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Abstract 

 

Backgrounds: Systemic lupus erythematosus (SLE) is a chronic inflammatory autoimmune 

disease associated with a wide range of clinical features involving different organs and the 

prognosis is also highly variable. IKZF2, which encodes Helios, is a Krüppel-like zinc finger 

transcription factor belonging to the Ikaros family. This group of transcription factors is integral 

to the regulation of the immune system. Furthermore, IKZF2 has been identified as a risk locus 

for SLE. Given that the expression of Helios is largely restricted to T-cells, and dysregulation of T 

cell function is an important factor for SLE pathogenesis, I sought to unravel the biological 

mechanism for the association by leveraging ChIP-Seq data for Helios in Jurkat T-cells. This 

study employed a multi-dimensional approach to delve into the intricacies of Helios in Jurkat T 

cells. The research integrated genome-wide identification of Helios binding sites, functional 

annotation of these sites, and their intersection with gene expression data, offering a 

comprehensive view of its regulatory network. Furthermore, the investigation extended beyond 

Jurkat T cells, exploring Helios binding sites and target genes across various T cell subtypes and 

their potential implications in SLE. 

 

Methods: Using a multi-faceted bioinformatics approach, I aimed to investigate the regulatory 

role of the transcription factor Helios in Jurkat T cells. The research encompassed the 

comprehensive identification of Helios binding sites and functional annotation of these binding 

sites using multi-omic datasets from either publicly available sources or accessed through 

collaboration. Using these resources I also went on to explore the binding sites and target 

genes of the transcription factor Helios in various T cell subtypes. I predicted Helios binding 

sites across CD4+ naïve  T cells, Th1 cells, and Th17 cells by combing its binding sites in Jurkat T 

cells and DNase I hypersensitivity data in these cell types. Subsequently, I identified target 

genes associated with these binding sites using pre-established promoter annotation and 
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enhancer annotation data and conducted gene set enrichment analysis to reveal their role in 

SLE.  

Results: The extensive analysis of Helios in T cell regulation and its impact on SLE has yielded 

significant insights. A genome-wide chip-seq analysis in Jurkat T cells identified 5,068 binding 

sites of Helios, indicating its extensive role in gene regulatory mechanisms within T cells. 

Notably, a substantial proportion of these sites are located in promoter regions and distal 

intergenic areas, suggesting Helios's involvement in both direct transcription initiation and long-

range gene regulation. ChromHMM annotation further revealed the majority of these sites are 

associated with active promoters and enhancers. The study also observed variable overlaps of 

Helios binding sites with SNPs in different diseases, with significant associations in Crohn's 

Disease, Multiple Sclerosis, and Rheumatoid Arthritis, highlighting its potential role in these 

conditions. Differential gene expression analysis following Helios knockdown in Jurkat T cells 

showed significant changes in 1,072 genes, with pathway analysis revealing enrichment in 

crucial processes like cholesterol biosynthesis, apoptosis, and T cell receptor regulation. 

Utilizing the MCODE plugin in Cytoscape, ten distinct biological modules were identified, 

encompassing a range of functions from epigenetic modulation to immune responses. A total of 

56 priority target genes of Helios in Jurkat T cells were identified by intersecting the genes 

annotated from Helios binding sites in Jurkat T cells with the differentially expressed genes 

(DEGs) observed following Helios knockdown in the same cell type. This list includes several key 

genes that have been previously implicated in the development of SLE, such as IRF4, PRKCB, 

and CD9.   

Significant changes (adjusted p value <0.05) in the expression of Helios in specific T-cell 

subtypes in SLE patients compared to healthy controls are observed, with Th1 cells showing the 

most substantial difference (log (FC) =1.96 using with our analysis based on a Japanese bulk 

RNA-seq dataset that encompasses data from various immune cell types across both healthy 

controls and SLE patients. In order to observe the function of Helios in different T cell subtypes, 

we employed a comprehensive bioinformatics approach to predict Helios transcription factor 

binding sites and their target genes in various T cell subtypes. Our focus was primarily on Th1, 
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naïve CD4+, and Th17 cell types due to the availability of relevant datasets for DNase I 

hypersensitivity hotspots and pre-established annotation data in these specific subtypes.  

Gene Set Enrichment Analysis revealed that the predicted target genes were enriched at the 

"top" of the list of differentially expressed genes when comparing healthy controls and SLE 

patients in both Th1 and Th17 cells (with a significance threshold set at p-value <0.05). I 

identified 190 Helios’ predicted target genes in Th1 cells and 70 Helios’ predicted target genes 

in Th17 cells that were found to be centrally contributed to differentially expressed genes 

(DEGs) between healthy controls and SLE patients. Utilizing protein-protein interaction (PPI) 

networks and plugins like MCODE and Cytohubba in Cytoscape, I pinpointed key hub genes 

associated with SLE in these cell types. Specifically, CCNA2, MRPL58, and CXCR6 emerged as 

hub genes in Th1 cells, while IRF4 and CBFB were identified in Th17 cells. Additionally, seven 

genes – IFI6, FKBP5, TRIB1, PRDM1, TRAT1, LINC00426, and CCND3 – were found to be core 

predicted target genes of Helios in both Th1 and Th17 cells within the DEGs between healthy 

controls and SLE patients. Further analysis of the expression changes and correlation with IKZF2 

expression in these 12 genes revealed that IFI6 in both Th1 and Th17 cells, as well as CCNA2 in 

Th1 cells, are particularly significant. These genes not only exhibit considerable changes in 

expression but also show a notable correlation with IKZF2, underscoring their importance as 

target genes of Helios and their potential role in SLE pathogenesis in these T cell subsets. 

 

Conclusion: This study elucidates the role of the transcription factor Helios in T cell regulation 

and its implications in SLE. The study revealed that Helios exhibits a predilection for binding 

sites near transcription start sites and active promoter regions, indicating its pivotal role in the 

regulation of gene expression. Functional annotation disclosed Helios' involvement in biological 

processes such as sterol biosynthesis and cholesterol metabolism, epigenetic modification and 

immune responses. the study explored changes in Helios expression across various T cell 

subtypes, particularly highlighting Th1 cells as the most affected. Additionally, gene Set 

Enrichment Analysis showed that Helios' predicted target genes were significantly enriched 
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among differentially expressed genes in Th1 and Th17 cells in SLE patients, indicating its 

potential role in the development of this autoimmune disease within these cell types. Through 

protein-protein interaction network analysis, hub target genes of Helios related to SLE in each 

cell type were identified.  
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Chapter 1. Introduction 

 

1.1 Overview of Systemic Lupus Erythematosus (SLE)  

 

The immune system is an interactive network of cells and molecules with specialised roles in 

host defense against infection. The ability to discriminate between self and non-self-antigens is 

crucial to the function of the immune system as a specific defense against invading 

microorganisms. Failure of self-tolerance can result in pathological states causing autoimmune 

disease. Autoimmune diseases have an overall prevalence of 3–5% in the general population [1]. 

SLE is a complex multisystem autoimmune disease with a wide range of signs and symptoms in 

affected individuals. 

 

1.1.1 Epidemiology 

 

The incidence of SLE is affected by genetic ancestry and sex. The female: male incidence ratio is 

10:1 in adults.  The disease burden of SLE has been shown to be highest those with African 

ancestry, followed by Asian (south or east) and those with European ancestry have the lowest 

prevalence (and severity) of SLE. The incidence of SLE varies geographically: according to a 

recent systematic review of the worldwide epidemiology of SLE [2], The overall global incidence 

of SLE ranges from 1.5 to 11 per 100,000 person-years, and the global prevalence from 13 to 

7,713.5 per 100,000 person-years. Racial disparity is seen in the mortality of SLE: compared 

with European ancestry SLE patients, cumulative SLE mortality was significantly higher among 

those with African ancestry [3].  This likely reflects both disease severity and socio-economic 

factors in some settings. 
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1.1.2 Aetiology and Risk Factors 

 

Despite extensive research over the years, the exact cause of SLE remains elusive. While some 

genetic predisposition is involved, environmental triggers such as infections, sun exposure, and 

certain medications are thought to play a role in the development of the disease [4]. 

Additionally, hormonal factors, particularly in women, are believed to contribute to the higher 

prevalence of SLE in females [5]. 

 

1.1.2.1 Update on findings from genetic studies 
 

Although a few autoimmune diseases, such as autoimmune polyendocrinopathy syndrome type 

1, which can be explained by a mutation in the autoimmune regulator (AIRE) gene, are 

monogenic; most autoimmune diseases are polygenic (complex genetic traits), with each 

susceptibility gene conveying a modest and non-exclusive elevation of risk.  

Genome-wide association studies (GWAS) has led to radical increase in the identification of 

genetic risk factors that underpin complex diseases. to date, these studies have revealed 

around 200 risk loci associated with SLE [6].  Although many genetic risk loci for SLE have been 

identified, the explained heritability by these risk loci is still low. Morris DL et al. [7] used all 

genotyped SNPs in a Chinese cohort and a European cohort to calculate heritability in both 

populations.  The results revealed 28% explained heritability in Chinese subjects and 27% in 

Europeans. López-Cortegano E et al. [8] reported the 17% explained heritability in SLE 

calculated using a selection of the most informative SNPs (P-value ≤5×10−8) available from the 

NHGRI-EBI GWAS Catalog [9]. One speculation surrounding the missing heritability in GWAS 

studies pertains to the potential contributions of rare variants that may not be adequately 

captured by SNP-chips. Such variants can be captured by exome sequencing or even more 

reliably by whole-genome sequencing (WGS).  By performing whole-genome sequencing (WGS) 

of samples from 71 Swedish SLE trio families with two healthy parents and one child affected by 
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SLE, by Almlöf JC et al. [10] identified one previously reported homozygous nonsense mutation 

in the C1QC (Complement C1q C Chain) gene and seven ultra-rare, coding heterozygous variants 

in five genes (C1S, DNASE1L3, DNASE1, IFIH1, and RNASEH2A) involved in monogenic SLE. As 

the utilization of WGS becomes more widespread in future studies, it offers the potential to 

provide a more comprehensive understanding of the genetic landscape of SLE and unveil 

additional genetic factors that contribute to its heritability. 

 

In the context of complex diseases, individual genetic variants often have a modest impact on 

disease risk. Nevertheless, their collective effect can yield meaningful risk predictions and 

enhance risk stratification. To this end, a polygenic risk score (PRS) amalgamates genetic risks 

identified through GWAS to generate a score that predicts an individual's disease risk based on 

their genotype. Chen L et al. [11]conducted a genetic risk score analysis for SLE across Chinese 

and European populations. Utilizing three European and two Chinese GWAS datasets and 

training on a dataset for one population, they found that the best performing GRS results in 

good predictive power with an area under the Receiver Operator Curve ROC curve (AUC) for SLE 

equal to 0.72 and 0.67 in two different cohorts. Wang YF et al. [12] found that an ancestry-

matched risk score demonstrates 73.4% sensitivity and 65.4% specificity in individuals of 

Guangzhou ancestry and disease risk increased with higher PRS, with individuals in the highest 

PRS decile having a much higher disease risk than those in the lowest decile. In addition to 

providing value in the diagnosis of SLE, PGR is also shown to be useful in the differential 

diagnosis of SLE from other autoimmune diseases: Knevel et al. [13] developed a genetic 

probability tool (G-PROB) to calculate the probability of different inflammatory arthritis causing 

conditions (rheumatoid arthritis, systemic lupus erythematosus, spondyloarthropathy, psoriatic 

arthritis, and gout) for a patient using genetic risk scores. Calibration of G-probabilities with 

disease status was high, with regression coefficients from 0.90 to 1.08 (1.00 is ideal). G-

probabilities discriminated true diagnoses across the three cohorts with pooled areas under the 

curve (95% CI) of 0.69 (0.67 to 0.71), 0.81 (0.76 to 0.84), and 0.84 (0.81 to 0.86), respectively. 

They further observed that 35% of the patients were misdiagnosed at the initial visit. In 77% of 
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patients, the final diagnosis was within the top two diseases with highest G-probabilities. This 

demonstrated that converting genotype information before a clinical visit into an interpretable 

probability value could significantly improve differential diagnosis.  

 

1.1.2.2 Findings from Mendelian randomization (MR) studies 
 

Numerous studies have established associations between SLE incidence and various 

environmental factors, including exposure to silica, smoking, alcohol consumption, infections, 

and vaccinations and other diseases such as endometriosis, allergic rhinitis, atopic dermatitis 

[14-17].  

 

While observational studies demonstrate these associations, they fall short of establishing 

causation. The observed correlations are susceptible to potential "false correlations" influenced 

by numerous confounding factors, and the presence of reverse causality cannot be dismissed. 

Mendelian randomization (MR) study is a robust analytical method that can be applied to 

GWAS summary statistics data to estimate the causal relationship between traits and diseases.  

MR requires an exposure and an outcome and uses genetic variation to provide evidence that 

supports or rejects the hypothesis that the exposure has a causal effect on the outcome. In MR, 

it is assumed that specifically selected genetic variants behave similarly to treatment 

assignment, that the population is divided into subgroups in a way that mimics randomization 

(Figure 1.1) [18], and that the instrumental variables selected (usually SNP) should satisfy the 

relevance, exchangeability and exclusion restrictions.  

 

In a study conducted by Bae, SC et al.  [19] , the inverse variance-weighted (IVW) method 

suggests a causal link between periodontitis and SLE (β < 0.01, SE < 0.01, P = 0.046), while the 

weighted median approach and MR-Egger regression do not support the finding. In an analysis 
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conducted by Inamo J [20], using multiple Mendelian Randomization methods, a consistent and 

statistically significant causal association between Celiac disease and and SLE was 

demonstrated. Xiang K et al.'s MR study on the gut microbiome and SLE [21] revealed that the 

gut microbiota exerts a causal effect on the risk of SLE. Specific microbiota levels such as 

Bacillales, Coprobacter, Lachnospira, and Actinobacteria were found to have a negative 

association with SLE risk, while Bacilli, Lactobacillales, and Eggerthella may serve as risk factors 

for the development of SLE. Certain lifestyle factors were assessed in MR studies to discern 

their causal association with SLE. These investigations, including studies on coffee consumption 

[22] , alcohol intake [23, 24], smoking [23], and sleep disorders [25], notably did not reveal a 

causal link with the development of SLE. 

 

MR methods have also been applied to data from methylation and gene expression 

quantitative trait loci (meQTL and eQTL) and plasma protein level QTL (pQTL) studies to explore 

potential causal factors for SLE. Mo X et al. [26] found that DNA methylation of 15 loci and 

mRNA expression of 21 genes were causally associated with SLE, particularly methylation and 

mRNA expression of known SLE risk genes, UBE2L3 and BLK. 
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1.1.3 Pathophysiology 

 

 

Although the exact mechanism is not fully understood, SLE is widely thought to be an 

autoimmune disease characterized by the excessive production of nuclear autoantibodies and 

Figure 1. 1 The analogy between Mendelian randomization and randomized controlled trial. 

 

Mendelian randomization (left) uses genetic variation to link risk factors with outcomes, 

circumventing confounders through nature's random assignment of genes. Randomized 

controlled trials (right) achieve similar confounder balance by randomly allocating subjects 

to intervention or control groups, allowing direct comparison of outcomes. 
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proteins. With the underlying genetic propensity and in response to environmental triggers, the 

balance of the immune system shifts to turn against itself, which primarily leads to activation of 

both innate and adaptive immunity. The ensuing activation of autoreactive B cells by T cells and 

leads to immune complexes deposition in tissues leading to an autoimmune cascade that may 

be limited to the single organ or cause a widespread systemic involvement.  

 

1.1.3.1 Role of innate immune system in the development of SLE 
 

The innate immune system consists of immune cells, including macrophages, neutrophils, 

dendritic cells, Natural killer cells, basophils, and innate lymphoid cells (ILCs), that circulate in 

blood or reside in tissues and are poised to respond to pathogens or inflammatory stimuli. The 

innate immune system has been indicated as a key player in the pathogenesis of SLE.  

 

A role for macrophages in the pathogenesis of SLE is supported by the discovery that SLE 

macrophages were defective in their ability to clear apoptotic cell debris [27]. It is proposed the 

defect in the phagocytosis and clearance of apoptotic cell prolonged exposure of autoantigens 

to the adaptive immune cells provides survival signals for autoreactive B cells and consequently 

loss of tolerance to nuclear antigens released from apoptotic cells [28]. Notably, research 

suggests a different role of M1 and M2 macrophages in the progression of SLE. M1 

macrophages increase the severity of the condition, while M2 macrophages reduce it [29]. 

Furthermore, cytokines that encourage M2 polarization, such as IL-4, have been reported to 

potentially offer therapeutic benefits in alleviating SLE symptoms [29]. 

 

Neutrophils are proposed to play a pathogenic role in SLE. Activated neutrophils in SLE do 

release proteases, factors that cause tissue damage, and reactive oxygen species (ROS), which 

collectively contribute to tissue destruction in SLE. Furthermore, the release of large amounts 
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of cytokines and chemokines by these activated neutrophils can lead to dysregulation of the 

immune system. In patients with SLE, a significant presence of neutrophil extracellular traps 

(NETs) is observed in the kidneys, skin, and blood [30, 31]. NETs are net-like structures 

composed of DNA-histone complexes and proteins, which are released by activated neutrophils 

into the extracellular space as a defense mechanism against invading pathogens. Suboptimal 

clearance and/or excessive formation of NETs (NETosis) are considered to result in autoantigen 

externalization and induce type I IFN synthesis and endothelial damage [32]. The abundance of 

these NETs is directly associated with the level of disease activity in SLE [33].  

 

Studies have documented dysregulated dendritic cells (DCs) play a critical role in the initiation 

and development of SLE [34]. Several reports indicate that the frequency, composition, and 

phenotype of DCs in SLE patients differ from those of healthy individuals [34]. Decreased 

frequencies of Plasmacytoid DCs (pDCs) or Myeloid DCs were most often associated with active 

disease and to a lesser degree with nonactive disease [35]. Interestingly, studies showing 

peripheral pDCs decreases observed a concomitant infiltration of pDCs in the skin and kidney of 

patients with lupus, suggesting that active pDCs may have migrated to the sites of inflammation 

[36-38]. Plasmacytoid DCs (pDCs) in patients with SLE produce high levels of IFNα that causes a 

positive-feedback loop in the activation of innate and adaptive immunity [39]. Type I 

interferons, including IFNα, have recently been identified for their significant relationship with 

SLE in current research [40]. Type I IFNs not only activate dendritic cells (DCs) and nature killer 

(NK) cells involved in innate immunity, but also activate B cells and T cells to trigger the 

adaptive immune system. Evidence suggests that type I IFN may participate in the initial breaks 

in tolerance of the disease [40]. Increased IFNα levels in SLE patients correlate with increased 

disease activity and severity [41, 42]. Furthermore, IFN-α regulated gene transcripts have been 

found significantly upregulated in the peripheral blood of both pediatric and adult SLE patients, 

as shown by gene expression profiling [43, 44]. The findings make IFN-α a promising 

therapeutic target for SLE [45]. Moreover, the IFN-α signature is being evaluated as a potential 

new biomarker for monitoring SLE disease activity [46]. 
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1.1.3.2 Role of B cells in the development of SLE 
 

Abnormalities in B cells play pivotal roles in the pathogenesis of SLE.  These abnormalities 

encompass several key aspects[47]. First, there are disturbances in peripheral B cell subsets, 

characterized by an imbalance in the numbers of different B cell subtypes, with an increase in 

class-switched memory B cells relative to naïve  B cells[48]. Moreover, proportion of activated 

Memory B cell subsets (CD27+IgD+CD95+ B cells) are shown to be associated with disease 

activity in SLE [49]. Second, the abnormal activation of B cells is another central feature. 

Dysregulations in crucial pathways, including the B-cell receptor (BCR), toll-like receptor (TLR), 

and B-cell activating factor receptor (BAFF-R) pathways, are contributors [50].  Third, there is a 

notable defect in three immune checkpoints of B cell development in SLE patients [51]. SLE 

signalling pathway disorder, abnormal ubiquitination, TLR7 and TLR9 effects, and lack of CD72, 

result in loss of B cell immune tolerance to self-antigens, allowing autoreactive B cells to survive 

and produce autoantibodies[47]. Finally, immune complexes of autoantibodies and self-

antigens deposit in target organs, causing inflammation and tissue damage[52]. 

 

 

1.1.3.3 Role of T cells in the development of SLE 
 

T cell dysregulation has been increasingly acknowledged as central to SLE pathogenesis and is 

marked by an imbalance between populations with immunosuppressive functions and 

pathogenic T cell subsets, which contribute to the break in immune tolerance and ongoing 

inflammation (Figure 1. 2). T cells exhibit significant heterogeneity, with CD4+ helper T cells and 

CD8+ cytotoxic T cells comprising the majority. CD4+ helper T cells play a pivotal role in 

coordinating immune responses through the provision of co-stimulatory signals and cytokines. 
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Five main CD4+ T helper cell subsets have been identified: Th1, Th2, Th17, Treg (T regulatory) 

and Tfh (follicular helper) cells. 

 

T follicular helper (Tfh) cells play a pivotal role in various aspects of the immune response, such 

as germinal center induction, isotype-switching, and somatic hypermutation [53]. They express 

the chemokine receptor CXCR5 and produce the cytokine IL-21, both of which are required for 

their contribution to germinal center formation. Inducible co-stimulator (ICOS), programmed 

cell death protein 1 (PD-1), and CD40L are also expressed on Tfh cells and these molecules are 

required for activation of B cells. Patients with SLE often produce somatically mutated IgG+ 

autoantibodies, indicating the involvement of germinal centers, where Tfh cells exert their 

influence. Several mouse models and clinical evidence demonstrate that dysregulated Tfh-cell 

and germinal center responses are linked to SLE [54]. In lupus nephritis lesions, Tfh-like cells 

expressing ICOS, PD-1, BCL-6, and IL-21 form ectopic germinal centers [55]. Additionally, a 

subset of SLE patients has an increased population of circulating CXCR5+ICOS+PD-1+ Tfh cells, 

which correlates with disease activity[56]. Of particular interest are the observations made on 

alterations in the composition of Tfh cells subsets in SLE, associated with disease activity. Ratio 

of Tfh2 (CXCR3(-) CCR6(-))over Tfh1(CXCR3 (+) CCR6(-)) are increased in SLE patients as 

compared to controls and disease activity correlates with the frequency of Tfh2 cells [57].   

 

Regulatory T (Treg) cells are a unique T cell subset population that suppresses the immune 

response and maintains self-tolerance, suppressing autoreactive lymphocytes in healthy 

individuals. Controversial results were reported whether decreased and increased Tregs cells 

frequencies were reported in SLE[58]. Nevertheless, a disturbed balance between effector T 

cells and Treg cells is evident in SLE [59], which is due to an imbalanced T cell cytokine profile 

characterized by decreased Interleukin-2 (IL-2) [60]. It has been well-documented that SLE is 

associated with impaired IL-2 production by T cells [61]. Restoring the balance through IL-2 
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treatment in lupus-prone mice slows disease progression. Conversely, reducing Treg cell 

numbers in healthy mice accelerates the disease onset [58].  

 

Th1 cells are recognized for their production of the pro-inflammatory cytokine interferon-

gamma (IFN-γ) and play a crucial role in cell-mediated inflammatory responses as well as 

defense against intracellular pathogens. There is accumulating evidence suggesting that Th1 

cells may contribute to tissue injury in murine lupus models [62]. In addition, Th1 cells are 

found to be enriched in inflamed kidneys and the number of Th1 cells in urine correlates with 

disease activity in patients with lupus nephritis [63]. Notably, patients with SLE exhibit elevated 

levels of IFN-γ compared to controls, and these levels positively correlate with SLE disease 

activity index (SLEDAI) scores [64, 65]. However, administering anti-interferon-γ monoclonal 

antibody to lupus patients didn’t yield significant results in terms of reducing disease activity, 

organ damage, or autoantibody titer[66], which raises questions about the role of Th1 cells in 

lupus pathogenesis.  

 

Th2 cells play crucial roles in maintaining humoral immunity by secreting key cytokines such as 

IL-4, IL-5, and IL-13, and their increased frequency in both SLE mouse models and SLE patients 

[67-69], suggests potential involvement in SLE development. IL-4 activates Janus-family tyrosine 

kinases Jak1 and Jak3 that lead to phosphorylation of the transcriptional factor Stat6. Studies 

have found that IL-4 gene polymorphism is significantly associated with SLE susceptibility [70, 

71]. SLE patients have significantly lower levels of IL-4 in plasma or serum compared to healthy 

controls [72, 73], implicating a critical role of IL-4 in SLE. In lupus prone mice, blocking IL-4 

decreases IgG anti-double-stranded DNA antibodies (anti-dsDNA), while administration of IL-4 

enhances the production of this autoantibody [74]. Traditionally, IL-5 has been recognized as a 

cytokine that stimulates activated B cells to produce antibodies and promotes the proliferation 

and differentiation of eosinophils from precursor cells into mature forms. IL-5 was reported to 

be overexpressed in skin inflammation[75]. IL-13 promotes the proliferation and differentiation 
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of B cells, and induces the expression of CD23 and IgE [76]. Multiple studies have documented 

elevated circulating levels of IL-13 in serum samples from SLE patients, significantly correlating 

with disease activity [77, 78]. Moreover, IL-13 levels are notably higher in lupus nephritis 

patients compared to those with SLE without renal involvement and healthy controls. 

Additionally, the association between IL-13 polymorphism and SLE risk in the Chinese 

population has been explored [77]. 

 

Th17 cells play a crucial role in the immune system by promoting inflammation and defending 

against bacterial and fungal infections. They are characterized by their production of the 

cytokine interleukin-17 (IL-17) and are involved in various autoimmune and inflammatory 

diseases due to their ability to trigger immune responses. The role of Th17 cells in SLE has been 

supported by elevated serum IL-17 levels [79, 80] and increased circulating Th17 cell 

frequencies [81, 82], both of which align with disease activity [83-85].  In BXD mice with 

autoimmune tendencies, blocking IL-17 signaling led to reduced development of germinal 

center B cells and decreased production of autoantibodies, including anti-dsDNA antibodies[86]. 

Additionally, In SLE patients, an elevated Th17 level, a lower Treg level, and an increased 

Th17/Treg ratio are commonly observed, which is often associated with the disease activity [87-

89]. 

 

CD8+ T cells are cytotoxic immune cells that kill infected or damaged cells by releasing 

cytotoxins, such as granzymes and perforins, enabling them to regulate infection, malignancy, 

and autoreactive immunity.  The role of CD8+ T cells in SLE is not well determined. Patients with 

active SLE have increased numbers of activated CD8+ T cells [90] and CD8+ T cells are present in 

the kidneys of patients with lupus nephritis [91]. On the other hand, CD8+ T cells from the 

peripheral blood of SLE patients frequently display a reduction in effector function [92], 

including attenuated granzyme B and perforin production [93].  This impaired cytotoxicity 

allows autoreactive B cells to persist, leading to the production of autoantibodies and the 
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characteristic autoimmune response in SLE. Moreover, SLE patients with compromised CD8+ T 

cell function are at higher risk of infections [94], including challenges in controlling latent 

viruses such as Epstein–Barr virus [95, 96]. Double negative T cells, a subset of αβ T cells 

characterized by the absence of CD4 or CD8 surface markers, are significantly elevated in SLE 

patients [97] and in murine disease models [98]. While their exact origin is not fully understood, 

evidence suggests they may derive from self-reactive CD8+ T cells [99, 100].  These double 

negative T cells are believed to play a prominent role in SLE pathogenesis by infiltrating target 

organs (such as the kidneys [101])  and being a major source of IL-17 production [102, 103].   

 

1.1.4 Clinical aspects: diagnosis and treatment of SLE 

 

SLE is a chronic autoimmune disease that causes inflammation and can affect multiple organs 

like the skin, joints, kidneys, and lungs, with varying severity. Diagnosing and treating SLE is 

challenging due to its diverse symptoms, different patient subsets, comorbidities, and 

medication effects. The diagnosis is clinical and supported by lab tests showing immune 

reactivity or inflammation. The diagnosis typically follows the 1997 American College of 

Rheumatology (ACR) criteria, which require four of eleven specific parameters for a diagnosis. 

Combining it with newer criteria (SLICC-2012 and EULAR/ACR-2019) could be helpful in early 

classification of SLE [104]. Assessing disease activity using tools such as the SLE Disease Activity 

Index (SLEDAI) aids in effectively managing SLE during both remission and flare-up periods [105]. 

The management of SLE is complex and require a multidisciplinary approach. Treatment goals 

include long-term patient survival, prevention of organ damage and improvement of health-

related quality of life. The therapeutic focus is on achieving remission or at least low disease 

activity and prevention of flares. According to the recommendations from EULAR, updated in 

2019, based on patient preference and the heterogeneity and severity of the condition, several 

therapeutics such as antimalarials (hydroxychloroquine), immunosuppressives (azathioprine, 

methotrexate, mycophenolate), and glucocorticoids may have to be considered simultaneously. 
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Special considerations are given to specific manifestations like cutaneous, neuropsychiatric, and 

renal disease. For lupus nephritis (LN), treatment targets include reducing proteinuria and 

maintaining stable kidney function, with specific protocols for proliferative LN involving 

medications like mycophenolate mofetil or cyclophosphamide. Unfortunately, standard 

therapies don't always achieve remission, leading to interest in biologics like belimumab and 

rituximab, especially in refractory cases [106]. Research is actively ongoing to discover and 

evaluate new treatment alternatives[107]. 

 

1.2 Regulation of Transcription and Gene Expression in Eukaryotes 

 

In cellular biology, the synthesis of essential proteins in a timely manner is fundamental for 

cellular functionality. This process, known as gene expression, involves the activation of genes 

to produce mRNA and proteins, a mechanism that is meticulously regulated in both unicellular 

and multicellular organisms. Cells exert control over the timing, quantity, and discontinuation 

of protein production as required. In prokaryotes, DNA organization is typically in a circular 

chromosome within the cytoplasm. Genes related to specific functions or biochemical pathways 

are grouped in operons, allowing coordinated control of gene expression. Operons are 

transcribed into a single mRNA molecule, enabling unified regulation. Prokaryotic gene 

expression is modulated by activators, repressors, and inducers, which respectively increase, 

suppress, or deactivate transcription. Eukaryotic gene regulation is more intricate, occurring 

independently for each gene and across various stages from DNA to protein synthesis. This 

regulation encompasses multiple levels: epigenetic, transcriptional, post-transcriptional, 

translational, and post-translational (Figure 1. 2). Epigenetic mechanisms modify DNA 

accessibility. Transcriptional control determines gene activation status. Post-transcriptional 

modifications impact mRNA processing and stability. Translational controls dictate protein 

synthesis efficiency. Post-translational modifications alter protein function. Among these, the 

transcriptional level is often considered the most critical point of regulation, as it is the 
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primary gateway to gene expression, determining the initial and fundamental output of the 

genetic information. 

 

 

 

 

Figure 1. 2 Five different levels of regulation of gene expression in eukaryotes 

 

The Central Dogma is illustrated with arrows indicating the points at which different types of eukaryotic 

gene expression regulation can occur. 

 

1.2.1 Overview of transcription factors 

 

Transcriptional regulation is control of whether or not an mRNA is transcribed from a gene in a 

particular cell. Like prokaryotic cells, the transcription of genes in eukaryotes requires an RNA 

polymerase to bind to a promoter to initiate transcription. In eukaryotes, RNA polymerase 

requires transcription factors to facilitate transcription initiation. Transcription factors (TFs) are 

regulatory proteins whose function is to activate (or more rarely, to inhibit) transcription of 

DNA by binding to specific DNA sequences. TFs have defined DNA-binding domains with up to 

106-fold higher affinity for their target sequences than for the remainder of the DNA strand. 

Based on broad structural similarities of their DBDs, transcription factors (TFs) can be divided 
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into several categories: Zinc Finger TFs, Helix-Turn-Helix (HTH) TFs, Leucine Zipper TFs, Helix-

Loop-Helix (HLH) TFs etc. [108]. 

 

TFs control the expression of most genes by binding to promoter and/or enhancer regions of 

DNA. In eukaryotic genes, the promoter region is located immediately upstream of the coding 

sequence, where transcription by RNA polymerase II (RNA Pol II) is initiated. Alternatively, when 

TFs bind to enhancers, which act independent of orientation, distance, and location with 

respect to the genes they regulate[109], they enhance transcriptional activity by facilitating the 

formation of a more favorable chromatin structure. This is often achieved through the DNA 

looping that brings enhancers in proximity to target promoters (Figure 1. 3 [110]). This reliance 

on three-dimensional proximity for enhancer function allows enhancers to impact genes that 

are far away on the DNA sequence (>1 kb) rather than those nearby. Although mechanisms of 

transcriptional activation at promoters have been extensively characterized, understanding the 

way genes are controlled by enhancer regions remains an area of intense study. A 

breakthrough in in this area has been the identification of topologically associated domains 

(TADs)[111]. TADs are essentially extruded chromatin loops there are minimal interdomain 

interactions and maximal intradomain interactions. TADs are usually consistent within specific 

cell types and help ensure that critical genes for cell identity are regulated by multiple 

enhancers, maintaining stable gene expression[112]. They can be reorganized when progenitor 

cells differentiate, altering the cells' gene expression patterns. Interestingly, not every gene 

within a TAD relies on it for functionality, indicating more complexity in the genomic structure. 

This complexity could be significant for developing targeted therapies for specific genes within 

TADs [113]. 

 

Transcription factors (TFs), which account for about 8% of all human genes, are linked to a 

diverse range of diseases and physical traits [114]. Research by the Human Phenotype Ontology 

project reveals that out of all human TFs, 313 (or 19.1%) are connected to at least one 
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phenotype which is a significantly larger proportion compared to the general gene population, 

where 16.2% show such connections (p = 0.002, proportions test)[115]. For example, mutations 

in TF genes are notably prevalent in conditions like anterior pituitary hypoplasia, underscoring 

the critical role of TFs in developmental disorders[115]. Mutations in TF genes can also lead to 

aberrant cell growth and cancer, as they regulate critical genes involved in cell proliferation and 

death[116]. Moreover, TFs are central in metabolic diseases like diabetes, where mutations in 

pancreatic TFs disrupt insulin regulation[117]. Additionally, genome-wide association studies 

have found TF loci associated with polygenic autoimmune diseases[114]. 

 

Figure 1. 3 Transcription factors bind to promoters/enhancers to initiate transcription 

 

The promoter binds to transcription factors and helps RNA polymerase to bind and start transcription. 

Many genes also have upstream enhancers. Enhancers attract activator proteins, loop towards the 

promoter, and facilitate the commencement of transcription by RNA polymerase. 

 

1.2.2 Methodologies for Transcription Factor Studies 
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Studying transcription factor binding sites and their target genes is essential for understanding 

gene regulation mechanisms. Various techniques are used in this area of research, each with its 

unique applications and insights. 

 

1.2.2.1 Electrophoretic Mobility Shift Assay (EMSA) 
 

The Electrophoretic Mobility Shift Assay (EMSA), also known as the gel shift assay, has been a 

staple in molecular biology since its development in the 1980s for the investigation of protein-

DNA interactions, especially the binding of transcription factors to DNA. This technique, 

described by Fried and Crothers in 1981, exploits the differential electrophoretic mobility of 

molecules in a nondenaturing gel, a property dependent on their size, shape, or charge. When a 

protein binds to DNA, it forms a complex that exhibits slower migration through the gel than 

unbound DNA. This mobility shift, which signals binding, can be detected using autoradiography 

or fluorescence. To facilitate this process, transcription factors (TF) or DNA-binding domains 

(DBD) are mixed with labeled target DNA sequences in a buffer of low ionic strength and 

incubated to allow complex formation. Electrophoresis is then used to separate these bound 

complexes from any free DNA. EMSA is particularly useful in pinpointing the specific DNA 

sequences that transcription factors bind to, thereby identifying their target genes and 

regulatory regions. This is achieved by using a variety of DNA sequences as probes and 

assessing the impact of nucleotide changes on TF binding, which elucidates consensus binding 

motifs [118]. Moreover, EMSA can quantify the binding affinity and specificity of a transcription 

factor, offering insights into the dynamics of gene regulation [119]. Additionally, EMSA can be 

employed to study the formation of transcription factor complexes by adding other proteins or 

cofactors to the binding reaction, highlighting the multi-protein nature of transcriptional 

regulation [120]. Collectively, EMSA's ability to characterize transcription factor-DNA 

interactions renders it invaluable for advancing our understanding of the intricate mechanisms 

underlying gene expression and its associated biological processes and diseases. 
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1.2.2.2 DNA Footprinting 
 

DNA footprinting, a technique integral to molecular biology, enables the precise identification 

of transcription factor (TF) binding sites on DNA. This method, first introduced in the 1970s, 

starts with labeling one end of the DNA and incubating it with DNA-binding proteins. then the 

DNA is degraded using agents such as DNase1 [121] or hydroxyl radicals [122], leading to a 

collection of  fragments of different size. When analyzed using gel electrophoresis, these 

fragments create a characteristic ladder pattern (“footprint”). A DNA-bound protein shields the 

region near its binding site from the degrading agent, and the protected region can be 

determined by comparing sample and control footprints. Sequences corresponding to the 

protected areas can then be aligned to identify binding sites for the TF analyzed. It's worth 

noting that this method is highly sensitive to the protein concentration, with higher TF 

concentrations resulting in the protection of weaker binding sites [123]. Despite its 

effectiveness, traditional footprinting is low-throughput and requires significant amounts of 

purified protein. Advancements like in vivo footprinting and high-throughput techniques such 

as DNase-seq have expanded its applicability, enabling genome-wide studies of protein-DNA 

interactions within their natural cellular context [124]. These developments have solidified DNA 

footprinting's role as a crucial tool for unraveling the complex interactions between TFs and 

DNA, providing deep insights into the regulatory networks governing cellular processes and 

disease states. 

 

1.2.2.3 ChIP-seq 
 

ChIP-seq [125] has revolutionized the study of TF-binding sites in vivo by enabling the genome-

wide identification of region occupied by a TF of interest. Chromatin immunoprecipitation (ChIP) 

accompanied by NGS is one of the most successful NGS applications in identifying the binding 

sites of transcription factors and defining epigenetic modifications. Chromatin 
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immunoprecipitation followed by sequencing (ChIP-seq) first utilize the chromatin 

immunoprecipitation(ChIP) technique to pull down attached DNA fragments then identify the 

binding sites of DNA-associated proteins with massively parallel DNA sequencing. With the 

rapid development of sequencing technology, ChIP-seq has become the standard assay for 

whole-genome mapping of protein–DNA interactions in vitro and in vivo. Basically, cells in the 

ChIP assay are treated with a crosslinking agent to covalently bind any DNA-binding protein to 

the chromatin. Then, cell lysis is performed, and genomic DNA is extracted and sonicated to 

generate fragmented chromatin. An antibody specific to the protein of interest is introduced to 

the sonicated material, facilitating the isolation of the protein along with all associated DNA 

through immunoprecipitation. The DNA is released by reversing the crosslinking between DNA 

and protein to separate them and cleaning DNA with an extraction. Finally, after size selection, 

all the resulting ChIP-DNA fragments are sequenced simultaneously using a genome sequencer 

followed by a series of bioinformatic analysis including quality control, alignment of the reads 

to a reference genome and peak calling etc. (Figure 1. 4). ChIP-seq offers a distinct advantage 

over other methods like DNA footprinting, Electrophoretic Mobility Shift Assay (EMSA), and 

DNase-seq in terms of scope and specificity. While footprinting and EMSA provide detailed 

insight at specific loci, they do not possess the high-throughput capability to analyze the entire 

genome and lack the direct association of specific proteins with DNA sequences [125]. DNase-

seq, though effective in identifying open chromatin regions, does not inherently indicate the 

binding of specific TFs at these sites [124]. ChIP-seq overcomes these limitations by not only 

indicating chromatin accessibility but also by directly connecting specific TFs to their binding 

sites across the genome. Additionally, Chromatin immunoprecipitation (ChIP) represents a 

valuable alternative to probing such interactions in vivo under physiological conditions [126]. 

However, this technique is not no limitation. A significant challenge lies in the dependency on 

the quality and specificity of the antibodies used; non-specific binding or subpar antibodies can 

lead to inaccurate mapping of binding sites and ChIP-grade antibodies are not available for 

many TFs. Additionally, ChIP-seq's resolution, while superior to previous methods, does not 

always achieve single-nucleotide precision, which can result in ambiguity in pinpointing exact 

binding motifs within identified regions of enrichment [127]. The interpretation of the vast data 
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generated by ChIP-seq also poses a challenge, necessitating sophisticated bioinformatics tools 

for analysis, and the risk of misinterpretation remains a concern [128]. Furthermore, the  

technique may produce false positives due to non-specific antibody interactions or chromatin 

structure artifacts, and false negatives can occur, particularly with low-abundance TFs or 

transient interactions [129]. Despite these challenges, ongoing advancements in antibody 

development, sequencing technology, and data analysis continue to enhance the efficacy and 

reliability of ChIP-seq, solidifying its importance in exploring gene regulation and TF dynamics.  

 

Figure 1. 4 Chromatin immunoprecipitation assays with sequencing (ChIP-Seq) workflow to 

identifying binding sites of a transcription factor. 

 

The workflow typically starts with the process 'Cell Preparation' where cells are cultured and collected. 

Next is 'Isolate and Sonicate Chromatin,' where DNA-protein complexes are isolated, and the DNA is 

sheared into smaller fragments. The 'Immunoprecipitation' step follows, where specific antibodies are 

used to target and pull down the transcription factor-DNA complexes. 'Library Preparation' is where the 

DNA fragments are prepared for sequencing. 'Sequencing' itself is depicted as the generation of 

readable DNA sequences. Finally, 'Bioinformatics Analysis' involves using computational tools to analyze 

the sequence data to identify the binding sites of the transcription factors on the DNA.  
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1.2.3.4 RNA Interference (RNAi) and CRISPR/Cas9 
 

Gene expression profile analysis before and after knockdown or knockout is one of the most 

important strategies for obtaining target genes of transcription factors and exploring their 

functions. A large number of studies show that gene expression profile analysis before and after 

knockdown or knockout effectively helps identify target genes of TFs and explore TF functions 

[130]. While these approaches do not directly reveal TF binding sites, they provide valuable 

insights into the genes and pathways regulated by these factors. Gene knockdown, typically 

achieved through techniques like RNA Interference (RNAi) [131], involves reducing the 

expression of a particular gene. This can lead to changes in the expression of downstream 

genes, providing insights into potential targets of the TF whose binding sites are being 

investigated. Similarly, gene knockout, commonly accomplished using CRISPR/Cas9 

technology[132], eliminates the expression of a target gene. This perturbation can lead to 

significant alterations in the cellular transcriptome, with downstream genes potentially being 

regulated by the TF in question. Then the resulting alterations in gene expression profiles can 

be examined by RNA-sequencing or microarrays. Computational analysis of gene expression 

data from these experiments assists in identifying potential target genes and pathways 

influenced by the TFs. By integrating these approaches with ChIP-seq, which directly identifies  

TF binding sites, we can gain a comprehensive understanding of the regulatory landscape. 

Genes showing significant expression changes along with evidence of transcription factor 

binding can be annotated as direct target genes. Indirect targets are identified as genes that 

display expression changes but show no indication of binding by the target transcription factor. 

These experimental approaches have been instrumental in advancing our knowledge of TF 

binding sites and gene regulation. 
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1.3 Overview of IKZF2 

 

1.3.1 The Ikaros family of transcription factors 

 

The Ikaros gene family encodes zinc finger transcription factors, comprising Ikaros (also called 

IKZF1), Helios (IKZF2), Aiolos (IKZF3), Eos (IKZF4) and Pegasus (IKZF5), which are involved in the 

development and differentiation of lymphoid cells [133]and play a critical role in regulating cell-

fate decisions during haematopoiesis, particularly in the development of the adaptive immune 

system [134]. The defining feature of the Ikaros family of DNA binding transcription factors is 

the presence of two distinct and highly conserved C2H2-type zinc-finger domains of Krüppel 

ancestry. The first set of zinc fingers is found at the amino (N)-terminus of the protein and 

dictates the ability to bind sequence-specific DNA. The second set of two zinc fingers (ZF5-6) is 

located at the carboxy (C)-terminus of the protein and confers the ability to form dimers with 

itself or other members of the family, as well as to interact with other transcriptional 

regulators[134]. Despite the substantial sequence similarity among Ikaros family proteins, their 

expression is notably diverse across different cell types and tissues. Ikaros, Helios, and Aiolos 

predominantly localize to lymphoid cells and their precursors across various developmental 

stages. Ikaros can also be found in the brain, and both Ikaros and Helios are present in erythroid 

cells. On the other hand, Eos and Pegasus have a broader expression profile, being present in 

several tissues, including skeletal muscle, liver, brain, and heart [135]. The Ikaros family of 

transcription factors modulates gene expression through several mechanisms: firstly, by 

altering chromatin structure via their association with complexes like the nucleosome 

remodeling deacetylase (NuRD); secondly, by enhancing the activity of the RNA Polymerase II 

transcription initiation complex; and thirdly, by facilitating chromosome conformational 

changes, which involves mediating interactions between distant cis-regulatory regions [136]. 
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The Ikaros gene family is increasingly recognized for its connection with a variety of diseases, 

from hematological cancers to autoimmune diseases. IKZF1, the foremost and extensively 

researched member, is a key tumor suppressor in B-cell acute lymphoblastic leukemia 

(ALL)[137]. Its high-frequency deletion in BCR-ABL1–positive ALL, a particularly high-risk 

subtype, correlates with poorer outcomes in patients with ALL[138]. Several GWASs, including 

those on SLE [139], inflammatory bowel disease (IBD) [140], Stevens-Johnson syndrome (SJS) 

[141] and Type I diabetes[142] , have revealed the link between IKZF1 and susceptibility to 

autoimmune diseases, indicating the crucial role of IKZF1 regulation in the maintenance of self-

tolerance. Another two members from the Ikaros family, namely IKZF2 and IKZF3, have also 

been linked to autoimmune diseases in large-scale European GWAS studies [143]. Foxp3(+) 

Helios (+) Treg, unlike Foxp3(+) Helios(-) Treg, were found to be significantly increased in SLE 

patients and expanded in active SLE [144]. This suggests that Helios plays a critical role in the 

suppressive function of Tregs and potentially contributes to the progression of SLE. Meanwhile, 

IKZF3, or Aiolos, predominantly found in mature peripheral B cells, is vital in B-cell 

differentiation and associated malignancies [133, 145]. It also has been observed that Aiolos 

controls cell death in T cells by regulating Bcl-2 expression and its cellular localization [146]. The 

mice lacking Aiolos exhibit symptoms akin to SLE [147]. Additionally, genetic polymorphisms in 

IKZF3 are associated with a range of immune-related diseases, extending beyond SLE [148]to 

conditions like asthma [149], rheumatoid arthritis [150], and ankylosing spondylitis [150]. 

 

An additional aspect of disease manifestation related to the Ikaros gene family arises from the 

imbalance between the functional, wild-type isoforms and the dysfunctional, negative isoforms. 

Alternative splicing of IKZF1, IKZF2, and IKZF3 generates a diverse array of protein isoforms. 

Canonical isoforms, able to bind DNA, have three or four zinc-fingers within this motif and are 

able to recognize and bind to the consensus sequence GGAAA as dimers[151]. Isoforms with 

two or less zinc-fingers act in a dominant negative fashion as they retain the ability to dimerize 

with canonical isoforms through the C-terminal domain but are unable to mediate DNA 

interactions [152]. These shorter isoforms function, therefore, in a classical dominant-negative 
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way, being able to substantially inhibit DNA binding of their dimeric partners [153]. 

Dysregulated expression of Ikaros family members, particularly splice variants missing the N-

terminal DNA-binding zinc fingers, is linked to various hematological malignancies [153, 154]. 

For example, short isoforms of Ikaros are frequently overexpressed in human leukemia[155, 

156]. Similarly, short isoform of Helios has been found to be overexpressed in patients with T-

cell acute lymphoblastic leukemia [153, 157]. Moreover, retroviral expression of Helios isoform 

that lacked the N-terminal DNA-binding domain in hematopoietic progenitor cells of 

reconstituted mice led to the development of aggressive, transplantable T cell lymphoma[158].  

 

1.3.2 Current Understanding of the function of Helios in human cells 

 

Expression of Helios (IKZF2) is detected globally during embryonic hematopoiesis [159]. 

However, in adults, the expression was largely restricted to the T cell lineage and no expression 

was observed in mature B-cells, dendritic cells, and myeloid cells [160]. Helios is present at low 

levels in pro-B cells (CD45R+CD43+from Rag–/–bone marrow) and decreases as they progress 

to pre-B cells and not significantly expressed in mature B cells [159]. This silencing process of 

Helios is critical to B cell development. Forced wild-type Helios expression in B cell leads to 

metastatic lymphoma in Helios transgenic mice [161]. However, analysis of human tumor lines 

indicates that Helios acts as a tumor suppressor [162] , evidenced by adult T-cell malignancy 

patients expressing a defective Helios isoform, which leads to T-cell lymphomas when 

overexpressed in mice [153, 157, 163, 164]. Forced expression of this isoform of Helios in mice 

has been linked to the development of T-cell lymphomas [158].  It has been demonstrated that 

Helios is expressed in myeloid leukemia cells and its depletion in acute myeloid leukemia cells 

results in decreased colony growth and delayed oncogenesis [165]. These findings suggest that 

Helios appears to act as a tumor suppressor but can be tumorigenic when expressed in 

inappropriate cell types. Additionally, single cell RNA-seq data from the Human Protein Atlas 

(HPA) [166] suggest that IKZF2 is expressed in a variety of cell types beyond blood cells, with 

higher expression in some neuronal cell types such as oligodendrocyte precursor cells and 
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astrocytes than immune cells. However, the role of Helios in these neural cells has not been 

extensively studied. 

 

Studies have been more focusing on determining the role of Helios in T cells. Helios likely plays 

a significant role in T cell development. Helios’ expression peaks in the early stages of T cell 

development and decreases as T cells mature in the thymus and are exported to the periphery 

[159]. Before the Helios knockout mouse was formed, over-expression studies found that T-cell 

differentiation was blocked at the CD4- CD8- stage in the thymus and overexpression of 

dominant negative isoforms of Helios were found to increase T-cell proliferation [133]. These 

studies, combined with evidence of up-regulated dominant-negative isoforms in T-cell 

leukaemias and lymphomas, suggest a role for Helios in restraining T-cell lineage progression 

[167]. However, Helios knockout mice did not exhibit an obvious T-cell phenotype, implying 

functional compensation from other Ikaros family members or its specific role in certain T-cell 

subsets [168]. Interestingly, in a separate investigation, Helios-deficient mice were observed to 

develop an auto-inflammatory phenotype later in life, resembling rheumatoid arthritis, with an 

increased number of activated CD4+ and CD8+ T-cells, T-follicular helper cells, germinal center 

B-cells, and the production of autoantibodies.  

 

Helios may also have a role in T cell activation and signaling. Helios has also been identified as a 

marker of T-cell activation in Tregs and CD4+ and CD8+ T-cells [169-171]. Furthermore, Helios 

has been linked to the regulation of cytokine production, including the inhibition of IL-2, IFN-γ, 

IL-17 and TNFα cytokines in Tregs [172, 173]. Helios exhibits upregulation in CD8+ T cells upon 

activation, and its presence has been observed in specific CD8+ cell subsets during chronic HIV 

infection in vivo, indicating a potential role in regulating these populations [169, 174]. Recent 

studies have provided evidence that Helios may contribute to the promotion of preferential 

differentiation of human fetal CD4+ naïve T cells into regulatory T cells[175]. Some studies 

demonstrate that Helios is potentially a specific marker of thymic-derived Treg cells (tTreg) 
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from peripherally derived Treg(pTreg) [176]. However, this is controversial as many studies did 

not observe the clear distinction of Treg subsets on the basis of Helios expression. Recently 

conducted antigen-specific studies demonstrated Helios to be expressed in also iTregs induced 

in vivo [177]. 

 

Studies have unveiled pivotal role of Helios in regulating Treg cell identity and function. 

Research have revealed that Helios is highly expressed at the mRNA level in Treg cells 

compared with conventional CD4+ T cells (>10-fold) [168]. Foxp3 is regarded as the major 

transcription factor for T regulatory (Treg) cells and expression of Foxp3 is used to identify and 

quantitate Treg cells in mouse models. It was demonstrated that Helios is co-expressed with 

Foxp3 in 70-75% of murine Foxp3+ T cells and even 85-90% in human Foxp3+ T 

cells[178].  Helios has been found to bind to the Foxp3 promoter directly to regulate its 

expression and knocking-down Helios with siRNA oligonucleotides resulted in down-regulation 

of FoxP3 [179]. It is clear that Foxp3+ Helios+ Tregs possess greater suppressive potential than 

Foxp3+ Helios- Tregs. The research demonstrated that Helios+ Treg cells exhibited a more 

highly activated phenotype, greater suppressive activity [179-182], more stable Foxp3 

expression[183] and reduced cytokine expression compared to FoxP3+Helios− cells [184, 

185]. Furthermore, suppression of Helios message in human Tregs was found to decrease Foxp3 

expression and impair its immunosuppressive functions [179]. Epigenetically, Helios+ total 

Tregs showed more significant demethylation of the Treg-specific demethylation region (TSDR) 

[181]. Treg-specific demethylation region (TSDR) was found to be restricted to natural Treg [179] 

and further associated with high and enduring FoxP3 expression upon Treg [184]. Furthermore, 

loss of Helios expression in nTregs also has been shown to be correlated with TSDR 

remethylation[186].  

 

1.3.2 Current understanding of the Role of Helios in SLE 
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The role of Helios in SLE is gaining increasing attention due to its potential involvement in 

immune regulation. large genome-wide genetic association studies have identified IKZF2 as a 

risk locus for SLE [7, 143, 187].  A summary of these associations is presented in the Table 1. 1, 

which is obtained from the GWAS catalog [9], detailing various risk alleles within the IKZF2 gene 

that are statistically linked to SLE. Aberrant Helios expression in different T-cell subsets were 

reported from MPJ and LPR mouse models of lupus relative to C57BL/6 mice that are not prone 

to lupus[188]. These lupus-prone models show significant changes in their dendritic cell (DC) 

compartment and unusual Helios levels in several T-cell types, including CD4+ conventional T 

cells (Tconv), CD4+ regulatory T cells (Treg), CD8+ Treg, and double-negative (DN) T cells, as 

lupus progresses. Additionally, they showed a memory-like phenotype, increased baseline 

pSTAT5a levels, and a limited variety in their TCR repertoire. These findings point to Helios as a 

potentially significant factor in the immune dysregulation associated with lupus, and it may 

serve as an important marker or therapeutic target for understanding and treating this 

disease[188]. Remarkably, a high proportion of FoxP3+Helios+ cells have been detected in the 

circulating CD4+ T-cell population in cases of active SLE, with the prevalence of these cells being 

closely linked to the level of disease activity [144, 189]. They are thought to possess suppressive 

activity, as similar to the FoxP3+Helios+Treg cells in healthy individuals, FoxP3+Helios+ Treg 

cells in SLE do not express cytokines and show a hypomethylated TSDR [144, 189]. Furthermore, 

FoxP3+Helios+ Treg cells in SLE patients display typical levels of the chemokine receptors CXCR3 

and CCR4. This expression facilitates their migration to areas of inflammation[144]. Additionally, 

they showed a memory-like phenotype, increased baseline levels of phosphorylated Signal 

Transducer and Activator of Transcription 5a (pSTAT5a, an activated form of the STAT5a protein 

crucial for cellular signaling), and a limited variety in their T-cell receptor (TCR) repertoire. This 

suggests that their proliferation in active SLE is likely induced by cytokine signaling and TCR 

activation, possibly as an immune system strategy to modulate or mitigate the characteristic 

autoreactive effector responses in SLE[144]. These studies collectively underscore the complex 

and pivotal role of Helios in modulating immune responses in SLE, marking it as a significant 

target for future research and potential therapeutic strategies. 
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Table 1. 1 Association of IKZF2 Gene Variants with Systemic Lupus Erythematosus Risk as 

Identified in Genome-Wide Association Studies [9]. 

Risk Allele Locations P value 
Mapped 
genes 

AccessionID PubmedID Author 

rs10048743-G 2:213025508 2.00E-10 IKZF2 GCST003156 26502338 Bentham J [143] 

rs3768792-C 2:213006985 1.00E-13 IKZF2 GCST003155 26502338 Bentham J [143] 

rs10048743-? 2:213025508 2.00E-08 IKZF2 GCST003622 27399966 Morris DL [7] 

rs2371790-A 2:213019942 6.00E-09 IKZF2 GCST011956 33272962 Yin X [187] 

rs12470231-A 2:213011526 2.00E-08 IKZF2 GCST90270940 36750564 
Khunsriraksakul C 
[190] 

 

Each entry in the table lists a unique single nucleotide polymorphism (SNP) identified by an 

rsID, the risk allele associated with SLE, its chromosomal location on chromosome 2, and the p-

value indicating the strength of the association. 

 

1.4 Thesis aims 

 

The primary objective of this thesis is to investigate the biological mechanisms linking IKZF2 

(which encodes Helios) to SLE. Central to this investigation is a thorough functional annotation 

of Helios binding sites, utilizing ChIP-Seq data derived from Jurkat T-cells. The research expands 

to encompass a wide range of T-cell subtypes, employing sophisticated multi-omics 

bioinformatics techniques to gain deeper insights into the role of Helios in the context of SLE, in 

order to contribute significantly to the understanding of the molecular mechanisms driving SLE 

pathogenesis. 
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Chapter 2. Chip-seq binding sites of Helios in Jurkat T cells 

 

2.1 Introduction  

 

Studies have demonstrated that Helios likely plays a significant role in T cell development, 

activation, and signaling. This chapter focuses on the application of Chromatin 

Immunoprecipitation followed by high-throughput sequencing (ChIP-Seq) to map the genome 

binding sites of Helios in Jurkat T cells. Jurkat T cells, being a widely used human T cell model, 

share many characteristics with primary human T cells, making them a relevant and informative 

system for studying T cell biology. The findings from the Helios binding sites in Jurkat T cells can 

offer significant implications for understanding Helios' transcriptional function in human T cells. 

 

The chromatin state of binding sites for a transcription factor plays a crucial role in determining 

gene expression and cellular functions. Chromatin, the complex of DNA and proteins in the cell 

nucleus, is not a static structure but rather exhibits dynamic changes that influence gene 

regulation. Epigenetic modifications, such as DNA methylation and histone modifications, shape 

the chromatin landscape, either promoting or inhibiting access to DNA by transcription factors 

and other regulatory proteins. A histone modification is a covalent post-translational 

modification (PTM) to histone proteins which are often found in recurring combinations at 

promoters, enhancers and repressed regions. These combinations are referred to as ‘chromatin 

states’ and can be used to define transcriptionally active/silent regions in genomes. For 

example, H3K4me1 alone marks primed enhancers, while when present with H3K27ac mark 

active enhancers. H3K4me3 coupled with a high ratio of H3K4me3 to H3K4me1 are promoter-

associated marks.H3K36me3 histone modifications and RNA polymerase (Pol) II ChIP signal 

correlate with transcribed regions, while H3K27me3 or H3K9me3 is associated with repressive 

chromatin states [191, 192].  
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ChromHMM has been recognized for its ability to provide an informative compression of multi-

track epigenomic signals into chromatin state sequences, making it a valuable tool for 

characterizing epigenetic dynamics across multiple human cell types [193]. The algorithm has 

also been used to explain a large portion of the epigenome through chromatin segmentation, 

aiming to elucidate the observed epigenomic data as a sequence of hidden chromatin states 

[194]. This algorithm is based on a multivariate Hidden Markov Model and is used to capture 

significant combinatorial interactions between different chromatin marks in their spatial 

context across various epigenomes [195]. The Roadmap Epigenomics project has utilized 

ChromHMM to interrogate the epigenomes of 127 human tissues and cell types, integrating 

various techniques such as ChIP-seq, whole genome bisulfite sequencing, DNase 

hypersensitivity assays, and RNA sequencing [196]. Additionally, the project has included 

ChromHMM states corresponding to enhancer or promoter elements from the 15-state core 

model, 18-state model and 25-state model, along with histone modification ChIP-seq peaks and 

DNase hypersensitivity data peaks [197]. Furthermore, large consortium projects including 

ENCODE, Blueprint, CEEHRC, Mouse ENCODE, and Drosophila modENCODE have also employed 

ChromHMM as a basis for their analyses [195]. The use of ChromHMM in the Roadmap 

Epigenomics project has been instrumental in providing over 300 chromatin state maps for a 

diverse collection of human tissues, blood lineages, and stem cells [198]. The algorithm has also 

been applied to all BLUEPRINT samples with full reference epigenome histone modification 

alignment files, defining 25 epigenetic states [199]. The 15-state ChromHMM model offers a 

balance between simplicity and detail, making it suitable for studies where a moderate level of 

chromatin state detail is sufficient. It's particularly useful when broad categorizations are the 

primary goal, as it simplifies interpretation compared to models with more states. The 25-state 

ChromHMM model, offering the highest level of detail, is best suited for in-depth studies 

requiring the most nuanced chromatin state analysis. This model is optimal for research that 

necessitates very fine distinctions between different chromatin states. However, it is also the 

most complex to interpret and may require more advanced analysis capabilities. 18-State 

ChromHMM model provides more granularity than the 15-state model, making it suitable for 

studies that require a more nuanced understanding of chromatin states. It's a good middle 
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ground between the simpler 15-state and the more complex 25-state models. The 18-state 

ChromHMM model is often the preferred choice for many studies [200-202], as it strikes a 

balance between providing sufficient detail for a nuanced analysis and maintaining a level of 

simplicity that facilitates interpretation. Expanding beyond the initial scope of the Roadmap 

project, EpiMap [203] has utilized the Roadmap's 18-state ChromHMM model to provide 

chromatin state annotations for 833 biosamples. In this chapter, I exploit the capabilities of 

ChromHMM with 18 states in jurkat T cells from EpiMap [203], to systematically screen all 

Helios-binding sites in Jurkat T cells. By annotating the functional states of the identified Helios 

binding sites using ChromHMM, this chapter aims to unravel the complex regulatory landscape 

surrounding Helios interactions within the context of chromatin. 

 

Exploring the enrichment of Helios binding sites in disease-associated genetic variations holds 

significant promise for shedding light on its potential involvement in disease pathogenesis. By 

correlating Helios binding with disease-associated genetic loci, I aim to uncover novel 

regulatory mechanisms and potential links between Helios and disease phenotypes. The GWAS 

Catalog [204], a comprehensive database maintained by the National Human Genome Research 

Institute (NHGRI), serves as a valuable resource for researchers investigating the genetic 

underpinnings of diseases. It compiles results from numerous GWAS studies and provides a 

curated list of disease-associated genetic loci. In this chapter, I aim to identify the overlap 

between Helios binding regions and autoimmune disease-associated genetic variants obtained 

from the GWAS Catalog and perform enrichment analysis to define the significant overlap, thus 

providing insights into whether Helios physically interacts with genetic variants that have been 

implicated in specific autoimmune diseases. 

 

Identifying potential causal variants post-GWAS discovery of risk loci is pivotal in deepening our 

understanding of the genetic basis of complex diseases and traits, prioritizing potential 

therapeutic targets, guiding future functional studies, and ultimately translating genetic 
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discoveries into clinical applications. Traditional approaches like luciferase reporter assays and 

CRISPR-Cas9 can only assess one genomic region at a time, resulting in limited validation of 

genetic variants. Massively Parallel Reporter Assays (MPRAs) is a valuable tool that allows the 

testing of the potential regulatory role of thousands of sequences with unique variants in a 

single experiment [205]. Lu et al. [206] employed MPRA to screen 3073 GWAS-linked SLE 

variants at 91 loci in GM12878 cells and Jurkat T cells. 51 variants in the Epstein-Barr virus-

transformed B cell line GM12878 and 92 in Jurkat T cells are nominated as putative causal 

variants due to their demonstration of cell-type-specific allelic enhancer activities in these 

respective cell lines. In this chapter, I leverage the findings of Lu et al.'s study to explore the 

intersection of Helios binding sites and these identified SLE putative causal variants in Jurkat T 

cells. This approach aims to further elucidate the potential involvement of Helios in the 

progression and development of SLE in T cells. 

 

2.2 Methods 

 

2.2.1 Helios ChIP-Seq data in Jurkat T cells    

 

The IKZF2 ChIP-Seq data in Jurkat T cells was generated by two previous members of the 

ImmunoGenetics group, Chris Odhams and Andrea Cortini.  Briefly, The Jurkat E6-1 cell-line was 

purchased from the American Type Culture Collection (ATCC) and cultured at 5% CO2, 37°C in 

RPMI 1640 medium supplemented with 2mM L-glutamine, 10% FBS, 100units/ml penicillin, 

100µg/ml streptomycin, 1.5g/L sodium bicarbonate, 4.5g/L glucose, 10mM HEPES, and 1.0mM 

sodium pyruvate.   ChIP-Seq was were performed according to the ENCODE guidelines [Landt S 

2012] using anti-Helios (rabbit polyclonal, 13554-1-AP, Proteintech) and compared with input 

controls in Jurkat cells. The ChIP was performed in biological duplicates (Replicate 1 and Replicate 

2) using the ChIP-IT High Sensitivity Kit (Active Motif). Libraries were created from the purified 

fragments for both ChIP and input using the NEBNext ChIP-Seq Library Prep Master Mix Set for 
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Illumina (NEB). Purification and size selection was performed using the AMPure XP Beads 

(Beckman Coulter). Quality assessment of each library was carried out using the Agilent 2100 

Bioanalyzer and the Agilent High Sensitivity DNA Kit. Libraries were sequenced on the Illumina 

HiSeq 2500 platform with single-end 50bp reads. The Uniform Processing Pipeline for 

transcription factor ChIP-Seq described by the ENCODE Phase 3 specifications was followed 

[Landt S 2012]. For all sequence data, reads were mapped to hg19 using BWA 0.7.10 with 

dynamic read-trimming, a seed length of 32, and a maximum of two mismatches in the seed 

‘aln -q 5 -l 32 -k 2’. Duplicate, unmapped, low quality, and non-uniquely aligned reads were 

removed using SAMTools v1.3.1 ‘view -F 1804’. The strand cross-correlation coefficients were 

generated using SPP v1.14. The irreproducible discovery rate (IDR) method was implemented to 

measure consistency between replicates and to determine an optimal cut-off for peak 

significance [Landt S 2012]. Relaxed peaks were called in narrowPeak format for all true 

biological replicates, self-pseudo-replicates, pooled replicates, and pooled-pseudo-replicates 

using SPP v1.14 against the merged input control ‘-npeak=300000 -savn’. A final IDR threshold 

of 2% was used taking the conservative set of peaks (derived from IDR of true biological 

replicates). Blacklisted regions were filtered using the hg19 Mapability Consensus Excludable 

bed file using bedops v6.1.1 (1bp overlap). Signal tracks depicting control-normalized tag 

density in the bigWig file format were created using the bdgcmp function of MACS2 v2.1.0 

expressed as both fold-over control at each position and as P-value. Data were visualized using 

the Integrative Genomics Viewer.  Narrow Peak files were exported from the MACS2 

programme for this project. Sequencing Information is listed in Table 2.1. 
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Table 2. 1 Sequencing Metrics for Helios ChIP-Seq in Jurkat Cells 
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2.2.2 Antibody suitability assessment 

 

The rabbit polyclonal Helios (IKZF2) antibody (Catalog #13554-1-AP, Proteintech) is generated using a 

peptide sequence corresponding to amino acids 227-526 of the Helios protein. Multiple sequence 

alignment using Clustal Omega [207] demonstrates that the epitope is highly conserved across several 

isoforms (Q9UKS7-4, Q9UKS7-7, Q9UKS7-2, Q9UKS7-1). However, significant absence of alignment in 

isoforms Q9UKS7-5, Q9UKS7-3, and Q9UKS7-6 indicate potential differences in antibody binding affinity 

for these isoforms (Figure 2. 1).  

 

Figure 2. 1  Alignment of Helios Protein Isoforms and Antibody Targeting Sequence 

   

 
 
 
 
 

A 
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A) This figure shows the multiple sequence alignment of eight isoforms of the Helios protein 

(IKZF2) along with the peptide sequence used for generating the Helios antibody for ChIP-seq, 

using Clustal Omega. The alignment is visualized with the Clustal color scheme to highlight the 

conservation and differences among the sequences. Regions with consistent colors indicate 

conserved amino acids among the isoforms and the antibody targeting sequence. B) The 

percentage identity of the antibody targeting sequence with various isoforms of the Helios 

protein (IKZF2) in humans. Isoforms Q9UKS7-2, Q9UKS7-7, Q9UKS7-4, and Q9UKS7-1 have 

100% identity with the antibody targeting sequence, indicating perfect matches. Isoform 

Q9UKS7-8 has an 84.78% identity, suggesting a high but not complete match. Isoforms Q9UKS7-

5, Q9UKS7-3, and Q9UKS7-6 have results listed as "Not a Number," indicating insufficient 

alignment or data to calculate a meaningful percentage identity. 

 

Immunoprecipitations (IPs) of Ikaros, Helios, and Aiolos from nuclear lysates of GM12878 cells 

were performed to test antibody specificity. The lysates were incubated overnight with specific 

antibodies (listed in Table 2.1) against Ikaros, Helios, and Aiolos, followed by the addition of 

Protein G agarose beads to capture the antibody-protein complexes. The beads were washed to 

remove non-specific binding, and the bound proteins were eluted by boiling in sodium dodecyl 

sulfate (SDS) sample buffer. The unbound fractions and IP fractions were then analyzed by 

Western blotting (WB). Proteins were separated by SDS-polyacrylamide gel electrophoresis 

(SDS-PAGE), transferred to nitrocellulose membranes, blocked in 5% milk-phosphate buffered 

saline (PBS) solution, and incubated overnight at 4°C with primary antibodies (α-Ikaros, α-Helios, 

α-Aiolos). After washing with 0.1% Tween-20 in PBS (Tween-PBS), the membranes were 

incubated with horseradish peroxidase (HRP)-conjugated secondary antibodies for 1 hour at 

room temperature, and the signal was developed using Luminata Crescendo Western HRP 

substrate and visualized on CL-Xposure film. The house-keeping gene, beta-actin (ACTB), was used 

as a loading control. Membranes were stripped by submersion in Restore™ Western Blot Stripping 

Buffer (Thermo Fisher) for 10 minutes at room temperature. The membrane was then re-probed with 

primary antibodies against Helios (α-Helios) and incubated with HRP-conjugated secondary antibodies, 
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followed by signal development using Luminata Crescendo Western HRP substrate. ImageJ was used to 

calculate the density of the bands relative to the loading control. 

 

Table 2. 2   Antibodies used for Immunoprecipitations followed by Western Blot 

Target Source Molecular Weight Catalogue Dilution for WB 

Ikaros 

(IKZF1) 

Goat Polyclonal 

(IgG) 

50kDa (Calculated) 

70kDa (Observed) 

Santa Cruz 

E-20 sc-9861 
1:500 

Helios 

(IKZF2) 

Rabbit Polyclonal 

(IgG) 

57kDa (Calculated) 

65kDa (Observed) 

proteintech 

13554-1-AP 
1:500 

Aiolos 

(IKZF3) 

Rabbit Monoclonal 

(IgG) 

58kDa (Calculated) 

58kDa (Observed) 

abcam 

ab139408 
1:20,000 

 

 

 

2.2.2 Nearest gene annotation of the binding sites of Helios in Jurkat T cell 

 

The ChIPseeker [208] package in R, specifically its annotatePeak function, was employed to 

assign the nearest genes to Helios binding sites on the hg19 human genome.  This function 

annotates peaks by comparing their midpoints to the transcription start sites (TSS) of genes, 

which are defined within a default range extending from 3 kilobases (kb) upstream to 3kb 

downstream of the TSS.  To visually represent the characteristics of the binding site annotations, 

a distribution plot showing the location of transcription factor-binding sites in relation to 

transcription start sites (TSS), as well as a pie chart that provides an overview of the genomic 

annotation of these sites were produced.  
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2.2.3 Chromatin States annotation of the Helios binding sites in Jurkat T 

cells 

 

The chip-seq peak regions of Helios in Jurkat T cells were intersected using R package IRanges 

[209] with the expanded 18-state ChromHMM annotation of Jurkat T cells under human 

genome build hg19 which was downloaded from EpiMap [203].  The ChromHMM 18 states are 

as follows: TssA (Active TSS), TssFlnkU (Flanking Active TSS Upstream), TssFlnkD (Flanking Active 

TSS Downstream), TssFlnk (Transcription Start Site Flanking), Tx (Strong transcription), TxWk 

(Weak transcription), EnhG1 (Genic enhancer 1), EnhG2 (Genic enhancer 2), EnhA1 (Active 

Enhancer 1), EnhA2 (Active Enhancer 2), EnhWk (Weak Enhancer), ZNF/Rpts (ZNF genes & 

repeats), Het (Heterochromatin), TssBiv (Bivalent/Poised TSS), EnhBiv (Bivalent Enhancer), 

ReprPC (Repressed PolyComb), ReprPCWk (Weak Repressed PolyComb), and Quies 

(Quiescent/Low). The results were visualized using the R package ggplot2. 

 

Table 2. 3 18-expanded ChromHMM states from Roadmap Epigenomic Program [210] 

( https://egg2.wustl.edu/roadmap/web_portal/chr_state_learning.html ) 

STATE NO. MNEMONIC DESCRIPTION 

1 TssA Active TSS 

2 TssFlnk Flanking TSS 

3 TssFlnkU Flanking TSS Upstream 

4 TssFlnkD Flanking TSS Downstream 

5 Tx Strong transcription 

6 TxWk Weak transcription 

7 EnhG1 Genic enhancer1 

8 EnhG2 Genic enhancer2 

9 EnhA1 Active Enhancer 1 

10 EnhA2 Active Enhancer 2 

11 EnhWk Weak Enhancer 

12 ZNF/Rpts ZNF genes & repeats 

https://egg2.wustl.edu/roadmap/web_portal/chr_state_learning.html
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13 Het Heterochromatin 

14 TssBiv Bivalent/Poised TSS 

15 EnhBiv Bivalent Enhancer 

16 ReprPC Repressed PolyComb 

17 ReprPCWk Weak Repressed PolyComb 

18 Quies Quiescent/Low 

 

2.2.4 Enrichment of Helios binding sites in disease-associated genetic 

variations 

 

All associations v1.0 file was downloaded from GWAS catalog [204] 

(https://www.ebi.ac.uk/gwas/docs/file-downloads). Specific variants linked to Ankylosing 

Spondylitis, Crohn’s Disease, Multiple Sclerosis, Sjögren's Syndrome, SLE, and Rheumatoid 

Arthritis were extracted based on a significance threshold of p < 5 × 10^-8, utilizing R 

programming. 1000 Genomes Project Phase 3 data was downloaded from 1000 Genome 

Project (https://www.internationalgenome.org/category/data-access/). SNPS with high LD (r^2 > 

0.8) with the initial autoimmune disease-associated SNPs identified using 1000 Genomes 

Project Phase 3 data (GRCh37 build) [211] were also included for analysis, this was conducted 

using plink v1.9-beta6.10 [212]. The genomic coordinates of disease-associated SNPs (including 

high LD SNPs) were mapped to Helios binding site regions to detect their overlap using the 

findOverlapPairs () function of R package IRanges [209]. Overlapping was determined when 

SNPs fall within the binding site. Subsequently, an enrichment analysis was conducted to 

evaluate the statistical significance of Helios binding to the SNPs associated with each 

autoimmune disease using Chi-Square Test and Fisher’s Exact Test. Chi-square test was applied 

to examine the enrichment of Helios binding sites among SNPs linked to autoimmune diseases, 

comparing this against the binding frequency observed in a reference set of SNPs from the 1000 

Genome Project. This step aimed to determine if there was a notable deviation in the binding 

pattern of Helios to disease-associated SNPs as opposed to random distribution across the 

https://www.ebi.ac.uk/gwas/docs/file-downloads
https://www.internationalgenome.org/category/data-access/
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genome. Secondly, recognizing the limitations posed by small sample sizes in some cases, 

Fisher’s Exact Test was also employed.  

 

2.2.5 Overlap of Helios binding sites with the putative causal variants of 

SLE risk loci in Jurkat T cells 

 

The list of putative causal variants in Jurkat T cells was downloaded from the supplementary 

data of Lu et al.'s study [206]. I employed the R package IRanges [209]  to identify intersections 

between the genomic coordinates of these expanded list of variants and the Helios binding 

sites in Jurkat T cells. 

 

2.3 Results 

 

2.3.1 Validation of the Helios antibody used for Chip-seq 

 

The Western blotting after immunoprecipitation shows that in the unbound fractions, bands 

corresponding to Helios are present, indicating some Helios protein remained unbound during 

IP. In the IP fractions, a strong band in the Helios IP Lane confirms successful 

immunoprecipitation of Helios by the α-Helios antibody, demonstrating its specificity and 

effectiveness. The absence or faint bands in the Ikaros and Aiolos IP lanes indicate that the α-

Helios antibody does not significantly cross-react with Ikaros or Aiolos (Figure 2. 1). These 

results validate the α-Helios antibody's high specificity and suitability for ChIP-seq experiment. 

Figure 2. 2 Assessment of Helios antibody suitability 
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Immunoprecipitations (IPs) of Ikaros, Helios and Aiolos from nuclear lysates of GM12878 cells 

followed by Western blotting (WB) were performed to test antibodies specificity. The results 

demonstrate the depletion of Helios from the unbound fraction and its subsequent enrichment 

in the immunoprecipitated (IP) fraction, confirming the successful IP of Helios by the Helios 

antibody. There is no significant cross-reactivity observed in the Ikaros and Aiolos IP lanes, 

indicating the high specificity and efficiency of the Helios antibody used. 

 

2.3.2 Genome-wide discovery of Helios binding sites on Jurkat T cell line 

 

A total of 5,068 ChIP-Seq peaks were identified for Helios in Jurkat T cells. These peaks 

represent the conservative set of peak-calls, which were consistently found in both biological 

replicates and passed the 2% IDR (Irreproducible Discovery Rate) threshold. These peaks are 

mapped to 2937 nearest genes. Feature distribution of the distance from peaks to their nearest 

genes (Figure 2.1 A) shows most peaks are centered on 10-100kb or 0-1kb region from the TSS 

and most peaks are located at the close promoter (defined as ≤1kb) (29.35%) or distal 

intergenic (31.69%) region of the annotated nearest genes(Figure 2.1 B). The full annotation 

results of the peaks to the nearest genes are detailed in Supplementary Table 2.1 
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(https://www.dropbox.com/scl/fi/gjkkbejwnc9524xmtjien/Supplementary-Table-

2.1.peakanno_jurkatT_HeliosBStonearestgenes.csv?rlkey=weymm7vo1pm6aqbhlfg0unsu1&st=

0u5o025v&dl=0). 

 

Figure 2. 3 Genome-wide characterization of Helios Binding Sites in Jurkat T cells 

 

A) Feature distribution of the distance from peaks to TSS of their nearest genes shows most 

peaks are centered on 10-100kb or 0-1kb region from the TSS. B) Feature distribution of the 

distance from peaks to their nearest genes shows the most peaks are located at the close 

promoter (29.36%) or distal intergenic (26.62%) region of the annotated genes.  

https://www.dropbox.com/scl/fi/gjkkbejwnc9524xmtjien/Supplementary-Table-2.1.peakanno_jurkatT_HeliosBStonearestgenes.csv?rlkey=weymm7vo1pm6aqbhlfg0unsu1&st=0u5o025v&dl=0
https://www.dropbox.com/scl/fi/gjkkbejwnc9524xmtjien/Supplementary-Table-2.1.peakanno_jurkatT_HeliosBStonearestgenes.csv?rlkey=weymm7vo1pm6aqbhlfg0unsu1&st=0u5o025v&dl=0
https://www.dropbox.com/scl/fi/gjkkbejwnc9524xmtjien/Supplementary-Table-2.1.peakanno_jurkatT_HeliosBStonearestgenes.csv?rlkey=weymm7vo1pm6aqbhlfg0unsu1&st=0u5o025v&dl=0
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2.3.2 ChromHMM states of the binding sites 

 

Feature distribution of the expanded ChromHMM 18 states annotated for the binding sites of 

Helios in Jurkat T cells is shown in Figure 2.2 A. Among the annotated chromatin states, the 

Transcription Start Site Flanking Upstream (TssFlnkU) state constituted the highest proportion 

(33.89%), followed by Active Enhancer 1 (EnhA1) (15.8%). To provide a more comprehensive 

overview, we have consolidated the original 18 states into six main categories: Active 

Promoters (TssA, TssFlnkU, TssFlnkD, TssBiv), Active Enhancers (EnhA1, EnhA2, EnhG1, EnhG2, 

EnhWk, EnhBiv), Inactive/Repressed Regions (Quies, ReprPC, ReprPCWk, Het), Transcriptional 

Transition (TssFlnk), Transcribed Regions (TxWk, Tx), and Zinc Finger/Repeats (ZNF/Rpts). The 

percentages of occurrence within each of these broader categories have been computed. As 

evident from Figure 2. 2 B, the highest proportion of the states falls within the category of 

Active Promoters (56 %), with Active Enhancers comprising the second largest segment (33.6%). 

 

 



 
 
 
 

63 
 

Figure 2. 4 Feature distribution of the expanded ChromHMM 18 states annotated for the 

binding sites of Helios in Jurkat T cells 
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A) Distribution of the 18 ChromHMM states annotated for the binding sites of Helios in Jurkat 

T cells. B) Six main categories of the chromHMM state annotation of binding sites of Helios in 

Jurkat T cells. The eighteen states have been classified into six principal categories: Active 

Promoters (TssA, TssFlnkU, TssFlnkD, TssBiv), Active Enhancers (EnhA1, EnhA2, EnhG1, EnhG2, 

EnhWk, EnhBiv), Inactive/Repressed Regions (Quies, ReprPC, ReprPCWk, Het), Transcriptional 

Transition (TssFlnk), Transcribed Regions (TxWk, Tx), and Zinc Finger/Repeats (ZNF/Rpts). The 

percentages of occurrence within each of these broader categories have been computed and 

visualized in this figure. 

 

B 
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2.3.3 Enrichment of Helios binding sites in autoimmune diseases 

associated genetic variations 

 

The total count of genetic variants, including both the initial SNPs and the supplementary SNPs 

exhibiting high linkage disequilibrium (LD) with the initial SNPs, associated with each respective 

disease are as follows: 94 in Ankylosing Spondylitis, 742 in Crohn's Disease, 655 in Multiple 

Sclerosis, 718 in Rheumatoid Arthritis, 33 in Sjögren's Syndrome, and 828 in Systemic Lupus 

Erythematosus (Table 2.2). The number of the SNPs that overlap with the binding sites of Helios 

in Jurkat T cells are:  0 in Ankylosing Spondylitis, 3 in Crohn's Disease, 8 in Multiple Sclerosis, 3 

in Rheumatoid Arthritis, 0 in Sjögren's Syndrome, and 2 in Systemic Lupus Erythematosus 

(Table 2.3). The genomic coordinates for these SNPs were ascertained through the getBM() 

function from the BiomaRt R package, with some SNPs omitted due to unavailable positional 

data. The remaining SNPs (Table 2.3) were analyzed for their location within Helios binding sites 

using the IRanges package. The statistical evaluations, employing both Fisher's exact test and 

the Chi-square test, showed a high degree of agreement and identified significant overlaps for 

Crohn's Disease, Multiple Sclerosis, and Rheumatoid Arthritis (Table 2.3, Figure 2.3). The risk 

variants that overlap with Helios binding sites for each disease are listed in Table 2.4. Multiple 

Sclerosis had the highest number of overlapping SNPs (8) with Helios binding sites, a highly 

significant Chi-square p-value (9.70E-18), a significant Fisher's exact test p-value (3.83E-07), and 

the largest odds ratio (12.6363), suggesting a strong association in this context.  

For SLE, the two SNPs found to coincide with Helios binding sites are rs11185603 (on 

chromosome 7 at position 50306810) and rs7329174 (on chromosome 13 at position 

41558110), based on the hg19 human genome reference (Table 2.4). While the Fisher's exact 

test presents an odds ratio of 2.5414, indicating a moderate association with Helios binding 

sites, the Chi-square test and Fisher's exact test p-values, being 0.4224 and 0.1869 respectively, 

did not reach the conventional threshold for statistical significance, typically set at p < 0.05. 

Therefore, despite the observed moderate association, the link between Helios binding sites 

and SLE-associated SNPs does not appear to be statistically significant in this analysis. 
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Figure 2. 5  Enrichment of Helios binding sites for the GWAS risk variants of Autoimmune 

Diseases  
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A) The figure represents an enrichment analysis of Helios Binding Sites for GWAS Risk Variants 

of Autoimmune Diseases using Fisher's exact test. The y-axis shows the negative logarithm 

(base 10) of the Fisher's exact p-value, indicating the significance of enrichment, with higher 

values indicating more significant enrichment. The x-axis lists various autoimmune diseases 

being analyzed. Dot size represents the number of overlapping SNPs, while the color 

gradient from blue to red indicates the odds ratio, with red representing higher odds ratios.  

B) The figure represents an enrichment analysis of Helios Binding Sites for GWAS Risk Variants 

of Autoimmune Diseases using Chi-square test. The y-axis shows the negative logarithm 

(base 10) of the Fisher's exact p-value, indicating the significance of enrichment, with higher 

values indicating more significant enrichment. The x-axis lists various autoimmune diseases 

being analyzed. The color scale on the right side indicates the range of p-values, with the 

color intensity increasing with the significance of the enrichment (i.e., lower p-values).The 

size of the dots represents the odds ratio from the Fisher's exact test, with larger dots 

indicating a higher odds ratio, suggesting a stronger association between Helios Binding 

Sites and the risk variants for the diseases. 

 

 

Table 2. 3 The number of SNPs associated with each of the autoimmune diseases 

Autoimmune diseases 
Initial diseases associated SNPs 

from GWAScatalog(p<5e-8) 
Initial SNPs+ SNPswithhighLD 

with initial SNPs 

Ankylosing spondylitis 44 94 

Crohn's disease 308 742 

Multiple sclerosis 337 655 

Rheumatoid Arthritis 421 718 

Sjögren's Syndrome 22 33 

Systemic lupus 
erythematosus 

489 828 

 

Table 2. 4 The results of enrichment analysis of Helios binding sites for GWAS risk variants of 

autoimmune diseases 

Diseases Number of Number of SNPs Chi-square Fisher’s Fisher’s 
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SNPs 
Tested for 
overlap 

overlap with 
Helios binding 
sites 

test 
Pvalue 

exact test 
Pvalue 

exact test 
odds ratio 

Ankylosing Spondylitis 93 0 1 1 0 

Crohn's disease 737 3 0.0348 0.0359 4.2053 

Multiple Sclerosis 654 8 9.70E-18 3.83E-07 12.6363 

Rheumatoid Arthritis 706 3 0.0283 0.0323 4.3904 

Sjogren's Syndrome 30 0 1 1 0 

Systemic lupus 
erythematosus 

813 2 0.4224 0.1869 2.5414 
 

 

Table 2. 5 The list of risk variants of each disease overlap with Helios binding sites 

Disease Resfsnp ID Chromosome Position_hg19 

Multiple Sclerosis rs9909593 chr17 37970149 

Multiple Sclerosis rs4812772 chr20 42579051 

Multiple Sclerosis rs4812773 chr20 42579148 

Multiple Sclerosis rs4245080 chr11 128421586 

Multiple Sclerosis rs4262739 chr11 128421175 

Multiple Sclerosis rs4939489 chr11 60793648 

Multiple Sclerosis rs4939490 chr11 60793651 

Multiple Sclerosis rs4939491 chr11 60793722 

Crohn's disease rs9656588 chr7 50306780 

Crohn's disease rs3792112 chr2 234176609 

Crohn's disease rs7329174 chr13 41558110 

Rheumatoid Arthritis rs10117059 chr9 123653477 

Rheumatoid Arthritis rs968567 chr11 61595564 

Rheumatoid Arthritis rs12889006 chr14 69260563 

Systemic Lupus Erythematosus rs11185603 chr7 50306810 

Systemic Lupus Erythematosus rs7329174 chr13 41558110 
 

 

2.3.4 Overlap of Helios binding sites with the putative causal variants of 

SLE risk loci in Jurkat T cells 

 

None of the set of 92 putative causal variants for SLE in Jurkat T cells was identified as being 

bound by the transcription factor Helios in Jurkat T cells.  
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2.4 Discussion 

 

The genome-wide chip-seq analysis found 5,068 binding sites for Helios in Jurkat T cells, 

mapping to 2937 nearest genes, indicating the substantial impact of Helios on gene regulatory 

mechanisms within T cells. The 29.35% of peaks found in the close promoter region underline 

its direct regulatory role at the site of transcription initiation. Conversely, the 25.96% of peaks 

located in distal intergenic regions point towards a potential role in long-range gene regulation. 

These findings are consistent with the results of expanded 18-state ChromHMM annotation of 

the binding sites, which shows the highest proportion of the states falls within the category of 

Active Promoters (55.9%), with Active Enhancers comprising the second largest segment 

(33.7%). Collectively, these findings imply Helios' multifaceted role in gene regulation, 

encompassing both proximal transcription initiation and distal, enhancer-mediated regulatory 

functions. 

 

The overlap of Single Nucleotide Polymorphisms (SNPs) with Helios binding sites in Jurkat T cells 

varies across different diseases: none in Ankylosing Spondylitis and Sjögren's Syndrome, three 

in Crohn's Disease, eight in Multiple Sclerosis, three in Rheumatoid Arthritis, and two in 

Systemic Lupus Erythematosus. Notably, statistical analysis using two-sided Fisher’s exact tests 

indicates a significant overlap (p < 0.05) of Helios binding sites with genetic variants in Crohn's 

Disease, Multiple Sclerosis, and Rheumatoid Arthritis. These findings suggest a potential 

association between Helios binding sites and genetic variants in these specific diseases, 

highlighting the relevance of Helios in the context of immune-related disorders and indicate 

disease-specific differences in the regulatory impact of Helios on T-cell function and immune 

responses.  

 

While Helios is not found to bind to any of the putative causal variants of SLE in Jurkat T cells 

identified by Lu et al.[206], it is found to bind to two risk variants associated with SLE: 
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rs11185603 and rs7329174. The risk locus containing rs7329174 and rs57668933 are long been 

identified as SLE risk locus with rs7329174 showing the most significant association with the 

disease[213]. The nearest gene of this locus is the gene ELF1. Both of rs7329174 and 

rs57668933 are identified as eQTL for ELF1 in multiple blood cells including B cells and T cells 

[214, 215]. Additionally, using CRISPR/Cas9, Fazel-Najafabadi M et al. validated rs57668933 as a 

functional variant regulating ELF1, in B-cells. The binding of Helios at SNP rs7329174 suggests 

its role in SLE development as an upstream regulator of the gene ELF1. The ELF1 gene, also 

known as E74-like factor 1, has been implicated in various biological processes, particularly in 

the context of the immune system. ELF1 is a member of the ETS family of transcription factors 

and is known to be involved in T cell development and function. It has been linked to the 

regulation of antibody heavy chain production in B-cells [216], suggesting its involvement in 

immune responses. Studies also suggest that decreased levels of DNA-binding ELF1 found in SLE 

T cells could explain decreased expression of CD3ζ chain and increased expression of FcRg[217], 

which compromise the significant alterations in T cell signaling mechanisms in SLE. 

 

Another risk variant of SLE that Helios binds to is rs11185603, of which the nearest gene is 

IKZF1. rs11185603 is also identified as eQTL for IKZF1 in multiple blood cells including B cells 

and T cells [214, 215]. In addition, the SNP rs11185603 has been identified to interact with the 

promoter of the IKZF1 gene and deletion of the region containing the rs4385425 proxy 

(r2 = 0.99) to rs11185603 induced expression of Ikaros (encoded by IKZF1) in nearly half of the 

Jurkat cells. These findings suggest the significant impact of rs11185603 on IKZF1 expression 

and regulation. Also, the finding that Helios binds to this SNP is consistent with the knowledge 

that the members in Ikaros family interact with each other through homodimer and 

heterodimer formations. [218] IKZF1 can form homodimers (e.g., IKZF1/IKZF1) as well as 

heterodimers with IKZF2 (e.g., IKZF1/IKZF2). This ability to form both homodimers and 

heterodimers adds to the functional complexity of these transcription factors, significantly 

influencing their role in the regulation of immune responses and development of immune cells.  



 
 
 
 

72 
 

 

 

Chapter 3. Differential Expression Induced by Helios Knockdown in 

Jurkat T Cells 

 

 

3.1 Introduction 

 

The investigation of gene function in conjunction with gene knockdown or overexpression, 

represents a powerful approach to unraveling the molecular mechanisms underlying various 

biological processes. This integrated methodology allows for the comprehensive assessment of 

gene expression changes and their functional implications, providing valuable insights into the 

regulatory roles of specific genes in diverse cellular contexts. Over the past decade, gene 

expression profiling has evolved remarkably, transitioning from analyses focused on single 

genes or small gene clusters to comprehensive examinations at a global scale, thanks to 

advancements in high-throughput technologies. Microarray and RNA sequencing (RNA-seq) 

have emerged as the predominant methods for whole transcriptome profiling. DNA microarray 

technology, developed in the 1990s, involves hybridizing DNA fragments (such as 

oligonucleotides, genomic fragments, or cDNAs) converted from messenger RNAs of a sample 

to probes fixed on a solid matrix. The hybridization is quantified, typically using fluorescence-

based detection systems. Although once the leading method for wide-scale gene expression 

analysis, the popularity of microarrays has waned in favor of RNA-seq, which offers greater 

resolution and sensitivity, particularly for low-abundance transcripts [219]. 
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RNA-seq boasts several advantages over microarrays, such as not requiring a reference genome 

or pre-labeled probes, and its ability to generate data without prior knowledge of the genome 

sequence. However, it is important to recognize that microarrays have been a reliable source of 

valuable data and remain relevant in certain contexts. Given the high cost and time-intensive 

nature of RNA-seq and microarray experiments, we sought to leverage publicly available gene 

expression data to investigate the impact of Helios modulation in Jurkat T cells. By employing a 

targeted search strategy using keywords "RNA-seq OR microarray/gene expression" AND 

"knockdown/knockout/overexpression" AND "Helios/IKZF2" AND "Jurkat T cells," we identified 

a relevant microarray dataset [167]. This dataset specifically encompasses gene expression 

profiles associated with Helios knockdown using shRNA and Helios overexpression via an ATL-

type expression plasmid, in comparison to wild-type Jurkat T cells. While the dataset 

encompasses both overexpression and knockdown profiles of Helios in Jurkat T cells, this study 

focuses on comparing the transcriptional profiles of cells with Helios knockdown to their wild-

type equivalents. This decision is underpinned by the rationale that knockdown experiments 

more closely replicate loss-of-function mutations, offering a more physiologically pertinent 

insight into a gene's natural function.  

 

Functional annotation and enrichment analysis play a pivotal role in gaining comprehensive 

insights into the genes driving pathophysiological mechanisms and providing a systemic view 

for interpreting data. Functional annotation involves assigning biological information to 

genomic elements, while functional enrichment analysis determines over-represented gene 

functional categories or associations with diseases in a large set of genes. In the context of 

investigating the impact of Helios knockdown in Jurkat T cells, functional annotation analysis, 

including Gene Ontology (GO) terms and Kyoto Encyclopedia of Genes and Genomes (KEGG) 

pathways, WikiPathways and Reactome pathways. The Gene Ontology (GO) [220] is a widely 

recognized bioinformatics initiative that unifies the representation of gene and gene product 

attributes across all species. It encompasses three main categories: molecular function (MF) of 

gene products, biological processes (BP) in which those actions occur, and the cellular 
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component (CC) where the genes are present. KEGG [221] is a database resource that provides 

insights into advanced functions and utilities of biological systems at the molecular level. 

WikiPathways [222] is a collaborative and open science biological pathway database known for 

its community-driven nature. Reactome [223] is a comprehensive bioinformatics database that 

provides curated information on reactions, pathways, and biological processes. Metascape [224] 

is used in this chapter to detect enrichment of these pathways in the DEGs between Helios 

wild-type and knockdown in Jurkat T cells.  Metascape is a powerful web-based portal designed 

to provide a comprehensive gene list annotation. It combines functional enrichment, 

interactome analysis, gene annotation, and membership search to leverage over 40 

independent knowledgebases within one integrated portal. Additionally, it facilitates 

comparative analyses of datasets across multiple independent and orthogonal experiments by 

merging clusters based on their membership similarities.  

 

3.2 Methods  

 

3.2.1 Data access of differentially expressed genes between Helios 

knockdown vs.WT-Helios jurkat T cell 

 

Gene expression profile of Wild type Helios and Helios knockdown in Jurkat cells were 

downloaded from Gene Expression Omnibus (GEO) database of National Center for 

Biotechnology Information (NCBI) (accession number GSE41796). The raw microarray data in 

the format of “txt.gz” files of WT-Helios/Helios knockdown in Jurkat cells 

(GSM1024425,GSM1024426,GSM1024427,GSM1024428,GSM1024429,GSM1024430) were 

processed.  

 

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSM1024425
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSM1024425
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSM1024425
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSM1024425
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSM1024425
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3.2.2 Differential expression analysis between Helios wild-type and Helios 

knockdown in Jurkat T cells 

 

The R/Bioconductor software package limma [225] was used for background correction, 

normalization and differential expression analysis was done between Helios knockdown group 

and wild type group using limma package according to the users’ guide. This returns an 

adjusted p-value and log2FC for differential expression between Helios knockdown and control 

groups using an empirical Bayes method. Considering the technical characteristics of microarray 

data, including its more limited dynamic range and sensitivity compared to RNA-seq, we 

adopted a less stringent criterion of log2FC > 0.585 (corresponding to a 1.5-fold change) and an 

adjusted p-value < 0.05 to identify differentially expressed genes. R package biomaRt 2.42.0 

[226] were used to convert probeIDs to genesymbols. The expression level and distribution of 

DEGs were visualized using a volcano plot by the ggplot2 package (versions 3.4.0) [227], 

respectively.  

 

3.2.3 Functional annotation of the DEGs between Helios knockdown and 

wild type in Jurkat T cells 

 

To better understand the biological functions of the DEGs, Gene ontology Biological 

Process(GO_BP), Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway, Wikipathway 

and Reactome pathway analysis of differentially expressed genes were conducted using the 

web tool Metascape [224] (https://metascape.org/gp/index.html#/main/step1). Metascape 

provided pathway and process enrichment analysis utilizing KEGG Pathway, GO Biological 

Processes, Reactome Gene Sets, and WikiPathways, with the entire genome as the enrichment 

background. Terms meeting criteria of q-value < 0.05, a minimum of three overlapping genes, 

and an enrichment factor > 1.5 were clustered based on similarity, employing kappa scores for 

hierarchical clustering. Clusters with a similarity > 0.3 were recognized, with the most 

https://metascape.org/gp/index.html#/main/step1
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significant term in each cluster representing it. P-values were calculated via the cumulative 

hypergeometric distribution, and q-values were adjusted using the Benjamini-Hochberg 

procedure for multiple testing [228]. The summarized pathways were visualizad using R 

package ggplot2.  

 

3.2.4 Network analyis of the DEGs between wild-type and knockdown of 

Helios in Jurkat T cells 

 

The DEGs were submitted to the STRING (Search Tool for the Retrieval of Interacting 

Genes/Proteins) 12.0 database to build the protein–protein interactive (PPI) network, 

employing a medium confidence threshold of 0.400 and a false discovery rate (FDR) of 0.05.  

The result was visualized using Cytoscape 3.7.2. Subsequently, we conducted module analysis 

using the MCODE plugin within Cytoscape 3.7.2, with a cutoff MCODE score of >2. MCODE 

plugin in Cytoscape was applied to identify modules with the criteria including degree cutoff of 

2, node score cutoff of 0.2, k-core of 2, and maximum depth of 100. Additionally, we identified 

the top hub genes within each module using the CytoHubba plugin in Cytoscape 3.7.2, 

employing the Maximal Clique Centrality (MCC) algorithm. Metascape 

(https://metascape.org/gp/index.html#/main/step1) was used to conduct Functional 

annotation for the modules that have more than 5 nodes. The analyses included KEGG Pathway, 

GO Biological Processes, Reactome Gene Sets, and WikiPathways, with the entire homo sapien 

genome as the enrichment background. Terms meeting criteria of q-value < 0.05, a minimum of 

three overlapping genes, and an enrichment factor > 1.5 were clustered based on similarity, 

employing kappa scores for hierarchical clustering. Clusters with a similarity > 0.3 were 

recognized, with the most significant term in each cluster representing it. P-values were 

calculated via the cumulative hypergeometric distribution, and q-values were adjusted using 

the Benjamini-Hochberg procedure for multiple testing. The summarized pathways were 

visualized using R package ggplot2.  

https://metascape.org/gp/index.html#/main/step1
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3.3 Results  

 

3.3.1 DEGs between Helios wild-type and Helios knockdown in Jurkat T 

cells  

 

A total of 1072 genes exhibited significant differential expression between Helios knockdown 

and WT-Helios Jurkat T cells, as determined by an adjusted p-value threshold of less than 0.05 

and |log2FC|>0.585 (refer Supplementary Table 3.1 

https://www.dropbox.com/scl/fi/3whix1s9tz6wtosb2pq74/Supplementary-Table-

3.1.1072DEGs.txt?rlkey=p2lt39mqg6eg8ipy4ycsxktb3&st=8exu9yk3&dl=0). Among these DEGs, 

47 demonstrated a |log2FC| greater than 2.0, while 358 exhibited a |log2FC| greater than 1.0. 

The top 10 genes characterized by the highest |log2FC| values are as follows: CTSG (Cathepsin 

G), KLHDC7B (Kelch Domain-Containing Protein 7B), GDAP1L1(Ganglioside-Induced 

Differentiation-Associated Protein 1-Like 1), RP11-382M14.1, ASS1 (argininosuccinate synthase 

1), ASS1P11 (Argininosuccinate Synthetase 1 Pseudogene 11), CALB2 (Calbindin 2), HBEGF 

(Heparin Binding EGF Like Growth Factor), DSC1 (Desmocollin 1) (Figure 3.1).  

 

Figure 3. 1 Volcano plot illustrating the differential expression between wild-type and Helios 

knockdown in Jurkat T cells 

https://www.dropbox.com/scl/fi/3whix1s9tz6wtosb2pq74/Supplementary-Table-3.1.1072DEGs.txt?rlkey=p2lt39mqg6eg8ipy4ycsxktb3&st=8exu9yk3&dl=0
https://www.dropbox.com/scl/fi/3whix1s9tz6wtosb2pq74/Supplementary-Table-3.1.1072DEGs.txt?rlkey=p2lt39mqg6eg8ipy4ycsxktb3&st=8exu9yk3&dl=0
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Each point represents a gene, with red points indicating upregulated genes (log2FC > 0.585 & 

adjusted p value<0.05), blue points indicating downregulated genes (log2FC < -0.585 & adjusted 

p value<0.05), and gray points representing non-significant genes (adjusted P-value ≥ 0.05 or 

absolute log2 fold change ≤ 0.585).  

 

3.3.2 Change of expression of the genes ELF1 and IKZF1 between Helios 

knockdown and Helios wild type in Jurkat T cells 

 

The gene ELF1 didn’t show significant change of expression between Helios knockdown and 

wild-type groups (log2FC = 0.24, adjusted p value > 0.05). IKZF1 shows significant change of 

expression between two groups (log2FC =0.65, adjusted p value = 0.037) (Supplementary Table 

3.1). 
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3.3.3 Functional annotation of the DEGs 

  

The pathway enrichment analysis for the differential expressed genes between wild-type and 

Helios-knockdown Jurkat T cells reveals a significant interplay of metabolic and immune-

regulatory pathways. These include the regulation of cholesterol biosynthesis, cellular stress 

responses, Rho GTPase-mediated signaling, and the unfolded protein response. Additionally, 

key immune system pathways such as Cytokine Signaling in Immune system and Viral Infection 

Pathways are highlighted (Figure 3.2).  

 

Figure 3. 2 Functional annotation of the DEGs between wild-type and Helios-knockdown Jurkat 

T cells 
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The color gradient represents the -log10 transformed q-values from Metascape, with darker 

shades of red indicating higher significance levels. The bars depict the number of genes 

associated with each pathway, with pathways related to cholesterol biosynthesis, cellular 

responses to stress, and immune signaling pathways, including cytokine signaling and viral 

infection responses, being most prominently enriched. 

 

 

3.3.4 PPI network analysis and modules identification for the DEGs 

 

PPI analysis of the prioritized target genes of Helios in Jurkat T cells was based on the STRING 

database and the results were visualized using Cytoscape. After removing singleton nodes, a 

network with 698 nodes and 3683 edges. Ten modules were found by MCODE plugin in 

Cytoscape among the prioritized target genes with module identification criteria including 

degree cutoff of 2, node score cutoff of 0.2, k-core of 2, maximum depth of 100, and nodes>5.  

Metascape ( https://metascape.org/gp/index.html#/main/step1 ) was used to conduct 

Functional annotation for the modules. 

 

Module 1 has 30 nodes and 327 edges, of which the hub gene is H3C12 (H3 Clustered Histone 

12). The pathway enrichment analysis of this module points to significant activity in histone 

deacetylation, chromatin organization, histone arginine methylation, and chromosome 

organization. These processes are crucial for gene expression regulation and indicate Helios' 

role in epigenetic modulation. Additionally, pathways such as the Notch-HLH transcription 

pathway and ATM signaling are implicated, suggesting alterations in cell fate decisions and DNA 

damage responses. The results underscore the comprehensive impact of Helios on cellular 

mechanisms governing genome stability, cell cycle progression, and lineage commitment in T 

cells (Figure 3. 3). For a comprehensive list of all enriched pathways, refer to Supplementary 

Table 3.2 (https://www.dropbox.com/scl/fi/r0b8b3hakvupro5q7oeef/Supplementary-Table-

https://metascape.org/gp/index.html#/main/step1
https://www.dropbox.com/scl/fi/r0b8b3hakvupro5q7oeef/Supplementary-Table-3.2-Pathways_enriched_for_the_modules.xlsx?rlkey=xj2ehbde90zzr3u3y4jluynvk&st=ru82flqo&dl=0
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3.2-

Pathways_enriched_for_the_modules.xlsx?rlkey=xj2ehbde90zzr3u3y4jluynvk&st=ru82flqo&dl=

0). 

 

Figure 3. 3 Gene Interaction Network and Pathway Enrichment in Module 1 of DEGs between 

wild type and Helios knockdown in Jurkat T cells 

https://www.dropbox.com/scl/fi/r0b8b3hakvupro5q7oeef/Supplementary-Table-3.2-Pathways_enriched_for_the_modules.xlsx?rlkey=xj2ehbde90zzr3u3y4jluynvk&st=ru82flqo&dl=0
https://www.dropbox.com/scl/fi/r0b8b3hakvupro5q7oeef/Supplementary-Table-3.2-Pathways_enriched_for_the_modules.xlsx?rlkey=xj2ehbde90zzr3u3y4jluynvk&st=ru82flqo&dl=0
https://www.dropbox.com/scl/fi/r0b8b3hakvupro5q7oeef/Supplementary-Table-3.2-Pathways_enriched_for_the_modules.xlsx?rlkey=xj2ehbde90zzr3u3y4jluynvk&st=ru82flqo&dl=0
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A) The interaction network of genes in module 1, featuring key histone and transcriptional 

regulators. Blue nodes represent downregulated genes, red nodes represent upregulated 

genes, and the central triangle node H3C12 identified as the hub gene of the module. B) The 

pathway enrichment analysis for module 1 genes, where bar length denotes gene count and 

color intensity reflects the statistical significance of the enrichment, quantified by the -log10(q-

value). 

 

Module 2 contains 32 nodes and 202 edges. The hub gene is FASN (Fatty Acid Synthase). The 

pathway enrichment analysis of Module 2 DEGs highlights a pronounced influence on 

cholesterol metabolism. Protein folding processes are also markedly enriched, indicating a 

potential impact on protein homeostasis. Additionally, pathways related to farnesyl 

diphosphate metabolism and the HSP90 chaperone cycle reflect changes in lipid metabolism 

and molecular chaperone activities, which are essential for cellular function and stress response 

(Figure 3. 4). For a comprehensive list of all enriched pathways, refer to Supplementary Table 

3.2 (https://www.dropbox.com/scl/fi/r0b8b3hakvupro5q7oeef/Supplementary-Table-3.2-

Pathways_enriched_for_the_modules.xlsx?rlkey=xj2ehbde90zzr3u3y4jluynvk&st=ru82flqo&dl=

0). 

 

Figure 3. 4 Gene Interaction Network and Pathway Enrichment in Module 2 of DEGs between 

wild type and Helios knockdown in Jurkat T cells 

https://www.dropbox.com/scl/fi/r0b8b3hakvupro5q7oeef/Supplementary-Table-3.2-Pathways_enriched_for_the_modules.xlsx?rlkey=xj2ehbde90zzr3u3y4jluynvk&st=ru82flqo&dl=0
https://www.dropbox.com/scl/fi/r0b8b3hakvupro5q7oeef/Supplementary-Table-3.2-Pathways_enriched_for_the_modules.xlsx?rlkey=xj2ehbde90zzr3u3y4jluynvk&st=ru82flqo&dl=0
https://www.dropbox.com/scl/fi/r0b8b3hakvupro5q7oeef/Supplementary-Table-3.2-Pathways_enriched_for_the_modules.xlsx?rlkey=xj2ehbde90zzr3u3y4jluynvk&st=ru82flqo&dl=0


 
 
 
 

84 
 

 

A) The interaction network of genes in module 2. Blue nodes represent downregulated genes, 

red nodes represent upregulated genes, and the central triangle node FASN is the hub gene of 

this module. B) The pathway enrichment analysis for module 2 genes, where bar length denotes 

gene count and color intensity reflects the statistical significance of the enrichment, quantified 

by the -log10(q-value). 

 

  
Module 3 contains 10 nodes and 43 edges. The hub gene is LYAR (Ly1 Antibody Reactive). The 

A 

B 
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pathway enrichment analysis of Module 3 DEGs highlights a pronounced influence on 

cholesterol metabolism. Protein folding processes are also markedly enriched, indicating a 

potential impact on protein homeostasis. Additionally, pathways related to farnesyl 

diphosphate metabolism and the HSP90 chaperone cycle reflect changes in lipid metabolism 

and molecular chaperone activities, which are essential for cellular function and stress response 

(Figure 3. 5). For a comprehensive list of all enriched pathways, refer to Supplementary Table 

3.2 (https://www.dropbox.com/scl/fi/r0b8b3hakvupro5q7oeef/Supplementary-Table-3.2-

Pathways_enriched_for_the_modules.xlsx?rlkey=xj2ehbde90zzr3u3y4jluynvk&st=ru82flqo&dl=

0). 

 

 

 

Figure 3. 5 Gene Interaction Network and Pathway Enrichment in Module 3 of DEGs 

between wild type and Helios knockdown in Jurkat T cells 

https://www.dropbox.com/scl/fi/r0b8b3hakvupro5q7oeef/Supplementary-Table-3.2-Pathways_enriched_for_the_modules.xlsx?rlkey=xj2ehbde90zzr3u3y4jluynvk&st=ru82flqo&dl=0
https://www.dropbox.com/scl/fi/r0b8b3hakvupro5q7oeef/Supplementary-Table-3.2-Pathways_enriched_for_the_modules.xlsx?rlkey=xj2ehbde90zzr3u3y4jluynvk&st=ru82flqo&dl=0
https://www.dropbox.com/scl/fi/r0b8b3hakvupro5q7oeef/Supplementary-Table-3.2-Pathways_enriched_for_the_modules.xlsx?rlkey=xj2ehbde90zzr3u3y4jluynvk&st=ru82flqo&dl=0
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A) The interaction network of genes in module 3, featuring key histone and transcriptional 

regulators. The red color of the nodes mean they are upregulated following Helios 

knockdown in Jurkat T cells. The central triangle node LYAR is the hub gene of this network. 

B) The pathway enrichment analysis for module 3 genes, where bar length denotes gene 

count and color intensity reflects the statistical significance of the enrichment, quantified by 

the -log10(q-value). 

 

Module 4 contains 6 nodes and 14 edges. The hub gene is PYGL (Glycogen Phosphorylase L). 

The pathway enrichment analysis of Module 4 DEGs highlights the involvement in in 

A 
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carbohydrate-related processes. This includes carbohydrate catabolic processes and 

carbohydrate metabolic processes, with a specific emphasis on glucose metabolism (Figure 3. 

6). For a comprehensive list of all enriched pathways, refer to Supplementary Table 3.2 

(https://www.dropbox.com/scl/fi/r0b8b3hakvupro5q7oeef/Supplementary-Table-3.2-

Pathways_enriched_for_the_modules.xlsx?rlkey=xj2ehbde90zzr3u3y4jluynvk&st=ru82flqo&dl=

0). 

. 

 

 
 

Figure 3. 6 Gene Interaction Network and Pathway Enrichment in Module 4 of DEGs 

between wild type and Helios knockdown in Jurkat T cells 

https://www.dropbox.com/scl/fi/r0b8b3hakvupro5q7oeef/Supplementary-Table-3.2-Pathways_enriched_for_the_modules.xlsx?rlkey=xj2ehbde90zzr3u3y4jluynvk&st=ru82flqo&dl=0
https://www.dropbox.com/scl/fi/r0b8b3hakvupro5q7oeef/Supplementary-Table-3.2-Pathways_enriched_for_the_modules.xlsx?rlkey=xj2ehbde90zzr3u3y4jluynvk&st=ru82flqo&dl=0
https://www.dropbox.com/scl/fi/r0b8b3hakvupro5q7oeef/Supplementary-Table-3.2-Pathways_enriched_for_the_modules.xlsx?rlkey=xj2ehbde90zzr3u3y4jluynvk&st=ru82flqo&dl=0
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A) The interaction network of genes in module 4. Blue nodes represent downregulated 

genes, red nodes represent upregulated genes, and the central triangle node PYGL identified 

as the hub gene of this module. B) The pathway enrichment analysis for module 4 genes, 

where bar length denotes gene count and color intensity reflects the statistical significance 

of the enrichment, quantified by the -log10(q-value). 
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Module 5 contains 16 nodes and 36 edges. The hub gene is CD38 (CD38 Molecule). The 

pathway enrichment analysis of Module 5 DEGs highlights the involvement of these genes in 

infection response and neuroinflammatory processes including pathways potential therapeutics 

for SARS, Alzheimer's disease, the positive regulation of B cell proliferation, neuroinflammatory 

response, and cytokine signaling in the immune system (Figure 3. 7). For a comprehensive list of 

all enriched pathways, refer to Supplementary Table 3.2 

(https://www.dropbox.com/scl/fi/r0b8b3hakvupro5q7oeef/Supplementary-Table-3.2-

Pathways_enriched_for_the_modules.xlsx?rlkey=xj2ehbde90zzr3u3y4jluynvk&st=ru82flqo&dl=

0). 

 

 

Figure 3. 7 Gene Interaction Network and Pathway Enrichment in Module 5 of DEGs 

between wild type and Helios knockdown in Jurkat T cells 

https://www.dropbox.com/scl/fi/r0b8b3hakvupro5q7oeef/Supplementary-Table-3.2-Pathways_enriched_for_the_modules.xlsx?rlkey=xj2ehbde90zzr3u3y4jluynvk&st=ru82flqo&dl=0
https://www.dropbox.com/scl/fi/r0b8b3hakvupro5q7oeef/Supplementary-Table-3.2-Pathways_enriched_for_the_modules.xlsx?rlkey=xj2ehbde90zzr3u3y4jluynvk&st=ru82flqo&dl=0
https://www.dropbox.com/scl/fi/r0b8b3hakvupro5q7oeef/Supplementary-Table-3.2-Pathways_enriched_for_the_modules.xlsx?rlkey=xj2ehbde90zzr3u3y4jluynvk&st=ru82flqo&dl=0
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A) The interaction network of genes in module 5. Blue nodes represent downregulated 

genes, red nodes represent upregulated genes, and the central triangle node CD38 identified 

as the hub gene of this module. B) The pathway enrichment analysis for module 5 genes, 

where bar length denotes gene count and color intensity reflects the statistical significance 

of the enrichment, quantified by the -log10(q-value). 

 
 
Module 6 contains 32 nodes and 74 edges. The hub gene is PDE4D (Phosphodiesterase 4D). The 
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pathway enrichment analysis for module 6 genes identifies several key biological processes. 

These processes include the positive regulation of response to external stimulus, calcium ion 

transport, and regulation of muscle contraction, indicating a broad range of cellular responses. 

Additionally, the pathways involved in response to virus, salt, and bacterium, as well as serine 

family amino acid metabolism, are highlighted (Figure 3. 8). This suggests an activation of 

various stress and immune responses, reflecting the intricate interplay between metabolic 

processes and the immune system in this cellular model. For a comprehensive list of all 

enriched pathways, refer to Supplementary Table 3.2 

(https://www.dropbox.com/scl/fi/r0b8b3hakvupro5q7oeef/Supplementary-Table-3.2-

Pathways_enriched_for_the_modules.xlsx?rlkey=xj2ehbde90zzr3u3y4jluynvk&st=ru82flqo&dl=

0). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

https://www.dropbox.com/scl/fi/r0b8b3hakvupro5q7oeef/Supplementary-Table-3.2-Pathways_enriched_for_the_modules.xlsx?rlkey=xj2ehbde90zzr3u3y4jluynvk&st=ru82flqo&dl=0
https://www.dropbox.com/scl/fi/r0b8b3hakvupro5q7oeef/Supplementary-Table-3.2-Pathways_enriched_for_the_modules.xlsx?rlkey=xj2ehbde90zzr3u3y4jluynvk&st=ru82flqo&dl=0
https://www.dropbox.com/scl/fi/r0b8b3hakvupro5q7oeef/Supplementary-Table-3.2-Pathways_enriched_for_the_modules.xlsx?rlkey=xj2ehbde90zzr3u3y4jluynvk&st=ru82flqo&dl=0
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Figure 3. 8 Gene Interaction Network and Pathway Enrichment in Module 6 of DEGs 

between wild type and Helios knockdown in Jurkat T cells 
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A) The interaction network of genes in module 6. Blue nodes represent downregulated 

A 
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genes, red nodes represent upregulated genes, and the central triangle node PDE4D 

identified as the hub gene of this module. B) The pathway enrichment analysis for module 6 

genes, where bar length denotes gene count and color intensity reflects the statistical 

significance of the enrichment, quantified by the -log10(q-value). 

 
 

Module 7 contains 7 nodes and 14 edges of which the hub gene is SHMT2 (Serine 

Hydroxymethyltransferase 2). Module 7 genes are significantly associated with metabolic 

processes, particularly those related to epileptic disorders and the metabolism of amino acids 

and derivatives. There's a notable emphasis on cellular processes involving modified amino 

acids and dicarboxylic acid metabolism. The metabolic pathways implicated, such as carbon 

metabolism, suggest a potential disruption in metabolic homeostasis and energy production in 

response to alterations in Helios activity (Figure 3.9). For a comprehensive list of all enriched 

pathways, refer to Supplementary Table 3.2 

(https://www.dropbox.com/scl/fi/r0b8b3hakvupro5q7oeef/Supplementary-Table-3.2-

Pathways_enriched_for_the_modules.xlsx?rlkey=xj2ehbde90zzr3u3y4jluynvk&st=ru82flqo&dl=

0). 

 
 

Figure 3. 9 Gene Interaction Network and Pathway Enrichment in Module 7 of DEGs 

between wild type and Helios knockdown in Jurkat T cells 

https://www.dropbox.com/scl/fi/r0b8b3hakvupro5q7oeef/Supplementary-Table-3.2-Pathways_enriched_for_the_modules.xlsx?rlkey=xj2ehbde90zzr3u3y4jluynvk&st=ru82flqo&dl=0
https://www.dropbox.com/scl/fi/r0b8b3hakvupro5q7oeef/Supplementary-Table-3.2-Pathways_enriched_for_the_modules.xlsx?rlkey=xj2ehbde90zzr3u3y4jluynvk&st=ru82flqo&dl=0
https://www.dropbox.com/scl/fi/r0b8b3hakvupro5q7oeef/Supplementary-Table-3.2-Pathways_enriched_for_the_modules.xlsx?rlkey=xj2ehbde90zzr3u3y4jluynvk&st=ru82flqo&dl=0
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A) The interaction network of genes in module 7. Blue nodes represent downregulated 

genes, red nodes represent upregulated genes, and the central triangle node SHTM2 

identified as the hub gene of this module. B) The pathway enrichment analysis for module 7 

genes, where bar length denotes gene count and color intensity reflects the statistical 

significance of the enrichment, quantified by the -log10(q-value). 
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Module 8 contains 23 nodes and 51 edges of which the hub gene is DDIT3 (DNA Damage 

Inducible Transcript 3). The pathway enrichment analysis for module 8 genes emphasizes 

several key biological processes and pathways including responses to heme deficiency, the 

Parkin ubiquitin proteasomal system, apoptotic signaling, protein processing in the 

endoplasmic reticulum, and cytokine production regulation. It also highlights involvement in 

regulated necrosis, response to tumor necrosis factor, insulin resistance, and response to 

lipopolysaccharide. These pathways collectively suggest a broad range of cellular responses, 

spanning metabolic regulation, stress response, and immune signaling of this module (Figure 

3.10). For a comprehensive list of all enriched pathways, refer to Supplementary Table 3.2 

(https://www.dropbox.com/scl/fi/r0b8b3hakvupro5q7oeef/Supplementary-Table-3.2-

Pathways_enriched_for_the_modules.xlsx?rlkey=xj2ehbde90zzr3u3y4jluynvk&st=ru82flqo&dl=

0). 

 

Figure 3. 10 Gene Interaction Network and Pathway Enrichment in Module 8 of DEGs 

between wild type and Helios knockdown in Jurkat T cells 

https://www.dropbox.com/scl/fi/r0b8b3hakvupro5q7oeef/Supplementary-Table-3.2-Pathways_enriched_for_the_modules.xlsx?rlkey=xj2ehbde90zzr3u3y4jluynvk&st=ru82flqo&dl=0
https://www.dropbox.com/scl/fi/r0b8b3hakvupro5q7oeef/Supplementary-Table-3.2-Pathways_enriched_for_the_modules.xlsx?rlkey=xj2ehbde90zzr3u3y4jluynvk&st=ru82flqo&dl=0
https://www.dropbox.com/scl/fi/r0b8b3hakvupro5q7oeef/Supplementary-Table-3.2-Pathways_enriched_for_the_modules.xlsx?rlkey=xj2ehbde90zzr3u3y4jluynvk&st=ru82flqo&dl=0
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A) The interaction network of genes in module 8. Blue nodes represent downregulated 

genes, red nodes represent upregulated genes, and the central triangle node DDIT3 

identified as the hub gene of this module. B) The pathway enrichment analysis for module 8 

genes, where bar length denotes gene count and color intensity reflects the statistical 

significance of the enrichment, quantified by the -log10(q-value). 

 
 

A 
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Module 9 contains 8 nodes and 14 edges, of which hub gene is IRF7 (interferon regulatory 

factor 7). The enrichment analysis for module 9 genes primarily focuses on immune system-

related pathways. Key pathways include chemokine receptor interactions with chemokines, the 

regulation of interleukin-2 production, cellular responses to lipopolysaccharide, and cytokine 

signaling within the immune system. These findings underscore the significant role of Helios in 

regulating immune response pathways, particularly those involving chemokine signaling and 

cytokine production, highlighting its potential impact on immune cell functions (Figure 3. 10). 

For a comprehensive list of all enriched pathways, refer to Supplementary Table 3.2 

(https://www.dropbox.com/scl/fi/r0b8b3hakvupro5q7oeef/Supplementary-Table-3.2-

Pathways_enriched_for_the_modules.xlsx?rlkey=xj2ehbde90zzr3u3y4jluynvk&st=ru82flqo&dl=

0). 

Figure 3. 10 Gene Interaction Network and Pathway Enrichment in Module 9 of DEGs 

between wild type and Helios knockdown in Jurkat T cells 

https://www.dropbox.com/scl/fi/r0b8b3hakvupro5q7oeef/Supplementary-Table-3.2-Pathways_enriched_for_the_modules.xlsx?rlkey=xj2ehbde90zzr3u3y4jluynvk&st=ru82flqo&dl=0
https://www.dropbox.com/scl/fi/r0b8b3hakvupro5q7oeef/Supplementary-Table-3.2-Pathways_enriched_for_the_modules.xlsx?rlkey=xj2ehbde90zzr3u3y4jluynvk&st=ru82flqo&dl=0
https://www.dropbox.com/scl/fi/r0b8b3hakvupro5q7oeef/Supplementary-Table-3.2-Pathways_enriched_for_the_modules.xlsx?rlkey=xj2ehbde90zzr3u3y4jluynvk&st=ru82flqo&dl=0
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A) The interaction network of genes in module 9. Blue nodes represent downregulated 

genes, red nodes represent upregulated genes, and the central triangle node IRF7 identified 

as the hub gene of this module. B) The pathway enrichment analysis for module 9 genes, 

where bar length denotes gene count and color intensity reflects the statistical significance 

of the enrichment, quantified by the -log10(q-value). 

 
 
 
Module 10 has 7 nodes and 10 edges, of which hub gene is XPOT. These genes are enriched in 

A 
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the pathways related to Cytosolic tRNA aminoacylation and nucleocytoplasmic transport 

(Figure 3. 11). For a comprehensive list of all enriched pathways, refer to Supplementary Table 

3.2 (https://www.dropbox.com/scl/fi/r0b8b3hakvupro5q7oeef/Supplementary-Table-3.2-

Pathways_enriched_for_the_modules.xlsx?rlkey=xj2ehbde90zzr3u3y4jluynvk&st=ru82flqo&dl=

0). 

 

Figure 3. 11 Gene Interaction Network and Pathway Enrichment in Module 9 of DEGs 

between wild type and Helios knockdown in Jurkat T cells 

https://www.dropbox.com/scl/fi/r0b8b3hakvupro5q7oeef/Supplementary-Table-3.2-Pathways_enriched_for_the_modules.xlsx?rlkey=xj2ehbde90zzr3u3y4jluynvk&st=ru82flqo&dl=0
https://www.dropbox.com/scl/fi/r0b8b3hakvupro5q7oeef/Supplementary-Table-3.2-Pathways_enriched_for_the_modules.xlsx?rlkey=xj2ehbde90zzr3u3y4jluynvk&st=ru82flqo&dl=0
https://www.dropbox.com/scl/fi/r0b8b3hakvupro5q7oeef/Supplementary-Table-3.2-Pathways_enriched_for_the_modules.xlsx?rlkey=xj2ehbde90zzr3u3y4jluynvk&st=ru82flqo&dl=0
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A) The interaction network of genes in module 10. Blue nodes represent downregulated 

genes, red nodes represent upregulated genes, and the central triangle node XPOT (Exportin 

For TRNA) identified as the hub gene of this module. B) The pathway enrichment analysis for 

module 9 genes, where bar length denotes gene count and color intensity reflects the 

statistical significance of the enrichment, quantified by the -log10(q-value). 

 

 

A 
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3.4 Discussion 

 
 

The comprehensive analysis of differential gene expression between Helios knockdown and 

wild-type Jurkat T cells, as determined from the Gene Expression Omnibus (GEO) database, 

reveals significant alterations in gene expression patterns. A total of 1072 genes displayed 

significant differential expression, with the most prominent changes observed in genes like 

CTSG (Cathepsin G), KLHDC7B (Kelch Domain Containing 7B), and GDAP1L1 (Ganglioside 

Induced Differentiation Associated Protein 1 Like 1). The functional annotation and pathway 

analysis of the DEGs, utilizing tools such as Gene Ontology (GO), KEGG, WikiPathways, and 

BioPlanet, provide deeper insights into the biological processes and pathways affected by 

Helios knockdown. The enrichment of pathways related to cholesterol biosynthesis, apoptosis, 

and T cell receptor regulation in the DEGs suggests a multifaceted role of Helios in metabolic 

processes and immune signaling. The functional annotation of differentially expressed genes in 

Jurkat T cells, comparing wild-type with Helios knockdown, reveals diverse and intricate cellular 

pathways across ten modules. Ten modules were identified using MCODE plugin Modules 1 and 

3 emphasize epigenetic modulation and lipid metabolism, respectively, highlighting Helios' role 

in gene expression regulation and stress response. Module 2 and 4 showcase significant 

impacts on cholesterol and carbohydrate metabolism, indicating effects on lipid and energy 

metabolism. Module 5 relates to neuroinflammatory and infection response processes, while 

Module 6 spans a variety of cellular responses including muscle contraction and immune 

responses. Module 7 focuses on metabolic processes linked to amino acids and epileptic 

disorders, suggesting alterations in metabolic homeostasis. Modules 8 and 9 emphasize 

responses to stress and immune signaling, highlighting roles in apoptotic signaling and cytokine 

production. Lastly, Module 10 is enriched in pathways related to genetic translation processes 

like cytosolic tRNA aminoacylation. Together, these findings underscore the comprehensive and 

multi-faceted role of Helios in regulating diverse cellular functions, including metabolism, 

immune response, and gene expression in T cells. While the role of Helios in immune regulation 
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is well-documented, research into its involvement in metabolic processes is notably sparse. 

Therefore, further research is needed to explore the potential links between Helios and 

metabolic pathways, particularly in the context of adipogenesis and cholesterol biosynthesis, 

shedding light on its broader physiological functions. 

 

 

The lack of significant change in ELF1 expression between the Helios knockdown and wild-type 

groups may suggest the regulatory role of Helios in ELF1 is part of a broader, complex network 

and the presence of redundant or compensatory mechanisms among the network. Conversely, 

the significant alteration in IKZF1 expression in Helios knockdown cells solidifies the regulatory 

relationship between Helios and IKZF1. Given the known involvements of both IKZF2 and IKZF1 

in immune function and their association with SLE, the examination of expression changes in 

IKZF1 and IKZF2 within the context of SLE, compared to healthy controls, could provide 

invaluable insights into the molecular underpinnings of SLE, enhancing our understanding of its 

pathogenesis and potentially informing novel therapeutic approaches. 
 
 
 

Chapter 4. prioritizing the target genes of Helios in Jurkat T cells 

 

4.1 Introduction  

 

The binding of transcription factors to regulatory regions, such as gene promoters or enhancers, 

plays a crucial role in the modulation of gene expression. Chip-seq experiments identify 

hundreds or thousands of binding sites for most factors. Not every identified binding site 

implies a functional role in gene regulation [229]. This is because transcription factors and other 

DNA-binding proteins may interact with DNA sequences due to their inherent affinity for these 

sequences, without necessarily triggering any alterations in gene expression. Therefore, 
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methods are needed to determine which of these sites are true targets and whether they are 

functional. Perturbing the transcription factor coding gene by overexpression or knockdown 

and measuring the effects on cellular gene expression provides useful information on the 

function of the factor. Integrating binding and gene expression data of the factor perturbation 

to prioritize the target genes and define direct target genes has been a valuable approach in 

this regard [230]. 

 

To effectively determine the gene regulatory roles of Helios binding sites, first step is to 

understand how these sites are connected to specific genes. A common approach is to 

annotate binding sites to their nearest gene, but this method can be oversimplified and may 

not always yield accurate results. This is because it overlooks the fact that a single regulatory 

element might influence multiple genes, and the associated target genes could be located at a 

considerable distance from the regulatory element, linked through intra- or intrachromosomal 

long-range chromatin interactions. To address these complexities, I employ a strategy that 

integrates multi-epigenomic data for more precise annotation of binding sites. This method 

takes into account the distinct roles of promoters and enhancers in gene regulation. By utilizing 

resources like the FANTOM5 [231] promoter annotations and Enhancer Atlas [232], we can 

identify overlaps between Helios binding sites and established promoter or enhancer regions. 

The genes associated with these overlapping promoters or enhancers are then considered as 

potential targets of the Helios binding sites, providing a more nuanced understanding of Helios' 

regulatory influence in the genome. 

 

The Functional Annotation of the Mammalian Genome 5 (FANTOM5) [231] project represents a 

pivotal advancement in our understanding of mammalian genomes, providing comprehensive 

expression profiles and functional annotations of cell-type-specific transcriptomes with broad 

applications in biomedical research. Utilizing Cap Analysis of Gene Expression (CAGE) 

technology, FANTOM5 has systematically identified and cataloged Transcription Start Sites 
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(TSSs) across the mammalian genome. This method enables the precise determination of 

transcription initiation points, thereby accurately delineating promoter regions. The project 

measures the distance between individual peaks and the 5′ ends of known full-length 

transcripts, assigning peaks within 500 bases of the 5′ end of known transcript models to the 

corresponding gene. Expanding its scope, FANTOM5 has also developed an extensive enhancer 

atlas, crucial for understanding the non-coding regions of the genome that are instrumental in 

gene regulation. Using CAGE, FANTOM5 identifies enhancers by analyzing bidirectional CAGE 

transcripts, characteristic of active enhancer regions that often produce short, unstable RNA 

molecules known as eRNAs. This comprehensive mapping includes potential enhancer locations 

across various cell types and tissues, offering an unparalleled view of the dynamic regulation of 

gene expression. In addition to mapping, FANTOM5 provides functional annotations of these 

enhancers, linking them to potential target genes and elucidating their roles in gene regulation 

networks. This integration with epigenetic data, such as histone modification patterns and 

chromatin state, enhances the prediction and understanding of enhancer activities. Enhancers 

are annotated to promoters that exhibit close correlation within a 500kb radius. This 

annotation, when integrated with gene information from promoter data, facilitates the 

identification of target genes associated with these enhancers. 

 

EnhancerAtlas 2.0 [232] is another useful database. It consolidates enhancer data from a wide 

array of genome-wide methodologies, encompassing H3K4me1/H3K27ac histone marks, Dnase-

seq/ATAC-seq accessibility, P300 occupancy, POLR2A CAGE-seq transcription initiation, ChIA-

PET chromatin interactions, GRO-seq transcription rates, STARR-seq enhancer function, and 

MPRA functional assays. The database now contains 13,494,603 enhancers across 586 tissue 

and cell types, including 6,031,402 enhancers in 277 different tissue and cell types specific to 

Homo sapiens. The authors employed ChIA-PET and Hi-C as gold standard references to 

establish training datasets for their algorithm which is developed to predict the target genes of 

enhancers based on six features, including correlation between enhancer activity and gene 

expression across cell types, gene expression level of target genes, genomic distance between 
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an enhancer and its target gene, enhancer signal, average gene activity in the region between 

the enhancer and target gene and enhancer–enhancer correlation from the same cell type.  In 

the context of enhancers annotation, it gives a more comprehensive, integrated knowledge 

than FANTOM5 enhancer atlas. 

 

4.2 Methods  

 

4.2.1 Annotating chip-seq binding sites of Helios in Jurkat T cells using 

FANTOM5 promoter annotation data in Jurkat T cells and Enhancers-genes 

interaction data in Jurkat T cells from EnhancerAtlas 2.0 

 

Promoter annotation data specific to Jurkat T cells under human genome assembly hg19 was 

retrieved from the FANTOM5 database (https://fantom.gsc.riken.jp/5/). Enhancer-gene 

interaction data in Jurkat T cells under human genome assembly hg19 was downloaded from 

EnhancerAtlas 2.0 (http://enhanceratlas.org/index.php). The annotation process involves 

comparing the genomic coordinates of Helios binding sites with the locations of location of 

promoters and enhancers in Jurkat T cells. Where these regions coincide, we infer that Helios 

may exert its regulatory influence on the associated genes within the context of promoter or 

enhancer activity. Overlapping regions between Helios binding sites in Jurkat T cells and 

promoter and enhancer regions in Jurkat T cells were identified utilizing the R package IRanges 

[209]. The genes associated with the identified overlapping promoter or enhancer regions with 

the binding sites were considered as potential binding targets of Helios in Jurkat T cells. This 

group of genes has been compiled into a list defined as "Helios binding targets," which is 

utilized for next step analysis. The functional annotation of these genes was conducted using 

Metascape.  

 

https://fantom.gsc.riken.jp/5/
http://enhanceratlas.org/index.php
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4.2.3 Integration of chip-seq data and Microarray data 

 

To prioritize the target genes identified by the above steps, we integrated them with the 

differentially expressed genes (DEGs) obtained from microarray data comparing Helios 

knockdown and wild-type Jurkat T cells. We define the prioritized target genes as those that 

appear both in the DEGs (the results discussed in Chapter 3.3.1) and as "Helios binding targets" 

in Jurkat T cells, identified from promoters and enhancers annotation data (the results 

discussed in Chapter 4.2.1). Subsequently, Metascape [228] was used to perform enrichment 

analysis on the prioritized target genes, employing databases such as KEGG, GO-BP, Reactome, 

and WikiPathway. The pathways with q-values < 0.05 (log (q value) <0.05) were considered 

significant.  

Additionally, the overlaps between the pathways enriched for "Helios binding targets" and 

DEGs were also identified using intersect() function of R package dplyr [233]. The Venn diagram 

of the intersection was visualized using VennDiagram [234] package. 

 

4.2.4 Identifying hub genes of prioritized target genes of Helios in Jurkat T 

cells 

 

The prioritized target genes were submitted to the STRING (Search Tool for the Retrieval of 

Interacting Genes/Proteins) 12.0 database to build the protein–protein interactive (PPI) 

network, employing a medium confidence threshold of 0.400 and a false discovery rate (FDR) of 

0.05.  The result was visualized using Cytoscape 3.7.2.  Ten top hub genes were selected using 

CytoHubba plugin of Cytoscape 3.7.2 through MMC (Maximum Margin Criterion) algorithm.   

 

4.3 Results  
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4.3.1 The target genes of Helios in Jurkat T cells annotated from binding 

sites 

 

The analysis identified 775 Helios binding sites in Jurkat T cells that coincide with 1,123 

FANTOM5 annotated promoters, linking Helios to the regulation of 720 unique genes (refer to 

Supplementary Table 4.1 

https://www.dropbox.com/scl/fi/j3smrub1c3zfrladxlgkn/Supplementary-Table-

4.1.Helios_genes_annotatedfrompromoters.txt?rlkey=7xau38m7vd6vlgmtrjj3m5w93&st=iqqsr

waj&dl=0 for details). Additionally, 36 binding sites overlapped with 30 EnhancerAtlas 2.0 

enhancer regions, corresponding to 767 genes (as shown in Supplementary Table 4.2 

https://www.dropbox.com/scl/fi/d146j8o61rq2huu2j0b7k/Supplementary-Table-

4.2.Helios_genes_annotatedfromenhancer.txt?rlkey=o4r8eezpq4td8vj2jrag9me1d&st=8q4sp61

s&dl=0). 14 binding sites overlapped with both promoter and enhancer regions (Supplementary 

Table 4.3 https://www.dropbox.com/scl/fi/nfx0maq36xllgvgu2qg34/Supplementary-Table-

4.3.Annotaion-of-binding-sites-that-overlap-with-both-promoter-regions-and-enhancer-

regions.xlsx?rlkey=6xma74xu04zb1k2s64bp893p9&st=ajg7es2j&dl=0  ), 43 genes (Table 4.1) are 

commonly annotated from both FANTOM5 promoter regions and EnhancerAtlas 2.0 enhancer 

regions (Figure 4.2). In overall, 1444 unique genes (Supplementary Table 4.4 

https://www.dropbox.com/scl/fi/vrhyz03bl5pzai697uvb5/Supplementary-Table-4.4.1444-

targetsgenes_promoter_enhancer.txt?rlkey=se5e2fqimfketzwn1wgw5ucdg&st=73tw3t9b&dl=0

 ) are identified from Helios binding sites by this method. The functional annotation of these 

genes shows they are enriched in various biological processes, predominantly in the 

metabolism of RNA, cellular responses to stress, and cytokine signaling in the immune system. 

These genes also align with pathways involved in chromatin remodeling, DNA damage response, 

RNA biosynthetic processes, and viral infection pathways. They are also involved in the critical 

cellular functions like hemopoiesis, regulation of lymphocyte activation, the cell cycle, and 

protein phosphorylation. 

 

https://www.dropbox.com/scl/fi/j3smrub1c3zfrladxlgkn/Supplementary-Table-4.1.Helios_genes_annotatedfrompromoters.txt?rlkey=7xau38m7vd6vlgmtrjj3m5w93&st=iqqsrwaj&dl=0
https://www.dropbox.com/scl/fi/j3smrub1c3zfrladxlgkn/Supplementary-Table-4.1.Helios_genes_annotatedfrompromoters.txt?rlkey=7xau38m7vd6vlgmtrjj3m5w93&st=iqqsrwaj&dl=0
https://www.dropbox.com/scl/fi/j3smrub1c3zfrladxlgkn/Supplementary-Table-4.1.Helios_genes_annotatedfrompromoters.txt?rlkey=7xau38m7vd6vlgmtrjj3m5w93&st=iqqsrwaj&dl=0
https://www.dropbox.com/scl/fi/d146j8o61rq2huu2j0b7k/Supplementary-Table-4.2.Helios_genes_annotatedfromenhancer.txt?rlkey=o4r8eezpq4td8vj2jrag9me1d&st=8q4sp61s&dl=
https://www.dropbox.com/scl/fi/d146j8o61rq2huu2j0b7k/Supplementary-Table-4.2.Helios_genes_annotatedfromenhancer.txt?rlkey=o4r8eezpq4td8vj2jrag9me1d&st=8q4sp61s&dl=
https://www.dropbox.com/scl/fi/d146j8o61rq2huu2j0b7k/Supplementary-Table-4.2.Helios_genes_annotatedfromenhancer.txt?rlkey=o4r8eezpq4td8vj2jrag9me1d&st=8q4sp61s&dl=
https://www.dropbox.com/scl/fi/nfx0maq36xllgvgu2qg34/Supplementary-Table-4.3.Annotaion-of-binding-sites-that-overlap-with-both-promoter-regions-and-enhancer-regions.xlsx?rlkey=6xma74xu04zb1k2s64bp893p9&st=ajg7es2j&dl=0
https://www.dropbox.com/scl/fi/nfx0maq36xllgvgu2qg34/Supplementary-Table-4.3.Annotaion-of-binding-sites-that-overlap-with-both-promoter-regions-and-enhancer-regions.xlsx?rlkey=6xma74xu04zb1k2s64bp893p9&st=ajg7es2j&dl=0
https://www.dropbox.com/scl/fi/nfx0maq36xllgvgu2qg34/Supplementary-Table-4.3.Annotaion-of-binding-sites-that-overlap-with-both-promoter-regions-and-enhancer-regions.xlsx?rlkey=6xma74xu04zb1k2s64bp893p9&st=ajg7es2j&dl=0
https://www.dropbox.com/scl/fi/vrhyz03bl5pzai697uvb5/Supplementary-Table-4.4.1444-targetsgenes_promoter_enhancer.txt?rlkey=se5e2fqimfketzwn1wgw5ucdg&st=73tw3t9b&dl=0
https://www.dropbox.com/scl/fi/vrhyz03bl5pzai697uvb5/Supplementary-Table-4.4.1444-targetsgenes_promoter_enhancer.txt?rlkey=se5e2fqimfketzwn1wgw5ucdg&st=73tw3t9b&dl=0
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Figure 4. 1  Pathways enriched for the target genes of Helios annotated from the binding sites 

in Jurkat T cells 

 

Each bar represents a different biological pathway or process, with the length of the bar 

corresponding to the number of genes associated with that pathway (Gene Count). The color 

gradient, ranging from light to dark purple, indicates the level of statistical significance, with 

darker shades representing higher significance as shown by the negative logarithm of the q-

value (-log10(q-value)). 

 

 

4.3.2 Prioritized target genes of Helios in Jurkat T cells 

 

After finding overlap of this group of genes with the DEGs between wild type and Helios 

knockdown in Jurkat T cells, I identified a subset of 56 prioritized target genes (Table 4.2 & 

Figure 4. 3 A).  The functional annotation of these prioritized genes did not yield any statistically 

significant enriched pathways with the criteria: terms q-values < 0.05, a minimum of three 

overlapping genes, and an enrichment factor > 1.5.   
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Figure 4. 2 Integration of Helios Binding Sites with Promoter and Enhancer Annotations in 

Jurkat T Cells 

 

The paired Venn diagrams depict the interplay between Helios transcription factor binding sites 

and associated gene regulatory regions in Jurkat T cells. The diagram on the left indicates that 

out of the total Helios binding sites identified, 775 coincide with promoter regions cataloged in 

the FANTOM5 database, while a subset of 36 overlaps with enhancer regions as characterized 

by EnhancerAtlas 2.0. On the right, the diagram presents a breakdown of gene annotations, 

revealing that 720 genes associated with Helios binding sites correspond to promoter regions, 

and 767 genes correspond to enhancer regions. 

 

Table 4. 1 Forty-three shared target genes both annotated from promoter and enhancer data 

ARL2 C11orf2 COPS7A THOC1 RUSC1 FBXW2 

SNX15 MALAT1 C12orf57 TYMS GGPS1 CREB3 

CALM3 EHBP1L1 ELF1 CCDC94 CDC7 HINT2 

CALR3 MUS81 WBP4 ZNF576 GLYCTK  

MED26 BBS1 TRIM69 PLAUR BNIP1  

COX8A AAAS EARS2 TPGS1 ZNF184  

OTUB1 TNFRSF1A MED11 GBA GNB2  

RPS6KA4 ZNF384 RNF167 HCN3 FIS1  
 

 

 Table 4. 2 Fifty-six prioritized target genes of Helios in Jurkat T cells 
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FEN1P1 STIP1 KRT1 MUM1 HIST1H2BL PPM1H PPID 

TPM3 PYGM ITGB7 CHERP PVRIG CCNB1IP1 KIF20A 

HAX1 MALAT1 HOXC6 BBC3 SRRT CHRNA5 NR3C1 

ZBTB7B CD248 AHSA1 SEPW1 HINT2 RFX8 NRN1 

HCN3 VWF PATL2 ID1 PDSS1 CTDSP1 RHBDD2 

FDPS CD9 PRKCB MANF AKIP1 SPTBN1 SLA 

GNG4 ACRBP SPNS3 ALAS1 VSIG10 LZTFL1 EPHX2 

FLRT1 SPSB2 CFD GNL3 PPFIBP1 C4orf33 S1PR3 
 

 
 

Figure 4. 3 Target genes and pathways overlap between bindings site annotation and DEGs of 

Helios in Jurkat T cells 

 

A B 
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A) This Venn diagram represents the overlap between genes targeted by Helios based on ChIP-

seq binding site data in Jurkat T cells (red circle) and genes differentially expressed as a result of 

Helios knockdown in Jurkat T cells (green circle). The intersection (shaded area) shows the 

number of genes that are both bound by Helios and differentially expressed. B) The Venn 

diagram depicts the overlap between pathways enriched in target genes of Helios based on its 

binding sites in Jurkat T cells (green circle) and pathways enriched in genes differentially 

expressed following Helios knockdown in the same cell type (red circle). The overlap (brown 

area) represents pathways that are common to both sets. 

 

4.3.3 Overlapped pathways enriched in Helios target genes annotatated 

from binding sites and DEGs caused by Helios knockdown in Jurkat T cells 

 

There are 83 pathways which are both enriched in “Helios binding targets” based on its binding 

sites in Jurkat T cells and DEGs followed by Helios knockdown in Jurkat T cells (Figure 4. 3 B & 

Table 4.3). These overlapped pathways span a diverse range of biological processes, notably 

encompassing cellular stress responses, programmed cell death, and DNA repair mechanisms. 

This indicates Helios' involvement in maintaining genomic integrity and cellular homeostasis. 

Several pathways relate to transcriptional regulation, including chromatin modification, 

highlighting Helios' role in epigenetic regulation. Immune system-related pathways, such as 

cytokine signaling and T cell differentiation, are prominently featured, underlining the 

transcription factor's integral role in immune responses. The presence of disease-specific 

pathways, particularly systemic lupus erythematosus, underscores Helios' potential impact on 

the disease. 

 

Table 4. 3 Eighty-three pathways enriched in both Helios binding targets and DEGs followed by 

Helios knockdown 

 Term Category Description 

1 R-HSA-2262752 Reactome Gene Sets Cellular responses to stress 
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2 R-HSA-9609646 Reactome Gene Sets HCMV Infection 

3 R-HSA-9609690 Reactome Gene Sets HCMV Early Events 

4 R-HSA-9610379 Reactome Gene Sets HCMV Late Events 

5 R-HSA-9645723 Reactome Gene Sets 
Diseases of programmed cell 
death 

6 R-HSA-1912422 Reactome Gene Sets 
Pre-NOTCH Expression and 
Processing 

7 R-HSA-9018519 Reactome Gene Sets 
Estrogen-dependent gene 
expression 

8 R-HSA-8939211 Reactome Gene Sets ESR-mediated signaling 

9 R-HSA-9616222 Reactome Gene Sets 
Transcriptional regulation of 
granulopoiesis 

10 R-HSA-68875 Reactome Gene Sets Mitotic Prophase 

11 R-HSA-1912408 Reactome Gene Sets 
Pre-NOTCH Transcription and 
Translation 

12 R-HSA-9821002 Reactome Gene Sets 
Chromatin modifications during 
the maternal to zygotic transition 
(MZT) 

13 R-HSA-157118 Reactome Gene Sets Signaling by NOTCH 

14 R-HSA-3214815 Reactome Gene Sets HDACs deacetylate histones 

15 R-HSA-9710421 Reactome Gene Sets Defective pyroptosis 

16 R-HSA-73728 Reactome Gene Sets 
RNA Polymerase I Promoter 
Opening 

17 R-HSA-2559583 Reactome Gene Sets Cellular Senescence 

18 R-HSA-977225 Reactome Gene Sets Amyloid fiber formation 

19 R-HSA-2559580 Reactome Gene Sets 
Oxidative Stress Induced 
Senescence 

20 R-HSA-427389 Reactome Gene Sets 
ERCC6 (CSB) and EHMT2 (G9a) 
positively regulate rRNA 
expression 

21 R-HSA-5334118 Reactome Gene Sets DNA methylation 

22 R-HSA-1474165 Reactome Gene Sets Reproduction 

23 R-HSA-5625886 Reactome Gene Sets 

Activated PKN1 stimulates 
transcription of AR (androgen 
receptor) regulated genes KLK2 
and KLK3 

24 R-HSA-5250924 Reactome Gene Sets 
B-WICH complex positively 
regulates rRNA expression 

25 R-HSA-427359 Reactome Gene Sets 
SIRT1 negatively regulates rRNA 
expression 

26 R-HSA-68616 Reactome Gene Sets 
Assembly of the ORC complex at 
the origin of replication 
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27 hsa04613 KEGG Pathway 
Neutrophil extracellular trap 
formation 

28 R-HSA-5250913 Reactome Gene Sets 
Positive epigenetic regulation of 
rRNA expression 

29 R-HSA-9006931 Reactome Gene Sets Signaling by Nuclear Receptors 

30 R-HSA-212300 Reactome Gene Sets 
PRC2 methylates histones and 
DNA 

31 R-HSA-2559582 Reactome Gene Sets 
Senescence-Associated Secretory 
Phenotype (SASP) 

32 R-HSA-912446 Reactome Gene Sets Meiotic recombination 

33 R-HSA-2299718 Reactome Gene Sets 
Condensation of Prophase 
Chromosomes 

34 hsa05034 KEGG Pathway Alcoholism 

35 R-HSA-8939236 Reactome Gene Sets 
RUNX1 regulates transcription of 
genes involved in differentiation 
of HSCs 

36 R-HSA-1500620 Reactome Gene Sets Meiosis 

37 R-HSA-5578749 Reactome Gene Sets 
Transcriptional regulation by small 
RNAs 

38 R-HSA-5625740 Reactome Gene Sets RHO GTPases activate PKNs 

39 R-HSA-8936459 Reactome Gene Sets 
RUNX1 regulates genes involved 
in megakaryocyte differentiation 
and platelet function 

40 R-HSA-68886 Reactome Gene Sets M Phase 

41 R-HSA-211000 Reactome Gene Sets Gene Silencing by RNA 

42 hsa05322 KEGG Pathway Systemic lupus erythematosus 

43 R-HSA-73854 Reactome Gene Sets 
RNA Polymerase I Promoter 
Clearance 

44 R-HSA-73864 Reactome Gene Sets RNA Polymerase I Transcription 

45 R-HSA-3214847 Reactome Gene Sets HATs acetylate histones 

46 R-HSA-69278 Reactome Gene Sets Cell Cycle, Mitotic 

47 R-HSA-201722 Reactome Gene Sets 
Formation of the beta-catenin:TCF 
transactivating complex 

48 R-HSA-73772 Reactome Gene Sets 
RNA Polymerase I Promoter 
Escape 

49 R-HSA-427413 Reactome Gene Sets 
NoRC negatively regulates rRNA 
expression 

50 R-HSA-5250941 Reactome Gene Sets 
Negative epigenetic regulation of 
rRNA expression 

51 R-HSA-110328 Reactome Gene Sets 
Recognition and association of 
DNA glycosylase with site 
containing an affected pyrimidine 
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52 R-HSA-110329 Reactome Gene Sets 
Cleavage of the damaged 
pyrimidine 

53 R-HSA-73928 Reactome Gene Sets Depyrimidination 

54 R-HSA-9816359 Reactome Gene Sets 
Maternal to zygotic transition 
(MZT) 

55 R-HSA-73929 Reactome Gene Sets 
Base-Excision Repair, AP Site 
Formation 

56 R-HSA-171306 Reactome Gene Sets Packaging Of Telomere Ends 

57 R-HSA-5617472 Reactome Gene Sets 
Activation of anterior HOX genes 
in hindbrain development during 
early embryogenesis 

58 R-HSA-5619507 Reactome Gene Sets 
Activation of HOX genes during 
differentiation 

59 R-HSA-1221632 Reactome Gene Sets Meiotic synapsis 

60 R-HSA-2559586 Reactome Gene Sets 
DNA Damage/Telomere Stress 
Induced Senescence 

61 R-HSA-68867 Reactome Gene Sets 
Assembly of the pre-replicative 
complex 

62 R-HSA-69002 Reactome Gene Sets DNA Replication Pre-Initiation 

63 R-HSA-1640170 Reactome Gene Sets Cell Cycle 

64 R-HSA-110330 Reactome Gene Sets 
Recognition and association of 
DNA glycosylase with site 
containing an affected purine 

65 R-HSA-110331 Reactome Gene Sets Cleavage of the damaged purine 

66 R-HSA-73927 Reactome Gene Sets Depurination 

67 R-HSA-8878171 Reactome Gene Sets 
Transcriptional regulation by 
RUNX1 

68 R-HSA-606279 Reactome Gene Sets 
Deposition of new CENPA-
containing nucleosomes at the 
centromere 

69 R-HSA-774815 Reactome Gene Sets Nucleosome assembly 

70 R-HSA-195258 Reactome Gene Sets RHO GTPase Effectors 

71 R-HSA-3214858 Reactome Gene Sets RMTs methylate histone arginines 

72 R-HSA-9670095 Reactome Gene Sets 
Inhibition of DNA recombination 
at telomere 

73 R-HSA-69306 Reactome Gene Sets DNA Replication 

74 R-HSA-212165 Reactome Gene Sets 
Epigenetic regulation of gene 
expression 

75 GO:0006338 GO Biological Processes chromatin remodeling 

76 R-HSA-73884 Reactome Gene Sets Base Excision Repair 

77 R-HSA-9716542 Reactome Gene Sets 
Signaling by Rho GTPases, Miro 
GTPases and RHOBTB3 
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78 R-HSA-194315 Reactome Gene Sets Signaling by Rho GTPases 

79 R-HSA-9012999 Reactome Gene Sets RHO GTPase cycle 

80 GO:1903706 GO Biological Processes regulation of hemopoiesis 

81 GO:0043408 GO Biological Processes regulation of MAPK cascade 

82 GO:0080135 GO Biological Processes 
regulation of cellular response to 
stress 

83 R-HSA-9824446 Reactome Gene Sets Viral Infection Pathways 
 

 
 

4.3.4 PPI network and hub genes of prioritized target genes of Helios in 

Jurkat T cells 

 

PPI analysis of the prioritized target genes of Helios in Jurkat T cells was based on the STRING 

database and the results were visualized using Cytoscape. After an initial refinement process 

that excluded singleton nodes and isolated smaller networks comprising fewer than five nodes, 

the remaining network consisted of 8 nodes interconnected by 8 edges (Figure 4. 4). Within this 

network, the Cytohubba plugin was employed, utilizing the Maximal Clique Centrality (MCC) 

algorithm, to pinpoint PRKCB as the central hub gene. 

 

Figure 4. 4 Protein-Protein Interaction Network of Prioritized Helios Target Genes in Jurkat T 
Cells 
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The protein-protein interaction (PPI) analysis of prioritized Helios target genes in Jurkat T cells, 

based on the STRING database and visualized using Cytoscape. Blue nodes represent 

downregulated genes, red nodes represent upregulated genes, and the central triangle node 

PRKCB as the hub gene.  

 

 

4.4 Discussion 

 

The analysis of Helios binding sites in Jurkat T cells revealed significant associations with 

FANTOM5 annotated promoters and EnhancerAtlas 2.0 enhancer regions, indicating a potential 

role for Helios in the regulation of gene expression. Specifically, the study identified 775 Helios 

binding sites that coincide with 1,123 FANTOM5 annotated promoters, linking Helios to the 

regulation of 720 unique genes. Additionally, 36 binding sites overlapped with 30 enhancer 

regions, corresponding to 767 genes. Overall, the analysis identified 1444 unique genes 

associated with Helios binding sites, suggesting a broad impact on gene regulation. These genes 

are enriched in various biological processes, predominantly in the metabolism of RNA, cellular 

responses to stress, and cytokine signaling in the immune system. These genes also align with 

pathways involved in chromatin remodeling, DNA damage response, RNA biosynthetic 

processes, and viral infection pathways. The genes also intersect with critical cellular functions 

like hemopoiesis, regulation of lymphocyte activation, the cell cycle, and protein 

phosphorylation. 

 

In Chapter 3, I identified 1072 DEGs between wild-type and Helios knockdown in Jurkat T cells. 

In the current Chapter, the annotation of the Helis binding sites in Jurkat T cells using 

established promoters and enhancers annotation data recognized 1444 target genes of Helios 

in Jurkat. However, only 56 genes are found to be shared in these two sets and they are not 

enriched in any pathway. This finding suggests that the differential expression of the majority of 
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genes following Helios knockdown may be the result of indirect regulatory mechanisms or 

compensatory responses within the cell.  Despite Helios binding to numerous genomic sites, the 

limited overlap with differentially expressed genes (DEGs) implies that Helios might influence 

gene expression through secondary pathways, such as modulating the activity of other 

transcription factors, engaging in chromatin remodelling, or affecting mRNA processing. This 

assumption is supported by the observation that the “Helios binding targets” are involved in 

the pathways such as metabolism of RNA and chromatin remodelling. Additionally, the lack of 

significant expression change in many Helios-bound genes could be attributed to compensatory 

mechanisms within the cellular network. These mechanisms might include the activation of 

alternative pathways or other transcription factors that counterbalance the effects of Helios 

knockdown, maintaining gene expression levels despite the loss of Helios function. This is 

supported by the observation that 83 pathways are shared between the Helios binding target 

genes and DEGs following Helios knockdown in Jurkat T cells, despite a small overlap of genes, 

suggests that Helios may influence a common set of biological processes and pathways in these 

cells. The fact that these pathways are enriched in both Helios binding sites and DEGs implies 

that Helios could play a significant role in regulating these pathways, potentially impacting key 

cellular functions and the immune response. This also indicates that while direct gene 

regulation by Helios may be limited, its overall impact on cell function and disease-related 

pathways is more substantial. It is also essential to acknowledge how microarray technology 

might limit our insights, as its limitations could mask the full extent of Helios's direct regulatory 

effects on gene expression. Microarray technology, while useful for broad gene expression 

studies, has limitations in its sensitivity [235]. This means it may not detect small changes in 

gene expression levels, especially for genes expressed at low levels or those with subtle 

changes. As a result, the actual influence of Helios on gene expression might be 

underrepresented because subtle yet biologically significant changes could go undetected. 

Microarray provides a 'snapshot' of gene expression at a specific time point [236]. This static 

nature of data collection means that it might miss capturing dynamic changes in gene 

expression over time. For instance, if Helios affects gene expression in a temporal manner (i.e., 

only at certain stages or times after knockdown), these changes might not be detected in a 
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single microarray snapshot. Given these insights, future research into Helios's role should 

ideally incorporate a combination of various genomic and transcriptomic technologies. 

Techniques like RNA-Seq [237] offer higher sensitivity and a broader dynamic range, potentially 

revealing subtler changes in gene expression and capturing more comprehensive profiles of 

transcriptional activity. 

 

Despite the absence of any enriched pathways for the prioritized target genes of Helios, which 

complicates the understanding of their collective function, individual examination of these 

genes reveals insightful information. Notably, a number of these genes have been identified as 

being associated with SLE. PRKCB (protein kinase C beta), identified as the hub gene among the 

prioritized Helios target genes, has been linked to susceptibility and pathogenesis of SLE. 

Research has marked PRKCB as a risk locus for SLE [238] and noted increased PRKCB mRNA 

expression in peripheral blood mononuclear cells of SLE patients [239], suggesting a significant 

role in the disease[239]. Similarly, MUM1/IRF4 has been implicated in lupus pathogenesis, 

particularly through its involvement in dendritic cell dysfunction [240], and has been associated 

with specific gene expression signatures in SLE [241]. IRF4 deficiency has been observed to 

reduce lupus nephritis, albeit with increased systemic cytokine production, indicating its 

complex influence in SLE [242]. The role of IRF4 in SLE is further underscored by its association 

with differential microRNA expression patterns in CD4+ and CD19+ cells from asymptomatic SLE 

patients [243] and thalidomide has been found to exert anti-inflammatory effects in cutaneous 

lupus by inhibiting the IRF4/NF-ҡB and AMPK1/mTOR pathways [244]. The involvement of CD9 

in SLE has also been a subject of study, with observations of reduced CD9 expression in 

dendritic cells of SLE patients, suggesting its role in the disease's pathophysiology [244]. Further 

evidence of CD9's role in SLE includes its heightened expression on marginal zone B cells linked 

to B cell hyperactivity in autoimmune conditions [245], increased presence in CD9-positive 

exosomes in SLE patients [245], and its potential involvement in intercellular communication via 

exosomes in SLE[246]. However, the differential expression of these genes across various T cell 

types between SLE and healthy controls has not yet been addressed. This topic will be explored 
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in Chapter 6, where we will delve into the cell-type-specific change of expression patterns of 

the IKZF2 and its target genes. Given the intriguing connections between several of these genes 

and SLE, their validation as targets of Helios in T cells within the context of SLE emerges as a 

pivotal area for future study. The individual roles of genes such as PRKCB, MUM1/IRF4, and CD9 

in SLE pathogenesis, as evidenced by existing research, underscore the necessity of further 

investigation into how Helios influences their expression and function in T cells. This focused 

validation could illuminate the specific mechanisms by which Helios contributes to the cellular 

and molecular pathology of SLE. As such, these genes stand out as key candidates for detailed 

exploration in future research endeavours. This includes the analysis of differential gene 

expression patterns through RNA-seq, particularly following Helios knockdown in various T cell 

subsets. Such studies will provide deeper insights into how Helios regulation affects these genes 

in the context of T cell functionality. 

 

Chapter 5. Trans-cell type Helios binding sites prediction 

 

 

5.1 Introduction 

 

In the preceding chapters, an in-depth exploration of Helios function in Jurkat T cells has been 

conducted. However, to comprehensively understand the role of Helios in T cell biology, it is 

imperative to investigate its function across different T cell subtypes. The identification of 

Helios as a marker for specific T cell subsets and its association with distinct functional 

properties underscores the significance of elucidating its function in diverse cellular contexts. 

Nevertheless, conducting extensive ChIP-seq experiments to delineate binding profiles for each 

cell type is impractical due to constraints in time and resources. Therefore, there is a critical 

need for accurate computational approaches to predict transcription factor (TF) binding sites in 

different cell types. Given that transcription factors (TFs) recognize specific DNA sequences, 
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known as motifs, to regulate gene expression, leveraging this characteristic, prediction of 

transcription factor binding sites can be performed by scanning a DNA sequence of interest 

with known motifs of transcription factor of interest [247]. HOMER[248] (Hypergeometric 

Optimization of Motif EnRichment) is a widely used bioinformatics tool that specializes in 

identifying motifs from ChIP-Seq data. The tool extracts DNA sequences corresponding to these 

peaks and performs motif search, identifying short, recurring sequence patterns that are 

significantly enriched in the peak regions compared to the background. The output of HOMER 

can be further used to scan DNA sequence of interest to predict the binding sites using tools 

like FIMO which utilizes PWMs to scan DNA sequences, scoring each potential binding site for a 

given motif and identifying those that significantly match the motif pattern. A critical aspect of 

FIMO's analysis is setting a threshold score to determine significant matches. This threshold is 

usually based on statistical significance, often using p-values or q-values, to ensure that only the 

most probable binding sites are considered. When a position in the DNA sequence exceeds this 

threshold, it is flagged as a potential binding site.  

 

A TF can recognize and preferentially bind to a specific set of DNA sequences referred to as a 

“binding motif” and these binding preferences can be inferred using sequence alone. However, 

predictions based on sequence alone lack specificity because they do not consider the 

alterations of chromatin accessibility between different cell types. Chromatin accessibility is the 

degree to which regions the genome is “open” to allow transcriptional factors to bind. These 

regions of chromatin accessibility are cell-type specific and are thereby one of the major 

contributors to the cell type specificity of TF binding [249]. Studies have shown that 

incorporating open chromatin information from DNase-seq or ATAC-seq with TF binding motif 

information can substantially improve predicting TF-bound sites  [250-252]. These methods 

reveal regions of the genome that are actively involved in gene regulation due to their open 

chromatin structure. Furthermore, the use of chromatin accessibility data enables the 

distinction of cell type-specific regulatory patterns, as chromatin accessibility varies between 

different cell types, reflecting their unique regulatory environments [253].  DNase I 
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hypersensitivity sequencing, or DNase-seq, is a powerful method for assessing chromatin 

accessibility by digesting chromatin with DNaseI and subsequently sequencing the resulting 

fragments to identify regions of open chromatin. These regions, known as DNase I 

hypersensitive sites (DHSs), are typically associated with active gene regulatory elements like 

promoters and enhancers. In DNase-seq, cells are treated with DNase I, allowing the enzyme to 

cut the exposed, accessible DNA. The DNA is then purified and sequenced to identify the 

cleavage sites, effectively mapping chromatin accessibility across the genome[124]. This 

method hinges on the principle that certain regions of chromatin are more open, allowing the 

enzyme DNase I to cleave the DNA. These accessible regions, known as DNaseI hotspots, are 

indicative of active regulatory areas, such as promoters and enhancers, where transcription 

factors and other regulatory proteins can bind to influence gene expression. By treating cells 

with DNase I and sequencing the resultant DNA fragments, DNase-seq provides a high-

resolution map of these hotspots across the genome, highlighting areas of potential regulatory 

activity. In this chapter, we utilized HOMER to identify DNA binding motifs of Helios in Jurkat T 

cells, then employed FIMO to scan DNase I hypersensitivity site hotspots in GM12787 cells to 

predicted the binding sites of Helios in GM12787 cells. To assess the accuracy and performance 

of our predictive method, we utilized actual Helios binding sites in GM12787 cells, as 

determined by ChIP-seq data, as a benchmark for validation. 

 

In addition to the motif-based prediction approach that utilizes DNase I hypersensitivity data to 

identify potential DNA binding motifs of Helios, I also employed a distinct yet related method 

that can be defined as “genomic overlap analysis”. This method is based on the observation 

that for certain transcription factors, a significant proportion of binding sites—ranging from 

approximately 50% to 90%—are shared across various cell types[254]. This insight underpins 

the rationale for employing genomic overlap analysis that identifies shared genomic regions 

indicative of conserved transcription factor binding. By determining the extent of overlap, and 

setting a minimum threshold based on the size of Helios ChIP-seq peaks, this method seeks to 

identify regions where the chromatin structure in other cell types is conducive to Helios binding, 
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as observed in Jurkat T cells. Similar to the motif-based approach, we applied the genomic 

overlap analysis method to predict Helios binding sites in GM12787 cells. This involved 

identifying areas of overlap between DNase I hypersensitivity site hotspots in GM12787 cells 

and established Helios binding sites in Jurkat T cells. The rationale behind this approach was 

that regions of chromatin accessibility in GM12787 cells, as marked by DNase I hypersensitivity, 

which coincide with Helios binding sites in Jurkat T cells, could indicate potential binding sites 

for Helios in GM12787 cells. To validate the effectiveness of this method, we compared our 

predicted binding sites with the experimentally determined Helios binding sites in GM12787 

cells, as obtained from ChIP-seq data. 

 

After conducting a comparison of two distinct methodologies — motif-based prediction and 

genomic overlap analysis — we selected the method that demonstrated superior performance 

in accurately identifying Helios binding sites in GM12787 cells to predict the binding sites of 

Helios across various T cell subtypes. The predicted binding sites of Helios in various T cell 

subtypes then annotated to the genes by the method described in Chapter 4, which involves an 

integrated analysis using two pivotal datasets: the FANTOM5 promoter annotation data and the 

enhancer-gene interaction data from Enhancer Atlas. Furthermore, the use of chromatin 

accessibility data enables the distinction of cell type-specific regulatory patterns, as chromatin 

accessibility varies between different cell types, reflecting their unique regulatory environments. 

Within the same cells, chromatin accessibility changes upon stimulation, as demonstrated by 

studies showing dynamic alterations in chromatin landscapes in response to various stimuli 

[255, 256]. 

 

5.2 Methods  

 

5.2.1 DNase I hypersensitivity sites hotspots in GM12878 cells 
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The DNase I hypersensitivity hotspots in GM12878 cells were sourced from the UCSC Genome 

Browser [257], specifically selecting files for replicate 1 and replicate 2 based on the hg19 

genome build. To ensure the robustness and reliability of our data, we employed the IRanges 

package (version 2.36.0) [258] in R  for intersection analysis. This process involved identifying 

common regions between the two replicates, thereby determining the overlaps. Regions found 

to be intersecting in both replicate 1 and replicate 2 were considered as definitive hotspots.  

 

5.2.2 Motif-based Prediction of Trans-cell type Binding of Helios in 

GM12878 Cells 

 

findMotifsGenome.pl function of HOMER [259] was applied to identify DNA binding motifs 

associated with Helios in Jurkat T cells with -len > 8. We specifically focused on motifs with a 

length greater than 8 base pairs to ensure a comprehensive search for biologically relevant and 

complex motifs. Following the motif identification with HOMER, FIMO (Find Individual Motif 

Occurrences) was used to scan the intersections between two DNase I hypersensitivity sites 

hotspots replicates in GM12787 cells. Our approach included a thorough examination across a 

range of statistical stringency levels, applying different p-value cutoffs (ranging from 1e-10 to 

1e-300) to capture a broad spectrum of potential motif occurrences. The binding sites predicted 

based on the only top motif identified in Jurkat T cells are also analyzed. For the results 

obtained from FIMO, those predicted binding sites with a q-value of less than 0.05 are 

considered significant. 

 

5.2.3 Predicting Trans-cell type Bindings Through Shared Genomic Regions 

with Known Helios Binding Regions 
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leveraging the assumption that shared open chromatin regions may indicate conserved 

transcription factor binding, I used the function IRanges package (version 2.36.0) [258]  to 

perform a genomic overlap analysis between DNase I hypersensitivity site hotspots in GM12878 

cells replicate and the binding sites of Helios in Jurkat T cells. In order to achieve a more 

detailed assessment of how varying degrees of minimal length of overlap between influence 

the identification of Helios binding sites, I evaluated multiple overlap lengths. Specifically, I 

examined minimal overlap lengths of 100, 200, 295, 300, 400, 500, and 590 base pairs (bp). For 

each length, the predicted binding sites of Helios in GM12878 cells are defined as those peaks 

that have a minimum overlap of that length with any of the DNase I hypersensitivity site 

hotspots in GM12878 cells. 

 

5.2.4 Validation of the efficiency of the different methods 

 

The IDR conservative narrow peak file (ENCFF337XDI) of chip-seq binding sites file of Helios in 

GM12878 cells is downloaded from ENCODE (The Encyclopedia of DNA Elements) [260] 

(https://www.encodeproject.org/). The comparison process involved aligning the predicted 

binding sites, derived from each of two methods, with the actual Helios binding sites in 

GM12878 cells as per the ENCODE data. The predicted binding sites that coincided with the 

ENCODE-verified binding sites were deemed True Positives (TP), signifying accurate predictions. 

Conversely, predicted sites that did not correspond to any actual binding sites in the ENCODE 

data were labeled as False Positives (FP), indicating erroneous predictions. Additionally, any 

real binding sites from the ENCODE data that were not captured by our predictions were 

classified as False Negatives (FN), pointing to missed detections. 

 

To quantitatively assess the performance of each prediction method, I calculated two crucial 

metrics: True Positive Rate (TPR) and Precision. The True Positive Rate, defined as TPR = TP / 

(TP + FN), measures the sensitivity of our methods, indicating the proportion of actual binding 

sites that were correctly identified. Precision, calculated as Precision = TP / (TP + FP), evaluates 

https://www.encodeproject.org/
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the accuracy of our predictions, reflecting the proportion of predicted sites that were indeed 

true binding sites.   

 

5.2.5 Predicting binding sites and target genes of Helios in various T cell 

subtypes 

 

I employed a comprehensive bioinformatics approach to predict binding sites and target genes 

of the transcription factor Helios across various T cell subtypes. Our approach involved the 

prediction of conserved trans-cell type binding events through the genomic overlap of DNase I 

hypersensitivity sites hotspots within the target cell type and Helios binding regions in Jurkat T 

cells, as this method exhibited superior predictive precision (Figure 5. 1). Subsequently, we 

utilized the FANTOM5 promoter annotation data and the enhancer-gene interaction data from 

Enhancer Atlas 2.0 to identify the target genes associated with the predicted trans-cell type 

binding sites of Helios. The super-enhancer-gene association data from the study conducted by 

Hnisz et al. [261] served as a supplementary source for enhancer annotation. The dataset is a 

catalogue of super-enhancers in 86 human cell and tissue types using H3K27ac ChIP-Seq data 

and super enhancers were linked to the nearest expressed transcripts based on their 

transcription start site (TSS) proximity, with expressed transcripts defined by a minimum mean 

H3K27ac ChIP-Seq density of 0.5 rpm/bp within a 500-base pair window around the TSS, and 

existing enhancer-gene assignments confirmed by prior experimental validation were retained. 

As DNase I hypersensitivity hotspots data is essential for the analysis.  Our study's scope was 

naturally limited to T cell subtypes for which DNase I hypersensitivity hotspots data were 

available, including Th1, naïve  CD4+, and Th17 cells. Data for these cell types were obtained 

from publicly accessible sources. Despite the availability of DNase I hypersensitivity hotspots for 

T regulatory (Treg) cells on the UCSC browser [257], our analysis had to exclude this cell 

subtype due to the lack of corresponding promoter and enhancer annotation data. 
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5.2.5.1 predicting binding sites and target genes of Helios in CD4+ naïve T 

cells 

 

I downloaded DNase I hypersensitivity site hotspot files for CD4+ naïve T cells, specifically CD4+ 

naïve Wb11970640 from a 26-year-old Caucasian male and CD4+ naïve wb78495824  from a 35-

year-old Caucasian female, via the UCSC browser. Using the R package IRanges, we identified 

intersections between these two datasets, defining them as the final DNase I hotspots in CD4+ 

naïve T cells. Additionally, we acquired promoter annotation data for CD4+ naïve T cells from 

the FANTOM5 project, and sourced enhancer-associated gene pairs specific to CD4+ naïve  T 

cells from EnhancerAtlas 2.0. 

 

To predict Helios binding sites within these cells, we employed IRanges again to pinpoint 

overlapping regions between the shared DNase I hypersensitivity site hotspots from the two 

replicates and Helios binding sites observed in Jurkat T cells, setting a minimum overlap 

threshold of 295 base pairs. Regions exhibiting overlaps in both datasets were earmarked as 

potential Helios binding sites in CD4+ naïve T cells. 

 

Further, I cross-referenced these predicted Helios binding sites with CD4+ naïve T cell-specific 

promoter annotation data from the FANTOM5 database and enhancer regions from 

EnhancerAtlas 2.0. We then attributed genes associated with these promoters and enhancers 

to their corresponding overlapping binding sites. 

 

5.2.5.2 Predicting binding sites and target genes of Helios in Th1 cells 

 

DNase I hypersensitivity sites hotspots files for Th1 cells, specifically Th1 Wb33676984 (from an 

Asian, female 26-year-old) and Th1_Wb54553204 replicate1 and replicate2 (from a Caucasian, 
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male 33-year-old) were downloaded from the UCSC browser.  Utilizing the R package IRanges, 

we determined the intersections between these datasets, thereby establishing them as the 

definitive DNase I hotspots in Th1 cells. 

 

Due to the FANTOM5 project’s lack of promoter annotation for Th1 cells, our analysis of 

predicted binding sites was based solely on enhancer-gene interaction data. We downloaded 

this specific data for Th1 cells from EnhancerAtlas 2.0. Continuing with IRanges, we identified 

overlapping regions between the DNase I hypersensitivity site hotspots common to both 

replicates and Helios binding sites observed in Jurkat T cells. We set a minimum overlap 

threshold of 295 base pairs for this analysis. The regions showing overlaps across both datasets 

were designated as potential Helios binding sites in Th1 cells. Subsequently, we employed the 

IRanges package to detect overlaps between these predicted Helios binding sites and Th1 cell-

specific enhancers. Genes associated with these enhancers were then linked to their 

corresponding overlapping binding sites.  

 

5.2.5.3 predicting binding sites and target genes of Helios in Th17 cells 

 

DNase I hypersensitivity sites hotspots files for Th17 cells (T helper cells expressing IL-17, 

primary pheresis of single normal subject) was downloaded from UCSC browser. Notably, the 

FANTOM5 project does not provide promoter annotations for Th17 cells, and EnhancerAtlas 2.0 

lacks enhancer-gene interaction data for these cells. Consequently, the annotation of predicted 

Helios binding sites in Th17 cells was based solely on enhancer-gene associations, using 

enhancer-associated gene pairs for Th17 cells as identified in the study by Hnisz et al [261]. 

 

To predict Helios binding sites within Th17 cells, we utilized the R package IRanges to pinpoint 

overlapping regions between the DNase I hypersensitivity sites hotspots and Helios binding 
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sites observed in Jurkat T cells, setting a minimum overlap threshold of 295 base pairs. These 

overlapping regions were designated as potential Helios binding sites in Th17 cells. In the 

subsequent stage, we identified overlaps between these predicted Helios binding sites and 

enhancers specific to CD4+ naïve T cells. Finally, genes associated with these enhancers were 

mapped to their respective overlapping binding sites. 

 

5.3 Results 

 

5.3.1 Validation of two trans cell type binding sites prediction methods 

 

The results of validating the efficiency of the methods are summarized in Figure 5. 1, which 

presents the Sensitivity (True Positive Rate) and Precision for each method. As the cutoff p-

value for motif-based prediction decreases, Precision demonstrates an increasing trend, while 

the True Positive Rate exhibits a declining pattern. Similarly, as the minimal overlap length for 

the method of intersecting DNase I hypersensitivity sites hotspots and binding sites of Helios in 

Jurkat T cells increases, Precision increases, and the Sensitivity declines. The method of 

intersecting DNase I hypersensitivity sites hotspots of GM12878 cells with the known binding 

sites of Helios in Jurkat T cells generally demonstrates higher Precision. Consequently, this 

method is prioritized for further prediction of Helios binding sites across various T cell subsets 

due to its ability to minimize false positives, which is crucial when downstream actions or 

decisions are based on the predicted outcomes. In terms of minimal overlap length between 

known binding sites of Helios in Jurkat T cells and DNase I hypersensitivity sites hotspots in the 

target cell types, 295 bp was chosen because it is half of the Helios ChIP-seq peaks in Jurkat T 

cells. Choosing this length ensures that the summits of the known ChIP-seq peaks are 

considered while still capturing a significant number of true binding sites. The prediction using 

this parameter shows Precision of 81.7 % and true positive rate of 4.85 %. 
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Figure 5. 1 Comparison of True Positive Rate and Precision in Trans-Cell Type Helios Binding Site 

Prediction Methods 

 

The validation results for two computational methods predicting trans-cell type Helios binding 

sites in GM12878 cells were illustrated. The True Positive Rate (TPR) and Precision metrics are 

plotted for each method. The TPR, indicating sensitivity, is the proportion of actual ENCODE-

verified binding sites correctly identified by the prediction methods. Precision reflects the 

accuracy, represented by the proportion of predicted binding sites that were confirmed as true 

binding sites. The graph shows a trend where Precision increases as the p-value cutoff for 

motif-based prediction becomes more stringent, while the TPR conversely decreases. The 

intersection method between DNase I hypersensitivity sites hotspots and known Helios binding 

sites in Jurkat T cells achieves the highest Precision at 81.7 % but has the lowest TPR at 4.85%. 
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5.3.2 Predicted binding sites and target genes of Helios in CD4+ naïve T 

cells     

 

2415 binding sites were predicted in CD4+ naïve T cells. Among these, 691 overlap with 

promoter regions from FANTOM5, corresponding to 624 genes, while 48 overlap with enhancer 

regions from EnhancerAtlas 2.0, linked to 284 genes (Figure 5. 2). In total, this analysis has led 

to the prediction of 875 target genes (Supplementary Table 5.1 

https://www.dropbox.com/scl/fi/9iffjv5kg4f29kb4xvs6j/Supplementary-Table-

5.1.cd4_predicted_targetgenes.xlsx?rlkey=keza81xiin19vcmcuwwdsr6i4&st=8yzf6s08&dl=0).  

The pathway enrichment analysis for predicted target genes of Helios in CD4+ naïve T cells 

reveals a spectrum of biological processes and pathways. Notably, there is a significant 

enrichment in pathways related to cellular responses to stress, non-coding RNA metabolic 

processes, and the metabolism of RNA, suggesting a role for Helios in managing cellular stress 

and RNA dynamics. Other enriched processes include protein catabolism, cell cycle regulation, 

and cellular responses to stress, highlighting the potential impact of Helios on cell proliferation 

and survival. Several pathways involved in DNA damage response and signaling pathways 

mediated by growth factors also feature prominently, indicating Helios's involvement in 

genomic stability and signal transduction. Immune system pathways, particularly cytokine 

signaling, innate immune response, and the negative regulation of immune processes, are 

significantly enriched, emphasizing Helios’s regulatory role in immune function. Additionally, 

pathways related to RNA biosynthetic processes, HIV-1 infection, mitotic cell cycle, and nucleus 

organization are affected, which may reflect the broad regulatory network influenced by Helios 

in T cell biology. Disease-specific pathways, such as those involved in Shigellosis and VEGFA-

VEGFR2 signaling in cancer, also appear to be modulated, potentially linking Helios function to 

disease mechanisms. These results collectively underscore the multifaceted role of Helios in 

orchestrating various cellular and immunological pathways in CD4+ naïve T cells. The 

summarized pathways are shown in Figure 5. 3, For a comprehensive list of all enriched 

https://www.dropbox.com/scl/fi/9iffjv5kg4f29kb4xvs6j/Supplementary-Table-5.1.cd4_predicted_targetgenes.xlsx?rlkey=keza81xiin19vcmcuwwdsr6i4&st=8yzf6s08&dl=0
https://www.dropbox.com/scl/fi/9iffjv5kg4f29kb4xvs6j/Supplementary-Table-5.1.cd4_predicted_targetgenes.xlsx?rlkey=keza81xiin19vcmcuwwdsr6i4&st=8yzf6s08&dl=0
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pathways, refer to Supplementary Table 5.1 

(https://www.dropbox.com/scl/fi/9iffjv5kg4f29kb4xvs6j/Supplementary-Table-

5.1.cd4_predicted_targetgenes.xlsx?rlkey=keza81xiin19vcmcuwwdsr6i4&st=8yzf6s08&dl=0 ). 

 

Figure 5. 2 Integration of Helios Binding Sites with Promoter and Enhancer Annotations in CD+ 

naïve T Cells 

 

The paired Venn diagrams depict the interplay between Helios transcription factor binding sites 

and associated gene regulatory regions in CD4+ naïve T cells. The diagram on the left indicates 

that out of the total Helios binding sites identified, 691 coincide with promoter regions 

cataloged in the FANTOM5 database, while a subset of 27 overlaps with enhancer regions as 

characterized by EnhancerAtlas 2.0. On the right, the diagram presents a breakdown of gene 

annotations, revealing that 624 genes associated with Helios binding sites correspond to 

promoter regions, and 284 genes correspond to enhancer regions. 

 

Figure 5. 3 Pathway Enrichment for the predicted target genes of Helios in CD4+ naïve T cells 

https://www.dropbox.com/scl/fi/9iffjv5kg4f29kb4xvs6j/Supplementary-Table-5.1.cd4_predicted_targetgenes.xlsx?rlkey=keza81xiin19vcmcuwwdsr6i4&st=8yzf6s08&dl=0
https://www.dropbox.com/scl/fi/9iffjv5kg4f29kb4xvs6j/Supplementary-Table-5.1.cd4_predicted_targetgenes.xlsx?rlkey=keza81xiin19vcmcuwwdsr6i4&st=8yzf6s08&dl=0
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The pathway enrichment analysis for predicted target genes of Helios in CD4+ T cells, where bar 

length denotes gene count and color intensity reflects the statistical significance of the 

enrichment, quantified by the -log10(q-value). 

 

 

5.3.3 Predicted binding sites and target genes of Helios in Th1 cells 

 

2480 binding sites were predicted in Th1 cells, with 200 of these overlapping with enhancer 

regions identified in EnhancerAtlas2.0, corresponding to 1193 genes (Supplementary Table 5.2   

https://www.dropbox.com/scl/fi/yvmpl7p5d5hlqvoxcqf59/Supplementary-Table-

5.2.Th1cells_predicted_targetgenes.xlsx?rlkey=bjnwxv8zv0mupbb9kp9gwzqju&st=8wg6nz8e&d

l=0 ). The enriched pathways for these predicted target genes of Helios in Th1 cells encompass a 

range of biological processes including RNA metabolism, stress responses, and cytokine 

signaling in the immune system. Specific pathways related to diseases of signal transduction 

and cellular responses to external stimuli are highlighted, indicating Helios' influence on cell 

signaling and immune response. Additionally, processes such as RNA biosynthesis, cell cycle, 

https://www.dropbox.com/scl/fi/yvmpl7p5d5hlqvoxcqf59/Supplementary-Table-5.2.Th1cells_predicted_targetgenes.xlsx?rlkey=bjnwxv8zv0mupbb9kp9gwzqju&st=8wg6nz8e&dl=0
https://www.dropbox.com/scl/fi/yvmpl7p5d5hlqvoxcqf59/Supplementary-Table-5.2.Th1cells_predicted_targetgenes.xlsx?rlkey=bjnwxv8zv0mupbb9kp9gwzqju&st=8wg6nz8e&dl=0
https://www.dropbox.com/scl/fi/yvmpl7p5d5hlqvoxcqf59/Supplementary-Table-5.2.Th1cells_predicted_targetgenes.xlsx?rlkey=bjnwxv8zv0mupbb9kp9gwzqju&st=8wg6nz8e&dl=0
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and DNA damage response are notable, underscoring the transcription factor's potential impact 

on gene expression regulation, cell proliferation, and genomic stability. The summarized terms 

are shown in Figure 5. 4 

 

Figure 5. 4 Pathway Enrichment for the predicted target genes of Helios in Th1 cells 

 

The pathway enrichment analysis for predicted target genes of Helios in Th1 cells, where bar 

length denotes gene count and color intensity reflects the statistical significance of the 

enrichment, quantified by the -log10(q-value). 

 

5.3.4 Predicted binding sites and target genes of Helios in Th17 cells 

 

2283 binding sites were predicted in Th17 cells, with 1374 of these overlapping with enhancer 

regions identified in the study by Hnisz et al. [261], corresponding to 843 genes 

(Supplementary Table 5.3 

https://www.dropbox.com/scl/fi/7ykb3nvcswwozh91fxgu0/Supplementary-Table-

5.3.Th17cells_predicted_targetgenes.xlsx?rlkey=0qfawwuuiqrk7sj3avqlhllok&st=sz44007x&dl=

https://www.dropbox.com/scl/fi/7ykb3nvcswwozh91fxgu0/Supplementary-Table-5.3.Th17cells_predicted_targetgenes.xlsx?rlkey=0qfawwuuiqrk7sj3avqlhllok&st=sz44007x&dl=0
https://www.dropbox.com/scl/fi/7ykb3nvcswwozh91fxgu0/Supplementary-Table-5.3.Th17cells_predicted_targetgenes.xlsx?rlkey=0qfawwuuiqrk7sj3avqlhllok&st=sz44007x&dl=0
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0 ). Functional annotation of these genes revealed a strong enrichment in pathways related to T 

cell activation and differentiation, specifically those driving the Th17 immune response. 

Hemopoiesis and various facets of T cell and leukocyte activation and differentiation, including 

positive selection and commitment within the T cell lineage, are prominently featured. These 

results suggest that Helios may play a significant role in regulating the development and 

function of Th17 cells, which are critical in autoimmune conditions and inflammatory responses. 

The summarized terms are shown in Figure 5. 5.  

 

Figure 5. 5 Pathway Enrichment for the predicted target genes of Helios in Th17 cells 

 

The pathway enrichment analysis for predicted target genes of Helios in Th17 cells, where bar 

length denotes gene count and color intensity reflects the statistical significance of the 

enrichment, quantified by the -log10(q-value). 

 

 

https://www.dropbox.com/scl/fi/7ykb3nvcswwozh91fxgu0/Supplementary-Table-5.3.Th17cells_predicted_targetgenes.xlsx?rlkey=0qfawwuuiqrk7sj3avqlhllok&st=sz44007x&dl=0
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5.3.5 Shared predicted target genes of Helios and the pathways over 

different cell types  

 

Thirty-nine genes are found to be shared across four T cell subsets: Jurkat T cells, CD4+ naïve T 

cells, Th1 cells and Th17 cells (Table 5. 1). Among the four T cell subsets analyzed, Th17 cells 

stand out with the highest proportion of unique predicted target genes—67.62%—suggesting a 

distinct regulatory profile for Helios within this subset. Jurkat T cells have fewer unique targets 

in comparison, at 43.56%. CD4+ naïve T cells have the lowest uniqueness in their gene targets 

at 14.63%. Th1 cells closely match Th17 in terms of unique target gene proportion, with 67.06% 

(Table 5. 2). Three pathways are overlapped between enriched pathways within the predicted 

target genes of Helios among the four T cell types (Table 5. 3): R-HSA-2262752: Cellular 

responses to stress, GO:1903706: regulation of hemopoiesis, R-HSA-1280218: Adaptive 

Immune System. 

 

Figure 5. 6 Overlap of predicted target genes and pathways enriched in the predicted target 

genes across Jurkat T cells, CD4+ naïve  T cells, Th1 cells, and Th17 cells 

 
A B 
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A) The diagram illustrates the unique and shared predicted target genes of Helios across four T 

cell subsets: Jurkat T cells, CD4+ naïve T cells, Th1 cells, and Th17 cells. Each subset is 

represented by a colored shape, with overlapping areas indicating shared target genes. The 

numbers in each segment represent the count of target genes unique to or shared between the 

cell types, revealing the extent of Helios's potential regulatory influence across different T cell 

lineages. B) The Diagram showcases the distribution and intersection of pathways enriched 

within the predicted target genes of Helios among four T cell types: Jurkat T cells, CD4+ naïve  T 

cells, Th1 cells, and Th17 cells. The numbers in each section denote the count of unique or 

shared pathways, providing insight into the common biological processes influenced by Helios 

across different T cell lineages. 

 

 

Table 5. 1 Thirty-nine shared predicted target genes across Jurkat T cells, CD4+ naïve  T cells, 

Th1 cells, and Th17 cells. 

CDC42 GAPDH GNB2 C16orf80 IMMT RPS14 
GPR137 C12orf57 ETS1 KRI1 KDM3A PTGER4 
RASGRP2 PTPN6 FLI1 TNFSF9 TRAT1 PIK3R1 
MALAT1 WBP4 RPS13 RHOC NBEAL2 RNF19A 
SCYL1 B2M PSMC3 IFI6 SMARCA5 
FAM89B MIDN FCHSD2 RPS7 MATR3  

TNFRSF1A TPM4 PCBP2 TMEM18 TMEM173 
 

 

Table 5. 2 Proportion of unique predicted target genes in different cell types 

 
overall 
number of 
target genes 

Number of Unique 
predicted target 
genes 

Number of predicted 
target genes Shared 
with other cell types 

proportion of 
unique predicted 
target genes 

Jurkat T  1444 629 815 43.56% 

CD4+naïve T  875 128 747 14.63% 

Th1  1193 800 393 67.06% 

Th17  843 570 273 67.62% 
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Table 5. 3 Shared pathways enriched in predicted target genes over four cell types 

 Term Category Description 

1 R-HSA-2262752 Reactome Gene Sets Cellular responses to stress 

2 GO:1903706 GO Biological Processes regulation of hemopoiesis 

3 R-HSA-1280218 Reactome Gene Sets Adaptive Immune System 

 

 

 

5.4 Discussion 

 

The validation of two trans cell type binding sites prediction methods revealed interesting 

patterns in the efficiency of the methods. As depicted in Figure 5. 1, the True Positive Rate and 

Precision for each method were summarized. It was observed that as the cutoff p value for 

motif-based prediction decreases, Precision shows an increasing trend, while the True Positive 

Rate exhibits a declining pattern. Notably, the method of intersecting DNase I hypersensitivity 

site hotspots and binding sites of Helios in Jurkat T cells demonstrated higher Precision albeit 

with a lower True Positive Rate. This method has been chosen to further predict trans-cell type 

Helios binding sites due to its ability to minimize false positives, which is crucial when 

downstream actions or decisions are based on the predicted outcomes. 

 

Furthermore, the prediction of binding sites and target genes of Helios in CD4+ naïve T cells 

resulted in the identification of 2415 binding sites and 875 target genes, with involvement in 

several key pathways involved in cellular stress and RNA dynamics, cell proliferation, survival, 

and genomic stability. Notably, Helios appears to play a critical regulatory role in the immune 

system, particularly in cytokine signaling, innate immune response, and the negative regulation 

of immune processes. Additionally, the study revealed Helios's involvement in broader 
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pathways such as RNA biosynthetic processes, HIV-1 infection, mitotic cell cycle, and nucleus 

organization, as well as in disease-specific pathways like Shigellosis and VEGFA-VEGFR2 

signaling in cancer. These findings collectively highlight Helios's multifaceted role in 

orchestrating various cellular and immunological pathways, underlining its critical function in 

CD4+ T cell biology and potential implications in disease mechanisms. 

 

In the analysis of Th17 cells, I identified 2283 binding sites and 843 target genes of Helios. 

Functional annotation of these genes indicated a pronounced enrichment in pathways related 

to T cell activation and differentiation, with a specific focus on the Th17 immune response. Key 

aspects such as hemopoiesis, T cell and leukocyte activation, and differentiation, including 

critical steps like positive selection and commitment within the T cell lineage, were notably 

prominent in the study's findings. These insights suggest that Helios could have a considerable 

impact on the development and functioning of Th17 cells, which are vital in the context of 

autoimmune diseases and inflammatory responses.  

 

The discovery of thirty-nine genes shared across four T cell types indicates that Helios regulates 

a core set of genes essential to various T cell subsets. This finding indicates that Helios has some 

common regulatory functions in these cells. These shared targets could be involved in 

fundamental processes necessary for the basic functioning of all these T cell types. These 

shared genes are likely pivotal for understanding Helios's function across all these cell types. 

Th17 cells have the most unique target genes, suggesting a specialised regulatory role for Helios. 

Th1 cells show a similar pattern of Helios influence. Additionally, I have identified three key 

pathways that are common among the predicted target genes of Helios in these T cell types: 

cellular responses to stress, the regulation of hemopoiesis, and the adaptive immune system. 

The presence of these overlapping pathways underscores the fundamental roles Helios plays in 

T cell functionality across various subsets, highlighting its significance in both normal immune 

function and in the pathogenesis of immune-related diseases like SLE. 
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In summary, the validation of the efficiency of the prediction methods, along with the 

prediction of the binding sites and target genes of Helios in different T cell types, provides 

valuable insights into the regulatory mechanisms and pathways involved in T cell differentiation 

and function. The distinct and shared pathway enrichment observed in each T cell subtype 

underscores Helios's role in exerting both universal and specialised regulatory influences within 

T cells. The findings from this Chapter highlight Helios's multifaceted role in T cell regulation, 

affecting a variety of cellular and immunological pathways. This underlines its significant 

function in T cell biology and potential implications in various disease mechanisms. 

 

 

Chapter 6. Regulatory effects of IKZF2 in different cell types in SLE 

patients  

 

6.1 Introduction 

 

Understanding the expression changes of specific genes in different cell types between diseases 

and healthy controls is crucial for comprehending the cellular mechanisms underlying diseases 

and role of the genes of interest in diseases. The methods often involve analyzing gene count 

matrices across various cell types, employing tools like differential expression analysis. This can 

reveal how genes like Helios behave differently in immune cells under diseased conditions, 

providing valuable information for targeted therapeutic strategies. Analyzing the change in 

expression of specific genes between diseased and control groups across various cell types is 

crucial for understanding the molecular mechanisms underlying diseases. Several methods are 

employed for this purpose, including RNA Sequencing (RNA-Seq), Quantitative Real-Time PCR 
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(qRT-PCR), and Microarray Analysis. Additionally, bioinformatics tools such as edgeR[262] and 

DESeq2[263] are widely used for statistical analysis, identifying significant expression 

differences crucial for understanding cellular and molecular disease mechanisms. RNA-Seq [237] 

offers a comprehensive genome-wide expression analysis, providing insights into the 

differential expression of genes across various cell types in diseased and control samples[264]. 

It enables the identification of disease-specific alterations in gene expression and cellular 

composition. On the other hand, qRT-PCR[265] provides targeted, highly sensitive 

measurement of specific genes, allowing for precise quantification of gene expression changes 

in different cell types. While less sensitive than RNA-Seq, Microarray Analysis[266] can measure 

thousands of genes simultaneously, providing a broad view of gene expression changes across 

different cell types. 

 

The Gene Set Enrichment Analysis (GSEA) method has been widely used in various studies to 

interpret gene expression data and identify statistically significant differences in gene 

expression across different biological conditions. GSEA assesses whether predefined sets of 

genes show statistically significant differences in expression across different biological states, 

providing a knowledge-based approach for interpreting gene expression data. It has been 

applied to identify potential biomarkers, understand immune system remodeling, and interpret 

omics data, making it a versatile tool for biological research [267-269]. Additionally, GSEA has 

been utilized to visualize enrichment plots and identify key genes and pathways in various 

biological contexts, demonstrating its utility in functional interpretation of large-scale data[269, 

270]. GSEA has become a popular technique due to its ability to provide insights into the 

functional dynamics of genes and their roles in specific biological contexts, making it a valuable 

tool for understanding gene expression patterns and their implications in diverse biological 

processes[271]. In this study, Gene Set Enrichment Analysis (GSEA) is utilized to detect the 

enrichment of predicted target genes of Helios in CD4+ naïve T cells, Th1 cells, and Th17 cells, 

focusing on differences between SLE patients and healthy controls. By identifying Helio’s 

predicted target gene sets with significant enrichment scores in DEGs of different T cells 
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between controls and SLE, GSEA can reveal key target genes, pathways, and biological 

processes where Helios might play a crucial role in the context of SLE. This approach helps to 

understand the potential impact of Helios in immune regulation and disease pathogenesis, 

specifically in relation to SLE. 

 

Transcription factors (TFs) play a crucial role in regulating gene expression by binding to specific 

DNA sequences in the promoter region of target genes or by forming complexes with other 

DNA binding proteins. This binding can lead to the upregulation or downregulation of gene 

expression, and the levels of the target gene are expected to change in concert with 

fluctuations in the TF's levels.[272] This biological premise allows for the use of correlation 

analysis as a means to validate computational predictions of transcription factor targets. The 

statistical significance of the correlation serves as an indicator of a functional link, providing 

empirical support for the computational models. Such an approach is particularly valuable for 

sifting through potential false positives, refining the predictive output by highlighting those 

genes with a more probable direct or indirect regulatory connection to the transcription factor. 

Genes exhibiting strong correlations can be earmarked for further experimental validation, such 

as chromatin immunoprecipitation or functional reporter assays, to confirm the regulatory 

relationship. In this Chapter, a correlation analysis was conducted to explore the relationship 

between IKZF2 expression and its recognized core target genes related to SLE. objective was to 

refine our understanding of the gene regulatory networks involving Helios (IKZF2) and to 

provide additional layers of information that could assist in prioritizing these genes for further 

research. 

 

6.2 Methods 

 

6.2.1 IMMUNEUXT dataset introduction 
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The ImmuNexUT [273] dataset is a comprehensive gene regulation atlas encompassing RNA-seq 

data on a diverse range of immune cell types within the context of immune-mediated diseases. 

This dataset has captured distinctive gene expression profiles across 28 different immune cell 

types, sourced from 337 patients diagnosed with 10 categories of immune-mediated diseases, 

as well as data from 79 healthy volunteers. Recently, after recent expansion, this dataset now 

encompassing data from a total of 416 donors.  Combined with whole-genome sequencing 

genotype information, the study enables the identification of cell-type-specific and context-

dependent expression quantitative trait loci (eQTLs). The dataset covers gene expression over 

27 immune cell types and genotype from 159 SLE and 89 healthy donors.  

 

6.2.2 Analysis of Differentially Expressed Genes (DEGs) in Various T Cell 

Subtypes between Healthy Controls and SLE Patients 

 

The gene count matrices of 159 SLE and 89 healthy donors in 8 T cell subtypes (CD4+naïve T 

cells, CD4+ memory T cells, naïve regulatory T cells, effector regulatory T cells, T follicular helper 

cells, Type 1 T helper, Type 2 T helper cells, T helper 17 cells) were obtained from DNA Data 

Bank of Japan (DDBJ) [274] under accession number JGAS000486, following the approval of our 

application to use the data. The R package edgeR (version 3.38.4) [275] was used to pre-process 

the data and conduct differential expression analysis between healthy controls and SLE patients 

for each T cell subtype. The change of expression of IKZF2 in different cell types are compared. 

 

6.2.3 Gene set enrichment analysis of target genes of Helios in DEGs 

between controls and SLE in CD4+naïve T cells, Th1 cells and Th17 cells 

 
 
Gene set enrichment analysis (GSEA) of the predicted target genes of Helios to DEGs between 

healthy controls and SLE patients in CD4+ naïve T cells, Th1 cells, and Th17 cells were 
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conducted. Specifically, we assessed the differential expression of genes in each of these three 

cell types, applying a significance threshold of an FDR-adjusted p-value of 0.05. To perform 

GSEA, we ranked the differentially expressed genes (DEGs) based on their log-fold change 

(log2FC) and utilized the R packages clusterProfiler and enrichplot (version 1.16.2) for the 

analysis and visualization of results. Gene sets with a normalized enrichment score (NES) 

exceeding 1.0 and a p-value below 0.05 were considered as significantly enriched. 

 
 

6.2.4 PPI network and functional annotation of core enrichment genes in 

Th1 cells 

 

The core enrichment genes among Helios-predicted target genes associated with differentially 

expressed genes (DEGs) in Th1 cells when comparing healthy controls to individuals with SLE 

were extracted from GSEA result in Th1 cells. Metascape [224] was used to perform functional 

annotation to these core enrichment genes in Th1 cells. To explore protein-protein interactions, 

we employed the STRING 12.0 database and established a protein-protein interaction (PPI) 

network. We applied a medium confidence threshold of 0.400 and controlled the false 

discovery rate (FDR) at 0.05. Subsequently, we conducted module analysis using the MCODE 

[276] plugin within Cytoscape 3.7.2[277], with a cutoff MCODE score of >2.  Additionally, we 

identified the top hub genes within each module using the CytoHubba [278]plugin in Cytoscape 

3.7.2, employing the Maximum Margin Criterion (MMC) algorithm. 

 

6.2.5 PPI network and functional annotation of core enrichment genes in 

Th17 cells 

 

The core enrichment genes among Helios-predicted target genes associated with differentially 

expressed genes (DEGs) in Th17 cells when comparing healthy controls to individuals with SLE 
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were extracted from GSEA result in Th17 cells. Metascape [224] was used to perform functional 

annotation to these core enrichment genes in Th17 cells. To explore protein-protein 

interactions, we employed the STRING 12.0 database and established a protein-protein 

interaction (PPI) network. We applied a medium confidence threshold of 0.400 and controlled 

the false discovery rate (FDR) at 0.05. Subsequently, we conducted module analysis using the 

MCODE [276] plugin within Cytoscape 3.7.2 [277], with a cutoff MCODE score of >2.  

Additionally, we identified the top hub genes within each module using the CytoHubba [278] 

plugin in Cytoscape 3.7.2, employing the Maximum Margin Criterion (MMC) algorithm. 

 

6.2.6 Correlation of expression of IKZF2 with the target genes of Helios in 

Th1 cells cells  

 

In this step, we aimed to elucidate the correlation between IKZF2 and its predicted target genes 

in Th1 cells, particularly focusing on genes core-enriched in differentially expressed genes (DEGs) 

between healthy controls (HC) and SLE patients. We extracted gene expression datasets for Th1 

cells from SLE patients, which included read counts for 26,353 genes across 152 Th1 cell 

samples from SLE patients from the data I obtained in Chapter 6.2.2. The raw read counts were 

normalized using edgeR package [262]. I specifically selected IKZF2 and the predicted target 

genes of Helios in Th1 cells as the genes of interest. I calculated the Pearson correlation 

coefficients and p-values between the expression levels of IKZF2 and each of these predicted 

target genes. To visualize these correlations, we produced a bar plot showing the top 20 genes 

based on their correlation with IKZF2, using R's ggplot2 [227] library. The correlations with the 

threshold of p value<0.05 are considered significant. 

 

 



 
 
 
 

146 
 

6.2.7 Correlation of expression of IKZF2 with predicted target genes of 

Helios in Th17 cells cells  

 

In this step, I aimed to elucidate the correlation between IKZF2 and its predicted target genes in 

Th17 cells, particularly focusing on genes core-enriched in differentially expressed genes (DEGs) 

between healthy controls (HC) and SLE patients. We extracted gene expression datasets for 

Th17 cells from SLE patients, which included read counts for 26,353 genes across 157 Th17 cell 

samples from SLE patients from the data I obtained in Chapter 6.2.2. The raw read counts were 

normalized using edgeR package [262]. I specifically selected IKZF2 and the predicted target 

genes of Helios in Th17 cells as the genes of interest. I calculated the Pearson correlation 

coefficients and p-values between the expression levels of IKZF2 and each of these predicted 

target genes. To visualize these correlations, I produced a bar plot showing the top 20 genes 

based on their correlation with IKZF2, using R's ggplot2 [227] library. The correlations with the 

threshold of p value<0.05 are considered significant. 

 

 

6.3 Results  

 

6.3.1 Change of Expression of IKZF2 in different T cell subtypes in SLE 

compared to Healthy controls 

 

The changes of the expression of IKZF2 in different T cell subtypes are shown in Figure 6. 1. The 

expression of IKZF2 underwent significant changes in numerous T cell subtypes between 

controls and SLE patients. Specifically, there was a notable increase in IKZF2 expression in SLE 

patients within CD4+ naïve T cells, CD4+ memory T cells, Th1 cells, Th2 cells, T follicular helper 

cells. Conversely, there was a significant decrease in IKZF2 expression in SLE patients within 
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effector regulatory T cells and naïve regulatory T cells. However, the observed changes in IKZF2 

expression did not reach significance in Th17 cells. The expression changes in three specific cell 

types, namely Th1 cells, T follicular helper cells, and CD4+ memory T cells, all exhibited a 

|log2FC| > 1, indicating increased expression of at least 2-fold in SLE patients. Among these, the 

most substantial change, characterized by the highest |log2FC| value, was observed in Th1 cells.  

 

Figure 6. 1 Differential Expression of IKZF2 Across Various T Cell Subtypes between Healthy 

controls and SLE patients 
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The dotted red line represents the threshold for statistical significance (adjusted p-value = 

0.05), with points above this line indicating significant changes in gene expression. The x-axis 

shows the log fold change (log2FC) in gene expression, while the y-axis represents the negative 

logarithm of the adjusted p-value (-log10(adjusted p-value)). Significant expression changes 

with a |log2FC| > 1 are most prominent in Th1 cells, Tfh cells, and CD4+ memory T cells, as 

indicated by their position on the plot. Th17 cells show changes in expression that do not cross 

the significance threshold. In this context, log2FC > 0 indicates an increase in gene expression in 

SLE, while log2FC < 0 indicates a decrease in gene expression in SLE. eTreg (Red): Effector 

Regulatory T Cells, mem_CD4 (Orange): CD4+ Memory T Cells, naïve _CD4 (Green): CD4+ Naïve 

T Cells, nTreg (Dark Green): Naïve Regulatory T Cells, Tfh (Cyan): T Follicular Helper Cells, Th1 

(Blue): T Helper 1 Cells, Th17 (Purple): T Helper 17 Cells, Th2 (Pink): T Helper 2 Cells. 

 

 

6.3.2 Change of Expression of Helios’s target genes in different T cell 

subtypes in SLE compared to Healthy Controls 

 

Among 875 predicted target genes of Helios in CD4+ naïve T cells, 273 overlap with 

differentially expressed genes (DEGs) (adjusted p-value <0.05) between healthy controls and 

SLE patients. Of these, 145 genes are upregulated (indicated as log2FC > 0), while 128 are 

downregulated (log2FC < 0) in SLE patients (see Supplementary Table 5.1  

https://www.dropbox.com/scl/fi/9iffjv5kg4f29kb4xvs6j/Supplementary-Table-

5.1.cd4_predicted_targetgenes.xlsx?rlkey=keza81xiin19vcmcuwwdsr6i4&st=6606i5ri&dl=0). 

Among 1193 predicted target genes of Helios in Th1 cells, 518 overlap with DEGs between 

healthy controls and SLE patients. Specifically, 330 genes are upregulated (indicated as log2FC > 

0), and 188 are downregulated (log2FC < 0) in SLE patients (see Supplementary Table 5.2 

https://www.dropbox.com/scl/fi/yvmpl7p5d5hlqvoxcqf59/Supplementary-Table-

5.2.Th1cells_predicted_targetgenes.xlsx?rlkey=bjnwxv8zv0mupbb9kp9gwzqju&st=2bqpvczt&dl

=0 ). Among  843 predicted target genes of Helios in Th17 cells, 496 overlap with DEGs between 

https://www.dropbox.com/scl/fi/9iffjv5kg4f29kb4xvs6j/Supplementary-Table-5.1.cd4_predicted_targetgenes.xlsx?rlkey=keza81xiin19vcmcuwwdsr6i4&st=6606i5ri&dl=0
https://www.dropbox.com/scl/fi/9iffjv5kg4f29kb4xvs6j/Supplementary-Table-5.1.cd4_predicted_targetgenes.xlsx?rlkey=keza81xiin19vcmcuwwdsr6i4&st=6606i5ri&dl=0
https://www.dropbox.com/scl/fi/yvmpl7p5d5hlqvoxcqf59/Supplementary-Table-5.2.Th1cells_predicted_targetgenes.xlsx?rlkey=bjnwxv8zv0mupbb9kp9gwzqju&st=2bqpvczt&dl=0
https://www.dropbox.com/scl/fi/yvmpl7p5d5hlqvoxcqf59/Supplementary-Table-5.2.Th1cells_predicted_targetgenes.xlsx?rlkey=bjnwxv8zv0mupbb9kp9gwzqju&st=2bqpvczt&dl=0
https://www.dropbox.com/scl/fi/yvmpl7p5d5hlqvoxcqf59/Supplementary-Table-5.2.Th1cells_predicted_targetgenes.xlsx?rlkey=bjnwxv8zv0mupbb9kp9gwzqju&st=2bqpvczt&dl=0
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SLE patients and healthy controls. Here, 124 genes are upregulated (indicated as log2FC > 0), 

whereas 372 are downregulated (log2FC < 0) in SLE patients (see Supplementary Table 5.3  

https://www.dropbox.com/scl/fi/7ykb3nvcswwozh91fxgu0/Supplementary-Table-

5.3.Th17cells_predicted_targetgenes.xlsx?rlkey=0qfawwuuiqrk7sj3avqlhllok&st=152ftaxr&dl=0 

). 

 

6.3.3 Gene set enrichment analysis of predicted target genes of Helios in 

DEGs between Healthy controls and SLE in CD4+naïve T cells, Th1 cells and 

Th17 cells 

 

The predicted target genes in CD4+ naïve cells didn’t show a significant enrichment for the DEGs 

between healthy controls versus SLE patients in CD4+ naïve cells (Figure 6. 2 A). The predicted 

target genes in Th1 cells exhibited a remarkable enrichment pattern at the top of the DEGs 

associated with healthy controls versus SLE patients in Th1 cells, resulting in a normalized 

enrichment score (NES) of 1.505 and a highly significant p-value of 0.000216 (Figure 6. 2 B). 

Similarly, the predicted target genes in Th17 cells demonstrated significant enrichment at the 

top of the DEGs between healthy controls and SLE patients in Th17 cells, yielding an NES of 1.41 

with a p-value of 0.036 (Figure 6. 2 C).  

 

Figure 6. 2 Results of gene set enrichment analysis of predicted target genes of Helios in DEGs 

between Healthy controls and SLE in CD4+naïve T cells, Th1 cells and Th17 cells 

https://www.dropbox.com/scl/fi/7ykb3nvcswwozh91fxgu0/Supplementary-Table-5.3.Th17cells_predicted_targetgenes.xlsx?rlkey=0qfawwuuiqrk7sj3avqlhllok&st=152ftaxr&dl=0
https://www.dropbox.com/scl/fi/7ykb3nvcswwozh91fxgu0/Supplementary-Table-5.3.Th17cells_predicted_targetgenes.xlsx?rlkey=0qfawwuuiqrk7sj3avqlhllok&st=152ftaxr&dl=0
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6.3.4 Functional annotation and Hub genes identification of core 

enrichment genes in Th1 cells 

 

190 predicted target genes of Helios in Th1 cells were found to be core enriched to DEGs 

between healthy controls and SLE patients. This indicates that these genes are the primary 

contributors to the significant enrichment signal observed in the GSEA, suggesting they are the 

most important set of Helios target genes in Th1 cells that that significantly overlap with the 

differentially expressed genes between SLE and healthy controls. Further functional annotation 

A) Enrichment plot for CD4+ naïve T cells. It shows the enrichment score (ES) across the ranked 

list of differentially expressed genes (DEGs) between healthy controls and SLE patients in CD4+ 

naïve T cells, with a peak score indicating where the predicted Helios target genes are most 

concentrated. However, the enrichment is not significant (P>0.05). B) Enrichment plot for Th1 

cells. It highlights the distribution of predicted Helios target genes within the ranked DEGs, with 

the peak representing significant enrichment among the top ranked DEGs between healthy 

controls and SLE patients in Th1 cells. C) Enrichment plot for Th17 cells. Like the other panels, 

this shows the enrichment of Helios target genes, with the peak indicating significant 

enrichment at the top of the DEGs list between healthy controls and SLE patients in Th17 cells. 

In each panel:  The x-axis shows the position in the ranked list of DEGs, with genes higher in SLE 

patients on the left (indicated by the red arrow) and genes higher in healthy controls on the 

right (indicated by the blue arrow). The y-axis (left side) shows the running enrichment score 

for the set of Helios target genes. The vertical red dotted line indicates the point of maximum 

ES. The Vertical black dashed line indicates the position where log2FC is closest to zero. Black 

Bars below the plot show the position of Helios target genes in the ranked list of DEGs. Colour 

bar at the bottom of the plot shows the log2 fold change (log2FC) of the genes, with red 

indicating higher expression in SLE patients and blue indicating higher expression in healthy 

controls (HC). NES (Normalized Enrichment Score) and p-values are provided for each cell type, 

indicating the statistical significance of the enrichment. 
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analysis indicates these genes are enriched for the pathways include cell cycle regulation, 

mitotic G1 phase and G1/S transition, regulation of the mitotic cell cycle, transcriptional 

regulation by TP53, DNA metabolic processes, cytokine signaling in the immune system, and 

regulation of DNA metabolic process. Other significant pathways identified are mitochondrial 

translation initiation, regulation of fibroblast proliferation, protein-containing complex 

disassembly, cell cycle phase transition, the mevalonate pathway, nuclear envelope 

organization, metallothioneins binding metals, Epstein-Barr virus infection, 5q35 copy number 

variation, negative regulation of binding, and intracellular protein transport. Additionally, 

pathways related to T cell differentiation and DNA-templated transcription were also enriched.  

 

A network with 147 nodes and 583 edges. Three modules were found by MCODE plugin in 

Cytoscape with the following criteria: degree cutoff of 2, node score cutoff of 0.2, k-core of 2, 

maximum depth of 100, and nodes>5.  The module 1 has 23 nodes and 144 edges, of which the 

hub gene is CCNA2 (Cyclin A2) (Figure 6. 4 A). The module 2 contains 8 nodes and 28 edges, of 

which the hub gene is MRPL58 (mitochondrial ribosomal protein L58) (Figure 6. 4 B). The 

module 3 contains 7 nodes and 18 edges, of which the hub gene is CXCR6 (CXC motif 

chemokine receptor 6) (Figure 6. 4 C).  

  

Figure 6. 3  Pathway enrichment of core enriched Helios target genes in DEGs between HC and 

SLE in Th1 cells 



 
 
 
 

153 
 

 

The horizontal bars represent the different pathways enriched. The length of each bar 

corresponds to the gene count associated with each pathway, reflecting the number of genes 

from the core target list that are involved in that specific pathway. The color intensity of the 

bars indicates the significance level of enrichment, with darker shades of purple corresponding 

to higher -log10(p-value), hence more significant enriched Pathways at the top, with the 

longest bars and darkest colors, such as Cell Cycle and Mitotic G1 phase and G1/S transition, are 

the most significantly enriched and contain the highest number of Helios target genes.The 

negative logarithm of the p-value (-log10(p-value)) is used to assess the statistical significance 

of the pathway enrichment, with values presented in the color scale on the right, where a 

higher value indicates a lower p-value and, therefore, a more significant enrichment. 

 

Figure 6. 4 Modules identified from the core enriched genes of predicted Helios target genes to 

DEGs between healthy controls and SLE patients in Th1 cells 
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Three modules within the network of Helios target genes that are core enriched in DEGs 

between healthy controls and SLE patients within Th1 cells. Nodes represent genes, and edges 

illustrate the interactions or relationships between the genes. All these genes are found to be 

upregulated in SLE compared to healthy controls, as indicated by the red color of the nodes. 

Central triangle nodes denote the hub genes within each module. These are identified as 

CCNA2 (Cyclin A2) in Module 1, MRPL58 (Mitochondrial Ribosomal Protein L58) in Module 2, 

and CXCR6 (CXC Motif Chemokine Receptor 6) in Module 3. 

Module 1 (A): Comprises 23 nodes and 144 edges, highlighting a dense network of gene 

interactions with CCNA2 as the hub gene. 

A 

B C 
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Module 2 (B): Consists of 8 nodes and 28 edges, with MRPL58 as the central hub gene. 

Module 3 (C): Contains 7 nodes and 18 edges, centered around CXCR6 as the hub gene. 

 

 

6.3.5 Hub genes identification of core enrichment genes in Th17 cells 

 

70 predicted target genes of Helios in Th17 cells were found to be core enriched to DEGs 

between healthy controls and SLE. A network with 52 nodes and 137 edges. Two modules were 

found by MCODE plugin in Cytoscape.  The functional annotaion analysis reveals significant 

enrichment of these genes in pathways related to immune system regulation, particularly in 

cytokine signaling, hematopoiesis, Th17 cell differentiation, leukocyte activation, and response 

to cytokines. Key pathways also include signaling by nuclear receptors, response to viruses, 

regulation of growth, and apoptosis. The analysis identifies involvement in specific pathways 

like Epstein-Barr virus infection, HIV-1 infection, and VEGFA-VEGFR2 signaling. These findings 

highlight the integral role of these genes in various immune responses and regulatory 

mechanisms. Two modules were found by MCODE plugin in Cytoscape with the following 

criteria: degree cutoff of 2, node score cutoff of 0.2, k-core of 2, maximum depth of 100, and 

nodes >5.  The module 1 has 7 nodes and 21 edges, of which the hub gene is IRF4 (interferon 

regulatory factor 4) (Figure 6. 4 A). The module 2 contains 8 nodes and 13 edges, of which the 

hub gene is CBFB (core-binding factor subunit beta) (Figure 6. 4 B).  

 

Figure 6. 5 Pathway enrichment of core enriched Helios target genes in DEGs between HC and 

SLE in Th1 cells 
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The horizontal bars represent the different pathways enriched. The length of each bar 

corresponds to the gene count associated with each pathway, reflecting the number of genes 

from the core target list that are involved in that specific pathway. The color intensity of the 

bars indicates the significance level of enrichment, with darker shades of purple corresponding 

to higher -log10(p-value), hence more significant enriched Pathways at the top, with the 

longest bars and darkest colors, such as Cytokine Signaling in Immune system and Th17 cell 

differentiation pathway, are the most significantly enriched and contain the highest number of 

Helios target genes.The negative logarithm of the p-value (-log10(p-value)) is used to assess the 

statistical significance of the pathway enrichment, with values presented in the color scale on 

the right, where a higher value indicates a lower p-value and, therefore, a more significant 

enrichment. 

 

Figure 6. 6 Modules identified from the core enriched genes of predicted Helios target genes to 

DEGs between healthy controls and SLE patients in Th17 cells 
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Three modules within the network of Helios target genes that are core enriched in DEGs 

between healthy controls and SLE patients within Th17 cells. Nodes represent genes, edges 

illustrate the interactions or relationships between the genes. All these genes are found to be 

upregulated in SLE compared to healthy controls, as indicated by the red color of the nodes. 

Central triangle nodes denote the hub genes within each module. These are identified as IRF4 

(Interferon Regulatory Factor 4) in Module 1, CBFB (Core-Binding Factor Subunit Beta) in 

Module 2. 

 

6.3.6 Correlation between IKZF2 and Helios’ core predicted target genes 

related to SLE in Th1 and Th17 cells 

 

Out of the 1193 predicted target genes of Helios in within Th1 cells, 103 demonstrate a 

significant correlation with IKZF2, with the criteria of a p-value < 0.05. The range of correlation 

coefficients for these genes spans from -0.17 to 0.87. The top 20 of these core target genes, 

based on their correlation strength, are displayed in Figure 6.7.  

 

Out of the 843 predicted target genes of Helios in Th17 cells, 104 demonstrate a significant 

correlation with IKZF2, with the criteria of a p-value < 0.05 (Figure 6. 8). The range of 

correlation coefficients for these genes spans from -0.10 to 0.76.  

A B 
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Figure 6. 7 Top 20 predicted target genes of Helios in Th1 T cells based on the correlation with 

IKZF2 in Th1 cells of SLE patients 

 

Each bar indicates the correlation coefficient (cor) for a specific gene with IKZF2, with the 

length of the bar representing the strength of the correlation. The color of the bars corresponds 

to the p-value of the correlation, with blue shades indicating a higher level of significance and 

red shades indicating lower significance. The genes are ordered from top to bottom by 

decreasing correlation coefficient, with the highest correlation at the top. A p-value less than 

0.05 is considered statistically significant. 

 

Figure 6. 8 Top 20 predicted target genes of Helios in Th17 T cells based on the correlation with 

IKZF2 in Th17 cells of SLE patients 
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Each bar indicates the correlation coefficient (cor) for a specific gene with IKZF2, with the 

length of the bar representing the strength of the correlation. The color gradient from blue to 

red corresponds to the p-value associated with each correlation, with darker shades indicating 

lower p-values. Bars in dark blue signify correlations with p-values less than 0.01, and bars in 

red represent correlations with p-values approaching 0.02. All depicted correlations are 

statistically significant, with p-values less than 0.05. 

 

 

 



 
 
 
 

160 
 

6.3.7 Shared Th1 and Th17 cells core enriched target genes of Helios in 

DEGs between controls and SLE 

 

There are 7 genes shared between two gene sets: Core Predicted Target Genes of Helios 

Enriched in Th1 Cells DEGs between controls vs. SLE and Core Predicted Target Genes of Helios 

Enriched in Th17 Cells DEGs between controls vs. SLE. The shared genes are: IFI6 (interferon 

alpha inducible protein 6), FKBP5 (FKBP5 FKBP prolyl isomerase 5), TRIB1 (tribbles pseudokinase 

1), PRDM1 (PR/SET Domain 1), TRAT1 (T Cell Receptor Associated Transmembrane Adaptor 1), 

LINC00426, CCND3 (cyclin D3).  

 

Figure 6. 9  Venn Diagram Illustrating Shared Target Genes of Helios in Th1 and Th17 Cells 

Related to SLE  
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Red Circle represents the core predicted target genes of Helios enriched in Th1 cell DEGs 

between healthy controls and SLE patients.Green Circle denotes the core predicted target 

genes of Helios enriched in Th17 cell DEGs between healthy controls and SLE patients. 

Overlap Area (in Tan) Indicates the seven genes shared between the two gene sets, which are 

IFI6, FKBP5, TRIB1, PRDM1, TRAT1, LINC00426, and CCND3. Numbers Show the count of unique 

and shared genes within each subset or between subsets, highlighting the intersection and 

differences in gene enrichment related to Helios's influence in these T cell types. 

 

6.3.8 Expression Changes and Correlation with IKZF2 of Recognized Key 

Predicted Target Genes of Helios related to SLE 

 

The key predicted target genes of Helios related to SLE were identified by combining three 

groups: shared core enrichment predicted target genes associated with differentially expressed 

genes (DEGs) between healthy controls (HC) and SLE patients, hub target genes of Helios 

specific to SLE-related targets in Th1 cells, and hub target genes of Helios in the context of SLE 

in Th17 cells. The log2 fold changes of these genes, along with their correlation with IKZF2, have 

been extracted and are presented in Table 6.1. 

 

Table 6. 1 Expression Changes and Correlation with IKZF2 of Recognized Key Target Genes of 

Helios in Th1 and Th17 Cells 

Gene Info 

log2FC in 

Th1  

log2FC in 

Th17  

Correlation 

Coefficient with 

IKZF2 in Th1  

Correlation 

with IKZF2 in 

Th17  

IFI6 Shared core genes 2.13  2.23  0.41 0.38 

FKBP5 Shared core genes 1.42  1.00  not sig not sig 

TRIB1 Shared core genes 1.48  0.69  not sig not sig 

PRDM1 Shared core genes 0.41  0.69  not sig not sig 

TRAT1 Shared core genes 0.36  0.58  not sig not sig 

LINC00426 Shared core genes 0.46  0.33  not sig not sig 
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CCND3 Shared core genes 0.42  0.32  not sig not sig 

CCNA2 
Hub gene in 

Th1cells 1.90  0.25  0.25 not sig 

MRPL58 
Hub gene in 

Th1cells 0.42  0.12  0.19 not sig 

CXCR6 
Hub gene in 

Th1cells 0.93  -0.47  not sig not sig 

IRF4 
Hub gene in Th17 

cells 0.53  -0.15  not sig not sig 

CBFB 
Hub gene in Th17 

cells 0.30  0.28  not sig not sig 
 

log2FC, log2 fold change (log2FC) of differentially expressed genes (DEGs) between healthy 

controls (HC) and SLE patients. A positive log2FC indicates that the gene is upregulated in SLE 

patients, while a negative log2FC indicates downregulation. Log2FC values that reached 

significance (adjusted p value < 0.05 in DEG analysis) are shown in bold.  Correlation Coefficient 

with IKZF2: Pearson Correlation Coefficient of the expression of the gene with the expression of 

IKZF2. A positive correlation coefficient means that as the expression of IKZF2 increases, the 

expression of the gene also increases. A negative correlation coefficient means that as the 

expression of IKZF2 increases, the expression of the other gene decreases. Values that reached 

significance (p value < 0.05 in Correlation test) are shown in bold.  not sig, not significant (i.e p 

value >0.05) means the correlation is considered not statistically significant. Shared core genes: 

shared core enrichment predicted target genes associated with differentially expressed genes 

(DEGs) between healthy controls (HC) and SLE patients. Hub gene in Th1cells: hub target genes 

of Helios specific to SLE-related targets in Th1 cells. Hub gene in Th1cells: hub target genes of 

Helios specific to SLE-related targets in Th17 cells 

 

6.4 Discussion 

 

The expression data of IKZF2 across different T cell subtypes in SLE patients compared to 

controls indicates that IKZF2 may play a significant role in SLE pathogenesis. The 

downregulation of IKZF2 in regulatory T cells (Tregs), both natural (nTreg) and effector (eTreg), 
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with statistically significant false discovery rates (FDRs), suggests a possible disruption in 

immune regulation, a key factor in the development of SLE. The marked upregulation in Th1 

and T follicular helper (Tfh) cells, cells known for their roles in promoting inflammation and B 

cell help respectively, points to a potential contribution of IKZF2 in the inflammatory and 

autoantibody-producing processes of SLE. Additionally, the increased expression in naïve and 

memory CD4+ T cells could indicate a role in sustaining immune memory that may contribute to 

disease flares and progression, while the slight increase in Th2 cells could be involved in the 

antibody-mediated aspects of the disease. The minimal change observed in Th17 cells indicates 

that IKZF2's role in these cells may not be central or might involve complex regulatory 

mechanisms not directly related to expression levels. 

 

Gene set enrichment analysis (GSEA) of the predicted target genes of Helios to DEGs between 

healthy controls and SLE patients show the predicted target genes of Helios exhibited a 

remarkable enrichment pattern at the top of the DEGs between healthy controls versus SLE 

patients in Th1 cells and Th17 cells. The high NES and low p-value for DEGs in both cell types 

suggest that the dysregulation of Helios's target genes in Th1 cells and Th17 cells contribute to 

the pathogenesis of SLE. Enrichment at the top of the DEGs list suggests that Helios might play a 

role in activating or enhancing the expression of genes that contribute to the pathogenesis or 

progression of SLE in these two cell types. The analysis identified seven pivotal genes—IFI6, 

FKBP5, TRIB1, PRDM1, TRAT1, LINC00426, and CCND3—that are shared among the core 

predicted targets of Helios in Th1 and Th17 cell subsets. The presence of shared core genes 

between the predicted target genes of Helios in Th1 and Th17 cell DEGs in SLE patients 

compared to healthy controls suggests a fundamental role for Helios in influencing these genes 

across different T cell subsets that are critical in SLE pathogenesis. These genes play crucial 

roles in immune regulation and cell function. IFI6, recognized for its role in type I interferon 

signaling—a pathway crucial to immune responses—is implicated in the etiology and 

progression of SLE. Significant up-regulation of IFI6 in various samples from SLE patients makes 

it as a potential biomarker for the disease [279, 280]. FKBP5, which regulates glucocorticoid 
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receptor function and stress responses, could affect immune system reactivity in SLE. FKBP5 

gene polymorphisms has been found to be associated with depression and glucocorticoids 

efficacy of SLE patients[281]. TRIB1 is implicated in signaling pathways governing cell survival 

and proliferation, influencing immune cell behaviour. PRDM1 (BLIMP-1) is a key regulator in the 

development of plasma cells from B cells and affects T cell regulation, pointing to a role in 

immune tolerance and autoantibody production. TRAT1 contributes to T cell receptor signalling, 

essential for T cell activation and function. LINC00426, a long non-coding RNA, may influence 

gene expression and impact immune function. CCND3 plays a critical role in cell cycle control, 

particularly in lymphocyte proliferation and differentiation. The commonality of these genes 

suggests a role for Helios in mediating inflammatory processes across T cell subtypes, 

potentially contributing to the autoimmune phenomena observed in SLE and providing a link 

between Helios function and disease progression. Detailed studies and experimental validation 

on how Helios regulate these target genes in healthy controls and SLE patients are needed. 

 

I identified 190 Helios target genes are core enriched in differentially expressed genes (DEGs) 

between healthy controls and SLE patients, in Th1 cells, underscores Helios's significant role in 

SLE pathophysiology. The network, comprising 110 nodes and 321 edges, reveals a complex 

interaction pattern, suggesting a broad regulatory impact of Helios in Th1 cell function. This is 

further elucidated by six distinct modules identified using the MCODE plugin in Cytoscape, each 

with a specific hub gene such as FANCI, MRPL4, PSMC3, ZNF683, EIF3I, and IFI6. These modules, 

enriched in diverse pathways like cellular translation, RNA metabolism, stress response, 

mitochondrial translation, protein catabolism, T cell differentiation, cell killing, interferon 

signaling, and innate immune response, highlight the multifaceted nature of Helios's 

involvement. The enrichment in such varied pathways indicates Helios's influence in key 

aspects of Th1 cell function, from fundamental cellular processes to specific immune responses. 

Particularly notable is the role in regulating pathways critical for immune response, like T cell 

receptor signalling, cytokine interactions, and interferon pathways, pointing to Helios's central 

role in the autoimmune dynamics of SLE. This analysis suggests Helios's potential contribution 
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to both the development and exacerbation of autoimmune processes in SLE, highlighting its 

importance in Th1 cell dysregulation. The diverse range of pathways influenced by Helios and 

its target genes in Th1 cells not only provides deeper insight into the complex pathogenesis of 

SLE but also suggests potential therapeutic targets for modulating immune responses in the 

disease, offering new avenues for research and treatment strategies. 

 

In Th17 cells, 70 of Helios’ predicted target genes were found to be centrally contributed to 

differentially expressed genes (DEGs) between healthy controls and SLE patients. These genes 

form a complex network comprising 52 nodes and 137 edges, as revealed through network 

analysis. Functional annotation analysis of these core enriched genes underscored their 

significant enrichment in pathways pivotal to immune system regulation. Key among these 

were pathways involved in cytokine signaling, hematopoiesis, Th17 cell differentiation, 

leukocyte activation, and response to cytokines. Additionally, these genes were implicated in 

signaling by nuclear receptors, responses to viruses, regulation of growth, and apoptosis, 

highlighting their diverse roles in immune response and cellular regulation. Specific pathways 

like Epstein-Barr virus infection, HIV-1 infection, and VEGFA-VEGFR2 signaling were also 

identified, underlining the genes' involvement in varied biological processes and diseases. I 

delineated three distinct modules within the group of these genes and identified three hub 

genes within these modules, namely IRF4, CBFB and CXCR6.  MUM1 /IRF4 has been implicated 

in lupus pathogenesis, particularly through its involvement in dendritic cell dysfunction [240], 

and has been associated with specific gene expression signatures in SLE [241]. IRF4 deficiency 

has been observed to reduce lupus nephritis, albeit with increased systemic cytokine 

production, indicating its complex influence in SLE [242]. The role of IRF4 in SLE is further 

underscored by its association with differential microRNA expression patterns in CD4+ and 

CD19+ cells from asymptomatic SLE patients [243] and thalidomide has been found to exert 

anti-inflammatory effects in cutaneous lupus by inhibiting the IRF4/NF-ҡB and AMPK1/mTOR 

pathways [244]. Notable differential expression (log2FC = 0.67, adjusted.p <0.05) of IRF4 

following Helios knockdown in Jurkat T cells was observed in Chapter 3 (Supplementary Table 
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3.1). This significant expression, coupled with the identification of it as a hub gene in the Helios-

regulated network specifically linked to differentially expressed genes in SLE compared to 

healthy controls, highlights the potential of Helios to influence SLE progression through its 

impact on IRF4. The CBFβ subunit, also known as CBFB, is a crucial component of the Runx1-

Cbfβ transcription complex, which plays a significant role in the suppressive function of 

regulatory T cells and in maintaining Foxp3 expression. This complex is essential for the in vivo-

suppressive function of FoxP3+ regulatory T cells, indicating its involvement in immune 

regulation [282].  The findings from the current study suggest it’s involvement as a target gene 

of Helios in the differential expression of genes in SLE compared to healthy controls. Future 

studies should explore the regulatory relationship between Helios and CBFB in greater detail. 

This could involve studying how Helios influences CBFB expression and function especially in 

Treg cells and Th17 cells, and how this, in turn, affects the transcriptional landscape and 

immune cell behaviour in SLE. 

 

Shared core enrichment predicted target genes associated with differentially expressed genes 

(DEGs) between healthy controls (HC) and SLE patients, hub target genes of Helios specific to 

SLE-related targets in Th1 cells, and hub target genes of Helios specific to SLE-related targets in 

Th1 cells made a list of key predicted target genes of Helios in these two cell types. This list was 

curated to prioritize genes based on their differential expression across these two cell types and 

their correlation with the transcription factor IKZF2. IFI6, a shared core gene, demonstrates 

heightened expression in SLE, as indicated by its log2FC values of 2.13 in Th1 and 2.23 in Th17 

cells, coupled with a significant correlation with IKZF2 (0.41 in Th1 and 0.38 in Th17 cells). 

Similarly, CCNA2, identified as a hub gene in Th1 cells, not only shows notable expression 

changes in SLE compared to healthy controls but also exhibits a modest yet significant 

correlation with IKZF2 (correlation coefficient of 0.25). These findings underscore the 

importance of these genes in the context of SLE and their potential regulatory interaction with 

IKZF2.  
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7. Conclusion 

 

The study provides an in-depth analysis of the transcription factor Helios, encoded by IKZF2, 

and its role in T cells, also its impact on SLE. Helios is a key player in SLE pathogenesis, 

predominantly expressed in T cells. The study used bioinformatics to examine Helios binding 

sites and target genes in T cells to understand its function in T cells and its possible role in SLE. 

 

Key findings include the identification of 5,068 Helios binding sites in Jurkat T cells, linked to 

1444 genes, highlighting Helios's extensive role in gene regulation. After Helios knockdown, 

changes in 1,072 genes were observed, affecting processes like cholesterol biosynthesis, 

apoptosis, and T cell receptor regulation. Shared pathways enriched for these two sets of genes 

emphasizes the role of Helios in diverse range of biological processes related to maintaining 

genomic integrity and cellular homeostasis, transcriptional regulation and immune system-

related pathways. 

 

Gene Set Enrichment Analysis was used to link the Helios with SLE by exploring the enrichment 

of predicted target genes of Helios in the differentially expression pattern of SLE. The study 

revealed the enrichment of Helios' predicted target genes at the top of the list of differentially 

expressed genes between healthy controls and SLE patients in Th1 and Th17 cells, indicating its 

potential role in the development of this autoimmune disease within these cell types. Notably, 

190 and 70 Helios’ predicted target genes were identified in Th1 and Th17 cells, respectively, as 

central contributors to these differentially expressed genes. Key hub genes associated with SLE, 

identified using tools like MCODE and Cytohubba in Cytoscape, included CCNA2, MRPL58, 

CXCR6 in Th1 cells, and IRF4 and CBFB in Th17 cells. Moreover, seven genes – IFI6, FKBP5, TRIB1, 

PRDM1, TRAT1, LINC00426, and CCND3 – were core predicted target genes of Helios in both 
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Th1 and Th17 cells, suggesting their fundamental role in SLE pathogenesis. Gene Set Enrichment 

Analysis revealed that the predicted target genes were enriched at the "top" of the list of 

differentially expressed genes when comparing healthy controls and SLE patients in both Th1 

and Th17 cells (with a significance threshold set at p-value <0.05).  

 

The study's findings underscore the significant role of Helios in regulating gene expression and 

immune function in T cells, particularly in the context of SLE. These insights pave the way for 

further research into the molecular mechanisms underlying SLE and highlight the potential of 

targeting Helios and its network of genes for therapeutic interventions in this complex 

autoimmune disease. 
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