
This electronic thesis or dissertation has been

downloaded from the King’s Research Portal at

https://kclpure.kcl.ac.uk/portal/

Take down policy

If you believe that this document breaches copyright please contact librarypure@kcl.ac.uk providing

details, and we will remove access to the work immediately and investigate your claim.

END USER LICENCE AGREEMENT

Unless another licence is stated on the immediately following page this work is licensed

under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International

licence. https://creativecommons.org/licenses/by-nc-nd/4.0/

You are free to copy, distribute and transmit the work

Under the following conditions:

 Attribution: You must attribute the work in the manner specified by the author (but not in any
way that suggests that they endorse you or your use of the work).

 Non Commercial: You may not use this work for commercial purposes.

 No Derivative Works - You may not alter, transform, or build upon this work.

Any of these conditions can be waived if you receive permission from the author. Your fair dealings and

other rights are in no way affected by the above.

The copyright of this thesis rests with the author and no quotation from it or information derived from it

may be published without proper acknowledgement.

Derivative-Based Financial Network Clearing
Transition From Intractability to Computable Solutions

Ioannidis, Stavros

Awarding institution:
King's College London

Download date: 25. Dec. 2024

Derivative-based Financial Network Clearing: Transition from

Intractability to Computational Solutions

Stavros D. Ioannidis

A thesis submitted for the degree of

Doctor of Philosophy

King’s College London

https://www.linkedin.com/in/stavros-ioannidis-647308152/

Acknowledgements

I would like to express my deepest gratitude to my supervisors Bart de Keijzer and Carmine Ventre

for supporting me and sharing their research experience with me. Their valuable guidance and the

freedom they gave me to work at my own pace allowed me to become scientifically more mature

over time. I am very thankful to them for the opportunity they gave me, for introducing me to

this thesis’ subject of study and for our collaboration. I am also very grateful to Kousha Etessami

for his elaborative email on the complexity class FIXP and Argyris Deligkas for pointing me to the

PURE-CIRCUIT problem. I also want to express my gratitude to my masters’ supervisor Ioannis

Caragiannis, for introducing me to the TCS community.

I would like to thank Anastasia for the love and enthusiasm she brings to our family. Her

serenity and love for books inspire me throughout my life. I extend my gratitude to Dimosthenis

and Alexandros for generously opening their home to me, for their companionship, and for the

journey we shared to Oxford. For their friendship, memories and fun times, I would like to thank all

my friends in Greece and London and especially my friends from Thessaloniki for the unforgettable

trip to Ikaria.

I would like to acknowledge my parents for their invaluable gifts of life and education. I want to

express my deepest gratitude for their unwavering love, support and dedication. No words can fully

convey my feelings of appreciation and love for them. My father Dimitris showed me the beauty

of mathematics, language, literature, history and life. I would like to thank him for his noble and

kind example of living life. If it were not for him, I would have not taken this path in life. I want

to thank my mother, Despoina for the dedication she showed in raising me in her young years and

for the passion for poetry and art that I know I inherit from her. I dedicate the effort I putted in

this work to my parents, Despoina and Dimitris. Σας ευχαριστώ από καρδιάς για όλα τα δώρα που

μού έχετε προσφέρει.

2

https://www.kcl.ac.uk/people/bart-de-keijzer
https://www.kcl.ac.uk/people/carmine-ventre
https://cs.au.dk/~iannis/
https://cs.au.dk/~iannis/

All those moments will be lost in time, like tears in rain.

Blade Runner

DEPARTMENT OF INFORMATICS

KING’S COLLEGE LONDON

Derivative-based Financial Network Clearing: Transitioning from

Intractability to Computational Solutions

A thesis submitted for the degree of

Doctor of Philosophy

Stavros D. Ioannidis

Supervisors:

Bart de Keijzer

Senior Lecturer, King’s College London

Carmine Ventre

Professor, King’s College London

Thesis committee:

Argyris Deligkas

Senior Lecturer, Royal Holloway of London

Kousha Etessami

Professor, University of Edinburgh

4

https://www.linkedin.com/in/stavros-ioannidis-647308152/
https://www.kcl.ac.uk/people/bart-de-keijzer
https://www.kcl.ac.uk/people/carmine-ventre
https://sites.google.com/view/deligkas/home?pli=1
https://homepages.inf.ed.ac.uk/kousha/

Abstract

Financial networks model a set of financial entities, such as firms or banks, interconnected by

monetary obligations. Recent work has introduced to this model a class of obligations called Credit

Default Swaps “CDS”, a well-known type of financial derivative. The main computational challenge

in financial systems is the “clearing” problem. This problem involves the task of determining

insolvent firms and quantifying their exposure to systemic risk. The technical term used to describe

this exposure is the “clearing recovery rate”. In essence, the “clearing” problem involves computing

the clearing recovery rates of all financial institutions in a given network.

It is established that the “clearing” problem, is computationally tractable when dealing with

simple debt contracts [EN01], while existing techniques show PPAD-hardness for finding a weak

approximate ϵ-solution when CDSes are involved, within an unspecified small range for ϵ [SSB17b].

This thesis addresses the “clearing” problem in financial networks containing simple debt contracts

and credit default swaps and presents results on the following aspects of the problem:

• Exact Computation : We establish that the exact computation version of the problem is

FIXP-complete. We infer FIXPa-completeness for finding a strongly (or “near”) approximate

solution as a direct consequence.

• Approximation Strength : We establish an improved explicit inapproximability bound for

computing weak (or “almost”) approximate solutions.

• Algorithms and Heuristic: We focus on two meaningful restrictions of the class of financial

networks motivated by regulations: (i) the presence of a central clearing authority; and, (ii)

the restriction to covered CDSes introduced in [SSB20]. We provide the following results.

i) The PPAD-hardness for weak approximation persists when central clearing authorities

are introduced.

ii) An optimisation-based method for solving the “clearing” problem with central clearing

authorities.

iii) A simple polynomial-time algorithm when the two restrictions hold simultaneously.

Additionally we identify necessary structural conditions of the financial system that suffice

for numerically irrational solutions to emerge. In the absence of these conditions, we study the

1

complexity of finding an exact solution, which we show to be a problem close to, albeit outside of,

PPAD.

We also present supplementary results on the computational complexity of the “clearing” prob-

lem in financial networks with derivatives, whenever payment priorities among creditors are applied.

This practically relevant model has only been studied from a game-theoretic standpoint. Specif-

ically, we examine the “clearing” problem whenever firms pay according to a Singleton Liability

Priority list and prove that it is also FIXP-complete. Finally, we provide a number of NP-hardness

results for the task of selecting the optimal priority list, i.e, the list that optimises specific objectives

of interest.

The aim of this thesis is to contribute to the literature on the “clearing” problem with debt

contracts and credit default swaps. In this direction we present progress in existing knowledge as

well as new results that establish the clearing problem as an important computational challenge

at the intersection of finance and computation, having both theoretical and practical interest. To

facilitate this connection, we highlight the progress made on the “clearing” problem and how this

progress aligns with the progress marked in the field along the period of publishing these results.

This work arranges thematically and provides a unified presentation of the material published in

the following research papers:

• Strong Approximations and Irrationality in Financial Networks with Derivatives [IDKV22]

• Financial Networks with Singleton Liability Priorities [IDKV23b]

• Clearing Financial Networks with Derivatives: From Intractability to Algorithms [IdKV23a]

https://scholar.google.com/scholar?q=Strong+Approximations+and+Irrationality+in+Financial+Networks+with+Financial+Derivatives
https://www.sciencedirect.com/science/article/pii/S0304397523002785
https://scholar.google.com/scholar?q=Clearing+Financial+Networks+with+Derivatives%3A+From+Intractability+to+Algorithms

Contents

1 Introduction 1

1.1 The Subject of Study . 1

1.2 Contribution . 3

1.3 Significance . 8

1.4 Technical and Conceptual Innovations . 9

1.5 Literature . 11

2 Preliminaries 14

2.1 Financial Networks with Derivatives . 15

2.1.1 Financial Networks . 15

2.1.2 Payment schemes . 17

2.1.3 Clearing Recovery Rate Vectors . 18

2.2 The Clearing Problem . 21

2.2.1 CDS-CLEARING &CDS-PRIORITY-CLEARING 21

2.2.2 Irrational Solutions . 24

2.2.3 Approximation concepts . 24

3 Computational Challenges 28

3.1 Computing Strong Approximations . 29

3.1.1 The Complexity Class FIXP . 30

3.1.2 FIXP-Completeness of CDS-CLEARING 32

3.1.3 Financial System Gadgets . 41

3.1.4 Financial System Gadgets for Singleton Liability Priorities 53

i

3.2 Computing Weak Approximations . 57

3.2.1 ϵ-CDS-CLEARING . 57

3.2.2 The PURE-CIRCUIT Problem . 57

3.2.3 PPAD-hardness of ϵ-CDS-CLEARING . 59

3.2.4 Central CDS debtors &Dedicated CDS debtors 80

4 Algorithmic Approaches 83

4.1 Optimisation-Based Computation of Clearing Vectors 84

4.1.1 Mixed-Binary Linear Program for Central CDS debtors 84

4.1.2 Mixed-Binary Nonlinear Program for CDS-CLEARING 88

4.2 Central CDS debtors with covered CDSes . 89

5 Rational and Irrational Solutions 93

5.1 A Sufficient Structural Condition for Irrational Solutions 94

5.1.1 Switched Cycles . 94

5.1.2 Rewriting Rules for Strongly Switched Cycles 96

5.1.3 Irrationality of Strongly Switched Cycles . 103

5.2 Financial Systems with Guaranteed Rational Solutions 107

6 Hardness of Deciding Priority Profiles 115

6.1 Maximising the Equity of a Specific Bank . 116

6.2 Minimising Defaulting Banks and Partially Paid Liabilities 118

6.3 Minimising Activated CDS Contracts . 120

6.4 Maximising Systemic Liquidity . 121

7 Conclusion &Future Work 126

ii

List of Figures

2.1 The contract graph of a system with six banks, four debt contracts and two CDSes. 17

2.2 The contract graph of a financial network with the profile P = (P 1
2 , P

1
5). 18

2.3 Topology of non-degenerate networks. 23

2.4 Financial system of Example 3 . 26

3.1 Addition gadget g+. 38

3.2 Inversion gadget ginv. 41

3.3 Gadget gdup . 41

3.4 Division gadget g/. 42

3.5 Multiplication gadget g∗.. 43

3.6 Positive subtraction gadget gpos−. 44

3.7 Absolute difference gadget gabs: This is a compact representation of the gadget where

the nodes labeled with a subscripted g have to be replaced by copies of the respective

gadget in order to obtain the full financial network that defines the gadget. 44

3.8 Absolute difference gadget gabs: The full version of the gadget. 45

3.9 Compact representation of a non-degenerate version of the multiplication gadget g′∗. 46

3.10 Alternative non-degenerate multiplication gadget where all contract notionals are

assumed to be 1. 47

3.11 The square root constant gadget g√c, c ∈ [0, 1] that has no input and outputs
√
c. . 49

3.12 The square root gadget g√. 49

3.13 The financial system constructed from a given Square Root Sum instance. 51

iii

3.14 Maximum gadget gmax, computing max{r1, r2}. This is a compact representation

where the nodes labeled with a subscripted g have to be replaced by copies of the

respective gadgets, in order to obtain the full financial system defining the gadget. . 52

3.15 Minimum gadget gmin, computing min{r1, r2}. This is a compact representation

where the nodes labeled with a subscripted g have to be replaced by copies of the

respective gadgets, in order to obtain the full financial system defining the gadget. . 52

3.16 Minimum gadget gmin, computing min{r1, r2}. 53

3.17 Positive subtraction gadget gpos−, computing max{0, r1 − r2}. 54

3.18 Maximum gadget gmax, computing max{r1, r2} . 54

3.19 Absolute difference gadget gabs. 55

3.20 Multiplication gadget g∗: This gadget’s construction is rather involved and makes use

of various instances of multiplication-by-constant gadgets and positive subtraction

gadgets. Some of the nodes have been annotated with expressions marked in red:

These expressions are the recovery rates of some of the intermediate nodes in the

gadget, in terms of the input nodes’ recovery rates. 56

3.21 Graphical representation of the NOT-gate . 58

3.22 Graphical representation of the OR-gate . 58

3.23 Graphical representation of the PURIFY-gate . 58

3.24 The graphical illustration of the PURE-CIRCUIT instance I. 60

3.25 The financial network FNOT that simulates a NOT-gate. 69

3.26 The financial network FOR that simulates an OR-gate 72

3.27 The financial network FPURIFY that simulates a PURIFY-gate 74

3.28 A central CDS debtor CCD with three CDS contracts. The label F is used to indicate

that the financial network F contains only simple debt contracts. 81

3.29 A dedicated CDS debtor i to R with two CDS contracts 82

4.1 The Mixed-Binary Linear Program for Central CDS debtors. 85

4.2 Topology of naked and covered CDS. 89

4.3 The reconfiguration of the dynamics after the removal of the covered CDS. 90

iv

5.1 A financial system GI represented as its contract graph, and the corresponding

auxiliary graph GI,aux. The dashed lines used in our original graphical notation are

retained, for clarity. The coefficients along the arcs and on the nodes are omitted. . 94

5.2 Illustration of switched off and switched on nodes. 96

5.3 The fragments in G. Each fragment is labeled with a name that we will use to refer

to the individual fragments. We have G = {ga1 , gb1, gc1, gd1 , ga2 , gb2, gc2, gd2 , ga3 , gb3, d1, d2} . 99

5.4 Full set of arithmetic fragments. All nodes labeled with c, c1, and c2, are assumed

to have a recovery rate of 0, which is achieved by setting the external assets of c

to 0 and setting the coefficients in the financial system (in which the fragment is

embedded) such that c has a strictly positive liability. 101

6.1 The j-subnetwork used in the proof of Theorem 12. 118

6.2 The financial system corresponding to the formula F = {x ∨ ¬y} ∧ {y ∨ ¬y}. This

construction is used to prove the statements of Theorem 13. 120

6.3 The initial financial system F and the constructed F ′ used is the proof of Theorem

14. 121

6.4 Transformation of an (i, j) contract that appears in F to a τij-gadget appearing in

F ′
τ and F ′. 122

6.5 Transformation of an (i, j, k) contract that appears in F to a τkij-gadget appearing

in F ′
τ and F ′. 122

6.6 Addition of the k-gadget in F ′ for every node k of F 123

v

Chapter 1

Introduction

1.1 The Subject of Study

The International Monetary Fund claims that the global financial crisis (GFC) of 2007 has had

long lasting consequences, including loss of growth, large public debt and even a decline of fertility

rates, see [IMF]. Consequently, the need to assess the systemic risk of financial networks cannot be

overstated. Below are just some exemplar questions that are paramount to the study of systemic

risk in finance:

• How does the collapse of an established financial institution affect the stability of a financial

market?

• Can a bank’s exposure to such a contagion risk be efficiently measured by clearing authorities?

• What factors should legislatures consider when formulating economic policies?

If banks at risk of defaults could be easily identified in the complex network of financial obligations,

then spread could be preemptively avoided with appropriate countermeasures such as bailouts from

central banks or regulators.

In this context, financial networks have emerged as the framework of reference. These networks

are modelled as graphs where vertices represent banks (or, more generally, financial institutions)

and weighted arcs (u, v) model economic commitments from bank u to bank v. Each bank has

also some assets external to the network, that can be used to pay its liabilities. The central

computational challenge for financial networks, that underpins many, if not all, questions considered

1

in the literature in this area, is the “clearing” problem. In this problem the task is to find a clearing

recovery rate vector . This amounts to computing the percentage of the liabilities that each bank

should pay if the system had to be cleared at once – intuitively, the smaller the ratio, the more

exposed the bank is to systemic risk due to defaults in the network. If this ratio is bigger than 1

for a bank, then it will be able to pay its dues – in this case, we simply set its rate to 1. The banks

that are in default have rates smaller than 1.

In their seminal work, Eisenberg and Noe [EN01], establish the mathematical formulation of the

“clearing” problem. Their approach, which constitutes the baseline of research in this area, initiates

the study of the problem from a fixed-point-computation perspective. The upshot of their work,

is that clearing recovery rate vectors correspond to fixed points of a certain function f , whenever

the liabilities are simple contracts requiring the payment of a certain value (known as notional)

unconditionally. More importantly, they provide a polynomial time algorithm for computing the

clearing recovery rate vector in case of networks with simple debt contracts.

However, Eisenberg and Noe’s model ignores the issue of financial derivatives that may be

present in the system. The deregulation allowing banks to invest in these products is considered

by many as one of the triggers of the GFC. The introduction of financial derivatives to financial

networks is due to Schuldenzucker, Seuken and Battiston [SSB20], where the focus is on a simple

yet widely used class of conditional obligations known as credit default swaps (CDSes), the idea

being to “swap” or offset a bank’s credit risk with that of another institution. More specifically,

a CDS has three entities: a creditor v, a debtor u and a reference bank z — u agrees to pay v a

certain amount whenever z defaults. Whilst CDSes were conceived in the early 1990s [SM06] as a

way to protect v from the insolvency of z for direct liabilities (i.e., a (v, z)-arc in the network), they

quickly became a speculative tool to bet against the creditworthiness of the reference entity and

have in fact been widely used both as a hedging strategy against the infamous collateralise debt

obligations, whose collapse contributed to the GFC, and pure speculation during the subsequent

Eurozone crisis.

The “clearing” problem in the presence of credit default swaps is somewhat less well-

characterised. Similarly to the simple case, the “clearing” problem takes the form of a fixed-point

computation over a more complex function f that always admits fixed points. The main observa-

tion for the new model on top of its involved combinatorial structure, is the numerical irrationality

2

of the clearing recovery rates; a combination that puts the exact solution of the problem out of

reach. To correctly define the computational question in this case, one then needs to resort to a

notion of approximation.

Proposed approximation notions in the literature involve the computation of either a ‘weak’

(almost) fixed point x such that |x− f(x)| < ϵ along all dimensions or a ‘strong’ (near) fixed point

y satisfying |y− z| < ϵ where z is such that z = f(z) (that is, z is a fixed point). Both versions can

be appealing for systemic risk in financial networks.

The main computational result regarding the “clearing” problem with credit default swaps was

proved by Schuldenzucker, Seuken and Battiston [SSB17b] and establishes that there exists a small

unspecified constant ϵ, for which computing weak approximations is PPAD-complete, whenever

the banks pay proportionally i.e, they pay the same fraction of each liability, where this fraction

is computed by dividing the banks’ total assets by total debts. The result is based on a re-

duction from the ϵ-GENERALISED-CIRCUIT; a problem introduced in [CDT09] and proved

in [Rub15] to be PPAD-hard for some unknown small constant ϵ. This statement excludes the

possibility of constructing a polynomial time approximation scheme (PTAS) under the widely be-

lieved complexity-theoretic assumption that PPAD-hard problems do not have polynomial time

algorithms.

1.2 Contribution

We enhance the study of the “clearing” problem for financial networks with credit default swaps

from two complementary viewpoints; computational complexity and algorithms for exact com-

putable solutions.

We argue that weak approximations, initially motivated and studied in [SSB17b], can be mis-

leading in this domain, as the objective under this criterion is to find an “almost” fixed point

(i.e., a point which is not too far removed from its image under the function). The proportion of

liabilities that a bank has to pay provided by this estimate concept, might be very far off one (out

of possibly multiple) actual rate thus changing the amount of bailout needed or even whether a

bank needs rescue in the first place. A more useful (but more difficult) objective is to obtain a

strong approximation, that is, a point that is geometrically close to an actual fixed point of the

function. Such a risk estimate would be actionable for a regulator, as the error could be measured in

3

terms of irrelevant decimal places. Furthermore, the banks themselves would accept the rate when

the strong approximation guarantee is negligible, whereas weak approximations could significantly

misrepresent their income and are subject to be challenged, legally or otherwise.

We settle the computational complexity of computing strong approximations to the “clearing”

problem by showing that the problem is FIXP-complete (Sections 3.1.1, 3.1.2). In our reduction, we

provide a series of financial network gadgets (Section 3.1.3), that are able to compute arithmetic

operations over recovery rates. Not many FIXP-complete problems are known, although there are

a few important natural such problems (three-or-more-player Nash equilibrium being a notable

example [EY10]). Interestingly, more FIXP-complete results have been published during the period

of writing this work (see Literature). Hardness reductions for this class tend to be rather technically

involved and not straightforward. The hardness reduction that we provide here indeed has some

technical obstacles as well, although it is quite natural at a high level.

In [SSB17b] the authors established that computing weak approximate fixed point for the clear-

ing problem is PPAD-complete. Our work complements the work of [SSB17b] on the computational

complexity of weakly approximate fixed points for the “clearing” problem with credit default swaps

by establishing that computing strong approximate fixed points is harder than computing weakly

approximate fixed points, which holds due to PPAD being equal to the class Linear-FIXP, which is

a restriction of FIXP, and this makes PPAD (indirectly) a subclass of FIXP (see Section 3.1.1).

Main Theorem 1 (cf. Theorem 3) Computing a clearing vector (strong approximate

clearing vector) in a financial network with debt contracts and credit default swaps is

FIXP-complete (FIXPa-complete).

Furthermore, we want to understand whether there are values of ϵ for which computing a suitable

ϵ-approximation of the clearing recovery rates can be done in polynomial time. In particular, we

are interested in the intractability of the problem; for which values of ϵ do the hardness results

carry over? We exploit the connection of the “clearing” problem to the PPAD complexity class,

along with the recent advancements in the area of total function search problems TFNP [MP91],

regarding constant inapproximability. We study weak approximations. It was previously established

that computing weak ϵ-approximate clearing vectors is PPAD-hard for a small unknown constant

ϵ [SSB17b]. We prove the following result.

Main Theorem 2 (cf. Theorem 6) Computing ϵ-weak approximations of clearing

4

recovery rates is PPAD-hard for ϵ ≤ 3−
√
5

16 ≈ 0.048.

The proof leverages PURE-CIRCUIT – a toolkit introduced by Deligkas, Fearnley, Hollen-

der and Melissourgos [DFHM22] – for showing constant inapproximability in PPAD. The problem

features a set of variables which can take one of three different values 0, 1 or garbage and a circuit

constructed from connecting gates of the following three types: NOT, OR and PURIFY. The first

two basically follow boolean logic whereas the PURIFY gate has one input and two outputs and

makes sure to duplicate the pure bit in input or produce at least one pure bit in output if the input

is garbage. The main result of [DFHM22] is that PURE-CIRCUIT is PPAD-complete.

We construct a direct reduction from PURE-CIRCUIT to the “clearing” problem. The proof

is technically involved and can be divided in the following parts:

• An encoding of the recovery rate space [0, 1] into three disjoint subintervals that intuitively

map recovery rates to either a pure bit or garbage.

• The construction of three “financial gates” whose behaviour under weak approximate clearing

vectors must simulate the function of PURE-CIRCUIT gates after decoding the recovery

rates of specific banks.

Subsequently, we evaluate the effectiveness of policies introduced in the wake of economic crises,

the introduction of central CDS debtors (CCDs), a construct reminiscent of a central clearing

counterparty (CCP), and the ban of naked CDSes. Both the regulatory frameworks in EU and

US require the use of a CCP for a large part of the over-the-counter derivatives market [SSB20].

This means that if two banks u and v want to sign a derivative (CDS in our context) they need

to involve a CCP which will sign one CDS contract with u and another CDS with v. A CCP is

typically so well capitalised that it can absorb shocks in the market. A central CDS debtor is a

CCP which is not creditor of any CDS contract, a strengthening of the current notion of CCP

where the risk of the original CDS from u to v is not only absorbed downstream towards v but

also upstream vis-a-vis u (e.g., the original CDS is only substituted with a CDS between the CCP

and v whereas the liability with u is a simple debt contract). Such a policy requirement restricts

quite significantly the network structure and rules out the hope for efficient computation of (good

approximations of) clearing rates. Interestingly, under the presences of CCDs, all clearing vectors

5

are rational. Unfortunately, our inapproximability result applies also to the case in which CCDs

ought to be used.

We propose an approach for computing exact clearing vectors for financial networks that involve

CCDs. We devise a Mixed-Binary Linear Program (Section 4.1.1), where within this program,

there is a combination of real-valued variables for the recovery rates and binary decision variables

tailored to indicate a bank’s solvency status. The feasible solutions of this program correspond to

the clearing recovery rate vectors of the network. This framework is highly adaptable for optimising

any linear objective function of interest related to the clearing vector. An immediate implication

is an exponential-time algorithm for computing clearing recovery rate vectors when CCDs are

mandated.

Main Theorem 3 (cf. Theorem 8) The task of computing an exact clearing recovery

rate vector that optimises a given linear objective function (whose variables are the

recovery rates) in the setting of a financial network that contains both debt and CDS

contracts where moreover there exist one CCD, i.e, when a CCD is mandated, admits

an exponential time algorithm.

A naked CDS [SSB20] is a purely speculative contract; its counterparties do not have any other

interest in the reference bank if not the CDS itself. However, regulators could ban their existence

and only allow to buy a CDS if a corresponding (debt) exposure exists–i.e., to only have so-called

covered CDS [SSB20]. We exploit the topological structure of financial networks that contain only

covered CDS contracts and CCDs to compute an exact clearing recovery rate vector in polynomial

time.

Main Theorem 4 (cf. Theorem 9) The task of computing an exact clearing recovery

rate vector in the setting of financial networks that contain debt and only covered CDS

contracts, where moreover there exist one CCD, admits a polynomial time algorithm.

The FIXPa-hardness of the strong approximation problem indicates that there is an additional

numerical aspect contributing to the hardness of the problem, which is not present in the weak

approximation problem (where the hardness is of a combinatorial nature, due to the reducibility to

the end-of-the-line problem which is canonical to PPAD). For the strong approximation problem,

the nature of the underlying function for which we want to find the fixed points requires, in

6

particular, the multiplication operation, which ultimately accounts for irrationality and super-

polynomial numerical precision being necessary in order to derive whether a given point is a strong

approximation to a clearing vector.

Additionally, we turn our attention towards numerically irrational solutions with the goal to

determine the source of irrationality and understand when it is possible to compute the clearing

recovery rate vector exactly in the form of rational numbers. We identify a structural property of

cycles in an opportunely enriched network that leads to a financial network with a unique clearing

recovery rate vector whose coordinates contain irrational real values. This property exactly dif-

ferentiates the CDSes that produce and propagate irrationality of the recovery rates, that we call

“switched on”, from those that do not, termed “switched off”. We prove the following characteri-

sation of irrationality.

Main Theorem 5 (cf. Theorems 10,11) If the financial network has only “switched

on” CDSes in a cycle and the cycle cannot be shortcut with paths of length at most

three1 then there exist rational values for debt and asset values for which the recovery

rate vector is unique and irrational. Conversely, if every cycle of the financial network

does not have any “switched on” CDSes then we can compute rational recovery rates in

a polynomial number of operations, provided that we have oracle access to PPAD.

The proof of irrationality uses a type of graph “algebra” (that is, a set of network fragments and an

operation on them) that is able to generate all the possible cycle like structures with the property

above, which uncovers a connection between the network structure of the “clearing” problem and

the roots of non-linear equations.

For the opposite direction, we provide an algorithm that exploits the acyclic structure of financial

networks with solely “switched off” CDSes. This algorithm iteratively computes the recovery rates

of each strongly connected component of the network. We show that even for the simpler topologies

of the financial system under consideration, the problem remains PPAD-hard, hence the need for

the oracle access to PPAD.

1The length-at-most-three condition is restated in the form of a more refined condition in the respective technical

Sections that lead to this result.

7

1.3 Significance

This thesis builds upon and enhances a set of previously established complexity results published in

[SSB17b]. In addition to the algorithmic results presented in [SSB17a], we establish new algorithmic

methods for certain restrictions of the “clearing” problem when credit default swaps are involved.

In reference to Main result 1, the FIXP-completeness of the problem is an important result that

was missing from the literature. It provides the complete complexity characterisation of the problem

with immediate impact on the complexity of approximate solutions. Essentially it establishes the

central role of the “clearing” problem with CDSes in the FIXP class, an important class related to

Game Theory [EY10].

What is notable is that proving FIXP-completeness results is based on SL-reductions, a method-

ology initially suggested for establishing hardness. Here, the significance of our result is more tech-

nical, in the sense that our presented reduction for the FIXP-hardness is somewhat more direct than

in previous work we are aware of, in the sense that it starts from the algebraic circuit defined by

an arbitrary problem in FIXP and employs two main steps: We firstly force the outputs of all gates

in the circuit to be in the unit cube, by essentially borrowing arguments from [EY10], after which

we produce a series of network gadgets that preserve gate-wise the computations of said circuit.

The results of Main Theorem 2, concerned with the intractability of the “clearing” problem,

follow the advancements regarding hardness of approximation in PPAD marked by the introduction

of the PURE-CIRCUIT problem [DFHM22]. This problem is received by the community as a

novel tool replacing the ϵ-GENERALISED-CIRCUIT problem defined in [CDT09] in establish-

ing inapproximability bounds for problems in PPAD. The importance of this progress, apart from

the simplicity of the new tool, is the transition from proving existence of an unspecified small inap-

proximability bounds (that results when using ϵ-GENERALISED-CIRCUIT which was proved

PPAD-hard in [Rub15]) to establishing explicit and higher inapproximability bounds when using

PURE-CIRCUIT. The “clearing” problem with credit default swaps is proposed by the authors

in the introduction of [DFHM22], to fall into the category of problems for which a transition from an

undefined small constant inapproximability parameter to an explicit higher bound can be achieved

via their proposed tool.

Main Theorem 2 provides the first explicit inapproximability bound for the “clearing” problem

for financial networks with credit default swaps. The significance of the result is enhanced when

8

comparing it with the state of the art bound. The initial method for proving PPAD-hardness

of ϵ-weak approximate clearing vectors, established in [SSB17b], presents a reduction from the

ϵ-GENERALISED-CIRCUIT to the clearing problem. The resulting statement suggests that

there exist a constant ϵ > 0, such that the task of computing ϵ-weak approximate clearing vectors

is PPAD-hard. In our work, we make the state of the art bound explicit. First we suggest a chain

reduction from PURE-CIRCUIT to ϵ-GENERALISED-CIRCUIT to the clearing problem

that leads to a bound of ϵ < 1/150 ≈ 0.0067 (Section 3.2.3). Subsequently we present a direct

reduction from the PURE-CIRCUIT problem to the clearing problem. In comparison to the

state of the art, Theorem 6 is a seven-fold improvement. An important added value of this result

is that it holds for any “reasonable” payment scheme (see Corollary 1).

Furthermore, the presented optimisation approach that leads us to Main Theorem 3, could be

received as a versatile tool for proving improved lower bounds and upper bounds. The exponential

Algorithm 1 proposes a clearing mechanism when central clearing authorities are present in the

system. It is important to emphasise that the exponent in the algorithm’s running time is contingent

solely on the number of banks in the network and remains unaffected by the actual size of the

parameters within the networks structure (see discussion under Algorithm 1).

We see the complexity and irrationality results of Main Theorem 5 as important analytical tools

that legislators can use to regulate financial derivatives. We contribute to the ongoing debate in the

US and Europe about whether speculative uses of CDSes should be banned. In particular our results

support, from a computational point of view, the call to ban so-called “naked” CDSes (as already

done by the EU for sovereign debt in the wake of the Eurozone crisis, see [EUB]). In a “naked” CDS

its creditor and debtor have no direct liabilities with the reference entity which arguably makes

such contracts purely speculative. The simple efficient algorithm we propose (see Algorithm 2),

when high-capitalised clearing authorities are coupled with covered CDSes [SSB20, SSB17a], aligns

with legislative policies on prohibiting the use of “naked CDSes” and previous work published in

[SSB17b].

1.4 Technical and Conceptual Innovations

It is worth highlighting a specific technical challenge that we overcome in the proof of Theorem 3,

as it sheds further light on FIXP, and in particular, on the operator basis of the algebraic circuits

9

that are used to define the class. It is known that the circuit of problems in FIXP can be restricted

without loss of generality to be built on the arithmetic basis {max,+, ∗} [EY10], whereas restricting

the internal signals of the circuit to the unit cube (with the toolkit developed in [EY10]) needs

some further operators, including /. For our optimisation problem to be in FIXP, we need the

rather mild and realistic assumption that our instances are non-degenerate as defined in [SSB17b].

The function of which the fixed points define the recovery rates of non-degenerate instances is

well defined, where the non-degeneracy is needed to avoid a division by 0. It turns out that non-

degeneracy is incompatible with division being part of the FIXP operator basis, i.e., it seems difficult

to build such a financial network that in any sense simulates a division of two signals in an algebraic

circuit. To bypass this problem, our proof shows that it is possible to substitute / in the basis with

the square root operator,
√
·, whilst keeping the function well defined. This substitution can be

used to simulate division with constant large powers of 2, and this turns out to be sufficient to omit

the /-operator (i.e., arbitrary division). This observation might be useful for other problems where

division is problematic to either define the fixed point function, or the reduction.

The proposed reduction for the PPAD-hardness result of Theorem 6 is optimised, in the sense

that it generates a family of possible encodings for the recovery rate values, upon which we choose

the one that maximises the inapproximability parameter ϵ. The intricate structure of the pro-

posed networks combined with the restriction of computations to intervals within the [0, 1] range,

significantly increases the complexity of the analysis. To bypass this obstacle we define and use

a first-order language denoted as L(R,F,C). This language is designated to handle combined

arithmetic operations involving intervals and numbers within the range [0, 1] and combines concise

representations with a high level of expressiveness. The upshot of Theorem 6 is that if we were

able to approximate the “clearing” problem better than (roughly) 0.048 then the encoding would

guarantee that we could solve PURE-CIRCUIT.

Main Theorem 5 indirectly aims at characterising the “rational fragment” of FIXP. A couple

of observations can be drawn. Firstly, our sufficiency conditions for irrationality suggest that any

such characterisation needs to fully capture the connection between the fixed point condition and

the rational root theorem; our proof currently exploits the cyclical structure of networks with

“switched on” CDSes to define one particular quadratic equation with irrational roots. Whilst

this captures a large class of instances, more work is needed to give a complete characterisation.

10

Secondly, our sufficiency conditions for rational solutions highlight a potential issue with their

representation. Due to the operations in the arithmetic basis, most notably multiplication, these

solutions can grow exponentially large (even though each call to the PPAD oracle returns solutions

of size polynomial in their input). This observation establishes a novel connection between the

Blum-Shub-Smale computational model [BCSS98] (wherein the size to store any real number is

assumed to be unitary and standard arithmetic operations are executed in one time unit), the

rational part of FIXP, and PPAD.

1.5 Literature

Systemic risk and contagion in financial networks have been studied extensively in the literature

[AOTS15, EGJ14, GY15, HK12, HK16, HZHW12, CFS05, EGJ14, JP21, JP24]. Previous work

models a financial network as a setup of interconnected nodes, representing economic firms, in an

arc-weighted graph where arcs represent debt obligations from one firm toward another. Among the

first papers on systemic risk in financial networks, Eisenberg and Noe [EN01], study the problem

of finding a clearing payment vector for a financial system that contains only simple debt contract

liabilities. They prove, applying Tarski’s fixed point theorem, that such payment vectors always

exist and provide a polynomial time algorithm for computing one. A variation of the original

model by Eisenberg and Noe with the addition of default costs is presented by Rogers and Veraart

in [RV13]. Concepts of financial systems with simple debt contracts were investigated in [SS21,

PW21a, HW22]

Financial systems admitting both debt contracts and credit default swaps are introduced by

Schuldenzucker, Seuken and Battinston in [SSB20]. They establish that clearing recovery rate

vectors always exists when studying models in [EN01] whereas that’s not the case for models with

default costs in [RV13] where they establish that deciding whether one clearing vector exists is NP-

hard presenting a reduction from CIRCUIT-SATISFIABILITY [Pap94a]. In the same paper, the

authors establish that there might exist multiple such clearing recovery rate vectors. This situation

leads to ambiguity regarding the financial state of the institutions. Subsequently in [SSB17b]

the authors are interested in the problem of computing a clearing recovery rate vector in models

where existence is guaranteed. Early in their paper, they construct a simple instance of a financial

network whose solution is proved to be irrational, thus focusing on the problem of computing an

11

approximate clearing recovery rate vector. Their main result is that almost-approximating the

clearing recovery rate vector is PPAD-complete, meaning that no PTAS exists unless P = PPAD.

The notion of covered CDS contracts is defined in [SSB20]. In [SSB17a] the authors provide a FPTAS

for computing an approximate clearing vector in financial networks that contain only covered CDS

contracts.

Work has been published on the computational complexity of finding the clearing recovery rate

vector that maximises/minimises specific objective functions regarding the financial system. Papp

and Wattenhofer in [PW22], establish that even if a financial regulator could efficiently compute

the set of clearing recovery rate vectors for a financial system, it is still NP-hard to find the clearing

vector that minimises the number of defaulting banks and the amount of unpaid debt in the system.

Moreover they prove that finding the vector that is most preferable by the largest set of banks, the

vector that is preferred by a specific bank as well as the vector with the best equity distribution

is also NP-hard to approximate within some constant factor. Further studies on financial networks

with CDSes are presented in [PW22, PW20, PW21b, LPT17].

Work has also been published on the incentives of banks in financial networks. The authors

of [BHS20, HW22, KKZ21a, KKZ22, KKZ23] study the price of anarchy and stability in games

where insolvent banks can strategically decide how to pay off their debts. The strategic aspects

of modifying the structure of the network (by, e.g., writing off a debt) to a bank’s advantage are

considered in [PW22, KKZ22]. The strategic framework of prioritising debts in financial networks

with CDSes is due to Papp and Wattenhofer [PW22].

The complexity of total search function problems TFNP was first considered by Megiddo and

Papadimitriou [MP91] while the class PPAD was defined by Papadimitriou [Pap94b, Yan09] and

gained significant attention from the work of Daskalakis, Goldberg and Papadimitriou [DGP09] and

Chen, Deng and Teng [CDT09] for computing Nash equilibrium in strategic form games. The FIXP

complexity class was introduced by Etessami and Yannakakis [EY10, Yan09] for studying strong ap-

proximation to Nash equilibrium in strategic form games. Advancements related to the FIXP class

can be found in [EHMS14, HL18, BHH21, FGH+23, FHHH21, GH21, IDKV22, IDKV23b, HL21].

GENERALISED-CIRCUIT was introduced by [CDT09] and used by Rubinstein [Rub15]

to establish a first constant inapproximability method. Most recently Deligkas, Fearnley, Hol-

lender and Melissourgos [DFHM22] suggested PURE-CIRCUIT, a tool for showing stronger

12

constant inapproximability results for PPAD. Applications of the problem are presented in

[DFHM22, DFHM23, IdKV23a, DH24, FGHK24].

13

Chapter 2

Preliminaries

Overview

This chapter presents the essential introductory concepts. In Section 2.1 we model financial net-

works involving derivatives as edge-weighted directed graphs, with nodes linked by two types of arcs

that represent simple debt contracts or credit default swaps (CDS). We provide a high level overview

of the primary payment schemes employed by economic entities to settle debts and present a model

for capturing the dynamics of the system under these schemes. We conclude with the definition of

the clearing recovery rate vector, which is the central notion of focus in this work.

In Section 2.2 we formally define the computational problem of finding a clearing vector in

a financial network with debt contract and credit default swaps as CDS-CLEARING or CDS-

PRIORITY-CLEARING depending on the applied payment scheme. A fixed point computation

perspective on the problem emerges through a simple analysis, facilitating the transition from the

financial aspect of the problem to the fixed point computation facet of the problem. In Section 2.2.2

we highlight the existence of instances that admit numerically irrational solutions. This motivates

the study of two approximate notions for the problem presented in Section 2.2.3: weak and strong.

14

2.1 Financial Networks with Derivatives

2.1.1 Financial Networks

We denote by N = {1, . . . , n} a set of n financial institutions, which we will call banks. Each bank i

possesses some amount of non-negative external assets, denoted by ei ∈ Q≥0 and let e = (ei)i∈N =

(e1, . . . , en) be the vector of external assets. We consider two types of liabilities banks can have

towards other banks: debt contracts and credit default swaps (CDSes).

Definition (Debt Contract). A debt contract between two banks requires one of the banks, named

the debtor (or writer), to pay a certain amount to the other bank, named the creditor (or holder).

The value that needs to be paid from the debtor i ∈ N to the creditor j ∈ N is denoted by ci,j ∈ Q≥0.

We denote by DC the set of all pairs of banks participating in a debt contract; if (i, j) ∈ DC, then

there exists a debt contract of value ci,j where i is the debtor and j is the creditor. No bank has a

debt contract with itself.

Definition (Credit Default Swap). A credit default swap (CDS) involves three banks, where a

debtor owes money to a creditor, similarly to a debt contract. However, the amount of money

owed is dependent on whether a third bank called reference bank is in default. A bank is in default

when it has insufficient assets to pay its total amount of debts. More formally, bank i’s recovery

rate ri ∈ [0, 1] is the fraction of debts that the bank is able to pay off, given its total assets (defined

as the sum of ei and the payments it receives from other banks). Bank i is said to be in default if

and only if ri < 1. In case a reference bank R ∈ N of a certain CDS is in default, i.e, rR < 1,

the debtor i ∈ N of that CDS is obliged to pay the creditor j ∈ N an amount of (1 − rR) · cRi,j,

where cRi,j ∈ Q≥0 is a specified amount associated to the particular CDS between banks i, j, with

reference R. We denote by CDS the set of all triplets of banks participating in a CDS contract; if

(i, j, R) ∈ CDS, then there exists a CDS contract where i is the debtor bank, j is the creditor, and

R is the reference bank. In a CDS contract all three banks are distinct.

The value ci,j (or c
R
i,j) of a debt contract (or CDS) is referred to as the notional of the contract.

The notionals of all debt and CDS contracts are contained in a three-dimensional (n×n×n) matrix

c. For conventional purposes we assume that the contract notional ci,j of a debt contract from a

bank i to a bank j is stored in the entry (i, j, i) of the matrix c and that the notional cRi,j of a CDS

contract from bank i to bank j in reference to bank R is stored in the (i, j, R) entry of c. Moreover

15

from the debt contract definition it holds that (i, i, i) = 0 for all banks i. Finally since all banks

in a CDS contract are distinct it holds that (i, j, j) = 0 for all banks i, j. For simplicity we will

refer to the entry in the matrix c of a debt contract (i, j, i) simply as (i, j). This convention avoids

any misconception since all banks in a CDS contract are distinct thus a tuple (i, j, i) can never

correspond to a CDS contract. The non-existence of a debt contract or CDS is equivalent to having

a contract with corresponding notional 0, and multiple contracts between identical pairs or triplets

of banks can be merged into a single contract with notional equal to the sum of the individual

contract’s notionals. This brings us to the formal definition of a financial network (or system).

Definition 1 (Financial Networks). A financial network (system) is a triplet (N, e, c), where

N = {1, .., n} is a set of banks, e = (ei)i∈N ∈ Qn
≥0 is the vector of external assets, and c ∈ Qn×n×n

≥0

is a three-dimensional matrix of contract notionals.

To visualise a network F = (N, e, c), we use a coloured directed graph-like structure, which we

call the contract graph as follows: We first construct a directed multigraph GF = (V,A), where

V = N and A is the multiset-union of the set A0 = {(i, j) | ci,j ̸= 0} and the sets Ak = {(i, j) |

cki,j ̸= 0} for all k ∈ N . Furthermore, we colour each arc through a function t : E → {blue, orange},

where t(e) = blue iff e ∈ A0 and t(e) = orange otherwise. For all (i, j, R) ∈ CDS we draw a dotted

orange line from node R to arc (i, j) ∈ AR, to denote that R is the reference bank of the CDS

between i and j. We are using the terms bank and node interchangeably.

In the resulting graphical notation, we label an arc with the notional of the corresponding

contract and a node with the external assets of the corresponding bank, in green font. Below we

present an example of a financial network illustrated in Figure 2.1.

Example 1. Let F = (N, e, c) be a financial network where N = {1, 2, 3, 4, 5, 6} is the set of Banks

and e = (1, 0, 0, 1, 0, 0) the external assets vector (i.e, the external assets of Bank 1 are e1 = 1 and

for Bank 3 we have e3 = 0). The contract graph of the financial network is shown in Figure 2.1.

Bank 1 is the debtor of two debt contracts, one towards Bank 2 and one towards Bank 3, represented

by blue arcs. The notionals of these contracts are c1,2 = 1, c1,3 = 1
2 . Bank 3 is the debtor in one

debt contract towards Bank 5, where c3,5 = 1
2 . Bank 4 is only a debtor towards Bank 6, where

c4,6 = 1
2 . There are two CDSes in the system, one from Bank 2 to Bank 4 in reference to Bank 3

and one from Bank 5 to Bank 6 in reference to Bank 4. Formally CDS = {(2, 4, 3), (5, 6, 4)}. For

(5, 6, 4) the notional is c45,6 = 1 and for (2, 4, 3) the notional is c32,4 =
2
3 .

16

1

2

3

1

1/2

4

5

61

12/3

1/2

1/2

1

Figure 2.1: The contract graph of a system with six banks, four debt contracts and two CDSes.

2.1.2 Payment schemes

Banks pay their debts according to a prespecified payment scheme. We consider payment schemes

that satisfy two fundamental conditions called Limited Liability and Absolute Priority introduced

by Eisenberg and Noe is [EN01]. For simplicity we provide the informal definition of the two

conditions as presented in [SSB17a]1.

(i.) Limited Liability : A bank with sufficient assets to pay all its debts is obliged to do so.

(ii.) Absolute Priority : A defaulting bank is obliged to submit all of its assets to its creditors.

The most studied payment scheme is the Proportional payment scheme, where each bank i

submits the ri proportion of each liability, leaving a (1− ri) fraction of each liability unpaid.

Another scheme of interest is the Singleton Liability Priority Payment-(SLPP), where for a

given financial system each bank i defines a total order over its contracts. We denote the priority

list of i as Pi = (i1 | i2 | ... | ioutdeg(i)), where ik stands for the kth contract in the order, or

kth priority of node i, and outdeg(i) denotes the outdegree of node i in the contact graph. The

payments under this scheme are now formed through an iterative process where each bank pays off

its liabilities, one after the other, according to the ordering given in its priority list. We denote by

cik the contract notional of the kth priority and denote by P = (P1, . . . , Pn) a profile of Singleton

Liability Priority lists. We denote a financial system F coupled with a Singleton Liability Priority

profile P as a pair (F ,P). We provide an example that illustrates the scheme below.

1See page 10 of [SSB17a].

17

Example 2. The financial network of Figure 2.2 consists of six banks, N = {1, 2, 3, 4, 5, 6}. Banks

2 and 5 have external assets e2 = e5 = 1 − c, for some constant c ∈ (0, 1), while all other banks

have zero external assets. The set of debt contracts is DC = {(2, 3), (5, 4)} and the set of credit

default swaps is CDS = {(2, 1, 5), (5, 6, 2)}. All contract notionals are set to 1. For example, c2,3 =

c52,1 = 1. Bank 2 has two candidate Singleton Liability Priority lists, one is P 1
2 = ((2, 3) | (2, 1, 5)),

where 21 = (2, 3) with contract notional c21 = c2,1 = 1 and 22 = (2, 1, 5) with contract notional

c22 = c52,1 = 1. The other one is P 2
2 = ((2, 1, 5) | (2, 3)) where 21 = (2, 1, 5) with c21 = c52,1 = 1 and

22 = (2, 3) with c22 = c2,3 = 1. Symmetrically one can derive the lists for node 5.

1 2 3
1 1

5 64
1 1

1− c

1− c

P = (((2, 3) | (2, 1, 5))︸ ︷︷ ︸
P 1
2

, ((5, 4) | (5, 6, 2))︸ ︷︷ ︸
P 1
5

)

Figure 2.2: The contract graph of a financial network with the profile P = (P 1
2 , P

1
5).

2.1.3 Clearing Recovery Rate Vectors

This thesis studies the task of computing for a given financial system, for each bank, the proportion

of liabilities that it is able to pay. This proportion is captured by the notion of the recovery rate

of a bank, introduced earlier in the definition of CDS contracts. For each bank i we associate a

variable ri ∈ [0, 1], where ri = 1, indicates that bank i can fully pay, while ri < 1 indicates that i is

in default and pays only the ri proportion of liabilities. Recall that the amount a debtor i has to

pay to creditor j in a CDS contract with reference bank R is given by (1− rR) · cRi,j . Consequently,

the liabilities of CDS debtor banks, are specified upon a given recovery rate vector.

In a technical sense, for any given vector r ∈ [0, 1]n representing recovery rates, it is possible to

precisely define a financial institution’s dynamics, i.e, liabilities, payments, and assets.

Liabilities The liability of a bank i ∈ N to a bank j ∈ N under r is denoted by

li,j(r) = ci,j +
∑
k∈N

(1− rk) · cki,j .

18

That is we sum up the liabilities from all debt and CDS contracts between i and j. We denote

by li(r) the total liabilities of i:

li(r) =
∑
j∈N

li,j(r). (2.1)

In the Singleton Liability Priority payment scheme, we denote by lik(r) the kth liability

priority of node i. Similarly if ik = (i, j) ∈ DC for some j ∈ N , then lik(r) = ci,j and if

ik = (i, j, R) ∈ CDS for some j, R ∈ N , then lik(r) = (1− rR) · cRi,j .

Proportional Payments The payment bank i submits to bank j under r is denoted by pi,j(r)

and it holds that:

pi,j(r) = ri · li,j(r). (2.2)

The total payment that bank i submits to the network is

pi(r) = ri · li(r).

Singleton Liability Priority Payments Bank i can fully pay its kth priority only if it has

sufficient assets left after paying off the liabilities corresponding to priorities i1, . . . , ik−1. We

denote by pik(r) the payment of bank i to its kth priority, and by ai(r) its assets, which

are defined as the external assets it possesses plus all incoming payments received from its

debtors (see below for a more formal definition). Under the singleton liability priority list

payment scheme:

pik(r) = max

{
0,min

{
lik(r), ai(r)−

∑
k′<k

lik′ (r)

}}
. (2.3)

Similarly, we denote by pi,j(r) the payment of bank i to bank j under recovery rate vector r.

For each i, j ∈ N we define the set of contracts from i to j indexed by their priority position

in the list of bank i as Cij = {ik | ik is a contract with debtor i and creditor j where k ≤

(outdeg(i)}. The set Cij contains all different contracts with debtor the bank i and creditor

the bank j. For example two such contracts might be two credit default swaps i1 = (i, j, R1)

and i2 = (i, j, R2) with R1 and R2 being different banks of the network where the i1 is contract

is the first priority of bank i and i2 is the second is the second priority of bank i. It holds

that pi,j(r) =
∑

ik∈Ci
j
pik(r).

19

The total payment made by a bank is the sum of its individual payments to its priorities

which is equal to the total sum of its payments to its creditors. Therefore, the following

equations hold:

pi(r) =

outdeg(i)∑
k=1

pik(r) =
∑
j∈N

pi,j(r). (2.4)

Assets The assets of a bank i under r are the total amount of money it possesses through its

external assets and incoming payments submitted by other banks. The payment function is

adapted regarding the applied payment scheme.

ai(r) = ei +
∑
j∈N

pj,i(r). (2.5)

Although the dynamics are defined upon any arbitrary vector r, the significance of the recovery

rate lies in representing the proportion of a bank’s liabilities that it can settle using its assets. Thus

we are interested in vectors where ri is 1 if i’s assets exceed its liabilities, and otherwise equal to

the ratio of assets by liabilities. We call such vectors clearing recovery rate vectors.

Definition 2 (Clearing recovery rate vector-CRRV). Given a financial system F = (N, e, c),

a recovery rate vector r is called clearing if and only if for all banks i ∈ N ,

ri =


min

(
1,
ai(r)

li(r)

)
, if li(r) > 0

1, if li(r) = 0

(2.6)

where the dynamics adjust according to the corresponding payment scheme.

To demonstrate the above definition we compute the clearing vector for the financial networks

presented in Examples 1 and 2.

Example 1 (continued). We compute the clearing recovery rate vector for the system in Figure 2.1.

For Bank 1 it holds that a1(r) = e1 = 1 and l1(r) = l1,2(r)+l1,3(r) = c1,2+c1,3 = 1+1/2 = 3/2, thus

from Equation (2.6) we get that r1 = min{1, 2/3} = 2/3. For Bank 2 we have that a2(r) = p1,2(r)+

e2 = r1 ·l1,2(r)+e2 = 2/3. Also l2(r) = (1−r3) ·c32,4 = (2/3)·(1−r3). So to compute r2 we first need

to compute r3. For Bank 3 it holds that a3(r) = p1,3(r)+ e3 = r1 · l1,3(r)+ e3 = (2/3) · (1/2) = 1/3,

and l3(r) = c3,5 = 1/2, finally r3 = min{1, a3(r)/l3(r)} = min{1, 2/3} = 2/3. Since Bank 3

is in default, the CDS (2, 4, 3) is activated and counts towards the liabilities of Bank 2, so that

20

l2(r) = (1−r3)·c32,4 = (2/3)·(1−2/3) = 2/9. Finally r2 = min{1, a2(r)/l2(r)} = min{1, 3} = 1, i.e.,

Bank 2 can fully pay its liabilities. For Bank 4 it holds that a4(r) = p2,4(r)+e4 = r2·(1−r3)·c32,4+1 =

1 ·2/3 ·(1−2/3)+1 = 11/9, l4(r) = 1/2 and r4 = min{1, a4(r)/l4(r)} = 1. Bank 4 is not in default,

so the CDS (5, 6, 4) is not activated and Bank 5 has no liability towards Bank 6.

Example 2 (continued). Let c = 1/4 in Figure 2.2. Let P = (P 1
2 = ((2, 3) | (2, 1, 5)), P 1

5 = ((5, 4) |

(5, 6, 2))). Both Banks 2 and 5 receive no payment from any other Bank thus their assets are defined

as a2 = e2 = 1−c and a5 = e5 = 1−c. For Bank 2, given P 1
2 , we get that l21 = l2,1 = c21 = c2,3 = 1

and l22 = l2,1 = (1−r5) ·c52,1 = (1−r5), thus the total liabilities for Bank 2 are l2 = l21+l22 = 2−r5.

For Bank 5 we get that l51 = l5,4 = c51 = c5,4 = 1 and l52 = l5,6 = c52 = (1 − r2) · c25,6 = 1 − r2,

thus the total liabilities for Bank 5 are l5 = l51 + l52 = 2− r2. Let us compute the CRRV. By (2.6)

it must be r2 = min {1, a2(r)/l2(r)} = min {1, (1− c)/(2− r5)} and r5 = min {1, a5(r)/l5(r)} =

min {1, (1− c)/(2− r2)}. After solving this system we get that r2 = r5 = 1 −
√
c and since we

assumed c = 1/4 we finally get that r2 = r5 = 1/2. For the payments of Bank 2, we know that

a2 = 3/4 and it first prioritises Bank 3 for which it has a liability of 1, thus it cannot fully pay off

that liability and submits all of its assets to Bank 3, namely p21 = p2,3 = 3/4 and p22 = p2,1 = 0.

The payments of Bank 5 are symmetrical.

2.2 The Clearing Problem

2.2.1 CDS-CLEARING & CDS-PRIORITY-CLEARING

The clearing condition of Definition 2, forces an interdependence between the assets, liabilities, and

clearing recovery rates of the banks in a financial system. This complex interrelationship among

recovery rates makes computation of a clearing vector a non-trivial computational problem. At

first instance, it is not even clear whether a clearing vector always exists, or whether there can be

multiple clearing vectors.

The computational task of finding a clearing vector in a given financial system is generally

referred to as the clearing problem. It is known that under the exclusive presence of debt contracts,

the clearing problem can be solved in polynomial time [EN01]. We are interested in studying

the complexity of the clearing problem under the addition of credit default swap contracts in the

financial systems.

21

We define and study two variations of the clearing problem phrased as CDS-CLEARING

and CDS-PRIORITY-CLEARING, where the term “cds” signifies that the financial system

under consideration contain Credit Default Swaps.

Problem 1 (CDS-CLEARING). Input: A financial system (N, e, c), where N = {1, · · · , n} is

a set of n banks, e = (ei)i∈N ∈ Qn is an n-dimensional vector of external assets, and c = n×n×n

is a 3-dimensional matrix containing all contract notionals. Task: Compute a clearing recovery

rate vector r = (r1, · · · , rn), when the banks pay proportionally.

Problem 2 (CDS-PRIORITY-CLEARING). Input: A pair (F ,P), where P is a profile of

Singleton Liability Priority lists and F = (N, e, c) is a financial system where N = {1, · · · , n} is a

set of n banks, e = (ei)i∈N ∈ Qn is an n-dimensional vector of external assets, and c = n× n× n

is a 3-dimensional matrix that contains all contract notionals. Task: Compute a clearing recovery

rate vector r for (F , P).

Any clearing recovery rate vector r = (ri)i∈N of an instance F ∈ CDS-CLEARING ((F ,P) ∈

CDS-PRIORITY-CLEARING respectively) constitutes a solution. We denote by Sol(F)

(Sol((F ,P)) respectively) the set containing all solutions of F ((F ,P) respectively).

It is important to realise that the solutions to instances of both problems, are essentially the

fixed points of the function expressed at the right hand side of (2.6). Let F ∈ CDS-CLEARING

and consider the function fF : [0, 1]n 7→ [0, 1]n defined at each coordinate i ∈ [n] by

fF (r)i =
ai(r)

max{ai(r), li(r)}
2. (2.7)

Function f = fF takes as input a recovery rate vector r and outputs a potentially different recovery

rate vector r′ = f(r). It holds that r′ = r if and only if r is a clearing vector and hence a solution

of F . CDS-CLEARING asks, in essence, for computing a fixed point of a specific function. The

case for CDS-PRIORITY-CLEARING is analogous.

In order to avoid situations of 0/0 division in (2.7) and for the sake of compatibility with existing

literature, we narrow the study of the presented problems to non-degenerate systems.

2Strictly speaking, fI(r)i is well-defined only for nodes i that are not sinks (i.e. nodes with no outgoing arcs) with

0 external assets in the contract graph. Sink nodes have recovery rate 1, cf. (2.6). Hence, we implicitly exclude them

from the definition of fI . Their exclusion simply allows to bypass potential divisions by 0 in fI while preserving its

continuity.

22

Definition 3 (Non-degeneracy). A financial system is non-degenerate if and only if

1. Every debtor in a credit default swap either has positive external assets or is the debtor in at

least one debt contract with a positive notional. (Definition 4.2 [SSB17b])

2. Every bank that acts as a reference bank in some credit default swap is the debtor of at least

one debt contract with a positive notional.

The second condition was excluded from the initial non-degeneracy definition that is provided in

[SSB17b, SSB17a], but is explicitly mentioned to always hold for every system in the presentation

of the financial network model3. Overall the non-degeneracy condition does not hold in a system

only if there exist a credit default swap debtor that breaks the first condition. In this thesis, we

consistently assume that all financial systems are non-degenerate.

i j

R

ei > 0

cR,· > 0

i j

R
cR,· > 0

ci,· > 0

ei ≥ 0

Figure 2.3: Topology of non-degenerate networks.

The fact that there exists at least one fixed point for every non-degenerate financial

network of CDS-CLEARING (CDS-PRIORITY-CLEARING respectively) is proved in

[SSB17b] ([PW20] respectively).

Theorem 1 (Theorem 3.2 [SSB17b], Theorem 1 [PW20]). Every instance F = (N, e, c) of CDS-

CLEARING/ (F ,P) of CDS-PRIORITY-CLEARING, admits a clearing recovery rate vec-

tor.

Theorem 1 classifies both problems of interest as total search problems-(TFNP [MP91]), i.e,

problems for which for every instance a solution always exist. Moreover the solutions correspond

to the fixed points of function (2.7). Therefore, the initial task of calculating a clearing vector

is synonymous with the computational challenge of finding a fixed point of function (2.7), the

existence of which is guaranteed.

3(see page 9 of [SSB17a])

23

2.2.2 Irrational Solutions

An obstacle is immediately encountered if one intends to solve both problems under the Turing ma-

chine model of computation, since there exist instances where all clearing vectors contain irrational

components, and thus cannot be encoded in binary.

Observation 1. There exist instances of CDS-CLEARING and CDS-PRIORITY-

CLEARING that admit irrational clearing vectors.

Proof. The reader can observe that the clearing vector computation of the system in Example 2 is

independent from the payment scheme. Moreover in Example 2 we showed that r2 = r5 = 1−
√
c.

Thus, it is clear that for many choices of c ∈ (0, 1) (e.g., c = 1/2) the CRRV is irrational.

Observation 2. There exists a pair (F ,P) with an irrational CRRV and irrational payments.

Proof. Take again Example 2 and fix c = 1/3. We have e2 = e5 = 2/3, l2,3 = l5,6 = 2/3 and

r2 = r5 = 1 −
√

1/3. Now consider the singleton liability priority lists P 2
2 = ((2, 1, 5) | (2, 3)) and

P 2
5 = ((5, 6, 2) | (5, 4)). Since node 2 prioritises the (2, 1, 5) contract, it has to pay an amount

of 1 −
√
1/3 to node 1. Given that its total assets are 2/3, it can fully pay this liability and so

p2,1 = 1 −
√

1/3 and what is left is being paid to node 3. Symmetrically, one can compute that

p5,6 = 1−
√

1/3.

Observation 3. There exists a pair (F ,P) with an irrational CRRV and rational payments.

Proof. Consider Example 2 once more and fix c = 1/2. This yields e2 = e5 = 1/2, l2,3 = l5,6 = 1/2

and r2 = r5 = 1 −
√

1/2. Consider the profile P 2
2 = ((2, 1, 5) | (2, 3)) and P 2

5 = ((5, 6, 2) | (5, 4)).

Since bank 2 prioritises the (2, 1, 5) contract, it has to pay an amount of 1 −
√

1/2 to node 1 but

only possesses total assets of 1/2. Thus it cannot fully pay this liability, meaning that p2,1 = 1/2.

Symmetrically, we can compute that p5,6 = 1/2.

A thorough exploration of irrational solutions and an examination of the reasons behind their

emergence are explored in Chapter 5.

2.2.3 Approximation concepts

Systems with irrational solutions are common and not difficult to construct. Hence, while the

problems’ instances always have solutions, they are not rational in general, consequently computing

24

exact solutions is inconvenient for study under the standard Turing Machine model. One could

however, quite naturally study this problem under a real valued computation model like [BCSS98],

under which any real number can be stored in a single unit of memory, and the basic arithmetic

operation take a single time unit to execute.

The preceding discussion prompts us to explore approximate solution concepts. Let F be a

continuous function that maps a compact convex set to itself (fF in (2.7) is such a function), and

let ϵ > 0 be a small constant.

Definition. A weak ϵ-approximate fixed point of F is a point x such that its image is within

a distance ϵ of x, i.e., ∥x− F (x)∥∞ < ϵ.

Definition. A strong ϵ-approximate fixed point of F is a point x that is within a distance ϵ

near a fixed point of F , i.e., ∃x′ : F (x′) = x′ ∧ ∥x′ − x∥∞ < ϵ.

Previous work on the clearing problem with credit default swaps has motivated the study of

weak ϵ-approximate fixed points of function (2.7), termed as ϵ-approximately clearing vectors or

simply ϵ-solutions (Definition 4.1 [SSB17b]). For motivation and thorough exploration and of the ϵ-

solution concept, we directly address the reader to Appendix B of [SSB17b]. If we choose to clear a

financial system that is assumed to have a unique clearing vector by means of a weak approximate

clearing vector of function (2.7) or simply an ϵ-solution, we then may severely misrepresent the

actual financial state of a bank. Strong approximations do not suffer from this problem, as the

equity of all banks after clearing is indeed accurate (up to ϵ accuracy). While we legitimise the

significance of strong approximations through an observation that weakly approximate solutions

may “severely” misrepresent the actual financial state of an institution, it is also the case that a

weak ϵ-approximate fixed point is generally not located close to an actual fixed point 4. Conversely,

despite the fact that the strong approximate solution is near the exact solution, it is impossible to

verify whether a given point satisfies this approximation notion.

We demonstrate these claims with an example that supports and motivates the research on

strong approximations.

4In the footnote of page 14 of [SSB17a], the authors mention that ϵ-solutions essentially may be far from an actual

fixed point. Moreover they suggest that constructing a financial network that satisfies this property is not hard to

construct but do not present any such example. In Example 3 we provide such an instance.

25

11 2 3
1 1/2

41 5 6
4ϵ1

Figure 2.4: Financial system of Example 3

Example 3. Consider the financial system depicted in Figure 2.4. Assume that e1 = 1, e2 = 0,

e4 = 1, e5 = 0. Also c51,2 = c24,5 = 1, c2,3 = 1/2, c5,6 = 4ϵ, for a parameter ϵ > 0.

Observe that r = (1, 1, 1, 1, 0, 1) is an exact clearing vector for the system in Figure 2.4. This can

be verified since, f1(r) = f4(r) = 1, and f2(r) = min{1, (1−r5)1/2 } = 1, f5(r) = min{1, (1−r2)4ϵ } = 0.

Since r = f(r), the point r = (1, 1, 1, 1, 0, 1) is an exact fixed point independently of the choice for

the parameter ϵ.

Assume that ϵ ≥ 1
4 , then for the clearing vector holds that r5 = min(1, (1−r2)4ϵ) and since (1−r2)

4ϵ ≤

1− r2 ≤ 1 the clearing vector must satisfy that r5 =
1−r2
4ϵ . For Bank 2 under the clearing condition

it must hold that r2 = min(1, 2 · (1 − r5)). If r2 = 1 then r5 = 0 which is the above exact clearing

recovery rate vector. If r2 = 2 · (1 − r5) then r5 = 2r5−1
4ϵ → 4ϵ · r5 = 2 · r5 − 1, which means

that r5 = 1
2−4ϵ but for ϵ ∈ (14 ,

1
2) it holds that r5 > 1 which is a contradiction to the assumption

that r5 ≤ 1. Thus for those values for the parameter ϵ the clearing vector is unique and equal to

(1, 1, 1, 1, 0, 1).

Assume r′ = (1, 1 − 2ϵ, 1, 1, 1/2 + ϵ, 1). It holds that f2(r
′) = min{1, (1 − r′5)/(1/2)} =

min{1, (1/2−ϵ)/(1/2)} = 1−2ϵ. Moreover, f5(r
′) = min{1, (1−r′2)/4ϵ} = min{1, (1−1+2ϵ)/4ϵ} =

1/2. Thus, ∥r′−f(r′)∥∞ ≤ ϵ which constitutes r′ = (1, 1−2ϵ, 1, 1, 1/2+ϵ, 1) a weakly ϵ-approximate

fixed point.

When comparing r′ to r though, we observe that the distance among the weakly ϵ-approximate

clearing vector and the exact clearing vector is ∥(1, 1, 1, 1, 0, 1)− (1, 1− 2ϵ, 1, 1, 1/2+ ϵ, 1)∥∞ > 1/2.

This proves the claim that weakly ϵ-approximate clearing vectors may be very far from exact clearing

vectors. On top of that a strong approximate clearing vector within distance 1/2 of the exact, is

trivial to obtain by just by setting all components to 1/2.

More importantly, notice that if ϵ ∈ (14 ,
1
2), then as we computed earlier the clearing vector

r = (1, 1, 1, 1, 0, 1) is unique and the vector r′ is a 1
4 -weakly approximate clearing vector. In that

26

case though ∥r − r′∥∞ > 3/4. On top of that, the information we get on node 2 in r′ is that

r′2 = 1 − 2ϵ < 1, meaning that 2 is in default whereas actually 2 can fully pay its liabilities since

r2 = 1. This indicates that a weakly ϵ-approximate fixed point may contain misleading information

about whether a bank is in default or not. Similar situations hold even for exact clearing vectors

due to default ambiguity [SSB20] that arises when the clearing vector is not unique. The fact

that for these specific values of the parameter ϵ the clearing vector is unique suggests that weak

approximations are unreliable while motivating the study of strong approximations.

27

Chapter 3

Computational Challenges

Overview

This chapter studies the complexity of CDS-CLEARING. First we provide a short introduc-

tion on fixed point search problems. In Section 3.1 we establish that computing exact solutions to

instances of CDS-CLEARING is FIXP-complete and consequently computing strong approxima-

tions is FIXPa- complete. A formal introduction of the complexity class FIXP is given in Section

3.1.1. Upon this introduction a full proof of the result is presented in Section 3.1.2. The main

part of the proof is centered on the construction of systems that simulate the algebraic operations

{+,−, ∗, /,max,min,
√}. An analytic presentation of these financial gadgets is presented in Sec-

tion 3.1.3 followed by a more technical analysis for the gadgets simulating {∗, /}. An adaptation

of these gadgets to certain priority profiles establishes FIXP-completeness of CDS-PRIORITY-

CLEARING.

In Section 3.2 we define the weak approximation version of the problem as ϵ-CDS-CLEARING

and prove that finding such approximate solutions is PPAD-hard for an explicit improved bound.

The proof leverages the PURE-CIRCUIT problem, which is presented in Section 3.2.2. The

chapter concludes in Section 3.2.4, where we identify two meaningful restrictions of the class of

financial networks motivated by regulations: (i) the presence of central clearing authorities termed

as central CDS debtors (CCD); (ii) CDS debtors dedicated to fixed reference banks termed as

dedicated CDS debtors. Both categories are subject to the same intractability result.

28

3.1 Computing Strong Approximations

A fixed point problem Π is defined as a search problem where every instance I ∈ Π is associated

with a continuous function FI : DI → DI where DI ⊆ Rn (for some n ∈ N) is compact and convex,

and the solutions of I are the fixed points of FI . The class of functions F = {FI | I ∈ Π} (and the

problem Π) is classified as

• polynomially computable if there is a polynomial q such that (i.) DI is a convex polytope

described by a set of at most q(|I|) linear inequalities, each with coefficients of a size at

most q(|I|), and (ii.) For each vector x in DI ∩ Qn, the value FI(x) can be computed in

time q(|I| + size(x)). By “size” of a rational number we mean the number of bits needed to

represent the numerator and the denominator in binary.

• polynomially continuous if there is a polynomial q such that for each I ∈ Π, and rational

ϵ > 0, there is a rational δ of size q(|I| + size(ϵ)) satisfying the following: for all x, y ∈ DI

with ∥x − y∥∞ < δ it holds that ∥FI(x) − FI(y)∥∞ < ϵ. Note that this condition defining

polynomial continuity is the formally correct way of stating that the distance between any

two points in the domain does not increase a lot (at most by a “polynomial amount”) when

taking their images under FI .
1

As previously stated, every fixed point function F associated with a search problem Π has a

weak and a strong approximation version: In the weak approximation version we are given an

instance I of Π and a rational ϵ > 0, and we want to compute a weak ϵ-approximate fixed point

for FI . The strong approximation version is defined analogously.

Proposition 1 ([EY10], Proposition 2.2). Let Π be a fixed point problem and FΠ be an associated

fixed point class of functions for Π.

1. If FΠ is polynomially continuous, then the weak approximation version of Π w.r.t FΠ

polynomial-time reduces to the strong approximation version of Π.

2. If FΠ is polynomially continuous and polynomially computable, then the weak approximation

version of Π w.r.t FΠ is in PPAD. 2

1The above collection of definitions is stated in a more extensive and refined way in [EY10].
2The reader might be familiar with PPAD, which is a complexity class introduced in [Pap94b]. Further below, we

provide an indirect definition of PPAD in Proposition 2, through defining the complexity class Linear-FIXP.

29

It is established that function (2.7) associated with CDS-CLEARING is polynomially con-

tinuous under the non-degeneracy assumption (see Lemma C.1 [SSB17b]) and that the weak ap-

proximation version of CDS-CLEARING is PPAD-complete. Consequently due to Point 1 of

Proposition 1, the strong approximation version of CDS-CLEARING is at least as hard as its

weak approximation version, namely computing strong approximate clearing vectors is at least as

hard as computing weak approximate clearing vectors.

Unfortunately as we will demonstrate later, we can construct financial systems capable of em-

ulating multiplication operations on banks’ recovery rates (see Figure 3.5). Consequently cal-

culating a clearing vector may involve successive squaring operations, resulting in numbers with

exponentially large bit representations relative to the input size. This is an indication that CDS-

CLEARING cannot be polynomially computable. Hence, while it is true that the weak approx-

imation version of CDS-CLEARING is in PPAD, Point 2 of Proposition 1 cannot be used to

establish this fact and a separate proof, as provided in [SSB17b], is needed for PPAD-membership.

3.1.1 The Complexity Class FIXP

Etessami and Yannakakis in [EY10], define a framework for studying the complexity of fixed point

computation problems, which considers both exact computation and approximate computation of

the solutions to such problems. The authors introduce the complexity class FIXP, show that many

fixed point problems can be shown to belong to this class, and establish that there exist FIXP-

complete problems under a suitable notion of reducibility. CDS-CLEARING is, as we have seen,

a fixed point problem, hence we consider the problem within the framework of [EY10].

We introduce in this section some fundamental notions related to exact and approximate com-

putation of fixed points, and define the complexity class FIXP and some related classes.

Definition 4 (FIXP). The class FIXP consists of all fixed point problems Π for which for all I ∈ Π

the function FI : DI → DI can be represented by an algebraic circuit CI over the basis A =

{+,−, ∗,max,min}, using rational constants, such that CI computes FI , and CI can be constructed

from I in time polynomial in |I|. In more detail, the circuit CI is an acyclic directed graph over

a set of gates, say g1, . . . , gm (in topological order), with the following properties. There are n

gates in the first (bottom) layer of the circuit, called the input gates, where n is the number of

arguments of FI . Similarly there are n output gates in the last (top) layer of the circuit, called the

30

output gates. The remaining nodes of the circuit each represent rational constants and arithmetic

operations from the set A. Rational constant nodes have no incoming arcs, and each arithmetic

operation node has two incoming arcs. The number of outgoing arcs from each node is not bounded.

We may now label CI ’s input nodes with an input x ∈ DI (coordinate-wise), and define the output

of CI by propagating the outputs of each of the nodes through the network via the arcs outgoing

from each of the nodes. Naturally, an input node propagates its labeled value, a rational constant

node propagates the associated rational number, and an arithmetic operation node takes the two

values propagated through its incoming arcs as operands, and applies the corresponding operation

on its operands, which it then propagates through its outgoing arcs. The circuit CI is then said to

compute FI iff the output of CI on input x equals FI(x) for all x ∈ DI .

Definition 5 (FIXPa). The class FIXPa is defined as the class of search problems that are the strong

approximation version of some fixed point problem that belongs to FIXP.

Definition 6 (Linear-FIXP). The class Linear-FIXP is a discrete total search problem class defined

analogously to FIXP, but under the smaller arithmetic basis where only the gates {+,−max,min}

and multiplication by rational constants are used.

The classes FIXP, Linear-FIXP, and FIXPa admit complete problems. Hardness of a search

problem Π for FIXP (resp. Linear-FIXP and FIXPa) is defined through the existence of a polynomial

time computable function ρ : Π′ → Π, for all Π′ ∈ FIXP (resp. FIXPa), such that the solutions of

I can be obtained from the solutions of ρ(I) by applying a (polynomial-time computable) linear

transformation on a subset of ρ(I)’s coordinates. This type of reduction is known as a polynomial

time SL-reduction.

We mention a few important facts about these complexity classes that are relevant for under-

standing the results in this thesis. The following proposition states that strong approximations to

problems in FIXP can be found in polynomial space.

Proposition 2 ([EY10], Proposition 4.2). FIXPa ⊆ PSPACE.

The following result shows that finding exact fixed points of fixed point functions expressible

through only the operations {+,−,max,min} and multiplication by rational constants, is equivalent

to solving problems in PPAD.

Theorem 2 ([EY10], Theorem 5.4). Linear-FIXP = PPAD.

31

Consequently, the solutions of instances in Linear-FIXP are always rationals of polynomial size.

Remark 1. One detail that we have omitted (for simplicity) is that formally FIXP and Linear-FIXP

are defined to also include their closures under polynomial time separable linear reductions-

(SL-reductions) and polynomial time reductions respectively.3 Thus, the traditional notion of

polynomial-time reducibility is appropriate here. We remark furthermore that in the initial def-

inition of FIXP, which was given in [EY10], the division operator and the operators k
√
· for k ∈ N

were included in the arithmetic base. However, in the same paper the authors show that these can

be dropped without altering the class. Similarly, the original definition of FIXP includes problems in

which DI is an arbitrary polytope with a polynomially computable set of constraints, but restricting

this to [0, 1]n turns out to not change the class.

An informal understanding of how the hardness of FIXP compares to PPAD (or Linear-FIXP) is

as follows: PPAD captures a type of computational hardness stemming from an essentially com-

binatorial source, as PPAD was originally defined as a class that captures the hardness of com-

puting a solution to a graph-theoretical problem, where the solution is guaranteed to exist via a

non-constructive parity argument. The class FIXP introduces on top of that a type of numeri-

cal hardness that emerges from the introduction of multiplication and division operations: These

operations give rise to irrational exact solutions to these problems, and may independently also

require the computation of rational numbers of very high precision or very high magnitude (which

is enabled by the presence of the multiplication operation, by which one can perform successive

squaring inside the associated algebraic circuit).

3.1.2 FIXP-Completeness of CDS-CLEARING

Our first main result shows that CDS-CLEARING and its strong approximation variant are

FIXPa-complete. The proof is based on reducing from the canonical FIXP-hard problem, defined

in [EY10], of computing a fixed point of an algebraically specified Brouwer function given by an

3The term “separable linear” refers to the property that solutions of the reduced instance correspond to solutions

of the original instance through a polynomial-time computable linear transformation of a subset of the coordinates

of the reduced instance’s solution. The authors of [EY10] require separable linearity for FIXP-reductions, but not for

Linear-FIXP reductions. This is due to the fact that the fixed points of functions belonging to FIXP may be irrational,

and linearly separable reductions preserve the approximation properties of approximate fixed points. For Linear-FIXP,

there always exist at least one rational fixed point, and one is generally interested in exact computation for this class.

32

algebraic circuit. We show that we can take such an algebraic circuit (as described in [EY10])

and encode it in a direct way in the form of a financial system. Hence, our polynomial time

hardness reduction is implicitly defined to work from any arbitrary fixed point problem in FIXP.

The reduction is constructed by devising various financial network gadgets which enforce that

certain banks in the system have recovery rates that are the result of applying one of the operators

in FIXP’s arithmetic base to the recovery rates of two other banks in the system. In other words,

we can design our financial systems such that the interrelation between the recovery rates mimics

a computation through an arbitrary algebraic circuit.

Theorem 3. CDS-CLEARING is FIXP-complete, and its strong approximation version is

FIXPa-complete.

Proof. Containment of CDS-CLEARING in FIXP is immediate: The clearing vectors for an

instance F = (N, e, c) ∈ CDS-CLEARING are the fixed points of the function fF defined

coordinate-wise by

fF (r)i =
ai(r)

max{ai(r), li(r)}
as in (2.7). The functions li(r) and ai(r) are defined in (2.1) and (2.5), from which it is clear that fF

can be computed using a polynomial size algebraic circuit consisting only of {max,+, ∗,−, /} and

rational constants. The non-degeneracy condition that holds for every financial system, prevents

division by 0 for every instance F . That holds because from statement (i) in Definition 3 if a bank

i is a CDS debtor then both ai(r) and li(r) cannot be equal to zero. Although not explicitly stated

in our definitions, we can always assume that in the networks there are no isolated banks with zero

assets and liabilities. Finally in the case where i is a sink bank, we point the reader to footnote 1

in page 21.

It is clear that the output of the algebraic circuit that computes fF is well-defined for every x ∈

[0, 1]n. This shows thatCDS-CLEARING is contained in FIXP and that its strong approximation

version is contained in FIXPa.

For the FIXP-hardness of the problem, let Π be an arbitrary problem in FIXP. We describe

a polynomial-time reduction from Π to CDS-CLEARING. Let I ∈ Π be an instance, let

FI : [0, 1]n → [0, 1]n be I’s associated fixed point function, and let CI be the algebraic circuit

corresponding to FI . As a pre-processing step, we convert CI to an equivalent alternative circuit

C ′
I that satisfies that all the signals propagated by all gates in C ′

I and all the used rational constants

33

in C ′
I are contained in the interval [0, 1]. The transformed circuit C ′

I may contain two additional

type of gates: Division gates and gates that compute the absolute value of the difference of two

operands. We will refer to the latter type of gate as an absolute difference gate. The circuit C ′
I will

not contain any subtraction gates, and will not contain max and min gates either.

The transformation procedure for CI follows the same approach of the transformation given

in Theorem 4.3 of [EY10] where the 3-Player Nash equilibrium problem is proved FIXP-complete,

and borrows some important ideas from there. Nonetheless, there are important differences in our

transformation, starting with the fact that we use a different set of types of gates in our circuit.

First, transforming CI into a circuit with only non-negative rational constants is trivial, since

we can introduce subtraction gates combined with the rational constant 0 (which we will get rid of

later on in the transformation process).

As a next step, we remove all min and max gates and replace them with addition, subtraction,

multiplication, and absolute difference gates through the identities max{a, b} = (1/2) · ((a + b) +

|a− b|) and min{a, b} = (1/2) · ((a+ b)− |a− b|). Let the resulting circuit be C ′′
I .

The third step in the transformation is to move all the subtraction gates to the top of the

circuit, right before the output gates, which results in exactly one subtraction gate being present

for each output variable. This step is realised by representing each (potentially negative) signal s

in C ′′
I that is propagated between two arithmetic gates, by two separate signals s+, s− ≥ 0, which

represent the positive and negative parts of s respectively, and are guaranteed to have values such

that s+ − s− = s: Each arithmetic gate gi in the circuit is replaced (sequentially, from the bottom

of the circuit upward) by gates that operate on the separate positive and negative parts of the

original input signals as follows.

Suppose gi is a node outputting a constant rational value c > 0, then we may replace gi by two

constant nodes, one which outputs c, the positive part of the resulting separated signal, and one

which outputs 0, representing the negative part of the signal.

Suppose next that gi is an addition gate operating originally on the outputs s and t of two other

gates. Then, we use the observation that for the two signals s and t, separated into positive and

negative parts s+, s−, t+, t−, it holds that (s+− s−)+ (t+− t−) = (s++ t+)− (s−+ t−). Therefore,

gi can be replaced by two addition gates g+i and g−i , where g
+
i operates on signals s+ and t+, and

g−i operates on gates s− and t−.

34

If gi is a multiplication gate, note that for two inputs s and t, separated into positive and

negative parts s+, s−, t+, t−, it holds that (s+− s−) · (t+− t−) = (s+t++ s−t−)− (s+t−+ s−t+), so

we may similarly replace each multiplication gate with four multiplication gates and two addition

gates accordingly.

When gi is an absolute difference gate, we note that for two inputs s and t, separated into positive

and negative parts s+, s−, t+, t−, it holds that |(s+ − s−)− (t+ − t−)| = |(s+ + t−)− (s− + t+)| − 0

so that we can replace gi with two addition gates, one absolute difference gate, and one constant

gate outputting 0 (representing the negative part of the resulting signal).

Lastly, when gi is a subtraction gate in C ′′
I , we remove it and connect the gates that provide

the inputs to gi appropriately to the subsequent gates that gi points to. The final subtraction gates

introduced in the top layer of the circuit are directly connected to the output gates, and subtract

the positive and negative parts of the final output signal, so as to generate the correct n outputs.

Since the function FI maps [0, 1]n to itself, and the resulting circuit is equivalent to the original

circuit CI , we now have a circuit where all signals in the circuit are non-negative, and where we have

introduced the absolute difference operation as an additional type of gate into the circuit. Next,

we perform a straightforward step that eliminates the remaining m subtraction gates altogether,

by replacing them with absolute difference gates. This gives us an equivalent circuit, as we know

that the result of the n subtractions at the top of the circuit are positive for all possible inputs.

We call this resulting circuit without subtraction gates C ′′′
I .

The last step is to transform the circuit C ′′′
I into a circuit where all signals inside the circuit are

in [0, 1] for all possible inputs to the circuit. To do so, in case there are rational constants exceeding

1 present in the circuit, we first multiply all the rational constants by the inverse c ∈ [0, 1] of the

largest rational constant in the circuit. We add the appropriate gates at the start of the circuit that

multiply all input gates by c, and we add division gates at the end of the circuit that divide the

final signal by c, before being propagated to the output gates. Furthermore, for each multiplication

gate, we add a division gate that divides its result by c. This results in a circuit where all rational

constant nodes are in [0, 1], and all internal signals of the original circuit are essentially scaled by

a factor of c. The resulting circuit is thus equivalent to C ′′′
I .

4

4Note that the division by c that we introduce right after every multiplication gate is needed because multiplying

two scaled signals c · s and c · s′ results in c2ss′, hence dividing this result by c results in the desired output signal

css′.

35

Now that we have that all the rational constants are in [0, 1], our final step is transforming the

circuit further in such a way that all signals inside the circuit are contained in [0, 1] as well. Observe

that the magnitude of any signal in the circuit is at most doubly exponential in the size of C ′′′
I (this

can be attained when a certain signal s > 1 goes through a chain of successive squaring operations,

using multiplication gates). We thus perform the following final transformation to enforce that all

signals stay in [0, 1]: Let d be a number, bounded by a polynomial in |I|, such that all signals in

the circuit are strictly smaller than 22
d
for every input in [0, 1]n. We add to the start of the circuit

an auxiliary circuit T that computes t = 1/22
d
by successively squaring the constant 1/2 a number

of d times, and we use T right after each input node and right after each rational constant node in

order to multiply every input signal and every rational constant node by t. For each multiplication

gate, we add a division gate such that its result is divided by t. Lastly, at the end of the circuit, we

add a division gate just before each output gate, that divides the final signal by t. We now observe

that each signal in the new circuit has effectively been multiplied by a factor of t, with exception

of the signals directly propagated by the input gates, and directly entering the output gates, which

still retain their original values.

This completes our pre-processing steps on the algebraic circuit, and we denote the resulting

circuit by C ′
I . The circuit C ′

I has the desired properties that we are looking for: All signals in

the circuit are in [0, 1] regardless of the input. Furthermore, the applied transformation ensures

that C ′
I is equivalent to the original CI and thus represents FI . The circuit can be obtained in a

polynomial number of computation steps from CI and is thus polynomial-time computable from

the instance I. The circuit C ′
I consists of {+, ∗, /}-gates, as well as absolute difference gates that

compute the absolute value of the difference of two inputs. Lastly, there are rational constant nodes

in the circuit where all such constants are in [0, 1]. For notational convenience, in the remainder of

the proof we may treat C ′
I as the function FI , hence we may write C ′

I(x) = y to denote FI(x) = y.

In the remainder of the proof, we define our reduction ρ to CDS-CLEARING: We construct

our instance ρ(I) of CDS-CLEARING (i.e., a non-degenerate financial network) from the circuit

C ′
I . The instance ρ(I) will have the property that its clearing vectors are in one-to-one correspon-

dence with the fixed points of C ′
I , and that banks 1, . . . , n in our construction correspond to the

input gates of C ′
I . More precisely, our construction is such that for each fixed point x of C ′

I , in the

corresponding clearing vector r for ρ(I) it holds that (r1, . . . , rn) = x.

36

Our reduction works through a set of financial system gadgets, of which we prove that their re-

covery rates (under the clearing condition) must replicate the behaviour of each type of arithmetic

operation that can occur in the circuit C ′
I . This part of our hardness reduction shares similarities

with the PPAD-hardness proof in [SSB17b] who also design a set of gadgets to replicate the be-

haviour a certain circuit, although this circuit is of a different type, and our gadgets account for an

entirely different set of operations.

Each of our gadgets has one or two input banks that correspond to the input signals of one of

the types of arithmetic gate, and there is an output bank that corresponds to the output signal of

the gate. For each of the gadgets, it holds that the output bank must have a recovery rate that

equals the result of applying the respective arithmetic operation on the recovery rates of the input

banks.

In our financial system, these gadgets are then connected together according to the structure of

the circuit C ′
I : Output banks of (copies of) gadgets are connected to input banks of other gadgets

through a single unit-cost debt contract, which mimics the propagation of a signal between two

gates of the arithmetic circuit. This results in a financial system whose behaviour replicates the

behaviour of the arithmetic circuit. The first layer of the financial system consists of n banks

representing the n input nodes of the circuit, and the last layer of the financial system has n banks

corresponding to the n output nodes of the circuit. As a final step in our reduction, the n output

banks in the last layer are connected through a single unit-cost debt contract to the n input banks.

This last step enforces the recovery rates of the input banks (i.e. banks 1, . . . , n) are equal to the

recovery rates of the last layer, under the clearing requirement. Consequently, any vector of clearing

recovery rates for ρ(I) must then correspond to a fixed point of C ′
I , where the recovery rates of the

first n banks in the system equal those of the final n banks, so that C ′
I(r1, . . . , rn) = (r1, . . . , rn),

i.e., (r1, . . . , rn) is a fixed point of C ′
I .

The above paragraphs comprise a high-level description of our reduction. We will now proceed

to discuss the details. We start with defining our gadgets, using our graphical notation. As stated,

our gadgets each have one or two input banks, and one output bank. Each gadget represents certain

arithmetic operations, and gadgets can be combined with each other to form the arithmetic basis

{+, ∗, /} and the absolute difference operation defined above.

We start with a straightforward addition gadget, named g+, depicted in Figure 3.1. This gadget

37

directly accounts for the addition operation in the arithmetic basis. In our figures, input banks

are denoted by black arrows incoming from the left, and output banks correspond to black arrows

pointing out of the bank. The black arrows represent connections to other gadgets, and these

connections are always realised by a debt contract of unit cost, and are always from the output

node of a gadget to an input node of another gadget. The assets that flow into an input gadget are

thus always in [0, 1] and all gadgets are designed such that the incoming flow of assets must equal

the clearing recovery rate of a bank. For example: For both input banks of the addition gadget,

their liabilities are equal to 1, given that their assets are equal to the incoming flow they receive,

their recovery rate under any clearing vector (which must equal the ratio of assets and liabilities)

is equal to the inflow along the black arc.

In the figures representing our gadgets, some of the nodes have been annotated with a red

labelled formula in terms of the recovery rates of the input banks of the gadget, subject to the

resulting values being in the interval [0, 1]. This can be seen for example in the output node of

our addition gadget in Figure 3.1. Such a formula represents the value that a clearing recovery

rate must satisfy for the respective node. It is straightforward to verify that the given formulas are

correct for each of our gadgets.

Since all signals inside C ′
I are guaranteed to be in [0, 1] for all input vectors, our financial

system gadgets can readily be used and connected to each other to construct a financial system

that corresponds to C ′
I , i.e., such that the clearing recovery rates of the input and output banks of

each of the gadgets must correspond to each of the signals inside the circuit C ′
I .

r1

r2

r1 + r2

1

1

Figure 3.1: Addition gadget g+.

The remaining gadgets are displayed in Figures 3.3 to 3.8 in the next section.

Besides gadgets for the necessary arithmetic operations, our reduction employs an additional

duplication gadget gdup that can be used to connect the output of a particular gadget to the input of

more than one subsequent gadget. This gadget is displayed in Figure 3.3. Gadget gdup furthermore

38

has the convenient property that it can be used for multiplication by a rational c ∈ [0, 1]: One of the

output nodes has the recovery of the input node, while the other has this recovery rate multiplied

by c. When choosing c = 1 the input recovery rate is effectively duplicated.

The gadgets for multiplication and division, g∗ and g/ are given in simplified form in Figures

3.5 and 3.4. These gadgets work as intended, but the problem with them is that they do not

satisfy the non-degeneracy condition that we assume instances of CDS-CLEARING to have. It

is possible to transform these into non-degenerate gadgets, but this process is technically detailed,

in particular for the case of division: It requires replacing some of the divisions in the circuit C ′
I by

taking successive square-roots followed by successive squaring operations, where proper care has

to be taken to ensure that the results of all these operations stay within the interval [0, 1]. The

non-degenerate versions of our gadgets (which interestingly includes a gadget that outputs square

roots of input recovery rates), and the additional transformation of C ′
I that is required for this, are

described in the next section.

The absolute difference gadget gabs is given in Figure 3.8. It uses gdup and g+, as sub-gadgets

in its definition, as well as the sub-gadget gpos− (given in Figure 3.6) that takes two input recovery

rates r1 and r2, and produces an output recovery rate of max{r1 − r2, 0}.

Besides this set of gadgets that correspond to the arithmetic base of the circuit C ′
I , in order to

translate the circuit C ′
I appropriately into a financial system, we also need the ability to generate

rational constants as inputs to the gadgets (which correspond to the rational constant nodes of C ′
I).

This is straightforward: Any rational recovery rate c ∈ [0, 1] can be generated using a single node

i with a single outgoing debt contract of unit cost, that can be pointed towards an input node of

any gadget copy.

We provide some further financial system gadgets in Section 3.1.4. These gadgets demonstrate

the ability of financial systems to simulate the max and min operations. We included these for

the interested reader, but those gadgets are otherwise not used in our reduction, since C ′
I does not

have any min and max gates.

With the set of gadgets we have now defined, we can proceed to interconnect copies of gadgets to

create financial systems of which the clearing recovery rates of the input and output gadgets respects

an arbitrary algebraic computations over the arithmetic basis {+, ∗, /}, the absolute difference

operator, and rational constants. In particular, we can connect n input nodes, say banks {1, . . . , n},

39

to a network of gadgets that implements the algebraic circuit C ′
I . We connect its n outputs, say

banks (m−n+1, . . . ,m) (wherem is the number of banks in the resulting financial system) pairwise

to the n input nodes, and we define the resulting financial system to be ρ(I). It is clear that ρ(I)

can be constructed in polynomial time from C ′
I , and since C ′

I can be constructed in polynomial

time from I, the financial system ρ(I) takes polynomial time to compute.

Next, we show that clearing vectors of ρ(I) correspond in a polynomial-time computable way

(in this case: trivially) to fixed points of C ′
I , thereby proving the correctness of the reduction and

completing the proof. Let r be a clearing vector of ρ(I). We show that (r1, . . . , rn) is a fixed

point of I. Due to the fact that r is clearing, and by the definition of the gadgets, we know

that the assets flowing into nodes (1, . . . , n) are respectively (r1, . . . , rn), and come from nodes

(m−n+1, . . . ,m). Hence, the recovery rates of nodes (m−n+1, . . . ,m) are equal to (r1, . . . , rn).

By construction of our network, (i.e., by correspondence of our gadgets and the way they are

connected to each other, following the structure of the algebraic circuit C ′
I), it must then hold that

C ′
I(r1, . . . , rn) = (r1, . . . , rn). Hence, (r1, . . . , rn) is a fixed point of I.

This completes the proof, as the above is sufficient to establish FIXP-completeness. FIXPa

completeness of the strong approximation variant is immediate, since any strong ϵ-approximation

of the recovery rate vector of ρ(I) corresponds in the same manner to a strong ϵ-approximate fixed

point of C ′
I .

In addition, it is straightforward to see that fixed points of C ′
I correspond to recovery rates of

ρ(I), so that indeed ρ(I) captures the complete set of fixed points of C ′
I : Let x be a fixed point

of C ′
I . Now construct a vector of recovery rates for ρ(I) by setting (r1, . . . , rn) = x and compute

the remaining recovery rates of the nodes inside the gadgets in the natural way, as described by

the arithmetic operations that each of the gadgets represents. Since x is a fixed point of C ′
I , the

recovery rates of banks (m−n+1, . . . ,m) will be set to x, which causes the recovery rates of banks

(1, . . . , n) (and thereby also the entire financial system) to satisfy the clearing condition.

In Section 3.1.4, we present a set of financial system gadgets that adapt to the framework of

Singleton Liability Priorities. Substituting these gadgets with the ones used in the above reduction

allows us to generalise the statement of Theorem 3 to CDS-PRIORITY-CLEARING.

Theorem 4. CDS-PRIORITY-CLEARING is FIXP-complete, and its strong approximation

version is FIXPa-complete.

40

3.1.3 Financial System Gadgets

In this section we present all contract graphs (Figures 3.2–3.15) and the detailed configuration for

all the gadgets employed in the proof of Theorem 3.

Inversion gadget ginv: This is a basic gadget involved in the construction of more compli-

cated systems. Bank 1 has zero external assets and receives payment r from the input bank.

Since l1,2(r) = 1 it holds that r1 = min(1, r) = r. For Bank 3 it holds that a3(r) = 1 and

l3,4(r) = 1− r1 = 1− r. Since r3 = min(1, 1/(1− r)) = 1, Bank 3 pays an amount of 1− r to Bank

4 which in turn submits the same amount of money to the output bank.

r 1

3

2
1

1 4 1− r

1

1 1

Figure 3.2: Inversion gadget ginv.

Duplication gadget gdup or gc·r: This gadget receives an input value r and outputs two

values: r and c · r, where c is a rational constant. Choosing c = 1 yields a duplication gadget that

takes the input recovery rate r and outputs r as the two recovery rates of the output banks. We

may also denote this gadget by gc·r, for a rational constant c this gadget is used to multiply the

input by a constant c. The computation of the gadget up to Bank 4 is identical to the inversion

gadget. For Bank 5 it holds that a5(r) = c and l5,6(r) = c · (1− r3) = c · (1− r). Eventually since

r5 = min(1, 1/(1− r)) = 1 Bank 5 pays Bank 6 an amount of c · (1− r3) = c · r, which in turn Bank

6 transfers to the output bank.

r 1 r11

21 3
1

5c 6 c · r1

4
1

c

Figure 3.3: Gadget gdup

Degenerate Division gadget g/: This gadget is degenerate because Bank 6 is a CDS debtor

with zero external assets, thus it does not satisfy condition (i) of the non-degeneracy property. We

41

present it for the sake of keeping the exposition simple, but it is not formally used in the reduction

of Theorem 3, as this reduction should result in a non-degenerate financial system. This gadget

has two input banks that receive a payment of r2 and r1 respectively. Notice that the sub-gadget

that spans from the first input bank and banks {1, 2, 3, 4, 5} is a ginv gadget, thus r4 = 1 − r2.

Bank 6 receives an incoming payment of r1 and has liability l6,7(r) = r2, thus r6 = min(1, r1/r2).

The rest of the gadget constitutes a duplication sub-gadget where r13 = min(1, r6) = min(1, r1/r2).

Notice that if r1 > r2 then the output bank has a recovery rate of 1 otherwise the output bank has

a recovery rate of r1/r2.

r2 1 2
1 1

3 4 51
1 1

r1 6 7 8
1 1 1

9 10 111
1 1

12 13
r1
r2

1 1
1

Figure 3.4: Division gadget g/.

42

Degenerate Multiplication gadget g∗: Similarly due to Bank 6, this gadget does not sat-

isfy condition (i) of the non-degeneracy property. We present it for the sake of keeping the exposition

simple, but it is not formally used in the reduction of Theorem 3, as this reduction should result in a

non-degenerate financial system. Observe that a6(r) = r2 and l6(r) = l6,8(r)+l6,7(r) = 1−r1+r1 =

1, thus r6 = min(1, r2) = r2. Finally p6,7(r) = r6 · (1 − r4) · 1 = r2 · r1, which is the amount of

money transferred to the output bank.

r1 1 2
1 1

3 4 51
11

6 78 r1 · r2
11 1

r2

1

Figure 3.5: Multiplication gadget g∗..

43

Positive subtraction gadget gpos−: This gadget takes as input two recovery rate values

r1, r2 and outputs the value max{0, r1 − r2}. Bank 7 receives a payment of 1 − r1 from Bank 5

and r2 from the second input bank, thus r7 = min(1, 1− r1 + r2). Bank 9 holds external assets of

1 it can always pay any generated liability. We proceed by a case analysis of r7. If r7 < 1 then

1 − r1 + r2 < 1 which means that r1 > r2. Since l9(r) = 1 − r7 = r1 − r2 and r1 > r2, Bank 9

transfers an amount of max{0, r1 − r2} to the output bank. If r7 = 1 then 1 − r1 + r2 ≥ 1 which

means that r1 ≤ r2 but also l9(r) = 0. In that case Bank 9 pays 0 to the output bank and since

r1 ≤ r2 the expression max{0, r1 − r2} is again satisfied.

r1 1 2
1 1

3 51
1

r2 7 8
11

1

9 max{0, r1 − r2}
1

1

Figure 3.6: Positive subtraction gadget gpos−.

Absolute difference gadget gabs: This gadget receives as input two payments of r1 and

r2. First it uses two duplication gadgets on both r1, r2 and subsequently two positive subtraction

gadgets where one receives an input of r1, r2 and the second receives an input of r2, r1. The positive

subtraction gadgets compute max{0, r1 − r2} and max{0, r2 − r2} respectively. These two maxima

are added together using an addition gadget, resulting in the desired output |r1 − r2|.

r1 gdup gpos−

r2 gdup gpos−

max{0, r1 − r2}

max{0, r2 − r1}

g+ | r1 − r2 |

Figure 3.7: Absolute difference gadget gabs: This is a compact representation of the gadget where

the nodes labeled with a subscripted g have to be replaced by copies of the respective gadget in

order to obtain the full financial network that defines the gadget.

44

13 14 15
1 1

16 171
1

18 19 20
11

1

21 22
1

1

23 24 25
1 1

26 271
1

28 29 30
11

1

31 32
1

1

|r1 − r2|

1

1

r1

1 2 3

4 5 6

1

1

1

1

r2

7 8 9

10 11 12

1

1

1

1

1

1

1

1

1

1

1

1

Figure 3.8: Absolute difference gadget gabs: The full version of the gadget.

45

Non-degenerate Multiplication and Division Gadgets: We describe how to adapt the

hardness reduction of Theorem 3 in such a way that the financial system is non-degenerate. This is

a rather technical detail and needs substantial work, yet it is needed for correctness of the reduction.

We present two non-degenerate versions of the multiplication gadget in Figures 3.9, 3.10. In

Figure 3.9, observe that Bank 6 is a CDS debtor with positive external assets, thus it satisfies

condition (i) of the non-degeneracy condition. In this gadget, the input recovery rates r1 and r2 are

pre-processed by multiplying them both by 1/2, using the constant multiplication version of gadget

gcr in Figure 3.3 with c = 1/2. The gadget then generates the recovery rate 1
4 · r1(1 + r2) ∈ [0, 1],

which can be post-processed using a positive subtraction gadget gpos− on input 1
4 · r1(1 + r2) and

the value 1
4 · r1 (which can be generated by applying a g 1

4
·r gadget to the input signal r1) to output

the value 1
4 · r1r2, which is then parsed as input to a g4·r gadget in order to obtain r1 · r2.

1
2 · r1 1 2

1 1g 1
2
·r1r1

3 4 51
11

6

1/2

78 r1(1+r2)
4

gpos−1
4 · r1

1
4 · r1r2

g4·r

r1r2

11 1

r2/2

1

g 1
2
·r2r2

Figure 3.9: Compact representation of a non-degenerate version of the multiplication gadget g′∗.

In Figure 3.10 we present an alternative non-degenerate multiplication gadget where all contract

notionals are assumed to be 1. In this gadget there are two input banks with incoming assets

assumed to be r1, r2 and one output bank labelled x. Observe that Bank 8 is a CDS debtor

with zero external assets but one positive debt contract, thus it satisfies condition (i) of the non-

46

degenerate property. Bank 8 receives a payment of r2 from the second input bank and a payment

of rx from Bank x, since the liability of x to 8 is equal to 1. The liability of Bank 8 is l8(r) =

l8,9(r) + l8,x(r) = 1 + 1− r5 = 1 + r1, so it holds that r8 = min
(
1, a8(r)l8(r)

)
= min

(
1, r2+rx1+r1

)
.

If min
(
1, r2+rx1+r1

)
= r2+rx

1+r1
, then Bank 8 submits a payment of p8,x(r) = r8 · (1 − r5) = r8 · r1 =

r2+rx
1+r1

· r1 to Bank x. For Bank x it holds that rx = min
(
1, p8,x(r)

)
= min

(
1, r2+rx1+r1

· r1
)
, which by

the hypothesis and since r1 ≤ 1 it must hold that rx = r2+rx
1+r1

· r1 where after calculations we get

that rx = r1 · r2.

If min
(
1, r2+rx1+r1

)
= 1, then r2 + rx ≥ 1 + r1. Bank 8 submits a payment of p8,x(r) = 1− r5 = r1

to Bank x, which in turns has a recovery rate vector of rx = r1. This means that r2 ≥ 1 and thus

r2 must be 1 which means that the expression rx = r1 · r2 is satisfied.

r1 2 3

41 5

6

r2 8 9

x

Figure 3.10: Alternative non-degenerate multiplication gadget where all contract notionals are

assumed to be 1.

It is much more difficult to replace the degenerate gadget g/. To do this, we will essentially get

rid of division gates altogether in C ′
I , and replace each of them by a set of alternative operations

that achieve the same result. We thus make a few modifications to C ′
I . The first modification is

that we alter the sub-circuit T , which was used to generate the value t = 1/22
d
, which was used

to scale all the signals in the circuit so that each signal is in [0, 1] irrespective of the input vector.

Here, d is a polynomial time computable value that satisfies that every signal in the original circuit

CI is at most 22
d
. We adapt T such that the scaling factor it outputs is 1/(21+2d) instead of 1/22

d
.

This can be done by adding one additional multiplication gate at the end of T . Let the output of

the modified T be t′ = t/2. After this modification, it holds that all signals inside the circuit are

in [0, 1/2].

We now observe that division gates are used in a very limited way in C ′
I (with T modified as

above).

47

• First, division is used for dividing by c, where c is a given explicit constant in the original

circuit CI . For such divisions, we can simply use our constant multiplication gadget gcr to

multiply by 1/c, which is equivalent to dividing by c.

• Secondly, division is used to divide certain outputs of gates by t′ (previously t), where t′ =

1/21+2d . This type of division happens in two cases.

1. At every point in the circuit where two scaled signals t′a and t′b with a, b ≤ 22
d
are

multiplied with each other, resulting in the value t′t′ab. This value is divided by t′ in

order to generate the signal t′ab, i.e., a scaled version of the signal ab in the original

circuit.

2. At the end of the circuit, where a scaled signal t′a is divided by t′ to produce an output

signal of the original circuit, which is in [0, 1].

In the first case, let x = t′ab and in the second case, let x = a, so that in both cases a number

t′x is divided by t′ to result in x, and in both cases it holds that x ∈ [0, 1]. We replace the

division t′x/t′ by a sequence of d gates that compute the square root of its input, followed

by a multiplication by 2, followed by a sequence of d successive squaring multiplication gates,

followed by a final multiplication by 2. This results in the correct value

((t′x)1/2
d · 2)2d · 2 = (t′1/2

d
x1/2

d · 2)2d · 2 = t′x · 22d · 2 =
1

2
x · 2 = x.

It is furthermore straightforward to verify that, due to the order in which we apply our

arithmetic operations, all of the values throughout this computation stay in the interval [0, 1].

We note that the adapted scaling factor t′ = t/2 is needed because of the multiplication by 2

that is executed after the successive square roots and before the successive squaring.

The resulting circuit has no division gates anymore, so we do not need a division gadget in

our reduction. Instead, now we need a square root gadget. Fortunately, it is possible to design

this gadget in a non-degenerate way, although its construction is not very straightforward. It is

presented in Figure 3.12, and it combines the two subgadgets given in Figures 3.2 and 3.11 which

we provide separately for ease of understanding. The square root gadget may evidently output an

irrational recovery rate.

48

Square Root Gadget g√: This gadget can be constructed in two parts. First we construct

the gadget of Figure 3.11 which we call constant square root gadget g√. This system has no input

banks and one output bank denoted by y. Banks 2 and 5 have external assets of 1 − c, where c

is assumed to be a constant in [0, 1]. To compute the clearing vector we have to compute that

r2 = min
(
1, 1−c

2−r5

)
and r5 = min

(
1, 1−c

2−r2

)
. Observe that it is always the case that 1 − c ≤ 2 − ri,

for i ∈ {2, 5}, thus in order to compute the clearing vector we have to solve the system r2 = 1−c
2−r5

and r5 = 1−c
2−r2 , but these are exactly the computations in Example 2. So we know that under any

clearing vector r2 = r5 = 1 −
√
c, c ∈ [0, 1]. Subsequently Bank x pays an amount of 1 − r2 =

√
c

to the output Bank y.

In order to construct the full square root gadget g√, assuming a value r, we first use an inversion

gadget ginv to generate the value 1− r and subsequently a duplication gadget gdup to duplicate the

value 1− r. We connect an output value 1− r of gdup to Bank 2 and the other to 5 in a constant

gadget g√c, assuming c = 1. Due to the selection of c both Banks 2 and 5 have zero external assets

and receive a payment of 1− r from the output Banks of gdup. From the analysis of g√c we know

that the output value of Bank y is
√
r. The configuration of the square root gadget is illustrated

in Figure 3.12

4

5

6

1− c

1

1

1

2

3

1− c

1

1

x 1

y

√
c

1

Figure 3.11: The square root constant gadget g√c, c ∈ [0, 1] that has no input and outputs
√
c.

r ginv gdup g√c

Figure 3.12: The square root gadget g√.

A direct consequence of the above gadget is the connection of the default status of banks with

49

the SQRT-SUM problem. An instance of SQRT-SUM consists of n+ 1 integers d1, d2, ..., dn, k

and asks whether
∑n

i=1

√
di ≤ k. It is known that SQRT-SUM is solvable in PSPACE but it is

unknown whether it is in P, or even in NP. In [Tiw92] it is shown that it can be solved in polynomial

time in the unit-cost RAM model [Tiw92, Sch79, BMS81].

We show that for instances of both CDS-CLEARING and CDS-PRIORITY-

CLEARING, determining for a given Bank i whether ri < 1 (namely whether Bank i is in

default) is at least as hard as solving the square root sum (SQRT-SUM) problem.

Proposition 3. Given network F deciding whether a specific bank is in default is SQRT-SUM-

hard.

Proof. We prove the statement by reducing CDS-CLEARING from SQRT-SUM. Let

(d1, ..dn, k) be an instance of SQRT-SUM. Firstly, we note that in [BFHT85] it is shown that

checking whether
∑n

i=1

√
di = k can be done in polynomial time. We check whether equality holds

for our input first and proceed without loss of generality to the proof without minding equality.

We construct a financial system F as follows, first we construct n financial subnetworks which we

refer to as square root gadgets and denote by gi,√. the i-th square root gadget. Whenever referring

to a node κ, belonging in a square root gadget gi,√., we use the notation κi. Each square root gadget

gi,√. is augmented with two nodes xi, yi, and the CDS contract (xi, yi, 2i). Let dmax = maxi∈[n] di

and fix the external assets of nodes 2i and 5i to be e2i = e5i = 1−di/d2max. Moreover we let exi = 1

and eyi = 0 and the CDS contract (xi, yi, 2i) have a notional of 1, i.e., c2ixi,yi = 1. The n square root

gadgets are all connected to a single node τ with eτ = 0, by n debt contracts {(yi, τ) : i ∈ [n]}.

There is one further node τ ′ to which τ is connected through debt contract (τ, τ ′) with notional

cτ,τ ′ = k/dmax. The construction is illustrated in Fig. 3.13.

We claim that this resulting financial system has a clearing recovery rate vector r with rτ = 1

if and only if
∑n

i=1

√
di ≥ k. From the analysis of the square root gadget in Figure 3.11, it follows

that under any clearing recovery rate vector r, the recovery rate of node 2i is r2i = 1−
√
di/dmax for

all i ∈ [n]. Since node 2i is always in default (assuming all di ̸= 0) the CDS (xi, yi, 2i) is activated

and since node xi can fully pay its liabilities, node yi receives a payment of 1 − r2i =
√
di/dmax.

This implies that τ receives a total payment of (1/dmax) ·
∑

i∈[n]
√
di. Since τ has only one liability

of k/dmax, it holds that rτ = 1 if and only if the total payment that τ receives exceeds k/dmax,

i.e., if and only if
∑

i∈[n]
√
di ≥ k, and this proves the claim. The construction in Figure 3.13

50

is independent of any priority profile which allows us to generalise the statement to instances of

CDS-PRIORITY-CLEARING.

(a) The i square root gadget gi,√.

4i

5i

6i

1− di/d
2
max

1

1

1i

2i

3i

1− di/d
2
max

1

1

xi 1

yi
√
di/dmax

1

(b) The constructed financial system

g1,√. ... gi,√. ... gn,√.

τ

τ ′

1 1 1

k/dmax

Figure 3.13: The financial system constructed from a given Square Root Sum instance.

The next gadgets illustrate that financial systems are able to naturally capture the max

and min operations. However, these gadgets remain unused in the reduction of Theorem 3.

Maximum Gadget gmax: We make use of the property max{r1, r2} = |r1−r2|+r1+r2
2 . This gadget

receives two input values of r1, r2 and outputs a value of max{r1, r2}. Figure 3.14 is a compact

representation of the actual gadget, in the sense that is contains a set of sub-gadgets subscripted

by g. First each input value r1, r2 enters a duplication gadget gdup. Subsequently a copy of each

value enters a gadget gabs followed by a g 1
2
r gadget to maintain the value |r1−r2|

2 . Another copy

of each input value enter a g 1
2
r gadget respectively to maintain the values r1

2 ,
r2
2 . Finally two g+

gadgets are employed to compute first the value |r1−r2|+r2
2 and finally the value |r1−r2|+r1+r2

2 .

Minimum Gadget gmin: We make use of the property min{r1, r2} = r1+r2−|r1−r2|
2 . Similarly

to the maximum gadget, Figure 3.15 is a compact representation of the actual gadget. The con-

figuration of the gadget resembles gmax in the sense that it generates the values r1+r2
2 , |r1−r2|2 . The

difference in this construction is that it uses a gpos− gadget that takes as input the generated values

r1+r2
2 , |r1−r2|2 and outputs the max{0, r1+r2−|r1−r2|

2 }, which is equivalent to max{r1, r2}.

51

r1

r2

gdup

gdup

1

1

r1

r1

r2

r2

1

1

1

1

gabs

1

1
g(1/2)r1

g(1/2)r

g(1/2)r

1

1

r1
2

r2
2

1

1

|r1−r2|
2

1

g+

1

1

|r1−r2|+r2
2

1

1

g+

1

1 max{r1, r2}1

Figure 3.14: Maximum gadget gmax, computing max{r1, r2}. This is a compact representation

where the nodes labeled with a subscripted g have to be replaced by copies of the respective

gadgets, in order to obtain the full financial system defining the gadget.

r1

r2

gdup

gdup

1

1

r1

r1

r2

r2

1

1

1

1

gabs

1

1
g(1/2)r1

g(1/2)r

g(1/2)r

1

1

|r1−r2|
2

1

r1
2

r2
2

1

1

g+

1

1

r1+r2
2

1

gpos−{0, r1+r22 − |r1−r2|
2 }

11

min{r1, r2}
1

Figure 3.15: Minimum gadget gmin, computing min{r1, r2}. This is a compact representation where

the nodes labeled with a subscripted g have to be replaced by copies of the respective gadgets, in

order to obtain the full financial system defining the gadget.

52

3.1.4 Financial System Gadgets for Singleton Liability Priorities

In Figures 3.17-3.20 we present a set of financial gadgets adapted to Singleton Liability Priority

profiles that enable us to transfer the adapted reduction to financial systems with Credit Default

Swaps and priority profiles and gain the same complexity result.

Minimum Gadget gmin: This gadget computes the minimum of two input values r1, r2 in

the framework of singleton liability priority profiles. Bank 6 pays according to the profile P6 =

((6, 7, 4) | (6, 8)) and receives a payment of r1 from the second input and holds a liability towards

Bank 7 of l6,7(r) = 1−r4 = r2. Bank 6 prioritises the CDS contract (6,7,4) and since it holds assets

of r1 it is evident that it pays Bank 7 an amount of r1 if r1 ≤ r2 and an amount r2 if r1 ≥ r2. Thus

Bank 6 submits a payment of min(r1, r2) to Bank 7. Notice that compared to the gadget in Figure

3.15 this gadget’s structure is significantly simpler.

r2 1 2
1 1

31 4 5
1 1

r1 6 7

min{r1, r2}8

1 1

1 1

P6 = ((6, 7, 4) | (6, 8))

Figure 3.16: Minimum gadget gmin, computing min{r1, r2}.

53

Positive Subtraction Gadget gpos−: This gadget is identical to the previous gadget with

the difference that the output bank is Bank 8. It is not hard to see that given the analysis in the

previous gadget Bank 6 after paying its first priority an amount of min r1, r2 has to pay an amount

of either 0 in case r1 − r2 ≤ 0 or an amount of r1 − r2 in case r1 − r2 ≥ 0. Evidently the amount of

money Bank 8 receives from Bank 6 is max{0, r1 − r2} which is the output value that the gadget

computes.

r2 1 2
1 1

31 4 5
1 1

r1 6 7

8 max{0, r1 − r2}1

1 1

1

P6 = ((6, 7, 4) | (6, 8))

Figure 3.17: Positive subtraction gadget gpos−, computing max{0, r1 − r2}.

Maximum gadget gmax: This gadget computes the maximum value of two input recovery

rate values r1, r2. The gadget is illustrated in Figure 3.18. We exploit the fact that max{a, b} =

1 − min{1 − a, 1 − b} for a, b ∈ [0, 1]. Towards this direction the construction uses two inversion

gadgets to compute the values 1− r1 and 1− r2. Subsequently the gadget appends the minimum

gadget of Figure 3.17 to compute min{1− r1, 1− r2} and finally another inversion gadget to output

the value max{r1, r2}.

ginv(r2)

ginv(r1)

gmin(ginv(r1), ginv(r2))

1

1
ginv(gmin(ginv(r1), ginv(r2)))

1 max{r1, r2}1

Figure 3.18: Maximum gadget gmax, computing max{r1, r2}

Absolute difference gadget gabs: This gadget uses the fact that max{0, r1 − r2} +

max{0, r2 − r1} =| r1 − r2 |. The construction first uses two gpos− gadgets on inputs (r1, r2)

and (r2, r1) respectively to compute the values max{0, r1 − r2} and max{0, r2 − r1}. Finally it

employs an addition gadget g+ to output the value | r1 − r2 |.

54

gpos−(r1, r2)

gpos−(r2, r1)

g+ |r1 − r2|
1

1
1

Figure 3.19: Absolute difference gadget gabs.

Multiplication gadget g∗: This construction is rather involved and makes use of various

instances of multiplication-by-constant gadgets gc·r and positive subtraction gadgets gpos−. Some of

the nodes have been annotated with expressions marked in red: These expressions are the recovery

rates of some of the intermediate nodes in the gadget, in terms of the input nodes’ recovery rates.

The purpose of Banks 1 to 19 is to compute the expression r1r2
4 + r1

4 + 1
32 ·r2+

1
32 . To verify that

observe that Bank 6 has external assets 1 and total liability of l6(r) = l6,9(r)+ l6,7(r) = 1+1−r4 =

1 + r2, thus its recovery rate is r6 = 1
1+r2

. Bank 13 has external assets of 1
32 , an incoming

payment of 1
4r1 generated from the gadget g 1

4
·r1 and liability of l13(r) = 1 − r11 = r6 = 1

32 , thus

r13 =
1/4·r1+1/32
1/(1+r2)

= r1·r2
4 + r1

4 + r2
32 +

1
32 . Bank 18 holds a liability of l18(r) = 1− r16 = r13 and since

it posses external assets of 1 it pays an amount of r13 to Bank 19. Bank 19 pays according to the

profile P19 = ((19, 21) | (19, 20)), thus it prioritizes the debt contract of notional 1/32 towards Bank

21. After paying Bank 21 the amount of 1/32, Bank 19 submits the remaining amount r1
4 + r1r2

4 + r2
32

to Bank 20. Next the construction employs a constant multiplication gadget g 1
32
r2

and transfers

the output value 1
32r2 of this gadget along with the value r20 as inputs in a gpos−(r20, g 1

32
r2
) gadget.

Notice that in Figure 3.20 the second input signal r2 is hidden in the compact representation of

g 1
32
r2
. The output value of gpos−(r20, g 1

32
r2
) is r1

4 + r1r2
4 which is transferred along with the value 1

4r1

that is generated by applying a g 1
4
r1

gadget as input values to another gpos− gadget. The output

of the later is the value r1r2
4 . Finally the signal r1r2

4 is transferred as input to a g4r gadget that

eventually outputs the desired value r1r2.

55

r2 1 2
1 1

3 4 51
1 1

6 7 89
1

1
1 1

10 11 121
1 1

g 1
4
r1 13

1/32
1

14
1

151 16
1

17
1

181 19
1 r1

4 + r1r2
4 + 1

32 + r2
32

20
r1
4 + r1r2

4 + r2
32

21

1
32

1

g 1
32
r2

gpos−(r20, g 1
32
r2
) r1

4 + r1r2
4

1 1

g 1
4
r1

gpos(g 1
4
r1
, gpos−(r20, g 1

32
r2
))

1 1

r1r2
4

g4r r1r2

P19 = ((19, 21) | (19, 20))

Figure 3.20: Multiplication gadget g∗: This gadget’s construction is rather involved and makes

use of various instances of multiplication-by-constant gadgets and positive subtraction gadgets.

Some of the nodes have been annotated with expressions marked in red: These expressions are

the recovery rates of some of the intermediate nodes in the gadget, in terms of the input nodes’

recovery rates.

56

3.2 Computing Weak Approximations

3.2.1 ϵ-CDS-CLEARING

We proceed with the study of the weak approximation version of CDS-CLEARING. Given F ∈

CDS-CLEARING we define a weak ϵ-approximate clearing recovery rate vector (ϵ-CRRV) of F

as follows:

Definition 7 (Weak ϵ-approximate clearing recovery rate vector (ϵ-CRRV)). Given a

financial network F = (N, e, c), a recovery rate vector r ∈ [0, 1]n is called weak ϵ-approximate

clearing iff for all banks i ∈ N , it holds that:

(i.) if ei >
∑

j∈N\{i}

(
ci,j +

∑
k∈N\{i,j} c

k
i,j

)
, then ri = 1;

(ii.) otherwise, ∥ri − fF (ri)∥∞ ≤ ϵ, where fF is the function induced by (2.6) with respect to

instance F defined above.

Condition (i.) guarantees that a bank with a “trivial” recovery rate value of 1 under any clearing

vector, is indeed set to 1 under this notion of weak ϵ-approximate clearing. For those banks, ri can

be omitted from fF as a variable, so that our notion of an ϵ-CRRV can strictly correspond to a

weak ϵ-approximate fixed point of the function fF in the standard sense. Condition (ii) suggests

that the vector r is not far removed from satisfying the clearing condition. Remember though that,

as we established in Section 2.2.3, this does not imply that r must be close to an actual clearing

vector. For a more involved analysis on the weak approximation notion we point the reader to

Section 2.4 of [SSB17a].

We define the weak -approximate version of CDS-CLEARING based on the above definition

of ϵ-CRRV as ϵ-CDS-CLEARING.

Definition 8 (ϵ-CDS-CLEARING). Given a financial network F ∈ CDS-CLEARING com-

pute a weak ϵ-approximate clearing recovery rate vector (ϵ-CRRV).

3.2.2 The PURE-CIRCUIT Problem

We use the problem PURE-CIRCUIT [DFHM22]. The problem features a set of variables which

can take one of three different values 0, 1 or garbage and a circuit constructed from connecting

gates of the following three types: NOT, OR and PURIFY. The first two basically follow boolean

57

logic whereas the PURIFY gate has one input and two outputs and makes sure to duplicate the

pure bit in input or produce at least one pure bit in output if the input is garbage.

Formally an instance I = (V,G) of PURE-CIRCUIT consists of a set of gates G and variables

V . The gates are represented by tuples g = (T, u, w) or g = (T, u, v, w), where T represents the

gate type and u, v, w ∈ V are either input or output variables, depending on T . Our analysis is

based on the following gates:

• NOT-gate: (NOT, u, w), where u is the input variable and w is the output variable.

u NOT w

Figure 3.21: Graphical representation of the NOT-gate

• OR-gate: (OR, u, v, w), where u and v are the input variables and w is the output variable.

u v

OR

w

Figure 3.22: Graphical representation of the OR-gate

• PURIFY-gate: (PURIFY, u, v, w), where u is the input and v, w are the output variables.

u

PURIFY wv

Figure 3.23: Graphical representation of the PURIFY-gate

Each variable appearing in a gate g is assigned a value from the set {0, 1,⊥}, where the value ⊥ is

termed “garbage”. We denote an assignment of values to variables by the function x : V 7→ {0, 1,⊥}.

We are interested in assignments that satisfy the above gates.

• An assignment x satisfies gate (NOT, u, w) iff:

1. x[u] = 0 → x[w] = 1

58

2. x[u] = 1 → x[w] = 0

3. x[u] = ⊥ → x[w] ∈ {0, 1,⊥}

• An assignment x satisfies gate (OR, u, v, w) iff:

1. x[u] = x[v] = 0 → x[w] = 0.

2. x[u] = 1 and x[v] ∈ {0, 1,⊥} → x[w] = 1

3. x[u] ∈ {0, 1,⊥} and x[v] = 1 → x[w] = 1

4. Else x[w] = {0, 1,⊥}

• An assignment x satisfies gate (PURIFY, u, v, w) iff:

1. x[u] = 0 → x[v] = x[w] = 0.

2. x[u] = 1 → x[v] = x[w] = 1.

3. x[u] = ⊥ → x[v] ∈ {0, 1} or x[w] ∈ {0, 1}.

Below we define the version of PURE-CIRCUIT problem that we will use in our subsequent

proof and illustrate it with an example.

Definition 9 (PURE-CIRCUIT). An instance I = (V,G) of PURE-CIRCUIT consists

of a set of variables V , gates G of the form g = (T, u, v, w) or g = (T, u, w), where T ∈

{NOT,OR,PURIFY} and no two gates share the same output variable. A solution is an as-

signment x : V 7→ {0, 1,⊥} that satisfies all gates in G.

Example 4. Consider the instance I = (V,G) with V = {u, v, w, y} and G = {(NOT, u, v), (OR, v

, w, y), (PURIFY, v, u, w)}. No variable is output to more than one gate, which constitutes I a

valid instance. In any satisfying assignment x, neither x[u] nor x[v] can lie in {0, 1}, thus it must

hold that x[v] = x[u] =⊥ and x[w] ̸=⊥, otherwise the PURIFY gate is not satisfied. If we set x[w] = 1

then also x[y] = 1 due to the OR-gate. Therefore, a satisfying assignment is x[u] = x[v] =⊥ and

x[w] = x[y] = 1 The graphical illustration of I is presented in Figure 3.24.

Finally we will make use of the following theorem to prove our claims.

Theorem 5 ([DFHM22], Corollary 2.2). PURE-CIRCUIT is PPAD-complete.

3.2.3 PPAD-hardness of ϵ-CDS-CLEARING

State of the art bound: In [SSB17b], it is established that there exists a small constant ϵ for which

computing an ϵ-CRRV is PPAD-hard. To prove that, the authors defined a variation (Definition

59

v

NOT

u

PURIFY

w

ORy

Figure 3.24: The graphical illustration of the PURE-CIRCUIT instance I.

5.4 [SSB17b]) of the problem ϵ-GENERALISED-CIRCUIT that was defined in [CDT09] and

was proved to be PPAD-hard in [Rub15] for some unknown constant ϵ. Subsequently they showed

that there exists an ϵ > 0 such that computing ϵ approximate solutions to circuits C ′ of this variation

is PPAD-hard (Lemma 5.6 [SSB17b]). Next they connected their version with the original used in

[Rub15] and showed that ϵ/5 solutions to circuits C ′ of their version correspond to ϵ solutions to

circuits C of the original version (Lemma 5.6 [SSB17b]). Additionally in Theorem 4.1 of [DFHM22]

it is established that the original version of ϵ-GENERALISED-CIRCUIT used in [Rub15] is

PPAD-hard for ϵ < 0.1. Combined these facts imply that the version presented in [SSB17b] must be

inapproximable up to any factor less than 1/50. Finally it is proved that ϵ/3-CRRVes correspond

to ϵ solutions for circuits C ′ of the new version of ϵ-GENERALISED-CURCUIT (Theorem 5.1

[SSB17b]), which combined with the inapproximability bound of [DFHM22] implies that computing

ϵ-CRRV es is PPAD-hard for ϵ < 1/150.

Improved Explicit bound: We apply a new method to provide the first explicit inapproximability

bound for ϵ-CDS-CLEARING. We construct a direct reduction from PURE-CIRCUIT to ϵ-

CDS-CLEARING. The proof is technically involved and divided in the following parts:

(i) A “hypothetical” encoding of the recovery rate space [0, 1] into three disjoint subintervals

that intuitively map recovery rates to either a pure bit or “garbage”.

(ii) The construction of three “financial gates” whose behaviour under weak approximate clearing

vectors must simulate the function of PURE-CIRCUIT gates after decoding the recovery

rates of specific banks.

(iii) A reverse engineering process that fixes the initial encoding for the recovery rate values and

60

results in the final specified constant ϵ.

The proposed reduction is optimised, in the sense that it generates a family of possible encodings

for the recovery rate values, upon which we choose the one that maximises the inapproximability

parameter ϵ. The structure of the proposed networks combined with the restriction of computations

to intervals within the [0, 1] range, significantly increases the complexity of the analysis.

To bypass this obstacle we define a first-order language denoted as L(R,F,C), designed to

handle combined arithmetic operations involving intervals and numbers within the range [0, 1].

This is a basic tool in our analysis since it combines concise representations with a high level of

expressiveness. The upshot is that if we were able find in polynomial time, a solution to ϵ-CDS-

CLEARING for ϵ less than (roughly) 0.048 then the encoding would generate a polynomial time

algorithm for PURE-CIRCUIT. We proceed with the reduction.

The mapping mδ. We construct a mapping of [0, 1] to {0, 1,⊥}. The domain of this mapping

reflects potential recovery rates of banks in a financial network, and these are mapped to values

for variables of PURE-CIRCUIT instances. The mapping will be used to translate recovery rate

vectors of a financial network to assignments x of a corresponding PURE-CIRCUIT instance.

Fix δ to be any value in (0, 12), and consider the following concrete mapping mδ:

• If r ∈
[
0, 12 − δ

]
, then mδ(r) = 0;

• If r ∈
(
1
2 − δ, 12 + δ

)
, then mδ(r) =⊥;

• If r ∈
[
1
2 + δ, 1

]
, then mδ(r) = 1.

We will use mδ(r) throughout the remainder of the section. A concrete choice of δ will be defined

later, as it will follow from analysis what the optimal choice of δ is (in the sense of achieving the

strongest inapproximability result).

A first-order language5. Let L(R,F,C) be a first-order language where

• R = {⪯} is a relation symbol set.

• F = {±,+,−, ·, /} is a function symbol set that contains symbols that represent binary

operations.

• C = {0,1, · · · ,n, · · · } is a constant symbol set that contains a corresponding constant symbol

for each non-negative rational number.

5In defining the language we followed the notation in [Fit90].

61

We define the notion of a term following the standard definition within the context of first-order

languages as follows.

• Any variable symbol χ is a term.

• Any constant symbol in C = {0,1, · · · } is a term.

• If ϕ, ϕ′ are terms and ◦ ∈ F is a binary function symbol then ϕ ◦ ϕ′ is a term.

We define the model M = ⟨D, I⟩ for the above language to consist of the domain D =

{[x, y]|x, y ∈ R and x ≤ y} ∪ {∅} and the interpretation I that associates the relation symbol

⪯ to the relation:

⪯I=
{
(x,y) | x and y are intervals where inf{x} ≤ inf{y} and sup{x} ≤ sup{y}

}
. (3.1)

For notation simplicity we denote by x variables that represent intervals and by x variables that

represent numbers. Let A be an assignment of variables to values in D. We use the notation xA

to denote the value within the domain D that the variable x is assigned to under the assignment

A. Notice that x is a variable of the language, whereas xA is a numerical value that belongs in the

domain D. When it is obvious from the context, we would rather use the notation x to also refer

to the numerical value of D that x represents in order to prevent notational overflow.

For a term ϕ we recursively define ϕI,A, i.e, the value that the term ϕ represents under the

interpretation I and the assignment A as follows

• If ϕ is a variable then ϕI,A = ϕA.

• If ϕ is a constant then w.l.o.g ϕ = c, where by default under any assignment A, cA = c. For

example (1/2)A = 1/2

• If ϕ is none of the above then by the definition of term it holds that ϕ = ϕ1 ◦ϕ2, where ϕ1, ϕ2

are terms. In that case ϕI,A = (ϕI,A1) ◦I (ϕI,A2).

From the above definition in order to completely define the first order language we have to interpret

the binary function symbols in F on variables and constants.

• If x, y are variables that represent numbers or constant symbols of D under an assignment A,

then (x ◦ y)I,A = xA ◦ yA, where ◦ = {+,−, ∗, /}. For example assume the term (1+ x) and

62

the assignment A under which the variable x is assigned to the value 1. Then (1 + x)I,A =

1 + xA = 2.

• If x and ϵ are variables assigned to real numbers with ϵ > 0 under an assignment A then

(x± ϵ)I,A =



[
x− ϵ, x+ ϵ

]
∩
[
0, 1
]
, if x ∈

[
0, 1
]

[
1− ϵ, 1

]
∩
[
0, 1
]
, if x > 1[

0, ϵ
]
∩
[
0, 1
]
, if x < 0

(3.2)

For example assume the assignment A where xA = 2 and ϵA = 1/4. Then (x± ϵ)I,A = [34 , 1].

Essentially operation ±I creates a closed ϵ-ball around the value of x, restricted to values

that fall within [0, 1], with the quirk that the ball is centered to 1 if x > 1 and 0 if x < 0.

The result of ±I on two numbers is always a range within [0, 1].

• If variable x is assigned to an interval within [0, 1] and ϵ > 0 represents a real number under

an assignment A then

(x± ϵ)I,A =
[
inf{x} − ϵ, sup{x}+ ϵ

]
∩
[
0, 1
]

(3.3)

For example if xA = [14 ,
1
2] and ϵ

A = 1
4 then (x± ϵ)I,A = [0, 34].

• If variable x is assigned to an interval within [0, 1] under an assignment A then

(1− x)I,A =
[
1− sup{x}, 1− inf{x}

]
(3.4)

For example if xA = [34 , 1] then (1− x)I,A = [0, 14].

• If x = x±ϵ1 and y = y±ϵ2 represent intervals within the range [0, 1] then under an assignment

A where ϵ > 0

(x+ y)I,A =



[
inf{x}+ inf{y}, sup{x}+ sup{y}

]
∩
[
0, 1
]
, if x+ y ∈ [0, 1][

1− (ϵ1 + ϵ2), 1)
]
∩
[
0, 1
]
, if x+ y > 1[

0, ϵ1 + ϵ2

]
∩
[
0, 1
]
, if x+ y < 0

(3.5)

For example if xA = [14 ,
3
4] and y

A = [13 ,
2
3] then (x+ y)I,A = [712 , 1]

63

• If x = x ± ϵ represents an interval within [0, 1] and l is a constant symbol that represents a

constant number bigger than or equal to 1, i.e, lA ≥ 1 then

(l · x)I,A =



[
l · inf{x}, l · sup{x}

]
∩
[
0, 1
]
, if l · x ∈ [0, 1][

1− l · ϵ, 1
]
∩
[
0, 1
]
, if l · x > 1[

0, l · ϵ
]
∩
[
0, 1
]
, if l · x < 0

(3.6)

Finally we assume that all other terms expressed in cases of operations on symbols that are not

captured in any of the above definitions are mapped by any assignment to the value ∅ of D.

Examples of such terms are (x ± y) where the operation ± is not defined on intervals within D

or x ∗ x where x is a variable that represents a number and x is a variable that represents an

interval. Observe that from all the above definitions it is evident that all operations expressed via

the symbols within the F map intervals within [0, 1] to intervals within [0, 1].

We proceed by defining the notion of a valid substitution of a term τ with a term τ ′.

Definition. A substitution σ of a term τ with a term τ ′ denoted as σ(τ) is said to be valid if

(σ(τ))I,A = τ I,A for every assignment A.

Essentially a valid substitution between two terms implies that under the interpretation I and

any assignment A, both terms refer to the same value within the domain D. Below we present a

set of valid substitutions each with a discrete notation that we are about to use in our proofs.

Lemma 1. The following are valid substitutions. 6

σ1−: If x = x± ϵ, then σ1−(1− x) = (1− x)± ϵ.

σ±: If x = x± ϵ1 and ϵ2 > 0, then σ±(x± ϵ2) = x± (ϵ1 + ϵ2).

σ+: If x = (x± ϵ1) and y = (y ± ϵ2), then σ+(x+ y) = (x+ y)± (ϵ1 + ϵ2).

σ∗: If x = x± ϵ and l ≥ 1, then σ∗(l · x) = l · x± l · ϵ.

Proof. For each substitution σ and a term τ , we will prove that (σ(τ))I,A = τ I,A, for any assignment

A. Namely the interpretation dictated by I of the terms connected via any of the above substitutions

6For simplicity we assume that the variables ϵ, ϵ1, ϵ2 are always mapped to positive numbers and l is a constant

that represents a rational number greater than or equal to one.

64

represent the same set of values from the domain D. Notice that assignments where both terms are

mapped to ∅, are trivially satisfied and, as such, will not be explicitly addressed in the subsequent

analysis.

σ1−: Let k = 1− x. Combining the hypothesis with the definition of operation 3.4 we get that k

represents a range of values within [0, 1] and sup{k} = 1− inf{x} and inf{k} = 1− sup{x}.

If x ∈ [0, 1] then

(a) sup{k} = 1−max(0, x− ϵ) = min(1, (1− x) + ϵ).

(b) inf{k} = 1−min(1, x+ ϵ) = max(0, (1− x)− ϵ).

In the case where x > 1 then 1− x < 0 and

(a) sup{k} = 1−max(0, (1− ϵ)) = min(1, ϵ)

(b) inf{k} = 1−min(1, 1 + ϵ) = 0

And if x < 0 then 1− x > 1 meaning that

(a) sup{k} = 1−max(0, 1− ϵ) = 1.

(b) inf{k} = 1−min(1, ϵ) = max(0, 1− ϵ).

From the above analysis we conclude that,

(1− x)I,A =



[
(1− x)− ϵ, (1− x) + ϵ

]
∩
[
0, 1
]
, if 1− x ∈ [0, 1][

1− ϵ, 1
]
∩
[
0, 1
]
, if 1− x > 1[

0, ϵ
]
∩
[
0, 1
]
, if 1− x < 0

which proves the claim that if x = x±ϵ then
(
1−x

)I,A
=
(
(1−x)±ϵ

)I,A
, for any assignment

A. Consequently σ1−(1− x) = (1− x)± ϵ is a valid substitution.

σ±: Let k = x ± ϵ2. Combining the given hypothesis with the definition of the operation

3.3, it is evident that the variable k must represent a range of values within the inter-

val [0, 1]. According to 3.3, we can determine that sup{k} = min(1, sup{x} + ϵ2) and

inf{k} = max(0, inf{x} − ϵ2). Furthermore, considering the operation described in 3.2, if

x ∈ [0, 1], then:

65

(a) sup{k} = min(1, x+ ϵ1 + ϵ2).

(b) inf{k} = max(0, x− ϵ1 − ϵ2).

In cases where x > 1, then sup{x} = 1 and inf{x} = max(0, 1− ϵ1) which implies that:

(a) sup{k} = 1.

(b) inf{k} = max(0, 1− ϵ1 − ϵ2).

And when x < 0, it holds that: sup{x} = min(1, ϵ1) and inf{x} = 0, which leads to the

conclusion that

(a) sup{k} = min(1, ϵ1 + ϵ2).

(b) inf{x} = 0.

In summary of the preceding analysis, we can conclude that,

(x± ϵ2)
I,A =



[
x− (ϵ1 + ϵ2), x+ (ϵ1 + ϵ2)

]
∩
[
0, 1
]
, if x ∈ [0, 1][

1− (ϵ1 + ϵ2), 1
]
∩
[
0, 1
]
, if x > 1[

0, ϵ1 + ϵ2

]
∩
[
0, 1
]
, if x < 0

which proves the claim that if x = x±ϵ1 then
(
x±ϵ2

)I,A
=
(
x± (ϵ1+ϵ2)

)I,A
. Consequently

σ±(x± ϵ2) = x± (ϵ1 + ϵ2) is a valid substitution.

σ+: Consider k = x + y. It’s essential to note that, as per the definition in operation 3.2, both

variables x and y represent intervals constrained to the range [0, 1]. This, in conjunction

with operation 3.5, underscores that the addition of intervals is exclusively defined within the

boundaries of [0, 1].

In line with operation 3.5, when x+ y ∈ [0, 1], we observe that

(a) sup{k} = min(1, sup{x}+ sup{y})

(b) inf{k} = max(0, inf{x}+ inf{y}).

Whenever x+ y > 1, then in line with the definition provided in operation 3.5, it holds that:

(a) sup{k} = 1

66

(b) inf{k} = max(0, 1− (ϵ1 + ϵ2))

Finally whenever x+ y < 1:

(a) sup{k} = min(1, ϵ1 + ϵ2).

(b) inf{k} = 0.

Directly from 3.5 and by the above analysis we get that,

(x+ y)I,A =



[
(x+ y)− (ϵ1 + ϵ2), (x+ y) + (ϵ1 + ϵ2)

]
∩
[
0, 1
]
, if x+ y ∈ [0, 1][

1− (ϵ1 + ϵ2), 1
]
∩
[
0, 1
]
, if x > 1[

0, ϵ1 + ϵ2

]
∩
[
0, 1
]
, if x < 0

which establishes that
(
x + y

)I,A
=
(
(x + y) ± (ϵ1 + ϵ2)

)I,A
. This implies that whenever

x = x± ϵ1 and y = y ± ϵ2 then σ+(x+ y) = (x+ y)± (ϵ1 + ϵ2) is a valid substitution.

σ∗: Assume that k = l · x. The claim naturally stems out from the definition of operation (3.6).

If l · x ∈ [0, 1], we have the following:

(a) sup{k} = min(1, l · sup{x}).

(b) inf{k} = max(0, l · inf{x}).

In situations where l · x > 1, as defined in operation 3.6:

(a) sup{k} = 1

(b) inf{k} = max(0, 1− l · ϵ)

Conversely, if l · x < 0, we have:

(a) sup{k} = min(1, l · ϵ)

(b) inf{k} = 0

Summing up we get that:

(l · x)I,A =



[
l · x− l · ϵ, l · x+ l · ϵ

]
∩
[
0, 1
]
, if l · x ∈ [0, 1][

1− l · ϵ, 1
]
∩
[
0, 1
]
, if l · x > 1[

0, l · ϵ
]
∩
[
0, 1
]
, if l · x < 0

67

which establishes that if x = x± ϵ and l represents a number greater than or equal to 1 then(
l · x

)I,A
=
(
l · x± l · ϵ

)I,A
. This implies that σ∗(l · x) = l · x± l · ϵ is a valid substitution.

The second Lemma which we make use in the subsequent proofs makes use of the following

definition.

Definition. Let x and y be variables that represent intervals within [0, 1]. We say that the formula

y ⪯ x is valid if (yI,A,xI,A) ∈⪯I, for all assignments A.

Remember that the interpretation of ⪯ is given in relation 3.1. The above definition essentially

suggests that the formula ⪯ is true whenever the relation 3.1 holds.

Lemma 2. If variables x, y represent numbers in D with x ≥ y and x = x ± ϵ and y = y ± ϵ for

ϵ > 0, then y ⪯ x is valid.

Proof. Given the assumptions, we will prove that the pair of values (yI,A,xI,A) are contained in

the relation (3.1).

When x ∈ [0, 1] and x ≥ y it is clear that y ≤ 1. This leads to the following comparisons:

1. sup{x} = min(1, x+ ϵ) ≥ min(1, y + ϵ) = sup{y}.

2. inf{x} = max(0, x− ϵ) ≥ max(0, y − ϵ) = inf{y}.

Now, when x > 1 and x ≥ y, we have:

1. sup{x} = 1 ≥ sup{y}.

2. inf{x} = max(0, 1 − ϵ). If y > 1, then inf{y} = max(0, 1 − ϵ), while otherwise inf{y} =

max(0, y − ϵ). In both cases, inf{x} ≥ inf{y}.

Finally, if y ≤ x < 0, according to (3.2), we have sup{x} = sup{y} and inf{x} = inf{y}. In all

scenarios, it is evident that sup{x} ≥ sup{y} and inf{x} ≥ inf{y}, which, by definition, implies

that (yI,A,xI,A) ∈⪯I.

Gate simulation. For each gate g ∈ {NOT,OR,PURIFY} we construct a financial network Fg.

For each input variable u and output variable v of gate g, the financial network Fg contains (among

68

others) a corresponding bank bu and a corresponding bank bv. We refer to a bank bu of a financial

network Fg as an input bank if u is an input variable of g, and we refer to bank bu as an output

bank if u is an output variable of g. Two notable characteristics of all Fg networks are that all

CDS debtor banks possess enough external assets so that their recovery rate is equal to 1 in any

ϵ-CRRV and no bank has more than one outgoing arc.

We proceed by describing each of the financial networks and we analyse the recovery rate of the

output banks under any ϵ-CRRV, given a value of the input bank. We denote ri the recovery rate

of Bank i and ri the range of the recovery rate values under ϵ-CRRV.

It is significant to realise that the error parameter ϵ > 0, defines a range of values within which

the recovery rate values for banks fall under an ϵ-CRRV. Definition 7 combined with the fact that

all recovery rate values are restricted within [0, 1], implies that obtaining an ϵ-CRRV for ϵ > 1
2 is

achieved by setting ri =
1
2 for all banks i. Consequently we consider parameter values ϵ that fall

within (0, 12).

NOT-gate. We simulate the gate (NOT, u, w) with the financial network FNOT, defined in Figure

3.25. Here, the input bank is bu and the output bank is bw.

bu 1
1

22
1+2δ 3 4

1
2

1+2δ

5 6

1+2δ
4δ1+2δ

4δ 7
1

81 bw
1

9
1

Figure 3.25: The financial network FNOT that simulates a NOT-gate.

Assume that r = (ri)i∈N is an ϵ-CRRV of FNOT. We will generate the atomic formulas of

69

L(R,F,C) that, when interpreted through I, defines the range of recovery rate values for the banks

of FNOT under r = (ri)i∈N . Bank 3 receives a payment of p2,3(r) =
2

1+2δ · [1 − rbu] from Bank 2

and holds a liability l3,4(r) = 1 towards Bank 4. The recovery rate values for Bank 3 lie within the

following range:

range(r3) =
[
min

(
1,

2

1 + 2δ
· [1− rbu]

)
− ϵ,min

(
1,

2

1 + 2δ
· [1− rbu]

)
+ ϵ
]
∩
[
0, 1
]

(3.7)

Applying the proposed notation, the set of values mentioned above can be succinctly represented by

the atomic formula r3 =
2

1+2δ · [1−rbu]±ϵ. Notice that, as r = (ri)i∈N is presumed to be an ϵ-CRRV

of FNOT, the payment received by Bank 6 from Bank 5 is contingent on the range of r3. Specifically,

each value ρ within range(r3), establishes a corresponding payment, p5,6(r) =
1+2δ
4δ · [1 − ρ], from

Bank 5 to Bank 6. Consequently, all possible recovery rate values for Bank 6 must lie within the

range:

range(r6) =
⋃

ρ∈range(r3)

[
min

(
1,

1 + 2δ

4δ
· [1− ρ]

)
− ϵ,min

(
1,

1 + 2δ

4δ
· [1− ρ]

)
+ ϵ
]
∩
[
0, 1
]

(3.8)

which is represented by the atomic formula r6 = 1+2δ
4δ · [1 − r3] ± ϵ. Similarly, Bank bw under the

ϵ-CRRV, receives a payment of p8,bw(r) = 1− ρ, where ρ is a value in range(r6), thus we get

range(rbw) =
⋃

ρ∈range(r6)

[
min

(
1, 1− ρ

)
− ϵ,min

(
1, 1− ρ

)
+ ϵ
]
∩
[
0, 1
]

(3.9)

which is generated by the atomic formula rbw = [1− r6]± ϵ. To establish the connection between

the range of recovery rate values of bw w.r.t rbu , we apply a series of valid substitutions starting

70

from the formula rbw = [1− r6]± ϵ. We present the sequence of substitutions below.

rbw = [1− r6]± ϵ =
[
1−

(1 + 2δ

4δ
· [1− r3]± ϵ

)]
± ϵ

=
[
1−

(1 + 2δ

4δ
·
[
1− 2

1 + 2δ
· (1− rbu)± ϵ︸ ︷︷ ︸
r3

]
± ϵ
)]

± ϵ

σ∗(
1+2δ
4δ

·r3)−−−−−−−→
[
1−

([1

2δ
· rbu +

−1 + 2δ

4δ
± 1 + 2δ

4δ
ϵ
]

︸ ︷︷ ︸
x

±ϵ
)]

± ϵ

σ±(x±ϵ)−−−−−→
[
1−

(1

2δ
· rbu +

−1 + 2δ

4δ
± 1 + 6δ

4δ
ϵ︸ ︷︷ ︸

y

)]
± ϵ

σ1−(1−y)−−−−−−→
[
− 1

2δ
· rbu +

1 + 2δ

4δ
± 1 + 6δ

4δ
ϵ︸ ︷︷ ︸

z

]
± ϵ

σ±(z±ϵ)−−−−−→ − 1

2δ
· rbu +

1 + 2δ

4δ
± 1 + 10δ

4δ
ϵ

Eventually the range for the recovery rate values of the output Bank bw in any ϵ-CRRV is generated

from an assignment A where rbu ∈ [0, 1] and δ, ϵ ∈ (0, 12) and by interpreting the following formula

w.r.t. I:

rbw = − 1

2δ
· rbu +

1 + 2δ

4δ
± 1 + 10δ

4δ
ϵ. (3.10)

We proceed by computing the interval within which rbw belongs in any ϵ-CRRV, depending on

the interval where the recovery rate of the input Bank rbu belongs according to the mapping mδ.

In all assignments A assumed in the proof of the claims, both δ and ϵ belong in (0, 12).

Claim 1. Consider the financial network FNOT of Figure 3.25 and let r = (ri)i∈N be an ϵ-CRRV:

1. If rbu ∈
[
0, 12 − δ

]
, then rbw ∈

[
1− 1+10δ

4δ ϵ, 1
]
.

2. If rbu ∈
[
1
2 + δ, 1

]
, then rbw ∈

[
0, 1+10δ

4δ ϵ
]
.

Proof. We use Equation (3.10), that expresses range(rbw) in any ϵ-CRRV in terms of rbu .

1. In any assignment A of variables in 3.10 to values in D where rbu ≤ 1
2 −δ, from Lemma 2 and

after calculations, it holds that
(
1 ± 1+10δ

4δ ϵ
)I,A

⪯I
(
− 1

2δ · rbu + 1+2δ
4δ ± 1+10δ

4δ ϵ
)I,A

, namely

1 ± 1+10δ
4δ ϵ ⪯ rbw is valid. Interpreting the last relation according to I, from 3.2 and 3.1 we

conclude that under any ϵ-CRRV, if rbu ∈
[
0, 12 − δ

]
then rbw ∈

[
1− 1+10δ

4δ ϵ, 1
]
.

2. In any assignment A of variables in 3.10 to values in D where rbu ≥ 1
2 + δ, from Lemma

2 and after calculations, it holds that
(
− 1

2δ · rbu + 1+2δ
4δ ± 1+10δ

4δ ϵ
)I,A

⪯I
(
0 ± 1+10δ

4δ ϵ
)I,A

,

71

namely rbw ⪯ 0 ± 1+10δ
4δ ϵ is valid. Applying I and from 3.2 and 3.1, under any ϵ-CRRV if

rbu ∈
[
1
2 + δ, 1

]
then rbw ∈

[
0, 1+10δ

4δ ϵ
]

OR-gate. We simulate the gate (OR, u, v, w) with the financial network FOR of Figure 3.26. The

network consists of two input banks bu and bv corresponding to the input variables u, v respectively,

and an output Bank bw corresponding to the output variable w.

bu 1
1

22
1+2δ 3 4

1
2

1+2δ

5 6

1+2δ
4δ1+2δ

4δ

bv 7
1

82
1+2δ 9 10

1
2

1+2δ

12 11

1+2δ
4δ 1+2δ

4δbw
1 1

13

1

Figure 3.26: The financial network FOR that simulates an OR-gate

Assume that r = (ri)i∈N is an ϵ-CRRV of FOR and let the recovery rates of the input banks

bu, bv to be rbu and rbv respectively. The range of recovery rate values for Banks 3 and 9 in FOR

matches that of Bank 3 within the network FNOT. Symmetrically range(r6) and range(r12) in FOR

matches range(r6) within the network FNOT. Both Bank 6 and Bank 12 submit to bw payments

of at most ρ1, ρ2 belonging to range(r6) and range(r12) respectively. Consequently the range of

recovery rate values of the output Bank bw is:

range(rbw) =
⋃

ρ1∈range(r6)
ρ2∈range(r12)

[
min

(
1, ρ1 + ρ2

)
− ϵ,min

(
1, ρ1 + ρ2

)
+ ϵ
]
∩
[
0, 1
]

(3.11)

which is generated from an assignment A where rbu ∈ [0, 1] and δ, ϵ ∈ (0, 12) by applying I to the

formula,

rbw = (r6 + r12)± ϵ (3.12)

72

where for r6 (and similarly r12),

r6 =
1 + 2δ

4δ
· [1− r3]± ϵ =

(1 + 2δ

4δ
·
[
1−

(2

1 + 2δ
· [1− rbu]± ϵ

)
︸ ︷︷ ︸

r3

])
± ϵ

σ1−(1−r3)−−−−−−→
(1 + 2δ

4δ
·
[2

1 + 2δ
· rbu +

−1 + 2δ

1 + 2δ
± ϵ︸ ︷︷ ︸

x

])
± ϵ

σ∗(
1+2δ
4δ

·x)
−−−−−−−→

(1

2δ
· rbu +

−1 + 2δ

4δ
± 1 + 2δ

4δ
ϵ︸ ︷︷ ︸

y

)
± ϵ

σ±(y±ϵ)−−−−−→ 1

2δ
· rbu +

−1 + 2δ

4δ
± 1 + 6δ

4δ
ϵ

We proceed by computing the interval where rbw belongs in any ϵ-CRRV, depending on the

interval of the mappingmδ where the recovery rate of the input Bank rbu belongs. In all assignments

A, both δ and ϵ belong in (0, 12).

Claim 2. Consider the financial network FOR of Figure 3.26 and let r be an ϵ-CRRV.

1. If rbu ∈
[
1
2 + δ, 1

]
or rbv ∈

[
1
2 + δ, 1

]
, then rbw ∈

[
1− 1+10δ

4δ ϵ, 1
]
.

2. If rbu , rbv ∈
[
0, 12 − δ

]
, then rbw ∈

[
0, 1+8δ

2δ ϵ
]
.

Proof. We use (3.12), that expresses range(rbw) in any ϵ-CRRV in terms of rbu , rbv .

1. In any assignment A of variables in 3.12 to values in D let w.l.o.g rbu ≥ 1
2+δ. Since according

to (3.12), rbw = (r6+r12)±ϵ, it is easy to verify that
(
(1± 1+6δ

4δ ϵ)±ϵ
)I,A

⪯I
(
(r6+r12)±ϵ

)I,A
,

where by applying substitution σ± we conclude that 1 ± 1+10δ
4δ ϵ ⪯ rbw is valid. This implies

that under any ϵ-CRRV, if rbu ∈
[
1
2 + δ, 1

]
then rbw ∈

[
1− 1+10δ

4δ ϵ, 1
]
.

2. In any assignment A of variables in (3.12) to values in D where both rbu , rbv ≤ 1
2 − δ, it

follows from the above analysis by similar reasoning that both r6, r12 ⪯ 0 ± 1+6δ
4δ ϵ are valid.

Consequently from (3.12) we can easily get that rbw ⪯ (0 ± 21+6δ
4δ ϵ) ± ϵ, which by applying

σ± implies that rbw ⪯ 0 ± 1+8δ
2δ ϵ is valid. This establishes that under any ϵ-CRRV, if both

rbu , rbv ∈
[
1
2 + δ, 1

]
then rbw ∈

[
0, 1+8δ

2δ ϵ
]
.

PURIFY-gate. We simulate the gate (PURIFY, u, v, w) with the financial network of Figure

3.27. The network has one input bank denoted as bu that corresponds to the input variable u and

two output banks denoted as bv, bw corresponding to the output variables v, w respectively.

Assume that r = (r)i∈N is an ϵ-CRRV of FPURIFY and let the recovery rate of the input Bank

bu be rbu and the recovery rates of the output banks bu, bw be rbu , rbw respectively.

73

bu 1
1

52 6 7
1

2
23

2
1+2δ

4
1 2

1+2δ

9 1
2δbw

1
2δ

81+2δ
2δ bv

1+2δ
2δ

10
1 1

Figure 3.27: The financial network FPURIFY that simulates a PURIFY-gate

• Let the Left branch be the subnetwork that spans nodes {bu, 1, 2, 3, 4, 8, bv, 10} .

• Let the Right branch be the subnetwork that spans nodes {bu, 1, 5, 6, 7, 5, 9, bw, 10}.

We proceed with analysing the intervals for the recovery rates rbv , rbw in any ϵ-CRRV as a function

of rbu . Our analysis consists of two parts, one for each branch.

• Left branch : Bank 3 receives a payment of 2
1+2δ · [1− rbu] from Bank 2 and holds a liability

of 1 towards Bank 4. The recovery rate values for Bank 3 under r = (ri)i∈N belong in the

range:

range(r3) =
[
min

(
1,

2

1 + 2δ
· [1− rbu]

)
− ϵ,min

(
1,

2

1 + 2δ
· [1− rbu]

)
+ ϵ
]
∩
[
0, 1
]

(3.13)

which is represented by the atomic formula r3 =
2

1+2δ · [1−r3]±ϵ. Bank bv receives a payment

of 1+2δ
2δ · [1−ρ] from Bank 8, where ρ ∈ range(r3). The range of recovery rate values for Bank

bv is

range(rbv) =
⋃

ρ∈range(r3)

[
min

(
1,

1 + 2δ

2δ
· [1−ρ]

)
−ϵ,min

(
1,

1 + 2δ

2δ
· [1−ρ]

)
+ϵ
]
∩
[
0, 1
]
(3.14)

which is represented by the atomic formula rbv = 1+2δ
2δ · [1− r3]± ϵ. The atomic formulas and

the substitutions that generate the interval for the values of rbv under the ϵ-CRRV are listed

below.

74

rbv =
1 + 2δ

2δ
· [1− r3]± ϵ =

(1 + 2δ

2δ
·
[
1−

(2

1 + 2δ
· [1− rbu]± ϵ

)
︸ ︷︷ ︸

r3

])
± ϵ

σ1−(1−r3)−−−−−−→
(1 + 2δ

2δ
·
[2

1 + 2δ
· rbu +

−1 + 2δ

1 + 2δ
± ϵ︸ ︷︷ ︸

x

])
± ϵ

σ∗(
1+2δ
2δ

·x)
−−−−−−−→

(1
δ
· rbu +

−1 + 2δ

1 + 2δ
± 1 + 2δ

2δ
· ϵ︸ ︷︷ ︸

y

)
± ϵ

σ±(y±ϵ)−−−−−→ 1

δ
· rbu +

−1 + 2δ

2δ
± 1 + 4δ

2δ
ϵ

From the above analysis, the range for the recovery rate values of the output Bank bv in

any ϵ-CRRV is generated from an assignment A where rbu ∈ [0, 1] and δ, ϵ ∈ (0, 12) and the

interpretation of the following formula according to I:

rbv =
1

δ
· rbu +

−1 + 2δ

2δ
± 1 + 4δ

2δ
ϵ. (3.15)

• Right branch: Bank 6 receives a payment of 2 · [1 − rbu] from Bank 5 and since it holds

a liability of 1 towards Bank 7 the range of recovery rate values is given by the following

expression:

range(r6) =
[
min

(
1, 2 · [1− rbu]

)
− ϵ,min

(
1, 2 · [1− rbu]

)
+ ϵ
]
∩
[
0, 1
]

(3.16)

which is represented by the atomic formula r6 = 2 · [1− r3]± ϵ. Bank bw receives a payment

of 1
2δ · [1 − ρ] from Bank 9, where ρ ∈ range(r6). Consequently the range of recovery rate

values for Bank bw under the ϵ-CRRV r = (ri)i∈N is:

range(rbw) =
⋃

ρ∈range(r6)

[
min

(
1,

1

2δ
· [1− ρ]

)
− ϵ,min

(
1,

1

2δ
· [1− ρ]

)
+ ϵ
]
∩
[
0, 1
]

(3.17)

which is represented by the atomic formula rbw = 1
2δ · [1− r6]± ϵ. The atomic formulas and

the substitutions that define the range where the values for rbw belong under the ϵ-CRRV are

listed below.

75

rbw =
1

2δ
· [1− r6]± ϵ =

(1

2δ
·
[
1−

(
2 · [1− rbu]± ϵ

)
︸ ︷︷ ︸

r6

])
± ϵ

σ1−(1−r6)−−−−−−→
(1

2δ
·
[
−1 + 2 · rbu ± ϵ︸ ︷︷ ︸

x

])
± ϵ

σ∗(
1
2δ

·x)
−−−−−→

(1
δ
· rbu − 1

2δ
± 1

2δ
ϵ︸ ︷︷ ︸

y

)
± ϵ

σ±(y±ϵ)−−−−−→ 1

δ
· rbu − 1

2δ
± 1 + 2δ

2δ
ϵ

The range for the recovery rate values of the output Bank bw in any ϵ-CRRV follows from

an assignment A where rbu ∈ [0, 1] and δ, ϵ ∈ (0, 12) and the interpretation of the following

formula according to I:

rbw =
1

δ
· rbu − 1

2δ
± 1 + 2δ

2δ
ϵ. (3.18)

We compute the range for rbv , rbw with respect to rbu are as follows:

Claim 3. Consider the financial network FPURIFY of Figure 3.27 and let r be an ϵ-CRRV.

1. If rbu ∈
[
0, 12 − δ

]
, then rbv ∈

[
0, 1+4δ

2δ ϵ
]
and rbw ∈

[
0, 1+2δ

2δ ϵ
]
.

2. If rbu ∈
[
1
2 + δ, 1

]
, then rbv ∈

[
1− 1+4δ

2δ ϵ, 1
]
and rbw ∈

[
1− 1+2δ

2δ ϵ, 1
]
.

3. If rbu ∈
(
1
2 − δ, 12 + δ

)
, then rbv ∈

[
1− 1+4δ

2δ ϵ, 1
]
or rbw ∈

[
0, 1+2δ

2δ ϵ
]
.

Proof. Similar to the previous claims, the proof follows from a case analysis of (3.15) and (3.18)

upon values of rbu .

1. In any assignmentA of variables in (3.15) to values inD where rbu ≤ 1
2−δ, from Lemma 2 and

after calculations we get that in any ϵ-CRRV,
(
1
δ · rbu +

−1+2δ
2δ ± 1+4δ

2δ ϵ
)I,A

⪯I
(
0± 1+4δ

2δ ϵ
)I,A

,

namely rbv ⪯ 0± 1+4δ
2δ ϵ is valid. This establishes that if rbu ∈

[
0, 12 − δ

]
then rbv ∈

[
0, 1+4δ

2δ ϵ
]
.

Similarly combining (3.18) with Lemma 2 and the fact that rbu ≤ 1
2 , we conclude that

rbw ⪯ 0± 1+2δ
2δ ϵ is valid. This establishes that whenever rbu ∈

[
0, 12 −δ

]
then rbw ∈

[
0, 1+2δ

2δ ϵ
]
.

2. In any assignment A of variables where rbu ≥ 1
2 + δ, trivially rbu ≥ 1

2 thus considering

(3.15) and Lemma 2 and after calculations it holds that
(
1± 1+4δ

2δ ϵ
)I,A

⪯I
(
1
δ rbu + −1+2δ

2δ ±

1+4δ
2δ ϵ

)I,A
, namely 1 ± 1+4δ

2δ ϵ ⪯ rbv is valid. This establishes that whenever rbu ∈
[
1
2 + δ, 1

]
then rbv ∈

[
1− 1+4δ

2δ ϵ, 1
]
. Similarly combining the initial assumption with (3.18) and Lemma

76

2, after calculations it holds that 1 ± 1+2δ
2δ ϵ ⪯ rbw is valid. This establishes that whenever

rbu ∈
[
1
2 + δ, 1

]
, then rbw ∈ [1− 1+2δ

2δ ϵ, 1]

3. Finally for assignments A where rbu ∈
(
1
2 − δ, 12 + δ

)
, if rbu ≤ 1

2 then Statement 1 already

establishes that rbw ⪯ 0 ± 1+2δ
2δ ϵ is valid, while if rbu ≥ 1

2 , then Statement 2 establishes that

1± 1+4δ
2δ ϵ ⪯ rbv is valid. Consequently whenever rbu ∈

(
1
2−δ,

1
2+δ

)
either rbu ∈

[
1− 1+4δ

2δ ϵ, 1
]

or rbw ∈
[
0, 1+2δ

2δ ϵ
]
.

Specifying δ. Claims 1, 2 and 3 establish for the networks FNOT,FOR,FPURIFY respectively the

intervals where the recovery rates of the output banks lie as a function of the recovery rates of the

input banks, under any ϵ-CRRV. All these intervals either span right from 0 or left from 1. We want

to find an assignment A for the value of δ such that under mδ, the three networks FNOT, FOR, and

FPURIFY simulate the gates NOT, OR, and PURIFY respectively, where the notion of simulation

is defined in the natural way: for any fixed input bank’s recovery rate of the financial network, any

ϵ-CRRV of the financial network must be mapped back by mδ to a satisfying assignment on the

inputs and outputs of the respective gate. Consequently, to determine the values of δ such that the

FNOT,FOR,FPURIFY networks correctly simulate the NOT-, OR-, PURIFY-gates respectively, we

must set the parameter δ such that the recovery rates of the output banks of the three networks

are contained in the appropriate intervals of mδ. For example, considering assignments A where

the values for δ satisfy
[
0, 12 − δ

]
⊂
[
0, 1+2δ

2δ ϵ
]
, allows numbers q ∈

(
1
2 − δ, 1+2δ

2δ ϵ
]
to be mapped

according to mδ to a different value than 0, meaning that FPURIFY would not correctly simulate

the PURIFY-gate (Claim 3), because for input an encoded value 0, a satisfying assignment for

the PURIFY-gate must output encoded values 0 for both output variables. Scanning through all

intervals, it turns out the biggest interval is
[
0, 1+8δ

2δ ϵ
]
from Statement 2 of Claim 2. Eventually to

find a feasible choice of δ, we must consider all assignments A of pairs of values for the parameters

δ, ϵ where
1 + 8δ

2δ
ϵ =

1

2
− δ. (3.19)

As we will show next for all assignments A in which a pair (δ, ϵ) satisfies (3.19), it holds that all

three financial networks correctly simulate their respective gate under mδ. Let (δ, ϵ) be any pair

that satisfies (3.19).

• NOT-gate Consider the network FNOT of Figure 3.25 and let r be an ϵ-CRRV. From

77

Statement 1 of Claim 1 whenever rbu ∈
[
0, 12 − δ

]
it holds that rbw ∈

[
1− 1+10δ

4δ ϵ, 1
]
and since[

1− 1+10δ
4δ ϵ, 1

]
⊂
[
1− 1+8δ

2δ ϵ, 1
]
trivially rbw ∈

[
1− 1+8δ

2δ ϵ, 1
]
. From Statement 2 of the same

Claim, whenever rbu ∈
[
1
2 + δ, 1

]
, then rbw ∈

[
0, 1+10δ

4δ ϵ
]
and since

[
0, 1+10δ

4δ ϵ
]
⊂
[
0, 1+8δ

2δ ϵ
]

trivially rbw ∈
[
0, 1+8δ

2δ ϵ
]
. Consequently the mapping mδ on any ϵ-CRRV of FNOT generates

an assignment x for which it holds that:

1. x[u] = 0 → x[w] = 1

2. x[u] = 1 → x[w] = 0

As satisfying assignments are indifferent with respect to ⊥ values, the above argument suffices

to establish that FNOT correctly simulates a NOT-gate under mδ.

• OR-gate Consider the network FOR of Figure 3.26 and let r be an ϵ-CRRV. Similarly from

Statement 1 of Claim 2, the recovery rate for the output bank bw lies in
[
1− 1+8δ

2δ ϵ, 1
]
if one

of rbu , rbv lies in
[
1
2 + δ, 1

]
and from Statement 2, rbw ∈

[
0, 1+8δ

2δ ϵ
]
if both rbu , rbv ∈

[
0, 12 − δ

]
.

As a result the mapping mδ on any ϵ-CRRV of FOR generates an assignment x for which

1. if x[u] = x[v] = 0 → x[w] = 0

2. if x[u] = 1 or x[v] = 1 → x[w] = 1

Checking the satisfying conditions in Section 3.1, we conclude that the above argument suffices

to establish that FOR correctly simulates the OR-gate under mδ.

• PURIFY-gate Consider the network of Figure 3.27, and let r be an ϵ-CRRV. From State-

ment 1 of Claim 3 whenever rbu ∈
[
0, 12 − δ

]
it holds that rbv ∈

[
0, 1+4δ

2δ ϵ
]
⊂
[
0, 1+8δ

2δ ϵ
]
and

rbw ∈
[
0, 1+2δ

2δ ϵ
]
⊂
[
0, 1+8δ

2δ ϵ
]
. That means that the mapping mδ generates an assignment x

such that if x[u] = 0 then x[v] = x[w] = 0. From Statement 2, whenever rbu ∈
[
1
2 + δ, 1

]
then

rbv ∈
[
1 − 1+4δ

2δ ϵ
]
⊂
[
1 − 1+8δ

2δ ϵ, 1
]
and rbw ∈

[
1 − 1+2δ

2δ ϵ, 1
]
⊂
[
1 − 1+8δ

2δ ϵ, 1
]
, meaning mδ

generates an assignment x where if x[u] = 1 then x[v] = x[w] = 1. Finally from Statement

3 and using similar arguments, it is not hard to see that mδ generates an assignment x such

that whenever x[u] = ⊥ then x[v] = 1 or x[w] = 0. So to conclude, from any ϵ-CRRV of

FPURIFY, mδ generates an assignment x where:

1. x[u] = 0 → x[v] = x[w] = 0 .

2. x[u] = 1 → x[v] = x[w] = 1 .

3. x[u] =⊥→ x[v] ∈ {0, 1} or x[w] ∈ {0, 1} .

78

These are exactly the conditions that hold in a satisfying assignment x of a PURIFY-gate.

Given an instance I of PURE-CIRCUIT that operates on gates NOT, OR and PURIFY,

we construct a financial network FI consisting of debt and CDS contracts and show that any ϵ-

CRRV of FI is mapped back to a satisfying assignment x of values to the variables of the original

PURE-CIRCUIT instance I, by applying mδ, such that δ and ϵ satisfies (3.19).

The reduction. Let I = (V,G) be a PURE-CIRCUIT instance. The construction of the

financial network FI proceeds as follows: For each gate g = (NOT, u, w) ∈ G, we construct a copy

of the financial network FNOT of Figure 3.25. For each gate g = (OR, u, v, w) ∈ G, we construct

a copy of the financial network FOR of Figure 3.26. For each gate g = (PURIFY, u, v, w) ∈ G, we

construct a copy of the financial network FPURIFY of Figure 3.27.

The interconnection of the gates in a PURE-CIRCUIT instance rises from the fact that the

gates may share variables. Remember though that by the definition of the PURE-CIRCUIT

problem (see Definition 9), no variable can be the output of more than one gate, whereas a variable

can be input to many gates. Consequently after the execution of the above steps we might end up

with more than one bank to represent the same variable. Next we will show how to deal with these

situations.

Without loss of generality, let χ be the output variable of gate g and the input variable of

another gate g′. After replacing g and g′ with their respective financial networks Fg and Fg′ , we

are left with two banks representing variable χ, both denoted as bχ. To connect Fg and Fg′ and

represent the interconnection between g and g′ due to their shared variable χ, we merge the two bχ

banks into one bank, keeping the same notation bχ. It’s worth noting that, as constructed, every

input and output bank holds one outgoing liability of notional 1. Therefore, both bχ banks, which

represented the common variable χ prior to merging, held one outgoing liability of notional 1. In

order to maintain the recovery rate analysis presented earlier, it is important for the newly merged

bχ bank to retain only one outgoing liability of notional 1. To achieve this, we eliminate one of the

two outgoing liabilities after merging.

We have shown how to generate a financial network FI from a PURE-CIRCUIT instance I

and presented a mapping mδ to map back ϵ-CRRV es of FI to satisfying assignments for I, where

(δ, ϵ) is a pair that satisfies (3.19). The next theorem establishes our main result.

Theorem 6. ϵ-CDS-CLEARING is PPAD-hard for ϵ ≤ 3−
√
5

16 .

79

Proof. We reduce from PURE-CIRCUIT to ϵ-CDS-CLEARING. As established, all values

of δ, ϵ that satisfy (3.19) generate mappings under which each Fg network correctly simulates

gate g ∈ {NOT,OR,PURIFY}. To determine the parameter δ that generates the mapping that

maximises the inapproximability parameter ϵ, we rewrite (3.19) as ϵ = ϕ(δ) = δ·(1−2δ)
1+8δ . To maximise

the inapproximability parameter ϵ, we have to find the maximum of the function ϕ(δ) w.r.t δ, i.e,

the value δ∗ = argmax δ·(1−2δ)
1+8δ , where δ∗ ∈ (0, 1/2). This means we must compute the critical

points of function ϕ(δ), which in turn means finding the values δ for which ϕ′(δ) = 0, where ϕ′(δ)

is the first derivative of ϕ(δ) = δ·(1−2δ)
1+8δ . The first derivative of ϕ(δ) is computed as d

dδ

(
ϕ(δ)

)
=

(1+8δ)·(1−4δ)−δ·(1−2δ)·8
(1+8δ)2

. In order for d
dδ

(
ϕ(δ)

)
= 0, we must solve 16 · δ2 +4 · δ− 1 = 0. After solving

this binomial we get that the critical point for function ϕ(δ) is δ∗ =
√
5−1
8 . Finally the maximum

value for the inapproximability parameter ϵ is computed to be ϕ(δ∗) = 3−
√
5

16 ≈ 0.048. Thus given

an instance I = (V,G) of PURE-CIRCUIT, we construct a network FI of CDS-CLEARING

as described above, where we set δ = δ∗. We can then map, in polynomial time ϵ-CRRVes of FI to

a satisfying assignment for I through mapping mδ∗ , i.e.:

(i.) If rbu ≤ 1
2 − δ∗ then x[u] = 0;

(ii.) if rbu ≥ 1
2 + δ∗ then x[u] = 1

(iii.) else x[u] =⊥.

This establishes the claim.

Extension to other payment schemes. In the network that we constructed to establish the

above theorem, each bank can be possibly a debtor to only one contract. This allows us to apply

the presented analysis to a broader class of payments, including those satisfying Limited Liability

and Absolute Priority (see Section 2.1.2).

Corollary 1. ϵ-CDS-CLEARING is PPAD-hard for ϵ ≤ 3−
√
5

16 under any payment scheme that

satisfies the Limited Liability and Absolute Priority conditions.

3.2.4 Central CDS debtors & Dedicated CDS debtors

In this final section, we evaluate the effectiveness of policies introduced in the wake of the 2008 eco-

nomic crisis for reducing systemic risk in financial markets. We introduce Central CDS debtors

(CCDs), a construct reminiscent of a central clearing counterparty (CCP).

80

Definition 10 (Central CDS debtor). A financial network F = (N, e, c) satisfies the central

CDS debtor property if the following conditions hold,

1. ∃i′ ∈ N : ∀i, j, R ∈ N : cRi,j ̸= 0 → i = i′, i.e, all CDS contracts share the same debtor bank.

We refer to this debtor as central CDS debtor and denote it by CCD.

2. ∀i ∈ N : cCCD,i = 0, i.e, there are no debt contracts where CCD is the debtor.

3. eCCD ≥
∑

j,R∈N c
R
CCD,j, i.e, CCD possess enough assets to fully pay off any of its potential

liabilities.

CCD FeCCD > cR1
CCD,j1 + cR2

CCD,j2 + cR3
CCD,j3

cR2
CCD,j2

cR1
CCD,j1

cR3
CCD,j3

Figure 3.28: A central CDS debtor CCD with three CDS contracts. The label F is used to indicate

that the financial network F contains only simple debt contracts.

Essentially in the Central CDS debtor property, a single bank, assumed to have sufficient assets,

is responsible for clearing the network’s debt that is generated from the activation of credit default

swaps. Despite this being a simple contract graph topology for a financial network with debt and

CDS contracts, Theorem 6 still applies.

Corollary 2. ϵ-CDS-CLEARING restricted to instances that satisfy the central CDS debtor

property is PPAD-hard for ϵ ≤ 3−
√
5

16 .

Proof. It can be verified that in the financial networks constructed in the reduction of Theorem 6,

each CDS debtor satisfies Conditions 2 and 3 of the above Definition 10. We modify the reduction

by (as a final step in the construction of the network) merging all CDS debtors into a single debtor

node CCD, whose external assets equals the sum of the external assets of merged debtors. The

resulting network satisfies Definition 10.

We show a similar result for another natural restriction on CDS debtors defined as dedicated

CDS debtors. We will elaborate more on this class of instances in Section 5.2.

81

Definition 11 (Dedicated CDS debtor). A financial network F = (N, e, c) satisfies the dedi-

cated CDS debtor property iff for every CDS debtor bank i ∈ N ,

1. ∀j ∈ N : ci,j = 0, i.e, there are no debt contracts where i is the debtor.

2. ∃R ∈ N : ∀j, k ∈ N : cki,j ̸= 0 → k = R, i.e, all CDSes for which i is the debtor share the

same reference bank.

R

i jk

ei > 0

cR,· > 0

cRi,jcRi,k

Figure 3.29: A dedicated CDS debtor i to R with two CDS contracts

Notice that in all financial networks illustrated in Figures 3.25, 3.26 and 3.27 the dedicated CDS

debtor property is satisfied. From this observation we directly conclude the following statement

Corollary 3. ϵ-CDS-CLEARING restricted to instances that satisfy the dedicated CDS debtor

property is PPAD-hard for ϵ < 3−
√
5

16 .

An alternative proof of PPAD-hardness for instances that satisfy the dedicated CDS debtor

property is given in Lemma 5.

82

Chapter 4

Algorithmic Approaches

Overview

This chapter addresses the computation of exact solutions for certain simpler network structures.

We present an optimisation-based framework for computing clearing vectors, within the context

of central CDS debtors (CCDs) and the general case. In Section 4.1.1 we present a Mixed-Binary

Linear Program (MBLP) for systems with the central CDS debtor property. Within this program

there is a combination of real-valued variables for the recovery rates and binary decision variables

tailored to indicate a bank’s solvency status. The feasible solutions of this program correspond to

the clearing recovery rate vectors of the network. This framework is highly adaptable for optimising

any linear objective function of interest related to the clearing vector. An immediate implication

is an exponential-time algorithm for computing clearing recovery rate vectors when CCDs are

mandated. Adapting the constraints to general instances, generates a Mixed-Binary Nonlinear

Program (MBNLP) presented in Section 4.1.2 for CDS-CLEARING.

Motivated by EU regulations on the 2008 economic crisis, in Section 4.2 we evaluate the special

types of credit default swaps called covered CDS introduced in [SSB20]. We establish that CDS-

CLEARING restricted to instances with only covered CDSes and a central CDS debtor admit a

polynomial time algorithm.

83

4.1 Optimisation-Based Computation of Clearing Vectors

4.1.1 Mixed-Binary Linear Program for Central CDS debtors

Assume a financial network F = (N ∪ {CCD}, e, c) that satisfies the central CDS debtor property.

W.l.o.g assume that each bank in the network apart from the CCD has at least one positive liability1.

We will formulate a Mixed-Binary Linear Program w.r.t F denoted as MBLP(F), whose feasible

solution set is essentially Sol(F), i.e, all clearing recovery rate vectors of F . The constraints of the

program are formulated w.r.t the variable z = (ri, yi)i∈N , where r = (ri)i∈N represents a recovery

rate vector with ri ∈ [0, 1] and y = (yi)i∈N is a vector of binary decision variables one for each bank

i ∈ N with the following desired indication; For a given recovery rate vector r,

yi =


0, if ai(r) > li

1, if ai(r) < li

0 or 1, if ai(r) = li.

(4.1)

Recall that by Definition 2.6, under any clearing vector r = (ri)i∈N , for each bank i ∈ N it

must hold that ri = min(1, ai(r)/li), where for the central CDS debtor framework,

ai(r) =

[
ei +

∑
j∈N

rj · cj,i +
∑
k∈N

(1− rk) · ckCCD,i

]
(4.2)

li =
∑
j∈N

ci,j . (4.3)

Remember that within networks adhering to the central CDS debtor framework, the liabilities of

the banks remain fixed, regardless of the recovery rate vector.

The decision vector y serves the purpose of determining for each bank i ∈ N , which argument

within the min operator is the correct choice, whenever the differentiation among the arguments

affects the insolvency of bank i. Based on such a choice indicated by y, for each bank i ∈ N the

program should compute a feasible solution, if a recovery rate vector r that justifies the indicated

choice exists. Essentially, y eliminates the need for the min operator in the fixed-point condition.

1We make this assumption to avoid technicalities for the sake of presentation. The program easily adapts to sink

nodes.

84

Furthermore, we associate each bank i ∈ N , with the following constant

Bi =
1∑

j∈N ci,j
·

[
ei +

∑
j∈N

cj,i +
∑
k∈N

ckCCD,i

]
+ 1. (4.4)

Clearly for each bank i ∈ N and any recovery rate vector r = (ri)i∈N , min(1, ai(r)/li) ≤ Bi.

We proceed by presenting a Mixed-Binary Linear Program for computing exact clearing recovery

rate vectors for a given financial network F = (N∪{CCD}, e, c) that satisfies the central CDS debtor

property. At this stage we exclusively address the feasibility problem of just computing any clearing

vector. Therefore, the program is presented without specifying an objective function, rather we

assume any linear function f(r), w.r.t a recovery rate vector r = (ri)i∈N .

Maximise / Minimise: Linear function f(r)

Subject to: For each i ∈ N

ri ≥
ai(r)

li
− Bi · (1− yi) (Constraint 1)

ri ≥ 1− Bi · yi (Constraint 2)

ri ≤
ai(r)

li
(Constraint 3)

ri ∈ [0, 1] (Constraint 4)

yi ∈ {0, 1} (Constraint 5)

Figure 4.1: The Mixed-Binary Linear Program for Central CDS debtors.

Theorem 7. Assume a financial network F = (N ∪ {CCD}, e, c) that satisfies the central CDS

debtor property and construct the Mixed-Binary Linear Program in Figure 4.1 w.r.t. F denoted as

MBLP (F). It holds that

i) If z = (ri, yi)i∈N is a feasible solution of MBLP (F) then (ri)i∈N is a clearing vector of F .

ii) If (ri)i∈N is a clearing vector of F then there exist a binary vector (yi)i∈N s.t z = (ri, yi)i∈N

is a feasible solution of MBLP (F).

Proof. Assume the MBLP (F) of Figure 4.1. The program’s constraints contain a mixture of real

valued variables ri ∈ [0, 1] and binary valued decision variables yi ∈ {0, 1} for each bank i ∈ N .

85

The linearity of all constraints w.r.t (ri)i∈N and (yi)i∈N is justified from equations (4.2), (4.3) and

(4.4).

i) Let z = (ri, yi)i∈N be a feasible solution to the program in Figure 4.1 and w.l.o.g fix an index

κ. If yκ = 0 then from Constraint 2 and Constraint 4 we get that rκ = 1, while subsequently from

Constraint 3 it holds that 1 ≤ aκ(r)/lκ. Note that Constraint 1 is trivially satisfied due to the

choice of Bκ. If yκ = 1, then from Constraint 1 and Constraint 3 it holds that rκ = aκ(r)/lκ, while

combining the latter with Constraint 4 implies that aκ(r)/lκ ≤ 1. Note that Constraint 2 is trivially

satisfied due to the choice of Bκ. Consequently for both possible values of the binary variable yκ,

we showed that the satisfied constraints imply that rκ = min(1, aκ(r)/lκ), thus establishing that

the fixed point condition of Definition 2.6 is satisfied by (ri)i∈N . Therefore if z = (ri, yi)i∈N is a

feasible solution of MBLP (F) then (ri)i∈N is a clearing vector of F .

ii) Let (ri)i∈N be a clearing vector of F and w.l.o.g fix an index κ. We will prove that the sole

arrangement for yκ that satisfies the constraints for κ, corresponds to the configuration implied

by configration 4.1 w.r.t (ri)i∈N . Given that (ri)i∈N is assumed to be a clearing vector, from

Definition 2.6, it must hold that rκ = min(1, aκ(r)/lκ). If min(1, aκ(r)/lκ) = 1, then rκ = 1. By

setting yκ = 0, both Constraint 2 and Constraint 4 are satisfied, while by assumption 1 ≤ aκ(r)/lκ

thus Constraint 3 is also satisfied. Trivially Constraint 1 is satisfied under this choice of yκ due

to Bκ. If min(1, aκ(r)/lκ) = aκ(r)/lκ, then rκ = aκ(r)/lκ. Consequently by setting yκ = 1, both

Constraint 1 and Constraint 3 are satisfied, while Constraint 4 is also satisfied since by assumption

aκ(r)/lκ ≤ 1. Trivially Constraint 2 is satisfied under this choice for yκ. In summary we showed that

for a given clearing vector (ri)i∈N of F , setting (yi)i∈N according to configuration 4.1 constitutes

z = (ri, yi)i∈N a feasible solution for MBLP (F).

If we could determine which configurations of the binary decision variable vector y = (yi)i∈N

can generate a clearing vector r = (ri)i∈N , then computing r simply comes down to solving a Linear

Program. A direct consequence of the proposed Mixed-Binary Linear Program is an exponential-

time algorithm for computing clearing recovery rate vectors for networks meeting the central CDS

debtor property.

Theorem 8. CDS-CLEARING restricted to instances that satisfy the central CDS debtor prop-

erty admits an exponential time algorithm.

Proof. Consider a financial network F = (N ∪ {CCD}, e, c), that satisfies the central CDS debtor

86

property and construct the MBLP(F) as indicated in Figure 4.1. Based on the structure of

MBLP(F) and the preceding discussion that states the linearity of the constraints, it is evident that

when fixed values for the binary decision variable vector y are introduced, the formulation of Figure

4.1 transforms into a Linear Program w.r.t to the real variable vector r = (ri)i∈N . We denote the

generated LP for a fixed vector y as LP(F|y). The algorithm iterates over all configurations of

y ∈ {0, 1}|N | one at a time and invokes any polynomial time algorithm designed for solving linear

programs as a subroutine for solving LP(F|y). In case LP(F|y) is feasible the subroutine algo-

rithm will compute and return a clearing recovery rate vector r = (ri)i∈N and the algorithm will

terminate. In case LP(F|y) is infeasible the subroutine algorithm returns nothing, the algorithm

considers a new unprocessed configuration for y and repeats the execution of the steps described

so far. The algorithm is illustrated below.

Algorithm 1 Exponential time algorithm for computing a clearing vector for central CDS debtors.

1: Let F = (N ∪{CCD}, e, c) be the input network that satisfies the central CDS debtor property.

2: Construct the Mixed-Binary Linear Program for F as described in Figure 4.1.

3: for y ∈ {0, 1}|N | do

4: if LP(F|y) is feasible then

5: Return the feasible point.

6: Break.

7: end if

8: end for

As CDS-CLEARING is a total search problem (cf Theorem 1) the existence of a clearing

recovery rate vector is guaranteed. Therefore Algorithm 1 is guaranteed to output a clearing

recovery rate vector. In the worst case the algorithm would have to execute a polynomial time

subroutine on all 2|N | possible configurations for vector y. This implies a running time ofO(poly|F|)·

2|N |, where |F| is the bit length of the input.

We intentionally avoided specifying a particular objective function. This deliberate choice was

made to show the framework’s versatility in optimising over a wide range of linear objectives tied

to the clearing vector, which results, in an algorithmic scheme for computing the clearing vector,

87

that effectively optimises any given linear objective function. Many concepts on proposed objective

functions of interest have been addressed in the literature, but primarily from a computational

hardness standpoint [PW22, IDKV23b]. In [PW22], the authors address ambiguity of CRRVs

by highlighting how the multiplicity of CRRVs gives rise to optimisation problems whereby one

attempts to select the appropriate clearing vector that optimises a desired linear objective. They

prove a set of NP-hardness results regarding the choice of the clearing vector r that can satisfy

certain objectives expressed as linear functions in r. The reductions therein are based on high

capitalised CDS debtors2 that can be merged into a single central CDS debtor. Our algorithm

could be used to resolve this ambiguity for linear objective functions when Central CDS debtors

are present.

Moreover, despite the exponential time complexity of the algorithm, the procedure is exponential

solely in the number of banks in the network: The size of the coefficients in the input (i.e., contract

notionals and external assets) have no impact on the exponent.

4.1.2 Mixed-Binary Nonlinear Program for CDS-CLEARING

By adapting the assets, liabilities, the constants (Bi)i∈N and the binary decision variable y to the

expressions

ai(r) =

[
ei +

∑
j∈N

rj · cj,i +
∑
j,k∈N

rj · (1− rk) · ckj,i

]

li(r) =
∑
j,k∈N

(1− rk) · ci,j +
∑
j∈N

ci,j

Bi =
1∑

j∈N ci,j
·

[
ei +

∑
j∈N

cj,i +
∑
j,k∈N

ckj,i

]
+ 1

we form a Mixed-Binary Nonlinear Program denoted as MBNLP(F) tailored for general instances

F of CDS-CLEARING. The construction of the Mixed-Binary Nonlinear Program for general

instances of CDS-CLEARING suggests heuristic-based approaches and the empirical study of

the problem.

2CDS debtors with no debt contracts and ∞ external assets.

88

4.2 Central CDS debtors with covered CDSes

Section 3.2.4 identified central and dedicated CDS Debtors as two severe restrictions of CDS-

CLEARING under which the inapproximability result of Theorem 6 remains to hold. We would

further like to identify non-trivial and important instances whose solutions admit efficient algo-

rithms.

A naked CDS (see Figure 4.2) is a purely speculative contract; its counterparties do not have

any other interest in the reference bank if not the CDS itself. In [SSB17a] the authors construct a

financial network that does not have any naked CDS contracts, yet it still admits irrational solutions

3. Moreover the authors provide an FPTAS for computing an ϵ weak clearing vector when naked

CDSes are absent from the financial network (Theorem 6 [SSB17a]). However, regulators could

ban their existence and only allow to buy a CDS if a corresponding (debt) exposure exists – i.e.,

to only have so-called covered CDS.

Definition 12 (Covered CDS [SSB20, SSB17b]). A credit default swap (i, j, R) is covered if

cRi,j ≤ cR,j.

R

i j
x

ei

y = x+ k

R

i j
x

ei

lR,·

Figure 4.2: Topology of naked and covered CDS.

We exploit the topological structure of covered CDS and central CDS debtors and provide a

polynomial time algorithm for computing exact clearing vectors in instances that contain both

notions.

Theorem 9. CDS-CLEARING restricted to instances that only contain covered CDSes and

satisfy the central CDS debtor property admits a polynomial time algorithm.

To prove this, first we perform a transformation step on each credit default swap in the given

network, which locally modifies the network. Repeating this process on every CDS contract results

3(Appendix A of [SSB17a])

89

in a financial network consisting only of debt contracts, which we can then solve by executing the

polynomial-time algorithm presented in [EN01] that computes an exact clearing vector.

Network transformation. Let F = (N∪CCD, e, c) be a financial network that satisfies the central

CDS debtor property where all CDS contracts are covered. Consider a CDS contract (CCD, j, R)

in the network, let x = cRCCD,j , let y = cR,j and let k be such that y = x+ k.

A network transformation step on (CCD, j, R) consists of the following consecutive operations.

1. Update the external assets of j to e∗j = ej + x;

2. Decrease the contract notional of the debt contract (R, j) to c∗R,j = k;

3. Add a dummy node, which we call dummy(R,j);

4. Add a debt contract (R,dummy(R,j)) with contract notional cR,dummy(R,j)
= x;

5. Erase (CCD, j, R).

Figure 4.3 illustrates this transformation step.

R

CCD j
x

y = x+ k

ej

R dummy(R,j)

j

x

e∗j = ej + x

CCD

k

Figure 4.3: The reconfiguration of the dynamics after the removal of the covered CDS.

Let F be a financial network that satisfies the central CDS debtor property and consider the

execution of a single transformation step on a covered CDS (CCD, j, R) of F . Let r be a CRRV of

F , and let F ′ be the financial network after the transformation step. We define r′ as the recovery

rate vector of F ′ that is obtained from r by letting r′dummy(R,j) = 1 and letting r′ coincide with r

for all other banks. Note that, by construction, the total liabilities of R are equal in F and F ′, and

j’s assets in F under r are equal to j′’s assets in F ′ under r′. Hence, r′ is a CRRV for F ′ under

which every node’s assets and liabilities remain unaffected with respect to F under r.

Thus, for a financial network that has only covered CDSes and satisfies the central CDS debtor

property, it is possible to obtain an equivalent financial network without CDSes by repeatedly

executing the above transformation step on each of the network’s CDSes. The resulting CDS-free

90

network then has essentially the same clearing recovery rate vectors as the original network, where

the only difference is that the newly introduced dummy nodes always get assigned a recovery rate

of 1.

A CRRV for the resulting CDS-free network can be found using e.g. the polynomial time

algorithm of [EN01], hence by throwing away from that CRRV the coordinates of the introduced

dummy nodes, we obtain a CRRV for the original network in polynomial time. This procedure is

summarised as Algorithm 2 below.

Algorithm 2 Polynomial time algorithm for computing exact clearing vectors for instances with

central CDS debtors and covered CDSes.

1: Let F = (N ∪ {CCD}, e, c) with N = [n] be the input network with only covered CDSes, and

the Central CDS debtor property.

2: for j = 1 to [n] do

3: for R = 1 to [n] do

4: if cRCCD,j ̸= 0 then

5: ej = ej + cRCCD,j

6: cR,j = cR,j − cRCCD,j

7: N = N ∪ dummyR,j

8: cR,dummyR,j
= cRCCD,j

9: cRCCD,j = 0

10: end if

11: end for

12: end for

13: Run the polynomial time algorithm of [EN01] to obtain a CRRV r, and return r restricted to

N ∪ {CCD}.

From Lines 2 through 12 the algorithm repeatedly executes the network transformation step,

consisting of Operations 1 through 5, on all CDS contracts of the form (CCD, j, R) of the input

financial network. This results in a network F ′ that is composed entirely of debt contracts. The

final line of the algorithm from Line 13 runs the polynomial time algorithm of [EN01] on F ′ to

compute the clearing recovery rate vector, and throws away the coordinates corresponding to the

introduced dummy nodes.

91

Lastly, we note that this polynomial time procedure also works correctly under a generalised

version of the central CDS debtor property, where we allow multiple banks to be debtors of CDSes,

but still require that these CDSes have an amount of external assets exceeding the sum of the

notionals, akin to Conditions 2 and 3 of Definition 10. This reflects a setting where banks are risk

averse and refuse (or are only authorised) to act as debtor in a CDS when it is certain that all

liabilities resulting from these CDSes can be paid off through their assets a-priori.

92

Chapter 5

Rational and Irrational Solutions

Overview

In this chapter we investigate the existence of irrational solutions to instances of CDS-

CLEARING and address the following question: Which structural conditions must exactly hold

in a financial system for irrational clearing vectors to potentially exist? We aim to characterise

such structural conditions of the contract graph independently of the relevant numerical values in

these systems (i.e., the values of the external assets, and the notionals on the debt contracts and

CDSes). Given a partially specified instance of a financial system where these numerical values are

not specified, and thus only the debtors, creditors, and reference banks (in the case of CDSes) are

provided to us for each contract in the instance, can we identify in which cases there are numerical

coefficients (notionals c and external assets e) for the instance such that under these coefficients,

no rational solutions exist?

In Section 5.1 we present a set of sufficient structural conditions that provide a partial answer

to this question. We define a type of auxiliary coloured directed graph associated to a financial

system for which we examine specific types of cycles and prove that the presence of such a cycle

is a structurally sufficient condition for irrational solutions to arise, in the sense that we can then

set the rational coefficients such that every clearing vector of the system is irrational. The proof

procedure is technically involved, thus further explanatory text has been added in each subsection.

In Section 5.2 we study the complementary goal of identifying under which conditions a rational

solution must exist and formulate a second set of structural conditions that are close to the former

irrationality conditions.

93

5.1 A Sufficient Structural Condition for Irrational Solutions

5.1.1 Switched Cycles

Assume an instance I = (N, e, c) of CDS-CLEARING and let GI be its contract graph. We

construct an auxiliary coloured directed graph GI,aux as follows: We include all the arcs of the

contract graph in GI,aux, which retain their blue and orange colours. Furthermore, for every pair

(i, j) such that there exists a CDS (i, j, R) ∈ CDS (for some R ∈ N), we add a red-coloured arc

(R, i) to GI,aux. Thus, in GI,aux there is at most one red, one orange, and one blue arc between

every ordered pair of nodes. We refer to the resulting tricoloured directed graph as simply the

auxiliary graph of I. An example of a financial system and its auxiliary graph is given in Figure

5.1.

1 2 3 4

5 6 7 8

1 2 3 4

5 6 7 8

Figure 5.1: A financial system GI represented as its contract graph, and the corresponding auxiliary

graph GI,aux. The dashed lines used in our original graphical notation are retained, for clarity. The

coefficients along the arcs and on the nodes are omitted.

Definition 13. A financial system is called acyclic if its auxiliary graph does not contain any

directed cycle.

The financial system of Figure 5.1 is not acyclic, since its auxiliary graph contains the cycle

(2, 3, 7, 6, 2). Acyclic financial systems turn out to be easy to analyse: the clearing recovery rate

vector is always rational.

Proposition 4. Every acyclic financial system has only rational solutions.

Proof. Assume an acyclic financial system I = (N, e, c) and let G and Gaux = (N,Aaux) be its

contract graph and auxiliary graph respectively. Since I is acyclic, Gaux contains no cycles, meaning

that for any (i, j, R) ∈ CDS, there is no path from i to R. Since Gaux is a directed acyclic graph

(DAG), we can rearrange its nodes in topological order in polynomial time (see e.g. [KT06]). Let

94

T be the topological ordering of Gaux. Without loss of generality, we assume that each node i ∈ N

is also the i’th node in T so that outgoing arcs of i point to higher-numbered nodes, and incoming

arcs of i come from lower-numbered nodes.

We observe that the recovery rate ri of any node i ∈ N is determined by only the recovery

rates of banks j < i, under the clearing condition, which holds because both the assets ai(r) and

liabilities li(r) under any clearing vector do not depend on any of the recovery rates ri+1, . . . , rn

(following (2.1) and (2.5)). This means that we can straightforwardly compute a clearing vector

of recovery rates by iterating over the banks in topological order T , and using (2.1) and (2.5) to

compute ri from r1, . . . ri−1 in each iteration i.

In each iteration, the computation of the numerator and denominator of the recovery rate in-

volves summations of terms containing multiplications, subtractions, and additions among recovery

rates and rational constants. The numerator and denominator are thus rationals if all preceding re-

covery rates are rationals as well. Since the recovery rate computed in the first iteration is rational,

by induction all computed recovery rates are rational.

This initial insight leads us to focus on specifying cyclic structures that might be capable of

generating irrational solutions. The classical results of [EN01] show that financial systems without

credit default swaps always have rational (and polynomial time computable) recovery rates. Thus,

for irrational solutions to emerge, we know that the presence of just any cycle is not sufficient, and

that CDSes must be involved.

Definition 14 (Switched off/Switched on nodes). We define a node i ∈ N as switched off

if its number of incoming red arcs equals 1, and i does not have outgoing blue arcs (this implies

that all CDSes of which i is the debtor share the same reference bank). We define a node i ∈ N as

switched on if one of the following holds:

• its number of incoming red arcs exceeds 1;

• its number of incoming red arcs equals 1 and there is at least one outgoing blue arc.

We note that switched on and switched off nodes are not complements of each other: A

node that is not a debtor in any CDS is neither switched on nor switched off. Figure 5.2 below

illustrates these notions. Note also that switch off nodes are essentially what we previously define

95

as dedicated CDS debtors. The purpose of renaming these nodes is made for the sake of presenting

nodes as switches that either allow or stop irrational payments to flow through them.

off on

on

Figure 5.2: Illustration of switched off and switched on nodes.

Definition 15 (Switched Cycles). We call a cycle red if it has at least one red arc.

• A cycle C is called weakly switched if it is red, and for at least one red arc (u, v) in C, v

is switched on.

• A cycle is called strongly switched if it is red, and for each red arc (u, v) in C, v is switched

on.

The notion of switched cycles is central to the occurrence of irrational solutions in financial

systems. We will show that when a financial system I has a strongly switched cycle, and satisfies a

certain additional technical condition (to be specified later), there exist rational coefficients for the

financial system under which all clearing vectors of I are irrational. Conversely, in the subsequent

section we show that in the absence of any weakly switched cycle, there exist rational clearing

vectors of I regardless of its coefficients, and the computational problem of computing an exact

fixed point in such instances lies in the complexity class PPPAD
R , where PR is the class of problems

polynomial time solvable under the Blum-Shub-Smale model defined in [BCSS98] (see Corollary 4).

5.1.2 Rewriting Rules for Strongly Switched Cycles

In this section, we first present a framework for formulating strongly switched cycles, and we present

various “rewriting rules” that capture an equivalence relation between strongly switched cycles in

terms of their recovery rates. We begin by defining a set of primitive financial systems, represented

in the form of their auxiliary graph, which we call fragments. These fragments lack coefficients:

96

They specify only some of the contracts present among a set of nodes, but do not contain any

specification of the notionals on these contracts, and do not contain a specification of the external

assets of any of the banks. Each of these fragments has a designated start and end node, and each

of these fragments has the property that there is a unique path from the start to the end node.

Furthermore, each fragment has the property that all nodes are directly connected to the unique

path from start to end node.

We then define a binary operation that concatenates copies of fragments with each other, by

identifying the start node of one copy of a fragment with the end node of a copy of another

fragment. This results in auxiliary graphs of financial systems that are obtainable by “stringing”

together fragments. We refer to graphs obtainable through this concatenation operation as fragment

strings. A fragment string represents a path (starting at the start node of the first fragment and

ending at the end node of the last fragment) along with some further neighbouring nodes that are

directly attached to the main path through arcs.

In turn, the start and end nodes of the paths that can be formed in this way can be connected

together: The end node of the last fragment in a fragment string can be identified with the start

node of the first fragment in the fragment string, and this will create a (coefficientless) auxiliary

graph of some financial system that contains a single cycle, along with some neighbouring nodes

with arcs that are attached to the nodes in the main cycle. We call such a graph a fragment cycle.

We will explain below in detail how these fragments are defined and how to form cycles with

them. Subsequently, we will equip each fragment with particular choices of coefficients (i.e., no-

tionals and external assets) that we will later on show how to generate unique irrational solutions

when composed into fragment cycles.

We study the resulting set of fragment cycle graphs, constructible through attaching such frag-

ments to each other, with the following goal in mind: Given an arbitrary financial system I, we

will show that if a certain subset of the graphs constructible from our set of fragments occurs as

a subgraph in GI,aux, then there exists a choice of rational coefficients for I such that all clearing

vectors of I are irrational. This will yield us our intended structural characterisation of irrational

financial systems. Therefore, the fragments we will define, and the graphs obtainable from stringing

them together, should be interpreted as subgraphs of a larger financial system under consideration,

and we want to determine whether this larger financial system is susceptible to having irrational

97

clearing vectors.

Fragment Strings

We denote by G the set of all fragments that we will use. All fragments of G are defined in Figure

5.3, presented in our tricoloured graphical notation. Each fragment has designated start and end

nodes, which are indicated by short incoming and outgoing black arrows, respectively. It can be

verified that for each fragment indeed there is a single path from input to output node, as we

claimed previously. Furthermore, as also claimed above, each node of any given fragment is either

on this path, or directly connected to it by a single (incoming or outgoing) arc. Note that there are

many fragments in G that are highly similar, and the names of our fragments are chosen such that

highly similar fragments differ only in their superscripts: For example, the fragments ga1 , g
b
1, g

c
1, and

gd1 all have in common that the main path from the input node to the output node consist of a

red arc followed by an orange arc that corresponds to the same CDS as the red arc, and these four

fragments only differ in the colours of two arcs attached to the main path (along with one or two

external reference banks, denoted by c, c1, or c2). The two sets of fragments {ga2 , gb2, gc2, gd2} and

{ga3 , gd3} are related in a similar fashion.

We define a binary merging operation on ordered pairs of fragments (a, b), where every pair

(a, b) is mapped to a graph obtained by taking disjoint copies of a and b, and connecting the two

copies together by identifying the end node of a with the start node of b. We define the new start

node and end node of the resulting system to be the start node of the copy of a and the end node

of the copy of b, respectively. We denote the result of the merge operation on fragments a and

b symbolically by the notation ab. A fragment string is a fragment obtainable from fragments in

G using any number of sequential applications of the merge operation. We let GS be the set of

fragment strings (i.e., the closure of G under the merge operation).

We may turn any fragment string into a fragment cycle by identifying (i.e., connecting) its start

node with its end node. We use the following symbolic notation for fragment cycles: For a fragment

string x1x2 · · ·xk−1xk of k fragments, the corresponding fragment cycle will be written symbolically

by marking the first fragment x1 as ẋ1 and appending ẋ1 to the end of the string, i.e., we write

ẋ1x2 · · ·xk−1xkẋ1 to denote the fragment cycle corresponding to fragment string x1x2 · · ·xk−1xk.

Definition 16. We define GC to be the set of all fragment cycles, i.e., the graphs ẋgsẋ, where

98

1

23

4

5

ga1

1

23

4

5

c

gb1

1

23

4

5

cgc1

1

23

4

5

c1

c2

gd1

1

23

4

5

ga2

1

23

4

5

c

gb2

1

23

4

5

cgc2

1

23

4

5

c1

c2

gd2

1

43

2

ga3

1

43

2

cgb3

1 2

d1
1 2

c

d2

Figure 5.3: The fragments in G. Each fragment is labeled with a name that we will use to refer to

the individual fragments. We have G = {ga1 , gb1, gc1, gd1 , ga2 , gb2, gc2, gd2 , ga3 , gb3, d1, d2}

99

x ∈ G and gs ∈ GS.

Arithmetic Fragment Strings

A fragment in G can correspond to many concrete financial systems: The blue and yellow arcs in

our fragments represent debt contracts, but their notionals are unspecified. Similarly, the nodes

represent banks, but a specification of their external assets is not given. A fragment equipped

with coefficients specifying these notionals and external assets will be referred to as an arithmetic

fragment. Figure 5.4 presents the set of arithmetic versions of the fragments in G that we will

be using. We use the notational convention that x′ or x′′ is an arithmetic version of a fragment

x ∈ G. For some of these arithmetic fragments, we have annotated the end nodes with red labels

that indicate the assets of the end node under any clearing vector as a function of the recovery rate

r of the start node of the fragment. Note that if the external assets of a bank are set to 0, our

convention is to omit the green label at the respective node. Furthermore, all nodes labeled with

c, c1, and c2 are assumed to have a recovery rate of 0, which is achieved by setting the external

assets of such banks to 0 and setting the coefficients in the financial system (in which the fragment

is embedded) such that c has a strictly positive liability.

Many of the arithmetic fragments in Figure 5.4 are highly similar, and this has been reflected

in their names: For i ∈ [3] and j ∈ {a, b, c, d}, the arithmetic fragment gj
′

i differs from gj
′′

i in only

a single contract’s notional. Similarly to non-arithmetic fragment strings, we may string together

arithmetic versions of fragment strings, and we may apply our symbolic notation to denote strings

and cycles of arithmetic fragments.

Next, we study the recovery rates of strings and cycles of arithmetic fragments. We start with

the following observations.

Observation 4. Let x′1 and x′2 be any two consecutive arithmetic fragments in a string or cycle C

of arithmetic fragments. Let r be the recovery rate of the start node of x′1 under a clearing vector

of C under the assumption that all nodes labeled with c, c1, and c2 have recovery rate 0.

• If x′1 ∈ {gj
′

i , g
j′′

i : i ∈ [2], j ∈ {a, b, c, d}} and x′2 ∈ {gj
′

i : i ∈ [2], j ∈ {a, b, c, d}} ∪ {d′1, d′2},

then the recovery rate of the end node of x′1, is (1 − r)/(2 − r) or 1/(3 − r), as indicated by

the red labels in Figure 5.4.

100

1

23

4

5
1 1

1

1 1−r
2−r

ga
′

1

1

23

4

5

c

1

1

1

1 1−r
2−r

gb
′

1

1

23

4

5

c

1 1

1

1 1−r
2−r

gc
′

1

1

23

4

5

c1

c2

1

1

1

1 1−r
2−r

gd
′

1

1

23

4

5
1 1

2

1 1−r
2−r

ga
′′

1

1

23

4

5

c

1

1

2

1 1−r
2−r

gb
′′

1

1

23

4

5

c

1 1

2

1 1−r
2−r

gc
′′

1

1

23

4

5

c1

c2

1

1

2

1 1−r
2−r

gd
′′

1

1

23

4

5
21

1

1/2 1
3−r

ga
′

2

1

23

4

5

c

2

1

1

1/2 1
3−r

gb
′

2

1

23

4

5

c

21

1

1/2 1
3−r

gc
′

2

1

23

4

5

c1

c2

2

1

1

1/2 1
3−r

gd
′

2

1

23

4

5
21

2

1/2 1
3−r

ga
′′

2

1

23

4

5

c

2

1

2

1/2 1
3−r

gb
′′

2

1

23

4

5

c

21

2

1/2 1
3−r

gc
′′

2

1

23

4

5

c1

c2

2

1

2

1/2 1
3−r

gd
′′

2

1

43

2

1

1

1

ga
′

3

1

43

2

c

1

1

1

gb
′

3

1

43

2

1

2

1

ga
′′

3

1

43

2

c

1

2

1

gb
′′

3

1 2
1

d′1

1 2

c

1

d′2

Figure 5.4: Full set of arithmetic fragments. All nodes labeled with c, c1, and c2, are assumed to

have a recovery rate of 0, which is achieved by setting the external assets of c to 0 and setting the

coefficients in the financial system (in which the fragment is embedded) such that c has a strictly

positive liability. 101

• If x′1 ∈ {gj
′

3 , g
j′′

3 : j ∈ {a, b}} and x′2 ∈ {gj
′′

i : i ∈ [3], j ∈ {a, b, c, d}}, then the recovery rate

of the end node of x′1 is 1/(3− r).

Next we provide a notion of equivalence among fragment strings.

Definition 17 (Equivalence). Let x1s, x
2
s be two arithmetic fragment strings. We say that x1s

and x2s are equivalent iff the recovery rate of the end node of x1s equals the recovery rate of the end

node of x2s for all possible choices r ∈ [0, 1] of the recovery rate of the input node of xs1 and xs2

respectively, under the assumption that all nodes labeled with c, c1, and c2 have a recovery rate of

0.

Using the notion of equivalence, we provide a set of rewriting rules for the symbolic formulations

of our arithmetic fragment strings and cycles. We can use such rules to rewrite a given fragment

string or cycle into an equivalent one that is simpler to analyse with respect to the output recovery

rate. By repeatedly applying such rewriting rules, we enable ourselves to produce a family of

equivalent reformulations of a given arithmetic fragment string or cycle, such that the clearing

recovery rate vector (and in particular the output rate of the rewritten fragment string) can be

proved to be irrational.

The rewriting rules will all be stated under the previously made assumption that nodes labeled

with c, c1, and c2 in the fragments all have recovery rate 0.

Rule 0: In any arithmetic fragment string or cycle, we may replace an occurrence of a fragment

gj
′

i , where i ∈ [3] and j ∈ {a, b, c, d}, with the fragment ga
′
i . Similarly, we may replace an

occurrence of a fragment gj
′′

i with the fragment ga
′′
i . It is straightforward to see that the

recovery rate of the end node in the replaced fragment has not changed as a function of the

recovery rate of the start node, and therefore the resulting fragment string is equivalent to

the original.

Rule 1: In any arithmetic fragment string or cycle, we may replace an occurrence of a fragment

ga
′

2 (respectively ga
′′

2) by ga
′

1 g
a′
1 respectively ga

′′
1 ga

′
1 if the fragment ga

′
2 (or respectively ga

′′
2) is

followed by one of the fragments in {ga′1 , ga
′

2 , g
a′
3 , d

′
1, d

′
2}. This rewriting rule is valid because

the recovery rate of the end node of ga
′

2 and ga
′′

2 is equal to 1/(3− r), and the recovery rate

102

of ga
′

1 g
a′
1 (respectively ga

′′
1 ga

′
1) is given by

1− 1−r
2−r

2− 1−r
2−r

=
1

3− r
.

Rule 2: In any arithmetic fragment string or cycle, we may replace an occurrence of a consecutive

pair of fragments g′3g
a′′
i , where g′3 ∈ {ga′3 , ga

′′
3 }, and i ∈ [3], by the fragments ga

′
2 g

a′
i . By

Observation 4, the recovery rates of the end nodes of g′3 and ga
′

2 are identical under this

substitution, under any clearing vector, so that the two fragment strings are equivalent.

Rule 3: In any arithmetic fragment string or cycle, we may remove an occurrence of d′1 or d
′
2. This

substitution is straightforward from the fact that both d′1 and d′2 just transfer the recovery

rate from the start to the end node.

Example 5. Given the fragment cycle ġa1g
b
2d1d2ġ

a
1 , we may choose the coefficients in order to obtain

the arithmetic fragment cycle ˙ga
′

1 g
b′
2 d

′
1d

′
2
˙ga
′

1 . The following two fragment cycles are then equivalent.

1. ˙ga
′

1 g
a′
2 d

′
1d

′
2ġ
a
1 (by applying Rule 0),

2. ˙ga
′

1 g
a′
2

˙ga
′

1 (by applying Rule 3),

3. ˙ga
′

1 g
a′
1 g

a′
1

˙ga
′

1 (by applying Rule 1).

5.1.3 Irrationality of Strongly Switched Cycles

Consider any instance of a financial system I. Let GI,aux be its auxiliary graph, and suppose that

this system has a strongly switched cycle. Then, this cycle is composed entirely of our fragments

in Figure 5.3. This is formalised as follows. We will use the notation V (G) and E(G) to denote

the set of vertices and the set of arcs of a directed graph G, respectively.

Definition 18. Let G′ be a fragment cycle, and let C ′ be the unique directed cycle in G′. The

fragment cycle G′ is said to agree with a cycle C of GI,aux iff there is a mapping g : V (G′) →

V (GI,aux) with the following properties:

• For all (v, w) ∈ E(G′), the arc (g(v), g(w)) is in E(GI,aux) and has the same color as (v, w).

• g restricted to the domain V (C ′) defines a bijection between V (C ′) and V (C).

103

• For each CDS (i, j, R) in G′, (g(i), g(j), g(R)) is a CDS of GI,aux.

Note that the above points imply that g restricted to V (C ′) defines an arc-color-preserving isomor-

phism between C ′ and C. However, this isomorphism property does not necessarily extend to node

sets larger than C ′: nodes in V (G′) that are not in V (C ′) may be mapped by g to the same vertex

of GI,aux.

Furthermore, we define the fragment cycle G′ to simply agree with a cycle C of GI,aux, if G
′

agrees with cycle C of GI,aux through a mapping g for which it additionally holds that

• all nodes outside C ′ are mapped to vertices outside C,

• For every pair of nodes {u, v} ⊆ V (G′), where u is a node labeled with c, c1, or c2 (in Figure

5.4) and v is labeled with a number (in Figure 5.4), g(u) ̸= g(v), and

• for every node u of G′ labeled with c, c1, or c2, g(u) has an outgoing arc pointing towards a

node not in C ′.

The notion of simple agreement defined above is a somewhat technical one. Informally stated,

it is a mild condition that requires that the neighbouring nodes of C ′ are sufficiently “independent”

from each other and from the cycle C, under the mapping g. This brings us to the definition of a

simple strongly switched cycle.

Definition 19. A cycle C of GI,aux is a simple strongly switched cycle iff C is strongly switched,

and for each red arc (u, v) of C there are non-red arcs (u, u′) and (v, v′) such that u′, v′ ̸∈ C.

Furthermore, if (u, u′) or (v, v′) is orange, then the reference bank R of the corresponding CDS is

not in C and R has an outgoing non-red arc pointing to a node not in C.

From the definition of our fragments G, it is straightforward to see that our fragments can

represent any strongly switched cycle: If GI,aux has a strongly switched cycle C, then there is a

fragment cycle G′ consisting of fragments in G such that G′ agrees with C of GI,aux. Similarly,

if GI,aux has a simple strongly switched cycle C, then there is a fragment cycle G′ consisting of

fragments in G such that G′ simply agrees with C of GI,aux. All nodes of C that are switched on

correspond to the 2-labeled nodes of a gj2 or gj1 fragment, for some j ∈ {a, b, c, d}.

Next, we prove two lemmas that show that we can set the coefficients in any strongly switched

fragment cycle such that the fragment cycle admits only irrational clearing recovery rates. We start

by considering formulations consisting only of gj1 fragments.

104

Lemma 3. For all fragment cycles C ∈ GC consisting of only fragments in {gj1 : j ∈ {a, b, c, d}},

there exist coefficients such that the clearing recovery rate vector of C is irrational (under the

assumption that all nodes labeled with c,c1, and c2 have a recovery rate of 0).

Proof. Consider a fragment cycle consisting exclusively of only fragments in {gj1 : j ∈ {a, b, c, d}}.

For all j ∈ {a, b, c, d}, fix the coefficients of all gj1 fragments in the cycle to obtain the arithmetic

version gj
′

1 . Use rewriting Rule 0 to replace all gj
′

1 occurrences by ga
′

1 . The resulting arithmetic

fragment cycle consists of a number of consecutive copies of ga
′

1 , say k of them. Consider now any

clearing vector for the fragment cycle. denoting the r ∈ [0, 1]. We prove by induction that the end

node of the ith fragment has recovery rate equal to (fi − rfi−2)/(fi+2 − rfi), where fi is the ith

Fibonacci number, with f0 = 0.

As pointed out in Observation 4, the recovery rate of the end node of the first fragment equals

1−r
2−r . Repeating this argument once, we obtain that the recovery rate of the end node of the second

fragment equals
1− 1−r

2−r
2− 1−r

2−r
=

1

3− r
=
f2 − f0r

f4 − f2r
,

proving the base case.

Next, assume that the claim holds for the ith fragment in the fragment cycle. Taking the

recovery rate of (fi − rfi−2)/(fi+2 − rfi) as the recovery rate of the start node of fragment i + 1,

we obtain that the recovery rate of its end node is

fi+2 − rfi − fi + rfi−2

2fi+2 − 2rfi − fi + rfi−2
=

fi+1 − rfi−1

fi + 2fi+1 − rfi−2 − 2rfi−1
=

fi+1 − rfi−1

fi+2 + fi+1 − r(fi + fi−1)
=
fi+1 − rfi−1

fi+3 − rfi+1
,

which establishes the inductive step.

We know that the end node of the last fragment in the fragment cycle has a recovery rate that

coincides with the recovery rate r of the start node of the first fragment. Therefore, in a clearing

vector of recovery rates, it holds that r =
fk−rfk−2

fk+2−rfk which is equivalent to solving the equation

r2fk − (fk+2 + fk−2)r + fk = 0. Since fk+2 + fk−2 = fk+1 + fk + fk−2 = 2fk + fk−1 + fk−2 = 3fk,

computing the recovery rate of the initial node 1 comes down to solving the quadratic equation

r2−3r+1 = 0. Solving this equation we obtain that the only solution in [0, 1] is r = (3−
√
5)/2 which

is irrational, thus the clearing recovery rate vector of the strongly switched arithmetic fragment

cycle is irrational and is unique.

The next lemma extends the above to a larger class of arithmetic fragments.

105

Lemma 4. For all fragment cycles composed of fragments G in which every occurrence of a fragment

in {gj3 : j ∈ {a, b}} is followed by a fragment in {gji : i ∈ [2], j ∈ {a, b, c, d}}, there exist coefficients

such that the clearing recovery rate vector of C is irrational (under the assumption that all nodes

labeled with c, c1, and c2 have a recovery rate of 0).

Proof. Consider any fragment cycle with the property described in the claim. Fix the coefficients

of all fragments as follows.

• For a fragment f = gji , i ∈ [3], j ∈ {a, b, c, d} occurring in the cycle, if the fragment preceding

it is in {gj3 : j ∈ {a, b}}, turn f into the arithmetic fragment gj
′′

i .

• For a fragment f = gji , i ∈ [3], j ∈ {a, b, c, d} occurring in the cycle, if the fragment preceding

it is not in {gj3 : j ∈ {a, b}}, turn f into the arithmetic fragment gj
′

i .

• Turn every occurrence of d1 into d′1, and turn every occurrence of d2 into d′2.

Given the resulting arithmetic fragment cycle, we apply rewriting Rule 0 to all frag-

ments in order to obtain a fragment cycle consisting only of arithmetic fragments in

{ga′1 , ga
′′

1 , ga
′

2 , g
a′′
2 , ga

′
3 , g

a′′
3 , d′1, d

′
2}. We then use Rule 3 to remove all occurrences of d′1 and d′2 from

the cycle, followed by Rule 2 to remove all occurrences of g3 from the cycle, followed by Rule 1 to

remove all occurrences of g2 from the cycle, resulting in an arithmetic fragment cycle consisting of

only a sequence of copies of ga1 . Claim 3 now completes the proof.

We may now use these last two claims to yield the main result of this section.

Theorem 10. Let I be a non-degenerate financial system such that GI,aux has a simple strongly

switched cycle. Then there exist rational coefficients for I such that all clearing vectors of I are

irrational.

Proof. Let C be a strongly switched cycle of GI,aux and let G′ be a fragment cycle that simply

agrees with C through a mapping g satisfying the conditions stated in Definition 18. By Lemma 4,

there are notionals c and external assets e for G′ such that all clearing vectors of G′ are irrational,

under the assumption that the nodes labeled with c, c1, and c2 have a recovery rate of 0. In GI,aux,

we can now set the notionals and external assets on the vertices and arcs such that they agree with

c and e through the mapping g:

106

• For each v ∈ V (G′), we set the external assets of g(v) to ev.

• For each (v, w) ∈ E(G′) such that (v, w) is a blue arc, we set the notional on the contract

(g(v), g(w)) to cv,w.

• For each (v, w) ∈ E(G′) such that (v, w) is an orange arc, we set the notional on the contract

(g(v), g(w)) to cRv,w, where R is the reference bank corresponding to the CDS arc (v, w).

This assignment of coefficients is well-defined by the properties of g stated in Definition 18 (i.e.,

there are no two arcs or vertices that get assigned multiple conflicting coefficients this way). We

set the remaining coefficients of GI,aux (i.e., the coefficients on the arcs and vertices outside the

image of g) as follows:

• We set the external assets to 0 for every node v ∈ V (GI,aux) that is not in the image of g.

• We set the notional to 1 on every arc (v, w) ∈ E(GI,aux) such that g−1(v) is a node labeled

with c, and w is not in the image of g.

• We set the notional to 0 on every arc (v, w) ∈ E(GI,aux) that does not satisfy the condition

in the point above.

Note that by the simplicity property of the agreement between G′ and C (see Definition 18), the

second point in the above list ensures that for each node v ∈ V (G′) labeled with c, c1 and c2, the

node g(v) has a recovery rate of 0. Furthermore, if we denote by G′′ the subgraph of G formed

by the image of g (i.e., G′′ is the projection of G′ to GI,aux through g), we can see that the above

setting of the coefficients outside of the image of g ensures that no payments flow from G′′ to any

node outside G′′ under any clearing vector. It then follows by Lemma 4 and the simple agreement

properties, that under this setting of the coefficient of GI,aux, every clearing vector is irrational

(and in particular these irrational recovery rates emerge in the nodes of G′′). This establishes our

claim.

5.2 Financial Systems with Guaranteed Rational Solutions

In the previous section, we identified a sufficient structural condition for the ability of a financial

system to have irrational clearing vectors. In this section we investigate how close these conditions

107

are to a characterisation, by attempting to answer the opposite question: Under which structural

conditions are rational clearing vectors guaranteed to exist in a financial system? The answer to

this relates again to the notion of switched cycles: We will show that if a given non-degenerate

financial system does not possess any weakly switched cycle, then there must exist clearing vectors

of the system that are rational. We investigate furthermore the computational complexity of finding

a clearing vector in this case: Solutions can, informally stated, be computed by solving a linear

number of PPAD-complete problems. This latter result is achieved through identifying a natural

class of financial systems for which the problem of computing an exact fixed point is PPAD-complete.

The results in this section indicate that the structural conditions for irrationality formulated in

the previous section do close in on a characterisation, although there is still a “gray area” left: For

those instances of financial systems that do have weakly switched cycles, but do not have any simple

strongly switched cycles, we are not yet able to determine by the structural interrelationships of

the financial contracts whether these systems are likely to possess rational or irrational solutions.

This forms an interesting remaining problem that we leave open.

The main result we will prove in this section is thus the following.

Theorem 11. Let I be a non-degenerate financial system. If GI,aux does not have any weakly

switched cycles, then all clearing vectors of I are rational.

We start by showing that for financial networks that satisfy theDedicated CDS

debtorsproperty (see Definition 11) a particular subclass of financial systems without weakly

switched cycles, the clearing vector computation problem lies in Linear-FIXP, which is equal to

PPAD (as per Theorem 2), and thus the clearing vectors of such financial system must have poly-

nomial size rational coefficients.

Lemma 5. (The exact computation version of) CDS-CLEARING restricted to non-degenerate

financial systems with the dedicated CDS debtor property is PPAD-complete.

Proof. Let I = (N, e, c) be a non-degenerate financial system with the dedicated CDS debtor

property.

Let D ⊆ N be the set of all nodes that are a debtor in at least one CDS of I. We first show

containment in Linear-FIXP, after which we will establish Linear-FIXP-hardness as well.

First, note that by non-degeneracy of the instance I, for all i ∈ D the reference bank R of which

i is the debtor in all its CDS contracts satisfies that R ∈ N \D. We will show that the following

108

function f ′ is in Linear-FIXP: The function f ′ : R|CDS| × [0, 1]|N\D| → R|CDS| × [0, 1]|N\D| maps a

vector of payments p (one payment for each of the CDS contracts of I) combined with a vector

of recovery rates r′ for the nodes in N \ D, to vectors of the same dimensions. The fixed points

of f ′ are those points (p, r′) for which there is a clearing vector r such that r′ coincides with r on

N \ D, and p coincides with the payments through the CDS contracts under r. In other words,

when comparing our original function f of (2.7) to f ′, the difference is that f ′ does not take the

recovery rates of D as arguments, but instead takes the payments made by D as arguments. This

change of fixed-point function is made in order to ensure that f ′ can be computed using only the

operations {+,−,min} and multiplications by constants. Given a fixed point (p, r′) of f ′, it is then

easy to compute a corresponding fixed point of the original f , as we can compute the recovery rates

of D from their payments p, given the recovery rates r′ of the remaining nodes. This places the

problem in Linear-FIXP, as the class is closed under polynomial-time reductions (see Remark 1),

and hence also in PPAD by Theorem 2.

The function f ′ is defined as follows. Let (p, r′) denote a vector of payments on the CDS

contracts of I together with the recovery rates of N \ D. For a node i ∈ N \ D, f ′ defines the

recovery rate

f ′i(p, r
′) = min

{
1,
ai(p, r

′)

li(p, r′)

}
, where li(p, r

′) =
∑
j∈N

c∅i,j , and ai(p, r
′) =

∑
j∈N\D

r′jc
∅
j,i +

∑
j∈D

pj,i.

For a node i ∈ D, if there is a CDS contract with debtor i and creditor j, the payment on this

contract specified by f ′ is defined as follows. Let R ∈ N \D be the unique reference bank of the

CDSes in which i is the debtor.

f ′i,j(p, r
′) = min

{
1,
ai(p, r

′)

li(p, r′)

}
(1− r′R)c

R
i,j = min

{
(1− r′R)c

R
i,j , (1− r′R)c

R
i,j

ai(p, r
′)

li(p, r′)

}
, (5.1)

where ai(p, r
′) are the assets of bank i,

ai(p, r
′) = ei +

∑
k∈N\D

r′kc
∅
k,i +

∑
k∈D

pk,i,

and li(p, r
′) denotes the liabilities of bank i, given by:

li(p, r
′) = (1− r′R)

∑
k∈N

cRi,k.

We can therefore rewrite (5.1) to

f ′i,j(p, r
′) = min

{(
1− r′R

)
cRi,j , c

R
i,j

ei +
∑

k∈N\D r
′
k∑

k∈N c
R
i,k

}
,

109

which makes it clear that we can compute f ′i,j(p) using {+,−,min} and multiplication-by-constant

gates. This places the problem of computing a fixed point for f ′ (and in turn, for f) in Linear-FIXP

and PPAD.

For PPAD-hardness, we simply refer to the reduction in [SSB17b], where it is proved that

the weak approximation version of CDS-CLEARING is PPAD-complete: Their proof reduces

instances of a known PPAD-hard problem into a non-degenerate instance of the weak approximation

version of CDS-CLEARING, and the latter instance turns out to actually satisfy the dedicated

CDS debtor property (where two trivial modifications need to be made to the amplifier and sum

gadgets in the proof in [SSB17b]). This shows PPAD-hardness for computing a weakly approximate

clearing vector in a financial system with the dedicated CDS debtor property. This establishes

PPAD-hardness of the exact computation version of the problem as well, since weak approximation

trivially reduces to exact computation.

The above PPAD-completeness result (and more precisely the PPAD-membership part of the

result), shows that non-degenerate instances with the dedicated CDS debtor property must have

polynomial size rational solutions. We use this fact to prove Theorem 11.

Proof of Theorem 11. Consider the graph D that has as its nodes the strongly connected compo-

nents (SCCs) of GI,aux, and has an arc from a node S to a node T if and only if there exists an arc

in GI,aux that runs from a node in S to a node in T . It is clear that D is a directed acyclic graph.

We will show that we can find a rational clearing vector for GI,aux by finding rational clearing

vectors of the separate SCCs of the system. However, both the assets and the liabilities of the

nodes in a given SCC might depend on the contracts from outside the SCC that point into the

SCC. Similarly, the liabilities of the nodes in the SCC might depend on arcs pointing from the SCC

to external nodes. We may overcome this problem by including the outward-pointing arcs of an

SCC into the subinstances that we aim to solve for, and by iterating over the SCCs according to

the topological order of D: That is, we first find clearing vectors to the set S1 of SCCs that have

no incoming arc in D. For such SCCs, the assets and liabilities of the nodes are not influenced by

external arcs pointing into the SCC. We subsequently find clearing rates for the set of SCCs S2

that succeed S1 in the topological order defined by D. In general, we define Sj inductively as the

set of SCCs that directly succeed Sj−1 in the topological order defined by D, and we iteratively

find clearing rates to the set of SCCs Sj , given the clearing rates computed for S1, . . . ,Sj−1, until

110

we have obtained a clearing vector covering all nodes in the system. A crucial observation that

motivates this approach is that the absence of any weakly switched cycle of GI,aux causes all SCCs

to satisfy the dedicated CDS debtor property, and that therefore the clearing vector computation

problem considered in each iteration lies in PPAD. At each iteration, we are thus guaranteed that

there are rational recovery rates, and finding them requires solving a PPAD-complete problem.

However, there are some details required to make this approach work, which we will address

next.

For an SCC S of GI,aux, define N
′(S) as the tricoloured subgraph of GI,aux formed by the set of

all arcs that are going out of the nodes of S (i.e., N ′(S) consists of S itself and the set of arcs that

point from S to nodes outside of S). The colouring of the arcs is defined to correspond directly to

the colouring in GI,aux. We treat N ′(S) as a vertex-labeled and arc-labeled graph where the labels

represent the notionals c on the contracts and external assets e, according to the specification of I,

in the usual way.

Note that N ′(S) does not in general define a valid financial subsystem of I, as there may be

orange arcs in N ′(S) that do not have a corresponding red arc. The reason is that in GI,aux there

may be such red arcs that point into S from outside S, and hence are not included in the subgraph

N ′(S). Another problem is that N ′(S) may have red arcs for which the corresponding orange arc is

outside N ′(S). We will next modify N ′(S) accordingly, where we will furthermore allow ourselves

to overwrite the external assets of the nodes with other values, as well as the notionals on the

aforementioned set of orange arcs. To that end, let Eo(S) be the set of orange arcs in N ′(S) for

which there is no corresponding red arc present in N ′(S) and let Er(S) be the set of red arcs

in N ′(S) for which there is no corresponding orange arc present in N ′(S). We now define the

subgraph N(S, (ei)i∈V (N(S)), (ce)e∈Eo(S)) which is obtained from N ′(S) by recolouring every orange

arc e ∈ Eo(S) into a blue arc and replacing its notional by ce, removing every red arc in Er(S),

and by replacing the external assets of every node i ∈ V (N(S)) by ei.

Under this definition of N(S, e, c), for any choice of non-negative vectors e = (ei)i∈V (N(S)) and

c = (ce)e∈Eo(S), we have the property N(S) represents a valid financial system (i.e., where all

orange arcs correspond to a CDS that is entirely contained in N(S, e, c)). Also, N(S, e, c), has the

dedicated CDS debtor property, which follows directly from GI,aux not having any weakly switched

cycles. Therefore, from Lemma 5 it follows thatN(S, e, c) has a rational, polynomially sized clearing

111

recovery rate vector, and finding one is PPAD-complete.

The algorithm by which we can find a rational vector of recovery rates now works as follows:

1. Compute the recovery rates rS1 for all vertices in the SCCs S1. This is done by finding the

recovery rates of the financial systems N(S, e, c), where S ∈ S1 and e and c are defined as in

GI,aux.

2. Iterating over j, compute the recovery rates rSj given the recovery rates rS1 , . . . , rSj−1 for the

SCCs preceding Sj (according to the topological order defined by j). This is done by finding

the recovery rates of the financial systems N(S, e′, c′), where S ∈ Sj , and the coefficients e′

and c′ are defined as follows:

• The external assets e′i, for i ∈ S, is the sum of the original external assets ei as defined

in instance I, and all the payments that are made to i by nodes in the SCCs preceding

S, under the recovery rates rS1 , . . . , rSj−1 computed so far.

• The notional c′i,j on the blue arc (i, j) ∈ Eo(S) of N(S, e′, c′) (that is coloured orange in

G′
I,aux), is set to (1− (rSj−1)R)c

R
i,j . Here R denotes the reference bank of the CDS of I

that the orange arc (i, j) of GI,aux associates to.

Let r be the resulting vector of recovery rates for GI,aux, i.e., r is obtained by combining the

recovery rates rS1 , rS2 , . . . computed through the above procedure. It can be proved inductively

that r is a clearing vector, by showing that for all nodes i, it holds that fi(r) = r:

For an SCC S ∈ S1, all coefficients and arc colours in N(S, e, c) correspond to those in GI,aux.

Therefore, for every node in i ∈ V (S) it holds that ai(r) under GI,aux equals ai(rS1) underN(S, e, c).

Similarly li(r) under GI,aux equals li(rS1) under N(S, e, c). Combining this with the fact that

fi(rS1) = (rS1)i under N(S, e, c), we conclude that it also holds that fi(r) = r under GI,aux.

Next, we prove that under GI,aux it also holds that fi(r) = r for nodes in SCCs of Sj , under

the induction hypothesis that fi(r) = r for all nodes in SCCs of S1 ∪ S2 ∪ · · · . Consider an SCC

S ∈ Sj and a node i ∈ V (S). First, we will establish that the payment along any arc of N(S, e′, c′)

under rSj , equals the payment along the corresponding arc of GI,aux under r: This holds because

(i.) all blue arcs in N(S, e′, c′) that are not in Eo(S) and are coming into i have the same notional

as in GI,aux, so that the payment made through such an arc is equal among both N(S, e′, c′) and

GI,aux; (ii.) all orange arcs in N(S, e′, c′) that associate to CDSes for which the reference bank is

112

in S similarly have the same notional as in GI,aux, so that the payment made through such an arc

is equal among both N(S, e′, c′) and GI,aux as well; (iii.) all blue arcs (i, i′) in N(S, e′, c′) that are

in Eo(S) are orange arcs under GI,aux, however, the notional on this arc in N(S, e′, c′) is set to

(1− (rSj−1)R)c
R
i,i′ = (1− rR)c

R
i,i′ , where R is the reference bank of the CDS of which the orange arc

(i, i′) is part. Thus, the notional on the blue arc (i, i′) under N(S, e′, c′) equals the liability on the

orange arc (i, i′) under GI,aux and r. Therefore, the payment going through the blue arc (i, i′) of

N(S, e′, c′) under rSj equals the payment going through the orange arc (i, i′) of GI,aux under r.

This correspondence among payments in the two financial systems N(S, e′, c′) (with recovery

rates rSj and GI,aux (with recovery rates r) implies that ai(r) under GI,aux equals ai(rSj under

N(S, e′, c′). Similarly li(r) under GI,aux equals li(rSj under N(S, e′, c′). Combining this with the

fact that fi(rSj) = (rSj)i under N(S, e′, c′), we conclude that it also holds that fi(r) = r under

GI,aux.

The procedure outlined in the proof of Theorem 11 requires solving a PPAD-complete problem

in each iteration, and the number of such iterations is at most linear in the instance size. Since

solving each of these problems in PPAD yields a rational solution of size polynomial in the input,

one might be tempted to think that the procedure in its entirety is capable of finding a polynomial

size rational solution for any financial system that has no weakly switched cycles. Unfortunately,

the latter is not true: Observe that in each iteration of the procedure, the PPAD-complete problem

instance that is solved, is actually constructed using the rational recovery rate vectors that are

computed in the preceding iterations. The coefficients in the PPAD-complete problem instance

that is to be solved in any given iteration, are thus polynomially sized in the output recovery rates

of the previous iteration. Altogether, this means that the coefficient sizes potentially grow by a

polynomial factor in each iteration, and that the final recovery rates output by the procedure are

potentially of exponential size.

Indeed, there are examples of financial systems without weakly switched cycles for which the

rational clearing vector has recovery rates that require an exponential number of bits to write

down. A simple example is obtained by taking some of the gadgets in the reduction used in our

FIXP-completeness result (Theorem 3). By taking a duplication gadget (Figure 3.3) followed by a

multiplication gadget (Figure 3.5, 3.10, or 3.9) that is connected to the two output nodes of the

duplication gadget. We may then take multiple copies of these, and chain them together to form

113

an acyclic financial system. If we now give the first node in the chain (i.e., the input node of the

first duplication gadget) some small amount of positive external assets c < 1, this acyclic financial

system essentially performs a sequence of successive squaring operations on the number c, under

the unique clearing vector. The resulting recovery rates on the output nodes of the multiplication

gadgets are then doubly exponentially small in magnitude, with respect to the number of squaring

repetitions. Thus, the resulting clearing recovery rates require a number of bits that is exponential

in the size of the financial system.

If one is willing to discard the complexity issues that arise from working with large-size rational

numbers, it is possible to study the procedure in the proof of Theorem 11 in the Blum-Shub-Smale

model of computation. Under this computational model, any real number takes one unit of space

to store, regardless of its size. Moreover, standard arithmetic operations are assumed to take unit

time.1 The proof of Theorem 11 then implies that when one has oracle access to PPAD, it is possible

to find rational clearing vectors in polynomial time under this model of computation. The class

of problems polynomial time solvable under the Blum-Shub-Smale model is commonly denoted by

PR. Hence, we obtain the following corollary.

Corollary 4. The exact computation version of CDS-CLEARING, restricted to instances with-

out weakly switched cycles, is in the complexity class PPPAD
R .

1For a formal and more accurate definition of the Blum-Shub-Smale model, see the book [BCSS98].

114

Chapter 6

Hardness of Deciding Priority Profiles

Overview

This chapter considers the concept where a financial regulator determines which priority list each

bank should get assigned, and is interested in assigning these in such a way that a specific objective

is optimised for. In a financial network, each bank i can be assigned one of outdeg(i)! Singleton

Liability Priority lists. Consequently the number of candidate priority profiles for a system is

exponentially large in terms of its input size. This suggests that selecting from priority profiles to

attain a particular objective could pose a computational challenge. We show that this problem is

NP-hard for a set of natural choices of objective functions:1

1. Maximising the equity of a specific node (cf. Theorem 12);

2. Minimising the number of defaulting nodes (cf. Theorem 13);

3. Minimising the number of not fully paid liabilities (cf. Theorem 13);

4. Minimising the number of activated CDSes in the financial system (cf. Theorem 14);

5. Maximising the liquidity in the financial system (cf. Theorem 15).

1The authors in [PW22] establish similar NP-hardness results within the framework of networks with banks paying

proportionally where specific financial structures termed as branching gadgets (see Figure 2 of page 5 in [PW22]) are

present in the network and generate infinitely many clearing vectors. Their results stem from the task of finding the

optimal clearing vector when banks pay proportionally, while our results stem from the task of finding the optimal

priority profile.

115

6.1 Maximising the Equity of a Specific Bank

Theorem 12. Finding a priority list profile that maximises the equity of a specific bank is NP-hard.

Proof. We prove the theorem via a reduction from Knapsack. Let us be given a knapsack of

capacity B and a set S = {a1, . . . , an} of objects, having profit profit(ai) and size size(ai). Without

loss of generality, we assume that size(ai), for all ai ∈ S as well as B are integer numbers. The aim

is to identify a collection of objects that can fit inside the knapsack while maximising the overall

profit.

We construct a financial network F = (N, e, c) as follows. We introduce a node 0 with external

assets e0 = B and for each object aj ∈ S we introduce a corresponding node j and let node 0 hold

a debt contract towards each node j with notional c0,j = size(aj). Moreover we introduce a node

τ with eτ = 0, and a node T with eT = 0, which we refer to as the terminal node. We add a debt

contract of notional size(aj) from each node j to node τ . For each node j we moreover introduce

a j-subnetwork, consisting of:

• two nodes yj and xj with eyj = 1, exj = 0,

• a CDS contract (yj , xj , j) with notional cjyj ,xj = maxaj∈S{size(aj)},

• a node zj towards which xj holds a debt contract of notional cxj ,zj = 1.

• a node kj with ekj = profit(aj) and an outgoing CDS (kj , T, xj) with notional profit(aj).

The construction of the j-subnetwork is illustrated in Fig. 6.1.

Assume an optimal solution to the original Knapsack instance and let OPT be the set of

the objects aj contained in it. We know that
∑

ai∈OPT size(ai) ≤ B and that
∑

ai∈OPT profit(ai),

is the maximum profit that can fit in the knapsack. We define the set N = {1, . . . , n}, and

NOPT = {j | aj ∈ OPT} to be the set containing all nodes in F that correspond to objects

contained in the optimal solution. Fix the singleton liability priority list for node i to be Pi =

({NOPT} | {N \NOPT}), meaning that i first prioritises all creditors in NOPT in an arbitrary order

and afterwards all other creditors in N \NOPT again in an arbitrary order. Next we prove that under

this profile, node T receives its maximum total assets. Observe that ∀j ∈ NOPT, p0j = size(aj)

since
∑

j∈NOPT
c0j =

∑
aj∈OPT size(aj) ≤ B = e0. Since every j node that corresponds to an object

aj ∈ OPT receives size(aj), it can fully pay node τ , so rj = 1. For all creditors m ∈ N \ NOPT

116

it holds that p0m < size(am). So, ∀j ∈ NOPT : rj = 1 while ∀m ∈ N \ NOPT : rm < 1. Next

we prove that for each j ∈ NOPT, pkj ,T = profit(aj) and for each m ∈ N \ NOPT, pkm,T = 0.

Take a j ∈ NOPT, we know that rj = 1, which implies that the CDS (yj , xj , j) is not activated

thus rxj = 0 which in turn activates the CDS (kj , T, xj) where node kj pays profit(aj) to node

T . On the other side, for a m ∈ N \ NOPT, it holds that rm < 1, which means that the CDS

(ym, xm,m) is activated and generates a liability of maxai∈S{size(ai)} · (1 − rm) for node ym. We

prove that this liability is at least 1. For an object am /∈ OPT, rm indicates the proportion of

size(am) that fits in the available knapsack area unoccupied by the objects in OPT. Obviously for

am /∈ OPT, size(am) > B − size(OPT), otherwise am ∈ OPT and rm · size(am) + size(OPT) = B.

Since by assumption B and size(aj) for all aj ∈ S are integers, it holds that ∀am /∈ OPT, rm ≤

(maxak∈S{size(ak)} − 1)/(maxak∈S{size(ak)}, so the generated liability for ym is:

lmym,xm = max
ak∈S

{size(ak)} · (1− rm)

≥ max
ak∈S

{size(ak)} ·
(
1− maxak∈S{size(ak)} − 1

maxak∈S{size(ak)}

)
= 1.

So eventually, ∀m ∈ N \ NOPT, pym,xm = 1. Now rxm = 1 thus the CDS (km, T, xm) is not

activated meaning that pkm,T = 0. From the above observations we conclude that the equity of T

is
∑

j∈NOPT
profit(aj): node T receives money from all nodes that correspond to objects contained

in OPT. We claim that this is the maximum equity node T can receive. If there exist a higher

equity for T , then this must be generated from another profile P ′
i that corresponds to a solution to

the original Knapsack instance with higher profit than the optimal one which is a contradiction.

For the opposite direction assume P0 to be the profile of 0 that maximises T ’s equity. Let

A = {aj | p0j = size(aj)} be the set of objects that corresponds to creditor nodes that 0 can fully

pay. Obviously A can be computed in polynomial time from P0. We claim that A is an optimal

solution to the original Knapsack instance. Assume that there exists another set A′ such that∑
aj∈A′ size(aj) ≤ B and

∑
aj∈A′ profit(aj) >

∑
aj∈A profit(aj). Now node 0 could rearrange its

priorities by prioritising all creditors j for which aj ∈ A′. Doing so, 0 can fully pay all nodes

j for which aj ∈ A′ since
∑

aj∈A′ size(aj) ≤ B = e0 and node T receives
∑

aj∈A′ profit(aj) >∑
aj∈A profit(aj), a contradiction to the original assumption that

∑
aj∈A profit(aj) is the maximum

equity for node T .

117

0B j
size(aj)

τ
size(aj)

yj1 xj
0maxaj∈S{size(aj)}

z1

kj T
profit(aj)

profit(aj)

Figure 6.1: The j-subnetwork used in the proof of Theorem 12.

6.2 Minimising Defaulting Banks and Partially Paid Liabilities

Theorem 13. Finding a priority list profile that minimises the number of defaulting banks/ the

number of not fully paid liabilities is NP-hard.

Proof. We prove both statements of the theorem via a reduction from the satisfiability problem

(SAT), where we are given a boolean formula in conjunctive normal form, and have to determine

whether there is a truth assignment to the variables that renders the formula true. Let F =
n∧
i=1

Ci

be a SAT instance, where C1, . . . , Cn are the clauses, and let VF be the set of all variables that

appear in F . We create a financial network from F as follows. For each variable x ∈ VF we

construct a gadget that is refereed to as the x-subnetwork. Each x-subnetwork consists of four

nodes, labeled as ix, x,¬x, jx, where eix = 1 and ex = e¬x = jx = 0, and of four debt contracts,

DC = {(ix, x), (ix,¬x), (x, jx), (¬x, jx)} all with contract notionals equal to one. Moreover, the

constructed financial network has n further nodes, labeled as C1, . . . , Cn, that correspond to each

clause in F with eC1 = · · · = eCn = 0, and one terminal node labeled as τ , towards which each Ci

holds a debt contract of notional one, i.e cCi,τ = 1. Finally for each variable x of F , we construct two

nodes labeled as kx and k¬x respectively, where ekx and ek¬x are equal to the number of occurrences

of literals x and ¬x in F , respectively. Whenever a literal l belongs to a clause Ci we construct the

CDS (kl, Ci,¬l) with c¬lkl,Ci
= 1. An example of a network induced from F = (x ∨ y) ∧ (y ∨ ¬y) is

given in Fig. 6.2.

We now map a truth assignment T : VF 7→ {true, false} to a priority list profile PT as follows.

If T(x) = true, node ix prioritises node x, and otherwise it prioritises node ¬x. All kl nodes posses

enough external assets to fully pay their debts under any priority list, so we can take an arbitrary

list for those nodes, and all remaining nodes have at most one liability. Conversely, from a priority

list profile P we induce the truth assignment TP as follows: if ix prioritises x then T(x) = true

118

otherwise T(x) = false.

Let T : VF 7→ {true, false} be any truth assignment and consider the priority list profile PT.

In each x-subnetwork, node ix can fully pay only its first priority, thus in each x-subnetwork there

exist two defaulting nodes regardless of the choice of priority list of ix, meaning that the minimum

number of defaulting nodes in the induced financial system is 2|VF |. Similarly, each x-subnetwork

has two not fully paid liabilities regardless of the choice of priority list of ix. The only additional

defaulting nodes might be the nodes C1, . . . , Cn, and the only additional not fully paid liabilities

might be on the n debt contracts in which one of C1, . . . , Cn is the debtor. Let us inspect which

of the latter set of nodes are defaulting and which of the latter liabilities are not fully paid under

PT. If clause Ci is a clause that is not satisfied under T, then none of the CDSes involving node Ci

are activated, and node Ci does not have any assets PT. Since Ci has to pay 1 to τ , node Ci will

be in default, and Ci’s liability of 1 will not be paid. If clause Ci is a clause that is satisfied under

T, then at least one CDS involving node Ci is activated, and since the reference bank in this CDS

has recovery rate 0, node Ci will receive the CDS’s full notional of 1, with which it can fully pay

its liability of 1. Hence, in the latter case, node Ci is not in default.

Hence, for a truth assignment T, under PT, the number of banks in default and the number of

not fully paid liabilities are both equal to 2|VF | plus the number of unsatisfied clauses. Since we

argued above that restricting to the profiles

{PT | T is a truth-assignment for F}

is without loss of generality, from finding the profile of priority lists minimising the number of

defaulting banks or minimising the number of not fully paid liabilities in the constructed financial

network, one can infer whether the formula F is satisfiable, which proves our claim.

119

F = {x ∨ ¬y} ∧ {y ∨ ¬y}

ix

x

¬x

jx

1

1

1

1

1

iy

y

¬y

jy

1

1

1

1

1

kx

C1

k¬y

1

1

1

2

C2

ky

1

1

τ

1

1

1

Figure 6.2: The financial system corresponding to the formula F = {x ∨ ¬y} ∧ {y ∨ ¬y}. This

construction is used to prove the statements of Theorem 13.

6.3 Minimising Activated CDS Contracts

Theorem 14. Finding a priority list profile that minimises the number of activated CDSes is

NP-hard.

Proof. We reduce from the problem of minimising the number of defaulting nodes, proved NP-

hard in Theorem 13. Let F be a financial system and let m be the maximum number of CDS

contracts that are issued upon the same reference bank. Consequently, there exists a node that is

the reference bank in m CDSes and no other node is reference bank to more CDSes than that.

We construct a financial network F ′ by expanding F in the following way. For each node i

appearing in F , we add a number ni of CDS contracts such that i is reference bank to exactly

m CDSes. These contracts are of the form (α1
i , β

1
i , i), . . . , (α

ni
i , β

ni
i , i), with notionals ciαi,βi

= 1,

where αji , β
j
i for j ∈ [ni], are newly introduced nodes with external assets eαi = 1. We call the new

contracts dummy CDSes. Eventually all nodes in F ′ are reference banks to exactly m CDSes. Fig.

6.3 shows an example of this expansion.

By this construction, it is straightforward to see that if under any priority list profile a set of

120

banks default in F , then in F ′, for each of these banks i, exactly m distinct CDSes activate in which

i is the reference bank. Since the priority lists of F and F ′ are in one-to-one correspondence with

each other, we conclude that finding the priority list profile minimising the number of activated

CDSes in F ′ is equivalent to finding the priority list profile minimising the number of defaulting

banks in F .

1

2

3

F

1

2

3

α2

β2

α3 β3

F ′

Figure 6.3: The initial financial system F and the constructed F ′ used is the proof of Theorem 14.

6.4 Maximising Systemic Liquidity

Systemic Liquidity. In [KKZ21b], the authors define the term Systemic Liquidity as the total

amount of payments that are being transacted among the economic firms in the financial system

under some clearing recovery rate vector. Given a financial system F we use the notation LP
F (r) to

denote the Systemic Liquidity of the system under the priority profile P and an assuming clearing

recovery rate vector r and is defined as LP
F (r) =

∑
i∈N

∑
j∈N pi,j(r).

Theorem 15. Finding a priority list profile that maximises the Systemic Liquidity is NP-hard.

Proof. We prove the theorem by a reduction from the problem in Theorem 13. Given a financial

system F we construct a modified financial system F ′ according to the following procedure:

• For each debt contract (i, j) ∈ DCF with contract notional ci,j : Erase the debt contract (i, j).

Add a new node denoted as τij with eτij = 0 and two new debt contracts (i, τij) and (τij,j)

each with contract notional ci,τij = cτij ,j = ci,j . Finally add two new nodes αij and βij with

eαij = 2ci,j and construct the CDS contract (αij , βij , τij) with contract notional c
τij
αij ,βij

= ci,j .

We refer to this construction as the τij-gadget. It is illustrated in Fig. 6.4.

121

i j
cij

i τij j
cij cij

αij2ci,j βij
2ci,j

Figure 6.4: Transformation of an (i, j) contract that appears in F to a τij-gadget appearing in F ′
τ

and F ′.

i j
cki,j

k
i τkij j
cki,j cki,j

k

αkij βkij
2cki,j2ci,j

Figure 6.5: Transformation of an (i, j, k) contract that appears in F to a τkij-gadget appearing in

F ′
τ and F ′.

• For each CDS contract (i, j, k) ∈ CDSF with contract notional cki,j : Erase the CDS (i, j, k).

Add a new node denoted as τkij with eτkij
= 0 and construct the CDS contract (i, τkij , k) with

contract notional ck
i,τkij

= ckij and the debt contract (τkij , j) with contract notional cτij ,j = cki,j .

Finally we add two new nodes αkij and β
k
ij with eαk

ij
= 2cki,j and construct the CDS (αkij , β

k
ij , τ

k
ij)

with contract notional c
τkij
αk
ij ,β

k
ij

= 2 · ckij . We refer to this construction as the τkij-gadget. It is

illustrated in Fig. 6.5.

• For each node k ∈ NF : We add five new nodes χk, ψk, ζk, αk, βk with eχk
= 1/(2 | NF |),

eαk
= 2 and construct the CDS (χk, ψk, k) with c

k
χk,ψk

= ∞2, the debt contract (ψk, ζk) with

cψk,ζk = 1/(2 | NF |) and the CDS (αk, βk, ψk) with c
ψk
αk,βk

= 2. We refer to this construction

as k-gadget. It is illustrated in Fig. 6.6.

For any priority profile P of F we define its ’natural extension’ priority profile denoted as Pext

of F ′ as follows: For a node i ∈ NF having a singleton liability priority list Pi we substitute each

priority that corresponds to some debt contract (i, j) ∈ DCF with the debt contract (i, τij) ∈ DCF ′

and each priority that corresponds to some CDS contract (i, j, k) ∈ CDSF with the CDS contract

2Here we assume that a contract may have ∞ notional in the sense that whenever the debtor defaults it must

submit all of its remaining assets through this contract. A similar assumption is made in [PW22, PW21b].

122

k

χk ψk
∞

ζk

1
2|NF |

αk βk
2

2

1
2|NF |

k

Figure 6.6: Addition of the k-gadget in F ′ for every node k of F .

(i, τkij , k) ∈ CDSF ′ . For all other nodes appearing in the constructed gadgets, the priority lists are

uniquely defined since they have only one outgoing edge. For example, if some node i pays in F

according to Pi = ((i, j) | (i, j, k)), then it pays in F ′ according to Pext
i = ((i, τij) | (i, τkij , k)). Next

we prove three useful claims that we use in our reduction.

Claim 4. The ’natural extension’ priority profile does not affect the recovery rate of nodes belonging

in NF ∩ NF ′. Namely, if node i has recovery rate ri under P in F , then it has recovery rate ri

under Pext in F ′.

Proof. The amount of money transferred via a liability (i, j) in F under P are transferred from

τij to node j under Pext in F ′, since node τij has an incoming payment of at most ci,j , a liability

of ci,j and zero external assets. Similarly the amount of money that are being transferred via a

CDS contract (i, j, k) in F under P are transferred from τkij to node j in F ′ under Pext because τkij

receives a payment of at most (1− rk) · cki,j , has a liability of cki,j and zero external assets. Also by

the way we constructed F ′ the liabilities of all nodes appearing in F are unchanged. That means

that the ’natural extension’ profile Pext of a profile P does not affect the assets and liabilities of

nodes in NF ∩NF ′ , thus their recovery rate is the same.

Next we denote by F ′
τ the financial system that is constructed from F only by adding the

τij-gadget and τ
k
ij-gadget. We denote by Pτ the ’natural extension’ of any priority profile P of F in

Fτ . In the following claim we prove that the liquidity of F ′
τ is the same under any priority profile

and any clearing recovery rate vector.

Claim 5. For each priority profile P and each clearing recovery rate vector r, it holds that LP
F ′

τ
(r) =

2 ·
(∑

i,j∈NF
ci,j +

∑
i,j,k∈NF

cki,j

)
.

123

Proof. Assume a priority profile P of F and let Pτ be its ’natural extension’ profile in Fτ . First

we will prove that each (i, j) ∈ DCF generates liquidity of 2 · ci,j in (Fτ ,Pτ). Assume l ≤ ci,j to be

the amount of money transferred via some debt contract (i, j) in (F ,P). We distinguish two cases.

1. l < ci,j . The recovery rate for node τij is rτij = l/ci,j < 1. Thus the CDS (αij , βij , τij) is

activated and node αij owes 2 · (1− rτij) · ci,j = 2 · ci,j − 2 · l to node βij which can fully pay

off. Edges (i, τij) and (τij , j) generate a liquidity of 2 · l thus the generated liquidity in that

case is 2 · ci,j − 2 · l + 2 · l = 2 · ci,j .

2. l = ci,j . The recovery rate of node τij is rτij = 1. Thus the (αij , βij , τij) is not activated. The

generated liquidity in that case arises only from edges (i, τij) and (τij , j) and is equal to 2ci,j .

Next we will prove that any CDS contract (i, j, k) ∈ CDSF generates a liquidity of 2 · cki,j in

(Fτ ,Pτ). Assume a clearing recovery rate vector r and let l ≤ (1 − rk) · cki,j to be the amount of

money transferred via some CDS (i, j, k) in (F ,P). We distinguish three cases.

1. l = (1− rk) · cki,j . The recovery rate for node τij is rτij = l/cki,j = 1− rk < 1. Thus the CDS

(αkij , β
k
ij , τ

k
ij) is activated and node αkij owes 2 · (1− rτkij

) · cki,j = 2 · rk · cki,j , which can fully pay

off. Since edges (i, τi,j) and (τij , j) generate a liquidity of 2 · (1− rk) · cki,j the total generated

liquidity is 2 · rk · cki,j + 2 · cki,j − 2 · rk · cki,j = 2 · cki,j .

2. l < (1 − rk) · cki,j . Again rτi,j = l/cki,j < 1. Thus (αkij , β
k
ij , τ

k
ij) is activated and αkij owes

2 · cki,j · (1− (l/cki,j)) = 2 · cki,j − 2 · l to βkij , which can fully pay. The total generated liquidity

is 2 · l + 2 · cki,j − 2 · l = 2 · cki,j .

3. rk = 1. From Claim 4, we know that the recovery rate of any node does not change under

Pext. It is not hard to see that the same holds under Pτ . If rk = 1 then rτkij
= 0 and the

(i, τkij , k) is inactive. So node αkij owes 2 · cki,j to βkij , which can fully pay and the generated

liquidity is 2 · cki,j .

Notice that F ′ is actually F ′
τ with the addition of the k-gadgets, and since we proved that the

systemic liquidity of F ′
τ is always the same under any priority profile it must be the case that the

liquidity if F ′ depends on the generated liquidity in the k-gadgets.

124

Claim 6. The generated liquidity from a k-gadget under any clearing recovery rate vector is 1/(|

NF |) whenever rk < 1 and 2 whenever rk = 1.

Proof. Assume some node k and let a clearing recovery rate vector with rk = 1 in F under some

profile P. From Claim 4 we get that rk = 1 in F ′ under Pext. Thus the CDS (χk, ψk, k) is inactive

which means that rψk
= 0 and node αk owes 2 to node βk which it can fully pay off and the

generated liquidity in that case is 2. If rk < 1 then the CDS (χk, ψk, k) is activated and since

ckχk,ψk
= ∞ node χk must submit all of its assets to ψk. Now ψk can fully pay off ζk thus the

(αk, βk, ψk) is inactive and the generated liquidity is 1/ | NF |.

Next we provide the reduction based on the above three claims. Assume P is the priority

profile of F under which the number of defaulting nodes is minimised and let λ be that number.

We construct the financial system F ′ as described above and consider the priority profile Pext.

We will prove that under Pext the liquidity in F ′ is maximised. From Claim 4 we know that the

recovery rate of each node in F under Pext is unchanged thus if a node is in default in F under

P for some clearing recovery rate vector then it is in default in F ′ under Pext. That means that

there exist exactly λ k-gadgets, which by Claim 6 generate liquidity λ/ | NF |, which (taking into

consideration Claim 5) means that

LPext

F ′ (r) = 2 ·

 ∑
i,j∈NF

ci,j +
∑

i,j,k∈NF

cki,j

+
λ

| NF |
+ 2 · (| NF | −λ).

Assume there exists another profile Qext such that LQext

F ′ (r) > LPext

F ′ (r). This means that there

must exist another λ′ such that

2 ·

 ∑
i,j∈NF

ci,j +
∑

i,j,k∈NF

cki,j

+
λ′

| NF |
+ 2 · (| NF | −λ′) >

2 ·

 ∑
i,j∈NF

ci,j +
∑

i,j,k∈NF

cki,j

+
λ

| NF |
+ 2 · (| NF | −λ),

which is true if and only if λ′ < λ. This means that the natural extension of the priority profile

that minimises the number of defaulting nodes in F maximises the systemic liquidity in F ′ and

vice versa.

125

Chapter 7

Conclusion & Future Work

This thesis addresses research questions related to the study of systemic risk in financial networks

containing simple debt contracts as well as more involved contracts called credit default swaps, a

widely used and potentially disruptive class of derivatives. The primary result established in this

work is settling the computational complexity of computing strong approximations (Section 2.2.3)

of a bank’s exposure to systemic risk, arguably an approximation notion of intrinsic interest to the

financial industry.

Specifically, we defined and studied the problem CDS-CLEARING as well as an interesting

byproduct of this problem that addresses priority payments among firms calledCDS-PRIORITY-

CLEARING. The main task for CDS-CLEARING is to compute a clearing recovery rate vector

(see Definition 2), i.e, vectors that represent the actual proportion of liabilities that the banks can

pay. The main presented result (Theorem 3) establishes that CDS-CLEARING is FIXP-complete

and its strong approximation version is FIXPa-complete. The methodology we followed in our

proof follows the methodology that is presented in [EY10]. The main challenge was to simulate the

algebraic circuit that computes the fixed points of a continuous function f in the domain [0, 1]n that

is constructed from the gates {max,+, ∗} and rational constants with a financial system comprising

of debt and CDS contracts. The basis of our presented construction is to simulate the algebraic

gates in the operator base {max,+, ∗} with special financial gadgets g+, g∗, gmax (Section 3.1.3)

whose configuration is structured so as to simulate their corresponding operation on recovery rate

values.

Subsequently we defined and studied the problem ϵ-CDS-CLEARING, which stands for the

126

version of the problem that is associated with the task of finding a weak approximate clearing

vector alterantively termed as ϵ-solution (see Section 2.2.3). Previous work on this version of the

problem published by [SSB17b] established that computing ϵ weak approximate solutions is PPAD-

hard for some constant ϵ > 0. Our results suggested an improved and explicit inapproximability

bound for parameter ϵ that is approximately equal to 0.048 and stems out from directly reducing ϵ-

CDS-CLEARING from the problem PURE-CIRCUIT introduced and proved PPAD-complete

in [DFHM22].

In Chapter 4 we proposed an optimisation framework for computing exact solutions to instances

of CDS-CLEARING that satisfy a certain condition called central CDS debtors. Specifically for

a given financial network we devised a Mixed Binary Linear program whose feasible solutions

correspond to exact clearing vectors of the given network. As a direct consequence of this program

we get an exponential time algorithm for computing exact clearing vectors for instances that satisfy

the central CDS debtor property. When coupling the central CDS debtor property with covered

CDS, a certain kind of credit default swaps introduced in [SSB20], we show that there exist a

polynomial time algorithm for computing exact clearing recovery rate vectors.

In Chapter 5, we presented results regarding the rational and irrational solutions for general

instances of the examined problem. Specifically we established structural conditions that are suf-

ficient for irrational/rational solutions to emerge. Finally in the last Chapter, we studied the

framework where a financial regulator can determine priority payments for the banks in a financial

system and established a set of NP-hardness results that stem out from the task of finding the

optimal priority list for each bank so as to satisfy certain objective functions of interest tied to the

financial network.

The presented work contributes in future theoretical studies on connections among financial

systems and computation, as well as in constructing empirical and heuristic-based methods oriented

towards financial applications. We propose a set of future research directions below.

• Whether the bound of Theorem 6 is tight is the main open question. Our intuition is that

for higher bounds the financial gate analysis should induce less errors. This is achieved by

reducing the number of CDS contracts in the presented reduction, which in our opinion is

challenging.

• In light of the growing interest in exploring the smoothed complexity of problems associated

127

with the class PPAD, another research direction could be to examine the smooth complexity

of CDS-CLEARING.

• In absence of pure algorithmic methods, the empirical investigation of the problem can be

initiated by referring to the presented programs in Chapter 5. Work in this line of research

could contribute in clearing mechanisms and heuristic methods for monitoring systemic risk

in complex financial networks as well as providing a better understanding of the problem.

• Finally an interesting challenge would be devising clearing algorithms based on reinforcement

learning methods. This line of research would captivate the interest of both the finance and

machine learning community.

128

Bibliography

[AOTS15] Daron Acemoglu, Asuman Ozdaglar, and Alireza Tahbaz-Salehi. Systemic risk and

stability in financial networks. American Economic Review, 105(2):564–608, 2015.

[BCSS98] Lenore Blum, Felipe Cucker, Michael Shub, and Steve Smale. Complexity and real

computation. Springer Science & Business Media, 1998.

[BFHT85] A. Borodin, R. Fagin, J. E. Hopcroft, and M. Tompa. Decreasing the nesting depth

of expressions involving square roots. Journal of Symbolic Computation, 1(2):169–188,

1985.

[BHH21] Eleni Batziou, Kristoffer Arnsfelt Hansen, and Kasper Høgh. Strong approximate

consensus halving and the borsuk-ulam theorem. In ICALP, volume 198 of LIPIcs,

pages 24:1–24:20. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2021.

[BHS20] Nils Bertschinger, Martin Hoefer, and Daniel Schmand. Strategic payments in financial

networks. In Thomas Vidick, editor, 11th Innovations in Theoretical Computer Science

Conference, ITCS 2020, January 12-14, 2020, Seattle, Washington, USA, volume 151

of LIPIcs, pages 46:1–46:16. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2020.

[BMS81] A. Bertoni, G. Mauri, and N. Sabadini. A characterization of the class of functions

computable in polynomial time on random access machines. In Proceedings of the

Thirteenth Annual ACM Symposium on Theory of Computing (STOC 1981), pages

168–176. Association for Computing Machinery, 1981.

[CDT09] Xi Chen, Xiaotie Deng, and Shang-Hua Teng. Settling the complexity of computing

two-player Nash equilibria. J. ACM, 56(3):14:1–14:57, 2009.

129

[CFS05] Rodrigo Cifuentes, Gianluigi Ferrucci, and Hyun Song Shin. Liquidity risk and conta-

gion. Journal of the European Economic association, 3(2-3):556–566, 2005.

[DFHM22] Argyrios Deligkas, John Fearnley, Alexandros Hollender, and Themistoklis Melissour-

gos. Pure-circuit: Strong inapproximability for PPAD. In 63rd IEEE Annual Sympo-

sium on Foundations of Computer Science, FOCS 2022, Denver, CO, USA, October

31 - November 3, 2022, pages 159–170. IEEE, 2022.

[DFHM23] Argyrios Deligkas, John Fearnley, Alexandros Hollender, and Themistoklis Melissour-

gos. Tight inapproximability for graphical games. In Proceedings of the AAAI Confer-

ence on Artificial Intelligence, volume 37, pages 5600–5607, 2023.

[DGP09] Constantinos Daskalakis, Paul W Goldberg, and Christos H Papadimitriou. The com-

plexity of computing a Nash equilibrium. Communications of the ACM, 52(2):89–97,

2009.

[DH24] Jérémi Do Dinh and Alexandros Hollender. Tight inapproximability of nash equilibria

in public goods games. CoRR, abs/2402.14198, 2024.

[EGJ14] Matthew Elliott, Benjamin Golub, and Matthew O Jackson. Financial networks and

contagion. American Economic Review, 104(10):3115–53, 2014.

[EHMS14] Kousha Etessami, Kristoffer Arnsfelt Hansen, Peter Bro Miltersen, and Troels Bjerre

Sørensen. The complexity of approximating a trembling hand perfect equilibrium of a

multi-player game in strategic form. In Algorithmic Game Theory: 7th International

Symposium, SAGT 2014, Haifa, Israel, September 30–October 2, 2014. Proceedings 7,

pages 231–243. Springer, 2014.

[EN01] Larry Eisenberg and Thomas H Noe. Systemic risk in financial systems. Management

Science, 47(2):236–249, 2001.

[EUB] Euro-parliament bans ’naked’ credit default swaps. EUBusiness. https://www.

eubusiness.com/news-eu/finance-economy-cds.dij.

[EY10] Kousha Etessami and Mihalis Yannakakis. On the complexity of Nash equilibria and

other fixed points. SIAM J. Comput., 39(6):2531–2597, 2010.

130

https://www.eubusiness.com/news-eu/finance-economy-cds.dij
https://www.eubusiness.com/news-eu/finance-economy-cds.dij

[FGH+23] Aris Filos-Ratsikas, Yiannis Giannakopoulos, Alexandros Hollender, Philip Lazos, and

Diogo Poças. On the complexity of equilibrium computation in first-price auctions.

SIAM J. Comput., 52(1):80–131, 2023.

[FGHK24] Aris Filos-Ratsikas, Yiannis Giannakopoulos, Alexandros Hollender, and Charalampos

Kokkalis. On the computation of equilibria in discrete first-price auctions. CoRR,

abs/2402.12068, 2024.

[FHHH21] Aris Filos-Ratsikas, Kristoffer Arnsfelt Hansen, Kasper Høgh, and Alexandros Hollen-

der. FIXP-membership via convex optimization: Games, cakes, and markets. In FOCS,

pages 827–838. IEEE, 2021.

[Fit90] Melvin Fitting. First-Order Logic and Automated Theorem Proving. Texts and Mono-

graphs in Computer Science. Springer, 1990.

[GH21] Paul W. Goldberg and Alexandros Hollender. The hairy ball problem is PPAD-

complete. J. Comput. Syst. Sci., 122:34–62, 2021.

[GY15] Paul Glasserman and H Peyton Young. How likely is contagion in financial networks?

Journal of Banking & Finance, 50:383–399, 2015.

[HK12] Sebastian Heise and Reimer Kühn. Derivatives and credit contagion in interconnected

networks. The European Physical Journal B, 85(4):1–19, 2012.

[HK16] Brett Hemenway and Sanjeev Khanna. Sensitivity and computational complexity in

financial networks. Algorithmic Finance, 5(3-4):95–110, 2016.

[HL18] Kristoffer Arnsfelt Hansen and Troels Bjerre Lund. Computational complexity of

proper equilibrium. In EC, pages 113–130. ACM, 2018.

[HL21] Kristoffer Arnsfelt Hansen and Troels Bjerre Lund. Computational complexity of com-

puting a quasi-proper equilibrium. In International Symposium on Fundamentals of

Computation Theory, pages 259–271. Springer, 2021.

[HW22] Martin Hoefer and Lisa Wilhelmi. Seniorities and minimal clearing in financial network

games. In SAGT, volume 13584 of Lecture Notes in Computer Science, pages 187–204.

Springer, 2022.

131

[HZHW12] Daning Hu, J Leon Zhao, Zhimin Hua, and Michael CS Wong. Network-based modeling

and analysis of systemic risk in banking systems. MIS quarterly, pages 1269–1291, 2012.

[IDKV22] Stavros D Ioannidis, Bart De Keijzer, and Carmine Ventre. Strong approximations and

irrationality in financial networks with derivatives. In 49th International Colloquium

on Automata, Languages, and Programming (ICALP 2022). Schloss Dagstuhl-Leibniz-

Zentrum für Informatik, 2022.

[IdKV23a] Stavros D. Ioannidis, Bart de Keijzer, and Carmine Ventre. Clearing financial networks

with derivatives: From intractability to algorithms. CoRR, abs/2312.05139, 2023.

[IDKV23b] Stavros D Ioannidis, Bart De Keijzer, and Carmine Ventre. Financial networks with

singleton liability priorities. Theoretical Computer Science, 963:113965, 2023.

[IMF] Lasting effects: The global economic recovery 10 years af-

ter the crisis. IMFBlogs. https://blogs.imf.org/2018/10/03/

lasting-effects-the-global-economic-recovery-10-years-after-the-crisis/.

[JP21] Matthew O Jackson and Agathe Pernoud. Systemic risk in financial networks: A

survey. Annual Review of Economics, 13:171–202, 2021.

[JP24] Matthew O Jackson and Agathe Pernoud. Credit freezes, equilibrium multiplicity, and

optimal bailouts in financial networks. The Review of Financial Studies, page hhad096,

2024.

[KKZ21a] Panagiotis Kanellopoulos, Maria Kyropoulou, and Hao Zhou. Financial network games.

In Proceedings of the Second ACM International Conference on AI in Finance, pages

1–9, 2021.

[KKZ21b] Panagiotis Kanellopoulos, Maria Kyropoulou, and Hao Zhou. Financial network games.

In ICAIF, pages 26:1–26:9. Association for Computing Machinery, 2021.

[KKZ22] Panagiotis Kanellopoulos, Maria Kyropoulou, and Hao Zhou. Forgiving debt in fi-

nancial network games. In AAMAS, pages 1651–1653. International Foundation for

Autonomous Agents and Multiagent Systems (IFAAMAS), 2022.

132

https://blogs.imf.org/2018/10/03/lasting-effects-the-global-economic-recovery-10-years-after-the-crisis/
https://blogs.imf.org/2018/10/03/lasting-effects-the-global-economic-recovery-10-years-after-the-crisis/

[KKZ23] Panagiotis Kanellopoulos, Maria Kyropoulou, and Hao Zhou. Debt transfers in financial

networks: Complexity and equilibria. In AAMAS, pages 260–268. ACM, 2023.

[KT06] Jon Kleinberg and Eva Tardos. Algorithm design. Pearson Education India, 2006.

[LPT17] Matt Leduc, Sebastian Poledna, and Stefan Thurner. Systemic risk management in fi-

nancial networks with credit default swaps. The Journal of Network Theory in Finance,

5, 01 2017.

[MP91] Nimrod Megiddo and Christos H. Papadimitriou. On total functions, existence theo-

rems and computational complexity. Theor. Comput. Sci., 81(2):317–324, 1991.

[Pap94a] Christos H. Papadimitriou. Computational complexity. Addison-Wesley, 1994.

[Pap94b] Christos H Papadimitriou. On the complexity of the parity argument and other inef-

ficient proofs of existence. Journal of Computer and system Sciences, 48(3):498–532,

1994.

[PW20] Pál András Papp and Roger Wattenhofer. Network-aware strategies in financial sys-

tems. In ICALP, volume 168 of LIPIcs, pages 91:1–91:17. Schloss Dagstuhl - Leibniz-

Zentrum für Informatik, 2020.

[PW21a] Pál András Papp and Roger Wattenhofer. Debt swapping for risk mitigation in financial

networks. In EC, pages 765–784. ACM, 2021.

[PW21b] Pál András Papp and Roger Wattenhofer. Sequential defaulting in financial networks.

In ITCS, volume 185 of LIPIcs, pages 52:1–52:20. Schloss Dagstuhl - Leibniz-Zentrum

für Informatik, 2021.

[PW22] Pál András Papp and Roger Wattenhofer. Default ambiguity: finding the best solution

to the clearing problem. In Web and Internet Economics: 17th International Con-

ference, WINE 2021, Potsdam, Germany, December 14–17, 2021, Proceedings, pages

391–409. Springer, 2022.

[Rub15] Aviad Rubinstein. Inapproximability of Nash equilibrium. In Proceedings of the forty-

seventh annual ACM symposium on Theory of computing, pages 409–418, 2015.

133

[RV13] Leonard CG Rogers and Luitgard AM Veraart. Failure and rescue in an interbank

network. Management Science, 59(4):882–898, 2013.

[Sch79] A. Schönhage. On the power of random access machines. In 8th International Col-

loquium on Automata, Languages and Programming (ICALP 1979), volume 71, pages

520–529. Springer, 1979.

[SM06] Charles Smithson and David Mengle. The promise of credit derivatives in nonfinancial

corporations (and why it’s failed to materialize). Journal of Applied Corporate Finance,

18(4):54–60, 2006.

[SS21] Steffen Schuldenzucker and Sven Seuken. Portfolio compression in financial networks:

Incentives and systemic risk. Available at SSRN 3135960, 2021.

[SSB17a] Steffen Schuldenzucker, Sven Seuken, and Stefano Battiston. The computational com-

plexity of clearing financial networks with credit default swaps. CoRR, abs/1710.01578,

2017.

[SSB17b] Steffen Schuldenzucker, Sven Seuken, and Stefano Battiston. Finding clearing payments

in financial networks with credit default swaps is PPAD-complete. In ITCS, volume 67

of LIPIcs, pages 32:1–32:20. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2017.

[SSB20] Steffen Schuldenzucker, Sven Seuken, and Stefano Battiston. Default ambiguity: Credit

default swaps create new systemic risks in financial networks. Manag. Sci., 66(5):1981–

1998, 2020.

[Tiw92] P. Tiwari. A problem that is easier to solve on the unit-cost algebraic RAM. Journal

of Complexity, 8(4):393–397, 1992.

[Yan09] Mihalis Yannakakis. Equilibria, fixed points, and complexity classes. Computer Science

Review, 3(2):71–85, 2009.

134

	Introduction
	The Subject of Study
	Contribution
	Significance
	Technical and Conceptual Innovations
	Literature

	Preliminaries
	Financial Networks with Derivatives
	Financial Networks
	Payment schemes
	Clearing Recovery Rate Vectors

	The Clearing Problem
	[cdsclearing]CDS-CLEARING & [cds-priority-clearing]CDS-PRIORITY-CLEARING
	Irrational Solutions
	Approximation concepts

	Computational Challenges
	Computing Strong Approximations
	The Complexity Class FIXP
	FIXP-Completeness of CDS-CLEARING
	Financial System Gadgets
	Financial System Gadgets for Singleton Liability Priorities

	Computing Weak Approximations
	-CDS-CLEARING
	The PURE-CIRCUIT Problem
	PPAD-hardness of -CDS-CLEARING
	Central CDS debtors & Dedicated CDS debtors

	Algorithmic Approaches
	Optimisation-Based Computation of Clearing Vectors
	Mixed-Binary Linear Program for Central CDS debtors
	Mixed-Binary Nonlinear Program for CDS-CLEARING

	Central CDS debtors with covered CDSes

	Rational and Irrational Solutions
	A Sufficient Structural Condition for Irrational Solutions
	Switched Cycles
	Rewriting Rules for Strongly Switched Cycles
	Irrationality of [switchcycle]Strongly Switched Cycles

	Financial Systems with Guaranteed Rational Solutions

	Hardness of Deciding Priority Profiles
	Maximising the Equity of a Specific Bank
	Minimising Defaulting Banks and Partially Paid Liabilities
	Minimising Activated CDS Contracts
	Maximising Systemic Liquidity

	Conclusion & Future Work

