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Abstract

The numerical approximation of partial differential equations (PDEs) poses formidable
challenges in high dimensions since classical grid-based methods suffer from the so-called
curse of dimensionality. Recent attempts rely on a combination of Monte Carlo methods
and variational formulations, using neural networks for function approximation. Extend-
ing previous work (Richter et al., 2021), we argue that tensor trains provide an appealing
framework for parabolic PDEs: The combination of reformulations in terms of backward
stochastic differential equations and regression-type methods holds the promise of lever-
aging latent low-rank structures, enabling both compression and efficient computation.
Emphasizing a continuous-time viewpoint, we develop iterative schemes, which differ in
terms of computational efficiency and robustness. We demonstrate both theoretically and
numerically that our methods can achieve a favorable trade-off between accuracy and com-
putational efficiency. While previous methods have been either accurate or fast, we have
identified a novel numerical strategy that can often combine both of these aspects.

Keywords: High dimensional PDEs, BSDEs, tensor trains, robust loss functionals

1. Introduction

Partial differential equations (PDEs) are present in a wide range of scientific and engi-
neering fields. However, when dealing with high-dimensional situations, their numerical
handling becomes difficult due to the curse of dimensionality that appears in traditional
grid-based approaches such as Galerkin methods, finite differences, and others. Recently,
however, randomized sampling techniques in combination with powerful function classes
and bespoke optimization routines have shown remarkable empirical success (Han et al.,
2018; Karniadakis et al., 2021). Related theoretical results, at least in part confirmatory,
are being developed at a fast rate (Beck et al., 2020), although a complete understanding
remains elusive. In principle, stochastic representations as well as variational formulations
pertaining to the PDE under consideration are central to those novel approaches, enabling
the construction of suitable learning objectives.
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In this work, we build on our conference paper (Richter et al., 2021), focusing on semilin-
ear parabolic PDEs and the approximation of their solutions via a well known connection
to backward stochastic differential equations (BSDEs), see, for instance Pardoux (1998).
At the core of this BSDE reformulation is the idea of evaluating (potential) PDE solutions
along the paths of a stochastic diffusion process. Therefore, in contrast to more traditional
approaches, corresponding numerical methods can be thought of as based on dynamically
adaptive random grids, in principle holding the promise of scaling according to dimension-
free Monte Carlo approximation rates.

Solving BSDEs requires the choice of both an appropriate function class as well as of an
efficient time stepping scheme. For high-dimensional problems (common, for example, in
molecular dynamics, finance and optimal control) it is furthermore necessary to use a func-
tion class that enables some sort of compression, e.g. sparse coefficients or low-rank formats.
As argued in Richter et al. (2021), the tensor train format (Oseledets, 2011) provides an
appealing framework that addresses both desiderata. Indeed, tensor train representations
ensure good scalability to high-dimensional settings by relying on constrained combinations
of functions of a single real variable. In the presence of low-dimensional latent structures
(and favorable alignment of those with the chosen tensor train representation), this con-
struction alleviates the curse of dimensionality. At the same time, the specific make-up of
tensor trains allows for iterative least-squares updates to efficiently compute the solutions to
regression-type problems typical of discrete-time schemes for BSDEs (Bouchard and Touzi,
2004; Gobet et al., 2005).

Conditional expectations and robust regression. The numerical treatment of
BSDEs is intimately related to the computation of conditional expectations; many current
methods therefore rely on techniques borrowed from statistics, and in particular from re-
gression analysis (Chessari et al., 2023, Section 4). In this introductory paragraph, however,
we would like to argue that the settings in statistics and BSDEs differ in a subtle way, and
that recognizing and leveraging these differences can lead to improved schemes for BSDEs
which will be detailed in the upcoming sections. To convey the main idea in an abstract
context, let us assume that the real-valued random variables X and Y have finite second
moments and are connected through the relation

Y = f∗(X) + ε, (1)

with a noise variable ε that has finite variance and satisfies E[ε|X] = 0. Under mild
conditions on f∗, the task of recovering f∗ from K observations (Xk, Yk)

K
k=1 (that is, from

K realizations of the joint variable (X,Y )) can be approached using the relation

f∗(·) = E[Y |X = ·] = arg min
f

E
[
(Y − f(X))2

]
, (2)

which directly follows from (1) and the characterization of conditional expectations in terms
of L2-projections (Klenke, 2013, Corollary 8.17). Indeed, given a parameterization fθ of can-
didate approximations for f∗, equation (2) motivates setting f∗ ≈ fθ∗ with θ∗ ∈ arg minL,
where the loss function L is given by

L(K)(θ) =
1

K

K∑
k=1

(Yk − fθ(Xk))
2 . (3)
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Notably, the least squares objective (3) can be evaluated without access to the noise real-
izations (εk)

K
k=1 and those are indeed typically unavailable in classical statistical settings

where (1) could for instance model a phenomenon found in nature. In certain contexts (for
example, concerning the numerical treatment of BSDEs, see Section 2 below), the perturba-
tions (εk)

K
k=1 are generated within the algorithm and may thus be used in the formulation

of optimization objectives. In particular, we can modify the loss (3) as follows,

L(K)
robust(θ) =

1

K

K∑
k=1

(Yk − fθ(Xk)− εk)2 , (4)

directly enforcing the relation (1) on the basis of the samples (Xk, Yk, εk)
K
k=1. As alluded

to in the notation, we expect the inclusion of (εk)
K
k=1 to have a variance-reducing effect

that can make the numerical procedure more robust. Indeed, it is straightforward to verify

that ∂θL
(K)
robust|fθ=f∗ = 0 almost surely, that is, the gradient of the objective (4) vanishes

at the optimum notwithstanding the fact that a finite-sample approximation is used. In
contrast, we see that ∂θL(K)|fθ=f∗ is random with mean zero, E[∂θL(K)|f=fθ ] = 0, that is,
the objective (3) requires the law of large number limit K →∞ in order to reliably identify
the optimizer f∗. As a consequence, procedures based on (3) may become unstable in the
regime fθ ≈ f∗ due to a low signal-to-noise ratio.

Contributions. This paper builds on Richter et al. (2021), and we develop the argu-
ments from the previous paragraphs in the context of BSDEs, thus providing a comprehen-
sive analysis on related numerical stability issues (see in particular (23) and (25) below, and
compare with (4) and (3), respectively). Whilst our exposition in Section 2 follows in large
parts the existing vast literature on the numerical treatment of BSDEs (see, for instance,
Chessari et al. (2023) for a survey), we place particular emphasis on formulations in contin-
uous time, turning to time-discretizations at the last step of the derivation, see Section 2.2.
This approach allows us to effortlessly construct explicit and implicit time stepping schemes
in combination with losses of the form (3) and (4) and bespoke tensor regression schemes,
extending the methodology put forward in Richter et al. (2021) and leading in particular
to the robust explicit loss in (29), that so far appears to have attracted little attention. We
develop a tensor train based scheme for its optimisation (see Section 4.3) and numerically
investigate its performance:

Numerical evaluation. Explicit and implicit numerical schemes potentially lead to
a trade-off between computational cost and stability (see Chassagneux and Richou (2015)
for a related discussion in a slightly different context). In our numerical experiments,
however, we do not observe significant improvements in accuracy or stability imparted by
the implicit schemes, whereas the numerical overhead is substantial. We thus conjecture
that for high dimensional problems, which are the focus of this paper, sampling errors
exceed discretization errors.

The BSDE-versions of the robust loss (4) overall significantly outperform methods based
on (3) in terms of approximation accuracy. Going beyond the abstract setting from (1),
we observe in one experiment that concrete implementations of (3) and (4) in the BSDE
setting lead to schemes that tend to shift emphasis from the accuracy of the PDE solution

3
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to its gradient (see Remark 4 below and the experiments in Section 5.2). This phenomenon
(at the moment supported only by preliminary numerical evidence) might be of particular
interest in the context of stochastic optimal control.

Combining the insights from these observations, we would like to advertise the explicit
and robust loss defined in (29), which, to the best of our knowledge, has so far not been
used in numerical experiments. We believe that a more in-depth analysis of its properties
is a promising avenue for future work.

1.1 Setting and notation

Throughout, we denote by C(·, ·) the space of continuous functions, where the domain and
codomain (or target sets) are specified within the parentheses. Similarly, Ck(·, ·) refers to
the space of k-times continuously differentiable functions. We focus on semi-linear parabolic
PDEs, which have the following form:

(∂t + L)V (x, t) + h(x, t, V (x, t), (σ>∇V )(x, t)) = 0, (x, t) ∈ Rd × [0, T ), (5a)

V (x, T ) = g(x), x ∈ Rd, (5b)

where h ∈ C(Rd×[0, T ]×R×Rd,R) specifies the nonlinearity, g ∈ C(Rd,R) is the terminal
condition, and

L =
1

2

d∑
i,j=1

(σσ>)ij(x, t)∂xi∂xj +
d∑
i=1

bi(x, t)∂xi (6)

is a second-order (elliptic) differential operator containing the coefficients b ∈ C(Rd×[0, T ],Rd)
and σ ∈ C(Rd×[0, T ],Rd×d). We assume that the matrix σσ>(x) is nondegenerate for all
x ∈ Rd, and that (5) admits a unique (classical) solution V : Rd × [0, T ] → R. Systems
of the form (5) generalize the (backwards) heat equation ∂tV + ∆V = 0 and are widely
used in the description of diffusive phenomena, from material science to finance (Evans,
2022). In order to obtain an approximation for the unknown function V , we reformulate
(5) as a backwards SDE (see Section 2). From a computational point of view, this change
of perspective opens the door for Monte Carlo approaches (potentially mitigating the curse
of dimensionality) that can broadly be summarized as follows:

1. For every instance tn within a time grid 0 = t0 < t1 < · · · < tN = T , we produce ‘spa-

tial grid points’ (X̂
(k)
n )Kk=1 on the basis of which the solution V shall be approximated.

More precisely, we will aim to construct V̂n : Rd → R such that

V̂n(X̂k
n) ≈ V (X̂k

n, tn), for all n = 1, . . . , N, k = 1, . . . ,K. (7)

Crucially, the grid points (X̂
(k)
n )Kk=1 will be (approximate) samples from the diffusion

process

dXs = b(Xs, s) ds+ σ(Xs, s) dWs, X0 = x0, (8)

associated to the operator L defined in (6). The connection between (6) and (8)

underlying the generation of (X̂
(k)
n )Kk=1 is at the heart of the BSDE approach, see

Section 2. Since V (·, T ) = g is known from the terminal condition (5b), we will

4
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address (7) iteratively backwards in time using the updates V̂n  V̂n−1, see Figure 1.
This procedure corresponds to the backward process in the BSDE, see Section 2. Note
that as (8) does not depend on the unknown function V , we can evolve X forward in
time. In what follows, we can therefore assume that trajectory samples from (8) are
available.

2. To achieve the approximation (7), we reformulate this equation as a least squares
regression problem (utilizing the approximation previously obtained at tn+1), in the
spirit of (3) and (4). For V̂n, we use a tensor train ansatz of the form

V̂n(x1, . . . , xd) =
∑

ai1,...,idφi1(x1) · . . . · φid(xd), (9)

with fixed ansatz functions φi : R → R that importantly only take real numbers
(of dimension one) as inputs, hence could be thought of as one-dimensional building
blocks. To ensure scalability to the high-dimensional setting, the tensor train approach
places stringent low-rank conditions on the coefficients ai1,...,id , see Section 4.

X̂0 X̂1 X̂N−2 X̂N−1 X̂N

V̂0 V̂1 V̂N−2 V̂N−1 V̂N = g

t0 t1 tN−2 tN−1 tN

Figure 1: Schematic version of the numerical approximation of the solution to the PDE
(5). First, we compute the discretized forward process X̂k along a time grid 0 = t0 < t1 <
· · · < tN = T . Then, we approximate V , starting at the known terminal value V (·, T ) = g
and gradually iterating backward in time along the time grid and the trajectories of the
previously computed forward process X̂.

In summary, step 1 leverages the connection between the PDE and the BSDE (see (12)
below) to obtain predictions for the solution V along the trajectories X (see also Figures
8 and 9 in Section 5). Step 2 builds on this data to obtain an approximate solution to V
that can be obtained at any point in space, using a least-squares formulation.

Remark 1 (Generalizations). The discussion in this paper can be generalized in multiple
ways beyond the semi-linear parabolic PDE (5). First, the terminal value problem can be
converted into an initial value problem by applying the time inversion t 7→ T − t. Fur-
thermore, generalizations to elliptic PDEs as well as to PDEs on bounded domains are in
principle possible (cf. Nüsken and Richter (2023)). However, the approaches considered in
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this paper based on backward iterations would need nontrivial adaptations due the change in
boundary conditions. Finally, one can also aim at targeting fully nonlinear PDEs, see e.g.
Beck et al. (2019) and Pham et al. (2021).

1.2 Previous work

BSDEs have been introduced in Bismut (1973) and were studied systematically in Pardoux
and Peng (1990). We refer the reader to Pardoux (1998) for an overview that highlights
the connections of BSDEs to elliptic and parabolic PDEs. A recent survey about numerical
methods for BSDEs can be found in Chessari et al. (2023), tracing the development from
regression based approaches in finance (Longstaff and Schwartz, 2001) through the works
Ma et al. (2002); Bouchard and Touzi (2004); Zhang (2004); Gobet et al. (2005); Gobet
and Labart (2007) towards recent developments involving deep learning (Beck et al., 2021;
Pham et al., 2021). The present article is an extension of the conference paper Richter
et al. (2021), laying particular emphasis on robustness and further analyzing the trade-offs
between explicit and implicit discretization schemes. For Richter et al. (2021) and this
paper, the following aspects are particularly relevant:

Function classes. Tensor trains were first introduced to the mathematical community in
Oseledets (2011), with their foundations based in quantum physics and known as ‘matrix
product states’. They can be seen as a special case of hierarchical tensor networks, which
have been developed in Hackbusch and Kühn (2009). To obtain comprehensive surveys and
further information on tensor trains, we recommend referring to the following sources: Hack-
busch (2014); Hackbusch and Schneider (2014); Szalay et al. (2015); Bachmayr et al. (2016).

PDE solvers. The numerical treatment of PDEs has seen recent advances via the idea
of combining sophisticated function approximation with Monte Carlo sampling. Relying on
deep learning techniques, we highlight E et al. (2017), which builds on a variational formu-
lation based on BSDEs, see also Nüsken and Richter (2023). Beck et al. (2021) and Huré
et al. (2020) combine deep learning attempts with backwards schemes based on Feynman-
Kac and BSDEs, respectively. For recent overviews of deep learning for the approximation
of solutions to PDEs we refer to E et al. (2021) and Richter (2021). Tensor trains have
been used to approximate PDE solutions as well. For the treatment of parametric PDEs we
refer to Dolgov et al. (2015); Eigel et al. (2017); Dektor et al. (2021). The approximation of
Hamilton-Jacobi-Bellman PDEs with tensor trains can be found in Horowitz et al. (2014);
Stefansson and Leong (2016); Gorodetsky et al. (2018); Dolgov et al. (2021); Oster et al.
(2019); Fackeldey et al. (2022); Chen and Lu (2021) and we refer to Khoromskij (2012);
Kormann (2015); Lubasch et al. (2018) for further types of PDEs.

Robustness. The idea of incorporating the Itô integral into the objective dates back
to Gobet et al. (2005), where fixed point iterations are used for solving BSDEs. Using
related robust and variance-reduced objectives for gradient descent based algorithms has
been employed in Zhou et al. (2021) for Hamilton-Jacobi-Bellman equations and in Richter
and Berner (2022) for linear PDEs. For an extensive analysis of the robustness of losses
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and their gradients we refer to Nüsken and Richter (2021).

Discretizations. In algorithmic contexts, time-continuous BSDEs have to be discretized.
Chassagneux and Crisan (2014) study Runge-Kutta schemes for the approximation of the
deterministic integral in order to potentially improve the convergence rate. Linear multistep
methods are considered in Chassagneux (2014) and the numerical implications of explicit
vs. implicit schemes are investigated in Chassagneux and Richou (2015). For a numerical
analysis of the deep BSDE algorithm we refer to Han and Long (2020).

1.3 Outline of the article

The paper is structured as follows. In Section 2 we give an introduction to BSDEs and high-
light their interpretation as a stochastic representation of the PDE (5), deriving appropriate
loss functionals. In particular, Section 2.1 focuses on continuous-time formulations, while
numerical aspects that become apparent in the discretization of BSDEs will be discussed in
Section 2.2. Thereafter, Section 3 investigates the identified losses with respect to statisti-
cal robustness properties. Section 4 is then devoted to the tensor train format as a valid
means for function approximation, encompassing complexity (Section 4.1), optimization
(Section 4.2) and gradient-dependent loss functionals (Section 4.3). Finally, in Section 5
we illustrate our theoretical findings on multiple numerical examples, before Section 6 ends
with a conclusion and outlook.

2. Solving PDEs via BSDEs

In this section we review the connection between semi-linear PDEs of the type (5) and back-
ward stochastic differential equations (BSDEs), going back to Bismut (1973) and Pardoux
and Peng (1990). Roughly, BSDEs can be linked to the Feynman-Kac formula (Oksendal,
2013, Chapter 8), offering stochastic representations of solutions to PDEs (Pardoux (1998)),
however also in the nonlinear setting, such as the one stated in (5). As noted in earlier
work (Chessari et al., 2023), reformulating the deterministic PDE (5) in stochastic terms is
promising from a computational perspective, allowing the transition from grid-based meth-
ods to Monte Carlo techniques. The connection between PDEs and BSDEs has been studied
extensively in the last decades (see e.g. Bouchard et al. (2009), Fahim et al. (2011) and E
et al. (2017)) and we refer to Pham (2009), Touzi (2012) and Zhang (2017) for excellent
introductions to the subject.

In a nutshell, BSDEs can be derived from evaluating the solution of the PDE

(∂t + L)V (x, t) + h(x, t, V (x, t), (σ>∇V )(x, t)) = 0, (x, t) ∈ Rd × [0, T ), (10a)

V (x, T ) = g(x), x ∈ Rd, (10b)

defined in (5), here repeated for convenience, along the stochastic process (8),

dXs = b(Xs, s) ds+ σ(Xs, s) dWs, X0 = x0, (11)

also restated for convenience, where b ∈ C(Rd×[0, T ],Rd) and σ ∈ C(Rd×[0, T ],Rd×d)
refer to the same functions as in (6). Notice that the initial condition X0 is deterministic.
Conceptually speaking, the SDE (11) provides a (stochastic) grid on which the PDE solution
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is obtained, not unlike the equidistant (deterministic) grids used in finite-difference schemes
(Johnson, 2012). To spell this out, let us assume that V ∈ C2,1(Rd×[0, T ],R) is a classical
solution to the PDE (5) and define the process

Ys = V (Xs, s), (12)

evaluating V along (Xs)0≤s≤T on the time interval s ∈ [0, T ]. An application of Itô’s formula
shows that

V (XT , T )− V (X0, 0) =

∫ T

0
(∂t + L)V (Xs, s) ds+

∫ T

0
(σ>∇V )(Xs, s) · dWs, (13)

and therefore, using (5),

g(XT ) = V (X0, 0)−
∫ T

0
h(Xs, s, V (Xs, s), (σ

>∇V )(Xs, s)) ds+

∫ T

0
(σ>∇V )(Xs, s) · dWs.

(14)
Further introducing the shorthand notation

Zs = (σ>∇V )(Xs, s), (15)

we can equivalently write (14) as

dYs = −h(Xs, s, Ys, Zs) ds+ Zs · dWs, YT = g(XT ). (16)

Solutions to the equations (11) and (16) are triplets (X,Y, Z), where X is called the forward
process, whilst Y and Z are referred to as backward processes, owing to the terminal con-
dition in (16). However, (Xs)s∈[0,T ], (Ys)s∈[0,T ] and (Zs)s∈[0,T ] are adapted to the filtration
(Fs)s∈[0,T ] generated by the Brownian motion (Ws)s∈[0,T ], and therefore, in a causal sense,
should be thought of as evolving forward in time. Together with this adaptedness condi-
tion, the equations (11) and (16) provide three constraints for the triplet (X,Y, Z), hence
existence and uniqueness under appropriate conditions is plausible. For rigorous results we
refer to El Karoui et al. (1997), Touzi (2012, Theorem 10.2), Zhang (2017, Theorem 4.3.1,
Theorem 7.3.3) and Kobylanski (2000).

Remark 2 (Controlled forward processes). Using the same arguments, we can generalize
the system of BSDEs specified in (11) and (16) by adding a control term v ∈ C(Rd×[0, T ],Rd)
to the forward process in (11). Ensuring Y v

s = V (Xv
s , s) and Zvs = (σ>∇V )(Xv

s , s) leads to
a compensation term in the backward process,

dXv
s = (b(Xv

s , s) + σ(Xv
s , s)v(Xv

s , s)) ds+ σ(Xv
s , s) dWs, Xv

0 = x0, (17a)

dY v
s = (−h(Xv

s , s, Y
v
s , Z

v
s ) + v(Xv

s , s) · Zvs ) ds+ Zvs · dWs, Y v
T = g(Xv

T ). (17b)

The control v in the forward process may be beneficial from the computational point of
view, pushing the process into regions of interest or reducing the variance of Monte Carlo
estimators, cf. Hartmann et al. (2019).

8
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2.1 Solving BSDEs: loss functionals in continuous time

The BSDE formulation (16) opens the door for Monte Carlo approaches towards solutions
to the PDE (5) by solving for the triplet (X,Y, Z) and using the correspondences (12) and
(15). Numerical approaches can broadly be classified into two branches: One can either
approximate solutions to the PDE (5) on the entire time interval [0, T ] at once, directly
incorporating the time dependence (E et al. (2017), Raissi (2018), Nüsken and Richter
(2021)). Alternatively, one can divide the problem into multiple subproblems and approach
those one after another (Bouchard and Touzi (2004), Gobet et al. (2005), Huré et al. (2020)).
In this work we focus on the latter attempt.

In the spirit of the dynamic programming principle from optimal control theory (Fleming
and Rishel, 2012), the idea is to solve for the backward process on separate disjoint time
intervals defined by the discretization

0 = t0 < t1 < · · · < tN = T, (18)

thereby dividing the problem into a sequence of subproblems. The algorithm proceeds
backwards in time, starting with the last interval [tN−1, tN ] and using the terminal condition
YT = V (XT , T ) = g(XT ). Subsequently, the computations on each interval will rely on
approximations from previously approached intervals, with the solution at time tn providing
the terminal condition for the subproblem posed on the interval [tn−1, tn], for n = 1, . . . , N−
1. As an illustration, we refer to Figure 1.

To approach the subproblem on the time interval [tn, tn+1], we first state the backward
process (16) in an integrated version as

Ytn+1 − Ytn = −
∫ tn+1

tn

h(Xs, s, Ys, Zs) ds+

∫ tn+1

tn

Zs · dWs, (19)

or, equivalently, as

V (Xtn+1 , tn+1)− V (Xtn , tn) = −
∫ tn+1

tn

h(Xs, s, V (Xs, s), (σ
>∇V )(Xs, s)) ds

+

∫ tn+1

tn

(σ>∇V )(Xs, s) · dWs,

(20)

both of which hold true almost surely. According to Pham (2009, Chapter 6) and slightly
simplifying, the formulation (20) is equivalent to the PDE (5a) on [tn, tn+1], in the sense
that (20) holds almost surely if and only if V satisfies (5a).

Based on this observation, we may now aim to construct suitable loss functionals

Ln : H → R≥0 (21)

that specify the misfit between an approximating function ϕ and the solution V on the
interval [tn, tn+1]. Here, H is an appropriate function class to be chosen later on, for now
assumed to contain the solution, i.e. V ∈ H. More precisely, the loss (21) shall be minimal
if and only if the approximation is exact, i.e.

ϕ∗ ∈ arg min
ϕ∈H

Ln(ϕ) ⇐⇒ ϕ∗(x, t) = V (x, t) ∀ (x, t) ∈ Rd×[tn, tn+1]. (22)

9
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In line with the iterative procedure depicted in Figure 1, Ln will typically be constructed
using the approximation ϕ obtained in the succeeding time interval [tn+1, tn+2]; in this
situation we require (22) to hold provided that this approximation is exact, i.e. ϕ = V on
[tn+1, tn+2].1

In the following we review two loss functionals that are based on (20) and satisfy (22).
The first loss,

LBSDE(ϕ) = E

[(
ϕ(Xtn , tn)− V (Xtn+1 , tn+1)−

∫ tn+1

tn

h(Xs, s, ϕ(Xs, s), (σ
>∇ϕ)(Xs, s)) ds

+

∫ tn+1

tn

(σ>∇ϕ)(Xs, s) · dWs

)2]
,

(23)

measures the misfit in the BSDE (20) when the solution V is replaced by the approximating
function ϕ, in mean square sense. The formulation in (23) is in the spirit of Gobet et al.
(2005), see equation (4) within in this work. As alluded to above, the loss LBSDE assumes
knowledge of V (Xtn+1 , tn+1), which can be viewed as a terminal condition for the solution
on the time interval [tn, tn+1]. In the context of the iterative scheme from Figure 1, we will
set V (Xtn+1 , tn+1) ≈ ϕ(Xtn+1 , tn+1), using the approximation obtained previously in the
succeding time interval (cf. Remark 8). Note that here and in the following we omit the
index n indicating the time interval in LBSDE for notational convenience.

An alternative loss can be derived by applying the conditional expectation with respect
to the Brownian filtration Ftn = σ(Ws : 0 ≤ s ≤ tn) to (20), yielding

V (Xtn , tn) = E

[
V (Xtn+1 , tn+1) +

∫ tn+1

tn

h(Xs, s, V (Xs, s), (σ
>∇V )(Xs, s)) ds

∣∣∣∣∣Ftn
]

(24)

= arg min
ϕ

E

[(
ϕ(Xtn , tn)− V (Xtn+1 , tn+1)−

∫ tn+1

tn

h(Xs, s, V (Xs, s), (σ
>∇V )(Xs, s)) ds

)2
]
,

where in the first line we have used the martingale property of the (Itô) stochastic integral as
well as the fact that V (Xtn , tn) is Ftn-measurable. In the second line, we have reformulated
the conditional expectation in terms of a least-squares minimization (or projection), see
Klenke (2013, Corollary 8.17). The relation (25) straightforwardly suggests the projection
loss

Lproj(ϕ) = E

[(
ϕ(Xtn , tn)− V (Xtn+1 , tn+1) (25)

−
∫ tn+1

tn

h(Xs, s, V (Xs, s), (σ
>∇V )(Xs, s)) ds

)2
]
,

see Chessari et al. (2023, Section 3.1) and references therein.

1. In fact, as the methods proceed locally in time, we will only require ϕ(·, tn+1) = V (·, tn+1).

10
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Comparing LBSDE to Lproj, we see that the Itô integral has been removed, essentially
by applying the conditional expectation in (20). Conversely, the passage from Lproj to
LBSDE has an interpretation in terms of control variates, see Robert and Casella (2004)
for a general introduction and e.g. Zhou et al. (2021) or Richter and Berner (2022) for
applications of control variates to linear PDEs. Indeed, starting with (24) and using the
fact that the stochastic integral in the second line of (23) has (conditional) expectation zero,
we may add this term to (24) in the hope of reducing the variance of corresponding Monte
Carlo estimators. At this point, we would also like to point out the conceptual similarity
between (25) and (1) on the one hand, and (23) and (4) on the other hand.

Further, note that Lproj contains the solution V in the Riemann integral (in contrast
to the corresponding term in LBSDE, which depends on ϕ). For discretization schemes,
this implies that only an approximation of the integral by its right end point contribution
will lead to feasible numerical strategies, making use of V (Xtn+1 , tn+1) ≈ ϕ(Xtn+1 , tn+1)
obtained in the previous iteration on the interval [tn+1, tn+2]. As we will see in Section 2.2
below, the loss LBSDE allows for more flexible discretizations in time.

Remark 3 ((Non-)vanishing losses). Substituting ϕ = V into Lproj and LBSDE as well as
using the relation (20) we see that

min
ϕ∈H
Lproj(ϕ) = E

[∫ tn+1

tn

|(σ>∇V )(Xs, s)|2 ds

]
, min

ϕ∈H
LBSDE(ϕ) = 0. (26)

Therefore, the accuracy of an approximation ϕ ∈ H may be monitored in an online-fashion
in algorithms that are based on LBSDE. For methods based on Lproj, the same may prove
challenging since the expectation in (26) will rarely be available in closed form.

2.2 Discretizing the loss functionals

Finally, we can design implementable algorithms by discretizing the involved (stochastic)
integrals and replacing the expectations by Monte Carlo estimators. In that context, we
content ourselves with approximating the solution at the grid points defined in (18), i.e., we
seek functions V̂n ∈ Ĥ such that V̂n(·) ≈ V (·, tn), for n = 0, . . . , N−1, and an appropriately
chosen function class Ĥ (cf. Figure 1). We note that whilst H in (21) is understood to
contain functions of both space and time, Ĥ comprises functions of space only. For the
forward process (11) we employ the Euler-Maruyama scheme

X̂n+1 = X̂n + b(X̂n, tn)∆t+ σ(X̂n, tn)ξn+1

√
∆t, (27)

where ∆t = tn+1 − tn is the time-step and ξn+1 ∼ N (0, Id) are independent standard
normally distributed random variables. It can be shown that X̂n approximates Xn∆t in an
appropriate sense as ∆t→ 0, see Kloeden and Platen (1992).

For the losses (23) and (25) we need to discretize the deterministic and stochastic in-
tegrals. Here, we only consider one-step approximations (i.e. we use only one term in the
‘sum’), but refer to Remark 7 below for generalizations. As commented on before Remark 3,
the integral in the first line of (23) can be approximated by either left or right endpoint eval-
uations of the integrand due to the fact that there is no dependence on V̂ . Ultimately, this
flexibility allows for the development of both explicit and implicit schemes based on LBSDE.

11
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For the loss Lproj in (25), on the other hand, we must rely on the right endpoint, making
use of the availability of V (Xtn+1 , tn+1) ≈ ϕ(Xtn+1 , tn+1) from the previous time-step.

To simplify notation, we introduce a shorthand notation as follows:

hn = h(X̂n, tn, V̂n(X̂n), σ>(X̂n, tn)∇V̂n(X̂n)). (28)

Starting with LBSDE from (23), we obtain the losses

L̂exp
BSDE(V̂n) = E

[(
V̂n(X̂n)− hn+1∆t− V̂n+1(X̂n+1) + σ>(X̂n, tn)∇V̂n(X̂n) · ξn+1

√
∆t
)2
]
,

(29)
and

L̂imp
BSDE(V̂n) = E

[(
V̂n(X̂n)− hn∆t− V̂n+1(X̂n+1) + σ>(X̂n, tn)∇V̂n(X̂n) · ξn+1

√
∆t
)2
]
.

(30)
Note that L̂exp

BSDE is explicit in the sense that hn+1 only depends on quantities that

have already been computed in the previous iteration steps, whereas L̂imp
BSDE is implicit

in the sense that the nonlinear function hn contains the approximating function V̂n, with
respect to which the loss shall be minimized. While implicit numerical schemes may in
principle promise improved numerical stability (see e.g. Chassagneux and Richou (2015)),
explicit schemes tend to lead to shorter runtimes. We will demonstrate those computational
tradeoffs in multiple numerical examples in Section 5.

For Lproj, only the explicit version is available and we obtain

L̂exp
proj(V̂n) = E

[(
V̂n(X̂n)− hn+1∆t− V̂n+1(X̂n+1)

)2
]
, (31)

where the approximation V (Xtn+1 , tn+1) ≈ ϕ(Xtn+1 , tn+1) is used at the right end point of
the integral in (25).

Remark 4 (Gradient forcing). The gradient ∇V̂n is not explicitly part of the objective in
(31), as V̂n+1 is assumed to be known from the previous iteration. In contrast, both (29) and
(30) contain ∇V̂n (note that the short-hand hn depends on ∇V̂n as well). These differences
are partly rooted in the formulas (23) and (25), given that the former is stated in terms
of ∇ϕ rather than ∇V . In challenging (typically high-dimensional) problems where the
solution V can only be approximated up to a certain relatively low accuracy, it is plausible
that (29), (30) and (31) encourage differing trade-offs between the accuracy of V̂ and ∇V̂ ;
a stark example of this phenomenon will be presented in Section 5.2.

Remark 5 (Previous work). The loss L̂exp
proj defined in (31) has been considered and ana-

lyzed extensively in earlier works on the numerical treatment of BSDEs, see Chessari et al.
(2023) as well as references therein. A convenient property of this loss is that its explicit
nature typically leads to linear regression-type problems that allow for efficient solvers, see
Section 4. The loss L̂imp

BSDE defined in (30) has been considered in Huré et al. (2020) and
Germain et al. (2022) in the context of deep learning. Due to its implicit form, the cor-
responding algorithms rely on iterative solvers, possibly rendering optimization inefficient.
The loss L̂exp

BSDE defined in (29) is new to the best of our knowledge. It relies on an ex-

plicit numerical discretization and, in comparison with L̂exp
proj, enjoys favorable robustness

properties when ϕ ≈ V , see Section 3.
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Remark 6 (Discretization of the stochastic integral). Whilst the Riemann integral in LBSDE

can be straightforwardly discretized in multiple different ways, alternative discretizations
of the (Itô) stochastic integral incur (Stratonovich-type) correction terms in the limit as

∆t→ 0. For example, we may rewrite (23) in terms of backward integrals (denoted by d
←−
W ,

see Kunita (2019, Section 2.7)),

LBSDE(ϕ) = E

[(
ϕ(Xtn , tn)− V (Xtn+1 , tn+1)−

∫ tn+1

tn

h(Xs, s, ϕ(Xs, s), (σ
>∇ϕ)(Xs, s)) ds

+

∫ tn+1

tn

(σ>∇ϕ)(Xs, s) · d
←−
W s −

∫ tn+1

tn

Tr
(
σσ>Hessϕ

)
(Xs) ds

)2]
,

(32)

where the last term is a correction that has been computed according to equation (2.48) in
Kunita (2019). Discretizing (32) then leads to

Lexp
BSDE,back(V̂n) = E

[
(V̂n(X̂n)− ĥn+1∆t− V̂n+1(X̂n+1) + σ>∇V̂n+1(X̂n+1) · ξn+1

√
∆t

−Tr
(
σσ>Hess V̂n+1

)
(X̂n+1)∆t)2

]
,

(33)

where now both the Riemann and the stochastic integral are approximated by the right end-
points, yielding a fully explicit numerical scheme. In our numerical experiments, however,
we have not observed clear advantages in terms of accuracy or robustness, and reserve a
more careful evaluation for future work.

Remark 7 (Losses on the entire time interval). Dividing [0, T ] into multiple smaller time
intervals is attractive since the ensuing subproblems might be easier to solve (cf. Figure 1).
However, the continuous-time loss LBSDE defined in (23) (and for linear PDEs also the
loss Lproj, see Richter and Berner (2022)) can also be used to approximate the solution
on the whole time interval at once, choosing N = 1 with t0 = 0 and t1 = T . In order to
ensure that the magnitude of the discretization errors remains controlled, one would then
need to discretize the integrals on multiple grid points. This, however, automatically leads
to implicit schemes and only iterative solvers (or ‘shooting methods’) seem appropriate, see
e.g. E et al. (2017) and Nüsken and Richter (2023).

Remark 8 (Error propagation). When dividing the problem into subproblems, on the other
hand, we might need to accept a potential propagation of approximation errors, originating
from the fact that in implementations the approximation V̂n+1(·) ≈ V (·, tn+1) (needed as a
‘terminal condition’ for deriving the individual losses) will usually not be exact, cf. Gobet
(2016, Section 8.3.3)).

A summary of the algorithms is later given in Algorithm 4.

3. Robustness properties of the loss functionals

In the previous section we have derived numerical schemes for solving parabolic PDEs
based on the iterative minimization of appropriate loss functionals. The two losses (23)

13
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and (25) are both valid in the sense of (22), i.e. they both yield the solution to the PDE
(5) assuming that the expectations involved can be computed exactly and the associated
minimization procedure leads to a global minimum. This assumption is not realistic in
practice, however. Consequently, this section shall study robustness properties of the losses
when the expectations are approximated by a finite sample Monte Carlo estimator. For
LBSDE and Lproj as defined in (23) and (25), the natural estimators are given by

L(K)
proj(ϕ) =

1

K

K∑
k=1

(
ϕ(X

(k)
tn , tn)− V (X

(k)
tn+1

, tn+1)

−
∫ tn+1

tn

h(X(k)
s , s, V (X(k)

s , s), (σ>∇V )(X(k)
s , s)) ds

)2

,

(34)

and

L(K)
BSDE(ϕ) =

1

K

K∑
k=1

(
ϕ(X

(k)
tn , tn)− V (X

(k)
tn+1

, tn+1) +

∫ tn+1

tn

(σ>∇ϕ)(X(k)
s , s) · dW (k)

s

−
∫ tn+1

tn

h(X(k)
s , s, ϕ(X(k)

s , s), (σ>∇ϕ)(X(k)
s , s)) ds

)2

,

(35)

where K ∈ N is the sample size and (X
(k)
s )s∈[0,T ],k=1,...,K denote independent and identically

distributed copies of the diffusion process (11), driven by the independent Brownian motions

(W
(k)
s )s∈[0,T ].

We now aim to study fluctuations of these Monte Carlo approximations at the solution
ϕ = V by way of computing the variance associated to (34) and (35). Our results will
shed light on the situation when ϕ ≈ V , which is the relevant regime towards the end of
iterative optimization algorithms (such as those considered in Section 4). The following
result is in direct correspondence to the observations made in the introduction concerning
the differences between the regression objectives (3) and (4).

Proposition 9 (Expectation and variance of the losses at the solution). Consider the Monte
Carlo estimators (34) and (35), evaluated at the solution ϕ = V . The former has nonzero
expectation and variance, namely

E
[
L(K)

proj(V )
]

= Var

(∫ tn+1

tn

(σ>∇V )(Xs, s) · dWs

)
, (36a)

Var
(
L(K)

proj(V )
)

=
1

K
Var

((∫ tn+1

tn

(σ>∇V )(Xs, s) · dWs

)2
)
. (36b)

In contrast, the latter is zero almost surely,

L(K)
BSDE(V ) = 0, a.s., (37)

implying in particular that both its expectation and variance vanish.
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Proof Substituting ϕ = V into Lproj and using the relation (20) we see that

Lproj(V ) = E

[(∫ tn+1

tn

(σ>∇V )(Xs, s) · dWs

)2
]

= Var

(∫ tn+1

tn

(σ>∇V )(Xs, s) · dWs

)
,

(38)
from which (36a) and (36b) follow directly. For LBSDE(V ) note that

V (X
(k)
tn , tn)− V (X

(k)
tn+1

, tn+1)−
∫ tn+1

tn

h(X(k)
s , s, V (X(k)

s , s), (σ>∇V )(X(k)
s , s)) ds

+

∫ tn+1

tn

(σ>∇V )(X(k)
s , s) · dW (k)

s = 0

(39)

holds almost surely for every k ∈ {1, . . . ,K}, see also (20), from which (37) follows im-
mediately and which implies that both the expectation and the variance of the estimator
versions are zero.

Theorem 9 shows that the Monte Carlo estimator L(K)
proj exhibits noise even at the solution

ϕ = V . This is an undesirable property, since stochastic optimization algorithms usually
degrade in performance in the face of high variance estimators, necessitating smaller learning
rates and longer convergence times (Bottou et al. (2018)). Close to an optimum, the presence
of noise is likely to induce instabilities and prevent the algorithm from settling down on an
accurate solution.

The estimator L(K)
BSDE on the other hand possesses variance zero at the optimum, promis-

ing statistical advantages in the optimization routines. In particular, once the approxima-
tion is close to the solution the optimization algorithm is expected to be robust and stay
close to the optimum. We refer to Section 5 for numerical evidence that illustrates those
findings.

To extend our analysis to stochastic gradient descent and its variants, we next study the
fluctuations of gradient estimators of the losses. For this, we recall the notion of functional
derivative (see e.g. Section 5.2 in Siddiqi and Nanda (1986)). For the following definition,
we require L to be defined on a set of functions that is also a vector space. For definiteness,
we consider L : C1

b (Rd× [0, T ])→ R (that is, implicitly, H ⊂ C1
b (Rd× [0, T ])), but note that

the boundedness assumption could be relaxed considerably.

Definition 10 (Gâteaux derivative). For ϕ,ψ ∈ C1
b (Rd× [0, T ]), we say that L is Gâteaux

differentiable at ϕ in direction ψ if the mapping

ε 7→ L(ϕ+ εψ) (40)

is differentiable at ε = 0. The Gâteaux derivative of L at ϕ in direction ψ is then defined
as

δ

δϕ
L(ϕ;ψ) :=

d

dε

∣∣∣
ε=0
L(ϕ+ εψ). (41)

We can now investigate the variances of the gradients of the estimated losses. In fact, the
following proposition shows that the variance of the gradient of the Monte Carlo estimator
of the loss LBSDE, as defined in (35), vanishes at the solution ϕ = V .
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Proposition 11 (Variance of the gradients at the solution). For every direction ψ ∈
C1
b (Rd × [0, T ]) it holds

Var

 δ

δϕ

∣∣∣∣∣
ϕ=V

L(K)
BSDE(ϕ;ψ)

 = 0. (42)

Proof The proof of the identities (42) and (43) below can be found in Appendix A.

Remark 12 (Variance of gradients of the projection loss). The remarkable property (42)
does not hold for the Monte Carlo estimator of the projection loss, defined in (34). In fact,
one can show that

Var

 δ

δϕ

∣∣∣∣∣
ϕ=V

L(K)
proj(ϕ;ψ)

 =
4

K
E
[
(ψ(Xtn , tn))2

∫ tn+1

tn

(σ>∇V )(Xs, s))
2 ds

]
, (43)

see Appendix A for details. Clearly, the right-hand side of (43) vanishes only in very
exceptional cases (for instance, if σ>∇V ≡ 0 on [tn, tn+1]).

4. Tensor trains for solving BSDEs

In this section we explain the tensor train approach (Oseledets, 2011) towards representing
the solution V to the PDE (5), following Holtz et al. (2012a) and Sallandt (2022, Chapter
4). We first introduce the model and its representation as a coefficient tensor. We then
introduce an optimization procedure used within our methods – the alternating least squares
algorithm (ALS) for regression-like problems. Finally, we will see how ALS can be used
to minimize loss funtionals developed in the previous sections. We will repeatedly start by
recalling the procedure for a simple linear ansatz space and then transfer this knowledge to
explain the same procedure for the set of tensor trains.

We start with the classical model for functions of d real variables, V : Rd → R, using
tensorization of functions of one real variable each, φi : R→ R. Given an appropriate set of
such functions Φ = {φ1, . . . , φm : R → R}, functions of d real variables can be constructed
as2

V (x1, . . . , xd) =
m∑
i1=1

· · ·
m∑
id=1

ci1,...,idφi1(x1) . . . φid(xd). (44)

The coefficient tensor c ∈ Rm×···×m = Rmd is said to be of order d and suffers from the curse
of dimensionality: the number of its coefficients grows exponentially, severely limiting the
usage of this classical model in higher dimensions. To simplify the presentation we introduce
the Python-like notation ci1,...,id = c[i1, . . . , id]. In order to introduce the tensor train model

2. As hinted at by the choice of variable names, we think of (44) as an approximation or representation of
the solution to the PDE (5). This correspondence is only vague, as V in (44) does not depend on time.

To be more precise, we should think of (44) as one instance of V̂i within the iterative scheme depicted
in Figure 1, that is, t is fixed.
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we first define the contraction ◦ between the last index of a tensor w1 ∈ Rr1×m×r2 with the
first index of another tensor w2 ∈ Rr2×m×r3 as

w = w1 ◦ w2 ∈ Rr1×m×m×r3 , w[j1, i1, i2, j3] =

r2∑
j2=1

w1[j1, i1, j2]w2[j2, i2, j3]. (45)

Using this contraction operation, the standard matrix-vector product of A ∈ Rn×m and
x ∈ Rm is given as A ◦ x ∈ Rn. Similarly, the singular value decomposition (SVD) of
A can be written as A = U ◦ Σ ◦ V . Tensors and their contractions can be efficiently
visualized as graphs in which nodes stand for the individual tensors and contractions are
denoted as edges between them, cf. Figure 2. We refer to such collections of tensors and
contractions between the tensors as tensor networks. Using the ◦-notation we can define

xA
mn

(a) A tensor network repre-
senting the order 1 tensor re-
sulting from the matrix-vector
multiplication Ax = A ◦ x ∈
Rn.

A U Σ V=
n m n r r m

(b) Graphical representation of the SVD as a tensor network.

Figure 2: Graphical notation of simple tensors and tensor networks.

the tensor train representation:

Definition 13 (Tensor train). Let c ∈ Rm×···×m = Rmd. A factorization

c = u1 ◦ u2 ◦ · · · ◦ ud, (46)

where u1 ∈ Rm×r1, ui ∈ Rri−1×m×ri, 2 ≤ i ≤ d − 1, ud ∈ Rrd−1×m, is called tensor train
representation (TT-representation) of c. We refer to the individual tensors ui as component
tensors. The tuple (r1, . . . , rd−1) ∈ Nd−1 is referred to as the representation rank and is a
property of the specific representation (46). In contrast, the tensor train rank (TT-rank)
of c is defined as the minimal rank tuple r = (r1, . . . , rd−1) such that there exists a TT-
representation of c with representation rank r. Here, minimality of the rank is defined in
terms of the partial order relation on Nd−1 given by

s � t ⇐⇒ si ≤ ti for all i ∈ {1, . . . , d− 1},

for s = (s1, . . . , sd−1), t = (t1, . . . , td−1) ∈ Nd−1.

The unique minimal rank tuple can for example be computed using a multi-linear SVD,
cf. Holtz et al. (2012b). Tensor trains have the appealing property that, assuming that the
ranks stay bounded, the number of coefficients grows linearly with the spatial dimension.
More precisely, the number of coefficients is at most of order O(dmr), where r = maxi ri.
The TT-representation is said to be orthogonalized if for some index µ, the component
tensors u1, . . . , uµ−1 are left-orthogonal and uµ+1, . . . , ud are right-orthogonal, see e.g. Wolf
(2019) for a precise definition. The index µ associated to the possibly non-orthogonal

17



Richter, Sallandt and Nüsken

component tensor is called the core position. Such an orthogonal representation can be
obtained by a sequence of QR-decompositions, and the position of the core can be “moved”
efficiently (for example, transforming an orthogonal representation with core index µ into
one with core index µ+ 1 or µ− 1). We again refer to Wolf (2019) for details.

Using the graphical notation for tensor networks we can represent a TT as in Figure 3.

u1 u2 u3 u4c =
r1 r2 r3

m m m mm

m
m
m

Figure 3: An order-4 tensor with a possible tensor-train representation.

In order to represent functions of several real variables we combine tensor networks
with the set of ansatz functions Φ = {φ1, . . . , φm : R → R}, which we shall from now
on assume to be linearly independent. These ansatz functions have to be predetermined.
To simplify the presentation, we overload the notation and introduce Φ : R → Rm, x 7→
(φ1(x), . . . , φm(x))>. Now we can contract Φ(x) with the component tensors as shown in
Figure 4 to obtain the function V . We refer to this type of tensor network as a functional
tensor train.

u1 u2 u3 u4

Φ(x1) Φ(x2) Φ(x3) Φ(x4)

V (x) =

r1 r2 r3

m m m m

Figure 4: A function of 4 real variables and a TT-representation of its coefficient tensor.

4.1 Complexity estimates for common operations

The functional tensor train (Figure 4) has appealing properties with respect to the com-
putational cost of common operations such as the evaluation of the function value, its
gradient as well as its Laplacian. All of these operations can be performed in O(dmr2),
where r = maxi ri. Although the same asymptotic complexities can be achieved using
reverse-mode automatic differentiation (Griewank and Walther, 2008, Chapter 4), the con-
structions detailed here allow us to construct efficient regression schemes that incorporate
gradient information, see Section 4.3 below. In what follows, we use the notation from
Sallandt (2022); Oster et al. (2022).

Evaluation of V : Let us consider the evaluation of V at a point x = (x1, . . . , xd)
> ∈ Rd.

We first need to compute Φ(xl) for l ∈ {1, . . . , d}, which results in md evaluations of the
functions φi : R→ R in total. We then proceed by performing the contractions in Figure 4.
For fixed l, the contraction of Φ(xl) with the component tensors is carried out from right
to left. Using the ◦-notation, this means that

V (x) = u1 ◦ · · · ◦
((

ud−1 ◦
(
ud ◦ Φ(xd)

))
◦ Φ(xd−1)

)
◦ · · · ◦ Φ(x1). (47)
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The complexity of the first contraction vd = ud ◦Φ(xd) is O(rm). The following contraction
ud−1 ◦vd ◦Φ(xd−1) (and also the contractions following thereafter) is of order O(r2m), while
the last contraction is again of order O(rm). This results in a total complexity of order
O(dr2m).

Evaluation of ∇V : In order to compute the gradient ∇V , we start with the evaluation
of partial derivatives. Defining the shorthand Φ′(x) = (φ′1(x), . . . , φ′m(x))>, the partial
derivative ∂xlV (x1, . . . , xd) for the case d = 4 and l = 2 is given in Figure 5. Again, using

u1 u2 u3 u4

Φ(x1) Φ′(x2) Φ(x3) Φ(x4)

∂x2V (x) =

r1 r2 r3

m m m m

Figure 5: Partial derivative of a 4-dimensional function in TT-representation.

the ◦-notation, but leaving out the brackets for simplicity,3 we obtain

∂xlV (x) = u1 ◦ · · · ◦ ul−1 ◦ ul ◦ ul+1 ◦ · · · ◦ ud◦
◦ Φ(xd) ◦ · · · ◦ Φ(xl+1) ◦ Φ′(xl) ◦ Φ(xl−1) ◦ · · · ◦ Φ(x1). (48)

The complexity of evaluating the partial derivative hence coincides with the complexity
of evaluating V , i.e. O(r2md). In order to compute the gradient, d of these contractions
have to be performed, meaning that the complexity of this naive gradient evaluation is
O(r2md2). However, we can improve on that by noticing that in ∂xlV (x) and ∂xl+1

V (x) a
number of contractions appear repeatedly. Saving these contractions yields an efficient way
of computing the gradient.

To make this precise we define the contractions

Ψ+
l (xl+1, . . . , xd) = ul+1 ◦ · · · ◦ ud ◦ Φ(xd) ◦ · · · ◦ Φ(xl+1) ∈ Rrl , (49)

for l = 1, . . . , d− 1, as well as

Ψ−l (x1, . . . , xl−1) = u1 ◦ · · · ◦ ul−1 ◦ Φ(xl−1) ◦ · · · ◦ Φ(x1) ∈ Rrl−1 , (50)

for l = 2, . . . , d. In words, Ψ+
l is the contraction of every component tensor with index

larger than l, while Ψ−l is the contraction of every component tensor with index smaller
than l. Using (49) and (50), we can rewrite (48) in the form

∂xlV (x1, . . . , xd) =
(
(Ψ−l (x1, . . . , xl−1) ◦ ul) ◦Ψ+

l (xl+1, . . . , xd)
)
◦ Φ′(xl), (51)

for l = 2, . . . , d− 1. The edge cases l = 1 and l = d are covered by

∂x1V (x1, . . . , xd) = ul ◦Ψ+
l . (52a)

3. The order of the contractions is the same as in (47), and can be inferred from the dimensions of the
individual tensors.
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We furthermore observe the recursive identities

Ψ+
l = (ul+1 ◦Ψ+

l+1) ◦ Φl+1, Ψ−l = Φl−1 ◦ (Ψ−l−1 ◦ ul−1), (53)

omitting the arguments of Ψ+
l and Ψ−l . These allow us to reuse already performed con-

tractions when computing partial derivatives with respect to different variables, and, in
combination with (51), to arrive at Algorithm 1. Note that every micro-step in the algo-

Algorithm 1: Computing the gradient of a function V in the TT-format.

Input : A function V in TT-format (see equation (47) and Figure 4) and its
component tensors u1, . . . , ud, one-dimensional basis functions φ1, . . . , φn,
evaluation point x = (x1, . . . , xd)

> ∈ Rd.
Output: The gradient ∇V (x).
for l = 1, . . . , d− 1 do

Calculate Ψ−l (x1, . . . xl−1) using the recursive formula (53).
end
for l = d, . . . , 1 do

Calculate Ψ+
l (xl+1, . . . , xd) using the recursive formula (53).

end
for l = d, . . . , 1 do

Calculate ∇V (x)[l] = ∂V
∂xl

(x) using (51).

end

rithm has complexity O(r2m). Taking into account the for-loops, this amounts to O(dr2m)
and compares favorably to O(d2r2m) for the naive implementation. Finally, we remark that
the Laplacian can be evaluated efficiently in a similar fashion, see Kazeev and Khoromskij
(2012).

4.2 Optimization on the TT manifold

Now that we have established how to represent the high-dimensional function V , we next
cover the process of finding optimal coefficients in (47), related to the component tensors ui.
We make use of the alternating least squares (ALS) algorithm (Holtz et al., 2012a), which
replaces the problem of finding all coefficients at once by a sequence of low-dimensional
sub-problems, where only one component tensor is optimized in every iteration. This is
possible due to the multi-linearity of the tensor train representation.

Digression: Regression problems on linear spaces. In Section 2 we have es-
tablished that BSDEs can be solved by minimizing appropriate loss functionals. Before
explaining how to minimize these loss functionals for the set of tensor trains, we first recall
linear regression on simpler linear spaces. Then, we discuss the same problem on the set
of tensor trains, before finally extending the method to the loss functionals from Section 2
(involving gradient dependencies and leveraging the construction from Algorithm 1)

We recall the ordinary linear regression problem

min
ϕ∈U
L(K)(ϕ), (54)
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where U is a finite-dimensional linear space of functions on Rd, and the loss functional L
takes the form

L(K)(ϕ) =
1

K

K∑
k=1

|ϕ(x(k))− y(k)|2, (55)

for given samples x(k) ∈ Rd and values (or measurements) y(k) ∈ R, k = 1, . . . ,K. For
a basis b1, . . . , bN of U and a function representation ϕ(x) =

∑N
i=1 cibi(x), the optimal

coefficients4 c = (c1, . . . , cN )> ∈ RN are given by

c = (A>A)−1A>y, (56)

where A = (aij) ∈ RK×N has coefficients aij = bj(x
(i)), and y = (y(1), . . . , y(K))> ∈ RK ,

assuming a sufficient amount and nondegeneracy of the samples for A>A to be invertible
(Wasserman, 2004, Chapter 13).

To explain the extension of ordinary least squares achieved by the ALS algorithm, we
first introduce some notation. The set of tensor trains with fixed rank r ∈ Nd−1 is denoted
by

Mr = {c = u1 ◦ · · · ◦ ud | TT-rank(c) = r}, (57)

see Definition 13 for the dimensions of the component tensors ui. It is important to note
thatMr is not a linear subspace of Rm×...×m because of the nonlinearity of the contraction
operation ◦; it is however a submanifold, sometimes referred to as the TT-manifold of rank
r (Holtz et al., 2012b). We will also need the subsets

Ml
r(u1, . . . , ul−1, ul+1, . . . , ud) :=

{
c = u1 ◦ . . . ◦ ud : ul ∈ Rrl−1×m×rl

}
⊂Mr, (58)

obtained from Mr by fixing the component tensors u1, . . . , ul−1, ul+1, . . . , ud and varying
only ul. In the following, we will write Ml

r for notational convenience whenever the par-
ticular choices of the fixed component tensors are not relevant for the argument. A key
observation is that Ml

r(u1, . . . , ul−1, ul+1, . . . , ud) is a linear subspace of Rm×...×m for any
l ∈ {1, . . . , d} and fixed component tensors, in contrast to Mr. This observation will allow
us to efficiently optimize over Mr using the explicit formula (56) by iteratively restricting
to the subspaces Ml

r. Associated to the sets of tensor trains defined in (57) and (58) and
a set of basis functions Φ = {φ1, . . . , φm}, we obtain the sets of functional tensor trains
(Mr,Φ) and (Ml

r(u1, . . . , ul−1, ul+1, . . . , ud),Φ) by using the construction principle in (47)
and Figure 4. For instance,

(Mr,Φ) =
{
V (x) = u1 ◦ · · · ◦

((
ud−1 ◦

(
ud ◦ Φ(xd)

))
◦ Φ(xd−1)

)
◦ · · · ◦ Φ(x1),

with u1 ◦ . . . ◦ ud ∈Mr

}
, (59)

and similarly for (Ml
r,Φ). Clearly, (Mr,Φ) and (Ml

r,Φ) inherit key properties fromMr and
Ml

r; in particular, (Ml
r,Φ) is a linear function space, while (Mr,Φ) is merely a (nonlinear)

manifold.

4. Note that we have slightly abused the notation by redefining the quantity c. Previously, it was a
coefficient tensor and now it is a coefficient vector. We revisited the basic linear regression in order to
draw parallels with the more complex tensor train regression approach. Thus, from now on, c will again
be a coefficient tensor.
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We are now interested in replacing the linear space U in (54) by the TT-manifold
(Mr,Φ), i.e.,

min
ϕ∈(Mr,Φ)

L(K)(ϕ), (60)

for a given rank r ∈ Nd−1 and set of basis functions Φ = {φ1, . . . , φm}. The ALS algo-
rithm targets (60) by interatively restricting the optimization to (Ml

r,Φ), cycling through
l = 1, . . . , d, while updating the fixed component tensors using the solutions to the sub-
regression problems on (Ml

r,Φ). More precisely, we set l = 1, start with an arbitrary
initialization u2, . . . , ud of the component tensors and consider the local regression problem

min
ϕ∈(M1

r(u2,...,ud),Φ)
L(K)(ϕ). (61)

Crucially, since (M1
r (u2, . . . , ud),Φ) is a linear function space, we can apply the solution

formula (56) to obtain the missing component tensor û1. Proceeding with l = 2 and the
local regression problem (updated using û1)

min
ϕ∈(M2

r(û1,u3,...,ud),Φ)
L(K)(ϕ), (62)

we perform the update u2 7→ û2. Following this procedure, we update all the component
tensors in turn (proceeding again with û1 after ud) until an appropriate termination criterion
is met (Holtz et al., 2012a). While global convergence to the optimum in (60) is not
guaranteed, it is known that the loss L(V ) decreases at every iteration, see Holtz et al.
(2012a, Section 3.4).

We next discuss the details of an efficient implementation, making use of the contractions
Ψ+
l and Ψ−l defined in (49) and (50). Starting with the update of the first component tensor

u1 (i.e. l = 1 in the discussion above), we observe that Ψ+
1 can be interpreted as an r1-

dimensional vector of real-valued functions of d − 1 variables. Taking the tensor product
with the ansatz functions in Φ = {φ1, . . . , φm}, we obtain a set of m · r1 functions of d
variables. We formally denote the linear span of functions by Φ ⊗ Ψ+

1 , and note that the
corresponding coefficients can be stored in a matrix c ∈ Rm×r1 whose dimensions equal
those of u1. As explained above, solving a regression problem of the type (56) then recovers
optimal coefficients for the coefficient tensor u1, under the assumption that u2, . . . , ud are
fixed.

Similarly, local regression problems can be formulated to obtain optimal coefficients for
the component tensors ul for l ∈ {1, . . . , d}, the relevant function spaces being Ψ−l ⊗ Φ ⊗
Ψ+
l . As in Section 4.1 (see in particular Algorithm 1), we can use the identities (53) to

compute Ψ+
l from Ψ+

l+1 and vice-versa for Ψ−l , making the optimization efficient by saving
contractions (these saved contractions are commonly referred to as ‘stacks’ within the ALS
algorithm). To summarize, we state the procedure in Algorithm 2, using the convention
that Ψ−1 = Ψ+

d = span{1} is the space of constant functions.
To further improve performance, we make two essential modifications of the optimization

problem (60). First, we introduce a regularization term in the loss functional, penalizing
the Frobenius-norm of the coefficients in the tensor train (multiplied by a small parameter
δ > 0). In the case when Φ = {φ1, . . . , φm} consists of H2([a, b])-orthogonal functions,
Parseval’s identity implies that this regularizing term can be identified with the norm in
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Algorithm 2: Alternating Least Squares (ALS) for regression

Input : An order d tensor u1 ◦ · · · ◦ ud = A ∈ Rn1×···×nd , sample points x(k) ∈ Rd
and data y(k) ∈ R.

Output: Optimized component tensors u1 ◦ · · · ◦ ud = A ∈ Rn1×···×nd .
while not converged do

for l = d− 1 to 1 do
// build stacks

Move core position to l (using QR-decompositions).

Compute (and store) Ψ+
l (x

(k)
l+1, . . . , x

(k)
d ) for all k, using (53).

end
for l = 1 to d do

// optimize component tensors

Move core position to l (using QR-decompositions).

Compute (and store) Ψ−l (x
(k)
1 , . . . , x

(k)
l−1) for all k, using (53).

Solve the regression problem (61) for the local basis Ψ−l ⊗ Φ⊗Ψ+
l , using

(56). The solution yields the component tensor ul ∈ Rrl−1×ml×rl .
end

end

the Sobolev space with dominating mixed smoothness H2
mix([a, b]d), see Sickel and Ullrich

(2009), so that the loss functional takes the form

L(K)(ϕ) =
1

K

K∑
k=1

|ϕ(x(k))− y(k)|2 + δ‖ϕ‖2H2
mix([a,b]d). (63)

This regularization term can straightforwardly be incorporated in the computational pro-
cedure; we simply add δ Id to the matrix A>A in (56).

The second modification slightly alters the model space (Mr,Φ). Oftentimes the ter-
minal condition g cannot be represented exactly (or conveniently) within (Mr,Φ) due to
the specific tensor train structure. Addressing this, we can simply add g to the model and
obtain a representation of V as in Figure 6 (in the same manner, other functions of par-
ticular relevance could be added to the model space as well). The modification of the ALS

u1 u2 u3 u4

Φ(x1) Φ(x2) Φ(x3) Φ(x4)

V (x) =

+ cgg(x)
r1 r2 r3

m m m m

Figure 6: Graphical representation of V : R4 → R, with g included in the model space.

algorithm for this modified model is straightforward, as the local basis Ψl ⊗Φ⊗Ψl can be
modified to (Ψl⊗Φ⊗Ψl)⊕ g, thus increasing the dimension of the local regression problem
to rlmrl+1 + 1.
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Remark 14. In Götte et al. (2021) as well as Trunschke (2021), sparsity promoting mod-
ifications of (60) have been considered, the latter of which is based on an L1 rather than
an L2 penalty. These variations could reduce the number of samples needed for accurate
estimation, further boosting the performance of the algorithm.

4.3 Handling gradient-dependent loss functionals

The loss functionals L̂exp
BSDE and L̂imp

BSDE (see equations (29) and (30)) are not of the form
(55) because of their dependence on ∇V , and therefore cannot directly be optimized using
Algorithm 2. However, their inherently similar structure can still be leveraged to efficiently
approximate minimizers in a TT-setting; this is fundamentally due to the similarity between
function and gradient evaluations in the tensor train format, cf. equations (47) and (48),
and thus we heavily rely on Algorithm 1. More specifically, we can replace (55) by

L(K)(ϕ) =
1

K

K∑
k=1

|ϕ(x(k)) +∇ϕ(x(k)) · Ξ(k) − y(k)|2, (64)

with x(k) ∈ Rd, Ξ(k) ∈ Rd, and y(k) ∈ R for 1 ≤ k ≤ K. In the case of L̂exp
BSDE, for instance,

we see that setting y(k) = h
(k)
n+1∆t + V̂n+1(X̂n+1) and Ξ(k) =

√
∆tσ(X̂

(k)
n , tn)ξ

(k)
n+1 recovers

the standard Monte Carlo estimator for (29).

As in Section 4.2, we first cover the problem of minimizing (64) over a finite-dimensional
linear space of (differentiable) functions on Rd, see the formulation in (54). Inserting a
representation ϕ(x) =

∑N
i=1 cibi(x) in terms of smooth basis functions, the solution again

takes the form (56), c = (A>A)−1A>y, with a modified matrix A ∈ RN×K ,

Aik = bi(x
(k)) +

d∑
j=1

(∂xjbi(x
(k))[j])Ξ(k)[j]. (65)

As before we use the Python-like notation to access entries of a vector. In order to obtain
an efficient algorithm saving contractions, we set out to find a recursive representation of
function (and gradient) evaluations. The first term in (65) can be handled as in Section
4.2, using the operations defined in (49) and (50). To handle the second term, we define

Θ−l (x1, . . . , xl−1, ξ) =

l−1∑
j=1

∂xjΨ
−
l (x1, . . . , xl−1)ξ[j], (66a)

Θ+
l (xl+1, . . . , xd, ξ) =

d∑
j=l+1

∂xjΨ
+
l (xl+1, . . . , xd)ξ[j] (66b)

and notice that

Θ−l (x1, . . . , xl−1, ξ) = Θ−l−1(x1, . . . , xl−2, ξ) ◦ ul−1 ◦ Φ(xl−1)

+Ψ(x1, . . . , xl−2) ◦ ul−1 ◦ Φ(xl−1). (67)
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Finally, building on (49)-(50) and (67), the identity

d∑
j=1

∂xjϕ(x)ξ[j] = Θ−l (x1, . . . , xl−1, ξ) ◦Ψ+
l (xl+1, . . . , xd) ◦ Φ(xl)

+ Ψ−l (x1, . . . , xl−1) ◦ ul ◦Ψ+
l (xl+1, . . . , xd) ◦ Φ′(xl) · ξ[l]

+ Ψ−l (x1, . . . , xl−1) ◦ ul ◦Θ+
l (xl+1, . . . , xd, ξ) ◦ Φ(xl) (68)

yields an efficient way to evaluate
∑d

j=1 ∂xjϕ(x)ξ[j]. We summarize the resulting procedure
in Algorithm 3.

Algorithm 3: Alternating Least Squares (ALS) for losses involving gradients

Input : An order d tensor u1 ◦ · · · ◦ ud = A ∈ Rn1×···×nd , sample points x(k) ∈ Rd
and data y(k) ∈ R.

Output: Optimized component tensors u1 ◦ · · · ◦ ud = A ∈ Rn1×···×nd .
while not converged do

for l = d− 1 to 1 do
// build stacks

Move core position to l (using QR-decompositions).

Compute (and store) Ψ+
l (x

(k)
l+1, . . . , x

(k)
d ) for all k, using (53).

Compute (and store) Θ+
l (x

(k)
l+1, . . . , x

(k)
d , ξ(k)) for all k, using (67).

end
for l = 1 to d do

// optimize component tensors

Move core position to l (using QR-decompositions).

Compute (and store) Ψ−l (x
(k)
1 , . . . , x

(k)
l−1) for all k, using (53).

Compute (and store) Θ−l (x
(k)
1 , . . . , x

(k)
l−1, ξ

(k)) for all k, using (67).

Solve the local regression problem for (64) and the local basis Ψ−l ⊗Φ⊗Ψ+
l ,

using (65). The solution yields the component tensor ul ∈ Rrl−1×ml×rl .
end

end

5. Numerical examples

In this section, we extend the numerical examples from Richter et al. (2021) by incorporating
the explicit robust loss defined in (29) and comparing it to the other losses from Section 2.
As in Richter et al. (2021), we contrast tensor trains with neural networks for function
approximation. We refer to Appendix B for implementation details and the definition of
the error metrics (RMSE, relative error and PDE loss). Here, we only highlight the fact that
RMSE and relative error quantify the accuracy of the approximation in terms of function
values, whereas the PDE loss is also sensitive to discrepancies in the derivatives. The
code can be found at https://github.com/lorenzrichter/PDE-backward-solver. For
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Algorithm 4: Approximating the solution to the PDE (5)

Input : Initial parametric choice for the functions V̂n, for n ∈ {0, . . . , N − 1}, e.g.
tensor trains with specified ranks and polynomial degrees.

Output: Approximation of V (·, tn) ≈ V̂n along the trajectories for
n ∈ {0, . . . , N − 1}.

Simulate K samples of the discretized SDE (27).
Choose V̂N = g.
for n = N − 1 to 0 do

Choose one of the losses (29), (30) or (31).
Minimize this quantity (explicitly or by iterative schemes, see Algorithms 1-3).
Set V̂n to be the minimizer.

end

convenience, we summarize an overview of the general method in Algorithm 4, as already
shown in Richter et al. (2021).

5.1 Hamilton-Jacobi-Bellman equation

Associated to (stochastic) optimal control problems, the Hamilton-Jacobi-Bellman (HJB)
equation is a PDE for the value function, representing the minimal cost-to-go from which
the optimal control policy can be deduced. As suggested by E et al. (2017), we consider
the specific form

(∂t + ∆)V (x, t)− |∇V (x, t)|2 = 0, (69a)

V (x, T ) = g(x), (69b)

with g(x) = log
(

1
2 + 1

2 |x|
2
)
, leading to

b = 0, σ =
√

2 Idd×d, h(x, s, y, z) = −1

2
|z|2, (70)

using the notation from Section 1.1. A reference solution can be obtained from

V (x, t) = − logE
[
e−g(x+

√
T−tσξ)

]
, (71)

where ξ ∼ N (0, Idd×d) is a normally distributed random variable, see e.g. Appendix D.1 in
Richter et al. (2021) for a derivation of this formula.

In our experiments we set d = 100, T = 1, ∆t = 0.01, x0 = (0, . . . , 0)> and K =
2000. Throughout, we complete 100 independent runs of Algorithm 4, each with different
realizations of the Brownian increments and with different randomly initialized tensor trains
and neural networks. For the tensor train model we first compare different polynomial
degrees as well as ranks and observe that choosing the polynomial degree to be 0 and the
rank to be 1 yields the best results, in terms of relative error, RMSE and PDE loss. The
neural network settings are summarized in Appendix C in Richter et al. (2021). We display
the means and standard deviations of the runs in Figure 7 (if no error bars are visible,
this means that the standard deviations of the results are very small in comparison to
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the resolution). The approximations based on tensor trains are obtained significantly faster
than those using neural networks, while at the same time being substantially more accurate.
Comparing the different losses from Section 2 we see that the BSDE losses lead to a notable
increase in performance at the cost of a higher computational budget. The explicit and
implicit versions of the BSDE loss perform similarly, in this case with small advantages for
the implicit version.

4.48

4.50

4.52

4.54

4.56

4.58

V0(x0)

Reference exp
proj, TT exp

BSDE, TT imp
BSDE, TT exp

proj, NN exp
BSDE, NN imp

BSDE, NN

10 3

10 2

10 1
RMSE

10 4

10 3

10 2

Relative error

10 2

10 1

100

101

102
PDE loss

102

103

104

105
Computational time

Figure 7: We compare different loss functions for a 100-dimensional HJB example, either
relying on tensor trains or on neural networks. For computational details we refer to Ap-
pendix B.

To confirm these results, we plot evaluations of the (approximated) value function along
two realizations of the forward process in Figures 8 and 9, for dimensions d = 10 and
d = 100, respectively, comparing the tensor train and neural network approximations, both
relying on the implicit BSDE loss. We observe that especially in high dimensions the
tensor train approximation agrees more with the reference solution than the neural network
approximation. Finally, we plot the mean relative error as a function of time in the left-hand
panel of Figure 10, which again shows that the tensor train model outperforms the neural
network approach.

As observed in Richter et al. (2021), the model simplicity of the tensor train approach
is rather surprising (polynomial degree 0, i.e. constant ansatz functions), and therefore the
dependence of the polynomial degree for different problem dimensions was studied in more
detail. In the right-hand panel of Figure 10 we display relative errors achieved with the
tensor train approach using the implicit BSDE loss for varying dimensions and different
polynomial degrees. Interestingly, we can see that the problem appears to become easier
with growing dimensions and that only for smaller dimensions large polynomial degrees
are beneficial. We hypothesize that the observed effect can be attributed to a blessing
of dimensionality, a phenomenon known from the theory of interacting particle systems
(“propagation of chaos”, see Sznitman (1991)), where in various scenarios, the joint dis-
tribution of a large number of particles tends to approximately factorize as the number of
particles increases (that is, as the dimensionality of the joint state space grows large). Simi-
lar effects were also reported in Bayer et al. (2023), see Figure 3 and Khoromskij (2012), see
Section 1.3, but a theoretical understanding is still lacking. It is plausible that approximate
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Figure 8: Reference solutions compared with tensor train and neural network approxima-
tions using the implicit BSDE loss along two trajectories in d = 10.
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Figure 9: Reference solutions compared with tensor train and neural network approxima-
tions using the implicit BSDE loss along two trajectories in d = 100.

factorizations are relevant for high-dimensional PDEs and that tensor methods are useful
(i) to detect those factorizations and (ii) to exploit them, while the black-box nature of the
neural networks does not reveal such properties.

5.2 HJB with double well dynamics

Let us continue with another HJB example, which was proposed by Nüsken and Richter
(2021). In this example the forward SDE is nonlinear, which is likely to result in more
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Figure 10: Mean relative error over time for tensor trains and neural networks, relying on
the implicit BSDE loss (left). Relative errors achieved with implicit BSDE loss and tensor
trains for varying dimensions and different polynomial degrees. The polynomial degree
necessary for achieving a good performance seems to decrease with growing state space
dimension, which suggests a blessing of dimensionality in the setting of Section 5.1 (right).

complicated structures of the PDE solution. We consider

(∂t + L)V (x, t)− 1

2
|(σ>∇V )(x, t)|2 = 0, (72a)

V (x, T ) = g(x), (72b)

with L as in (6), where now the drift is given as the gradient of a double well potential,

b = −∇Ψ, Ψ(x) =

d∑
i,j=1

Cij(x
2
i − 1)(x2

j − 1), (73)

with the matrix C ∈ Rd×d assumed to be positive definite. The terminal condition is given
by g(x) =

∑d
i=1 νi(xi − 1)2 with parameters νi > 0.

We first consider a factorized scenario, with a diagonal matrix C = 0.1 Id, allowing us
to estimate the optimal TT-rank to be 2. Further, we set σ =

√
2Id, T = 0.5, d = 50,

∆t = 0.01, K = 2000, νi = 0.05 and x0 = (−1, . . . ,−1) ∈ Rd. For the tensor train
approximation we choose the polynomial degree to be 3. Using the fact that the solution
factorizes, we can compute a low-dimensional reference solution based on finite differences.
We display the results of Algorithm 4 in Figure 11, again comparing tensor trains with
neural networks as well as the three main losses from Section 2. As before, the tensor
trains are both faster and more accurate than neural networks. We further observe that the
explicit BSDE loss yields slightly better results than its implicit counterpart, while being
almost one order of magnitude faster.
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9.35
9.40
9.45
9.50
9.55
9.60
9.65
9.70

V0(x0)

Reference exp
proj, TT exp

BSDE, TT imp
BSDE, TT exp

proj, NN exp
BSDE, NN imp

BSDE, NN

10 2

10 1

RMSE

10 4

10 3

10 2

Relative error

10 4

10 3

10 2

Reference loss

10 1

100

101

102
PDE loss

101

102

103

104
Computational time

Figure 11: We compare different loss functions for a 50 dimensional HJB example that
relates to a nonlinear SDE with the drift given by the negative gradient of a multidimensional
extension of a double well potential, either relying on tensor trains or neural networks. For
computational details of the evaluation we refer to Appendix B.

Double well with interacting dimensions

We continue by introducing nondiagonal elements in the matrix C, expecting that higher
TT-ranks will be needed to cope with the coupled nature of the problem. We set d = 20,
T = 0.3, νi = 0.5 and C = Id+ξij , where ξij ∼ N (0, 0.01) are sampled once at the beginning
of the experiment – all other constants are kept the same as before. We now compute a
reference solution by using a Monte Carlo estimate for

V (x, t) = − logE
[
e−g(XT )

∣∣∣Xt = x
]

(74)

based on 107 samples, obtaining V (x0, 0) ≈ 34.2687. For the explicit losses we do not specify
the tensor train ranks and instead let the rank-adaptive solver find them. These ranks are
mostly between 4 and 6. For the implicit losses the ranks are growing within the iterations
if we do not cap them. Motivated by the results for the explicit case we cap the ranks at
ri ≤ 6. We choose polynomial degree 7 and obtain the results displayed in Figure 12.

30



Tensor trains and robust regression for BSDEs

In this example, the tensor trains are overall competitive with the neural networks
in terms of accuracy, whilst offering shorter computing times. Comparing the results for
RMSE and PDE loss reveals an interesting phenomenon: For the regression-based tensor
train approaches, losses that explicitly incorporate gradient information (Lexp

BSDE and Limp
BSDE)

perform better in terms of PDE loss, but worse in terms of RMSE. This observation is in
line with Remark 4, and this trade-off might inform the choice of method depending on
the application: In optimal control settings, for example, it is often the case ∇V is directly
related to the optimal control, and hence of primary interest (rather than V , which might
turn out secondary).

5000

4000

3000

2000

1000

0
V0(x0)

Reference exp
proj, TT exp

BSDE, TT imp
BSDE, TT exp

proj, NN exp
BSDE, NN imp

BSDE, NN

10 1

100

101

102

103

RMSE

10 3

10 2

10 1

100

101

102

Relative error

10 3

10 2

10 1

100

101

102
Reference loss

103

106

109

1012

1015
PDE loss

101

102

103

Computational time

(a)

33.9

34.0

34.1

34.2

34.3

34.4

V0(x0)

Reference exp
proj, TT exp

BSDE, TT imp
BSDE, TT exp

BSDE, NN imp
BSDE, NN

10 1

6 × 10 2

2 × 10 1

RMSE

10 3

10 2
Relative error

10 3

Reference loss

101

102
PDE loss

101

102

103

Computational time

(b)

Figure 12: We compare different loss functions for a 20 dimensional HJB example that
relates to a nonlinear SDE with the drift given by the negative gradient of a multidimensional
extension of a double well potential with interacting dimensions, either relying on tensor
trains or neural networks. Subfigure (a) shows that the implicit BSDE loss does not yield
satisfactory results in combination with neural networks. To allow for a more detailed
comparison between the remaining approaches, these results are discarded in subfigure (b).
For computational details of the evaluation we refer to Appendix B.

5.3 Cox–Ingersoll–Ross model

Finally, we move on to an example from financial mathematics. As proposed by Jiang
and Li (2021), we consider the bond price in a multidimensional Cox-Ingersoll-Ross model
(CIR), see also Hyndman (2007) and Alfonsi et al. (2015). The PDE is of the form

∂tV +
1

2

d∑
i,j=1

√
xixjγiγj∂xi∂xjV +

d∑
i=1

ai(bi − xi)∂xiV −
(

max
1≤i≤d

xi

)
V = 0, (75)
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where notationally we omit the space and time dependence of V = V (x, t) for brevity. Here,
ai, bi, γi ∈ [0, 1] are uniformly sampled at the beginning of the experiment and the terminal
condition is set to V (T, x) = 1. We set the dimension to d = 100 and for the tensor trains
use polynomial degree 3 and rank 1. Since no reference solution is available we restrict
ourselves to the PDE loss as a measure of accuracy. We display the results in Figure 13,
showing clear advantages of tensor trains over neural networks as well as the BSDE losses
over the projection loss, noting that the explicit BSDE loss is much faster than the implicit
one.
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Figure 13: We compare different loss functions for a 100 dimensional CIR example, either
relying on tensor trains or neural networks. For computational details of the evaluation we
refer to Appendix B.

6. Conclusions and outlook

In this paper, building upon the work of Richter et al. (2021), we have demonstrated the
efficacy of tensor trains as a compelling approximation framework for parabolic PDEs.
Through a reformulation of the problem in terms of backward stochastic differential equa-
tions (BSDEs), we leverage algorithms that draw on backward-in-time iterations to effi-
ciently solve for the PDE along simulated paths of a stochastic process.

Placing emphasis on continuous-time formulations, we have discussed three different loss
functionals, one of which is combines statistical robustness with efficient and fast algorithmic
computations that has so far attracted very little interest from the community. Future work
might consider applying tensor trains to elliptic PDEs and PDEs on bounded domains, and
exploring the use of tensor trains with different algorithms such as variational formulations
or residual minimization in the spirit of PINNs (Karniadakis et al., 2021).
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Appendix A. Proofs

Proof of Theorem 11 (and Remark 12). Let us define the shorthand

hϕ,(k)
s := h(X(k)

s , s, Y ϕ,(k)
s , Zϕ,(k)

s ) = h(X(k)
s , s, ϕ(X(k)

s , s), σ>∇ϕ(X(k)
s , s)). (76)

For L(K)
BSDE in (42) we compute

d

dε

∣∣∣
ε=0
L(K)

BSDE(ϕ+ εψ) =

2

K

K∑
k=1

(
ϕ(X

(k)
tn , tn)− V (X

(k)
tn+1

, tn+1)−
∫ tn+1

tn

hϕ,(k)
s ds+

∫ tn+1

tn

(σ>∇ϕ)(Xs, s) · dWs

)
(
ψ(X

(k)
tn , tn)−

∫ tn+1

tn

(σ>∇ψ)(Xs, s)ds

−
∫ tn+1

tn

(
∂yh

ϕ,(k)
s ψ(X(k)

s , s) +∇zhϕ,(k)
s · (σ>∇ψ)(X(k)

s , s)
)

ds

)
.

(77)

Setting ϕ = V , we see that

V (X
(k)
tn , tn)− V (X

(k)
tn+1

, tn+1)−
∫ tn+1

tn

hϕ,(k)
s ds+

∫ tn+1

tn

(σ>∇ϕ)(Xs, s) · dWs = 0,

almost surely, for all k = 1, . . . ,K, due to (20), implying (42).
To justify Remark 12, we compute

d

dε

∣∣∣
ε=0
L(K)

proj(ϕ+ εψ) =

2

K

K∑
k=1

(
ϕ(X

(k)
tn , tn)− V (X

(k)
tn+1

, tn+1)−
∫ tn+1

tn

hV,(k)
s ds

)
ψ(X

(k)
tn , tn).

(78)

Setting ϕ = V yields

δ

δϕ

∣∣∣∣∣
ϕ=V

L(K)
proj(ϕ;ψ) = − 2

K

K∑
k=1

(∫ tn+1

tn

(σ>∇V )(X(k)
s , s)) · dW (k)

s

)
ψ(X

(k)
tn , tn). (79)

According to the law of total variance, the variance of (79) is given by

4

K2
E

[
Var

(
K∑
k=1

(∫ tn+1

tn

(σ>∇V )(X(k)
s , s)) · dW (k)

s

)
ψ(X

(k)
tn , tn)

)∣∣∣∣∣Fn
]

(80a)

+
4

K2
Var

(
E

[
K∑
k=1

(∫ tn+1

tn

(σ>∇V )(X(k)
s , s)) · dW (k)

s

)
ψ(X

(k)
tn , tn)

] ∣∣∣∣∣Fn
)
. (80b)

Since ψ(X
(k)
tn , tn) is Fn-measurable, the contribution in (80b) vanishes according to the

martingale property of the Itô stochastic integral. Similarly, the term in (80a) equals (43)
by Itô’s isometry.
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Appendix B. Implementation details

In order to evaluate our approximations for solving the PDE in (5) we depend on reference
values Vref of V at (x, t) = (0, x0). This allows us to calculate the relative error of V̂0 using

Erel =

∣∣∣∣∣ V̂0(x0)− Vref(x0, 0)

Vref(x0, 0)

∣∣∣∣∣ . (81)

Following the computation of different approximations (V̂
(m)

0 )1≤m≤M in M runs, we deter-
mine the root mean squared error (RMSE) by

ERMSE =

√√√√ 1

M

M∑
m=1

(
V̂

(m)
0 (x0)− Vref(x0, 0)

)2
. (82)

Additionally, we introduce two error metrics that are (at least approximately) zero if and
only if the PDE is satisfied along the samples generated by the discrete forward SDE in
(27).

First, we define the PDE loss (inspired by Raissi et al. (2019)) as

EPDE =
1

KN

N∑
n=1

K∑
k=1

(
(∂t + L)V (X̂(k)

n , tn) + h(X̂(k)
n , tn, V (X̂(k)

n , tn), (σ>∇V )(X̂(k)
n , tn))

)2
,

where X̂
(k)
n are realizations of (27), the time derivative is approximated with finite differ-

ences and the space derivatives are computed analytically (or using automatic differentia-
tion). We exclude the initial time step (n = 0) due to the ill-defined regression problem
(Xk

0 = x0 has the same value for all k) in the explicit and implicit tensor train schemes, but
still achieve a good approximation as the regularization term provides a minimum norm
solution with the correct point value V (x0, 0).

Second, we establish the relative reference loss as

Eref =
1

K(N + 1)

N∑
n=0

K∑
k=1

∣∣∣∣∣V (X̂
(k)
n , tn)− Vref(X̂

(k)
n , tn)

Vref(X̂
(k)
n , tn)

∣∣∣∣∣ , (83)

whenever a reference solution for all x and t is available.

All computation times in the reported tables are measured in seconds.

Our experiments have been performed on a desktop computer containing an AMD Ryzen
Threadripper 2990 WX 32x 3.00 GHz mainboard and an NVIDIA Titan RTX GPU, where
we note that only the NN optimizations were run on this GPU, since our TT framework
does not include GPU support. It is expected that running the TT approximations on a
GPU will improve time performances in the future, see Abdelfattah et al. (2016).

All our code is available under https://github.com/lorenzrichter/PDE-backward-solver.

For further details, such as tensor train settings and neural network architectures, we
refer to Appendix D in Richter et al. (2021).
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Nikolas Nüsken and Lorenz Richter. Solving high-dimensional Hamilton–Jacobi–Bellman
PDEs using neural networks: perspectives from the theory of controlled diffusions and
measures on path space. Partial Differential Equations and Applications, 2(4):1–48, 2021.
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Schneider, and Örs Legeza. Tensor product methods and entanglement optimization for
ab initio quantum chemistry. International j. of quantum chemistry, 115(19):1342–1391,
2015. ISSN 1097-461x. doi: 10.1002/qua.24898.

Alain-Sol Sznitman. Topics in propagation of chaos. In Ecole d’été de probabilités de Saint-
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