 can be
written as follows:

EΘ∼Qu,δ0

[
1

2γ

∫ 1

0

‖u(t,Θt)‖2 dt− ln
p(X|Θ1)p(Θ1)

N (Θ1|0, γId)

]
= E

[
1

2γ

∫ 1

0

‖u(t,Θt)‖2 dt− ln
p(Θ1)

N (Θ1|0, γId)

]
+

N∑
i=1

E [ln p(xi|Θ1)] , (C18)

where the last term can be written as:
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N∑
i=1

E [ln p(xi|Θ1)] =
N

B
Exki∼D

[
B∑
i=1

E [ln p(xki |Θ1)]

]
(C19)

That is, it is possible to obtain an unbiased estimate of the objective (and its gradients) by subsampling
the data with random batches of size B and using the scaling N

B . A version of the algorithm with
Euler-Maruyama discretization of the SDE is given in Algorithm 1.

Appendix D Decoupled Drift Results

First let us consider the setting where the local variables are fully independent, that is, θi ⊥⊥ θj .

Remark 4 The heat semigroup preserves fully factored (mean-field) distributions thus the Föllmer drift is
decoupled.

In this setting we can parametrise the dimensions of the drift which correspond to local variables in
a decoupled manner, [ut]θi = uθi(t,θi,xi). This amortised parametrisation [44] allows us to carry out
gradient estimates using a mini-batch [37] rather than hold the whole state space in memory.

Remark 2 The heat semigroup does not preserve conditional independence structure in the drift. That is, the
optimal drift does not decouple and as a result depends on the full state space.

Proof Consider the following distribution:

N (x|z, 0)N (y|z, 0)N (z|0, 1) (D20)

We want to estimate:

E
[
N (X + x|Z + z, 1)N (Y + y|Z + z, 1)N (Z + z|1, 0)

N (X + x|0, 1)N (Y + y|0, 1)N (Z + z|0, 1)

]
, (D21)

where X,Y, Z ∼ N (0,
√

1− t). From

E
[
N (X + x|Z + z, 1)N (Y + y|Z + z, 1)

N (X + x|0, 1)N (Y + y|0, 1)

]
(D22)

we can easily see that the above no longer has conditional independence structure and thus when taking its
logarithmic derivative the drift does not decouple. �

Remark 3 An SDE parametrised with a decoupled drift [ut]θi = u(t,θi,Φ,xi) can reach transition densities
which do not factor.

Proof Consider the linear time-homogeneous SDE:

dΘt = AΘtdt+ γdWt, Θ0 = 0, (D23)

where:

[A]ij = δij + iδ1j , (D24)

then this SDE admits a closed form solution:
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Θt = γ

∫ t

0
exp (A(t− s)) dWs, (D25)

which is a Gauss-Markov process with 0 mean and covariance matrix:

Σ(t) = γ2
∫ t

0
exp (A(t− s)) exp (A(t− s))> ds (D26)

We can carry out the matrix exponential through the eigendecomposition of A, for simplicity let us consider
the 3-dimensional case:

exp (A(t− s)) = SeD(t−s)S−1 =

0 1 1
1 0 2
0 0 2

et−s 0 0

0 et−s 0

0 0 e3(t−s)

0 1 −1
1 0 −1/2
0 0 1/2

 (D27)

From this we see that:

exp (A(t− s)) exp (A(t− s))> = SeD(t−s)S−1(SeD(t−s)S−1)> (D28)

= SeD(t−s)S−1S−>eD(t−s)S> (D29)

=
1

4
SeD(t−s)

 8 2 −2
2 5 −1
−2 −1 1

 eD(t−s)S> (D30)

=
1

4
S

 8e2(t−s) 2e2(t−s) −2e4(t−s)

2e2(t−s) 5e2(t−s) −e4(t−s)

−2e4(t−s) −e4(t−s) e6(t−s)

S> (D31)

Integrating wrt to s yields:

∫
exp (A(t− s)) exp (A(t− s))> ds =

1

4
S

 4 1 − 1
2

1 5
2 − 1

4
− 1

2 −
1
4

1
6

S> (D32)

=
1

24

13 2 −1
2 16 −2
−1 −2 4

 . (D33)

The covariance matrix is dense at all times and thus the density Law(Θt) = N (µ(t),Σ(t)) does not factor
(is a fully joint distribution). This example motivates that even with the decoupled drift we can reach coupled
distributions.

�

Appendix E Low Variance Estimators and Sticking the Landing

Theorem 1 The STL estimator proposed in [74] satisfies

d

dε
F(u∗ + εφ)

∣∣∣
ε=0

= 0, (E34)

almost surely, for all smooth and bounded perturbations φ.

Proof Let us decompose F in the following way:

F(u) = F0(u) + F1(u) (E35)
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where (denoting the terminal cost with g):

F0(u) =
1

2γ

∫ 1

0
‖u(t,Θt)‖2 dt+ g(Θ1) (E36)

F1(u) =
1
√
γ

∫ 1

0
u⊥(t,Θt)

>dBt (E37)

Denoting Θu ∼ Qu,δ0 , from [54], Theorem 5.3.1, Equation 133 it follows that:

d

dε
F0(u∗ + εφ)

∣∣∣∣∣
ε=0

= − 1
√
γ

∫ 1

0
At · (∇u∗t )(Θu∗

t ) dBt, (E38)

almost surely, where At is defined as

Aφt =
dΘu∗+εφ

t

dε

∣∣∣∣∣
ε=0

(E39)

and satisfies:

dAφt = φt(Θ
u∗

t ) dt+ (∇u∗)>(Θu∗

t )Aφt dt, Aφ0 = 0. (E40)

Similarly via the chain rule it follows that:

d

dε
F1(u∗ + εφ)

∣∣∣∣∣
ε=0

=
d

dε

(
1
√
γ

∫ 1

0
u∗t (Θu∗+εφ

t )>dBt

)∣∣∣∣∣
ε=0

=
1
√
γ

∫ 1

0
Aφt · (∇u∗t )(Θu∗

t )dBt (E41)

almost surely, combining these results we can see that d
dεF(u∗+εφ)

∣∣∣
ε=0

= 0 almost surely as required. �

Appendix F Stabilising MC-SFS Implementation

We found the estimators proposed in [39] (Equations 2.20 or 2.21, and Algorithm 2 in [39]) to be very
numerically unstable. Even in two dimensions the montecarlo estimator of the drift evaluated to nans
and infs on more than 50% of the generated samples. This is due to the RND f of Equation 7 often
evaluating to either 0 due to underflow or a very small number resulting in Equation 7 becoming very
large and unstable.

In order to alleviate this we propose the a novel modified logsmexp reformulation of Equation 7:

Lemma 2 (Stable MC-SFS) The MC-SFS estimator

û∗(t,x) =
E
z∼P̂ [zsf(x+

√
1− tz)]

E
z∼P̂ [

√
1− tf(x+

√
1− tz)]

, (F42)

Where P̂ is the empirical measure:

P̂ =
1

S

S∑
s=1

δzs (F43)

Can be re-expresssed as:

û∗(t,x) = exp

(
logsumexp

s
g+
x (zs)− logsumexp

s
lnZs

)
(F44)

− exp

(
logsumexp

s
g−x (z)− logsumexp

s
lnZs

)
(F45)
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where:

g+
x (zs) =

{
lnzsf(x+

√
1− tzs) if zs > 0

0 otherwise
(F46)

g−x (zs) =

{
lnzsf(x+

√
1− tzs) if zs < 0

0 otherwise
(F47)

and lnZs = ln
√

1− t+ ln f(x+
√

1− tzs)

Proof Firstly notice that the logsumexp formula cannot be applied to the numerator as the terms zsf(x +√
1− tzs) in the numerator can take on negative values and thus we cannot take the log.

In order to take log the note that E
P̂

[f ] is a Lebesgue–Stieltjes integral and thus by construction we can
decompose it into positive and negative parts:

û∗t (x) =
E
z∼P̂ [(zsf(x+

√
1− tz))]

E
z∼P̂ [

√
1− tf(x+

√
1− tz)]

=
E
z∼P̂ [(zsf(x+

√
1− tz))+]

E
z∼P̂ [

√
1− tf(x+

√
1− tz)]

−
E
z∼P̂ [(zsf(x+

√
1− tz))−]

E
z∼P̂ [

√
1− tf(x+

√
1− tz)]

(F48)

wlog consider the first term:

E
z∼P̂ [(zsf(x+

√
1− tz))+]

E
z∼P̂ [

√
1− tf(x+

√
1− tz)]

= exp
(

lnE
z∼P̂ [(zsf(x+

√
1− tz))+]− lnE

z∼P̂ [
√

1− tf(x+
√

1− tz)]
)

(F49)

and similarly for the second, at this point we can trivially apply the log sum exp formula to each of the
exponents separately as their integrands are positive. �

For efficient implementation we first separate the samples into positive and negative and then proceed
to compute each of the g+ and g− terms separately which avoids evaluating any ln 0 terms. We found
this formula to have no numerical instabilities in our experiments ranging up to high dimensional cases
d = 212 without issue.

Appendix G Sensitivity of hyperparameters to Hypespectral
Unmixing Results

While we were able to find step size schedules for SGLD that would work well for the Hyperspectral
image data, it is important to note that it was due to heavy tuning and a stroke of luck. As shown in H1
there are four parameters to adjust for the step size scheduling of SGLD and the resulting performance is
very sensitive to all of them. To illustrate this, we fixed the parameters associated to σ2 as given in H1,
and varied the others. The resulting samples are provided in figure G1.

In contrast, N-SFS has only one tunable parameter, which impacts the results much less, as shown in
figures G2 and G3.

Appendix H Experimental Details and Further Results

H.1 Method Hyperparameters

In Table H1 we show the experimental configuration of the trialled algorithms across all datasets. For
the selected values of γ we ran a small grid search γ ∈ {0.52, 0.22, 0.12, 0.052, 0.012} and selected the γ
with best training set results.
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Fig. G1 SGLD sensitivity to step size scheduling

Fig. G2 N-SFS sensitivity to γ

Fig. G3 Decoupled N-SFS sensitivity to γ
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H.2 Step Function Dataset

Here we describe in detail how the step function dataset was generated:

y(x) = 1x≥0 + ε, ε ∼ N (0, 0.1) (H50)

Where:

• σy = 0.1
• Ntrain = 100, Ntest = 100
• xtrain ∈ (−3.5, 3.5)
• xtest ∈ (−10, 10)
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H.3 Föllmer Drift Architecture

Across all experiments (with the exception of the MNIST dataset) we used the same architecture to
parametrise the Föllmer drift:

1 class SimpleForwardNetBN(torch.nn.Module):
2

3 def __init__(self , input_dim =1, width =20):
4 super(SimpleForwardNetBN , self).__init__ ()
5

6 self.input_dim = input_dim
7

8 self.nn = torch.nn.Sequential(
9 torch.nn.Linear(input_dim + 1, width),

10 torch.nn.BatchNorm1d(width , affine=False),
11 torch.nn.Softplus (),
12 torch.nn.Linear(width , width),
13 torch.nn.BatchNorm1d(width , affine=False),
14 torch.nn.Softplus (),
15 torch.nn.Linear(width , width),
16 torch.nn.BatchNorm1d(width , affine=False),
17 torch.nn.Softplus (),
18 torch.nn.Linear(width , width),
19 torch.nn.BatchNorm1d(width , affine=False),
20 torch.nn.Softplus (),
21 torch.nn.Linear(width , input_dim)
22 )
23

24 self.nn[-1]. weight.data.fill_ (0.0)
25 self.nn[-1]. bias.data.fill_ (0.0)

Listing 1 Simple architecture for drift.

Note the weights and biases of the final layer are initialised to 0 in order to start the process at a
Brownian motion matching the SBP prior.

For the MNIST dataset we used the score network proposed in [11]. We aimed in using this same
architecture for the CIFAR10 experiments however we were unable to train it stably.

For Hyperspectral Unmixing dataset we used this architecture for N-SFS with full drift, but had to
devise a different architecture for decoupled drifts, as shown below.

1 class ResNetScoreNetwork(torch.nn.Module):
2

3 def __init__(self , input_dim: int , final_zero=False):
4 super().__init__ ()
5 res_block_initial_widths = [300, 300, 300]
6 res_block_final_widths = [300, 300, 300]
7 res_block_inner_layers = [300, 300, 300]
8

9 self.input_dim = input_dim
10

11 self.temb_dim = 128
12

13 # ResBlock Sequence
14 res_layers = []
15 initial_dim = input_dim
16 for initial , final in zip(res_block_initial_widths , res_block_final_widths):
17 res_layers.append(ResBlock(initial_dim , initial , final , res_block_inner_layers , torch.nn.

Softplus ()))
18 initial_dim = initial + final
19 self.res_sequence = torch.nn.Sequential (* res_layers)
20

21 # Time FCBlock
22 self.time_block = torch.nn.Sequential(torch.nn.Linear(self.temb_dim , self.temb_dim * 2), torch

.nn.Softplus ())
23

24 # Final_block
25 self.final_block = torch.nn.Sequential(torch.nn.Linear(self.temb_dim * 2 + initial_dim ,

input_dim))

Listing 2 Score Network architecture for drift.

1 class DecoupledDrift(AbstractDrift):
2
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3 def __init__(self , global_dim =1, local_dim=1, data_dim=1, width =20):
4 super(DecoupledDrift , self).__init__ ()
5

6 self.global_dim = global_dim
7 self.local_dim = local_dim
8 self.data_dim = data_dim
9

10 self.nn = torch.nn.Sequential(
11 torch.nn.Linear(global_dim + local_dim + data_dim + 1, width), torch.nn.BatchNorm1d(width ,

affine=False), torch.nn.Softplus (),
12 torch.nn.Linear(width , width), torch.nn.BatchNorm1d(width , affine=False), torch.nn.

Softplus (),
13 torch.nn.Linear(width , width), torch.nn.BatchNorm1d(width , affine=False), torch.nn.

Softplus (),
14 torch.nn.Linear(width , width), torch.nn.BatchNorm1d(width , affine=False), torch.nn.

Softplus (),
15 torch.nn.Linear(width , local_dim)
16 )
17

18 self.nn[-1]. weight.data.fill_ (0.0)
19 self.nn[-1]. bias.data.fill_ (0.0)

Listing 3 Decoupled Drift network for local parameters

H.4 BNN Architectures

For the step function dataset we used the following architecture:

1 class DNN_StepFunction(torch.nn.Module):
2

3 def __init__(self , input_dim =1, output_dim =1):
4 super(DNN , self).__init__ ()
5

6 self.output_dim = output_dim
7 self.input_dim = input_dim
8

9 self.nn = torch.nn.Sequential(
10 torch.nn.Linear(input_dim , 100),
11 torch.nn.ReLU(),
12 torch.nn.Linear (100, 100),
13 torch.nn.ReLU(),
14 torch.nn.Linear (100, output_dim)
15 )

Listing 4 Architecture for step function dataset.

For LeNet5 the architecture used was:

1 class LeNet5(torch.nn.Module):
2

3 def __init__(self , n_classes):
4 super(LeNet5 , self).__init__ ()
5

6 self.feature_extractor = torch.nn.Sequential(
7 torch.nn.Conv2d(
8 in_channels =1, out_channels =6,
9 kernel_size =5, stride =1

10 ),
11 torch.nn.Tanh(),
12 torch.nn.AvgPool2d(kernel_size =2),
13 torch.nn.Conv2d(
14 in_channels =6, out_channels =16,
15 kernel_size =5, stride =1
16 ),
17 torch.nn.Tanh(),
18 torch.nn.AvgPool2d(kernel_size =2),
19 )
20

21 self.classifier = torch.nn.Sequential(
22 torch.nn.Linear(in_features =256, out_features =120) ,
23 torch.nn.Tanh(),
24 torch.nn.Linear(in_features =120, out_features =84),
25 torch.nn.Tanh(),
26 torch.nn.Linear(in_features =84, out_features=n_classes),
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27 )

Listing 5 Architecture for MNIST.

The same layer structure as in LeNet5 was used for the CIFAR10 dataset,and with a difference in the
number of channels and size of filters. Exact details can be found in the code repository.

H.5 Likelihood and Prior Hyperparameters

In Table H.5 we describe the hyperparameters of each Bayesian model as well as their priors and likelihood.

Model Hyperparameters Values

Step Function

Prior N (0, σ2
θI)

Likelihood N (yi|fθ(xi), σ
2
yI)

σθ 1
σy 0.1

MNIST
Prior N (0, σ2

θI)
Likelihood Cat(fθ(xi))
σθ 1

CIFAR10
Prior N (0, σ2

θI)
Likelihood Cat(fθ(xi))
σθ 1

Hyperspectral Unmixing
Prior p(σ2) = 1[0,1](σ

2), p(ap) = 1∆R (ap)
Likelihood N (Map; ||ap||2σ2I)

Log Reg
Prior Laplace(0, σθ, )
Likelihood Bern(Sigmoidθ)
σθ 1

ICA
Prior N (0, σ2

θI)
Likelihood

∏
i

1

4 cosh2(
θ>i x

2
)

σθ 1

Table H2 Specification of Bayesian models.
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