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Abstract

Recent advances in many fields ranging from engineering to natural science, require
increasingly complicated optimization tasks in the experiment design, for which the target
objectives are generally in the form of black-box functions that are expensive to evaluate.
In a common formulation of this problem, a designer is expected to solve the black-box
optimization tasks via sequentially attempting candidate solutions and receiving feedback
from the system. This thesis considers Bayesian optimization (BO) as the black-box
optimization framework, and investigates the enhancements on BO from the aspects of
efficiency, adaptation and reliability.

Generally, BO consists of a surrogate model for providing probabilistic inference and
an acquisition function which leverages the probabilistic inference for selecting the next
candidate solution. Gaussian process (GP) is a prominent non-parametric surrogate model,
and the quality of its inference is a critical factor on the optimality performance of BO. In
many applications, the inherent randomness of the optimization problem caused by the
environment conditions may lead to data distribution shift. To enable efficient and adaptive
BO in auxiliary optimization tasks, i.e., reaching sub-optimal performance within limited
attempts, transfer Bayesian meta-learning is adopted to generalize the surrogate model to
address the data distribution shift.

Subsequently, the efficiency and adaptation of meta-learned BO is investigated on a
simulated radio resource management (RRM) problem with discrete search space. While
the regularity assumptions in GP hold only for continuous input space, this study also
formulates the stochastic multi-armed bandit (MAB) model with Bayesian meta-learning
for comparison. To further improve the efficiency and adaptation of both BO and MAB
schemes, this study introduces a novel mechanism to configure optimizer models with
knowledge transferred from graph-based contextual information built upon dynamic net-
work topology.

Furthermore, this study covers the efficiency improvement of multi-fidelity BO (MFBO)
with auxiliary optimization tasks addressed sequentially in a fully online manner. To
mitigate the problem of evaluating costly objective functions, multi-fidelity optimization
setting assumes the designer has access to approximations of the objective functions rather
than directly evaluating true objectives, for which higher fidelity evaluations account for
better approximations with larger costs. This work devises a novel information-theoretic
acquisition function that balances the need to acquire information about the current task
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with the goal of collecting information transferable to future tasks. The knowledge transfer,
represented by inter-task latent variables, is implemented via particle-based variational
Bayesian updates.

Theoretical studies on reliability of BO in sequential black-box optimization with
safety constraints on the search space are also covered in this work. The reliability refers to
a formal guarantee that the designer is constrained to limit the number of unsafe solutions
that are attempted throughout the optimization process in regardless of the assumptions
on the surrogate model and evaluations noise level. Online conformal prediction (CP)
is adopted in this study to calibrate the set of safe solutions provided by the surrogate
model, and obtain the theoretical guarantee by allowing for an arbitrary, controllable but
non-zero, rate of violation of the safety constraint. The proposed method is validated on
both synthetic and real-world data.
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Chapter 1

Introduction

The success of many real-world applications ranging from natural science to engineering
critically relies on trials and corresponding system responses. The overall goal is to manip-
ulate a set of variables, namely candidate solutions, to achieve a desired objective value
of interest. For instance, chemists attempt costly experiments with numerous parametric
configurations to improve the yield of industrial process or determine conditions for the
preparation of medicinal candidates [154]. In a similar manner, industrial manufacturers
search for optimal design parameters, including timing control in medical robots [33],
quantum heterodyne detection experimental design [164], and beam management in wire-
less communication systems [201]. Such problems can collectively be formulated as
black-box optimizations, for which the objective to be optimized is usually expensive to
evaluate and the analytical expression of the objective function is unavailable.

One of the promising tools for black-box optimization problems is Bayesian opti-
mization (BO) [122] which produces candidate solutions approaching global optimum
in limited number of attempts without access to gradient information for the objective
functions. In order to adapt BO to complicated systems where the designer is faced with
a dynamic environment generating auxiliary optimization tasks, knowledge-transferring
paradigm is introduced to generalize the surrogate model that BO uses for candidate
solution acquisition process. Moreover, the efficiency of BO can be further improved by
leveraging information extracted from evaluating cheaper approximations of the target
objective function, such that the cost of attempts made to the physical system can be
significantly reduced [44].

On the other hand, the reliability of BO is reflected on a controllable risk of querying
undesirable search spaces imposed by safety critics during the sequential optimization
process. Examples include designing effective antibiotics while minimizing the potential
risk of severe side effects [171], and optimizing motion controller tracking performance
while avoiding system instabilities [86]. Therefore, post-processing mechanism for safety
constraint surrogate model is required to provide reliable uncertainty estimates on the
inferences that are used to define safe exploration regions.
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1.1 Overview

optimizer

surrogate model acquisition

…

radio resource 
management

approximations 
and costs

task sequence

safety check

Figure 1.1 Overview of the scope of this work. The common fundamentals of BO al-
gorithms (blue circle) are introduced in Chapter 2 and extensions on applying transfer
Bayesian meta-learning are included in Chapter 3. Offline meta-learned BO (orange loop)
applied to wireless radio resource management is investigated in Chapter 4. While on-
line sequential multi-task multi-fidelity BO (green loop) based on across-task knowledge
transfer is studied in Chapter 5. Finally, safe BO (pink loop) with theoretical guarantee
achieved by online conformal prediction is introduced in Chapter 6.

In the following sections, we will first overview the main focus of our study, and then
review the literature of BO and meta-learning, which constitutes the basis of this thesis.

1.1 Overview

In this work, we mainly focus on developing Bayesian methods to enable efficient black-
box optimization adapted to multiple auxiliary optimization tasks in both online and
offline manners, as well as on providing theoretical safety guarantee for online constrained
optimization problems.

The corresponding scenarios of interest for our study are outlined as follows:

• As shown in Fig. 1.1, the key component of performing efficient BO on multiple
optimization tasks is the surrogate model implementation. While the data distribution
for training dataset may vary from target test data distribution, one can seek to
improve the capacity of the surrogate model for better generalization. This is
the case of interest in Chapter 3, in which we demonstrate how to address data
distribution shift via transfer Bayesian meta-learning.

• The previous study on generalizing surrogate model provides the basis of efficient
BO adapted to multiple optimization tasks. In Chapter 4, we investigate the capability
of the meta-learned optimizers in a wireless resource allocation problem where the
diverse topologies of the mobile devices represent data distribution shift, as seen in
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1.2 Bayesian Optimization

orange loop in Fig. 1.1. Furthermore, we will introduce in this work a context-based
meta-optimization strategy, in which the mapping from graph-based contextual
information about the network topology to power allocation parameters is optimized.

• For the case in which the optimization tasks arrive in a sequence, as shown in green
loop in Fig. 1.1, the across-task knowledge transfer works simultaneously with the
candidate solution selection process in an online manner. And in each optimization
task, given limited evaluation budget, the optimizer may have access to cheaper
approximations to the optimization target, i.e., lower fidelity levels. The efficiency of
BO in terms of evaluation cost can be further improved by a multi-task multi-fidelity
optimization mechanism. In Chapter 5, we will introduce an information-theoretic
acquisition function that balances the need to acquire information about the current
task with the goal of collecting information transferable to future tasks.

• Finally, we turn our focus to the situations where safety requirement is considered
in the optimization process. With the safety constraints interpreted as black-box
functions, the search space for objective function is partitioned into several safe
regions, as shown in pink loop in Fig. 1.1. To mitigate the risk of causing harm
to the physical system, a reliable BO algorithm is required to achieve controllable
safety violation rate in the optimization process with formal guarantee. This is the
case of interest in Chapter 6, we introduce how online conformal prediction (CP)
calibrates the sets of safe candidate solutions and provides both deterministic and
probabilistic safety guarantee.

1.2 Bayesian Optimization

BO is a popular framework for expensive-to-evaluate black-box optimization problems,
and it has been widely applied to problems as diverse as biomolecular design [38], chemical
experiments design [138], solar irradiance forecasting [118] and automatic detection of
bearing localized defect [66]. Notably, BO can provide a more flexible solution that does
not require access to gradient information for the objective function and can potentially
reduce convergence time as compared to reinforcement learning [112].

Fundamentally, BO consists of two main ingredients: a probabilistic surrogate model
that perform Bayesian statistical inference over the unknown objective function to describe
the data generation mechanism, and an acquisition function for selecting the next candidate
solution to evaluate. After querying the objective function with the chosen candidate,
the surrogate model is calibrated to provide a more informative belief over the objective
function [152].

The probabilistic surrogate model encodes the current belief of the optimizer about
the objective function, and then provides predictions with uncertainty estimates. Gaussian
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1.2 Bayesian Optimization

process (GP) [142] is a typical instance of non-parametric probabilistic surrogate model,
which places a Gaussian prior distribution over the space of the objective function, and
updates to a posterior distribution that depicts the potential output values of querying a
candidate input. Alternatively, other common choices of probabilistic surrogate models
include scalable models, such as Bayesian neural network (BNN) [87] as well as gradient
boosting machines [49]; and likelihood free models based on tree-structured Parzen
estimator (TPE) [12].

With the statistical inference provided by the surrogate model, the acquisition function
selects the next candidate solution that brings the maximum gain in the considered measure
over search space. Specifically, probability of improvement (PI), expected improvement
(EI) [74] and knowledge gradient (KG) [46] follow a greedy search policy probing candi-
date solutions that are likely to improve upon incumbent objective value. In particular, KG
along with its variants follow a look-ahead strategy which updates the posterior distribution
with hypothetical data and then optimizes the expected gain on the mean estimates. Alterna-
tively, upper confidence bound (UCB) or lower confidence bound (LCB) [161, 162] adopt
an optimistic policy that balances between the most uncertain solutions and the current
best candidates via calibrated credible intervals. While information-theoretic acquisition
functions including entropy search (ES) [60] and Thompson sampling (TS) [177] focus on
the posterior distribution over the position of global optimal solution.

1.2.1 Multi-Fidelity BO

BO has been extended to address multi-fidelity – also known as multi-task or multi-
information source – settings [125, 172, 141]. The context of multi-fidelity optimization
refers to the scenarios where the designer is restricted with some evaluation budget and
has access to cheaper approximations of the optimization objective. Via multi-fidelity
BO (MFBO), information collected at lower fidelity levels can be useful to accelerate the
optimization process when viewed as a function of the overall cost budget for evaluating
the objective function.

Prior works developed MFBO by building on standard BO acquisition functions,
including EI in [91], UCB in [78], and KG in [141, 192]. EI-based MFBO does not
account for the level of uncertainty in the surrogate model. This issue is addressed by
UCB-based approaches, which, however, require a carefully selected parameter to balance
exploitation and exploration. Finally, although KG-based methods achieve efficient global
optimization without hyperparameters in the acquisition function, empirical studies in
[125] show that they incur a high computational overhead.

In order to mitigate the limitations of the aforementioned standard acquisition functions,
reference [172] introduced an information-theoretic acquisition function based on ES.
Intuitively, ES-based MFBO seeks for the next candidate solution by maximizing the
information gain per unit cost. Accordingly, the ES-based acquisition functions aim to
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reduce the uncertainty about the global optimum, rather than to improve the current best
solution as in EI- and KG-based methods, or to explore the most uncertain regions as in
UCB-based approaches. However, the key challenge of implementing ES-based methods
is the high computation load raised by candidates sampling, as the analytical expressions
of the acquisition functions are usually unavailable and approximated by various sampling
schemes.

Reference [126] reduced the computation load of ES-based MFBO via max-value
entropy search (MES) [188]; while the work [174] investigated parallel MFBO extensions.
Theoretical and empirical comparisons between a light-weight MF-MES framework and
other MFBO approaches are carried out in [125]. As shown recently in [120], the robustness
of MF-MES can be guaranteed by introducing a novel mechanism of pseudo-observations
when the feedback from lower fidelity levels is unreliable.

In Chapter 5 of this study, we investigate how to perform MFBO with across-task
transferable Max-value entropy search for the purpose of tackling multiple successive
optimization tasks.

1.2.2 BO with Safety Constraints

Beyond optimizing the objective function, safe exploration in the optimization process is
crucial in some applications as well. The context of safety in black-box optimization prob-
lems generally refers to imposing some unknown constraint functions over the candidate
search space. Accordingly, the constraint functions can also be modelled by independent
or joint surrogate models with respect to the objective function.

Existing constrained sequential black-box zero-th order optimizers that leverage BO,
collectively referred as Safe-BO schemes, target a strict safety requirement whereby no
safety violations are allowed. Accordingly, all candidate solutions attempted by the
optimizer must be safe [167, 13, 168, 179, 146]. Such stringent safety requirements can
only be guaranteed by making strong assumptions on the knowledge available regarding
the safety constraint function. In particular, all the existing works on Safe-BO, with a
notable exception of [146], either assume knowledge of the smoothness properties of the
constraint function when dealing with deterministic constraint function [167, 168, 13, 179],
or treating the constraint function as a random realization of a GP with a known kernel
when dealing with random constraint function [13].

When the mentioned assumptions or the surrogate model on the constraint function are
invalid or infeasible, the existing methods cannot provide any formal safety guarantees.
In order to mitigate this problem, reference [146] proposed to apply meta-learning [22]
to estimate a suitable surrogate model for the constraint function using additional data
that are assumed to be available from other, similar, optimization problems. However, no
formal safety guarantees are available for the approach.
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1.3 Meta-Learning

In a related line of work, the constrained BO approaches in [54, 62, 53] target a
constrained optimization problem, but allow unlimited safety violations during the op-
timization process for producing an optimal and safe candidate solution at final step.
More recent references [114, 199] considered an explicit budget of safety violations for
probabilistic constraints, but did not provide any formal safety guarantees.

In Chapter 6 of this study, we introduce a novel BO-based optimization strategy
providing assumptions-free guarantees on the safety level of the attempted candidate
solutions, while enabling any non-zero target safety violation level.

1.3 Meta-Learning

Meta-learning, or learning to learn, is a general paradigm for the design of machine learning
algorithms that can transfer shared knowledge from data related to different tasks, to any
new, related, task. Knowledge is transferred in the form of an optimized inductive bias
that can be realized via a prior over the weights of neural networks [5], an initialization of
gradient descent [41], or an embedding space shared across auxiliary tasks [181], among
other solutions. This paradigm aims to deal with key challenges in many machine learning
frameworks, such as restricted availability of training data or computation resources, model
generalization, and fast adaptation [65].

Meta-learning is markedly distinct to other knowledge-transferring paradigms such as
transfer learning or continual learning. In fact, transfer learning focuses on the optimization
of a model for a specific target task given data from a given source task [132]. This yields
a pre-trained model with good initializations on the past experience, which can be further
fine-tuned on the tasks of interest. In contrast, meta-learning optimizes an adaptation
procedure – representing an inductive bias – that can be applied to any, a priori unknown,
related task [156].

Knowledge transfer in continual or lifelong learning [184, 133] refers to learning on a
stream of tasks generated from a distribution varying over time, with particular focus on
fast adaptation in current task as well as without forgetting previous tasks, i.e., catastrophic
forgetting. However, the learning objective at meta-level, i.e., generalization and fast
adaptation in regardless of non-stationary task distribution, is not explicitly solved in
continual learning. To cope with a sequence of tasks, reference [42] introduced an online
meta-learning framework based on follow the leader mechanism in online learning, and
demonstrated a lower theoretical guarantee on the regret performance. Furthermore, the
critical concern on the scalability of buffering previous tasks data is solved in [1] via
sequentially updating a fixed-size state-vector.

Applications of meta-learning to communication systems are currently limited to
deep neural network (DNN) based models, and encompass demodulation [135], channel
prediction [136], beamforming [200], feedback design [106], and power control via graph
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neural networks [131]. We refer to [22] for an extensive review. As shown recently in
[146, 130], meta-learning can be combined with BO to achieve convergence and safe
exploration within a smaller number of iterations. Applications of this methodology to
resource allocation have yet to be explored.

In Chapter 3 and 4 of this study, we first illustrate how to develop transfer Bayesian
meta-learning for regression problems, then demonstrate the efficiency and adaptation of
meta-learned BO in the wireless radio resource management problem.
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Chapter 2

Preliminaries

In this Chapter, we start with the fundamentals of the probabilistic surrogate model selected
in this study – Gaussian process (GP). Afterwards, we brief the standard acquisition
functions considered in later chapters.

2.1 Gaussian Process

GP regression is a common statistical approach serving as the probabilistic surrogate model
in Bayesian optimization (BO) algorithms. We provide a brief introduction on the basis of
GP regression along with a few simple examples in this section. A more comprehensive
study on GP can be found in [142].

Consider an unknown scalar-valued function g(x) with input x ∈ Rd. GP models
such a function by assuming that, for any finite collection (x1, ...,xN ) of inputs, the
corresponding outputs (g(x1), ...,g(x1)) follow a multivariate Gaussian distribution. The
Gaussian distribution is characterized by a mean function µ(x) with x ∈Rd, and kernel
function κ(x,x′) for x,x′ ∈Rd [142]. Intuitively, the goal of selected kernel function is
to quantify the similarity between any pairs of inputs x and x′. Larger positive outputs
of the kernel function reflect more similar pairs of inputs, encoding the belief that the
corresponding function values are closer than those of more diverse input pairs. An
example of a kernel function is the radial basis function (RBF) kernel, or Gaussian kernel,
represented as

κ(RBF)(x,x′) = exp(−h||x−x′||22), (2.1)

which depends on a lengthscale parameter h > 0. Alternatively, one may consider a more
general expression of (2.1), namely Matern kernel, expressed as

κ(Matern)(x,x′) =
1

Γ(ν)2ν−1

(
h
√
2ν||x−x′||22

)ν
kν(h
√
2ν||x−x′||22), (2.2)
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2.1 Gaussian Process

Figure 2.1 GP regression on a single objective function using Gaussian (RBF) kernel and
Matern kernel with lengthscale h= 0.5 and h= 2.0, the smoothness parameter is fixed to
be ν = 1.5 for Matern kernel. The blue dashed line is the target objective function, while
orange solid lines and shadowing regions represent mean prediction and 95% confidence
intervals provided by GP, respectively.

where parameter ν controls the smoothness of the function; Γ(·) is the Gamma function; and
kν(·) is a modified Bessel function of the second kind. With the smooth parameter ν→∞,
the Matern kernel in (2.2) recovers the RBF kernel in (2.1) with the same lengthscale.

Specifically, for given inputs (x1, ...,xN ), collectively denoted as X, the output vector
(g(x1), ...,g(x1)) follows a Gaussian prior distributionN (µµµ(X),K(X)), with N×1 mean
vector µµµ(X) = [µ(x1), ...,µ(xN )]T, and N×N covariance matrix K(X) with each (n,n′)-
th entry given by any selected kernel function κ(xn,xn′).

Assume that the output g(x) is observed in the presence of independent Gaussian noise
as

y = g(x)+ ϵ (2.3)

with ϵ∼N (0,σ2), such that, we have the Gaussian likelihood distribution of noisy obser-
vation y conditioned on the scalar function output g(x), expressed as

p(y|g(x)) =N (y|g(x),σ2). (2.4)

Observations are modelled as conditionally i.i.d.. Therefore, We write as y= [y1, ...,yN ]T

the N ×1 vector collecting the noisy outputs (2.3) for inputs (x1, ...,xN ), and let g(X) be
the N ×1 vector of outputs of the scalar function g(·), i.e., g(X) = [g(x1), . . . ,g(xN )]T,
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2.2 Bayesian Optimization

we have the conditional distribution

p(y|g(X)) =
N

∏
n=1

p(y|g(xn)). (2.5)

An important property of GPs is that, given the history O = (X,y) of previous ob-
servations y for inputs X, the posterior distribution p(g(x)|O) of a new output g(x)
corresponding to any input x has a Gaussian distribution with mean µ(x|O) and variance
σ2(x|O), i.e.,

p(g(x)|O) =N (µ(x|O),σ2(x|O)), (2.6)

with µ(x|O) = µ(x)+κκκ(x)T(K(X)+σ2IN )−1(y−µµµ(X)), (2.7)

and σ2(x|O) = κ(x,x)−κκκ(x)T(K(X)+σ2IN )−1κκκ(x), (2.8)

with N × 1 cross-variance vector κκκ(x) = [κ(x,x1), . . . ,κ(x,xN )]T and identity matrix
IN ∈ RN×N . The posterior mean function µ(x|O) can be interpreted as a weighted
average between prior mean µ(x) and an estimate of objective values y with a weight
relying on the kernel function. While the posterior variance σ2(x|O) is represented by the
prior covariance after reducing uncertainty due to observing inputs X.

Obviously, the Bayesian statistical inference provided by GP depends on the selection
of kernel function as well as the parametric configuration in the kernels. We plot the impacts
of kernel type and lengthscale parameter setting on GP regression for a single objective
function in Fig. 2.1. With increasing lengthscale parameter h, the function approximated
by GP regression is more smooth for both kernel types, while smaller lengthscale values
depict more details of the inference. Notably, Matern kernel is preferable for objective
functions with abrupt jump, and Gaussian kernel fits well on smooth enough objective
functions.

2.2 Bayesian Optimization

Upon the statistical inference provided by GP in (2.6), Bayes optimizer selects the next
candidate solution to attempt via optimizing an analytical acquisition function. We briefly
introduce three acquisition functions considered as the basis in this section.

2.2.1 Expected Improvement

The greedy search policy based acquisition function – expected improvement (EI) is
arguably the most common acquisition function in various BO studies. The principle
was first introduced in [121], and then applied with GP for optimization in [74]. In the
sequential optimization problems, EI computes the average positive increment in the
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function g(xn+1) evaluated at xn+1 based on the GP inference in (2.6) [71]. Defining as
y∗n =max{y1, ...,yn} the current best observed objective value, the EI acquisition function
is defined as

F (x|O) =
[
µ(x|O)−y∗n− ξ

]
Φ(δ)+σ2(x|O)ϕ(δ), (2.9)

where

δ =
µ(x|O)−y∗n− ξ

σ2(x|O) ; (2.10)

GP mean function µ(x|X, f̃) and variance function σ2(x|X, f̃) are given as in (2.7) and
(2.8), respectively; ξ ∈ [0,1) is an exploration parameter; and Φ(·) and ϕ(·) are the standard
Gaussian cumulative and probability density function, respectively. For a risk-sensitive
system with a well-specified GP prior, we may choose small ξ (e.g., ξ = 0.01 or even
ξ = 0). In contrast, where the GP prior is not tailored to the target optimization problem,
one can select larger values of ξ to enable more explorations [112].

To this end, BO selects the next candidate solution xn+1 at round n+1 via maximizing
the EI function in (2.9) over the search space, represented as

xn+1 = argmax
x∈X

F (x|O). (2.11)

In practice, one may adopt gradient descent methods to solve (2.11), e.g., using quasi-
Newton method L-BFGS-B as in [103].

However, EI estimates rely on the accuracy of the best observed value so-far, its
optimization performance degrades with increasing observation noise power σ2. In this
case, one may consider alternative acquisition functions which quantify the uncertainty in
the optimization process.

2.2.2 Upper Confidence Bound

The optimistic policy based acquisition function – GP upper confidence bound (GP-UCB)
is a common way of negotiating exploration and exploitation in optimization process. It was
first proposed in [161], and comprehensively analyzed in [162] with theoretical cumulative
regret bound. Let us assume the target optimization problem is a maximization problem
(minimization problems correspond to lower confidence bound). GP-UCB computes the
upper confidence bound over the function input space based on the GP posterior mean
(2.7) and variance (2.8), expressed as

α(UCB)(x|O) = µ(x|O)+βnσ(x|O), (2.12)
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where βn is a scaling parameter. Similar to the exploration parameter ξ for EI in (2.9), this
scaling parameter determines the optimism level of the optimizer on whether exploring
most uncertainty input regions or exploiting the high performance candidate solutions.
Reference [162] provides theoretical guidelines on updating this scaling parameter to
achieve optimal regret performance.

To this end, GP-UCB picks the next candidate solution xn+1 at optimization round n+1

by maximizing the optimistic estimate in (2.12) over the entire search space, represented
as

xn+1 = argmax
x∈X

α(UCB)(x|O). (2.13)

Nevertheless, GP-UCB incorporate strong assumptions on the surrogate model and objec-
tive function, e.g., well-specified kernel function, objective function lies in the reproducing
kernel Hilbert space (RKHS), and known RKHS norm of the objective. These assump-
tions are impractical in real-world optimization problems. In Chapter 6, we will detail
the potential ways to relax the assumptions in GP-UCB and applications in constrained
optimization problems.

2.2.3 Entropy Search

The entropy search (ES) acquisition function, first proposed in [60], follows an information-
theoretic method which interacts with the posterior over the location of the unknown global
optimum. Specifically, ES computes the mutual information between the global optimum
candidate solution x∗ and the objective value g(x) at the next hypothetical candidate
solution x. Accordingly, the next attempt is obtained as

xn+1 = argmax
x∈X

I(x∗;g(x)|x,O) (2.14)

where I(x∗;g(x)|x,O) =H(x∗|O)−Ep(g(x)|O)[H(x∗|x,g(x),O)], (2.15)

with H(·|·) representing the differential entropy measure. The key challenge of computing
ES acquisition function is the requirement for massive sampling to approximate the second
term in (2.15). To mitigate the high computation complexity, reference [61] leverages
the symmetry property of mutual information and proposes the predictive entropy search
(PES), selecting the next candidate solution via

xn+1 = argmax
x∈X

H(g(x)|O)−Ep(x∗|O)[H(g(x)|x,x∗,O)]. (2.16)

Unlike ES, this acquisition function computes the differential entropies directly over the
GP predictive posterior which can be easily approximated in a closed form.
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Furthermore, the max-value entropy search (MES) proposed in [188] introduced a much
cheaper and more robust way to implement information-theoretic acquisition functions.
Instead of calculating the information gain on the global optimum input view x∗, MES
seeks to select candidate solutions that reduce the maximal uncertainty on the global
optimal value g∗, thus, the mutual information can be evaluated as

I(g∗;g(x)|x,O) =H(g(x)|O)−Ep(g∗|O)[H(g(x)|x,g∗,O)]. (2.17)

The MES acquisition function (2.17) can be easily approximated in an analytical form
by treating p(g(x)|x,g∗,O) as a truncated Gaussian distribution. We will detail the
approximation methods and multi-fidelity extensions on MES in Chapter 5.
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Chapter 3

Transfer Bayesian Meta-Learning via
Weighted Free Energy Minimization

3.1 Overview

In this Chapter, we start by introducing the fundamentals of Bayesian meta-learning and
GP that serves as the surrogate model in later chapters on BO. Meta-learning optimizes the
hyperparameters of a training procedure, such as its initialization, kernel, or learning rate,
based on data sampled from a number of auxiliary tasks. A key underlying assumption
is that the auxiliary tasks – known as meta-training tasks – share the same generating
distribution as the tasks to be encountered at deployment time – known as meta-test tasks.
This may, however, not be the case when the test environment differ from the meta-training
conditions. To address shifts in task generating distribution between meta-training and
meta-testing phases, this chapter introduces weighted free energy minimization (WFEM)
for transfer meta-learning. We instantiate the proposed approach for non-parametric
Bayesian regression and classification via GP. The method is validated on a toy example
of sinusoidal regression problem, through comparison with standard meta-learning of GP
priors as implemented by PACOH [144].

This chapter is organized as follows: in the next section, the context and the problem
considered are highlighted. In Sec. 3.3, the fundamentals of GP and the adopted Bayesian
meta-learning framework are detailed. We extend the Bayesian meta-learning framework
to transfer meta-learning in Sec. 3.4. Experimental results on regression tasks are provided
in Sec. 3.5. Finally, Sec. 3.6 concludes the chapter.
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3.2 Introduction

3.2.1 Context and Scope

Meta-learning or learning-to-learn aims to extract knowledge from a number of auxiliary
tasks so as to speed up learning a new, related task [149, 180]. For example, consider the
problem of training an image classifier for personalized medical diagnosis on a smart phone.
By observing data from other individuals, meta-learning can extract knowledge that allows
for a fast adaptation on limited data available for a new user of the service. Information
across tasks is shared via meta-learning hyperparameters such as an embedding space
shared across tasks [181], an initialization of a neural network [41], or a prior on the
weights of a stochastic neural network [5].

An underlying assumption in meta-learning is that the observed auxiliary tasks, known
as meta-training tasks, and the new, previously unseen meta-test task are “related", in
the sense that they belong to the same task environment. The task environment defines
a distribution over the space of data-generating distributions, and the meta-training and
meta-test tasks are assumed to be sampled independent identical distributed (i.i.d.) from
the same environment [10]. However, this assumption does not hold in many practical
scenarios [77]. For instance, in the personalized medical diagnosis example, meta-training
data may come from a hospital specializing in patients affected by a specific condition
(e.g., cancer patients), while patients at deployment time may not share the same medical
history.

A meta-learner trained on tasks from a task environment, such as the hospital in the
example above, may not perform well on an out-of-distribution (OOD) meta-test task.
Recently, reference [77] introduced the problem of transfer meta-learning, which accounts
for OOD meta-test tasks by modelling the meta-test environment as being distinct from
the meta-training environment. In [77], the authors present PAC Bayes theoretical bounds
on the generalization performance of a transfer meta-learner.

In this chapter, a novel transfer Bayesian meta-learning approach is introduced that
handles the distribution shift between source task environment and target task environment.
The generalization of learning models is obtained by leveraging knowledge extracted from
both tasks environments in a transfer learning manner. The proposed method, referred to
as WFEM-GP, builds on information meta-risk minimization (IMRM), and is implemented
by a non-parametric Bayesian learning model.

3.2.2 Related Work

The problem of meta-learning, when training and testing tasks belong to the same task
environment, has been extensively studied both from theoretical perspective [139, 76] and
practical applications [137]. The difference between the training and testing environments
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in meta-learning has been accounted for in the recent works of [25, 94] that develop
meta-learning algorithms robust to meta-environment shift. To the best of our knowledge,
the work in [77] is the first to formally introduce the problem of transfer meta-learning,
and to obtain theoretical generalization performance guarantees for arbitrary meta-learners.

Bayesian approaches to meta-learning have become increasingly popular in the recent
years due to their important advantages in quantifying uncertainty and model selection
[198]. In this context, both parametric methods such as Bayesian neural networks and non-
parametric methods like GPs have both been successfully applied to real-world applications.
The works in [144, 45] apply meta-learning to optimize the mean and kernel functions
of the GP prior via parametric functions – a method referred to as PACOH-GP. Our
work extends PACOH-GP to transfer meta-learning. The recent paper [145] presents a
modification of PACOH-GP that operates directly in the functional space.

3.2.3 Main Contribution

Inspired by the theory developed in [77], in this work, we introduce an approach for
transfer meta-learning termed WFEM that leverages data from both meta-training and
meta-test environments. We specifically focus on non-parametric Bayesian learning via
GP, and aim to meta-learn a GP prior to be used on meta-test tasks. WFEM generalizes
the IMRM for transfer meta-learning introduced by the theory in [77] to non-parametric
base-learners, as well as the PACOH-GP based Bayesian meta-learning approach of [144].

To summarize, the main contributions of this chapter are as follows:

• We introduce the WFEM-GP, which encodes the representations obtained from both
meta-training and meta-test environments into non-parametric Bayesian learning
models for addressing the OOD problems in meta-learning. The approach is based
on constructing a weighted free energy objective to describe the trade-off between
different tasks environments.

• As an efficient implementation of WFEM-GP, we propose a particle-based varia-
tional inference (VI) update strategy for the latent shared parameters by leveraging
Stein variational gradient descent (SVGD) [104]

• We demonstrate the advantages of transfer meta-learning over conventional learning
and meta-learning schemes. Under meta-environment shift between the training and
testing task environments, we show that the data from the meta-training environment
can help improving the predictive performance of transfer meta-learner on the meta-
test task as compared to conventional meta-learning schemes such as PACOH-GP.
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3.3 Problem Formulation

In this chapter, we focus on non-parametric Bayesian learning for regression and classifi-
cation, whereby the prior is meta-learned using data from multiple related tasks. In this
section, we review the framework introduced in [144] that defines Bayesian meta-learning
as the minimization of a free energy functional. In the next section, we extend this frame-
work to transfer meta-learning by leveraging the theoretical results in [77]. To this end, we
first review non-parametric Bayesian learning via GP, and then we describe the problem of
meta-learning the GP prior proposed in [144].

3.3.1 Parameterized Gaussian Process

We study supervised learning problems. Accordingly, let X= {xm}Mm=1 denote a set of
M inputs in Rd, and let y = {y}Mm=1 denote the corresponding observation outputs. Each
tuple (xm,ym) is assumed to be generated i.i.d. according to an unknown population
distribution P . We also denote D = {(xm,ym)}Mm=1 as the collected training data set,
and f(X) be the M ×1 vector of outputs of the random scalar function f(·), i.e., f(X) =

[f(x1), . . . ,f(xM )]T.
Unlike the fundamental GP introduced in Sec. 2.1, the GP prior is parameterized in

terms of a hyperparameter vector θθθ that determines the mean function µθθθ(·) and the kernel
function kθθθ(·, ·). Accordingly, the GP defines a prior joint distribution on the output values
f(X) as

pθθθ(f(X)) =N (µµµθθθ(X),Kθθθ(X)), (3.1)

where µµµθθθ(X) = [µθθθ(x1), ...,µθθθ(xM )]T is the M ×1 mean vector, and Kθθθ(X) represents
the M ×M covariance matrix whose (i, j)th entry is given as [Kθθθ(X)]i,j = kθθθ(xi,xj).

Using the GP prior introduced in (3.1) and the Gaussian data likelihood distribution
N (y|f(x),σ2), the posterior distribution of the random function f(x) at a new test input x
can be obtained as [142]

pθθθ(f(x)|D)∼N (µθθθ(x|D),σ2θθθ(x|D)), (3.2)

where µθθθ(x|D) = µθθθ(x)+kD(x)T(K̃θθθ(X))−1(y−µµµθθθ(X)), (3.3)

σ2θθθ(x|D) = kθθθ(x,x)−kD(x)T(K̃θθθ(X))−1kD(x), (3.4)

with the M ×M Gramian matrix K̃θθθ(X) =Kθθθ(X)+σ2IM and kD(x) being the M ×1

cross-variance vector kD(x) = [kθθθ(x,x1), . . . ,kθθθ(x,xM )]T.
We will also require the evidence or marginal likelihood of the output labels,

pθθθ(y|X) =
∫
pθθθ(f(X))p(y|f(X))df(X), (3.5)
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the log of which can be obtained in closed form for the Gaussian likelihood as [142]

lnpθθθ(y|X) =−1

2
(y−µθθθ(X))T(K̃θθθ(X))−1(y−µθθθ(X))− 1

2
ln |K̃θθθ(X)|−M

2
ln2π,

(3.6)

where |K̃θθθ(X)| denotes the determinant of the Gramian matrix.

3.3.2 Meta-learning the GP Prior (PACOH-GP)

In GP, the hyperparameter vector θθθ ∈ΘΘΘ that describes the mean and kernel functions of
the GP in (3.1) is fixed a priori, possibly using cross-validation. In contrast, the meta-
learning approach introduced in [144] – termed PACOH-GP – aims to automatically infer
the hyperparameters θθθ of the GP prior (3.1) by observing data from tasks with similar
statistical properties [144]. Note that, the kernel function could be parametrized as

kθθθ(x,x
′) =

1

2
exp(−||Φθθθ(x)−Φθθθ(x

′)||22), (3.7)

where Φθθθ(·) is a parametric function, typically instantiated as a deep neural network
(DNN), with θθθ constituting its weight and biases.

Following the setting of Baxter [10], the tasks observed by a meta-learner are assumed
to be sampled i.i.d from a task environment, which defines a distribution PT over the space
of tasks. Precisely, for each i-th observed task τi, we sample a data distribution Pi ∼ PT

from the task environment, and the corresponding datasetDi= (Xi,yi) = {xi,m,yi,m}Mi
m=1

of Mi samples are generated i.i.d. according to the unknown population distribution Pi.
The dataset generated from observing N meta-training tasks constitutes the meta-training
set D1:N = (D1, . . . ,DN ).

At test time, the meta-learner is given data from a meta-test task with unknown
population distribution P drawn from the task environment PT . We denote D = (X,Y) as
the M -sample meta-test training dataset generated i.i.d according to P , and (x,y) as the
test data pair sampled from the meta-test task.

Following the non-parametric Bayesian model described in the previous subsection,
we model each i-th observed task τi through a random scalar function fi(x). Importantly,
all tasks share the same GP prior GP(µθθθ(x),kθθθ(x,x′)). Therefore, transfer of the shared
information among data points of different tasks takes place through the hyperparameter
vector θθθ.

The goal of meta-learning is to infer the shared hyperparameter vector θθθ of the GP prior
in (3.1), using the meta-training data D1:N , for use on a new, previously unseen meta-test
task. The meta-test task is modelled by a random function f(x)∼ GP(µθθθ(x),kθθθ(x,x′))
that share the same hyperparameter vector θθθ as the meta-training tasks.
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The shared hyperparameter vector θθθ is endowed with a hyper-prior distribution p(θθθ),
and the meta-learner uses the meta-training dataset D1:N to update the hyper-prior p(θθθ) to
a hyper-posterior distribution q(θθθ|D1:N ) [144]. This is done by minimizing a free energy
metric. Specifically, the meta-training loss of hyperparameter vector θθθ ∈ΘΘΘ incurred on
the meta-training set D1:N is defined as

L(θθθ,D1:N ) =
1

N

N

∑
i=1

− logpθθθ(yi|Xi)

Mi
, (3.8)

which is the empirical average of the negative marginal log-likelihood pθθθ(yi|Xi) across
the meta-training tasks. This is defined as in (3.6) for a Gaussian likelihood. The hyper-
posterior distribution q(θθθ|D1:N ) is then optimized so as to minimize the free energy
objective [75],

F(q) = Eq(θθθ|D1:N )[L(θθθ,D1:N )]+γ−1KL(q(θθθ|D1:N )||p(θθθ)), (3.9)

where γ > 0 is a temperature parameter, and KL(p||q) denotes the Kullback–Leibler (KL)
divergence between the distributions p and q. The choice of the temperature parameter
calibrating the hyper-posterior q is investigated in [108, 117, 173].

The meta-free energy function F(q) is the sum of: (a) the average meta-training loss
for a randomly drawn hyperparameter vector θθθ ∼ q(θθθ|D1:N ); and (b) the KL-divergence
term between the hyper-posterior q(θθθ|D1:N ) and the hyper-prior p(θθθ), which serves as a
regularization on the meta-level. Let γ−1 = (1/N+1/M̃), with M̃ = (N−1

∑
N
n=1M

−1
n )−1

serve as the harmonic mean, the function F(q) in (3.9) corresponds to an upper bound
(neglecting constant terms independent of distribution q) on the population test log-loss
obtained via PAC-Bayes analysis [144]. The optimization problem in (3.9) also corresponds
to a form of information risk minimization (IRM) [204] and generalized Bayesian meta-
learning [144].

The minimizing solution can be obtained in closed form as the Gibbs hyper-posterior
distribution [84, 144, 202]

qPACOH-GP(θθθ|D1:N )∝ p(θθθ)exp
(
−γL(θθθ,D1:N )

)
. (3.10)

During meta-testing, we evaluate the average predictive distribution as

EqPACOH-GP(θθθ|D1:N )[pθθθ(f(x)|D)], (3.11)

of the meta-test task function f(x) at its test input x.
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3.4 Transfer Meta-learning the GP Prior

In this section, we introduce and formulate the problem of transfer meta-learning the GP
prior, inspired by the recent theoretical work in [77]. As explained in the previous section,
in conventional meta-learning, the meta-training and meta-test tasks belong to the same
task environment in the sense that the population distributions for each task are drawn
from the same task distribution PT . In contrast, transfer meta-learning concerns settings
in which the observed meta-training tasks belong to a source task environment, while the
meta-test task belongs to a different target task environment. The task distributions for the
two environments are respectively denoted as PS

T and P T
T .

In this work, we assume that the transfer meta-learner, in addition to data from the
source task environment, observes data from a limited number of tasks from the target task
environment. As such, the meta-training setD1:N =(D1, . . . ,DN ) comprises ofN data sets,
of which a subset of βN data sets, for β ∈ [0,1], correspond to tasks from the source task
environment, and the remaining from the target task environment. Accordingly, for each
task τi, i= 1, . . . ,βN , a data distribution Pi is sampled from the source task environment
PS
T , with the corresponding Mi-sample training data generated i.i.d. according to Pi.

For i = βN +1, . . . ,N , each task τi samples a data distribution Pi from the target task
environment P T

T . The meta-test task is drawn from the target task environment. Let
D = (X,y) denote the M -sample meta-test training data, and (x,y) a meta-test test data
point.

The goal of transfer meta-learning is to use the observed meta-training dataset D1:N to
infer a hyperparameter vector θθθ of the GP prior for use on a new meta-test task. As in [144],
the transfer meta-learner uses the meta-training dataset D1:N to update the hyper-prior
distribution p(θθθ) to a hyper-posterior distribution q(θθθ|D1:N ).

To this end, the transfer meta-learner considers the following weighted average meta-
training loss,

L̄(θθθ,D1:N ) = αLs(θθθ,D1:βN )+(1−α)Lt(θθθ,DβN+1:N ), (3.12)

for α ∈ [0,1], which is a convex combination of the training loss

Ls(θθθ,D1:βN ) =
1

βN

βN

∑
i=1

− logpθθθ(yi|Xi)

Mi
(3.13)

evaluated on data from the source environment and of the training loss computed on data
from the target environment

Lt(θθθ,DβN+1:N ) =
1

(1−β)N
N

∑
i=βN+1

− logpθθθ(yi|Xi)

Mi
. (3.14)
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In the proposed weighted free energy minimization with Gaussian Processes (WFEM-
GP), the target hyper-posterior distribution q(θθθ|D1:N ) is optimized so as to minimize the
weighted free energy functional

F(q) = Eq(θθθ|D1:N )[L̄(θθθ,D1:N )]+γ−1KL(q(θθθ|D1:N )||p(θθθ)). (3.15)

Setting Mi =M , for i= 1, . . . ,N and γ−1 = (1/N +1/M), the free energy functional
in (3.15) (neglecting constant terms) provides a PAC-Bayesian upper bound on the popula-
tion test log-loss [77]. Similar to (3.10), the minimizing solution is obtained as the Gibbs
hyper-posterior

qWFEM-GP(θθθ|D1:N )∝ p(θθθ)exp
[
−γL̄(θθθ,D1:N )

]
. (3.16)

Finally, the hyper-posterior qWFEM-GP(θθθ|D1:N ) is used in lieu of the corresponding PACOH-
GP hyper-posterior distribution in (3.11) in order to define the predictive distribution.

In practice, for both PACOH-GP and WFEM-GP, the expectations in the predictive
distributions (3.11) need to be approximated. As detailed in the supplementary materials
B.1, this can be done by evaluating the maximum of the hyper-posteriors, and by plugging
this value into the predictive distribution pθθθ(f(x)|D) – an approach we refer to as maximum
a posteriori (MAP). Alternatively one can use an average obtained via the particle-based
inference through Stein Variational Gradient Descent (SVGD) [104]. In contrast to
Markov Chain Monte Carlo (MCMC) schemes with strongly correlated samples and
slow convergence, SVGD balances between particle-efficient convergence to the MAP
solution and maintaining the diversity of particles to capture the multi-modality of the
target posterior q(θθθ|D1:N ) by introducing a repulsive force term [104].

3.5 Numerical Results

In this section, we detail our experimental settings and compare WFEM-GP and PACOH-
GP on a synthetic dataset.

We demonstrate the advantage of WFEM-GP over GP and PACOH-GP by considering
a sinusoidal regression problem. Towards this, we first describe the data generation
process for source and target environment. For each task, the input x is drawn from a
uniform distribution U(−5,5). The output y corresponding to an input x is obtained as
y ∼N (y|f(x),σ2) with standard deviation σ = 0.1, where

f(x) = ax+bsin(1.5(x− c))+d, (3.17)

and the scalars a,b,c and d characterize a given task. The source (or target) task environ-
ment defines a joint distribution over the parameters (a,b,c,d). Specifically, each task

43



3.5 Numerical Results

Figure 3.1 Average test root mean square error (RMSE) under three schemes – PACOH-GP
with N tasks and with (1−β)N tasks from the target environment and WFEM-GP – as
a function of the deviation µ′c−µc of the target task environment from the source task
environment with fixed µc = 0.

from the source task environment is sampled as

a∼N (0.5,0.22),b∼ U(0.7,1.3),
c∼N (µc,0.1

2),d∼N (5.0,0.12), (3.18)

where µc ∈ R denotes the mean value of the parameter c. We consider the target task
environment to follow the same distributions for parameters a,b and d as in (3.18), while
the parameter c is distributed as c∼N (µ′c,0.1

2), with a mean µ′c distinct from µc in (3.18).
We assume a Gaussian likelihood for each i-th task as p(y|f(x)) =N (y|f(x),σ2).

We instantiate the mean funtion µθθθ(·) and kernel function Kθθθ(·, ·) as neural networks,
where the hyperparameter θθθ corresponds to the weights and biases of the neural networks
can be meta-learned. Both neural networks are 4 layered fully-connected neural networks
with 32 neurons in each layer and tanh non-linearities. We use adaptive moment estimation
(Adam) to optimize the gradient descent of updating hyperparameter θθθ for GP. In meta-
testing phase, the performance on meta-test datasets is evaluated as detailed in Appendix
B.2.

In Fig. 3.1, we compare the performance of WFEM-GP with that of PACOH-GP
that uses N tasks or (1−β)N tasks from target task environment. We vary the deviation
µ′c−µc of the mean µ′c of parameter c in the target environment from a fixed mean µc
of the source environment. We set σ = 0.1, α = β = 0.5, number of tasks N = 30, and
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Figure 3.2 Comparison of posterior predictions under the four schemes – GP, PACOH-GP
with N tasks and with (1− β)N tasks from the target environment and WFEM-GP –
against the ground-truth regression function.

number of samples per task Mi = 5. We adopt the MAP approximation strategy for all the
learning schemes.

WFEM-GP is seen to outperform the PACOH-GP scheme that uses only (1−β)N tasks
from the target environment. This suggests that data from the source task environment
can be utilized during meta-training to improve the performance on test tasks from the
target environment. We also benchmark the performance of WFEM-GP against the ideal
performance of a meta-learner trained on N target tasks. It can be seen that the transfer
meta-learner, which is trained on limited number of tasks from the target environment
performs close to this ideal reference, and that it coincides with it when the deviation in
task distributions is zero, i.e, when source and target task environments are the same.

In Fig. 3.2, we compare the posterior predictions of the three schemes introduced above,
along with GP, against the ground truth regression function. We set σ = 0.1, α= β = 0.2,
µ′c−µc = 0.5, number of tasks N = 30 and number of samples per task Mi = 5. We
adopt the MAP approximation for all learning schemes. The dashed line represents the
ground truth regression line in (3.17). The performance of WFEM-GP is again comparable
to the best achievable performance of a meta-learner trained on N tasks from the target
environment.

In Fig. 3.3, we compare the performance of the four schemes outlined above as a
function of the fraction β of tasks from the source task environment. We set σ = 0.1,
α = β, µ′c−µc = 0.75, N = 30 and Mi = 5. When β = 0, only tasks from the target
environment are available for meta-training, and hence the PACOH-GP and WFEM-GP
schemes coincide. At the other extreme, when β = 1, i.e., only tasks from the source
environment are available for meta-training, PACOH-GP using (1− β)N target tasks
coincides with GP as the two schemes share the same initial hyperparameter vector θθθ. In
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3.6 Conclusion

Figure 3.3 Average test RMSE under four schemes – GP, PACOH-GP with N tasks and
with (1−β)N tasks from the target environment and WFEM-GP – as a function of β with
fixed µ′c−µc = 0.75.

general, as β increases, WFEM-GP increasingly deviates from the ideal performance of
the meta-learner trained on N target tasks, while clearly outperforming PACOH-GP with
(1−β)N target tasks.

In Fig. 3.4, we also investigate the impact of varying the weight parameter α on
the performance of WFEM-GP in the regression experiment. We set σ = 0.1, β = 0.4,
µ′c−µc = 0.75, N = 30 and Mi = 5. Tuning the weighing parameter α is seen to be
important to optimize the accuracy. For β = 0.4, the optimal performance corresponds
to setting α≈ 0.2. This indicates that one can partition data samples from each task and
perform multiple rounds of cross-validation to select the optimal weighing parameter α in
practice [165].

3.6 Conclusion

In this work, we have introduced WFEM, a novel transfer meta-learning approach that
leverages data from both meta-training and meta-test environments. And we specifically
focus on GP as the base learning model to demonstrate the performance improvement on
a regression problem. The key mechanism underlying WFEM-GP involves generalizing
IMRM for transfer meta-learning via optimizing the free energy objective on the distri-
bution over shared inter-task variables, which are updated following Bayesian principles.
The proposed WFEM-GP incurs the same computational complexity as the state-of-the-art
PACOH-GP while providing a better generalization on OOD test data.
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3.6 Conclusion

Figure 3.4 Average test RMSE under four schemes – GP, PACOH-GP with N tasks and
with (1−β)N tasks from the target environment and WFME-GP – as a function of α with
fixed µ′c−µc = 0.75, β = 0.4, σ = 0.1, N = 30 and Mi = 5.

Future work may address how WFEM-GP can be applied to BO for a meta-learned
optimization strategy where the optimization task distribution shifts over time. Other
possible extensions include replacing the GP with Bayesian neural network (BNN) for
better scalability [35], as well as enabling scalable BO [160].
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Chapter 4

Bayesian and Multi-Armed Contextual
Meta-Optimization for Efficient Wireless
Radio Resource Management

4.1 Overview

In this Chapter, we turn to the application of meta-learning to BO on a wireless communi-
cation problem. Optimal resource allocation in modern communication networks calls for
the optimization of objective functions that are only accessible via costly separate evalua-
tions for each candidate solution. The conventional approach carries out the optimization
of resource-allocation parameters for each system configuration, characterized, e.g., by
topology and traffic statistics, using global search methods such as BO. These methods
tend to require a large number of iterations, and hence a large number of key performance
indicator (KPI) evaluations. In this paper, we propose the use of meta-learning to transfer
knowledge from data collected from related, but distinct, configurations in order to speed
up optimization on new network configurations. Specifically, we combine meta-learning
with BO, as well as with multi-armed bandit (MAB) optimization, with the latter having
the potential advantage of operating directly on a discrete search space. Furthermore,
we introduce novel contextual meta-BO and meta-MAB algorithms, in which transfer
of knowledge across configurations occurs at the level of a mapping from graph-based
contextual information to resource-allocation parameters. Experiments for the problem
of open loop power control (OLPC) parameter optimization for the uplink of multi-cell
multi-antenna systems provide insights into the potential benefits of meta-learning and
contextual optimization.
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4.2 Introduction

4.2.1 Context and Scope

The management and configuration of modern cellular communication systems requires the
optimization of a large number of parameters that define the operation across all segments
of the network, including the radio access network (RAN) [140]. Machine learning, or
artificial intelligence (AI), methods are often invoked as potential solutions, and most
efforts in this direction leverage neural network-based methods, which may incorporate
contextual information such as on the network topology [21, 155, 59, 170]. However,
the implementation of AI solutions for resource allocation is practically constrained by
the limited access of the designer to relevant data and to efficiently computable objective
functions. In fact, typically, each candidate solution can only be evaluated via a point-
wise estimate of key performance indicators (KPIs) through expensive simulations or
measurements [81]. This paper investigates methods that aim at reducing the number of
KPI evaluations needed for AI-based resource allocation via the introduction of novel
optimizers based on meta-learning [22, 157], multi-armed bandit optimization [50], and
contextual optimization [88].

To exemplify the application of the proposed resource-allocation optimizers, we focus
on the important problem of open loop power control (OLPC) for the uplink of a multi-cell
system with multi-antenna base stations [112] (see Fig. 4.1). This optimization requires a
search over a large discrete space of candidate options, and each candidate power control
parameter set needs to be evaluated via the use of a network simulator or via measurements
in the field. The conventional approach carries out the optimization of resource-allocation
parameters for each system configuration, which is characterized, e.g., by topology and
traffic statistics [209]. This per-configuration approach is justified by the diversity of
network deployments, which generally prevents the direct reuse of solutions found for
one deployment to another deployment. However, as mentioned, this class of solutions
is practically impaired by the need to evaluate many candidate solutions as intermediate
steps towards a satisfactory solution.

4.2.2 Related Work

Machine learning solutions based on deep neural networks (DNNs) train a generic dense
neural network in a supervised or unsupervised fashion to approximate the output of model-
based power control algorithms such as the Weighted Minimum Mean Squared Error
(WMMSE) [169, 29, 99, 95, 90]. Alternatively, reinforcement learning can be leveraged
to autonomously optimize channel selection and power allocation based on feedback from
the network designer [176]. Unlike methods based on supervised or unsupervised learning,
reinforcement learning does not rely on a model-based optimizer and it does not require
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Figure 4.1 A configuration τ is described in this example by the network topology illus-
trated on the left. The network encompasses NC = 3 cells, each with one BS. There are
four UEs, with NU,1 = 2, NU,2 = 1, and NU,3 = 1 UEs in cells 1, 2, and 3, respectively.
Therefore, communication links exist between UE 1 and the BS in cell 1, UE 2 and the BS
in cell 1, UE 3 and the BS in cell 2, as well as UE 4 and the BS in cell 3. Meta-learning
schemes based on BO or MAB optimize power allocation for this network configuration
based on KPI measurement from other network configurations, characterized, e.g., by
different distances or number of UEs per cell. Furthermore, as explained in Sec. VI, for
contextual optimization, the context vector cτ may contain all distances, where di is the
distance from UE-i to the serving BS and dij is the distance between UE-i and the BS
serving UE-j. The context vector cτ can be described in terms of the interference graph
Gτ shown on the right. In the graph, each node corresponds to one of the four links, and is
marked with the relevant distance between UE and serving BS. A directed edge is included
between links for which the distance between the transmitting UE for the first link and
the receiving BS for the second link is sufficiently small, indicating a meaningful level of
interference between the first link and the second link.

access to gradients of the objective function, but it typically necessitates many evaluations
of the KPIs of interest at intermediate solutions.

It was recently pointed out by some of the authors of the present contribution in [112]
that BO with GP can provide a more flexible solution that does not require access to
gradient information for the objective function and can potentially reduce convergence
time for power control optimization as compared to reinforcement learning. However, BO
still requires a separate optimization for each network configuration, and the number of
per-configuration KPI evaluations may still be prohibitively high.

Contextual BO was studied in [88]. In this reference, the BO optimizer is given a
different context vector at each optimization step. For this situation, the authors of [88]
propose to append the context vector to the input. This approach does not work well for
the problem of interest in which the context vector is fixed at run time, and hence different
solutions must be compared for the same context vector. This calls for the use of a distinct
context-based optimization approach, which we introduce in this work.
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4.2.3 Main Contributions

In this chapter, we propose for the first time the use of meta-learning to transfer knowledge
from data collected from related, but distinct, network configurations in order to speed up
optimization of resource allocation parameters on new network configurations. The speed-
up is measured in terms of the number of evaluations of KPIs for candidate solutions that
are needed to attain an effective resource allocation strategy. To this end, our contributions
are of both methodological and application-based nature. Specifically, we introduce new
meta-learning-based design methodologies, which we expect to be of independent interest
and broader applicability; and we investigate their application to uplink OLPC in cellular
systems. The proposed methods leverage the availability of offline data from multiple
network configurations, or deployments, to tailor OLPC adaptation strategies for any new
deployment.

The main contributions of this chapter are as follows:

• At a methodological level, we introduce a novel scheme that combines meta-learning
with multi-armed bandit (MAB) optimization [50]. MAB has the potential advantage
over BO of operating directly on a discrete search space. This is a particularly
useful feature in problems, such as OLPC, in which the optimization variables are
quantized. Our approach, termed meta-MAB, is based on a specific parameterization
of the Exponential-weight algorithm for Exploration and Exploitation (Exp3) bandit
selection policy [110] that enables meta-optimization based on data from multiple
tasks.

• Also at a methodological level, we propose novel contextual meta-BO and meta-
MAB algorithms that can incorporate task-specific information in the form of a
graph. The proposed approach is based on a graph kernel formulation [196], whereby
problems characterized by similar contextual graph information are assigned related
solutions. In the context of the OLPC problem, contextual meta-BO and meta-MAP
optimize a mapping from graph-based contextual information about the network
topology to power allocation parameters (see Fig. 4.1).

• In terms of applications, we propose for the first time to leverage meta-BO and
meta-MAB for optimal resource allocation with a focus on the problem of OLPC
parameter optimization. As mentioned, while meta-BO is directly applicable to
continuous search spaces, and can also be adapted to work for discrete optimization,
meta-MAB directly targets discrete search spaces. The benefit of the proposed meta-
BO and meta-MAB strategies is the reduction in the number of KPI evaluations, or
iterations, needed to optimize resource allocation for each new configuration.

• We validate the performance of all the proposed methods in a multi-cell system
following 3rd Generation Partnership Project (3GPP) specifications. Experiments
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for the problem of OLPC parameter optimization provide insights into the potential
benefits of meta-learning and contextual optimization strategies.

The rest of this chapter is organized as follows. First, in Sec. 4.3 we formulate the
problem. Sec. 4.4 introduces meta-BO; while Sec. 4.5 reviews MAB and proposed meta-
MAB. Contextual meta-BO and meta-MAB are introduced in Sec. 4.6, and experimental
results are provided in Sec. 4.7. Sec. 4.8 concludes the paper.

4.3 Problem Formulation

We consider the problem of uplink power allocation in a wireless cellular communication
system with NC cells, with each cth cell containing one multi-antenna base station (BS)
and NU,c user equipments (UEs). As in [112], we specifically focus on the optimization
of long-term uplink power control parameters that are network-controlled and updated
infrequently by the network operator. Accordingly, the power-control parameters are not
adapted in real time, i.e., at time scale of milliseconds, but rather at the scale of hours –
e.g., peak vs. non-peak times – or days – e.g., weekday vs. week-end.

In each cell c, the BS is equipped with NR,c receiving antennas, and each UE u has
NT,c,u transmit antennas. Note that different UEs, such as smart watches, smart phones,
or sensors, generally have a distinct number of antennas, which may not be known at the
network side. Let PH denote the probability distribution of the instantaneous channel state
information (CSI) H describing the propagation channels between the BSs and all the UEs.
The channel distribution PH may account for the environment type, e.g., rural, urban, or
industrial; for the locations of the UEs and BSs; as well as for slow and fast fading effects,
including blockages. The user activity can be also implicitly modelled by the distribution
PH, as inactive UEs can be modelled as having negligible connectivity to all BSs.

We define the configuration τ of the system via the tuple τ = (NR,NU ,NT ,PH)

consisting of vectors NR and NT , which collect the numbers of antennas at BSs and UEs
across the cells, respectively; of vector NU , which counts the number of UEs in each cell,
and of the CSI distribution PH. We are interested in developing efficient solutions for
power allocation of the UEs given any system configuration τ . We first focus on developing
efficient solutions for power allocation of the UEs given any system configuration τ . Then,
in Sec. 4.6, we consider a more general setting in which the power control policy can also
depend on “context” information about the CSI distribution PH, such as the topology of
the network.

For a given configuration τ , the distribution PH is generally unknown. For instance,
the UE distribution and/or fading models may not be available. Power control can be
based only on the vectors NR,NU ,NT , as well as on a dataset Dτ = {Hτ,s}Sτ

s=1 of Sτ CSI
realizations. The dataset Dτ is practically obtained through channel estimation procedures.
Our goal is to design mechanisms that can optimize the power allocation strategy for any
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Table 4.1 Allowed values for OLPC parameters

P0 (dBm) −202,−200, ...,+22,+24
α 0,0.4,0.5,0.6,0.7,0.8,0.9,1.0

new configuration τ even when only few data points are available, i.e., when Sτ is small,
and/or when limited time and computational power can be expended for optimization. To
this end, we will combine an offline meta-optimization step with an adaptation step based
on dataset Dτ . In practice, as we will discuss, one may not have access to CSI, but only to
point-wise measurements of a relevant key performance indicator (KPI), and the aim is to
minimize the number of such measurements required to identify a well performing power
control solution.

According to the 3GPP’s fractional power control policy [19], each UE u in cell c
calculates its transmitting power PTX

c,u (in dBm) on the physical uplink shared channel
(PUSCH) as a function of the OLPC (P0,c,αc). These consist of the expected power P0,c

received at the BS of cell c under full power compensation, and the fractional power control
compensation parameter αc ∈ [0,1] for cell c. Specifically, focusing on a single resource
block, the power PTX

c,u is obtained as [19]

PTX
c,u =min{Pmax

c,u ,P0,c+αcPLc,u+CLc,u} [dBm], (4.1)

where Pmax
c,u is the maximum UE transmit power; and PLc,u is the pathloss in dB towards

the serving cth BS, and CLc,u is the closed-loop power control adjustment for UE u. Note
that, by (4.1), if αc = 1 the received power is P0,c+CLc,u, unless the maximum power
constraint Pmax

c,u forces the equality PTX
c,u = Pmax

c,u in (4.1). The OLPC parameters (P0,c,αc)
are generally distinct across the cells, i.e., they depend on the cell index c. Furthermore,
they are constrained to lie in the set of NOLPC = 912 options described in Table 4.1
[112]. We define as P0 = [P0,1, . . . ,P0,NC

]T the NC×1 vector of expected received power
parameters across all cells; and as ααα = [α1, ...,αNC

]T as the vector of fractional power
compensation parameters. Note that the optimization space, i.e., the number of allowed
values of the OLPC parameters P0 and α grows exponentially with the number of cells
NC .

The OLPC parameters (P0,ααα) are to be selected so as to optimize a given uplink KPI
[112]. The KPI obtained for a given CSI Hτ is a function of the OLPC parameters (P0,ααα)

through (4.1), and is denoted as KPI(P0,ααα,Hτ ). The KPI may be obtained via fixed
measurements or through the use of a simulator. For any given configuration τ , we are
interested in maximizing the average network-wide KPI as per the discrete optimization
problem

max
P0,ααα

{
EPHτ

[
KPI(P0,ααα,Hτ )

]}
, (4.2)
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Algorithm 1: Bayesian Optimization (BO) for a given configuration τ
Input :GP prior (µ(·),k(·, ·)), CSI dataset Dτ , maximum number of rounds Tmax

Output :Optimized x∗

1 Initialize round t= 0, empty matrix X0 = [ ], empty vector f̃0 = [ ]
2 while not converged do
3 Obtain the next OLPC vector xt+1 using (2.11)
4 Obtain observation f̃t+1 ∼N (f̃t+1|f(xt+1),σ

2)

5 Update matrix Xt+1 = [Xt,xt+1] and vector f̃t+1 = [f̃t, f̃t+1]
T

6 Set t= t+1

7 end
8 Return x∗ = xt∗ with t∗ = argmaxt′∈{1,...,t−1} f̃t′

where the objective function in (4.2) is expressed as the average KPI over the CSI distribu-
tion PHτ for configuration τ . Examples of KPI include the sum-achievable rate, as it will
be detailed in Sec. 4.7.

Intuitively, if αc and P0,c are large, the intended received power at the BS of cell c is
high, but the interference generated to neighboring BSs is also significant. Conversely,
if αc and P0,c are small, both intended signal and interference are low. Therefore, the
solution of problem (4.2) hinges on the identification of an optimized trade-off between
intra-cell received power and inter-cell interference.

The objective in (4.2) cannot be directly evaluated, since it depends on the unknown
distribution PHτ . However, it can be estimated by using the CSI dataset Dτ via the
empirical average

fτ (P0,ααα) =
1

Sτ

Sτ

∑
s=1

KPI(P0,ααα,Hτ,s), (4.3)

where we recall that Sτ is the number of available measurements {Hτ,s} in dataset Dτ .
Overall, the problem of interest is the optimization

max
P0,ααα

fτ (P0,ααα). (4.4)

When one restricts the parameters (P0,ααα) as in Table 4.1, the problem is discrete.
One could solve the discrete optimization problem (4.4) using exhaustive search, but

this may not be computationally feasible. In fact, the optimization space includes NOLPC

possible OLPC choices. In the next sections, we will explore more efficient, approximate
solutions. As we will detail in Sec. 4.4, the proposed meta-learning methods leverage the
principle of transferring knowledge from previously encountered configurations τ in order
to prepare to optimize power allocation for new configurations.
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4.4 Bayesian Meta-Optimization

As reviewed in Chapter 2, we construct the GP regression and perform conventional BO
summarized in Algorithm 1 by treating x = [PT

0 ,ααα
T]T for the vector of variables under

optimization in problem (4.4). Let X = [x1, . . . ,xT ] denote any set of T inputs, f(X) =

[f(x1), . . . ,f(xT )]
T denote the corresponding KPI values, and the vector of noisy observed

KPI values is denoted as f̃ = [f̃1, ..., f̃T ]
T. Accordingly, the GP posterior distribution can

be built as

p(f(x) = f |X, f̃) =N (f |µ(x|X, f̃),σ2(x|X, f̃)) (4.5)

with mean and variance function following (2.7) and (2.8) with the corresponding notations
in this section.

Solving problem (4.4) separately for each configuration τ via Bayesian optimization
(Algorithm 1) may entail significant complexity in terms of number Sτ of required CSI
samples, as well as number of evaluations of KPI values, i.e., the number of iterations in
Algorithm 1. In this section, we introduce Bayesian meta-optimization [130, 69], which
uses offline data collected from multiple system configurations τ as a means to reduce
optimization complexity when applied to any configuration τ at run time.

In Bayesian meta-optimization, we assume that, in an offline phase, we can collect
data from N configurations, denoted as τ1, ..., τN . These configurations may correspond
to previous deployments or to concurrent deployments located elsewhere the system
or to previous runs of a simulator with different settings, such as inter-site distances
and number of UEs. For each configuration τn, with n = 1, ...,N , we have access to
a dataset Dτn of Sτn CSI samples, which can be used to obtain the objective function
fτn(x) in (4.3). Furthermore, for each task τn, we assume to have collected Tn inputs
Xn = [xn,1, ...,xn,Tn ], as well as the corresponding noisy observations f̃n = [f̃n,1, ..., f̃n,Tn ]

of the actual objective values fn,t = fτn(xn,t). We refer to the above collected data
available from N configurations as meta-training data. In practice, the designer may
equivalently only have access to Tn evaluations of the KPI function. In our experiments,
we explore values Tn in the range [1,30]. We aim at using these data to improve efficiency
on new tasks sampled from the same environment.

To this end, Bayesian meta-optimization uses meta-training data to optimize the GP
prior via parametric mean function µθθθ(·) and kernel function kθθθ(·), which are functions of
a vector of hyperparameters θθθ. Specifically, we consider the parametric kernel function
[144]

kθθθ(x,x
′) = exp(−||ψθθθ(x)−ψθθθ(x

′)||22), (4.6)

where ψθθθ(·) is a neural network with hyperparameter vector θθθ ∈ RL constituting its
synaptic weights and biases and we also assume µθθθ(x) to be a neural network. By
optimizing the GP prior via (4.6), the goal is to ensure that Bayesian optimization applied
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Algorithm 2: Bayesian Meta-Optimization (Meta-BO)

Input :Parameterized GP prior (µθθθ(·),kθθθ(·, ·)), meta-training data X1:N , f̃1:N ,
stepsize β

Output :Optimized hyperparameters vector θθθ∗

1 Initialize hyperparameters vector θθθ
2 while not done do
3 Evaluate gradient∇θθθL(θθθ|X1:N , f̃1:N ) using (4.10)
4 Update hyper-parameters using gradient descent θθθ← θθθ−β∇θθθL(θθθ|X1:N , f̃1:N )

5 end
6 Return θθθ∗

7 Given a new network configuration τ , apply BO with hyperparameter θθθ∗

to a new configuration τ can produce an effective solution with fewer samples Sτ and
fewer evaluations Tmax of the KPI.

Intuitively, the role of the kernel function is to quantify the similarity between power
control parameters x and x′ in terms of the respective KPI values obtained for a given
configuration. The standard approach in BO is to select this kernel as a predefined
distance metric, e.g., the Euclidean distance in [112], which may not reflect well the
specific properties of the given optimization problem (4.4). In contrast, Bayesian meta-
optimization aims at optimizing the kernel function so as to account for the structure of
the power control optimization problems (4.4) for the N configurations for which we have
meta-training data. The rationale is that one expects such structure to be sufficiently related
to that of any new configuration τ of interest.

Bayesian meta-optimization, is formulated by introducing meta-training loss incurred
on the meta-training data X1:N = [X1, ...,XN ] and f̃1:N = [f̃1, ..., f̃N ] when using hyperpa-
rameter vector θθθ as

L(θθθ|X1:N , f̃1:N ) =− 1

N

N

∑
n=1

1

Tn
lnpθθθ(f̃n|Xn), (4.7)

where

lnpθθθ(f̃n|Xn) =−
1

2

(
f̃n−µµµθθθ(Xn)

)T(
K̃θθθ(Xn)

)−1(
f̃n−µµµθθθ(Xn)

)

− 1

2
ln
∣∣∣K̃θθθ(Xn)

∣∣∣− Tn
2
ln(2π), (4.8)

with µµµθθθ(Xn)= [µθθθ(xn,1), ...,µθθθ(xn,Tn)]
T; [Kθθθ(Xn)]t,t′ = kθθθ(xn,t,xn,t′) for (t, t′)∈{1, ...,Tn};

and K̃θθθ(Xn) =Kθθθ(Xn)+σ
2ITn . The meta-training loss (4.7) is the empirical average of

the negative log-likelihood evaluated on the meta-training data [144]. Alternatively, one
may adopt importance sampling methods [43, 166] to mitigate the non-i.i.d. meta-training
data induced by the acquisition function, e.g., less weight assigned to similar power control
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parameters in Xn. The optimal hyperparameter θθθ∗ is obtained by addressing the problem

θθθ∗ = argmin
θθθ
L(θθθ|X1:N , f̃1:N ). (4.9)

To implement the optimization in (4.9), we adopt a gradient-based optimizer. The
partial derivative of the meta-training loss with respect to the j-th component θj of the
hyperparameters vector θθθ is computed as

∂

∂θj
L(θθθ|X1:N , f̃1:N ) =− 1

N

N

∑
n=1

(
1

2

(
f̃n−µµµθθθ(Xn)

)T(
K̃θθθ(Xn)

)−1

∂K̃θθθ(Xn)

∂θj

(
K̃θθθ(Xn)

)−1(
f̃n−µµµθθθ(Xn)

)

− 1

2
tr
(
K̃θθθ(Xn)

−1∂K̃θθθ(Xn)

∂θj

))
1

Tn

=− 1

N

N

∑
n=1

1

2Tn
tr
((

ΛΛΛΛΛΛT− K̃θθθ(Xn)
−1
)∂K̃θθθ(Xn)

∂θj

)
, (4.10)

where ΛΛΛ= K̃θθθ(Xn)
−1(f̃n−µµµθθθ(Xn)). The partial derivative term in (4.10) can be estimated

by backprop with the parameters in (4.6).
The hyper-parameter θθθ∗ optimized with the gradient-based procedure outlined above

is used to define the GP prior to be used for Bayesian optimization in new configurations
for the purpose of improving the efficiency of Bayesian optimization. Overall, Bayesian
meta-optimization is summarized in Algorithm 2.

4.5 Bandit Optimization and Meta-optimization

Given the discrete nature of problem (4.4) when considering Table 4.1, it can be directly
modelled as a stochastic multi-armed bandit (MAB) model rather than as GP, which
assumes continuous variables. In the MAB formulation, the total number of arms equals
the number, NOLPC , of OLPC parameters options listed in Table 4.1. The goal is to design
a policy that selects the best “arm” i.e., the OLPC pair (P0,ααα) that optimizes problem
(4.4) after a small number of attempts. In practice, as in the case of Bayesian optimization,
one accepts sub-optimal solutions that performs well enough.

4.5.1 Bandit Policy

As in Bayesian optimization (see Algorithm 1), for a configuration τ , at the tth opti-
mization round, the learning agent selects an OLPC configuration xt from Table 4.1 and
observes a noisy version f̃t of the corresponding KPI value fτ (xt). In a manner similar to
(2.11), a bandit optimization policy maps the history (Xt, f̃t) of previous selections and
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4.5 Bandit Optimization and Meta-optimization

Algorithm 3: Multi-Armed Bandit Optimization (MAB) for a given configuration
τ

Input :Policy parameter ω, CSI dataset Dτ , maximum number of rounds Tmax

Output :Optimized x∗

1 Initialize round t= 0, empty matrix X0 = [ ], empty vector f̃0 = [ ]
2 while not converged do
3 Sample from policy pω(x|Xt, f̃t) to obtain xt+1

4 Obtain observation f̃t+1 ∼N (f̃t+1|f(xt+1),σ
2)

5 Update matrix Xt+1 = [Xt,xt+1] and vector f̃t+1 = [f̃t, f̃t+1]
T

6 Set t= t+1

7 end
8 Return x∗ = argmaxt′∈{1,...,t−1} f̃t′

corresponding cost functions up to round t to the next selection xt+1. Specifically, we
consider a stochastic bandit policy pω(x|Xt, f̃t), parameterized by a scalar ω ∈ [0,1], that
defines the probability of selecting an OLPC configuration x at t-th round given the past
history (Xt, f̃t). Policy pω(x|Xt, f̃t) can be defined via a recurrent neural network [16] or
via simpler functions such as the Exp3 policy in [110].

In this work, we consider the following modified Exp3 policy

pω(x|Xt, f̃t) = (1−ω)exp(G(x, t−1))

∑x′G(x′, t−1)
+

ω

NOLPC
, (4.11)

where ω ∈ [0,1] is the policy parameter; the sum is over all the possible OLPC configura-
tions in Table 4.1; and

G(x, t−1) =
t−1

∑
i=1

k(xi,x)[pω(x|Xt−1, f̃t−1)]
−1f̃i, (4.12)

is a weighted average of the noisy objective function values obtained for input x in the
previous t−1 rounds, with k(·, ·) being a kernel function. While the conventional choice
for the kernel function is the identity function k(x,x′) = 1 if x = x′ and k(x,x′) = 0

otherwise, here we will allow for a more general solution. This will be useful in the next
subsection to facilitate the application of meta-learning.

Standard bandit optimization considers a fixed parameter parameter ω, and is summa-
rized in Algorithm 3.

4.5.2 Bandit Meta-Optimization

Following the meta-learning setting introduced in Sec. 4.4, in this section we propose
a bandit meta-optimization strategy. As in Sec. 4.4, we assume availability of data for
N system configurations. The goal of bandit meta-optimization is to use such meta-
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4.6 Contextual Bayesian and Bandit Meta-Optimization

Algorithm 4: Bandit Meta-Optimization (Meta-MAB)

Input :Parameterized policy pθθθ(x|Xn, f̃n), meta-training data X1:N , f̃1:N , stepsize
η

Output :Optimized policy vector θθθ∗ = (φφφ∗, ω∗)
1 Initialize policy vector θθθ = (φφφ,ω)
2 while not done do
3 Evaluate gradient∇θθθL(θθθ|X1:N , f̃1:N ) using (4.14)
4 Update policy vector using gradient descent θθθ← θθθ−η∇θθθL(θθθ|X1:N , f̃1:N );
5 end
6 Return θθθ∗

7 Given a new network configuration τ , apply MAB (Algorithm 3) with
hyperparameter θθθ∗ = (φφφ∗,ω∗) with kernel function kφφφ(·, ·)

training data, given by X1:N and f̃1:N as defined in the previous sections, to optimize a
hyperparameter vector defining the bandit policy.

To this end, we propose to instantiate the kernel function kφφφ(·, ·) in the Exp3 policy
(4.11) as in (4.6) with neural network parameters φφφ. We aim at optimizing the parameter
tuple θθθ = (φφφ,ω) defining the resulting policy pθθθ(x|Xn, f̃n) to ensure that bandit meta-
optimization applied to a new configuration τ can select an effective OLPC vector with a
smaller number of trials.

To this end, we define the following meta-training loss as

L(θθθ|X1:N , f̃1:N ) =− 1

N

N

∑
n=1

Ex∼pθθθ(·|Xn,f̃n)
[f̃(x)], (4.13)

where the expectation is taken with respect to the bandit policy pθθθ(x|Xn, f̃n) based on the
available history (Xn, f̃n) of observations for each n-th configuration τn. To implement
the optimization over (4.13), we adopt a gradient-based optimizer. The gradient of the
meta-training loss with respect to policy vector φφφ and ω is evaluated as [16]

∇θθθL(θθθ|X1:N , f̃1:N ) =− 1

N

N

∑
n=1

Ex∼pθθθ(·|Xn,f̃n)

[
f̃(x)∇θθθ logpθθθ(x|Xn, f̃n)

]
. (4.14)

The meta-learned optimal policy vector θθθ∗ = (φφφ∗,ω∗) is then used in the bandit policy
used in Algorithm 3 to optimize the OLPC variables for a new configuration. Bandit
meta-optimization is summarized in Algorithm 4.

4.6 Contextual Bayesian and Bandit Meta-Optimization

In the previous sections, we have assumed that no information is available about the
current configuration τ apart from the CSI dataset Dτ . In practice, the system may have
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4.6 Contextual Bayesian and Bandit Meta-Optimization

access to context information about the deployment underlying the configuration τ , such
as the geometric layout, expected UE positions, or the fading statistics. In this section, we
introduce a generalization of the meta-optimization strategies described in Sec. 4.4 and
Sec. 4.5 that can leverage configuration-specific context information to optimize OLPC
parameters x= (P0,ααα).

4.6.1 Context-Based Meta-Optimization

Let cτ denote a context vector specific to configuration τ , which includes all the information
available at the optimizer about configuration τ . The key idea of the proposed methods
is to use meta-training data from multiple tasks in order to optimize a procedure that can
adapt the parameters θθθ for BO or MAB optimization to the configuration-specific context
cτ .

Formally, for each meta-training configuration τn, we have access to data (Xn, f̃n,cn),
where cn is the context vector for the meta-training task τn. Therefore, as compared to
the meta-learning settings studied in the last two sections, here we assume the additional
availability of the context vector cn for each task τn. Accordingly, at run time, the optimizer
is given context vector cτ for the current configuration τ . The goal is to effectively adapt
the optimizer’s parameters θθθ to the context vector cτ by leveraging knowledge transferred
from the meta-learning tasks.

The proposed approach leverages meta-learning data to optimize a parametric mapping
qV(·) between context cτ and parameters θθθ. The mapping depends on a parameter matrix
V that is to be optimized based on meta-training data. Once vector V, and hence also the
parametric mapping qV(·), are fixed, an optimized per-task configuration hyperparameters
θθθ∗τ is obtained as θθθ∗τ = qV(cτ ) for the new task τ .

Intuitively, an effective mapping qV(·) should map similar context vectors, defining
similar configurations, into similar parameter vectors. Two context vectors are similar
if the respective KPIs depend in an analogous way on the parameters (P0,ααα) under
optimizations. Since, as we will detail in the next subsection, the context vector typically
encodes information about the topology of the network, the mapping should account for
the extent to which topologies with similar characteristics call for related optimized power
control parameters x.

In order to facilitate the optimization of mapping functions with this intuitive property,
we propose here to adopt the linear function

qV(c) =
N

∑
n=1

κ(c,cn)νννn, (4.15)

where we have introduced the context kernel function κ(c,c′) to measure the similarity
between two context vectors c and c′. As detailed in the next subsection, the context
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4.6 Contextual Bayesian and Bandit Meta-Optimization

kernel function is set by the optimizer to capture the desired similarity properties between
two context vectors. The mapping (4.15) depends on parameter vectors ννν1, ...,νννN of the
same dimension of the parameter vector θθθ, which we collect in the parameter matrix V =

[ννν1, ...,νννN ] to be optimized. Finally, introducing the vector κκκ(c) = [κ(c,c1), ...,κ(c,cN )]T,
the mapping (4.15) can be expressed as

qV(c) =Vκκκ(c). (4.16)

By (4.15), or (4.16), the parameter vector

θθθ∗τ = qV(cτ ) (4.17)

for the test configuration τ is modelled as a linear combination of vectors νννn, with
each vector νννn being weighted by the similarity κ(cτ ,cn) between context vectors cτ

and cn. Implementing the intuition detailed at the beginning of this subsection, we can
view νννn as the parameter vector assigned to the meta-learning configuration τn, and the
parameter vector θθθ∗τ in (4.17) as being closer to vectors νννn corresponding to more similar
configurations τn according to the kernel similarity measure κ(cτ ,cn).

The parameter matrix V has a number of entries equal to the product of the size of
model parameter θθθ, denoted as L, and the number N of meta-learning tasks. This may
be exceedingly large, causing optimization during meta-learning to possibly overfit the
meta-training data yielding poor performance on the test configuration. To address this
problem, we propose to factorize the L×N matrix V by using a low-rank decomposition
into two lower-dimensionality factors. Accordingly, we write the mapping (4.17) as

θθθ∗τ = qV1,V2(cτ ) =V1V
T
2 κκκ(c), (4.18)

which depends on the parameter matrices V1 ∈ RL×r and V2 ∈ RN×r for rank r <

min{L,N} being a hyperparameter.

4.6.2 Context Graph Kernel

The choice of the context kernel κ(·, ·) depends on the type of information included in
the context vector for each configuration. In this subsection, we introduce a solution that
applies to the common situation in which the context vector includes information about
the topology of the network, namely all distances between BSs and UEs. This setting is
selected to demonstrate the importance of leveraging the structure inherent in the context
vector, along with the corresponding symmetry properties of the mapping from context
vector to model parameters. This is detailed next.

For the purpose of power allocation, information about the topology of the network is
important insofar as it determines the interference pattern among the links. In particular,
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4.6 Contextual Bayesian and Bandit Meta-Optimization

the order in which the links are listed in the context vector cτ is not relevant. This implies
that the mapping (4.18) should be invariant to permutations of the entries of the context
vector. To enforce this invariance property, we adopt the framework of graph kernels [196].

To this end, we summarize information about topology of the network for configuration
τ by means of an annotated interference graph Gτ that retains information about within-cell
UE-BS distances (see, e.g., [59]). As illustrated in Fig. 4.1, in the interference graph Gτ ,
each node represents a link between a UE and the serving BS. Each node i is annotated
with distance di between the corresponding UE, also indexed by i as UE-i, and the serving
BS. A directed edge from node i to node j is included in graph Gτ if the interference from
the link associated with node i to the link associated with node j is sufficiently large. To
gauge the level of interference from link i to link j, we consider the distance dij between
UE-i and the BS serving UE-j. If the ratio dij/dj of this distance to the distance between
UE-j and the serving BS is above some threshold, a directed edge is added between node i
and j.

The context kernel κ(cτ ,cτ ′) is designed to measure the similarity between the graphs
Gτ and Gτ ′ corresponding to context vectors cτ and cτ ′ , respectively. There are a number
of graph kernels that one can choose from for this purpose, ranging from graphlet kernels
to deep graph kernels [196]. In this work, we focus on graphlet kernels [153], which are
defined as

κ(cτ ,cτ ′) =
Ψ(Gτ )TΨ(Gτ ′)

||Ψ(Gτ )||2||Ψ(Gτ ′)||2
, (4.19)

where Ψ(G) is a vector of features extracted from the graph G. Each such feature of vector
Ψ(G) counts the number of times a certain sub-graph is contained in the graph G. We
specifically propose to consider the following feature vector

Ψ(G) = [Ψ1(G), ...,ΨNU−1(G)]T, (4.20)

where Ψi(G) = number of nodes with in-degree equal to i. The rationale for this choice is
that interference graphs with similar connectivity, as quantified by vector (4.20), should
also have similar characteristics in terms of the impact of power control decisions on
interference levels. Accordingly, context vectors with a large value of the kernel (4.19)
are expected to have similar optimized power control parameters. Note that vector Ψ(G)
contains a number of entries equal to the number NU of UEs minus 1, which corresponds
to the number of nodes in the interference graph G. Furthermore, the in-degree of a node
is the number of incoming edges.
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4.6.3 Context-Based Bayesian Meta-Optimization

To define context-based Bayesian meta-optimization, we directly modify the meta-training
loss introduced in Sec. 4.4 in (4.7) for Bayesian meta-optimization as

L(V1,V2|X1:N , f̃1:N ,c1:N ) =− 1

N

N

∑
n=1

1

Tn
lnpqV1V2

(cn)(f̃n|Xn). (4.21)

The key difference is that the meta-training loss is now a function of the two matrix factors
V1 and V2, rather than being a function directly of the parameter vector θθθ. In fact, the
parameter θθθ is adapted to the context cn of each task τn via the mapping qV1V2(cn). The
meta-learned optimal parameter matrices V∗

1 and V∗
2 are obtained as the minimizer

(V∗
1,V

∗T
2 ) = arg min

V1,V2

L(V1,V2|X1:N , f̃1:N ,c1:N ), (4.22)

where the optimization can be addressed via gradient-descent and backprop in a manner
similar to problem (4.9).

4.6.4 Context-Based Bandit Meta-Optimization

In a similar way, context-based bandit meta-learning addresses the minimization of the
meta-training loss obtained by replacing in (4.13) the model parameter vector θθθ with
the output of qV1V2(cn) of the meta-trained mapping for each task τn. This yields the
objective

L(V1,V2|X1:N , f̃1:N ,c1:N ) =
1

N

N

∑
n=1

Ex∼pqV1V2
(cn)(·|Xn,f̃n)

[f̃(x)], (4.23)

which can be addressed via gradient descent.

4.7 Numerical Results

In this section, we present a number of experimental results with the goal of validating the
potential benefits of the proposed meta-learning and contextual meta-learning methods for
uplink power allocation via Bayesian and bandit optimization.

4.7.1 Setting

We consider a multi-cell Multi-Input Multi-Output (MIMO) system with a wrap-around
radio distance model, in which NU UEs in each cell are equipped with NT transmit
antennas each, while the BSs serving the UEs in each cell are equipped with NR receiving
antennas. Focusing on a single resource block, the CSI Hτ consists of the NR×NT
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4.7 Numerical Results

Figure 4.2 Illustration of the objective function (4.24) for a given configuration τ in the
optimization space (P0,α) for the multi-cell system considered in Sec. 4.7.

channel matrices Hτ,c,u,c′ describing the propagation channel between the NT antennas of
the uth UE in cell c and the NR antennas of the BS in cell c′. The KPI function in (4.4) is
instantiated as the sum of the spectral efficiencies for all users in the system, where the
intra-cell and inter-cell signals are treated as interference. This yields (see, e.g., [178])

KPI(P0,ααα,Hτ ) =
NC

∑
c=1

NU

∑
u=1

log2det

(
INR

+10
PTX
c,u
10 ΓΓΓ−1

c,uHτ,c,u,cH
H
τ,c,u,c

)
[bit/s/Hz],

(4.24)

where INR
is the NR×NR identity matrix, and ΓΓΓc,u is the noise-plus-interference covari-

ance matrix for the transmission of UE u towards the serving BS in cell c, i.e.,

ΓΓΓc,u = 10
σ2z
10 INR

+
NU

∑
j=1,j ̸=u

10
PTX
c,j
10 Hτ,c,j,cH

H
τ,c,j,c+

NC

∑
c′=1,c′ ̸=c

NU

∑
u=1

10
PTX
c′,u
10 Hτ,c,u,c′H

H
τ,c,u,c′ ,

(4.25)

with σ2z as the channel noise power in logarithmic scale. Note that the transmitted powers
PTX
c,j from each jth UE in any cell c are also measured in logarithmic scale.

The joint distribution PHτ of the channel matrices Hτ = {Hτ,c,u,c′}NC ,NU ,NC
c=1,u=1,c′=1 de-

pends on the wrap-around distance {dc,u,c′} between the uth UE in cell c and the BS in
cell c′ for u= 1, ...,NU and c,c′ = 1, ...,NC ; on the receiver antennas height hBS relative
to the UEs’ height; on the power of shadow fading σ2SF ; and on the carrier frequency fc.
Specifically, we model the NR×NT channel between UE u in cell c and the BS in cell c′
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Figure 4.3 Fraction of the optimal KPI (4.24) (compared to exhaustive search) obtained by
BO and MAB optimizers for a multi-cell system as a function of the number of iterations
of the optimization algorithms.

as

Hτ,c,u,c′ = 10
−PLτ,c,u,c′

20 βτ,c,u,c′Gτ,c,u,c′ , (4.26)

where the distribution of the NR×NT random matrix Gτ,c,u,c′ and of the coefficient
βτ,c,u,c′ depend on whether UE u in cell c is in non-line-of-sight (NLOS), or line-of-sight
(LOS). With respect to BS c′, the LOS probability for each UE u in cell c is computed
according to Table 7.4.2-1 in 3GPP TR 38.901 as

PrLOS,τ,c,u,c′ =





1

dτ,c,u,c′ ≤ dmin,

18
dτ,c,u,c′

+exp
(
− dτ,c,u,c′

36

)(
1− 18

dτ,c,u,c′

)

dτ,c,u,c′ > dmin,

(4.27)

where dmin is set to 18 m. The slow fading variable βτ,c,u,c′ is log-normal distributed
with standard deviations σLOS,τ or σNLOS,τ with respective probabilities PrLOS,τ,c,u,c′

and 1−PrLOS,τ,c,u,c′ ; and the matrix Gτ,c,u,c′ is either Ricean or Rayleigh distributed with
respective probabilities PrLOS,τ,c,u,c′ and 1−PrLOS,τ,c,u,c′ . Furthermore, the pathloss
PLc,u,c′ for LOS and NLOS, which are used in (4.1), are obtained from the urban mi-
crocellular (UMi) street canyon pathloss model in Table 7.4.1-1 of 3GPP TR 38.901
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4.7 Numerical Results

Figure 4.4 Fraction of the optimal KPI (4.24) (compared to exhaustive search) obtained by
meta-BO (left) and meta-MAB (right) optimizers for a multi-cell system as a function of
the number of iterations of the optimization algorithms.

as

PLLOS,c,u,c′ = 32.4+21log10(d
′
c,u,c′)+20log10(fc),

PLNLOS,c,u,c′ =max
(
PLLOS,c,u,c′ ,35.3log10(d

′
c,u,c′)

+22.4+21.3log10(fc)−0.3(hUE−1.5)
)
, (4.28)

respectively, where d′τ,c,k is the distance between UEs and receiver antennas in the wrap-
around model. The parameter CLu,c in (4.1) is fixed to 0 dB in accordance to Table 7.2.1-1
in 3GPP TS 38.213.

We focus on the optimization of a single pair (P0,α) of OLPC parameters shared across
three cells. This relatively simple setting allows us to maximize function (4.24) exactly
through exhaustive search, providing a useful benchmark for the considered approximate
optimization strategies.

We fix the number of antennas to NR = 16 and NT = 4, the number of UEs to
NU = 10 in each cell, the carrier frequency to fc = 3.5 GHz, the size of the CSI dataset
for each configuration τ is set to Sτ = 100 samples, and the maximum transmit power is
PMAX,u = 23 dBm for all UEs.

For each configuration, the location of the UEs is fixed, and obtained by drawing
distances dc,u,c to a serving BS uniformly in the interval [18,200] meters. As specified in
UMi street canyon, the receiver height is hBS = 15 meters, the shadow fading standard
deviations are set to 4 dB and 7.82 dB. In accordance with Table 7.7.2-4 in 3GPP TR
38.901, Rayleigh fading variance is -13.5 dB for NLOS links, while Rice fading with mean
-0.2 dB and variance -13.5 dB affects LOS UEs. The noise power is set to σ2z =−121.38
dB.
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Figure 4.5 Fraction of the optimal KPI (4.24) (compared to exhaustive search) obtained by
contextual meta-BO and vanilla meta-BO (left), as wel as by contextual meta-MAB and
vanilla meta-MAB (right) for a multi-cell system as a function of the number of iterations
of the optimization algorithms.

4.7.2 Conventional Bayesian and Bandit Optimization

First, we evaluate the average KPI function (4.3) using (4.24) in the full (P0,α) solution
space, where the KPI is averaged over 20 realizations of the dataset Dτ with the same
configuration τ . Fig. 4.2 shows that the optimization target is multimodal, and hence
generally computational challenging for traditional local search algorithms.

We now compare the performance of BO and bandit optimization on a single configu-
ration τ , with the performance averaged over 10 realizations and over 100 CSI datasets
for each realization. We plot the KPI value normalized by the optimal value obtained via
exhaustive search. The kernels for BO and bandit optimization are selected as Radial Basis
Function kernels (RBF) with bandwidth tuned to be 0.76 prior to the optimization, and
we set parameter ω = 0.3 throughout the experiments for MAB via grid search. BO is
seen to outperform bandit optimization for the first several iterations. At later iterations,
the performance is limited by the inherent bias of BO due to the continuous model used
to approximate optimization in a discrete space. This causes bandit optimization, which
operates directly on a discrete space, to outperform BO when the number of iterations is
sufficiently large, attaining the performance of exhaustive search.

4.7.3 Bayesian and Bandit Meta-Optimization

Having observed the relative inefficiency of BO and MAB in terms of number of iterations
in Fig. 4.3, we now evaluate the performance of Bayesian meta-optimization (Algorithm
2) and bandit meta-optimization (Algorithm 4). We refer to these schemes for short as
meta-BO and meta-MAB, respectively. Both the parametric mean function µθθθ(·) and
function ψθθθ(·) for kernels (4.6) are instantiated as fully-connected neural networks with 3
layers with each 32 neurons. The design guidelines of the configuration of neural network
architectures depends on the complexity and quality of service (QoS) requirements of the
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Figure 4.6 Fraction of the optimal KPI (4.24) (compared to exhaustive search) obtained by
contextual meta-BO and vanilla meta-BO (left), as wel as by contextual meta-MAB and
vanilla meta-MAB (right) for a multi-cell system as a function of the number of available
meta-training configurations.

real world scenarios. Setting the number of meta-training configurations to N = 50, and
the number of collected data pairs to Tn = 10, Fig. 4.4 shows the fraction of the optimal
KPI for both meta-optimization strategies.

It is observed that meta-learning accelerates the convergence for both BO and MAB. For
example, meta-MAB with 50 tasks can achieve a 90% fraction of the optimal performance
after around 175 iterations, while conventional MAB would require around 510 iterations.
However, as the number of iterations increases, the gain of meta-MAB over MAB vanishes,
since MAB is already able to achieve the performance of exhaustive search given its direct
optimization in the discrete space.

In this regard, BO stands to gain more from the implementation of meta-learning, since,
as seen in Fig. 4.3, the performance of BO is limited by the bias caused by the optimization
over a continuous space as the number of iterations increase. For instance, with data from
50 tasks, meta-BO can achieve a 90% fraction of the optimal performance already at 50
iterations, while conventional BO would not be able to obtain this performance level. More
generally, meta-BO with 50 tasks can achieve any desired performance level in less than
around 150 iterations. This indicates that optimizing the kernel via meta-learning can fully
compensate for the bias caused by the fact that BO addresses the optimization problem in
a continuous design space.

Overall, while, without meta-learning, MAB is preferable over BO if the goal is
achieving high-quality solutions, as long as data from a sufficiently large number of tasks
is available, meta-BO becomes significantly advantageous. For the example at hand,
as mentioned, a 90% performance level is obtained with meta-MAB with around 175
iterations. while meta-BO requires only 50 iterations.
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Figure 4.7 Fraction of the optimal KPI (4.24) (compared to exhaustive search) obtained by
contextual meta-BO and vanilla meta-BO (left), as wel as by contextual meta-MAB and
vanilla meta-MAB (right) for a multi-cell system as a function of the number of available
KPI evaluations Tn per-meta-training task.

4.7.4 Contextual Bayesian and Bandit Meta-Optimization

We now investigate the performance of contextual Bayesian meta-optimization (Sec.
4.6.3) and contextual Bandit meta-optimization (Sec. 4.6.4), which we refer for short
as contextual meta-BO and contextual meta-MAB, respectively. We are interested in
addressing the potential benefits as compared to vanilla meta-BO and meta-MAB. In order
to obtain the interference graph, the threshold ratio dji/di is set to 1.8 (or other values
subject to the channel estimations in practice); and the rank of the parameter matrices
V1,V2 is set to r = 14 for both algorithms. Both values are obtained via a coarse grid
search. The number of meta-training tasks is set to N = 50.

Fig. 4.5 demonstrates the fraction of optimal KPI for both context-based strategies
as compared to the vanilla counterpart solutions. The results validate the capacity of the
proposed contextual meta-learning methods to extract useful information from the network
topology for the given configuration, achieving faster convergence for both Meta-BO and
Meta-MAB.

We elaborate on the impact of the number N of meta-training tasks in Fig. 4.6, which
shows the fraction of optimal KPI obtained at the 50th iteration. It is observed that a
number of meta-training tasks equal to N = 10 for meta-BO and N = 12 for meta-MAB
is sufficient to ensure that vanilla meta-BO and meta-MAB optimizers can transfer useful
information from the meta-training configurations to the new configurations to speed up
optimization as compared to BO and MAB, respectively. Furthermore, contextual meta-
BO and contextual meta-MAB can further decrease the number of required meta-training
configurations.

Finally, we address the impact of the number Tn of per-task KPI evaluations available
in the meta-training data. We evaluate the fraction of the optimal KPI obtained at the 20th
iteration, and set N = 50 tasks. In Fig. 4.7, we observe that meta-BO and meta-MAB, as
well as their contextual versions, can significantly enhance the performance of vanilla BO
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and MAB with as few as Tn = 20 KPI evaluations per task. Concretely, while vanilla BO
obtains a fraction around 40% of the optimal performance, with Tn = 20, contextual BO
achieves more than 90% of this fraction, providing a 10% gain over meta-BO. Similarly,
while vanilla MAB obtains 30% of the optimal performance, with Tn = 20, meta-MAB
obtains a 70% fraction, and contextual MAB an 80% fraction.

4.8 Conclusions

Modern cellular networks require complex resource allocation procedures that can only
leverage limited access to KPI evaluations for different candidate resource-allocation
parameters. While data collection for the current network deployment of interest is
challenging, a network operator has typically access to data from related, but distinct,
deployments. This chapter has proposed to transfer knowledge from such historical or
simulated deployments via an offline meta-learning phased with the aim of learning how
to optimize on new deployments. As such, the proposed meta-learning approach can be
integrated with digital twin platform providing simulated data [147]. We have specifically
focused on BO and MAB optimizers, with the former natively operating on a continuous
optimization domain and the latter on a discrete domain. Furthermore, we have proposed
novel BO and MAB-based optimizers that can integrate contextual information in the form
of interference graphs into the resource-allocation optimization. The extra computational
complexity for all proposed methods is of O(2NT 3

max) induced by gradient descent [156]
and Gramian matrix inversion in optimizing hyperparameters θθθ∗ compared to standard BO
and MAB. Experimental results have validated the efficiency gains of meta-learning and
contextual meta-learning.

Future work may address online meta-learning techniques that successively improve
the efficiency of resource allocation as data from more deployments is (see [135] for a
related application to demodulation and [115] to drone trajectory optimization). Moreover,
it would be interesting to investigate the application to larger-scale problems involving real-
world data; the extension to multi-objective problems [175]; and the interplay with digital
twin platforms for the management of wireless systems [147]. From the perspective of more
practical applications in the next generation wireless communications, the communication
models considered in this chapter can also be extended to more complicated dynamic
mobile edge computing (MEC) where joint optimization of discrete offloading tasks and
analog resource allocation are required [195], or resource allocation for uplink rate splitting
multiple access (RSMA) in future 6G wireless networks [70].
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Chapter 5

Multi-Fidelity Bayesian Optimization
With Across-Task Transferable
Max-Value Entropy Search

5.1 Overview

In this Chapter, we consider the scenarios where optimization tasks are modelled in a
multi-fidelity manner and arrive in a sequence at the optimizer. In many applications,
ranging from logistics to engineering, a designer is faced with a sequence of optimization
tasks for which the objectives are in the form of black-box functions that are costly to
evaluate. For example, the designer may need to tune the hyperparameters of neural
network models for different learning tasks over time. Rather than evaluating the objective
function for each candidate solution, the designer may have access to approximations of
the objective functions, for which higher-fidelity evaluations entail a larger cost. Existing
multi-fidelity black-box optimization strategies select candidate solutions and fidelity
levels with the goal of maximizing the information accrued about the optimal value or
solution for the current task. Assuming that successive optimization tasks are related, this
chapter introduces a novel information-theoretic acquisition function that balances the
need to acquire information about the current task with the goal of collecting information
transferable to future tasks. The proposed method includes shared inter-task latent variables,
which are transferred across tasks by implementing particle-based variational Bayesian
updates. Experimental results across synthetic and real-world examples reveal that the
proposed provident acquisition strategy that caters to future tasks can significantly improve
the optimization efficiency as soon as a sufficient number of tasks is processed.
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5.2 Introduction

5.2.1 Context and Scope

Numerous problems in logistics, science, and engineering can be formulated as black-
box optimization tasks, in which the objective is costly to evaluate. Examples include
hyperparameter optimization for machine learning [203], malware detection [32], antenna
design [210], text to speech adaptation [124], material discovery [194], and resource
allocation in wireless communication systems [112, 208, 185, 73]. To mitigate the problem
of evaluating a costly objective function for each candidate solutions, the designer may have
access to cheaper approximations of the optimization target. For example, the designer
may be able to simulate a physical system using a digital twin that offers a controllable
trade-off between cost and fidelity of the approximation [63, 68, 147, 148]. As shown in
Fig. 5.1, higher-fidelity evaluations of the objective functions generally entail a larger cost,
and the main challenge for the designer is to select a sequence of candidate solutions and
fidelity levels that obtains the best solution within the available cost budget.

As a concrete example, consider the problem of optimizing the time spent by patients
in a hospital’s emergency department [23]. The hospital may try different allocations of
medical personnel by carrying out expensive real-world trials. Alternatively, one may
adopt a simulator of patients’ hospitalization experiences, with different accuracy levels
requiring a larger computing cost in terms of time and energy.

As also illustrated in Fig. 5.1, in many applications, the designer is faced with a
sequence of black-box optimization tasks for which the objectives are distinct, but related.
For instance, one may need to tune the hyperparameters of neural network models for
different learning tasks over time; address the optimal allocation of personnel in a hospital
in different periods of the year; or optimize resource allocation in a wireless system as the
users’ demands change over time. As detailed in the next section, existing multi-fidelity
black-box optimization strategies select candidate solutions and fidelity levels with the
goal of maximizing the information accrued about the optimal value or solution for the
current task.

This chapter introduces a novel information-theoretic selection process for the next
candidate solution and fidelity level that balances the need to acquire information about
the current task with the goal of collecting information transferable to future tasks. The
proposed method introduces shared latent variables across tasks. These variables are
transferred across successive tasks by adopting a Bayesian formalism whereby the posterior
distribution at the end of the current task is adopted as prior for the next task.
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Figure 5.1 This chapter studies a sequential multi-task optimization setting with multi-
fidelity approximations of expensive-to-evaluate black-box objective functions. For any
current task n, over time index t= 1,2, ...,Tn, the optimizer selects a pair of query point
xn,t and fidelity levelmn,t, requiring an approximation cost λ(m). As a result, the optimizer
receives noisy feedback y(m)

n,t about target objective value fn(xn,t). We wish to approach
the global optimal solution x∗n of objective fn(x) while abiding by a total simulation cost
budget Λ.

5.2.2 Related Work

BO is a popular framework for black-box optimization problems. BO relies on a surrogate
model, typically a GP [142], which encodes the current belief of the optimizer about the
objective function, and an acquisition function that selects the next candidate solution
based on the surrogate model [74, 48, 189, 188, 162, 207]. BO has been extended to
address multi-fidelity – also known as multi-task or multi-information source – settings
[125, 172, 141]. Via multi-fidelity BO (MFBO), information collected at lower fidelity
levels can be useful to accelerate the optimization process when viewed as a function of
the overall cost budget for evaluating the objective function.

As illustrated in Fig. 5.2, the other axis of generalization of BO of interest for this
work, namely transferability across tasks, has been much less investigated. This line of
work relies on the assumption that sequentially arriving optimization tasks are statistically
correlated, such that knowledge extracted from one task can be transferred to future tasks
in the form of an optimized inductive bias encoded into the optimizer [181]. Existing
studies fall into the categories of lifelong BO, which leverages previously trained deep
neural networks to accelerate the optimizer training process exclusively on the new task
[206]; and meta-learned BO, which learns a well-calibrated prior on the surrogate model
given datasets collected from previous tasks [208, 146]. Using these methods, BO is seen
to successfully transfer shared information across tasks, providing faster convergence on
later tasks. However, these studies are limited to single-fidelity settings.
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Figure 5.2 Comparison between the state-of-the-art methods and the proposed MFT-MES
approach.

Another related line of work corresponds to the Bayesian active learning assisted BO,
where candidate solutions selected within the target optimization task are considered to
contribute to accurately learn the black-box function globally. In the information-theoretic
view, active learning McKay (ALM) [109] searches for areas with maximum Shannon
entropy, which for Bayesian surrogate models amounts to inputs with highest uncertainty.
Bayesian active learning by disagreement (BALD) [67] is the first active learning assisted
BO framework that explicitly reduces the uncertainty induced by model hyperparameters.
While Bayesian query-by-committee (BQBC) [143] selects points where the variance of
the mean estimate of surrogate model is maximized with respect to the exchanges of model
hyperparameters. However, none of the above existing works considers scenarios where
optimization tasks arrives in a stream with limited evaluation budget.

5.2.3 Main Contributions

Assuming that successive optimization tasks are related, this chapter introduces a novel
information-theoretic acquisition function that balances the need to acquire information
about the current task with the goal of collecting information transferable to future tasks.
The proposed method, referred to as multi-fidelity transferable max-value entropy search
(MFT-MES), includes shared inter-task latent variables, which are transferred across tasks
by implementing particle-based variational Bayesian updates.

The main contributions are as follows.

• We introduce the MFT-MES, a novel black-box optimization scheme tailored for
settings in which the designer is faced with a sequence of related optimization
tasks. MFT-MES builds on MF-MES [125] by selecting candidate solutions and
fidelity levels that maximize the information gain per unit cost. The information
gain in MFT-MES accounts not only for the information about the optimal value of
the current objective, as in MF-MES, but also for the information accrued on the
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inter-task shared latent parameters that can be transferred to future tasks. To this end,
MFT-MES models the latent parameters as random quantities whose distributions
are updated and transferred across tasks.

• As an efficient implementation of MFT-MES, we propose a particle-based variational
inference (VI) update strategy for the latent shared parameters by leveraging Stein
variational gradient descent (SVGD) [104].

• We present experimental results across synthetic tasks [34] and real-world examples
[208, 98]. The results reveal that the provident acquisition strategy implemented by
MFT-MES, which caters to future tasks, can significantly improve the optimization
efficiency as soon as a sufficient number of tasks is processed.

The rest of this chapter is organized as follows. Sec. 5.3 formulates the sequential multi-
task black-box optimization problem, and reviews the MF-GP surrogate model considered
in the paper. Sec. 5.4 presents the baseline implementation of MF-MES, and illustrates
the optimization over surrogate model parameters. The proposed MFT-MES method and
the Bayesian update of the shared parameters are introduced in Sec. 5.5. Experimental
results on synthetic optimization tasks and real-world applications are provided in Sec. 5.6.
Finally, Sec. 5.7 concludes this chapter.

5.3 Problem Definition And Preliminaries

5.3.1 Sequential Multi-Task Black-Box Optimization

We consider a setting in which optimization tasks, defined on a common input space
X ⊆ Rd, are addressed sequentially. Each n-th task, with n = 1,2, ..., consists of the
optimization of a black-box expensive-to-evaluate objective function fn(x). Examples
include the optimization of hyperparameters for machine learning models and experimental
design [96, 113]. The objective functions fn(x) are assumed to be drawn according to a
common parametric stochastic process Pθθθ(f(x)) in an independent identical distributed
(i.i.d.) manner, i.e.,

fn(x) ∼
i.i.d.
Pθθθ(f(x)) for n= 1,2, ... (5.1)

Furthermore, the parameter vector θθθ identifying the stochastic process Pθθθ(f(x)) is un-
known, and it is assigned a prior distribution p(θθθ), i.e.,

θθθ ∼ p(θθθ). (5.2)
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Note that, by (5.1) and (5.2), the objective function f1(x),f2(x), ... are not independent,
since having information on any function fn(x) would reduce uncertainty on the parameters
θθθ, thus also providing information about other function fn′(x) with n′ ̸= n.

For any current n-th task, the goal is to obtain an approximation of the optimal solution

x∗
n = argmax

x∈X
fn(x) (5.3)

with the minimal number of evaluations of function fn(x). To this end, this chapter
investigates the idea of selecting candidate solution x to query the current function fn(x)
not only with the aim of approaching the solution in (5.3) for task n, but also to extract
information about the common parameters θθθ that may be useful for future optimization
tasks n′ > n. This way, while convergence to a solution (5.3) may be slower for the current
task n, future tasks may benefit from the acquired knowledge about parameters θθθ to speed
up convergence.

In order to account for the cost of accessing the objective function fn(x), we follow
the multi-fidelity formulation, whereby evaluating function fn(x) at some querying point
x with fidelity level m entails a cost λ(m) > 0 [44, 92]. Different fidelity levels may
correspond to training processes with varying number of iterations for hyperparameters
optimization, or to simulations of a physical process with varying levels of accuracy for
experimental design.

There areM fidelity levels, listed from lower fidelity,m=1, to highest fidelity,m=M ,
which are collected in setM= {1,2, ...,M}. The function approximating objective fn(x)
at the m-th fidelity level is denoted as f (m)

n (x). The costs are ordered from lowest fidelity
to highest fidelity as

λ(1) ≤ λ(2) ≤ ...≤ λ(M), (5.4)

and the highest-fidelity approximation coincides with the true objective function, i.e.,

f
(M)
n (x) = fn(x). (5.5)

For each task n, the optimizer queries the objective function fn(x) during Tn rounds,
choosing at each round t= 1, ...,Tn, an input xn,t and a fidelity level mn,t. The number
of rounds, Tn, is dictated by a cost budget, to be introduced below. The corresponding
observation is given as

y
(m)
n,t = f

(m)
n (xn,t)+ ϵn,t, (5.6)
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where the observation noise variables ϵn,t∼N (0,σ2) are independent. Each pair (xn,t,mn,t)

is chosen by the optimizer based on the past observations

Dn,t =
{
(xn,1,mn,1,y

(m1)
n,1 ), ...,(xn,t,mn,t,y

(mt)
n,t )

}
(5.7)

for the current task n, as well as based on the dataset

Dn−1 =
n−1⋃

n′=1

Dn′,Tn′
(5.8)

collected for all the previous tasks n′ = 1, ...,n− 1. In practice, as we will see, data set
Dn−1 need not be explicitly stored. Rather, information in Dn−1 that is useful for future
tasks is summarized into a distribution over the shared parameter vector θθθ.

The number of rounds Tn is determined by the cost constraint

Tn

∑
t=1

λ(mt) ≤ Λ (5.9)

for each task n, where Λ is a pre-determined total query cost budget for each optimization
task. Accordingly, the number of rounds Tn is the maximum integer such that constraint
(5.9) is satisfied.

5.3.2 Gaussian Process

The proposed approach builds on multi-fidelity GPs. To explain, we begin in this subsection
with a brief review of conventional GP, which corresponds to the special case M = 1 of
a single fidelity level. With M = 1, the optimizer maintains a single surrogate objective
function for the true objective f (1)n (x) = fn(x) of each task n. In BO, this is done by
assigning a zero-mean GP distribution p(fn|θθθ) to function fn(x) that is characterized by a
kernel function kθθθ(x,x′), as denoted by

fn ∼ GP(0,kθθθ(x,x′)). (5.10)

The notation kθθθ(x,x′) makes it clear that the kernel function, measuring the correlation of
function values fn(x) and fn(x′), depends on the common parameters θθθ in (5.2).

By definition of GP, the collection of objective values fn,t = [fn(xn,1), ...,fn(xn,t)]

from any set of inputs Xn,t = [xn,1, ...,xn,t] follows a multivariate Gaussian distribution
N (0,Kθθθ(Xn,t)), with t× 1 zero mean vector 0, and t× t covariance matrix Kθθθ(Xn,t)
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given by

Kθθθn(Xn,t) =



kθθθn(xn,1,xn,1) ... kθθθn(xn,1,xn,t)

... . . . ...
kθθθn(xn,t,xn,1) ... kθθθn(xn,t,xn,t)


 . (5.11)

A typical parametric kernel function is given by [144]

kθθθ(x,x
′) = exp(−||ψθθθ(x)−ψθθθ(x

′)||22), (5.12)

where ψθθθ(·) is a neural network with parameters θθθ.
Given any observation history Dn,t for task n in (5.7), and given a parameter vector θθθ,

the posterior distribution of objective value fn(x) at any input x is the Gaussian distribution
[142]

pθθθ(fn(x)|Dn,t) =N (µθθθ(x|Dn,t),σ
2
θθθ(x|Dn,t)), (5.13)

where

µθθθ(x|Dn,t) = kθθθ(x)
T(K̃θθθ(Xn,t))

−1yn,t, (5.14)

and σ2θθθ(x|Dn,t) = kθθθ(x,x)−kθθθ(x)
T(K̃θθθ(Xn,t))

−1kθθθ(x), (5.15)

with the t× t Gramian matrix K̃θθθ(Xn,t) = Kθθθ(Xn,t) + σ2It; the t× 1 cross-variance
vector kθθθ(x) = [kθθθ(x,xn,1), . . . ,kθθθ(x,xn,t)]

T; and the t× 1 observations vector yn,t =

[yn,1, ...,yn,t]
T.

5.3.3 Multi-fidelity Gaussian Process

Multi-fidelity Gaussian Process (MFGP) provides a surrogate model for the objective
functions (f (1)n (x), ...,f

(M)
n (x)) across all M fidelity levels [15, 52, 82]. This is done by

defining a kernel function of the form kθθθ
(
(x,m),(x′,m′)

)
that captures the correlations

between the function values f (m)
n (x) and f (m

′)
n (x′) for any two inputs x and x′, and for

any two fidelity levels m and m′. Examples of such kernels include the co-kriging model
in [82] and the intrinsic coregionalization model (ICM) kernel [15, 2], which is expressed
as

kθθθ
(
(x,m),(x′,m′)

)
= kθθθ(x,x

′) ·κθθθ(m,m′), (5.16)

where the input-space kernel kθθθ(x,x′) is defined as in the previous subsection; while the
fidelity space kernel κθθθ(m,m′) is often instantiated as a RBF kernel

κ(m,m′) = exp(−γ||m−m′||2), (5.17)
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where the bandwidth parameter γ is included in the hyperparameters θθθ. The MFGP prior
for functions f (1)n (x), ...,f

(M)
n (x) is denoted as

(
f
(1)
n (x), ...,f

(M)
n (x)

)
∼ GP(0,kθθθ((x,m),(x′,m′))). (5.18)

Let yn,t = [y
(m1)
n,1 , ...,y

(mt)
n,t ]T denote the t×1 observations column vector, and mn,t =

[mn,1, ...,mn,t]
T be the t×1 vector of queried fidelity levels. Using the t× t kernel matrix

Kθθθ(Xn,t,mn,t) in which the (i, j)-th element kθθθ((xn,i,mn,i),(xn,j ,mn,j)) is defined as
in (5.16), the MFGP posterior mean and variance at any input x with fidelity m given the
observation history Dn,t can be expressed as [174]

µ
(m)
θθθ (x|Dn,t) = kθθθ(x,m)T(K̃θθθ(Xn,t,mn,t))

−1yn,t, (5.19)

[σ
(m)
θθθ (x|Dn,t)]

2 = kθθθ((x,m),(x,m))−kθθθ(x,m)T(K̃θθθ(Xn,t,mn,t))
−1kθθθ(x,m), (5.20)

where K̃θθθ(Xn,t,mn,t) =Kθθθ(Xn,t,mn,t)+σ
2It is the t× t Gramian matrix.

Accordingly, an estimated value of the objective f (m)
n (x) can be obtained as the mean

µ
(m)
θθθ (x|Dn,t) in (5.19), and the corresponding uncertainty of the estimate can be quantified

by the variance [σ
(m)
θθθ (x|Dn,t)]

2 in (5.20).

5.4 Single-Task Multi-fidelity Bayesian Optimization

In this section, we review a baseline implementation of MFBO based on MES [188, 125],
which applies separately to each task n, without attempting to transfer knowledge across
tasks.

5.4.1 Multi-Fidelity Max-Value Entropy Search

For brevity of notation, we henceforth omit the dependence on the observation history
Dn,t of the MFGP posterior mean µ(m)

θθθ (x|Dn,t) and variance [σ
(m)
θθθ (x|Dn,t)]

2 in (5.19)

and (5.20), writing µ(m)
θθθ (x) and [σ

(m)
θθθ (x)]2, respectively. Throughout this subsection, the

parameter vector θθθ is fixed, and the selection of θθθ is discussed in the next subsection. In
general multi-fidelity max-value entropy search (MF-MES) [125], at each time t, the next
input xn,t+1 is selected, together with the fidelity level mn,t+1, so as to maximize the ratio
between the informativeness of the resulting observation y(m)

n in (5.6) and the cost λ(m).
Informativeness is measured by the mutual information between the optimal value

fn(x
∗
n) = f∗n of the objective and the observation y(m)

n corresponding to input xn,t+1 at
fidelity level m. Accordingly, the next pair (xn,t+1,mn,t+1) is obtained by maximizing
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the information gain per cost unit as

(xn,t+1,mn,t+1) = arg max
x∈X
m∈M

I(f∗n;y
(m)
n |x, θθθ,Dn,t)

[λ(m)]ω
, (5.21)

where the scaling power ω depends on the simulation cost model design. In (5.21), the
mutual information is evaluated with respect to the joint distribution

p(f∗n,f
(m)
n (x),y

(m)
n |x, θθθ,Dn,t) = p(f∗n,f

(m)
n (x)|x, θθθ,Dn,t)p(y

(m)
n |f (m)

n (x)), (5.22)

where p(f∗n,f
(m)
n (x)|x, θθθ,Dn,t) follows the posterior GP expressed by (5.19) as well as

(5.20), and p(y
(m)
n |f (m)

n (x)) is defined by the observation model (5.6). Note that, to
evaluate (5.21), the true, unobserved, function value f (m)

n (x) must be marginalized over.
Let us write as H(y|x) for the differential entropy of a variable y given a variable

x. By definition, the mutual information in (5.21) can be expressed as the difference of
differential entropies [27]

I(f∗n;y
(m)
n |x, θθθ,Dn,t)

=H(y
(m)
n |x, θθθ,Dn,t)−Ep(f∗n|x,θθθ,Dn,t)[H(y

(m)
n |f∗n,x, θθθ,Dn,t)]

= log(
√
2πeσ

(m)
θθθ (x))−Ep(f∗n|x,θθθ,Dn,t)[H(y

(m)
n |f (m)

n (x)≤ f∗n,x, θθθ,Dn,t)], (5.23)

where the variance [σ
(m)
θθθ (x)]2 is as in (5.20), and (5.23) relies on the assumption that the

m-th surrogate function f (m)
n (x) cannot attain a value larger than the maximum f∗n of the

true objective function fn(x). Alternatively, one can remove this assumption by adopting
a more complex approximation illustrated as in [174]. In MF-MES, the second term in
(5.23) is approximated as [125]

H(y
(m)
n |f (m)

n (x)≤ f∗n,x, θθθ,Dn,t)

≈ log

(
√
2πeσ

(m)
θθθ (x)

(
1− ϕ(γ

(m)
θθθ (x,f∗n))

Φ(γ
(m)
θθθ (x,f∗n))

[
γ
(m)
θθθ (x,f∗n)+

ϕ(γ
(m)
θθθ (x,f∗n))

Φ(γ
(m)
θθθ (x,f∗n))

]))

=HMF-MES
θθθ (x,m,f∗n) (5.24)

with γ
(m)
θθθ (x,f∗n) =

f∗n−µ
(m)
θθθ (x)

σ
(m)
θθθ (x)

, (5.25)

where ϕ(·) and Φ(·) are the probability density function and cumulative density function
of a standard Gaussian distribution, respectively. Intuitively, function HMF-MES

θθθ (x,m,f∗n)
in (5.25) captures the uncertainty on the observation y(m)

n that would be produced by
querying the objective at input x and fidelity level m when the optimal value f∗n is
known. This uncertainty should be subtracted, as per (5.23), from the overall uncertainty
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Algorithm 5: Multi-Fidelity Max-Value Entropy Search (MF-MES) [125]

Input :Vector θθθ, simulation costs {λ(m)}Mm=1, query budget Λ
Output :Optimized solution xopt

1 Initialize iteration t= 0, observation dataset Dn,t = ∅, and Λ0 = Λ
2 while Λt > 0 do
3 Sample max-value set F from distribution pθθθ(f∗n|x,Dn,t)
4 Obtain the next decision pair (xn,t+1,mn,t+1) via (5.26)

5 Observe y(m)
n,t+1 in (5.6) and update observation history

Dn,t+1 =Dn,t∪ (xn,t+1,mn,t+1,y
(mn,t+1)
n,t+1 )

6 Update the MFGP posterior as defined by (5.19) and (5.20)
7 Calculate remaining budget Λ(t+1) = Λ(t)−λ(mn,t+1)

8 Set iteration Tn = t and t= t+1

9 end
10 Return xopt = arg max

t=1,..,Tn
f
(M)
n (xn,t)

H(y
(m)
n |x, θθθ,Dn,t) in order to assess the extent to which the observation y(m)

n provides
information about the optimal value f∗n.

Using (5.24) in (5.23) and replacing the expectation in (5.23) with an empirical average,
MF-MES selects the next query as

(xn,t+1,mn,t+1) = arg max
x∈X
m∈M

αMF-MES
θθθ (x,m), (5.26)

where we have defined the MF-MES acquisition function

αMF-MES
θθθ (x,m) =

1

[λ(m)]ω
log(
√
2πeσ

(m)
θθθ (x))− 1

|F|[λ(m)]ω
∑

f∗n∈F
HMF-MES

θθθ (x,m,f∗n),

(5.27)

where the set F = {f∗n,s}Ss=1 collects S samples drawn from distribution pθθθ(f∗n|x,Dn,t),
which can be obtained via Gumbel sampling [188] and function HMF-MES

θθθ (x,m,f∗n) is
defined in (5.24).

The overall procedure of MF-MES is summarized in Algorithm 5.

5.4.2 Optimizing the Kernel Parameter Vector

In Sec. 5.4.1, we have treated the parameter vector θθθ as fixed. In practice, given the data
set Dn,t collected up to round t for the current task n, it is possible to update the parameter
vector θθθ to fit the available observations [142]. This is typically done by maximizing the
marginal likelihood of parameters θθθ given data Dn,t.
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Under the posterior distribution defined by (5.19) and (5.20), the negative marginal
log-likelihood of the parameter vector θθθ is given by

ℓ(θθθ|Dn,t) =− log
(
p(yn,t|θθθ)

)

=−1

2

(
t log2π− log

∣∣∣K̃θθθ(Xn,t,Mn,t)
∣∣∣−yT

n,t

(
K̃θθθ(Xn,t,Mn,t)

)−1
yn,t

)
.

(5.28)

where p(yn,t|θθθ) represents the probability density function of observation in (5.6). The
negative marginal log-likelihood (5.28) can be interpreted as a loss function associated
with parameters θθθ based on the observations in data set Dn,t. Accordingly, using the prior
distribution (5.2), a maximum a posterior (MAP) solution for the parameter vector θθθ is
obtained by addressing the problem

θθθMAP
n,t = argmin

θθθ∈ΘΘΘ
{ℓ(θθθ|Dn,t)− log

(
p(θθθ)

)
}, (5.29)

where p(θθθ) is the prior distribution in (5.2), and the term log
(
p(θθθ)

)
plays the role of a

regularizer. To reduce computational complexity, the optimization problem (5.29) may be
addressed periodically with respect to the round index t [31, 112].

5.5 Sequential Multi-fidelity BO With Transferable Max-
Value Entropy Search

As reviewed in the previous section, MF-MES treats each task n separately [174, 125].
However, since by (5.1) and (5.2), the successive objective functions f1, ...,fn are generally
correlated, knowledge extracted from one task can be transferred to future tasks through the
common parameters θθθ [159]. In this section, we introduce a novel information-theoretic
acquisition function that generalizes the MF-MES acquisition function in (5.21) to account
for the information acquired about parameters θθθ for future tasks. The proposed approach,
referred to as multi-fidelity transferable max-value entropy search (MFT-MES), hinges on
a Bayesian formulation for the problem of sequentially estimating parameter vector θθθ as
more tasks are observed. In this section, we first describe the proposed acquisition function,
and then describe an efficient implementation of the Bayesian estimation of parameter
vector θθθ based on Stein variational gradient descent (SVGD) [104].

5.5.1 Multi-Fidelity Transferable Max-Value Entropy Search

MFT-MES introduces a term in the MF-MES acquisition function (5.21) that promotes
the selection of inputs x and fidelity levels m that maximize the information brought by
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the corresponding observation y(m)
n,t about the parameters θθθ. The rationale behind this

modification is that collecting information about the shared parameters θθθ can potentially
improve the optimization process for future tasks n′ > n.

Accordingly, MFT-MES adopts an acquisition function that measures the mutual
information between the observation y

(m)
n and, not only the optimal value f∗n for the

current task n in MF-MES, but also the common parameters θθθ. Note that, unlike MF-MES,
this approach views the parameter vector θθθ as a random quantity that is jointly distributed
with the objective and with the observations. Normalizing by the cost λ(m) as in (5.21),
MFT-MES selects the next query (xn,t+1,mn,t+1) with the aim of addressing the problem

(xn,t+1,mn,t+1) = arg max
x∈X
m∈M

I(f∗n, θθθ;y
(m)
n |x,Dn−1,Dn,t)

[λ(m)]ω
, (5.30)

which is evaluated with respect to the joint distribution

p(f∗n,f
(m)
n (x), θθθ,y

(m)
n |x,Dn−1,Dn,t)

= p(θθθ|Dn−1,Dn,t)p(f
∗
n,f

(m)
n (x)|x, θθθ,Dn,t)p(y

(m)
n |f (m)

n (x)), (5.31)

where the distribution p(θθθ|Dn−1,Dn,t) is the posterior distribution on the shared model
parameters θθθ. This distribution represents the transferable knowledge extracted from all
the available observations at round t for task n.

Using the chain rule for mutual information [27], the acquisition function (5.30) is
expressed as

αMFT-MES(x,m) =
1

[λ(m)]ω

[
Ep(θθθ|Dn−1,Dn,t)

[
I(f∗n;y

(m)
n |x, θθθ,Dn,t)

]

+ I(θθθ;y
(m)
n |x,Dn−1,Dn,t)

]
. (5.32)

In (5.32), the first term is the expected information gain on the global optimum f∗n that is
also included in the MF-MES acquisition function in (5.21), while the second term in (5.32)
quantifies transferable knowledge via the information gain about the shared parameters θθθ.

The second term in (5.32) can be written more explicitly as

I(θθθ;y
(m)
n |x,Dn−1,Dn,t)

=H(y
(m)
n |x,Dn−1,Dn,t)−Ep(θθθ|Dn−1,Dn,t)

[
H(y

(m)
n |x, θθθ,Dn,t)

]

=H

(
Ep(θθθ|Dn−1,Dn,t)

[
p(y

(m)
n |x, θθθ,Dn,t)

])
− 1

2
Ep(θθθ|Dn−1,Dn,t)

[
log
(
2πe
[
σ
(m)
θθθ (x)

]2)]
,

(5.33)
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where the first term in (5.33) is the differential entropy of a mixture of Gaussians. In fact,
each distribution p(y(m)

n |x, θθθ,Dn,t) corresponds to the GP posterior with mean µ(m)
θθθ (x)

and variance [σ
(m)
θθθ (x)]2 introduced in (5.19) and (5.20), respectively.

Evaluating the first term in (5.33) is problematic [27], since the differential entropy of
heterogeneous Gaussian mixtures have no closed-form expression, and here we resort to
the upper bound obtained via the principle of maximum entropy [190, 123, 129]

H

(
Ep(θθθ|Dn−1,Dn,t)

[
N (y

(m)
n |µ(m)

θθθ (x),σ
(m)2
θθθ (x))

])
≤ 1

2
log
(
2πeVar(y(m)

n )
)
, (5.34)

where Var(y(m)
n ) represents the variance of random variable y(m)

n following the mixture
of Gaussian distribution Ep(θθθ|Dn−1,Dn,t)[N (y

(m)
n |µ(m)

θθθ (x),σ
(m)2
θθθ (x))]. The tightness of

upper bound (5.34) depends on the diversity of the Gaussian components with respect to
the distribution p(θθθ|Dn−1,Dn,t), becoming more accurate when the components of the
mixture tend to the same Gaussian distribution.

When the distribution p(θθθ|Dn−1,Dn,t) is represented using V particles {θθθ1, ..., θθθV },
the variance in (5.34) can be approximated via the asymptotically consistent estimate [129]

Var(y(m)
n ) =

V

∑
v=1

1

V

(
[σ

(m)
θθθv

(x)]2+[µ
(m)
θθθv

(x)]2
)
−
(

1

V

V

∑
v=1

µ
(m)
θθθv

(x)

)2

+σ2. (5.35)

Consequently, by plugging (5.34) into (5.33), the second term in (5.32) is replaced by the
quantity

∆αMFT-MES(x,m) =
1

2

{
log

(
2πe

(
1

V

V

∑
v=1

(
[σ

(m)
θθθv

(x)]2+[µ
(m)
θθθv

(x)]2
)

−
( 1

V

V

∑
v=1

µ
(m)
θθθv

(x)
)2)

)
− 1

V

V

∑
v=1

log
(
2πe
[
σ
(m)
θθθv

(x)
]2)
}
. (5.36)

Based on (5.36), the proposed MFT-MES selects the next pair (xn,t+1,mn,t+1) for the
current task n by maximizing the criterion (5.27) with (5.36), i.e.,

(xn,t+1,mn,t+1) = arg max
x∈X
m∈M

1

[λ(m)]ω

[
αMF-MES(x,m)+β∆αMFT-MES(x,m)

]
, (5.37)

where the scaling parameter β ≥ 0 determines the relative weight assigned to the task of
knowledge transfer for future tasks.

5.5.2 Bayesian Learning for the Kernel Parameter Vector

As explained in the previous section, MFT-MES models the shared parameter vector θθθ as a
random quantity jointly distributed with the MFGP posterior and observation model (5.6),
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Algorithm 6: Multi-Fidelity Transferable Max-Value Entropy Search (MFT-
MES)

Input :Prior p(θθθ), scaling parameter β, simulation costs {λ(m)}Mm=1, query budget
Λ, stepsize η, number of SVGD iterations R

Output :Optimized solution xopt

1 Initialize t= 0, r = 0, observation dataset Dn,t = ∅ and Λ0 = Λ
2 if n= 1 then
3 Generate particles {θθθv}Vv=1 i.i.d. from the prior p(θθθ)
4 end
5 else
6 Set particles {θθθv}Vv=1 to the particles {θθθ(R)

v }Vv=1 produced from the previous
task n−1

7 end
8 while Λt > 0 do
9 for v ≤ V do

10 Obtain max-value set F from distribution p(f∗n|x, θθθv,Dn,t) using Gumbel
sampling

11 end
12 Evaluate the transferable knowledge criterion ∆αMFT-MES(x,m) using (5.36)
13 Obtain the next decision pair (xn,t+1,mn,t+1) via (5.37)

14 Observe y(m)
n,t+1 in (5.6) and update observation history

Dn,t+1 =Dn,t∪ (xn,t+1,mn,t+1,y
(mn,t+1)
n,t+1 )

15 Update the MFGP posterior as in (5.19) and (5.20)
16 Calculate remaining budget Λ(t+1) = Λ(t)−λ(mn,t+1)

17 Set iteration Tn = t and t= t+1

18 end
19 Evaluate the negative marginal log-likelihood ℓ(θθθv|Dn,Tn) for all particles

v = 1, ...,V using (5.28)
20 for r ≤R do
21 Evaluate the function Ω(θθθ(r)v ) as in (5.39)
22 Update each particle via the SVGD update θθθ(r+1)

v = θθθ(r)v +ηΩ(θθθ(r)v )

23 end
24 Return xopt = arg max

t=1,..,Tn
f
(M)
n (xn,t)

which is expressed as in (5.31). Furthermore, the evaluation of the MFT-MES acquisition
function (5.37) requires the availability of V particles that are approximately drawn from
the posterior distribution p(θθθ|Dn−1,Dn,t). In this subsection, we describe an efficient
approach to obtain such particles via SVGD as explained in Sec.3.4.

In SVGD [104], the posterior distribution p(θθθ|Dn−1,Dn,t) is approximated via a set
of V particles {θθθ1, θθθ2, ..., θθθV } that are iteratively transported to minimize the variational
inference (VI) objective denoted by the KL-divergence KL(q(θθθ)||p(θθθ|Dn−1,Dn,t)) over
a distribution q(θθθ) represented via particles {θθθ1, θθθ2, ..., θθθV }. This is done via functional
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gradient descent in the reproducing kernel Hilbert space (RKHS) which describes the best
update direction for particles transportation under KL divergence [6].

Specifically, the SVGD update for the v-th particle at each gradient descent round r+1

is expressed as

θθθ(r+1)
v = θθθ(r)v +ηΩ(θθθ(r)v ), (5.38)

where η is the stepsize, and the function Ω(θθθ(r)v ) is defined as

Ω(θθθ(r)v ) =
1

V

V

∑
v′=1

[
k̃(θθθ

(r)
v′ , θθθ

(r)
v )∇

θθθ
(r)

v′

(
ℓ(θθθ

(r)
v′ |Dn,t)+ logpn(θθθ

(r)
v′ )
)

︸ ︷︷ ︸
log-loss gradient

+∇
θθθ
(r)

v′
k̃(θθθ

(r)
v′ , θθθ

(r)
v )

︸ ︷︷ ︸
repulsive force

]
, (5.39)

while k̃(·, ·) is a kernel function, the loss function ℓ(θθθ(r)v′ |Dn,t) is as in (5.28) and pn(θθθ)
is the prior distribution at current task n. The first term in (5.39) drives particles θθθv to
asymptotically converge to the MAP solution (5.29), while the second term in (5.39) is
a repulsive force that maintains the diversity of particles by minimizing the similarity
measure k̃(·, ·). The inclusion of the second term allows the variational distribution q(θθθ)
represented by particles {θθθ1, ..., θθθV } to capture the multi-modality of the target posterior
p(θθθ|Dn−1,Dn,t), providing a more accurate approximation [156].

The prior pn(θθθ) for the current task n is obtained based on the kernel density estimation
(KDE) of the posterior distribution p(θθθ|Dn−1) obtained by using particles {θθθ1, ..., θθθV }
produced at the end of the previous task n−1 [14]. The overall procedure of MFT-MES is
summarized in Algorithm 6.

5.6 Experiments

In this section, we empirically evaluate the performance of the proposed MFT-MES on
the synthetic benchmark adopted in [174, 125], as well as on two real-world applications,
namely radio resource management for wireless cellular systems [112, 208] and gas
emission source term estimation [98].

5.6.1 Benchmarks

We consider the following benchmarks in all experiments: 1) MF-MES [125], as described
in Algorithm 5; and 2) Continual MF-MES, which applies Algorithm 6 with β = 0, thus
not attempting to transfer knowledge from previous tasks to current task. To the best of our
knowledge, Continual MF-MES is also considered for the first time in this work. Unlike
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MF-MES [125], Continual MF-MES share with MFT-MES the use of SVGD for the update
of V particles for the parameter vector θθθ. The V particles {θθθ1, ..., θθθV } are carried from one
task to the next, implementing a form of continual learning. Unlike MFT-MES, however,
the selection of input-fidelity pairs (x,m) aims solely at improving the current task via the
MF-MES acquisition function (5.27), setting β = 0 in (5.37).

The extra computational complexity of Continual MF-MES is brought by the SVGD
update in all previous N tasks, i.e., an O(NCSV GD) computation with CSV GD being
the complexity of SVGD computation in for a single task. While MFT-MES shares the
same computational complexity as Continual MF-MES since the dominant complexity of
computing ∆αMFT-MES(x,m) in (5.36) brought by extracting [σ

(m)
θθθv

(x)]2 can be mitigated
by buffering the values obtained in calculating αMF-MES

θθθ (x,m) in (5.27).

5.6.2 Evaluation and Implementation

For all schemes, the parametric mapping ψθθθ(·) in (5.12) was instantiated with a fully-
connected neural network consisting of three layers, each with 64 neurons and tanh

activation function. Unless stated otherwise, the MFGP model is initialized with 2d+2

random evaluations across all fidelity levels before performing BO [125], and all the results
are averaged over 100 experiments, with figures reporting 90% confidence level. Each
experiment corresponds to a random realization of the observation noise signals, random
samples of SVGD particles {θθθv}Vv=1 at task n = 1, and random draws of the max-value
sets F in (5.27).

For MF-MES, the parameter vector θθθ is set as a random sample from the prior distribu-
tion p(θθθ) for each task. The prior distribution is defined as a zero-mean isotropic Gaussian,
i.e., p(θθθ) =N (0,σ2pI) with variance σ2p = 0.5 across all the experiments. Furthermore, for
the SVGD update (5.39), we used a Gaussian kernel k̃(θθθ,θθθ′) = exp(−h||θθθ− θθθ′||2) with
bandwidth parameter h= 1/1.326. We set S = 10 in (5.27) and R = 2000 in Algorithm 6.

5.6.3 Synthetic Optimization Tasks

For the first experiment, we consider synthetic optimization tasks defined by randomly
generating Hartmann 6 functions [34]. Accordingly, the input domain is defined as
X = [0,1]6, and the objective value f (m)

n (x) for a task n at fidelity level m is obtained as
[125]

f
(m)
n (x) =−

4

∑
i=1

ai,m exp

(
−

6

∑
j=1

∆i,j,nAi,j(xj−Pi,j)
2

)
, (5.40)
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where ai,m, Ai,j and Pi,j are the (i,m)-th, (i, j)-th, and (i, j)-th entries, respectively, of
matrices

a=




1 1.01 1.02 1.03

1.2 1.19 1.18 1.17

3 2.9 2.8 2.7

3.2 3.3 3.4 3.5


 ,A=




10 3 17 3.5 1.7 8

0.05 10 17 0.1 8 14

3 3.5 1.7 10 17 8

17 8 0.05 10 0.1 14


 , (5.41)

and

P= 10−4




1312 1696 5569 124 8283 5886

2329 4135 8307 3736 1004 9991

2348 1451 3522 2883 3047 6650

4047 8828 8732 5743 1091 381


 . (5.42)

Optimization tasks differ due to the parameter ∆i,j,n in (5.40) which are generated in
an i.i.d. manner from the uniform distribution U(0.8,1.2). We set the cost levels as
λ(1) = 10,λ(2) = 15,λ(3) = 20, and λ(4) = 25, the total query cost budget in constraint
(5.9) to Λ= 500 for all tasks, and choose the observation noise variance in (5.6) as σ2 =0.1.

We evaluate the performance of all methods at the end of each task via the simple
regret, which is defined for a task n as [17]

SRn = f∗n− max
t=1,..,Tn

f
(M)
n (xn,t). (5.43)

The simple regret (5.43) describes the error for the best decision xn,t made throughout the
optimization process.

Fig. 5.3 shows the simple regret (5.43) as a function of the number of tasks n observed
so far. For MFT-MES, the weight parameter in (5.37) is set to β = 1.2. Since MF-MES
does not attempt to transfer knowledge across tasks, its average performance is constant
for all values of n. By transferring knowledge across tasks, both Continual MF-MES and
MFT-MES can reduce the simple regret as the number of observed tasks n increases.

MFT-MES outperforms Continual MF-MES as soon as the number of tasks, n, is
sufficiently large, here n > 2. The advantage of Continual MF-MES for small values of
n is due to the fact that MF-MES focuses solely on the current task, while MFT-MES
makes decisions also with the goal of improving performance on future tasks. In this sense,
the price paid by MFT-MES to collect transferable knowledge is a minor performance
degradation for the initial tasks. The benefits of the approach are, however, very significant
for later tasks. For instance, at task n= 10, MFT-MES decreases the simple regret by a
factor of three as compared to Continual MF-MES when the number of particles is V = 10.

It is also observed that increasing the number of particles V , is generally beneficial
for both Continual MF-MES and MFT-MES. The performance gain with a larger V can
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Continual MF-MES

MFT-MES

𝑉 = 5

𝑉 = 10

𝑉 = 5

𝑉 = 10

MF-MES

𝑛

Figure 5.3 Synthetic optimization tasks: Simple regret (5.43) against the number of tasks,
n, for MF-MES, Continual MF-MES (β = 0) with V = 5 and V = 10 particles, and MFT-
MES (β = 1.2) with V = 5 and V = 10 particles.

be ascribed to the larger capacity of retaining information about the uncertainty on the
optimized parameter vector θθθ.

Fig. 5.4 demonstrates the impact of the weight parameter β on the simple regret as a
function of the number of tasks. Recall that the performance levels of MF-MES, as well as
of Continual MF-MES, do not depend on the value of weight parameter β, which is an
internal parameter of the MFT-MES acquisition function (5.37). The optimal value of β,
which minimizes the simple regret, is marked with a star. It is observed that it is generally
preferable to increase the value of β as the number of tasks n grows larger. This is because
a larger β favors the selection of input and fidelity level that focus on the performance
of future tasks, and this provident approach is more beneficial for longer time horizons.
For example, when the sequence of tasks is short, i.e., when n ≤ 2, the choice β = 0,
i.e., Continual MF-MES attains best performance; while the weight parameter β = 1.2

produces best performance given n= 9 tasks in the sequence.

5.6.4 Radio Resource Management

In this section, we study an application to wireless communications presented in [112, 208].
Note that, other wireless communication models in the form of sequential expensive-to-
evaluate black-box optimization problems can also be deployed with MFT-MES. The
problem involves optimizing parameters x that dictate the power allocation strategy of base
stations in a cellular system. The vector x contains two parameters for each base station
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Figure 5.4 Synthetic optimization tasks: Log-simple regret against weight parameter β and
the number of tasks, n, for MF-MES (black dash-dotted line), Continual MF-MES (red
solid line), and MFT-MES (blue surface). The optimal values of β at the corresponding
number of tasks n are labeled as gold stars. The number of particles for Continual MF-
MES and MFT-MES is set to V = 10.

with the first parameter taking 114 possible values and the second parameter taking 8
possible values. Tasks are generated by randomly deploying users in a given geographical
area of radius up to 200 meters, while restricting the users’ locations to change by no more
than 10 meters for task n as compared to the most recent task n−1.

The objective function fn(x) is the sum-spectral efficiency at which users transmit
to the base stations. Evaluating the sum-spectral efficiency requires averaging out the
randomness of the propagation channels, and the simulation costs determines the number
of channel samples used to evaluate this average. Accordingly, we set the cost levels as
λ(1) = 10,λ(2) = 20,λ(3) = 50, and λ(4) = 100, which measure the number of channel
samples used at each fidelity level. The total query cost budget is set to Λ= 2000 for every
task.

We initialize the MFGP model with 10 random evaluations across all fidelity levels,
and the observation noise variance is σ2 = 0.83. In a manner consistent with [208], the
performance of each method is measured by the optimality ratio

max
t=1,..,Tn

f
(M)
n (xn,t)

f∗n
, (5.44)

which evaluates the best function of the optimal value f∗n attained during the optimization
process. Finally, we set V = 10 particles for Continual MF-MES and MFT-MES. All other
experimental settings are kept the same as in Sec. 5.6.2.

In Fig. 5.5, we set the weight parameter β = 1.6 for MFT-MES and plot the optimality
ratio (5.44) as a function of the number of tasks, n. Confirming the discussions in Sec.
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𝑛

Figure 5.5 Radio resource management for wireless systems [208]: Optimality ratio (5.44)
against the number of tasks, n, for MF-MES, Continual MF-MES (β = 0), and MFT-MES
(β = 1.6) with V = 10 particles.

5.6.3, the performance of MF-MES is limited by the lack of information transfer across
tasks. In contrast, the performance of both Continual MF-MES and MFT-MES benefits
from information transfer. Furthermore, MFT-MES outperforms Continual MF-MES after
processing 12 tasks. Through a judicious choice of input and fidelity levels targeting the
shared parameters θθθ, at the end of 40-th task, MFT-MES provides, approximately, an 7%

gain in terms of optimality ratio over Continual MF-MES, and a 23% gain over MF-MES.
The impact of the weight parameter β used by MFT-MES on the performance evaluated

at the 20-th and 40-th task is illustrated in Fig. 5.6. MFT-MES with any weight parameter
β > 0 outperforms all other schemes given the same number of tasks observed so far. The
best performance of MFT-MES is obtained for β = 1.2 at n = 20 tasks, and for β = 1.6

at n= 40 tasks. Therefore, as discussed in Sec. 5.6.3, a larger value of weight parameter
β is preferable as the number of tasks n increases. Moreover, the performance of MFT-
MES is quite robust to the choice of β. For instance, selecting larger weights β, up to
β = 2.4, is seen to yield a mild performance degradation as compared to the best settings
of weight parameters β = 1.2 for n = 20 and β = 1.6 for n = 40. As stated in Sec. 3.5,
the design guideline of weight parameter β may adopt multiple rounds of cross-validation
over partitions of data samples from each task in practice.
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MF-MES

MFT-MES

Continual MF-MES

𝑛 = 40

𝑛 = 40

𝑛 = 20

𝑛 = 20

Figure 5.6 Radio resource management for wireless systems [208]: Optimality ratio (5.44)
against weight parameter β, for MF-MES, Continual MF-MES with n= 20 and n= 40
tasks observed, and MFT-MES with n = 20 and n = 40 tasks observed. The number of
particles for Continual MF-MES and MFT-MES is set to V = 10.

5.6.5 Gas Emission Source Term Estimation

Finally, we consider an application to the reverse problem formulation of gas emission
source term estimation introduced in [98]. The problem aims to optimize a decision
vector x that identifies the characteristics of the gas emission point source based on the
Pasquill-Gifford dispersion model [28]. The feasible input domain of the vector is defined
as x ∈ [10,5000]× [−500,500]2× [0,10]⊂R4, with the first parameter being the source
emission rate and the rest of the parameters describing the location of the emission source.
Tasks are distinguished by the different locations of the sensors used to measure the
concentration of emissions.

The objective function fn(x) is defined as the sum of the squared errors between the
concentration measured at the sensors and the concentration calculated by the dispersion
model given parameters x. The fidelity of the evaluation of the objective function fn(x)
depends on the atmospheric conditions, which can be classified into M = 6 fidelity
levels controlled by dispersion coefficients as in [98]. We set the cost levels as λ(m) =

10+ 5 · (m− 1); the total query cost budget is set to Λ = 750 for every task; and the
observation noise variance is set to σ2 =10−3. The performance of all methods is measured
by the simple regret in (5.43).

In Fig. 5.7, we set the weight parameter in (5.37) to β = 1.5 for MFT-MES, and plot
the simple regret (5.43) as a function of the number of tasks n observed so far. The results
demonstrate again the capacity of both Continual MF-MES and MFT-MES to transfer
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𝑛

Figure 5.7 Gas emission source term estimation: Simple regret (5.43) against the number
of tasks, n, for MF-MES, Continual MF-MES (β = 0), and MFT-MES (β = 1.5) with
V = 10 particles.

knowledge across tasks, achieving better performance as compared to MF-MES. After
processing at least four tasks, MFT-MES outperforms Continual MF-MES. In particular,
MFT-MES obtains a lower simple regret by a factor of two as compared to Continual
MF-MES at the end of task n=17, confirming the importance of accounting for knowledge
transfer in the acquisition function (5.37).

In a manner similar to Sec. 5.6.4, we demonstrate the impact of weight parameter β
on the simple regret evaluated at the 7-th and 17-th task in Fig. 5.8. The superiority of
MFT-MES over all other schemes is observed to hold for any values of weight parameter
β > 0. MFT-MES achieves the best performance with weight parameter around β = 1.0

for n= 7, and approximately β = 1.5 for n= 17. The overall trend confirms the discussion
in Sec. 5.6.3, as a larger value of weight parameter β is more desirable when the number
of tasks n increases.

5.7 Conclusion

In this chapter, we have have introduced MFT-MES, a novel information-theoretic acqui-
sition function that balances the need to acquire information about the current task with
goal of collecting information transferable to future tasks. The key mechanism underlying
MFT-MES involves modeling transferable knowledge across tasks via shared inter-task
latent variables, which are integrated into the acquisition function design and updated
following Bayesian principles. From synthetic optimization tasks and real-world examples,
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𝑛

MF-MES

Continual MF-MES
𝑛 = 17

𝑛 = 7

MFT-MES

𝑛 = 17

𝑛 = 7

Figure 5.8 Gas emission source term estimation: Simple regret (5.43) against weight
parameter β, for MF-MES, Continual MF-MES with n= 7 and n= 17 tasks observed, and
MFT-MES with n= 7 and n= 17 tasks observed. The number of particles for Continual
MF-MES and MFT-MES is set to V = 10.

we have demonstrated that the proposed MFT-MES scheme can obtain performance gains
as large as an order of magnitude in terms of simple regret as compared to the state-of-art
scheme that do not cater to the acquisition of transferable knowledge.

Future work may address theoretical performance guarantees in the forms of regret
bounds to explain aspects such as the dependence of the optimal weight parameter β
used by MFT-MES as a function of the number of tasks and total query cost budget.
Furthermore, it would be interesting to investigate the extensions to multi-objective multi-
fidelity optimization problems [97]; the scalability to higher dimensions of the search
space [111]; and the potential gains from incorporating generative models [100].
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Chapter 6

Bayesian Optimization with Formal
Safety Guarantees via Online Conformal
Prediction

6.1 Overview

In this Chapter, we focus on achieving reliable BO in the optimization tasks with unknown
safety constraint function. Black-box zero-th order optimization is a central primitive
for applications in fields as diverse as finance, physics, and engineering. In a common
formulation of this problem, a designer sequentially attempts candidate solutions, receiving
noisy feedback on the value of each attempt from the system. In this chapter, we study
scenarios in which feedback is also provided on the safety of the attempted solution, and
the optimizer is constrained to limit the number of unsafe solutions that are tried throughout
the optimization process. Focusing on methods based on BO, prior art has introduced an
optimization scheme – referred to as SAFEOPT – that is guaranteed not to select any unsafe
solution with a controllable probability over feedback noise as long as strict assumptions
on the safety constraint function are met. In this chapter, a novel BO-based approach is
introduced that satisfies safety requirements irrespective of properties of the constraint
function. This strong theoretical guarantee is obtained at the cost of allowing for an
arbitrary, controllable but non-zero, rate of violation of the safety constraint. The proposed
method, referred to as SAFE-BOCP, builds on online conformal prediction (CP) and is
specialized to the cases in which feedback on the safety constraint is either noiseless or
noisy. Experimental results on synthetic and real-world data validate the advantages and
flexibility of the proposed SAFE-BOCP.
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Figure 6.1 This work studies black-box zero-th order optimization with safety constraints.
At each step t = 1,2, ... of the sequential optimization process, the optimizer selects a
candidate solution xt and receives noisy feedback on the values of the objective function
f(xt) and of the constraint function q(xt). Candidate solutions xt yielding a negative
value for the constraint function, q(xt)< 0, are deemed to be unsafe. We wish to keep the
safety violation rate, i.e., the fraction of unsafe solutions attempted during the optimization
process, below some tolerated threshold.

6.2 Introduction

6.2.1 Context and Scope

Problems as diverse as stock portfolio optimization and asset management [119], capacity
allocation in energy systems [186], material discovery [194], calibration and optimization
of quantum systems [26], and scheduling and optimization of wireless systems [205, 208]
can all be formulated as black-box zero-th order optimizations. In such problems, the
objective to be optimized can only be accessed on individual candidate solutions, and no
further information is retrieved apart from the value of the objective. As illustrated in Fig.
6.1, in a common formulation of this problem, a designer sequentially attempts candidate
solutions, receiving noisy feedback on the value of each attempt from the system. In this
paper, we study scenarios in which feedback is also provided on the safety of the attempted
solution, and the optimizer is constrained to limit the number of unsafe solutions that are
tried throughout the optimization process [167, 13, 179, 168, 146].

As an example, consider the problem of discovering pharmaceuticals for a particular
condition (see, e.g., [11]). A pharmaceutical company may try different molecules by
carrying out costly trials with patients. Such trials would return not only an indication of
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Table 6.1 State of the art on Safe-BO against the proposed Safe-BOCP

Safe-BO
[167, 168, 13, 179, 146] SAFE-BOCP (ours)

Target safety violation rate 0 (0,1]
Assumption-free safety guarantee ✗ ✓

the effectiveness of the candidate cure, but also an indication of possible side effects. A
reasonable goal is that of finding a maximally effective compound, while minimizing the
number of molecules that are found to have potential side effects during the optimization
process.

Typical tools for the solution of black-box zero-th order optimization construct surro-
gates of the objective function that are updated as information is collected by the optimizer.
This can be done using tools from reinforcement learning, such as bandit optimization
[158], or Bayesian optimization (BO) [122, 47, 112, 37].

In this chapter, a novel BO-based approach is introduced that satisfies safety require-
ments irrespective of properties of the constraint function. This guarantee is obtained at the
cost of allowing for an arbitrary, controllable but non-zero, rate of violation of the safety
constraint. The proposed method, referred to as SAFE-BOCP, builds on online conformal
prediction (CP) [55, 40], and is specialized to the cases in which feedback on the safety
constraint is either noiseless or noisy.

6.2.2 Related Work

Focusing on methods based on BO, while related works and motivation on safety concern
has been detailed in Sec.1.2.2, prior art has introduced an optimization scheme – referred
to as SAFEOPT [167, 13] – that is guaranteed not to select any unsafe solution with
a controllable probability with respect to feedback noise. This theoretical guarantee
is, however, only valid if the optimizer has access to information about the constraint
function. In particular, reference [167, 13] assumes that the constraint function belongs to
a reproducible kernel Hilbert space (RKHS), and that it has a known finite RKHS norm. In
practice, specifying such information may be difficult, since the constraint function is a
priori unknown.

CP is a general framework for the calibration of statistical models [182]. CP methods
can be applied to pre-trained machine learning models with the goal of ensuring that the
model’s outputs provide reliable estimates of their uncertainty. There are two main classes
of CP techniques: offline CP, which leverages offline calibration data for this purpose
[8, 20, 182]; and online CP, which uses feedback on the reliability of past decisions to
adjust the post-processing of model’s outputs [40, 55]. In both cases, CP offers theoretical
guarantees on the quality of the uncertainty quantification provided by the decisions of the
system.
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The relevance of online CP for the problem of interest, illustrated in Fig. 6.1, is that,
as the optimizer attempts multiple solutions over time, it needs to maintain an estimate of
the constraint function. In order to ensure the safety of the candidate solutions selected by
the optimizers, it is important that such estimates come with well-calibrated uncertainty
intervals. In this paper, we leverage the theoretical guarantees of online CP in order to
define novel BO-based safe optimization strategies.

The only existing combination of CP and BO we are aware of are provided by [163],
which apply offline CP to BO for the solution of an unconstrained optimization problem.
The approach aims at improving the acquisition function while accounting for observation
noise that goes beyond the standard homoscedastic Gaussian assumption. These prior
works do not address safety requirements.

6.2.3 Main Contributions

In this chapter, we introduce SAFE-BOCP, a novel BO-based optimization strategy for
constrained black-box zero-th order problems with safety constraints. SAFE-BOCP provides
assumptions-free guarantees on the safety level of the attempted candidate solutions, while
enabling any non-zero target safety violation level. As summarized in Table 6.1, this
contrasts with the state-of-the-art papers [167, 168, 13, 179, 146] that only target the most
stringent safety constraint with no safety violations throughout the optimization process,
while relying on strong assumptions on the constraint function [167, 168, 13, 179].

To summarize, the main contributions of this chapter are as follows:

• We introduce the deterministic SAFE-BOCP (D-SAFE-BOCP) algorithm, which as-
sumes noiseless feedback on the constraint function and targets a flexible safety
constraint on the average number of candidate solutions that are found to be unsafe.
The approach is based on a novel combination of online CP and Safe-BO methods.

• For the case in which feedback on the constraint function is noisy, we introduce the
probabilistic SAFE-BOCP (P-SAFE-BOCP) algorithm, which targets a flexible safety
constraint on the probability that the average number of candidate solutions that
are found to be unsafe exceeds a controllable threshold. The method relies on a
“caution-increasing” back-off mechanism that compensates for the uncertainty on
the safety feedback received from the system.

• We prove that both D-SAFE-BOCP and P-SAFE-BOCP meet their target safety require-
ments irrespective of the properties of the constraint function.

• We validate the performance of all the proposed methods and theorems on a synthetic
data set and on real-world applications.
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The rest of this chapter is organized as follows. Sec. 6.3 formulates the constrained
black-box zero-th order problem with safety constraints. The general framework of Safe-
BO, as well as the representative, state-of-the-art, algorithm SAFEOPT, are reviewed in Sec.
6.4 and Sec. 6.5, respectively. The proposed SAFE-BOCP methods are introduced in the
following sections, with D-SAFE-BOCP presented in Sec. 6.6 and P-SAFE-BOCP described
in Sec. 6.7. Experimental results on synthetic dataset are provided in Sec. 6.8, and Sec. 6.9
demonstrates results on real-world applications. Finally, Sec. 6.10 concludes this chapter.

6.3 Problem Formulation

In this section, we describe the constrained black-box zero-th order optimization problems
for safety-critical scenarios studied in this work. Then, we introduce the general solution
framework of interest in the next section, which is referred to as Safe-BO [167, 168, 13,
179, 146].

6.3.1 Optimization Problem and Safety Constraint

We focus on constrained optimization problems of the form

max
x∈X

f(x) s.t. q(x)≥ 0, (6.1)

where objective function f(x) and constraint function q(x) are real valued; and X is some
specified subset of the d-dimensional vector space Rd. Let fopt denote the maximum
value of the problem (6.1), which we assume to be finite. We also assume that the set of
optimal solutions, achieving the optimal value fopt, is not empty. We write any optimal
solution as xopt ∈ X with fopt = f(xopt). Furthermore, we assume that there is a known,
non-empty, set S0 ⊂X of safe solutions, i.e.,

S0 ⊆ {x ∈ X : q(x)≥ 0}. (6.2)

This subset may be as small as a single safe solution x0 with q(x0)≥ 0, i.e., S0 = {x0}.
We address the optimization problem (6.1) under the following conditions.

• Zero-th-order black-box access: The real-valued objective function f(x) and constraint
function q(x) are a priori unknown, and only accessible as zero-th-order black boxes.
This implies that, given a candidate solution x, the optimizer can evaluate both functions,
obtaining the respective values f(x) and q(x). In practice, the evaluations are often noisy,
resulting in the observation of noisy values f̃(x) and q̃(x). No other information, such as
gradients, is obtained by the optimizer about the functions.
• Efficient optimization: The optimizer wishes to minimize the number of accesses to
both functions f(x) and q(x), while producing a feasible and close-to-optimal solution
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x∗ ∈ X . That is, we wish for the optimizer to output a vector x∗ ∈ X that satisfies the
constraint q(x∗)≥ 0, with an objective value f(x∗) close to the maximum value fopt. The
performance of the optimizer can be measured by the optimality ratio

∆f(x∗) =
f(x∗)
fopt

. (6.3)

• Safety: Interpreting the inequality q(x)≥ 0 as a safety constraint, we consider choices of
the optimization variable x ∈ X that result in a negative value of the constraint function
q(x) to be unsafe, unless the number of such violations of the constraint are kept below a
threshold. Accordingly, we will require that the number of evaluations of the constraint
function q(x) that result in a violation of the inequality q(x) ≥ 0 to be no larger than a
pre-determined value. We will formalize this constraint next by describing the general
operation of the optimizer.

6.3.2 Sequential Surrogate-Based Safe Optimization

Starting from a given solution x0 ∈ S0 (6.2), the optimizer sequentially produces candidate
solutions x1, ...,xT ∈ X across T trials or iterations. At each iteration t, the optimizer
receives noisy observations of the objective value f(xt) as

yt = f(xt)+ ϵf,t, (6.4)

as well as a noisy observation of the constraint value q(xt) as

zt = q(xt)+ ϵq,t, (6.5)

where the observation noise for the objective, ϵf,t ∼N (0,σ2f ), is Gaussian with variance
σ2f , while the observation noise for the constraint, ϵq,t, can follow any distribution provided
that it has a known upper bound on the one-sided right-tail probability (see Assumption 1
in Sec. 6.7.1 for details).

We focus on optimizers that maintain surrogate models of functions f(x) and q(x) in
order to select the next iterate. To elaborate, let us write as Ot the overall history of past
iterates (x0, ...,xt) and past observations (y0, z0, ...,yt, zt) at the end of the t-th iteration,
i.e.,

Ot = (x0, ...,xt,y0, ...,yt, z0, ..., zt). (6.6)

As we detail in the next section, the optimizer maintains probability distributions p(f |Ot)

and p(q|Ot) on the functions f(x) and q(x) across all values x ∈ X based on the available
information Ot. The distributions p(f |Ot) and p(q|Ot) summarize the belief of the
optimizer regarding the values of the two functions.
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At the next iteration t+1, the optimizer leverages the distributions p(f |Ot) and p(q|Ot)

to obtain iterate xt+1 as follows.
• Safe set: Using distribution p(q|Ot), the optimizer identifies a safe set St+1 ⊆ X ,
containing solutions x∈X deemed by the optimizer to be safe, i.e., to satisfy the constraint
q(x)≥ 0.
• Acquisition: Using distributions p(f |Ot) and p(q|Ot), the optimizer selects the next
iterate xt+1 ∈ St+1, with the aim of maximizing the likelihood of obtaining a large, i.e.,
close to 1, optimality ratio (6.3).

6.3.3 Safety Constraints

We now formalize the safety constraint by distinguishing the cases in which the observa-
tions (6.5) of constraint function q(x) are: (i) noiseless, i.e., we have zt = q(xt) in (6.5)
with noise power σ2q = 0; and (ii) noisy, i.e., we have a positive observation noise power
σ2q > 0 in (6.5).

Deterministic Safety Constraint

Noiseless observations of the constraint function values allow the optimizer to keep track of
the number of iterates xt that result in violations of the non-negativity constraint in problem
(6.1). Accordingly, with σ2q = 0, we impose that the non-negativity constraint q(xt)≥ 0 be
violated no more than a tolerated fraction α ∈ [0,1] of the T iterations. Specifically, given
a target violation rate α ∈ [0,1], this results in the deterministic safety requirement

violation-rate(T ) :=
1

T

T

∑
t=1

1(q(xt)< 0)≤ α, (6.7)

where 1(·) is the indicator function, i.e., we have 1(true) = 1 and 1(false) = 0. Therefore,
in this first case, we target the maximization of function f(x) subject to the safety constraint
(6.7) on the optimization process.

Probabilistic Safety Constraint

In the presence of observation noise on the constraint, i.e., with a positive observation noise
power σ2q > 0, the optimizer cannot guarantee the deterministic constraint (6.7). Rather,
targeting problem (6.1), the optimizer can only aim at ensuring that the constraint (6.7) be
satisfied with a probability no smaller than a target reliability level 1− δ, with δ ∈ (0,1].
This results in the probabilistic safety constraint

Pr(violation-rate(T )≤ α)≥ 1− δ, (6.8)
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Figure 6.2 Block diagram of Safe-BO schemes consisting of the main steps of safe set
creation, producing the safe set St+1, and of acquisition, selecting the next iterate xt+1.

in which the probability is taken with respect to the observation noise variables {ϵq,t}Tt=1

for the constraint function q(x) in (6.5). Therefore, in this second case, we target the
maximization of function f(x) subject to the safety constraint (6.8) on the optimization
process.

6.4 Safe Bayesian Optimization

We adopt BO as the underlying surrogate-based optimization strategy. When deployed
to address the problem of safe black-box optimization defined in the previous section,
BO-based schemes are referred to collectively as Safe-BO [167, 168, 13, 179, 146]. As
illustrated in Fig. 6.2, Safe-BO models objective function f(x) and constraint function
q(x) by using independent Gaussian processes (GPs) as surrogate models, producing the
distributions p(f |Ot) and p(q|Ot) introduced in Sec. 6.3.2. In this section, we adopt the
background material on GPs in Sec. 2.1 and discuss a general approach to define safe sets
St+1 on the basis of the current distribution p(q|Ot).

Let us return to the operation of sequential optimizers based on BO. As explained
in the previous section, at the end of iteration t, the optimizer has attempted solutions
(x1, ...,xt), which are collectively referred to as Xt. For these inputs, it has observed the
noisy values yt = [y1, ...,yt]

T in (6.4) of the objective function, as well as the noisy values
zt = [z1, ..., zt]

T in (6.5) for the constraint function. As we reviewed in Sec. 2.1, GPs allow
the evaluation of the posterior distributions

p(f(x)|Ot) = p(f(x)|Xt,yt) (6.9)

and
p(q(x)|Ot) = p(q(x)|Xt,zt) (6.10)
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for a new candidate solution x, given the historyOt = (Xt,yt,zt) consisted of the previous
attempts Xt and its corresponding noisy observations yt and zt. As we discuss next, these
posterior distributions are used by Safe-BO methods to construct credible intervals, which
quantify the residual uncertainty on the values of functions f(x) and q(x) at any candidate
solution x.

Introducing a scaling parameter βt+1 > 0, the credible interval for the value of the
objective function f(x) for input x at the end of iteration t, or equivalently at the beginning
of iteration t+1, is defined by lower bound fl(x|Ot) and upper bound fu(x|Ot) given by

If (x|Ot) = [fl(x|Ot),fu(x|Ot)]

= [µf (x|Xt,yt)−βt+1σf (x|Xt,yt),µf (x|Xt,yt)+βt+1σf (x|Xt,yt)],

(6.11)

where the mean µf (x|Xt,yt) and the standard deviation σf (x|Xt,zt) are defined as in
(2.7) and (2.8), respectively. In a similar manner, the credible interval for the constraint
function q(x) is defined as

Iq(x|Ot) = [ql(x|Ot), qu(x|Ot)]

= [µq(x|Xt,zt)−βt+1σq(x|Xt,zt),µq(x|Xt,zt)+βt+1σq(x|Xt,zt)], (6.12)

where the mean µq(x|Xt,yt) and the standard deviation σq(x|Xt,zt) are also defined as
in (2.7) and (2.8), respectively.

Under the Gaussian model assumed by GP, the intervals (6.11) and (6.12) include the
true function values f(x) and q(x) for a given input x with probability

P(βt+1) = 2F (βt+1)−1, (6.13)

where F (·) is the cumulative distribution function (CDF) of standard Gaussian random
variable F (z) = Pr(Z ≤ z) with Z ∼N (0,1). Therefore, the lower bounds fl(x|Ot) and
ql(x|Ot) in the credible intervals (6.11) and (6.12), respectively, serve as pessimistic esti-
mates of the objective and constraint values at the confidence level defined by probability
P(βt+1). Furthermore, under the same confidence level, the upper bounds fu(x|Ot) and
qu(x|Ot) in (6.11) and (6.12) describe optimistic estimates of the objective and constraint
values, respectively. That said, it is important to stress that, since the Gaussian model
assumed by GP is generally misspecified, there is no guarantee on the actual probability
that the credible intervals If (x|Ot) and Iq(x|Ot) include the true values f(x) and q(x)
[80, 9, 193]. These intervals, in fact, are guaranteed to include the true functions values
with probability P(βt+1) only under the GP model.

In order to meet the safety requirement (6.7) or (6.8), Safe-BO methods define a
safe set of candidate solutions x ∈ X that are likely to satisfy the constraint q(x) ≥ 0.
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To this end, the optimizer selects the scaling factor βt+1 so as to ensure some desired
“safety” probability P(βt+1). Then, leveraging the GP model, Safe-BO methods adopt the
pessimistic estimate of the value of constraint function given by ql(x|Ot) in (6.12) as a
conservative estimate of the constraint function. Accordingly, the safe set St+1 is defined
as the set of all feasible solutions x ∈ X for which the conservative estimate ql(x|Ot) of
constraint function q(x) predicts the solution x to be safe, i.e.,

St+1 = S(Ot|βt+1) = {x ∈ X : ql(x|Ot)≥ 0}∪S0. (6.14)

The safe set includes the known initial set S0 of safe solutions in (6.2), ensuring a non-
empty safe set [13].

Safe-BO schemes choose as the first solution x0 a point randomly selected from the
initial safe set S0. For the following iterations, while all Safe-BO schemes adopt the same
definition of the safe set (6.14), the realization of the acquisition process selecting the next
iterate xt+1 differentiates the schemes proposed in prior [167, 168, 13, 179, 146]. In the
next section, we specifically describe the operation of SAFEOPT [167, 13].

6.5 SAFEOPT

In this section, we review SAFEOPT [167, 13] a representative state-of-the-art Safe-BO
method, which will serve as a reference for the proposed SAFE-BOCP strategies introduced
in the next section.

6.5.1 Scope and Working Assumptions

SAFEOPT addresses problem (6.1) under a strict version of the probabilistic safety con-
straint (6.8) with target violation rate α = 0 and arbitrary target reliability level 1− δ. In
order to allow for a zero violation rate (α= 0) to be a feasible goal, SAFEOPT makes the
assumption that the constraint function q(x) in (6.1) lies in the RKHSHκ associated with
the same kernel function κ(x,x′) assumed by GP inference (see Sec. 2.1). In this sense,
the model adopted by GP is assumed by SAFEOPT to be well specified.

Formally, the mentioned assumption made by SAFEOPT enforces that the function can
be expressed as

q(x) =
m

∑
i=1

aiκ(x,xi) (6.15)
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for some vectors {xi ∈Rd}mi=1, real coefficients {ai}mi=1, and integer m. For a function
q(x) of the form (6.15), the squared RKHS norm is defined as

||q||2κ =
m

∑
i=1

m

∑
j=1

aiajκ(xi,xj). (6.16)

Furthermore, a useful property of constraint function q(x) in RKHSHκ is that it is upper
bounded by a function of their squared RKHS norm as

|q(x)| ≤ κ(x,x)1/2||q||κ (6.17)

for all values x in their domain. The property (6.17) is leveraged by SAFEOPT by assuming
that the RKHS norm of the constraint function q(x) is upper bounded by a known constant
B, i.e.,

||q||κ ≤B. (6.18)

6.5.2 Safe Set Creation

Safe-BO determines the safe set St+1 in (6.14) using the scaling parameter

βt+1 =B+4σq
√
γt+1− ln(δ), (6.19)

where B is the constant appearing in the assumed upper bound (6.18); σ2q is the known
observation noise power in (6.5); 1− δ is the target reliability level in (6.8); and γt is the
maximal mutual information between the true values (q(x1), ..., q(xt)) of the constraint
function and the corresponding t noisy observations (z1, ...,zt) when evaluated under the
model assumed by GP. This quantity can be evaluated as [13]

γt = max
X′

t=(x′
1,...,x

′
t)

(
1

2
log
∣∣∣It+σ−2

q Kq(X
′
t)
∣∣∣
)
, (6.20)

where It is the t× t identity matrix and Kq(X
′
t) is the t× t covariance matrix defined in

Sec. 2.1. Evaluating (6.20) requires a maximization over all possible inputs sequences
X′

t = (x′
1, ...,x

′
t), hence in practice it is often addressed via greedy algorithms (see, e.g.,

[162]). We also observe that, in the limit of no observation noise, i.e., as σq → 0, the
scaling parameter (6.19) tends to βt =B.

By choosing the scaling parameter βt+1 as in (6.19), under the key assumption (6.18),
all the decisions in the safe set St+1 (6.14) can be proved to be safe with high probability
[13, Lemma 1] (see also [162, Theorem 6]).
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6.5.3 Acquisition Process

In this section, we detail the acquisition process adopted by SAFEOPT to select the next
iterate xt+1 within the safe set St+1.

To start, SAFEOPT defines the set of potential optimizersMt+1 as the set of all possible
solutions x ∈ St+1 that may increase the objective function. It also maintains a set of
possible expanders Gt+1 as the set of safe solutions that can potentially increase the size of
the safe set St+1 if selected. Then, given the potential optimizersMt+1 and the possible
expanders Gt+1, SAFEOPT chooses the solution x ∈Mt+1∪Gt+1 that maximally reduces
the larger uncertainty implied by the credible intervals (6.11) and (6.12), i.e.,

xt+1 = arg max
x∈Mt+1∪Gt+1

max{σf (x|Ot),σq(x|Ot)}. (6.21)

We now describe the construction of setsMt+1 and Gt+1. For the first, let us recall
that the lower bound fl(x|Ot) in the credible interval (6.11) can be viewed as a pessimistic
estimate of the objective f(x), while the upper bound fu(x|Ot) can be interpreted as an
optimistic estimate of the same value. The set of potential optimizers,Mt+1, includes all
safe solutions x ∈ St+1 for which the optimistic estimate fu(x|Ot) is larger than the best
pessimistic estimate fl(x|Ot) for all safe solutions x ∈ St+1. This set can be expressed
mathematically as

Mt+1 =

{
x ∈ St+1

∣∣∣fu(x|Ot)≥ max
x′∈St+1

fl(x
′|Ot)

}
. (6.22)

Note that this set is non-empty, since it includes at least the solution x that maximizes the
lower bound fl(x|Ot).

The setMt+1 accounts only for the objective value to select solutions from the safe set
St+1. In contrast, the set of possible expanders considers the potential impact of a selected
candidate solution on the safe set. To formalize this concept, let us write St+2(x) for the
safe set (6.14) evaluated by extending the current history Ot with the pair (x, qu(x|Ot)) of
candidate solution x and corresponding hypothetical observation of the optimistic value
qu(x|Ot) of the constraint q(x). Accordingly, we have

St+2(x) = S
(
Ot∪ (x, qu(x|Ot))

∣∣∣βt+1

)
, (6.23)

and the set of possible expanders is defined as

Gt+1 = {x ∈ St+1 : |St+2(x)\St+1|> 0}, (6.24)

that is, as the set of all safe solutions that can potentially increase the size of the safe set.
After T trials, the final decision x∗ is obtained by maximizing the pessimistic estimate

fl(x|OT ) of the objective function that is available after the last iteration over the safe set
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Algorithm 7: SAFEOPT

Input :GP priors (µf (x),κf (x,x′)) and (µq(x),κq(x,x
′)), initial safe set S0,

initial observation O0, assumed RKHS norm bound B, total number of
optimization iterations T

Output :Decision x∗

1 Initialize scaling parameters {βt}T+1
t=1 using (6.19), x1 = SAFEOPT(O0|β1)

2 for t= 1, ...,T do
3 Observe yt and zt from candidate solution xt
4 Update the observation history Ot =Ot−1∪{xt,yt, zt}
5 Update GPs with Ot as in (6.9) and (6.10)
6 xt+1 = SAFEOPT(Ot|βt+1)

7 end
8 Return final decision x∗ = argmaxx∈ST+1

fl(x|OT )

9 ————————————————————————————————–
10 SAFEOPT(Ot|βt+1):
11 Create credible intervals If (x|Ot) and Iq(x|Ot) using βt+1 as in (6.11) and

(6.12)
12 Obtain safe set St+1 as in (6.14)
13 Update the set of potential optimizersMt+1 as in (6.22)
14 Update the set of possible expanders Gt+1 as in (6.24)
15 Return the next iterate xt+1 in accordance to (6.21)

ST+1, i.e.,
x∗ = arg max

x∈ST+1

fl(x|OT ). (6.25)

The overall procedure of SAFEOPT is summarized in Algorithm 7.

6.5.4 Safety Property

SAFEOPT was shown in [167, 13] to achieve the probabilistic safety constraint (6.8) with
α = 0, as long as the assumptions that the true constraint function q(x) is of the form
(6.15) and that the RKHS norm bound (6.18) holds.

Theorem 1. (Safety Guarantee of SAFEOPT [13]) Assume that the RKHS norm of the
true constraint function q(x) is bounded by B > 0 as in (6.18). By choosing the scaling
parameter βt+1 as in (6.19), SAFEOPT satisfies the probabilistic safety constraint (6.8)
with α = 0. Furthermore, with ideal observations of the constraint function q(x), i.e.,
σq = 0, by choosing the scaling parameter as βt+1 =B, SAFEOPT meets the deterministic
requirement (6.7) with α = 0.

From Theorem 1, as long as the Gaussian model assumed by GP is well specified – in
the sense indicated by the RKHS form (6.15) with known norm upper bound B in (6.19)
– SAFEOPT ensures safe optimization with a zero target violation rate α = 0. In practice,
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however, it is hard to set a value for the constant B. Therefore, for any fixed constant B,
the resulting algorithm does not have formal guarantees in terms of safety [146].

6.6 Deterministic Safe-BO via Online CP

As we have reviewed in Sec. 6.5, in order to achieve a zero target violation rate α = 0

in the safety constraints (6.7) and (6.8), SAFEOPT assumes that the constraint function
q(x) belongs to a specific family of functions. Other Safe-BO methods [168, 13, 179]
also require the same assumption to guarantee the safety constraint (see Sec. 6.2). In
the following two sections, we will introduce SAFE-BOCP, a novel Safe-BO scheme that
achieves the safety constraint requirements (6.7) or (6.8) without requiring any assumptions
on the underlying constraint function q(x). This goal is met at the cost of obtaining a non-
zero, controllable, target violation rate α ∈ (0,1] in the deterministic safety requirement
(6.7) and in the probabilistic safety requirement (6.8). This section focuses on the case in
which observations (6.5) of the constraint function are ideal, i.e., σ2q = 0, hence aiming
at achieving the deterministic safety constraint (6.7). The next section addresses the case
with noisy observations on the constraint function.

6.6.1 Adaptive Scaling via Noiseless Feedback on Safety

As detailed in Sec. 6.4, SAFEOPT fixes a priori the scaling parameters β1, ...,βT to be
used when forming the safe set (6.14), along with the set of potential optimizers (6.22)
and possible expanders (6.24), irrespective of the actual history Ot of past iterates Xt

and observations yt and zt. This is done by leveraging the mentioned assumptions on
the constraint function (6.15)–(6.18). In contrast, not relying on any assumption on the
constraint function q(x), the proposed SAFE-BOCP selects the scaling parameter βt+1

adaptively based on the history Ot by leveraging ideas from online CP [55, 40].
In order to support the adaptive selection of a scaling parameter βt+1 that ensures

the deterministic safety constraint (6.7), SAFE-BOCP maintains an excess violation rate
variable ∆αt+1 across the iterations t= 1, ...,T . The variable ∆αt+1 compares the number
of previous unsafe candidate solutions x′

t with t′ = 1, ..., t to a tolerable number that
depends on the target violation rate α. The main idea is to use the excess violation rate
∆αt+1 to update the parameter βt+1: A larger excess violation rate ∆αt+1 calls for a larger
value of βt+1 so as to ensure a more pronounced level of pessimism in the evaluation of
the safe set (6.14). This forces the acquisition function (6.21) to be more conservative,
driving down the excess violation rate towards a desired non-positive value.
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6.6 Deterministic Safe-BO via Online CP

Figure 6.3 Function βt = φ(∆αt) in (6.31), which determines the scaling factor βt as a
function of the excess violation rate ∆αt.

6.6.2 D-SAFE-BOCP

To define the excess violation rate, we first introduce the safety error signal

errt = 1(zt < 0), (6.26)

which yields errt = 1 if the last iterate xt was found to be unsafe based on the observation
zt = q(xt), and errt = 0 otherwise. An important property of schemes, like SAFEOPT and
D-SAFE-BOCP, that rely on the use of safe sets of the form (6.14) is that one can ensure a
zero error signal errt = 0 by setting βt =∞. In fact, with this maximally cautious selection,
the safe set St includes only the initial safe set S0 in (6.2), which consists exclusively of
safe solutions.

The excess violation rate ∆αt+1 measures the extent to which the average number of
errors made so far, 1

t ∑
t
t′=1 errt′ , exceeds an algorithmic target level αalgo, which will be

specified later. Accordingly, the excess violation rate is updated as

∆αt+1 =∆αt+η(errt−αalgo), (6.27)

for a given update rate η > 0 and for any initialization ∆α1 < 1. The relation between
excess violation rate and the average number of errors becomes apparent by rewriting
(6.27) as

∆αt+1 =∆α1+η ·
( t

∑
t′=1

errt′−αalgo · t
)

=∆α1+η · t ·
(

violation-rate(t)−αalgo

)
, (6.28)

which is a linear function of the difference between the violation rate up to time t and
the algorithmic target αalgo. This implies that the desired safety requirement (6.7) can be
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equivalently imposed via the inequality

violation-rate(T ) =
∆αT+1−∆α1

Tη
+αalgo ≤ α. (6.29)

Therefore, controlling the violation rate requires us to make sure that the excess violation
rate ∆αt does not grow too quickly with the iteration index t.

Intuitively, as mentioned, in order to control the value of the excess violation rate ∆αt,
we need to select values of βt that increase with ∆αt. To this end, as summarized in
Algorithm 8, inspired by the approach introduced by [40] in the context of online CP, the
proposed D-SAFE-BOCP sets the parameter βt as

βt = φ(∆αt), (6.30)

where we have defined function

φ(∆αt) = F−1((clip(∆αt)+1)/2), (6.31)

with F−1(·) being the inverse of the function F (·) (6.13), i.e., the inverse CDF of standard
Gaussian distribution, and clip(∆αt) = max{min{∆αt,1},0} being the clipping function.
An illustration of the function (6.31) can be found in Fig. 6.3. Furthermore, we set the
algorithmic target level as

αalgo =
1

T −1

(
Tα−1− 1

η
+

∆α1
η

)
. (6.32)

The overall procedure of D-SAFE-BOCP is summarized in Algorithm 8. We next prove that
D-SAFE-BOCP meets the reliability requirement (6.29).

6.6.3 Safety Guarantees

D-SAFE-BOCP is guaranteed to meet the deterministic safety constraint (6.7) (or equiva-
lently (6.29)), as summarized in the next theorem.

Theorem 2 (Safety Guarantee of D-SAFE-BOCP). Under noiseless observations of the
constraint function (σ2q = 0), D-SAFE-BOCP satisfies the deterministic safety constraint
(6.7) for any pre-determined target violation rate α ∈ (0,1].

Proof. Function (6.30) implements the following mechanism: When ∆αt ≥ 1, it returns
βt =∞, i.e.,

∆αt ≥ 1⇒ βt =∞. (6.33)
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Algorithm 8: D-SAFE-BOCP

Input :GP priors (µf (x),κf (x,x′)) and (µq(x),κq(x,x
′)), initial safe set S0,

initial observation O0, total number of optimization iterations T , target
violation rate α, update rate η > 0, initial excess violation rate ∆α1 < 1

Output :Decision x∗

1 Initialize x1 = SAFEOPT(O0|β1) using β1 = φ(∆α1) (6.31), algorithmic target
level αalgo as in (6.32)

2 for t= 1, ...T do
3 Observe yt and zt from candidate solution xt
4 Update the observation history Ot =Ot−1∪{xt,yt, zt}
5 Update GPs with Ot as in (6.9) and (6.10)
6 Evaluate error signal errt = 1(zt < 0) as in (6.26)
7 Update excess violation rate ∆αt+1 =∆αt+η(errt−αalgo) as in (6.27)
8 Update scaling parameter βt+1 = φ(∆αt+1) using (6.31)
9 xt+1 =SAFEOPT(Ot|βt+1) from Algorithm 7

10 end
11 Return final decision x∗ = argmaxx∈ST+1

fl(x|OT )

As discussed earlier in this section, this ensures a zero error signal errt = 0. With this
mechanism in place, one can guarantee the upper bound

∆αt+1 < 1+η(1−αalgo) (6.34)

for all t≥ 1 given the mentioned initialization ∆α1 < 1. This is because a value ∆αt ≥ 1

would cause the update term in (6.27) to −ηαalgo < 0, and hence the maximum value is
attained when ∆αt is approaching, but smaller than, 1, and an unsafe decision is made,
causing an update equal to η(1−αalgo).

Plugging bound (6.34) back into (6.29), yields the upper bound on the violation rate

violation-rate(T )≤ 1+η(1−αalgo)−∆α1

Tη
+αalgo. (6.35)

Therefore, by setting (6.32), we finally verify that the deterministic safety requirement
(6.29) is satisfied.

6.7 Probabilistic SAFE-BOCP

We now turn to the case in which the observations (6.5) of constraint function q(x) are noisy
(σ2q > 0). The main challenge in extending the approach proposed in the previous section
is the fact that the error signal (6.26) is an unreliable indication of whether candidate xt is
safe or not due to the presence of observation noise. Accordingly, we start by proposing an
alternative way to measure the excess violation rate.
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6.7.1 P-SAFE-BOCP

To proceed, we assume that the observation noise ϵq,t in (6.5) has a known upper bound on
the right-tail probability Pr(ϵq,t ≥ ω) for all ω ∈R. This basic assumption is also adopted
in the robust CP literature [39, Theorem 1]. In Sec. 6.7.3, we will illustrate how to further
alleviate this assumption by assuming access to noise samples.

Assumption 1. The constraint observation noise ϵq,t, which is independent over t=1, ...,T ,
has a known upper bound F+(ω) on its one-sided right-tail probability, i.e.,

Pr(ϵq,t ≥ ω)≤ F+(ω) (6.36)

for all t= 1, ...,T and any ω ∈ R.

The main idea underlying the proposed P-SAFE-BOCP is to count as unsafe all solutions
xt for which the noisy observation zt = q(xt)+ ϵq,t in (6.5) is smaller than some back-off
threshold ωq > 0. Specifically, we define the safety error signal as

errt = 1(zt < ωq), (6.37)

where the corresponding threshold ωq is obtained as

ωq = inf{ω ∈ R : F+(ω)≤ 1− (1− δ) 1
T }. (6.38)

The threshold ωq increases with the target reliability level 1− δ in the probabilistic safety
constraint (6.8). In fact, a larger target reliability level calls for more caution in determining
whether a given observation zt of the constraint function is likely to indicate an unsafe
solution or not.

The rationale behind the definitions (6.37)-(6.38) is formalized by the following lemma,
which relates the true violation rate (6.7) to the estimated violation rate ∑

T
t=1 errt/T using

the error signal (6.37).

Lemma 1 (Estimated Violation Rate). For any iterates x1, ...,xT , the true violation rate
in (6.7) is upper bounded by the accumulated error signal rate in (6.37) with probability
1− δ, i.e.,

Pr

(
violation-rate(T )≤ 1

T

T

∑
t=1

errt

)
≥ (1−F+(ω))T = 1− δ, (6.39)

in which the probability is taken with respect to the observation noise variables {ϵq,t}Tt=1

for the constraint function q(x) in (6.5).

Proof. When a candidate solution xt is unsafe, i.e., when q(xt)< 0, the probability that
the error signal errt in (6.37) correctly reports an error, setting errt = 1, is lower bounded
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Algorithm 9: P-SAFE-BOCP

Input :GP priors (µf (x),κf (x,x′)) and (µq(x),κq(x,x
′)), initial safe set S0,

initial observation O0, total number of optimization iterations T , target
violation rate α, update rate η > 0, initial excess violation rate ∆α1 < 1

Output :Decision x∗

1 Initialize x1 = SAFEOPT(O0|β1) using β1 = φ(∆α1) (6.31), algorithmic target
level αalgo as in (6.32)

2 for t= 1, ...T do
3 Observe yt and zt from candidate solution xt
4 Update the observation history Ot =Ot−1∪{xt,yt, zt}
5 Update GPs with Ot as in (6.9) and (6.10)
6 Evaluate cautious error signal errt = 1(zt < ωq) as in (6.37) with ωq obtained

from (6.38)
7 Update excess violation rate ∆αt+1 =∆αt+η(errt−αalgo) as in (6.27)
8 Update scaling parameter βt+1 = φ(∆αt+1) using (6.31)
9 xt+1 =SAFEOPT(Ot|βt+1) from Algorithm 7

10 end
11 Return final decision x∗ = argmaxx∈ST+1

fl(x|OT )

by 1−F+(ω). Therefore, the probability that the true violation rate violation-rate(T ) no
larger than the estimated violation rate ∑

T
t=1 errt/T = 1 is lower bounded by the probability

that all the errors correctly reported. This is, in turn, lower bounded by (1−F+(ω))T by
the independence of the observation noise variables {ϵq,t}Tt=1.

As specified in Algorithm 9, P-SAFE-BOCP follows the same steps in D-SAFE-BOCP

with the caveat that the error signal (6.37) is used in lieu of (6.26). As we prove next, the
correction applied via the error signal (6.37) is sufficient to meet the probabilistic safety
requirement (6.8).

6.7.2 Safety Guarantees

The satefy guarantees of P-SAFE-BOCP are summarized in the following theorem.

Theorem 3 (Safety Guarantee of P-SAFE-BOCP). Under noisy observations of the con-
straint function and Assumption 1, P-SAFE-BOCP satisfies the probabilistic safety constraint
(6.8) for any pre-determined target violation rate α ∈ (0,1] and target reliability level
δ ∈ (0,1).

Proof. Using the same arguments as in the proof of Theorem 2, the estimated violation
rate can be upper bounded with probability 1 as

1

T

T

∑
t=1

errt ≤
1+η(1−αalgo)−∆α1

Tη
+αalgo. (6.40)
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Using this bound with Lemma 1, we conclude that, with probability at least 1−δ, in which
the probability is taken over the observation noise variables {ϵq,t}Tt=1, we have bound on
the true violation rate

violation-rate(T )≤ 1

T

T

∑
t=1

errt ≤ α, (6.41)

which recovers the probabilistic safety constraint (6.8).

6.7.3 Data-Driven Probability Bound

A possible challenge in applying P-SAFE-BOCP in practice is the fact that an upper bound
F+(ω) on the probability Pr(ϵq,t ≥ ω) may not be known a priori. In this subsection,
we provide a data-driven approach for evaluating an upper bound on the probability
Pr(ϵq,t ≥ ω), assuming only access to i.i.d. observation noise samples.

Lemma 2 (Estimated Upper Bound). Assume access to i.i.d. observation noise samples
{ϵq,i}mi=1. The empirical estimate of the right-tail probability

F̂+(ω) =
1

m

m

∑
i=1

1(ϵq,i > ω), (6.42)

when offset by ψ > 0, provides an upper bound on Pr(ϵq,i > ω) with probability

Pr
(
Pr(ϵq,i ≥ ω,∀ω ∈R)≤ F̂+(ω)+ψ

)

≥ 1− exp(−2mψ2) (6.43)

for any ψ >
√

ln2/2m.

Lemma 2 is a direct application of Dvoretsky-Kiefer-Wolfowitz inequality [116].
Consequently, by using F̂+(ω)+ψ in lieu of F+(ω) in (6.38), we have the following

modified safety guarantee of P-SAFE-BOCP.

Corollary 1. Under noisy observations of the constraint function, P-SAFE-BOCP with
F̂+(ω)+ψ, for any ψ > 0, in lieu of F+(ω) in (6.38) satisfies the guarantee

Pr(violation-rate(T )≤ α)≥ (1− exp(−2mψ2))(1− δ) (6.44)

for any pre-determined target violation rate α ∈ (0,1] and target reliability level δ ∈ (0,1),
where the probability is taken with respect to the observation noise variables {ϵq,t}Tt=1 as
well as the m i.i.d. noise samples in (6.42).

Corollary 1 is obtained by combining Lemma 2 and Theorem 3. Intuitively, with an
increasing number m of the constraint observation noise samples, the tightness of the
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Figure 6.4 Violation-rate(t) (top) and optimality ratio (bottom) against iteration index t
with target violation rate α = 0.3 (dot-dashed line), update rate η = 2, misspecified kernel
bandwidth h = 1/14.58, RKHS norm bound B = ||q||κ∗ and total number of iteration
T = 50.

safety guarantee in Theorem 3 is enhanced as a result of increasingly accurate observation
noise estimation.

6.8 Numerical Results For a Synthetic Benchmark

In this section, we detail experimental results aimed at comparing SAFE-BOCP with
SAFEOPT [13] on a synthetic benchmark inspired by [13].

6.8.1 Synthetic Dataset

In a manner similar to [13], we focus on a synthetic setting with a scalar optimization
variable x ∈ R in which the objective function f(x) is a realization of a GP with zero
mean and RBF kernel κ∗(x,x′) (2.1) with bandwidth h∗ = 1/1.62, while the constraint
function q(x) is a function in this RKHSHκ∗ which has the form (6.15) with coefficients
{ai}10i=0 = [−0.05,−0.1,0.3,−0.3,0.5,0.5,−0.3,0.3,−0.1,−0.05] and scalars {xi}10i=1 =

[−9.6,−7.4,−5.5,−3.3,−1.1,1.1,3.3,5.5,7.4,9.6]. Accordingly, the constraint function
q(x) has RKHS norm ||q||κ∗ = 1.69 in (6.18). In order to investigate the impact of
misspecification of GP (see Sec. 6.5.1) on Safe-BO including the proposed SAFE-BOCP,
we consider the two cases: (i) well-specified GP that uses κ∗(x,x′) for the GP kernel, i.e.,
κ(x,x′) = κ∗(x,x′); (ii) misspecified GP that uses RBF kernel with smaller bandwidth
h= 1/14.58< h∗, i.e., κ(x,x′) ̸= κ∗(x,x′), with unknown ||q||κ.

As discussed throughout the paper, the scaling parameter for the constraint function
q(x) in (6.12) is a priori determined by (6.19) for SAFEOPT, and is adapted by feedback via
βt+1 = φ(∆αt+1) (6.27) for the proposed SAFE-BOCP, while we fix the scaling parameter
for the objective function f(x) in (6.11) to 3 since it does not affect the safety guarantee
for both SAFEOPT (see [162, Theorem 6]) and SAFE-BOCP. The objective observation
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Well-specified ℎ
Misspecified ℎ

Well-specified ℎ
Misspecified ℎ

Figure 6.5 Violation rate (6.7) (left) and optimality ratio (6.3) (right) against the ratio
between the RKHS norm bound B assumed by GP and the actual norm ||q||κ∗ in (6.18).
The dashed lines are obtained with well-specified GP models, which corresponds to kernel
bandwidth h = 1/1.69 (same one for κ∗(x,x′)), while the solid lines are obtained with
misspecified GP models, having kernel bandwidth h= 1/14.58.

noise variance is set to σ2f = 2.5× 10−3; the initial safe decision is chosen as x0 = 0

for which we have q(x0) = 0.946> 0; and the total number of optimization iterations is
set to T = 25. For SAFE-BOCP, we set the update rate in (6.27) to η = 2.0. All results
are averaged over 1,000 experiments, with error bars shown to encompass 95% of the
realizations. Each experiment corresponds to a random draw of the objective function and
to random realization of the observation noise signals.

6.8.2 Deterministic Safety Requirement

As explained in Sec. 6.5, SAFEOPT requires the GP model for the constraint function q(x)
to be well specified (6.15)–(6.18) in order to meet safety conditions. To study the impact
of violations of this assumption, we start by considering the noiseless case, i.e., σ2q = 0,
and we vary the kernel bandwidth h adopted for the GP models used as surrogates for the
objective and constraint functions as discussed earlier.

Fig. 6.4 shows the violation rate and optimality ratio against the iteration index t. For
D-SAFE-BOCP, we set the update rate as η = 2 and the target violation rate to α = 0.3,
while SAFEOPT assumes target α = 0 with RKHS norm bound B = ||q||κ∗ . For both
schemes, the total number of iterations is T = 50, and the misspecified GP with RBF
kernel bandwidth h= 1/14.58 is adopted.

The violation rate obtained by SAFEOPT is above the target α= 0.3 for a significant
interval of time t, and it progressively falls below the target with a larger t, while D-SAFE-
BOCP meets the deterministic safety requirement (6.7) with the pre-determined target
α = 0.3 across all iterations. Furthermore, the optimality ratio obtained by D-SAFE-BOCP

is larger than SAFEOPT after iteration t= 13, converging to 97.5% at iteration t= 20. In

116



6.8 Numerical Results For a Synthetic Benchmark

Figure 6.6 Violation-rate(T ) and optimality ratio for different target violation rates α for
D-SAFE-BOCP, with update rate η = 2, misspecified kernel bandwidth h= 1/14.58, and
RKHS norm bound B = ||q||κ∗ . The background colors represent intervals in which the
safety requirement (6.7) is met (see text for an explanation).

contrast, SAFEOPT converges to optimality ratio of 94.5% at iteration t = 25, at which
point the target safety level α = 0.3 is violated.

Fig. 6.5 shows the violation-rate(T ) in (6.7) with T = 20, as well as the optimality
ratio (6.3), as a function of constant B assumed by SAFEOPT for both well-specified and
misspecified GPs, and the target violation rate is set to α= 0.1. Note that the performance
of D-SAFE-BOCP does not depend on the value of B, which is an internal parameter for
SAFEOPT, but it is affected by the choice of parameter h. By Theorem 1, any value
B ≥ ||q||κ in (6.18) guarantees the safety of SAFEOPT. However, since RKHS norm for
the misspecified GP is generally unknown, we plot violation rate and optimality ratio
as functions of the ratio B/||q||κ∗ , to highlight the two regimes with well specified and
misspecified value of B.

Confirming Theorem 1, with a ratio B/||q||κ∗ ≥ 1 for the well-specified GP with kernel
κ(x,x′) = κ∗(x,x′), SAFEOPT is seen to strictly satisfy the deterministic safety constraint
(6.7), since the violation rate is equal to zero, as per its target. Instead, when B/||q||κ∗ < 1,
and/or when the GP is misspecified, i.e., κ(x,x′) ̸= κ∗(x,x′), the violation rate exceeds the
target α. In contrast, D-SAFE-BOCP obtains a violation rate below the target α, irrespective
of kernel bandwidth h assumed in GP.

In terms of optimality ratio, in the regime B/||q||κ∗ ≥ 1, with a well-specified GP
parameter h, SAFEOPT achieves around 83%, while D-SAFE-BOCP obtains the larger
optimality ratio 84.5%. In contrast, with a misspecified value h, D-SAFE-BOCP achieves
an optimality ratio around 87.5%, while the optimality ratio of SAFEOPT is larger, but this
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Figure 6.7 Probability of excessive violation rate (6.8) (left) and optimality ratio (6.3)
(right) as a function of constraint observation noise power σ2q , with update rate η = 2,
RKHS norm bound B = 10||q||κ∗ , and well-specified kernel bandwidth h= 1/1.62.

comes at the cost of the violation of the safety requirement. Note that a misspecified value
of the kernel bandwidth h does not necessarily reduce the performance of D-SAFE-BOCP,
which is improved in this example.

The trade-off between violation rate and optimality ratio is studied in Fig. 6.6 by
varying the target violation rate α for D-SAFE-BOCP. For each value of α, we show the
achieved pair of violation rate and optimality ratio, along with the corresponding realization
ranges along the two axes. Recall that for SAFEOPT the assumed target is α= 0, and hence
one pair is displayed. We focus here on the misspecified GP case, i.e., κ(x,x′) ̸= κ∗(x,x′),
while the SAFEOPT parameter B is selected to the “safe” value B = ||q||κ∗ , which is
unaware of kernel misspecification.

For each value of α ∈ {0.1,0.2,0.3}, the figure highlights the intervals of violation
rates that meet the safety requirement (6.7) using different colors. Specifically, for α= 0.1,
all violation rates below 0.1 are acceptable, as denoted by the red interval; for α = 0.2, all
violation rates in the red and green intervals are acceptable; and for α = 0.3, all violation
rates below in the cyan, green, and red interval meet the safety constraint.

The figure shows that the violation rate obtained by SAFEOPT exceeds its target α = 0,
and thus the safety requirement is violated. In contrast, as per the theory developed in
this paper, D-SAFE-BOCP meets violation-rate requirement for all values of the target α.
Moreover, as the tolerated violation rate α increases, the optimality ratio of D-SAFE-BOCP

is enhanced, indicating a trade-off between the two metrics. When increasing the target
violation rate α, D-SAFE-BOCP raises the algorithmic target level αalgo in (6.32), making it
possible for the optimizer to reduce the time spent under the maximally cautious scaling
βt =∞ in (6.30). Consequently, with a larger α, the optimality ratio of D-SAFE-BOCP

gains from more explorations of the objective function f(x).
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Figure 6.8 Excess violation rate probability (6.8) (left) and optimality ratio (6.3) (right) as
a function of constraint observation noise power σ2q , with update rate η = 2, RKHS norm
bound B = 10||q||κ∗ , and misspecified kernel bandwidth h= 1/14.58.

6.8.3 Probabilistic Safety Constraint

We now turn to considering scenarios with observation noise σ2q > 0, and aim at evaluating
the performance in terms of probabilistic safety requirement (6.8) and optimality ratio
(6.3). We set the target reliability level 1− δ = 0.9 with target violation rate α = 0.1 for
P-SAFE-BOCP, and with α= 0 for SAFEOPT in accordance with SAFEOPT’s design. For
the latter scheme, we set the “safe” value B = 10||q||κ∗ , while we consider both the well-
specified kernel bandwidth h= h∗ = 1/1.62, and the misspecified one h= 1/14.58< h∗,
as considered also in the previous set of experiments. For all schemes, the excess violation
rate probability in (6.8) is obtained by averaging over 10,000 realizations.

We plot the excess violation rate probability (6.8) and the optimality ratio in Fig. 6.7
and Fig. 6.8 against the observation noise power σ2q . The first figure corresponds to the case
of a well-specified kernel bandwidth while for the second we adopted misspecified value.
Confirming the theory, in the former case, both SAFEOPT and P-SAFE-BOCP attain an
excess violation rate probability below the target level 1− δ. In contrast, for a misspecified
kernel, SAFEOPT can only satisfy the constraint (6.8) for sufficiently large observation
noise, but P-SAFE-BOCP still meets the probability safety constraint (6.8). We note that a
larger observation noise is beneficial to SAFEOPT in terms of safety since it forces a larger
level of pessimism in the definition of the safe set St+1 in (6.14).

In terms of optimality ratio, larger observation noise power σ2q generally yields a
degraded optimality ratio. In the well-specified regime considered in Fig. 6.7, both
schemes have comparable performance and the optimality ratio gap is no more than 5%.
In the misspecified regime demonstrated in Fig. 6.8, the performance levels are not
comparable, since the gains of recorded for SAFEOPT come at the cost of violations of
the safety constraint (6.8), except for a sufficiently large observation noise power, here
σ2q ≥ 0.1.
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6.9 Numerical Results for Real World Applications

In this section, we compare SAFEOPT [167] and SAFE-BOCP in two real-world applications,
with the goal of validating the safety gains obtained by the proposed method along the
optimization process.

6.9.1 Safe Movie Recommendation

As in [167], consider a system that sequentially recommends movies to a user. Each
user assigns a score from 1 to 5 to a recommended movie. Following standard matrix
factorization algorithms, we introduce a feature vector x∈Rd for each movie. Accordingly,
selecting a movie amounts to choosing a vector x within a set of possible movies. Denote as
r(x) the rating assigned by a user to movie x. A recommendation is deemed to be unsafe if
the user assigns it a rating strictly smaller than 4, i.e., if r(x)< 4. Accordingly, we set both
objective function f(x) and constraint function q(x) to be equal to f(x) = q(x) = r(x)−4.
We focus on the deterministic safety constraint (6.7), since the ratings are assumed to be
observed with no noise.

To define a GP model for the function that maps a movie feature vector x to a rating
r(x), we need to specify a kernel function, which describes the similarity between movies.
As in [167], we adopt the linear kernel

κ(x,x′) = xTx′, (6.45)

for any two movie feature vectors x and x′.
The feature vectors x for movies are optimized using the MovieLens-100k dataset [57],

which includes sparse rating observations of 1,680 movies from 943 users. Specifically, as
in [167], we randomly select 200 users to form the training data set, and we set d= 20 for
the size of the feature vectors. Training applies the standard matrix factorization algorithm
[93]. For testing, we pick the 10 test users, not selected for training, that have the most
rated movies, and remove the movies with no rating from the possible selections.

Since the true underlying function that maps movie feature vector x to rating r(x)
is unknown, it is not possible to evaluate the RKHS norm ||q||κ in (6.16) required by
SAFEOPT. Accordingly, as in [13], we set B = 3 a priori for SAFEOPT. In this experiment,
we run both SAFEOPT and D-SAFE-BOCP for T = 100 iterations on the selected 10 test
users. We randomly select a movie rated as 4 for each test user as the initial starting point
x0, and set the update rate η = 10 for D-SAFE-BOCP.

To evaluate the performance of both schemes, we show in Fig. 6.9 the histograms
of the ratings across all selected movies during the optimization procedure. The vertical
dashed line represents the safety threshold between safe and unsafe recommendations. The
marker on the horizontal axis marks the average rating. For D-SAFE-BOCP we have the
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Figure 6.9 Histograms of the ratings of recommended movies by SAFEOPT, as well by
D-SAFE-BOCP under different target violation rates α. The dashed lines represent the safety
threshold for the recommendations, and the marker on the horizontal axis represents the
average rating of the recommendations.

flexibility to vary the target violation rate α, while we recall that for SAFEOPT the target is
α = 0.

The top-left panel of Fig. 6.9 shows that SAFEOPT does not meet the safety requirement
(6.7) with α= 0 owing to the mismatch between the assumptions made by the scheme and
the true, unknown, constraint function. The remaining panels demonstrate that, in contrast,
D-SAFE-BOCP can correctly control the fraction α of unsafe recommendations.

6.9.2 Chemical Reaction Optimization

Finally, we consider the plug flow reactor (PFR) problem introduced in [79], which
seeks for optimal chemical reaction parameters x ∈ [140,200]× (0,1]⊂R2, with the first
dimension being the temperature (◦C) and the second being the pH value. The goal is to
maximize the yield (%), which we set as the objective f(x), while keeping an acceptable
selectivity level (%), which we denote as s(x). We refer to [79] for a precise definition of
these terms.

A reaction vector is deemed to be unsafe if the resulting selectivity level is lower than
the corresponding yield, hence we define the constraint function as q(x) = s(x)−f(x).
We assume the presence of non-zero Gaussian observation noise zt for the constraint
function, i.e., σ2q > 0. Accordingly, we focus on the probabilistic safety constraint (6.8),
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Observation noise power Observation noise power

Target reliability level

Figure 6.10 Probability of excessive violation rate (6.8) (left) and optimality ratio (6.3)
(right) as a function of constraint observation noise power σ2q , with update rate η = 2,
RKHS norm bound B = 3, and kernel bandwidth h = 1/2.88 for the chemical reaction
problem.

and compare the performance of SAFEOPT and P-SAFE-BOCP. We adopt GP surrogates
model for both f(x) and q(x) with RBF kernel having bandwidth h= 1/2.88.

Similar to Sec. 6.9.1, since the smoothness property of the true underlying functions
q(x) is unknown, we assume the constant B = 3 for SAFEOPT [13]. The initial decision
x0 is randomly chosen among the a priori known safe decisions that satisfy the constraint
q(x0)≥ 0, and we set the total number of optimization round to be T = 50. Other settings
are as in Sec. 6.8.1.

In a similar manner to Sec. 6.8.3, we demonstrate the excess violation rate probability
(6.8) and the optimality ratio in Fig. 6.10 as a function of the observation noise power
σ2q . Confirming the discussion in Sec. 6.8.3 and the theory, P-SAFE-BOCP is seen to meet
the probabilistic safety constraint (6.8) irrespective of observation noise power, while
SAFEOPT can only attain an excess violation rate probability below the target 1− δ when
the observation noise power is sufficiently large.

6.10 Conclusions

In this chapter, we have introduced SAFE-BOCP, a novel BO-based zero-th order sequential
optimizer that provably guarantees safety requirements irrespective of the properties of
the constraint function. The key mechanism underlying SAFE-BOCP adapts the level of
pessimism adopted during the exploration of the search space on the basis of noisy safety
feedback received by the system. From synthetic experiment to real-world applications, we
have demonstrated that the proposed SAFE-BOCP performs competitively with state-of-the-
art schemes in terms of optimality ratio, while providing for the first time assumption-free
safety guarantees.
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6.10 Conclusions

Although in this work we have built on SAFEOPT for the acquisition process, the
proposed framework could be generalized directly to any other Safe-BO schemes, such
as GOOSE[179]. Other possible extensions include accounting for multiple constraints,
as well as taking into account contextual information during the optimization process
[191]. From the application perspective, it would be interesting to investigate the reliability
of SAFE-BOCP in more complicated real world systems, such as beamforming design
for multi-user URLLC System [58], robust transmission design for IRS-aided secure
communications [64], or image target detection [107].
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Chapter 7

Conclusions

7.1 Summary of Thesis Achievements

The increasing scalability of machine learning frameworks and real-world engineering
system structures fuels the growth on complexity of the black-box optimization problems
in these systems. Therefore, the demand for the system designs’ reliable performance
with generalization on diverse conditions is increasingly important. In this thesis, we
investigated a number of possibilities to improve the efficiency, adaptation and reliability
of Bayes optimizers.

In Chapter 3, we have studied the fundamentals of GP, the typical surrogate model
for BO in later chapters. As any acquisition functions in BO rely on the statistical
inference provided by the surrogate model, calibrations over the surrogate model is the
most straightforward way to achieve the required data efficiency and adaptation properties
for BO. We proposed WFEM, a novel transfer meta-learning approach that generalizes the
IMRM via optimizing the free energy objective on the distribution over shared inter-task
variables.

In Chapter 4, we considered a real-world wireless communication optimization problem
involving radio resource allocation in multi-cell multi-antenna systems. Due to the mobility
of the user devices and the inherent randomness in wireless channels, the optimal design
for radio resource allocation shifts over time. In order to improve the data efficiency
and adaptation of BO in this application, we propose the use of meta-learning to transfer
knowledge from data collected from related, but distinct, configurations in order to speed up
optimization on new network configurations. Furthermore, we introduce novel contextual
meta-optimizers, in which transfer of knowledge across optimization tasks occurs at the
level of a mapping from network interference graph based contextual information to
resource-allocation design variables. The experiments results provide insights into the
potential benefits of meta-learning and contextual optimization strategies.

In Chapter 5, we turned to the scenarios where optimization tasks arrive in a sequence
with a fixed evaluation budget and the corresponding objective functions can be approx-
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7.2 Open Research Questions

imated into multiple fidelity levels. Information collected at lower fidelity levels can
be leveraged to accelerate the optimization process when viewed as a function of the
overall cost budget for evaluating the objective function. However, existing strategies only
focus on maximizing the information accrued about the optimal candidate solution for
the current optimization task. To further enable the efficiency of MFBO, we introduced
MFT-MES, a novel information-theoretic acquisition function that balances the need to
acquire information about the current task with goal of collecting information transferable
to future tasks. We have shown that, by integrating the shared inter-task latent variables
into the acquisition function design and updating in Bayesian principles, the performance
gain is significant compared to the state-of-art schemes that do not cater to the acquisition
of transferable knowledge across tasks.

Finally, in Chapter 6, we investigated the safe optimization problems where the op-
timizer not only receives objective feedback, but also detects the safety metric of the
attempted candidate solution. As the prior works either treat the constraint function as
a regularization in the acquisition process without any formal safety guarantee, or make
statistical assumptions on the constraint function to achieve theoretical guarantees on all
candidate solutions being safe. We proposed SAFE-BOCP, providing for the first time
assumptions-free guarantees on the safety level of the attempted candidate solutions, while
enabling any non-zero target safety violation level. The experiments demonstrated that
the proposed methods perform competitively with state-of-the-art schemes in terms of
optimality ratio and safety control.

7.2 Open Research Questions

Many aspects of BO included in this thesis or beyond could be further investigated. In this
section, we detail some of these open questions as below.

• As mentioned in Appendix A, federated learning has been widely studied for imple-
mentation on wireless communication systems. Recent works on federated Bayesian
optimization assume transferable knowledge among different objective functions at
local agents, in the form of surrogate model hyperparameters [214], random Fourier
features [30], or augmented Lagrangian parameters [89]. An important development
would be to study the possibilities of applying federated Bayesian optimization in
the next generation wireless communication optimization problems.

• All the optimization problem formulations considered in this thesis allow the opti-
mizer obtain new observation data from the objective function. However, offline or
simulation based Bayesian optimization [127] is also important when the optimizer
no longer has access to the objective function. An important topic would be how to
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7.2 Open Research Questions

improve the performance of the optimizer on target objective without obtaining new
data.

• This thesis mainly focus on using Gaussian process as the surrogate model, while
other choices including Bayesian neural networks [87], gradient boosting machines
[49], and tree-structured Parzen estimator [12] could also be utilized to provide
statistical inference for Bayesian optimization. Exploring non-GP surrogate models
for enhancing efficiency, scalability and reliability of Bayesian optimization would
be an important direction in various real-world optimization problems.
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Appendix A

Leveraging Channel Noise for Sampling
and Privacy via Quantized Federated
Langevin Monte Carlo

A.1 Overview

For engineering applications of artificial intelligence, Bayesian learning holds significant
advantages over standard frequentist learning, including the capacity to quantify uncertainty.
Langevin Monte Carlo (LMC) is an efficient gradient-based approximate Bayesian learning
strategy that aims at producing samples drawn from the posterior distribution of the model
parameters. Prior work focused on a distributed implementation of LMC over a multi-
access wireless channel via analog modulation. In contrast, this chapter proposes quantized
federated LMC (FLMC), which integrates one-bit stochastic quantization of the local
gradients with channel-driven sampling. Channel-driven sampling leverages channel noise
for the purpose of contributing to Monte Carlo sampling, while also serving the role of
privacy mechanism. Analog and digital implementations of wireless LMC are compared
as a function of differential privacy (DP) requirements, revealing the advantages of the
latter at sufficiently high signal-to-noise ratio.

A.2 Introduction

Federated learning (FL) is a distributed learning paradigm whereby multiple devices coor-
dinate to train a target global model, while avoiding the direct sharing of local data with the
cloud [134, 211, 213]. Prior work on wireless FL mainly focuses on conventional frequen-
tist learning, which produces point estimates of model parameter vectors by minimizing
empirical loss metrics [151, 197, 4, 101, 18, 212]. In many engineering applications
characterized by the availability of limited data and by the need to quantify uncertainty,
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organized in iterations s = 1, 2, . . . , Sb + Su with Sb denoting the burn-in period, across which

the server maintains sample iterates ✓[s]. At each s-th communication round, the edge server

broadcasts the current sample ✓[s] to all edge devices via the downlink channel. We assume that

downlink communication is ideal, so that each device receives the sample ✓[s] without distortion.

This assumption is practically well justified when the edge sever communicates through a base

station with less stringent power constraint than the devices. By using the received vector ✓[s]

and the local dataset Zk, each device computes the gradient of the local cost function (4) as

(Local gradient) rfk

�
✓[s]
�

= �
NkX

n=1

r log p(zn|✓[s])� 1

K
r log p(✓[s]), (10)

which is transmitted over the wireless shared channel to the edge server for updating (6). As we

will see, channel noise can be repurposed to contribute to the additive random term ⇠[s+1] in the

LMC update (6). The steps in (10) and (6) are iterated across multiple communication rounds

until a convergence condition is met. As a result, the server obtains a sequence of global model

parameter vectors ✓[s], with s = 1, 2, . . . , Sb + Su.

C. Communication Model

All devices communicate via the uplink to the edge server on the shared wireless channel

using uncoded transmission and non-orthogonal multiple access (NOMA). We assume a block

flat-fading channel, where the channel coefficients remain constant within a communication

block, and they vary in a potentially correlated way over successive blocks. Each block contains

d channel uses, allowing the uncoded transmission of a gradient vector. Due to memory and

processing complexity constraints, on-device machine learning models are typically of small

size, so that the model parameters dimension d can be assumed to be limited to a few tens

of thousands of entries [47]. In this case, considering that typical coherence blocks may be

of the same order of magnitude [48], [49], it is generally feasible to communicate the entire

gradient vectors within one communication block. For larger model sizes, the gradient would

need to be communicated across multiple coherence blocks – a setting that we leave for future

investigations.

We assume symbol-level synchronization among the devices that transmit a gradient vector

simultaneously in each block, enabling over-the-air computing. This can be achieved by using

7

organized in iterations s = 1, 2, . . . , Sb + Su with Sb denoting the burn-in period, across which

the server maintains sample iterates ✓[s]. At each s-th communication round, the edge server

broadcasts the current sample ✓[s] to all edge devices via the downlink channel. We assume that

downlink communication is ideal, so that each device receives the sample ✓[s] without distortion.

This assumption is practically well justified when the edge sever communicates through a base

station with less stringent power constraint than the devices. By using the received vector ✓[s]

and the local dataset Zk, each device computes the gradient of the local cost function (4) as

(Local gradient) rfk

�
✓[s]
�

= �
NkX

n=1

r log p(zn|✓[s])� 1

K
r log p(✓[s]), (10)

which is transmitted over the wireless shared channel to the edge server for updating (6). As we

will see, channel noise can be repurposed to contribute to the additive random term ⇠[s+1] in the

LMC update (6). The steps in (10) and (6) are iterated across multiple communication rounds

until a convergence condition is met. As a result, the server obtains a sequence of global model

parameter vectors ✓[s], with s = 1, 2, . . . , Sb + Su.

C. Communication Model

All devices communicate via the uplink to the edge server on the shared wireless channel

using uncoded transmission and non-orthogonal multiple access (NOMA). We assume a block

flat-fading channel, where the channel coefficients remain constant within a communication

block, and they vary in a potentially correlated way over successive blocks. Each block contains

d channel uses, allowing the uncoded transmission of a gradient vector. Due to memory and

processing complexity constraints, on-device machine learning models are typically of small

size, so that the model parameters dimension d can be assumed to be limited to a few tens

of thousands of entries [47]. In this case, considering that typical coherence blocks may be

of the same order of magnitude [48], [49], it is generally feasible to communicate the entire

gradient vectors within one communication block. For larger model sizes, the gradient would

need to be communicated across multiple coherence blocks – a setting that we leave for future

investigations.

We assume symbol-level synchronization among the devices that transmit a gradient vector

simultaneously in each block, enabling over-the-air computing. This can be achieved by using

Samples

Digital FLMC Update

Quantization

Local 

Dataset

Gradient 
Computation

Power 
Control

7

organized in iterations s = 1, 2, . . . , Sb + Su with Sb denoting the burn-in period, across which

the server maintains sample iterates ✓[s]. At each s-th communication round, the edge server

broadcasts the current sample ✓[s] to all edge devices via the downlink channel. We assume that

downlink communication is ideal, so that each device receives the sample ✓[s] without distortion.

This assumption is practically well justified when the edge sever communicates through a base

station with less stringent power constraint than the devices. By using the received vector ✓[s]

and the local dataset Zk, each device computes the gradient of the local cost function (4) as

(Local gradient) rfk

�
✓[s]
�

= �
NkX

n=1

r log p(zn|✓[s])� 1

K
r log p(✓[s]), (10)

which is transmitted over the wireless shared channel to the edge server for updating (6). As we

will see, channel noise can be repurposed to contribute to the additive random term ⇠[s+1] in the

LMC update (6). The steps in (10) and (6) are iterated across multiple communication rounds

until a convergence condition is met. As a result, the server obtains a sequence of global model

parameter vectors ✓[s], with s = 1, 2, . . . , Sb + Su.

C. Communication Model

All devices communicate via the uplink to the edge server on the shared wireless channel

using uncoded transmission and non-orthogonal multiple access (NOMA). We assume a block

flat-fading channel, where the channel coefficients remain constant within a communication

block, and they vary in a potentially correlated way over successive blocks. Each block contains

d channel uses, allowing the uncoded transmission of a gradient vector. Due to memory and

processing complexity constraints, on-device machine learning models are typically of small

size, so that the model parameters dimension d can be assumed to be limited to a few tens

of thousands of entries [47]. In this case, considering that typical coherence blocks may be

of the same order of magnitude [48], [49], it is generally feasible to communicate the entire

gradient vectors within one communication block. For larger model sizes, the gradient would

need to be communicated across multiple coherence blocks – a setting that we leave for future

investigations.

We assume symbol-level synchronization among the devices that transmit a gradient vector

simultaneously in each block, enabling over-the-air computing. This can be achieved by using

Quantization

a > 0. Each of the quantized gradient parameters g̃[s]
k,i is

modulated into one BPSK symbol. As a result, a block of
m BPSK symbols is produced to communicate the quantized
local gradient vector g̃[s]

k in a communication round.
Accordingly, at the s-th communication round, the received

signal at the server is given by the superposition

y[s] =

KX

k=1

H[s]
k P[s]

k g̃[s]
k + z[s], (9)

where H[s]
k = diag[h[s]

k,1, · · · , h[s]
k,m] and P[s]

k =

diag[P [s]
k,1, · · · , P [s]

k,m] are diagonal matrices collecting
respectively the channel gains and power control parameters
for m consecutive symbols in a block; while z[s] is the channel
noise, which is i.i.d. according to distribution N (0, N0I). We
assume perfect channel state information (CSI) at all nodes,
so that, as we will see, each device can compensate for the
phase and amplitude of its own channel.

In the following sections, we will design the power alloca-
tion parameters {{P [s]

k,i}m
i=1}K

k=1 for each communication round.
The transmission of each device is subject to the average per
block transmission power constraint:

(Power constraint) 1

m

mX

i=1

��P [s]
k,ig̃

[s]
k,i

��2  P0, 8k, s. (10)

We define the maximum signal to noise ratio (SNR) as
SNRmax = P0/N0, which is obtained when a device transmits at
full power.

C. Differential Privacy

We assume an “honest-but-curious” edge server that may
attempt to infer information about local data sets from the
received signals y[s]. The privacy constraint is described by the
standard (✏, �)-DP constraint, with some ✏ > 0 and � 2 [0, 1).
DP hinges on the divergence between the two distributions
P (y[s]|D0) and P (y[s]|D00) of the signal received when the data
sets D0 and D00 differ a single data point, i.e., kD0 �D00k1 = 1.
Formally, we have (✏, �)-DP if the inequality

max
D0,D00:kD0�D00k1=1

�
Pr(|LD0,D00(y[s])|  ✏)

 
� 1 � � (11)

is satisfied, where the DP loss LD0,D00(y[s]) is

LD0,D00(y[s]) = ln
P (y[s]|D0)

P (y[s]|D00)
. (12)

The probability in (11) is taken with respect to the distribution
P (y[s]|D0). We note that the DP constraint (11) is applied
at each communication round, and that the overall privacy
guarantees across iterations can be obtained by using standard
composition theorems [19, Sec. 3.5]. To ensure DP requirement
as [15], [23], we make the following assumption on the
gradients.

Assumption 1 (Bounded Gradients). Each element of the local
gradients is bounded by some constant ` > 0 as��g[s]

k,i

��  `, for all k, s, i. (13)

In practice, the condition (13) can be met by clipping each
entry of the gradient as min{1, `/|g[s]

k,i|}g[s]
k,i before quantization

[23].

III. POWER CONTROL FOR QUANTIZED FEDERATED
LANGEVIN MONTE CARLO

In this section, we first present the transmitter and receiver
designs for the proposed quantizedd federated Langevin Monte
Carlo (FLMC), and then analyze its DP properties. Finally, we
address the design of power control parameters in (9).

A. Signal Design

As described in Sec. II-B, each device applies stochastic
quantization as in (8). Followed by BPSK transmission under
the assumption of perfect CSI, we consider channel inversion,
whereby the power control matrix in (9) is selected as P[s]

k =

A[s](H[s]
k )�1. The diagonal matrix A[s] = diag[A[s]

1 , · · · , A[s]
m ] is

to be designed with the goal of ensuring that the server can
approximate the LMC update (6), while also guaranteeing the
power constraint (10) and the DP constraint (11).

The server normalizes the received signal as (A[s])�1y[s] to
obtain an estimate of the global gradient. Accordingly, the
server approximates the LMC update (6) as

✓[s+1] = ✓[s] � ⌘

"
KX

k=1

g̃[s]
k +

�
A[s]

��1
z[s]

#
. (14)

B. Privacy Analysis

We now consider the DP constraint (11) for any device k. To
this end, we fix the quantized gradients {g̃j}j 6=k of the other
devices, and consider neighboring data sets D0

k and D00
k for

device k that differ only by one sample, i.e., kD0
k � D00

kk1 = 1.
As the DP constraint (11) is applied to every iteration, we omit
the index of the communication round s for ease of notation.
Then, the privacy loss (12) for device k can be written as

LD0,D00(y) = ln

Qm

i=1
P (Aig̃

0
k,i + Ai

P
q 6=k

g̃q,i + zi

��{g̃q,i}q 6=k, D0
k)

Qm

i=1
P (Aig̃00

k,i + Ai

P
q 6=k

g̃q,i + zi

��{g̃q,i}q 6=k, D00
k )

=

mX

i=1

ln

h
�(g0

k,i) exp
⇣

2(zi�Ai
P

q 6=k g̃q,i)

N0/Ai

⌘
+ (1 � �(g0

k,i))
i

h
�(g00

k,i) exp
⇣

2(zi�Ai
P

q 6=k g̃q,i)

N0/Ai

⌘
+
�
1 � �(g00

k,i)
�i ,

(15)
where, with some abuse of notation, P (X|Y ) represents the
distribution of random variable X evaluated at X when condi-
tioned on the value Y of random variable Y ; the last step
uses the fact that the distributions in (15) are mixture of
Gaussians; and we have zi ⇠ N (0, N0). To attain the maximum
DP loss in (15), we consider the worst-case choice of data
sets D0 and D00D. To this end, without loss of generality, we
set �(g0

k,i) = �(`) and �(g00
k,i) = �(�`) by Assumption 1.

Furthermore, the value of the sum
P

j 6=k
g̃q,i is within the range

of [�(K�1), (K�1)], and hence have the following inequality
|LD0,D00(y)|

max

(�����
mX
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ln

h
�(`) exp

⇣
2(zi+Ai(K�1))

N0/Ai

⌘
+ (1 � �(`))

i

h
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i
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, L⇤(z), (16)
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3

Figure A.1 Differentially private quantized federated Bayesian learning system based on
LMC.

Bayesian learning provides a more effective and principled framework to define the learn-
ing problem (see, e.g., [83]). Bayesian learning assigns a probability distribution to the
model parameters, rather than collapsing any residual uncertainty in the model parameter
space to a single point estimate. In this paper, we focus on the distributed implementation
of Bayesian learning in wireless systems within a federated learning setting, with the
main goal of leveraging the wireless channel as part of the “compute continuum” between
devices and server [3] (see Fig A.1).

Scalable Bayesian learning solutions are either based on variational inference, whereby
the distribution over the model parameters is optimized by minimizing a free energy
metric [75]; or on Monte Carlo (MC) sampling, whereby the distribution over the model
parameters is represented by random samples [7]. It was recently pointed out in [102]
that MC solutions enable a novel interpretation of the wireless channel as part of the MC
sampling process. In particular, reference [102] proposed a Bayesian federated learning
protocol based on Langevin MC (LMC), a noise-perturbed gradient-based MC strategy
[7], and analog transmission. The paper demonstrated the role of the channel noise as a
contributor to the LMC update, as well as a privacy mechanism (see also [85, 101]). In
this paper, we devise an alternative strategy that implements LMC in a federated setting
via digital modulation under privacy constraints.

Federated learning has been widely studied for implementation on wireless channels
(see, e.g., [56]). Techniques that leverage the wireless channel for computation include over-
the-air computation (AirComp), whereby superposition in non-orthogonal multiple access
(NOMA) is used as a means to aggregate information from different sources [128, 18, 105];
channel noise for privacy, which enforces differential privacy (DP) guarantees via power
control [150, 101]; and channel noise for sampling, which was introduced above [102].
Also related to this work are DP mechanisms based on stochastic quantization [51].
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In this chapter, inspired by [101], we study Bayesian federated learning protocols based
on the digital transmission of gradients from edge devices to the edge server (see Fig. A.1).
Like [102], which considered analog transmission, we aim at leveraging channel noise for
both channel-driven MC sampling and DP. The main contributions of this paper are as
follows.

• Quantized federated LMC (FLMC): We introduce a quantized federated im-
plementation of LMC based on stochastic quantization, binary transmission, and
channel-driven sampling;

• Power allocation policy with DP guarantees: We analyze the DP guarantees of
LMC, and we design an approach to determine power control parameter to meet the
requirements of both MC sampling and DP;

• Experiments: We demonstrate an experimental comparison of digital and analog
wireless FLMC implementations under DP constraints.

The remainder of this chapter is organized as follows. Sec. A.3 formulates the system
models and definitions. The privacy anaysis and power control design are presented in Sec.
A.4. Sec. A.5 describes numerical results.

A.3 System Model

As shown in Fig. A.1, we consider a wireless federated edge learning system comprising
an edge server and K edge devices. The devices are connected to the server via a shared
wireless channel. Each device k has its own local dataset Dk, which includes Nk data
samples Dk = {dk,n}Nk

n=1. The global data set is denoted as D = {Dk}Kk=1. The devices
communicate to the server via a NOMA digital channel with BPSK modulation as in [212].
Unlike [212], which focuses on conventional frequentist learning, here the goal is to carry
out Bayesian learning by approximating the global posterior distribution p(θθθ|D) at the
server. Furthermore, as in [101], which considers analog transmission, we impose privacy
constraints via DP.

A.3.1 Federated Langevin Monte Carlo

The machine learning model adopted by the system is defined by a likelihood function
p(d|θθθ), as well as by a prior distribution p(θθθ). Accordingly, the likelihood of the data at
device k is obtained by assuming i.i.d. observations as

p(Dk|θθθ) =
Nk

∏
n=1

p(dn,k|θθθ). (A.1)
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The target global posterior is

p(θθθ|D)∝ p(θθθ)
K

∏
k=1

p(Dk|θθθ), (A.2)

which can be expressed in terms of the product p(θθθ|D) ∝ ∏
K
k=1 p̃(θθθ|Dk) of the local

sub-posteriors at each device k

p̃(θθθ|Dk)∝ p(θθθ)1/Kp(Dk|θθθ). (A.3)

We introduce the local cost function

fk(θθθ) =− logp(Dk|θθθ)−
1

K
logp(θθθ), (A.4)

which accounts for prior and likelihood at device k, as well as the global cost function

f(θθθ) =
K

∑
k=1

fk(θθθ). (A.5)

LMC is a gradient-based MCMC sampling scheme. As such, it aims at producing
samples from the global posterior p(θθθ|D) in (A.2) by leveraging information about the
gradient of the local cost functions (A.4). At each s-th iteration, LMC produces the next
sample θθθ[s+1] as

(LMC) θθθ[s+1] = θθθ[s]−η
K

∑
k=1

∇fk(θθθ[s])+
√
2ηξξξ[s+1], (A.6)

where η is the step size, and {ξξξ[s]} is a sequence of i.i.d. random vectors following the
Gaussian distribution N (0,Im), which are independent of the initialization θθθ[0] ∈ Rm.

To implement LMC in the described federated setting, at each s-th communication
round, the edge server broadcasts the current sample θθθ[s] to all edge devices via the
downlink channel. We assume ideal downlink communication. By using the received
vector θθθ[s] and the local dataset Dk, each device computes the gradient of the local cost
function (A.4) as

g
[s]
k =−

Nk

∑
n=1

∇ logp(dn|θθθ[s])−
1

K
∇ logp(θθθ[s]). (A.7)

While [101] explored the use of analog communication to transmit the local gradients in
(A.7), in this work we assume that the devices apply entry-wise binary quantization in
order to enable BPSK-based transmission. The edge server aggregates the received signals
to obtain an approximation of the update term −η∇f(θθθ[s])+√2ηξξξ[s+1] in (A.6). As we
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will see, and as first proposed in [101], channel noise can be leveraged to contribute to the
additive random term ξξξ[s+1] in the LMC update (A.6), as well as a DP mechanism. After
S communication rounds, the server obtains a sequence of samples of model parameter
vectors {θθθ[s]}Ss=1.

A.3.2 Communication Model

The devices communicate via NOMA on the uplink to the edge server. At any s-th
communication round, each entry g

[s]
k,i of the gradient vector g[s]k = [g

[s]
k,1,Dots,g

[s]
k,m]T is

quantized via one-bit stochastic quantization [72]

g̃
[s]
k,i =




1 with probability Φ(g

[s]
k,i),

−1 with probability 1−Φ(g
[s]
k,i),

(A.8)

where function Φ(·) returns a probability that increases with the input argument. An
example is given by the sigmoid function Φ(x) = σ(x) =

(
1+ exp(−ax)

)−1 for some
fixed parameter a > 0. Each of the quantized gradient parameters g̃[s]k,i is modulated into
one BPSK symbol. As a result, a block of m BPSK symbols is produced to communicate
the quantized local gradient vector g̃[s]k in a communication round.

Accordingly, at the s-th communication round, the received signal at the server is given
by the superposition

y[s] =
K

∑
k=1

H
[s]
k P

[s]
k g̃

[s]
k +z[s], (A.9)

where H
[s]
k = diag[h[s]k,1, · · · ,h

[s]
k,m] and P

[s]
k = diag[P [s]

k,1, · · · ,P
[s]
k,m] are diagonal matrices

collecting respectively the channel gains and power control parameters for m consecutive
symbols in a block; while z[s] is the channel noise, which is i.i.d. according to distribution
N (0,N0I). We assume perfect channel state information (CSI) at all nodes, so that, as we
will see, each device can compensate for the phase and amplitude of its own channel.

In the following sections, we will design the power allocation parameters {{P [s]
k,i}mi=1}Kk=1

for each communication round. The transmission of each device is subject to the average
per block transmission power constraint:

(Power constraint)
1

m

m

∑
i=1

∣∣P [s]
k,ig̃

[s]
k,i

∣∣2 ≤ P0,∀k,s. (A.10)

We define the maximum signal to noise ratio (SNR) as SNRmax=P0/N0, which is obtained
when a device transmits at full power.
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A.3.3 Differential Privacy

We assume an “honest-but-curious" edge server that may attempt to infer information about
local data sets from the received signals y[s]. The privacy constraint is described by the
standard (ϵ,δ)-DP constraint, with some ϵ > 0 and δ∈ [0,1). DP hinges on the divergence
between the two distributions P (y[s]|D′) and P (y[s]|D′′) of the signal received when the
data sets D′ and D′′ differ a single data point, i.e., ∥D′−D′′∥1 = 1. Formally, we have
(ϵ,δ)-DP if the inequality

max
D′,D′′:∥D′−D′′∥1=1

{
Pr(|LD′,D′′(y[s])| ≤ ϵ)

}
≥ 1− δ (A.11)

is satisfied, where the DP loss LD′,D′′(y[s]) is

LD′,D′′(y[s]) = log
P (y[s]|D′)
P (y[s]|D′′)

. (A.12)

The probability in (A.11) is taken with respect to the distribution P (y[s]|D′). We note that
the DP constraint (A.11) is applied at each communication round, and that the overall pri-
vacy guarantees across iterations can be obtained by using standard composition theorems
[36, Sec. 3.5]. To ensure DP requirement as [24, 187], we make the following assumption
on the gradients.

Assumption 2 (Bounded Gradients). Each element of the local gradients is bounded by
some constant ℓ > 0 as

∣∣g[s]k,i

∣∣≤ ℓ, for all k,s, i. (A.13)

In practice, the condition (A.13) can be met by clipping each entry of the gradient as
min{1, ℓ/|g[s]k,i|}g

[s]
k,i before quantization [24].

A.4 Power Control for Quantized Federated Langevin
Monte Carlo

In this section, we first present the transmitter and receiver designs for the proposed
quantized federated Langevin Monte Carlo (FLMC), and then analyze its DP properties.
Finally, we address the design of power control parameters in (A.9).

A.4.1 Signal Design

As described in Sec. A.3.2, each device applies stochastic quantization as in (A.8).
Followed by BPSK transmission under the assumption of perfect CSI, we consider channel
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inversion, whereby the power control matrix in (A.9) is selected as P[s]
k =A[s](H

[s]
k )−1.

The diagonal matrix A[s] = diag[A[s]
1 , · · · ,A

[s]
m ] is to be designed with the goal of ensuring

that the server can approximate the LMC update (A.6), while also guaranteeing the power
constraint (A.10) and the DP constraint (A.11).

The server normalizes the received signal as (A[s])−1y[s] to obtain an estimate of the
global gradient. Accordingly, the server approximates the LMC update (A.6) as

θθθ[s+1] = θθθ[s]−η
[ K

∑
k=1

g̃
[s]
k +

(
A[s]

)−1
z[s]
]
. (A.14)

A.4.2 Privacy Analysis

We now consider the DP constraint (A.11) for any device k. To this end, we fix the
quantized gradients {g̃j}j ̸=k of the other devices, and consider neighboring data sets D′

k

and D′′
k for device k that differ only by one sample, i.e., ∥D′

k−D′′
k∥1 = 1. As the DP

constraint (A.11) is applied to every iteration, we omit the index of the communication
round s for ease of notation. Then, the privacy loss (A.12) for device k can be written as

LD′,D′′(y) = log
∏

m
i=1P (Aig̃

′
k,i+Ai∑q ̸=k g̃q,i+ zi

∣∣{g̃q,i}q ̸=k,D′
k)

∏
m
i=1P (Aig̃′′k,i+Ai∑q ̸=k g̃q,i+ zi

∣∣{g̃q,i}q ̸=k,D′′
k)

=
m

∑
i=1

log

[
Φ(g′k,i)exp

(
2(zi−Ai ∑q ̸=k g̃q,i)

N0/Ai

)
+

(
1−Φ(g′k,i)

)]

[
Φ(g′′k,i)exp

(
2(zi−Ai ∑q ̸=k g̃q,i)

N0/Ai

)
+

(
1−Φ(g′′k,i)

)] , (A.15)

where, with some abuse of notation, P (X|Y ) represents the distribution of random variable
X evaluated at X when conditioned on the value Y of random variable Y ; the last step
uses the fact that the distributions in (A.15) are mixture of Gaussians; and we have
zi ∼ N (0,N0). To attain the maximum DP loss in (A.15), we consider the worst-case
choice of data setsD′ andD′′. To this end, without loss of generality, we set Φ(g′k,i) =Φ(ℓ)

and Φ(g′′k,i) = Φ(−ℓ) by Assumption 2. Furthermore, the value of the sum ∑j ̸=k g̃q,i is
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within the range of [−(K−1),(K−1)], and hence have the following inequality

|LD′,D′′(y)| ≤max

{∣∣∣∣∣
m

∑
i=1

log

[
Φ(ℓ)exp

(
2(zi+Ai(K−1))

N0/Ai

)
+
(
1−Φ(ℓ)

)]

[
Φ(−ℓ)exp

(
2(zi+Ai(K−1))

N0/Ai

)
+
(
1−Φ(−ℓ)

)]
∣∣∣∣∣,

∣∣∣∣∣
m

∑
i=1

log

[
Φ(ℓ)exp

(
2(zi−Ai(K−1))

N0/Ai

)
+
(
1−Φ(ℓ)

)]

[
Φ(−ℓ)exp

(
2(zi−Ai(K−1))

N0/Ai

)
+
(
1−Φ(−ℓ)

)]
∣∣∣∣∣

}

≜ L∗(z), (A.16)

where z∼N (0,Im). We can now use (A.16) to evaluate numerically a bound on left-hand
side of (A.11) as Pr(|L∗(z)| ≤ ϵ)≥ 1− δ with z∼N (0,Im).

To compare with analog FLMC in [101], we reproduce the privacy loss in [101] as

LD′,D′′(y) =
m

∑
i=1

2ziAi∆k,i+(Ai∆k,i)
2

2N0
, (A.17)

where zi∼N (0,N0), and ∆k,i = |g′k,i−g′k,i|, and we have ∆k,i≤ 2ℓ. To gain some insight
about the comparison between (A.16) and (A.17), consider the high-SNR regime in which
the power of channel noise N0 approaches 0. In this case, the privacy loss (A.17) in the
analog scheme goes to infinity, and hence no (ϵ,δ)-DP level with δ < 1 is possible. This
is in sharp contrast with the digital scheme, for which the privacy loss (A.16) is upper
bounded by m logΦ(ℓ)−m logΦ(−ℓ). This discussion illustrates the potential advantages
of the digital scheme in the presence of privacy constraints in the high-SNR regime.

A.4.3 Power Control

The design of power control parameters in the power gain matrix A[s] must comply with
the power constraints, the LMC noise requirements, and the DP constraints.

For the power constraint (A.10), plugging in the choice P
[s]
k =A[s](H

[s]
k )−1 yields the

inequalities

1

m

m

∑
i=1

(
A
[s]
i

h
[s]
k,i

)2

≤ P0, ∀k,s. (A.18)

Furthermore, in order to guarantee that the noise powers N0η
2(A

[s]
i )−2 in the update

(A.14) are no smaller than the power 2η required by the LMC update (A.6) we impose the
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Figure A.2 MSE as a function of SNR (ϵ= 5, δ = 0.01).

LMC noise requirement (see also [102])

A
[s]
i ≤

√
ηN0

2
, ∀i,s. (A.19)

Finally, to impose the DP constraint, given the desired level of privacy loss ϵ, we numeri-
cally estimate the probability δ in (A.11) as a function of power gain parameters A[s]

i by
drawing samples from the noise z[s] ∼N (0,N0I).

A.5 Numerical Results

In this section, we evaluate the performance of the proposed quantized FLMC, and compare
it with the analog transmission scheme introduced in [102]. Throughout this section,
we assume the channel coefficients to be constant within a communication block, and
homogeneous across the devices, i.e., h[s]k,i = h[s] for all devices k = 1, . . . ,K and all
elements i= 1, . . . ,m. Under this assumption, the power gains for quantized FLMC are
obtained via a numerical search to maximize the value of A[s]

i under the three constraints
reviewed in the previous sections. In a similar manner, for analog FLMC, we have [101]

A
[s]
i =min

{ |h[s]|√P0

ℓ
,

√
ηN0

2
,

√
N0T −1(1− δ)

2mℓ2

}
, ∀k, s, (A.20)
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Figure A.3 MSE as a function of privacy level ϵ (SNRmax = 25 dB, δ = 0.01).

where the last square root term is the inverse function of T (x) defined by the error function

erf(x) =
2√
π

∫ x

0
e−t2 dt, denoted as

T (x) = erf

(
ϵ−x
2
√
x

)
− erf

(−ϵ−x
2
√
x

)
, (A.21)

which is obtained by plugging (A.17) into (A.11), and leveraging the tail probability of
Gaussian distribution. We also consider benchmark schemes without DP constraint.

As for the learning model, as in [102], we consider a Gaussian linear regression with
likelihood

p(vn|θθθ,un) =
1√
2π
e−

1
2 (vn−θθθTun)

2

, (A.22)

and the prior p(θθθ) is assumed to follow Gaussian distribution N (0,Im). Therefore,
the posterior p(θθθ|D) is the Gaussian N

(
(UUT+ I)−1Uv,(UUT+ I)−1

)
, where U =

[u1, · · · ,uN ] is the data matrix and v = [v1, · · · ,vN ]T is the label vector. We use synthetic
dataset {dn = (un,vn)}Nn=1 with N = 1200 following the learning model in (A.22), with
input un drawn i.i.d from N (0,Im) where m = 5. The ground-truth model parameter
is θθθ∗ = [0.418,−0.289,0.3982,0.8231,0.5251]T. Unless stated otherwise, the data set
is evenly distributed to K = 20 devices; the constant channel h[s] is set to 0.04 for all
communication rounds; the power of channel noise is set to N0 = 1; the bound of gra-
dient element is set to ℓ = 30; learning rate is set to η = 1.28× 10−4 for analog FLMC
and η = 8.28× 10−3 for digital FLMC, which are tuned by using the smoothness and
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Figure A.4 MSE as a function of privacy level ϵ for different parameter of the stochastic
binary quantization a (SNRmax = 25 dB, δ = 0.01).

strongly convexity parameters (see [102]). We consider a sigmoid function for quantization
probability in (A.8) as Φ(x) = [1+exp(−ax)]−1, and set a= 0.05 by default.

The total number of communication rounds is chosen as S = 300, which are comprised
of Sb = 200 samples for the burn-in period, and the following Su = S−Sb = 100 samples
for evaluation. The quality of the samples is measured by mean squared error (MSE)

MSE =
1

Su

Sb+Su

∑
s=Sb+1

∥θθθ[s]−µµµ∥2, (A.23)

where µµµ is the mean of the ground-truth posterior distribution. All the results are averaged
over 1000 experiments.

We first investigate the impact of SNR in Fig. A.2 on the performance of digital and
analog FLMC schemes. In this experiment, we set the DP level as ϵ = 5 and δ = 0.01.
Confirming the discussion in the previous section, in the high-SNR regime, digital FLMC
is seen to outperform analog FLMC, since the latter one must back off the transmitted
power in order to meet the DP constraint. In contrast, SNR lower than 17.5 dB, analog
FLMC is preferable.

We now further investigate the impact of the privacy level on the digital and analog
FLMC schemes in Fig. A.3. In this experiment, we set SNRmax = 25 dB. The error of
all schemes is seen to decrease by relaxing the DP constraint, until ϵ= 7.5 for the digital
scheme and ϵ= 15 for the analog scheme. Relaxing the DP constraint cannot reduce the
error, as the performance becomes limited by the transmitted power constraint or by LMC
noise requirement. The digital FLMC scheme outperforms analog FLMC under a stricter
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DP requirement, i.e., when ϵ≤ 7.5. This provides further validation of the advantage of
the digital scheme when the SNR is large enough.

Finally, in Fig. A.4, we study the impact of varying the parameter a of the quantization
probability function Φ(x) = [1+exp(−ax)]−1. Note that a small a implies a more noisy
quantizer. In this experiment, we also set SNRmax = 25 dB. Under strict DP requirement
ϵ < 2, the quantizer with the small value a = 0.01 outperforms other choices, since the
higher level of randomness is applied to meet the DP constraint. Conversely, by relaxing
the DP requirement, quantizer with larger value of a become advantageous.

153



Appendix B

Supplementary Materials for Chapter 2

B.1 Approximation Schemes for Gibbs Hyper-posterior

In this section, we describe two tractable schemes for approximating the Gibbs hyperposte-
rior (3.16).
Maximum A Posteriori (MAP) Estimate: The MAP estimate approximates the Gibbs
hyperposterior qWFEM-GP(θθθ|D1:N ) by a Dirac measure centered at its mode

θθθ∗ = argmax
θθθ∈ΘΘΘ

qWFEM-GP(θθθ|D1:N ). (B.1)

The mode θθθ∗ can be evaluated equivalently as the solution to the following optimization
problem,

θθθ∗ = argmin
θθθ∈ΘΘΘ

{
− logp(θθθ)+γ−1L̄(θθθ,D1:N )

}
. (B.2)

With the choice of a zero mean isotropic Gaussian distribution as the hyper-prior, i.e.,
p(θθθ)∼N (0,σ2PI), (B.2) results in

argmin
θθθ∈ΘΘΘ

JMAP(θθθ) = γ−1L̄(θθθ,D1:N )+
1

2σ2P
||θθθ||22, (B.3)

where the objective JMAP(θθθ) consists of a sum of meta-training loss (3.12) and an L2-
regularization term.

To optimize JMAP(θθθ), we use mini-batch gradient descent in training, where the mini-
batches are sampled at meta-level (i.e., we sample mini-batches of tasks and use all data
points of the corresponding tasks to compute the gradients of JMAP(θθθ)).
Stein Variational Gradient Descent (SVGD): SVGD is a general purpose variational in-
ference algorithm that aims to minimize the KL divergence, D(q̂(θθθ)||qWFEM-GP(θθθ|D1:N )),
to the target distribution qWFEM-GP(θθθ|D1:N ), over non-parametric distributions q̂(θθθ). The
distribution q̂(θθθ) is represented by a collection of particles {θθθ1, θθθ2, ..., θθθK}, which can in
turn be used to approximate q̂(θθθ) via a Kernel Density Estimator (KDE) [14].

154



B.2 Meta-Testing of WFEM-GP under MAP and SVGD

For the SVGD approximation of qWFEM-GP(θθθ|D1:N ), we start by sampling K particles
{θθθ1, θθθ2, ..., θθθK} from the hyper-prior p(θθθ). The particles are then iteratively transported
to minimize the KL-divergence D(q̂(θθθ)||qWFEM-GP(θθθ|D1:N )) via a form of functional
gradient descent on a reproducing kernel Hilbert space (RKHS), induced by a kernel
function k̃(·, ·). Specifically, we choose a squared exponential kernel,

k̃(θθθ,θθθ′) = exp

(
−||θθθ− θθθ

′||22
2l

)
, (B.4)

with l denoting the fixed, length hyperparameter. Consequently, the SVGD update at
iteration t is given as

θθθ
[t]
k ← θθθ

[t−1]
k + ϵΦ(θθθ

[t−1]
k ), (B.5)

where

Φ(θθθ
[t−1]
k ) =

1

K

K

∑
j=1

[
k̃(θθθ

[t−1]
j , θθθ

[t−1]
k )∇

θθθ
[t−1]
j

logqWFEM-GP(θθθ
[t−1]
j |D1:N )

+∇
θθθ
[t−1]
j

k̃(θθθ
[t−1]
j , θθθ

[t−1]
k )

]
(B.6)

for each particle k = 1, . . . ,K. Moreover, it has been shown in [104] that in the asymptotic
limit asK→∞, the empirical distribution encoded by the particles {θθθ1, . . . , θθθK} converges
to the true target distribution qWFEM-GP(θθθ|D1:N ).

To estimate the score function ∇
θθθ
[t−1]
j

logqWFEM-GP(θθθ
[t−1]
j |D1:N ), we use a mini-

batch of n meta-training datasets with D1, . . . ,Dβn data from source environment data
set and Dβn+1, . . . ,Dn from target environment dataset. Using this, the score function is
approximated as

∇
θθθ
[t−1]
j

logqWFEM-GP(θθθ
[t−1]
j |D1:N )≈N

n
γ

[
α

βn

∑
i=1

1

mi
∇

θθθ
[l−1]
j

logp
θθθ
[l−1]
j

(yi|Xi)

+(1−α)
n

∑
i=βn+1

1

mi
∇

θθθ
[t−1]
j

logp
θθθ
[t−1]
j

(yi|Xi)

]

+∇
θθθ
[t−1]
j

logp(θθθ
[t−1]
j ). (B.7)

B.2 Meta-Testing of WFEM-GP under MAP and SVGD

During meta-testing, the hyperparameter meta-learned using WFEM-GP is used to initialize
the GP prior of a meta-test task. The GP is subsequently fitted to the meta-test training
data set D = (X,y) of M samples to yield a GP posterior. We assume that a test data
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set, D∗ = {(x∗m,y∗m)Mm=1}, is also available, independent of the training data set D. The
performance of the GP posterior for the meta-test task is then evaluated on D∗.

To this end, corresponding to each test input x∗m, for m = 1, . . . ,M , we evaluate
the average predictive posterior distribution EqWFEM-GP(θθθ|D1:N )[pθθθ(f(x

∗
m)|D)] defined in

(3.11). Under the MAP scheme, which yields a point estimate θθθ∗ of the Gibbs hyper-
posterior qWFEM-GP(θθθ|D1:N ), the average predictive posterior distribution corresponds to
pθθθ∗(f(x

∗
m)|D). In contrast, SVGD scheme outputs K particles, θθθk ∼ qWFEM-GP(θθθ|D1:N ),

for k = 1, . . . ,K. These can be used to approximate the average predictive posterior
distribution as

Eθθθ∼qWFEM-GP(θθθ|D1:N )[pθθθ(f(x
∗
m)|D)]≈ 1

K

K

∑
k=0

pθθθk(f(x
∗
m)|D). (B.8)

It is easy to see that for K = 1 and θθθk = θθθ∗, the SVGD scheme coincides with MAP.
To evaluate the predictive performance for regression experiment, we use average root

mean square error (RMSE) as the metric, which can be computed as follows. For each
θθθk in the SVGD scheme (or θθθ∗ for MAP scheme), we consider the mean prediction of
pθθθk(f(x

∗
m)|D) as ŷ(θθθk,x∗

m) = Epθθθk (f(x
∗
m)|D)[f(x

∗)]. Subsequently, the mean prediction
corresponding to (B.8) evaluates as

ŷ(x∗
m) =

1

K

K

∑
k=0

ŷ(θθθk,x
∗
m). (B.9)

The average root mean squared error (RMSE) is then computed as

RMSE =

√
1

M

M

∑
m=1

(ŷ(x∗
m)−y∗m)2. (B.10)

In our experiments, we set the number of SVGD particles to be K = 10. To evaluate
the predictive performance for classification, we adopt mean accuray as the metric, which
can be computed as follows. In each dataset, we sum the absolute difference between
prediction ŷ(x∗m) and label y∗m, then compute the mean accuracy as

MeanAccuracy = 1− 1

M

M

∑
m=1

|ŷ(x∗
m)−y∗m|. (B.11)

B.3 Laplace Approximation-Based GP Binary Classifier

In this section, we review the Laplace approximation based implementation of the GP
binary classifier [142] which trains on an input data set D = (X,y). We outline the key
steps here and refer the readers to [142] for more details.
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For the binary classification problem using GP, we assume a logistic regression model
with p(y =+1|f(x)) = σ(f(x)), where σ(a) = (1+exp(−a))−1 is the sigmoid function.
Note that the function f(x) acts as a latent function in describing the likelihood p(y =
+1|f(x)): inferring f(x) does not yield the required predictions as in the regression
problem, but has to be combined with a deterministic sigmoid function.

In GP classification, the latent function f(·) is assumed to be random and endowed
with a GP prior. As such, corresponding to an observed input data set X, the distribution
pθθθ(f(X)) defines a GP prior over the output of the latent function f(X), and

p(y|f(X)) =
M

∏
m=1

σ(f(xm))ym(1−σ(f(xm)))(1−ym). (B.12)

In contrast to GP regression, the above likelihood is non-Gaussian. The GP posterior
resulting from fitting the data set D = (X,y) on the GP prior is then obtained as

pθθθ(f(X)|D) = p(y|f(X))pθθθ(f(X))

pθθθ(y|X)
. (B.13)

Inference is done in two steps: in the first step, we evaluate the distribution of the
output of the latent function f(x) with respect to a test input x as

pθθθ(f(x)|D) =
∫
pθθθ(f(x)|f(X))pθθθ(f(X )|D)df, (B.14)

where the conditional distribution pθθθ(f(x)|f(X)) is Gaussian and can be evaluated directly
as in [142, Equation 2.19]. The distribution of the test output of the latent function is
subsequently used to make prediction as

p(y = 1|D,x) =
∫
σ(f(x))pθθθ(f(x)|D)df. (B.15)

The integrals in (B.14) and (B.15) are intractable due to the non-Gaussianity of the data
likelihood. To tackle this, we use a Laplace approximation based classifier obtained via
the following steps.
Approximation of the posterior pθθθ(f(X)|D): The first step is to replace the posterior distri-
bution pθθθ(f(X)|D) in (B.14), which is defined as in (B.13), using a Laplace approximation
[14],

qθθθ(f(X)|D)∼N (f̂ ,Σ−1), (B.16)

where f̂ = argmaxf(x) pθθθ(f(X)|D) is the mode of the posterior distribution, and

Σ =−∇2 logpθθθ(f(X)|D)|f(X)=t̂ (B.17)
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is the Hessian of the negative of the log posterior evaluated at f̂ .
Computing the mode f̂ of the posterior distribution amounts to solving the following

equation,

logp(y|f(X))−Kθθθ(X)−1f̂ = 0, (B.18)

which cannot be directly solved. As such, f̂ is obtained using Newton method which
iteratively updates an estimate f̃ of the mode as

f̃ ← (Kθθθ(X)−1+W)−1(Wf̃ +∇ logp(y|f(X))|f̃ ). (B.19)

Here, W =−∇2 logp(y|f(X))|f̃ is the Hessian of the negative log-likelihood evaluated
at f̃ . The covariance matrix of Laplace approximation qθθθ(f(X)|D) in (B.16) corresponds
to Σ = (Kθθθ(X)−1+W).
Approximation of Distribution pθθθ(f(x)|D): In the next step, we approximate the test
output distribution pθθθ(f(x)|D) by qθθθ(f(x)|D), which is obtained by replacing the posterior
pθθθ(f(x)|D) in (B.14) with its Laplace approximation qθθθ(f(x)|D) obtained in (B.16). This
yields that

qθθθ(f(x)|D) =N (µ(x),σ2(x)), (B.20)

where its mean and covariance functions are denoted as

µ(x) = µθθθ(x)+kD(x)T∇ logp(y|f(X)), (B.21)

σ2(x) = kθθθ(x,x)−kD(x)T(Kθθθ(X)+W−1)−1kD(x). (B.22)

Computation of Predictive Distribution p(y = 1|D,x): Using all the approximations
explained above, the predictive distribution p(y = 1|D,x) is finally computed as

p(y = 1|D,x)≈
∫
σ(f(x))qθθθ(f(x)|D)df. (B.23)

The above integral is evaluated by sampling multiple latent function outputs f(x1), . . . ,f(xR)∼
qθθθ(f(x)|D) and computing an equally weighted average. The predictive distribution com-
puted as above is used to evaluate the predictive performance via RMSE.
Log-marginal Likelihood pθθθ(y|X): Lastly, we consider a Laplace approximation to the
log of the marginal likelihood pθθθ(y|X) as

logpθθθ(y|X) =−1

2
f̂Kθθθ(X)−1f̂ +logp(y|f(X))− 1

2
log |IM +W

1
2Kθθθ(X)W

1
2 |,
(B.24)

where IM is the identity matrix of size M . This is required to evaluate the weighted meta-
training loss (3.12) which in turn determines the Gibbs hyperposterior qWFEM-GP(θθθ|D1:N ).
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Figure B.1 Comparison of mean accuracy between MAP and SVGD of GP, PACOH-GP
with N tasks and with (1−β)N tasks from the target environment and WFME-GP against
varying weight parameter α of the meta-training loss.

We evaluate the performance of the proposed transfer meta-learner in (3.16) using
standard few-shot classification datasets, namely mini-ImageNet serving as source task
environment and CUB for the target task environment. The mini-ImageNet is composed of
100 classes selected from ImageNet randomly, and each class has 600 images, which are
resized to 84×84 pixels for fast training and inference [181]. CUB is composed of 11788
images over 200 birds classes, which are also resized to 84×84 pixels [183].

We conduct 2-way 5-shot binary classification experiments based on above datasets.
Precisely, the data set for each task from the source task environment (mini-ImageNet) is
obtained by first selecting 2 classes at random, and then randomly sampling 5 images for
each class from mini-ImageNet dataset. The training data set from target task environment
is similarly chosen from the CUB data set. For testing tasks, we sample randomly 15
images from each class.

In Fig. B.1, we compare the performance of WFEM-GP with the three benchmark
schemes - GP, PACOH-GP with (1−β)N tasks and with N tasks from target task environ-
ment – as a function of α. We plot the performances under both MAP and SVGD schemes.
Other parameters are set as N = 20, Mi = 5 and β = 0.5. Confirming the results in [144],
SVGD outperforms MAP for all learning schemes. Moreover, WFEM-GP is observed to
outperform GP, PACOH-GP with (1−β)N target tasks and partially bridge the gap to the
ideal PACOH-GP with N target tasks.
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