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Abstract 
 

This thesis explores the relationships between enzyme mutations and their impact on 

catalytic function. This is considered from two angles: firstly, in cases where missense 

mutations lead to pathological processes in humans, and secondly, from a contrasting 

perspective where mutations confer benefits and are harnessed for the engineering and 

optimization of enzymes. 

 

Through the integration of genomic and proteomic data, two enzymes emerged that are 

correlated with the toxicity of α-synuclein. The P5B-ATPase ATP13A2 and the phosphatase 

Synaptojanin-1 (Synj-1) were independently identified to be implicated in neurodegenerative 

diseases through various mutations. 

 

In Chapter 3, I have modeled ATP13A2, focusing on elucidating details on the active site 

composition, conformation, and the role of specific amino acids in the catalytic reaction. This 

is needed to be able to quantitatively investigate the effect of mutations near the active site 

of the protein, during the different conformational states. I show the binding mode of the ATP 

substrate in the presence of one and two Mg2+ cations, in the E1 conformational state leading 

to E1P. The Molecular Dynamics simulations and QM/MM potential energy scans give strong 

evidence that ATP13A2 completes the autophosphorylation reaction with two Mg2+ ions in 

the active site. I show that without Arg686 the barrier height of the reaction is considerably 

higher while Lys859 is crucial for stabilizing the reactant state. Additionally, upon the analysis 

of the Molecular Dynamics trajectories, several binding pockets are identified, which is likely 

where the ATP13A2 cargo binds. 

 

In Chapter 4, a method for the classification of enzyme variants is proposed, based on the 

predicted effect on the catalytic rate, coming from the mutations. This method is based on 

Molecular Dynamics simulations of the variants at/around the rate-limiting step and 

integration with Machine Learning algorithms. I look at variants that are similar to wild type 

Galactose Oxidase and variants with significant structural differences (> 10 mutations). Some 

of the variants are modeled with non-native substrates to create a model that can classify 



 3 

variants that convert a diverse substrate range. This approach achieves excellent classification 

accuracy and high precision and recall with the current dataset. 

 

In Chapter 5, structural exploration is conducted on the 5-phosphatase domain of 

Synaptojanin-1 (Synj-1). The 5-phosphatase domain is modeled embedded in a membrane, to 

gain insights into its substrate interaction. This modeling work can inform the design of 

inhibitors for disorders in which Synj-1 is overexpressed.  

 

The thesis concludes by introducing a new method for calculating electron transfer rates. This 

method can be applied in the investigation of electron transfer in a biological context 

involving an enzyme mutation. 

 

Overall, this thesis aims to contribute to a deeper understanding of the structural and 

functional implications of missense mutations in several specific cases, using traditional 

physics-based computational approaches and to also test the integration of these methods 

with Machine Learning, in the context of enzyme optimization, particularly when limited 

experimental data is available.  
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      Chapter 1 

INTRODUCTION 
 
1.1 Motivation 
 
Enzymes are essential for life in all six kingdoms – Bacteria, Archaea, Protista, Fungi, Plantae, 

and Animalia. Whether we are referring to the smallest nitrogen-fixing cyanobacteria, the 

fungi which cause pathological processes in plants, or the entirety of Homo sapiens, all 

prokaryotic and eukaryotic species rely for their survival on the precise functioning and 

coordination of various enzymes.1,2 In humans, the loss of catalytic function, caused by 

missense mutations, often results in a range of pathological processes.3–6 Even in cases when 

the catalytic function of an enzyme is not lost, mutations can lead to a range of disorders by 

other mechanisms which will be discussed at length in this thesis.7,8 The understanding of the 

exact mode in which a missense mutation impacts the catalytic activity is detrimental to 

developing and assigning the right therapy. At the same time, the field of enzyme engineering 

has harnessed the power of introducing mutations to create improved biocatalysts for 

biotechnology, biomedicine, and life sciences, capable of catalytic activity and substrate 

selectivity out of reach for native enzymes.9–13 These days enzymes are routinely engineered 

to improve other properties as well, such as enantioselectivity, expressibility, solubility, and 

thermal stability.14 

 

In this thesis, I aim to gain insight into the relationship between structural changes in the 

three-dimensional structure of proteins, caused by missense mutations, and the respective 

effect the structural change has on the catalytic function. In the 3rd chapter of this thesis, I 

explore the ATP13A2 enzyme, in which missense mutations are known to cause a range of 

neurodegenerative diseases,1,15–22 despite the lack of clarity on how some of these mutations 

are implicated in the development of pathology. I use a combination of Molecular Dynamics 

(MD) simulations, Density Functional Theory (DFT), and Quantum Mechanics/Molecular 

Mechanics (QM/MM) calculations to investigate the catalytic mechanism of the wild type 

protein to elucidate details on the binding of ATP and Mg2+ in the active site. I then use these 
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findings to investigate how the substitution of amino acids in the active site affects the 

catalytic function of ATP13A2. This allows us to explain how some mutations may adversely 

affect the catalytic function of the enzyme. In the 4th chapter, I study the effect of missense 

mutations on Galactose Oxidase (GO) where beneficial mutations are utilized to achieve 

enhanced substrate selectivity and improved activity. I use a combination of MD and Machine 

Learning (ML) to predict the effect of a combination of mutations, in combination with non-

native substrates, on the catalytic rate of the GO enzyme. The 5th chapter focuses on the 

integration of genomic and proteomic data to find proteins that are correlated with the 

toxicity of α-synuclein. The protein Synaptojanin-1 (Synj-1) was identified and the first fully 

atomistic model of the 5-phosphatase domain in a membrane-embedded setting was 

provided. Its binding to phosphatidylinositol-4,5-bisphosphate (PIP2), an important lipid in 

membrane trafficking, was also probed in detail. In the final chapter of this thesis, I present a 

new method for the calculation of the rate of electron transfer. This method can be used 

when studying the catalytic mechanism of enzymes and might be of interest in cases where 

the transfer of an electron forms part of the catalytic mechanism. There are many examples 

of this, including in pathological processes. One of these examples is NADH Dehydrogenase 

(Complex I), which is a part of the mitochondrial electron transport chain. Pathological 

mutations of this enzyme and other enzymes that take part in the mitochondrial-encoded 

Electron Transport Chain likely disrupt the rate of electron transfer, leading to energy 

deficiency and mitochondrial dysfunction, contributing to several cancers.23 

 

1.2 Missense mutations and their implication in pathological 
processes 
 
Mutations that happen because a single nucleotide substitution has occurred, and the amino 

acid-encoding codon has changed, are defined as “missense point mutations”. The result is 

that one amino acid in the enzyme sequence gets swapped for a different one (Figure 1.1). 

Mutations can occur naturally during cell division and as a result of extrinsic factors in which 

case the mutation is not inherited and is defined as a somatic mutation.24 Some mutations do 

not occur randomly during the cell division but are rather passed through the progeny and 

are defined as germline mutations. Germline mutations can be neutral and not cause any 

pathogenic effects. However, in the cases when they do, such as in many cancers, the 
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contribution of germline mutations towards the progression and susceptibility of the 

respective cancer, has been quantified and is subject to ongoing research, such as in the 

infamous BRCA1 and 2 genes.25–27 Variants frequently occurring in a population are termed 

polymorphisms and single nucleotide polymorphisms (SNPs) are common genetic variations 

among populations.24 It is important to note that the pattern of inheritance is detrimental – 

dominant missense mutations are such that their presence in one allele is sufficient to cause 

a phenotypic expression of the disorder. Recessive missense mutations, on the other hand, 

require the mutation to be present in all alleles of the gene for the disorder to manifest. In 

this work, the pattern of inheritance is not discussed as the main point of interest is how a 

missense mutation affects the catalytic mechanism of the protein in situations when the 

phenotype resulting from the mutation is already present. In this thesis, the term which will 

be used for an amino acid swap in the protein sequence, resulting from a missense mutation, 

is going to be referred to as a protein mutation. This is usually denoted in the literature with 

p. before the mutation, for example, p.Thr512Ile would mean that at position 512 of the 

protein sequence, a threonine is swapped for isoleucine. This clarification needs to be made 

as some literature sources refer to amino acid swaps as “replacements” while others refer to 

the term “mutations”. Additionally, the terms “protein” and “enzyme” are used 

interchangeably in this thesis as all proteins I have studied are enzymes, but it should be 

clarified that there are cases this doesn’t hold. 

 

The ways in which mutated proteins cause pathological processes can be divided into a few 

categories. The first category that I am going to discuss is the one of protein mutations that 

affect the protein’s thermodynamic stability and folding.28,29 Thermodynamic stability is 

defined as the difference in folding free energy between the native and the denaturated state 

(ΔGf)30 and it can be quantified to calculate the difference in stability between a wild type 

enzyme and a mutated variant. Mutations that impact enzyme stability frequently result in 

accelerated degradation of the enzyme, causing a change in the enzyme's concentration at 

the steady state. For example, specific mutations occurring in the dystrophin protein, which 

is mainly found in muscle cells, lead to misfolding which reduces the presence of properly 

functioning dystrophin, ultimately giving rise to muscular dystrophy. Some of the mutations 

identified in patients with muscular dystrophy have been observed to play a pathological role 
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by causing the protein to not fold correctly in the N-terminal actin-binding domain causing 

dystrophin to aggregate in a cross-beta structure similar to that found in amyloid diseases.31 

 

 
 

Figure 1.1. (A) A DNA sequence of nucleotides and the wild type protein sequence resulting from the 

respective DNA sequence. The three-dimensional structure resulting from the protein sequence is 

shown below. (B) A single nucleotide gets exchanged for a different nucleotide which in some cases 

causes an amino acid swap in the protein sequence. The three-dimensional representation below 

shows how this affects the protein structurally.  

 

Similarly, it has been shown that protein mutations in the human mismatch protein 2 (MSH2) 

give rise to folding defects and subsequent proteasome-dependent speeded degradation. 

Since MSH2 is responsible for recognizing and binding to DNA mismatches occurring when 

the DNA strands are not correctly base-paired during replication, the increased degradation 

of the protein presents itself pathologically as Lynch syndrome, an inherited disorder that 

increases the risk of many types of cancer, in particular colon cancer.32  Protein mutations 

affecting the structural integrity and folding can also contribute to altered protein-protein 

interactions of the mutated variant or affect the interaction with other signaling biomolecules 

or lipids.33,34 This is the case for mutations in the CBS (cystathionine β-synthase) protein 

identified in patients with homocystinuria, a disorder that affects metabolism. Missense 

mutations in CBS change the structural and energetic features of the C-terminal regulatory 
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domain, such that it can no longer undergo conformational changes in response to S-

adenosylmethionine, leaving it in a constantly open conformation.33  These examples from 

pathological processes demonstrate the importance of being able to quantify and evaluate 

the thermodynamic stability of different mutated variants. Computationally, several methods 

exist for evaluating thermodynamic stability such as FoldX,35 Rosetta-ddG,36 and many others. 

FoldX employs an empirical force field and is designed for the prediction of stability upon a 

few mutations. Since it is not very computationally intensive to use, it can be a useful 

supplement to the design of stabilizing mutations.35 Rosetta-ddG, while more 

computationally intensive, aims to predict the change in free energy upon mutation. Rosetta-

ddG’s advantage over a lot of other methods is that it employs sampling techniques to explore 

the conformational space. Its disadvantage is that it is slower and takes a longer time to 

evaluate many structures. The change in ΔG (or ΔΔG), when a point mutation is introduced, 

is a good indication of whether the mutations will be unfavorable in terms of protein stability. 

There are also many Deep Learning (DL) algorithms developed that predict thermodynamic 

stability based on protein sequences and even changes in just a few amino acids.37–39 

 

The second category or mechanism by which missense mutations contribute to the 

presentation and progression of pathological processes is through affected expression and 

localization of the protein within the cell.8,40–42 The effect arising from these types of 

mutations can be quite difficult to predict and evaluate with traditional computational 

methods due to the variability of missense mutations causing mislocalization and the 

immense conformational space that needs to be explored. Recently, DL algorithms such as 

Bidirectional Long Short-Term Memory Networks (LSTMs), which are used for processing 

sequential data such as protein sequences, have achieved great progress in predicting the 

localization of proteins from purely sequence information.43 LSTMs have been successfully 

used to predict the site of expression for a range of protein families and have shown great 

promise in predicting the localization of the protein upon a few amino acid changes.43–45 

 

One of the most common ways mutated proteins contribute to disease progression, however, 

is through the disruption of the protein’s catalytic function.3,46,47 In this thesis, these types of 

mutations are of more interest and will be subject to a more thorough discussion. 
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1.2.1 Subcategories of protein mutations disrupting the catalytic function 
of enzymes 
 

Protein mutations that disrupt the catalytic function can be further divided into 

subcategories. The first subcategory consists of protein mutations that have an immediate 

role in the catalytic mechanism of the respective protein. For example, this could be situations 

in which an amino acid directly coordinates the ion cofactor in the active site or forms 

contacts with the substrate.1,15,48 This subcategory also includes the cases where an amino 

acid directly participating in the catalytic mechanism gets mutated. This could be, for 

example, in situations when the amino acid performing the nucleophilic attack on the 

substrate, gets swapped for a different amino acid that can no longer serve as a 

nucleophile.1,49 Another example for this subcategory is from cases when one of the residues 

in the active site which is involved in proton transfer gets mutated.50 In some of these 

examples, the loss of the catalytic function cannot be rescued, which results in the severity of 

the disease being very pronounced.1 

 

The second subcategory consists of mutations close to the active site that do not take part in 

the catalytic mechanism directly but either interact with other active site residues that are 

involved directly with the catalytic mechanism, change the active site conformation 

geometrically,51 and/or affect substrate binding.52 Most notably, when the electrostatic 

potential in the active site is different, as in a situation when a negatively or positively charged 

amino acid gets mutated to a neutral one, this can decrease the overall affinity of the mutated 

variant for the active site substrate.53 The difference from subcategory I is that here the 

mutated amino acid is not needed to create a direct interaction with the substrate such as a 

stabilizing hydrogen bond but rather changes the overall affinity of the active site, i.e. the Km 

constant is different. This is the case for a lot of ATPases where positively charged amino acids 

like Lys and/or Arg are needed for efficient ATP binding.53  

 

A third subcategory can be considered which constitutes all mutations that are not spatially 

in the immediate active site and/or mutations that affect the binding of substrates in domains 

far from the active site34 which has allosteric implications affecting the catalytic mechanism. 

Without changing the overall topology of the protein significantly, an allosteric signal can 
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transmit the effect of a perturbation to a different site in the protein structure.54,55 This 

category also includes mutations that affect the flexibility of certain loops, which in turn can 

affect binding affinity to other important biomolecules, and again affect the catalytic 

mechanism indirectly.56 This information is summarized in Table 1.1. 

 

Table 1.1 Subcategories of mutations that cause loss-of-catalytic function or affect the catalytic rate 

in enzymes. Examples from particular cases involved in disease are shown in the final row of the table. 

 
Subcategory I Subcategory II Subcategory III 

• mutated residue 

coordinates the 

central metal ion.  

• mutated residue 

coordinates the 

substrate – ATP, 

GTP, etc. 

• mutated residue is a 

nucleophilic base or 

proton/electron 

acceptor. 

• mutated residue 

coordinates another 

amino acid which 

takes part in the 

catalytic mechanism. 

• mutated residue is in 

the immediate 

active site and 

interferes sterically 

with the catalytic 

mechanism. 

• mutated residue 

affects the charge 

distribution of the 

active site. 

• mutated residue is 

not in the immediate 

active site but affects 

substrate binding in 

the active site 

allosterically/affects 

the ability of the 

active site to bring 

together the 

cofactor. 

• H1069Q in ATP7B,48 

Wilson disease. 

• G12C, G12D in 

RAS,3 present in 

many cancers. 

• V94M in UDP-

galactose, 4-

epimerase in type III 

galactosemia.56  

 
 

To illustrate the discussed subcategories, three examples from human disease where 

mutations affect the catalytic rate of the enzyme, are shown in Fig. 1.2. 
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Figure 1.2. (A) An example of subcategory I where the amino acid that gets mutated (H1069) is directly 

involved in the substrate binding by forming a hydrogen bond to the β-phosphate of the substrate. (B) 

Example of subcategory II where the amino acid that gets mutated (G12) is not coordinated to the 

substrate but is in the immediate active site – pathological mutations of this residue are known to 

alter the charge distribution of the active site and introduce bigger amino acids that interfere 

sterically. (C) In this example for subcategory III the amino acid that gets mutated (V94) is not located 

in the immediate active site (it does not coordinate any of the catalytic residues or cofactors) and it 

does not participate in the catalytic mechanism directly but has an effect on the catalytic rate. Crystal 

structures used to illustrate the subcategories are the following: 8IOY57 for the ATP7B protein, 1WQ1 

for HRAS,58 and 1EK559 for the human UDP-galactose.  

 

In the traditional computational approaches, to probe how a protein mutation affects the 

catalytic rate, one needs to have a detailed description of the mechanism in the wild type 

enzyme. Once the catalytic mechanism is known/established, usually a free energy profile is 

obtained for the rate-limiting step. The free energy profile is then obtained for the mutated 

variant.3,60 By comparing differences in properties like Gibbs free energy of activation (ΔG‡), 

it is possible to observe the effect on the catalytic rate coming from the mutation – if the rate 

is slower, unchanged, or faster. Depending on how much the ΔG‡ is affected, it is possible to 

rule out whether there is complete or partial loss-of-catalytic function.  

 

It is also important to introduce the concept of second-site compensatory mutations. These 

types of mutations occur either very close or in a distant location from the original residue 

and can alleviate the negative effects of a primary mutation, remediating the fitness loss of 

the original mutation. Sometimes viruses use this mechanism to restore infectivity even when 
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drastic deleterious mutations at the capsid are present.61 This type of mutation is not well-

understood, despite the important implications arising from the phenomenon. Being able to 

predict this type of mutation is important in the field of enzyme engineering, where a 

mutation desired for one quality, such as enhanced substrate specificity, results in diminishing 

of a different quality, catalytic activity for example. This kind of problem is of interest in the 

work discussed in Chapter 4. 

 

1.3 Missense mutations in enzyme optimization 
 

1.3.1 Directed evolution  
 
One of the strategies for protein engineering is directed evolution. For applications relevant 

to the pharmaceutical industry directed evolution is utilized to improve the substrate 

selectivity and catalytic activity of enzymes, as well as tuning enantio- and regioselectivity. 

The field has progressed considerably since its conceptualization in the 1960s to the point 

where enzymes are routinely engineered to be more active, regio- and enantioselective with 

non-native substrates. An example is the engineering of enzymes capable of biocatalytic 

oxidation. These types of enzymes are excellent choices for renewable oxidation which is not 

harmful to the environment and achieves excellent catalytic turnover without the need to use 

toxic or unsustainable inorganic oxidants.9–13,62 A prominent example is that of Galactose 

oxidase (GO) where the wild type enzyme catalyzes only a narrow range of substrates 

(galactose and galactose-containing oligosaccharides) and does not oxidize secondary 

alcohols but has been successfully engineered to convert a wide range of secondary alcohols, 

including bulky benzylic alcohols, through the application of directed evolution.13 

 

The most common techniques used experimentally to enable directed evolution are error-

prone PCR (epPCR), DNA shuffling, and saturation mutagenesis (SM).62 Error-prone PCR is a 

technique that introduces mutations in already existing protein sequences during the PCR 

amplification process. It is often applied when there is little information on the structure and 

function of an enzyme. It can be considered “random” and requires the screening of large 

protein combinatorial libraries. Error-prone PCR is also useful when there is a specific target 

gene in which diversity is to be introduced through random mutations.62,63 DNA shuffling is a 



 20 

recombination-based technique that tries to mimic the way natural evolution works to create 

beneficial enzymes by the recombination of existing useful genes. It involves the combination 

of DNA fragments from related sequences, such as from homologous genes. Saturation 

mutagenesis (SM) is a technique that substitutes a single codon or a set of codons with all 

possible amino acids at the codon position identified to be of interest. It is common for SM to 

introduce mutations at sites lining the enzyme binding pocket so binding affinity to different 

substrates can be evaluated with different amino acid substitutions. Iterative Saturation 

Mutagenesis (ISM) builds on SM as it factors in the “best” mutant in a library at a given site 

and this mutant is used as the template for SM-based randomization at another site.64 For 

improving selectivity and activity, SM generally achieves better results over error-prone PCR 

and DNA shuffling. All of the techniques described here are performed in a few consecutive 

experimental steps: library creation with new variants, library expression, and library 

screening.62,65 Some methods can generate libraries through solid-phase-based gene 

synthesis or by utilizing the CRISPR gene editing system.66 Rational design is based on 

structural analysis and in-depth computational modeling of enzymes by accounting for the 

physicochemical properties of amino acids. Generally, directed evolution is often 

complemented by rational design. 

 

One of the main setbacks of directed evolution is that very vast combinatorial space needs to 

be explored – even when mutations can be introduced in a small region of interest such as an 

enzyme active site, the combination of possibilities of amino acids is huge. For instance, the 

randomization of 4 amino acids in an active site to all possible amino acid combinations yields 

160,000 enzyme variants that need to be screened. It needs to be pointed out that statistically 

very few missense mutations achieve improved catalytic properties. About 70% of missense 

mutations are estimated to be neutral, 30-50% deleterious, and less than ~1% cause 

improvement of the catalytic properties. This makes it very difficult to identify mutations that 

are beneficial catalytically from such a small structural change and even more difficult to 

predict the effect from a combination of several mutations. In the next section, I am going to 

discuss how Machine Learning (ML) algorithms can be harnessed to learn about the structure-

function relationship in enzymes from the currently existing data. I am going to outline some 

approaches and pitfalls, also discussing the algorithms as a function of the training data 

available. 
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1.3.2 Machine Learning in protein engineering 
 

Machine Learning (ML) has recently become a very popular tool in enzyme engineering, 

largely due to the advancements in the processing power of computers and the wide 

availability of powerful GPUs (Graphical Processing Units). The other main factor is the 

availability of training data, with more than 251 600 000 sequence entries publicly available 

on Uniprot,67,68 and more than 162 000 three-dimensional protein structures deposited in the 

Protein Data Bank (PDB) as of December 2023.69 AlphaFold’s success in predicting the three-

dimensional structure of proteins from just sequence information,70,71 vastly fueled the 

upheaval of Deep Learning (DL) algorithms aiming to predict various properties from protein 

sequences alone.  

 

The main advantage ML has over the experimental techniques mentioned is that once trained 

to have high accuracy, ML algorithms should ideally generalize well on unseen data and can 

make predictions about the effect of unseen mutations. As already mentioned, statistically 

less than ~1% of point mutations achieve improved catalytic properties. This makes the 

deployment of directed evolution and rational design a rather slow and cumbersome process 

that usually takes many months to identify a beneficial mutation. ML does not remove the 

need for directed evolution but can rather make use of already existing data. One of the 

drawbacks of many current ML models is that while the goal is to generalize well on unseen 

data, models are usually only successful when applied to similar proteins to the ones in the 

original training set. Most commonly applied ML models based on standard Convolutional 

Neural Networks (CNNs) generalize poorly on protein predictions for very distinct subfamilies 

from the ones used in the training set. Therefore, the success of the model and the resultant 

predictions rely on the size, type, and quality of the training data. It is not uncommon for 

supervised models to generate negative examples by random association which can be an 

issue when training a binary classifier. For many prediction tasks, the format of the biological 

data is available only from positive examples.72 This is also relevant to my work in Chapter 4, 

where variants of Galactose Oxidase with non-native substrates do not maintain the same 

catalytic rate as the WT GO enzyme. This means that the model does not see a particular class 

of substrates and their interactions with the protein (non-native substrates which achieve 

faster rate of conversion than the WT substrate, for example). Transformer-based 
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unsupervised language models can overcome some of these issues but can also suffer from 

the availability of training data to sample the probability space properly. Due to the high 

dimensionality of many biological problems, relative to the large unseen biological diversity, 

the prediction task can become very challenging. An example can be given from the field of 

computational immunology. A current challenge for Deep Learning models is the task of 

predicting the immunogenicity of an antigen, concerning a particular T-cell receptor response. 

Several components need to be considered by the model – the large variation of antigens, the 

polymorphic nature of human MHC I molecules, and the diversity of T-cell receptor structures. 

Any DL model needs to encode the sequences of all four components but also relies on the 

availability of experimental data, which is very scarce compared to the number of all possible 

pMHC-TCR binding combinations (a conservative estimate predicts >3.6 × 1015).72–74 This is an 

example of where CNN-based and traditional DL classification models are particularly ill-

equipped to deal with the complexity of the biological data. 

 

What type of ML algorithm is deployed depends on the problem at hand. There is no single 

model that is going to outperform the others in all cases – one needs to consider various 

aspects not limited to but including time limits, application, data size, and dimensionality of 

the dataset. 

 

1.3.2.1 Ensemble algorithms 
 

The first point of consideration is the size of the data – for a small number of data points and 

features, commonly utilized are “tree-based” methods which use an ensemble of decision 

trees, such as the Random Forest (RF) or Gradient Boosted Decision Trees (GBDT) algorithms. 

A Random Forest is quick to train, optimize, and evaluate and a good go-to option for 

experimental datasets of limited size, such as the one used in this work. 

 

Decision trees usually work by recursively splitting the dataset into subsets based on the 

calculation of the Gini index, thus selecting the most informative features. The Gini index is 

used to evaluate the quality of a split at each node. Each split is chosen to maximize the 

separation between classes or minimize the variance of the target variable. At each node of 

the tree, a decision is made based on a specific feature and a threshold value (see Figure 1.3). 
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This process continues until a stopping criterion is met, such as a maximum depth or a 

minimum number of samples per leaf.75,76  

 

RFs incorporate a user-defined or default number of decision trees and instead of outputting 

the result of a single decision tree, an RF uses the majority vote to improve the predictive 

accuracy and control over-fitting. Since an RF is built from a bootstrapped sample of the 

training data, and at each split, a random subset of features is considered this introduces 

randomness by ensuring that different data points go into each of the trees. The GBDT 

algorithm, while also an ensemble algorithm, works differently by aiming to create one strong 

learner from the previously weaker learning trees rather than taking the majority vote of the 

decision trees. The RF and GBDT algorithms are utilized and discussed again in Chapters 2 and 

4. 

 

 

 

 

Figure 1.3. (A) Example dataset with 5 variants and two features x0 and x1. The target variable y takes 

binary values 0 and 1, which is an example of a classification task. The two features in this dataset are 

average distances from 3 replicas of a Molecular Dynamics simulation. (B) Example of a single decision 

tree. If a variant has a certain distance x0 bigger than or equal to 4.0 Å, and x1 distance is smaller or 

equal to 2 Å, the variant gets classified in class 1. If x0 is smaller than 4.0 Å, it gets classified in class 0. 

This is a model example where the features are ideal, which is very rarely the case in real-life datasets, 
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hence the need for multiple decision trees. If a condition in a decision node is satisfied, the move is to 

the left and if not satisfied, the move is to the right. 

 

1.3.2.2 Deep Learning approaches 
 

Predicting the structure of a protein is only one of the many aspects of enzyme engineering. 

Predicting properties of the protein that arise from and depend on the dynamics of the folded 

protein and its interaction with other moieties, is a multi-dimensional and very complex 

problem. 

 

To apply any DL model, one generally needs > thousand or at least several thousand data 

points, in the context of protein engineering, a thousand protein sequences or three-

dimensional structures as input. Based on whether one is interested in properties such as 

binding affinity to a peptide or a ligand, information on and encoding of the peptide also 

needs to be available.73,77 It is possible to apply DL models on less data but one has to be 

aware of overfitting. The second point of consideration is whether one is interested in 

predicting a discrete value such as whether a variant is active or inactive towards a certain 

substrate type, or continuous, such as by exactly what value a mutation would affect the 

activation free energy of a catalytic reaction or by how many degrees the thermostability of 

a protein will increase or decrease. Additionally, it is important to consider whether one is 

interested in predicting the effect of a single mutation or a combination of mutation positions. 

What the approach should be also depends on the format of the data available. An RF and 

other tree-based algorithms require all data points to have the same number of features, 

which is not the case for situations when one would be required to encode variant and 

peptide sequences as different variants would have a different number of amino acids or 

atoms, respectively.  Where the sequential data is of varying length LSTMs have shown to 

provide useful solutions.43,44 Most often, the chosen input representation must be adapted 

to proteins of variable lengths and be able to encode the relational information of the protein 

structure.77 Ideally, the protein structure representation should account for the properties to 

make training efficient.  
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It is difficult to decide what the best protein encoding approach is. Generally, a protein 

sequence can be encoded in two ways – by its amino acid sequence or by the physical 

properties of the amino acids. Since amino acids have specific properties like hydrophobicity 

and charge, it is possible to encode an amino acid sequence as a combination of those 

properties. One of the common descriptors is the Identity descriptor which is a one-hot-

encoding binary vector of the 20 natural amino acids. The zScales protein sequence 

descriptor, which uses physicochemical properties calculated from NMR and thin-layer 

chromatography (TLC) data, is represented by a five-dimensional vector descriptor for each 

amino acid. There are numerous ways to encode protein sequences and each might be better 

suited than another, based on what the purpose of the DL model is.78 The BLOSUM62 matrix 

has also been used successfully to encode protein sequences for the prediction of segments 

in sequences, such as which part of the protein sequence belongs to a signaling peptide, etc.79  

 

Currently, many DL algorithms exist that claim to be able to predict with high accuracy 

properties like thermal stability80 and solubility,81 as well as protein binding interfaces82 and 

protein-protein interactions.83 However, predicting catalytic activity, and more specifically 

how activity is influenced by the presence of one or more missense mutations, is very 

challenging. The mapping from sequence to function is tremendously complex because it 

involves thousands of molecular interactions that are coupled over multiple lengths and 

timescales. To the best of my knowledge, there is currently no existing DL architecture that 

can accurately predict the rate of catalysis in mutated proteins, across multiple protein 

subfamilies, relative to the WT enzyme. As already discussed, due to the size of the dataset 

used in my work, DL models were not utilized in Chapter 4. Therefore, a more in-depth 

discussion of possible model architectures will not be presented. This thesis utilizes traditional 

computational approaches to study the effect of missense mutations and integrates those 

with tree-based ML algorithms.  

 

 

  



 26 

Chapter 2  

METHODS 
 
2.1 Molecular Mechanics 
 
Molecular Mechanics (MM) methods, also known as force field methods, are applied for 

systems with many atoms, for example, a protein solvated in water. Since electrons are vastly 

lighter compared to nuclei, they move ultrafast, and it is assumed that the motions of 

electrons average out over the timescale of nuclear motion.  Within the Born-Oppenheimer 

approximation and the framework of MM methods, the electronic motion is ignored. 

Electrons are not present in standard atomistic MM and most atoms are treated as point 

particles. Therefore, the microscopic state of the studied system is described as a function of 

only the position and momenta of the respective point particles. Needless to say, MM-based 

methods cannot calculate accurately properties that depend on the movement of electrons. 

 

2.1.1 Force Field  
 

A force field (FF) is essential for running classical MM Molecular Dynamics (MD) simulations 

as it provides the equations and parameters necessary to describe the potential energy of the 

modeled system. The potential energy of the system consists of the sum of all bonded and 

non-bonded interactions between the particles. 

 

2.1.1.2 Bonded interactions 
 

Bonded interactions encompass interactions between atoms that are connected by covalent 

bonds. These can be bond stretching, angle bending, dihedral or torsional interactions and 

improper torsions.     

 

A harmonic potential with a force constant,  , represents the stretching of covalent 

bonds, with the magnitude of   representing the type and order of the bond. The 
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equilibrium bond length between the two particles is defined as  . The less   deviates 

from the equilibrium bond length , the closer the potential will be to zero. The bond 

potential is described with the following term: 

 

                                                                                       (2.1) 

 

Angle bending is also described with a harmonic potential with the following term: 

 

                         (2.2) 

 

 is the equilibrium angle and the strength of   depends on the atoms in the angle. 

 

The harmonic Urey-Bradley potential is included in some force fields to account for the 

interdependence between bond stretching and angle bending. It defines an equilibrium 

distance , between the 1,3 atoms in a bond angle. 

 

                    (2.3) 

 

The cosine potential which describes dihedral angles of interconnected atoms, , can be 

expressed in a few ways but one of the most widely used expressions is with the following 

term: 

 

              (2.4) 

 

Here  is a set of four connected atoms. Each triplet of atoms  or  defines a half-plane 

and the angle of intersection, , of these half-planes is the dihedral angle. Bond dihedrals 

can be described by a sum of cosine potentials, with minima each at a phase-shift of  , 

with a force constant . 
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The harmonic potential used to model improper angles between atoms  is described 

with the following term: 

 

                                         (2.5) 
 

The sum of these terms makes up the bonded contributions of the FF which need to be 

calculated to obtain the bonded interactions which contribute to the potential energy of the 

system. 

 

Values in the force field that are used for bonded interactions, such as force constants and 

equilibrium values, for example, are specific to the force field used. The work in this thesis is 

done utilizing the all-atom CHARMM36 force field84 and in some cases, the Amber9685 FF and 

generally uses the readily available force constants. Each particle in these FFs gets assigned 

an atom type, rather than simply using the element. This allows to differentiate the 

environment around particles of the same element. For example, a carbon atom bonded to 

oxygen will be assigned a different atom type compared to a carbon atom bonded to another 

carbon. In some cases, wild card parameters are defined. Usually, new organic molecules 

modeled need careful parametrization which is done by quantum mechanics-level methods 

such as DFT calculations and integration of experimental data, for instance, from NMR. 

 

2.1.1.3 Non-bonded Interactions 
 

The Leonard-Jones potential provides a way to calculate the force between two atoms 

continuously with their separation. This way of calculating the force between atoms was an 

advancement over the original hard sphere potential in which the force between two atoms 

was not calculated unless a collision between the said atoms occurred. 

 

The 12-6 Lennard Jones potential is used to describe the van der Waals term of non-bonded 

interactions as it gives rise to both attractive interactions at the medium to long distances 

whilst still providing repulsive potential at short distances.  

 

The Lennard-Jones potential is expressed as:  
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                              (2.6) 
 

where the parameter  represents the strength of interaction and  the distance between 

particles  and . Other functional forms also exist (e.g. 10-6 L-J, Buckingham,86 Morse 

potentials).  

 

The long-range electrostatic interactions can be described using the Coulomb electric 

potential with the following term:  

 

  (2.7) 

                               

Where  and  are the electric charge of the particles  and ;  is the permittivity of free 

space,  is the relative permittivity of the environment that the particles are in and  is 

the distance between the two particles  and .  

 

2.2 Phase Space 
 
To be able to discuss computational simulations of proteins, in particular Molecular Dynamics 

(MD) simulations, it is useful to introduce the concept of Phase Space. The concept comes 

from classical mechanics and is particularly useful in the study of dynamic systems, such as 

molecular systems undergoing thermal motion. For a system containing N atoms, 6N values 

are needed to define the state of the respective system in phase space (3 coordinates per 

atom and 3 components of the momentum).  Since there are multiple dimensions 

corresponding to each particle's position and momentum, the overall phase space is high-

dimensional.  

 

To illustrate this with an example molecule, if one takes the simple hydrocarbon methane, 

which has 5 atoms, there would be 30 values needed to describe the state of methane in 

phase space - three coordinates (x, y, z) describe the position of each of the 5 atoms and three 
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momenta each define a point in the 6N-dimensional phase space. There are cases where this 

does not hold, such as if you have an isotropic potential when the system’s energy will be 

invariant to rotations and translations, therefore, you have 6 fewer degrees of freedom. 

 

Having introduced this concept, one can think of an MD trajectory as a sequence of points in 

phase space that are connected in time as each new configuration is calculated from the 

previous one before it. 

 

2.3 Exploring the Potential Energy Surface 
 
The potential energy of a system is a multi-dimensional function of the coordinates of the said 

system. In most general cases, the potential energy of an enzyme consisting of 2500 atoms 

will be a function of 7500 Cartesian coordinates. The relationship between the energy of a 

protein and its coordinates is usually explained through a potential energy surface (PES). 

Running MD simulations over 1 μs is not always possible due to the computational cost of 

running long simulations. Due to this, many biological events which happen over longer 

timescales, are not going to be observed (for example, protein unfolding). Generally, the 

probability of reaching a state of higher energy decreases exponentially according to the 

Boltzmann factor. For this reason, if we are interested in modeling any rare event, the 

standard approach is to introduce a biasing potential along a chosen reaction coordinate (RC). 

This allows to sample regions of the PES that would otherwise remain unexplored. How this 

biasing potential can be removed to obtain an unbiased surface will be discussed in section 

2.4.4 which summarizes some of the most common unbiasing methods.  

 

A minimum stationary position on the PES represents a structure of the modeled protein in 

which the net inter-atomic force on each atom is close to zero. A minimum on the PES doesn't 

necessarily mean that the net inter-atomic force on each atom is exactly zero. 

Mathematically, a “perfect” stationary point is one at which the first derivative of the 

potential energy with respect to each geometric parameter is zero. In practice, an energy 

minimization of the starting protein structure is performed before the start of any 

conformational sampling to minimize any forces resulting from residue clashes or poor three-
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dimensional structural prediction. The user defines the number of steps for the minimization 

algorithm or the minimum force to be reached in the instruction file. 

 

2.4 Molecular Dynamics 
 
Molecular Dynamics simulations provide a way to ‘observe’ the dynamics of a system of 

interest, from which one can calculate various properties of the respective system. One can 

derive atomic positions in a time sequence by applying Newton’s equations of motion. This 

way of observing the dynamics is deterministic because a new state is calculated from the 

previous state in which the system is found. A trajectory arising from the dynamics of the 

system is obtained by solving the differential equation coming from Newton’s second law: 

 

    (2.8) 

 

Here    is the force acting on a particle with mass   along one coordinate  . 

 

2.4.1 Integration algorithms 
 
When simulating an enzyme comprising of 1000 amino acids, each containing at least 10 

atoms, the force acting on each of the >10 000 particles depends on the position of each 

individual particle with respect to the rest of the simulated particles. Under the influence of 

a continuous potential, the motions of all particles are coupled together, giving rise to a many-

body problem that cannot be solved analytically. In this case, the equations of motion are 

integrated using finite difference methods. The idea behind finite difference methods is that 

the integration stage has to be broken down into small time steps separated by a fixed time 

, which is typically between 1 and 2 femtoseconds in standard protein MD simulations. This 

is done so that at each step, the total force acting on the individual particle is computed as a 

vector sum of its interactions with the other particles in the simulated system. The 

acceleration of the particles is then calculated from the force and combined with positions 

and velocities at time  to generate new positions and velocities at a short time ahead  

During the chosen time interval, the force is assumed to stay constant. The atoms then get 
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moved to new positions, and an updated set of forces acting on each atom is re-calculated in 

an iterative procedure until a user-defined time limit is reached. The time a simulation has 

been run can be calculated by multiplying the time step by the number of steps the user has 

originally pre-defined in the instruction file. The final output is a trajectory in which one can 

observe the dynamics of the system from a starting position, over the course of the selected 

time. The trajectory shows how the dynamic variables change with time.  

 

The Verlet algorithm 
 

Originally developed in 1967, The Verlet algorithm87 laid the foundation for the most popular 

algorithms for integrating the equations of motion used in MD simulations. It uses the 

positions and accelerations at a time t, and the positions from a previous step, to 

calculate new positions at a time ,  . The relationship between the positions, 

and the velocities at a time t can be expressed with the following equations: 

 

        (2.9) 

        (2.10) 

 

Adding the two equations together results in:  

 

        (2.11) 

 

The Verlet algorithm87 suffers from several shortcomings. One of those is that the velocities 

do not appear explicitly in the algorithm. This means that velocities are only available in the 

next step once the positions have been updated. This obviously can result in loss of precision, 

as well as the fact that the contribution of the kinetic energy to the total energy as a function 

of a specific position cannot be computed exactly. An additional shortcoming is that at the 

beginning of the MD simulation, there is only one set of starting positions for all simulated 

entities, however, the Verlet algorithm requires positions from a previous step also, which 

requires to employ some additional methods to calculate the positions at a time step . 

In this sense, the Verlet algorithm is not self-sufficient.  
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The Leap-frog algorithm 

 

An improvement upon the Verlet algorithm87 is the leap-frog algorithm88 which explicitly 

includes the velocity. The name of the algorithm comes from the fact that the velocities are 

updated before the positions, or “leap” before the positions. The positions are then calculated 

and ‘leap’ before the velocities as a result of the following relationships: 

 

        (2.12) 

 

         (2.13) 

  

First, the velocities are calculated from the velocities at a time and the acceleration at a time

.  

 

        (2.14) 

 

The leap-frog algorithm does not solve the problem existing originally with the Verlet – the 

positions and the velocities are not updated simultaneously.  Therefore, it does not solve the 

issue with the kinetic energy mentioned earlier.  

 

The velocity Verlet algorithm 

 

The velocity Verlet algorithm87 developed by Swope et. al. in 1982 allows for the positions, 

velocities, and accelerations to be calculated at the same time using the following 

relationships: 

 

        (2.15) 
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         (2.16) 

 

To obtain the velocities in the final step, the algorithm is implemented as a three-stage 

process. This is because the acceleration is required both at a time step  and . First, 

the positions at a time step  are calculated according to eq. (2.16) using the velocities 

and accelerations at a time . The velocities at a time   are then determined using: 

 

                          (2.17) 

 

This allows us to calculate the acceleration  from the new forces at the current 

positions and finally in the third stage the velocities at a time  can be obtained with 

the following equation: 

 

          (2.18) 

 

2.4.2 Thermostats and barostats 
 
When conducting MD simulations of biological systems, for example of a protein solvated in 

water, the idea is to model the environment in a biological cell as closely as possible. For this 

reason, standard protein simulations are usually run under an almost constant temperature 

and pressure. Thermostat and barostat algorithms are introduced in MD simulations so that 

NVT and NPT ensembles can be sampled correctly. The equilibration stage of an MD 

simulation is a crucial step that is done before the production run or the stage of collecting 

data and making observations. Equilibration involves gradually adjusting the initial 

configuration of the system, typically by applying forces to the atoms or molecules within the 

simulation, until the system reaches a stable state where its properties no longer significantly 

change over time. Usually, the equilibration step of an MD simulation is completed in two 

steps. First, under the NVT ensemble, or canonical ensemble, where the number of particles 

N, the volume V, and the temperature T are constant. This is usually a fairly short step that 
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aims to get the temperature to a certain user-defined constant value or heat up the system. 

The next stage of the equilibration is conducted in the NPT or isobaric-isothermal ensemble 

where the number of particles N, pressure P, and temperature T are constant, and the idea is 

that the pressure gets quickly equilibrated to reach a plateau, while the volume is allowed to 

change. Before the production run of the simulation starts, it is useful to plot the temperature 

and pressure as a function of time to make sure those have reached a plateau. During the 

equilibration stage when the system is heated up, the Berendsen algorithm89 is usually 

applied, which calculates the temperature  at every integration step using the 

following term:  

               (2.19) 

 

Where  is Boltzmann’s constant,  is the velocity of particle ,  is the mass of particle  

 is the number of particles and   is the number of degrees of freedom for the 

particles. 

 

Once  is calculated, the atomic velocities are linearly rescaled by a factor : 

 

                  (2.20) 

 
Barostat algorithms allow to couple pressure baths to MD simulations. The way these 

algorithms work in general is by resizing the size of the simulation box to account for the 

applied pressure. While many barostat algorithms exist, normally some of these are more 

appropriate for the equilibration stage of the simulation. With the Berendsen barostat90,91 the 

pressure is being quickly equilibrated from a starting pressure, while other barostats are more 

appropriate for the production stage of the MD simulation where one assumes that pressure 

is almost constant (Nose-Hoover92,93 or Parinello-Rahman).94 
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The Parinello-Rahman94 barostat is typically used during the production run of the MD 

simulation as it can produce the correct isothermal-isobaric NPT ensemble. To be 

implemented, an extra term is added to the equations of motion: 

 

                  (2.21) 

 

Where b is a matrix representing the box vectors and its equation of motion can be expressed 

with the following term: 

 

               (2.22) 

               (2.23) 

 

Where  is the instantaneous pressure,  is the reference pressure,  is the volume of the 

simulation box,  is the inverse mass parameter matrix determining the strength of the 

pressure coupling. Prime notations indicate the variables of the extended system.   is the 

isothermal compressibility,  is the pressure time constant, and  is the largest box matrix 

element. 

 

2.4.3 Periodic Boundary Conditions 
 
Periodic boundary conditions (PBCs) are introduced in MD simulations to model large systems 

by using a unit cell. For example, a unit cell with water molecules is used to approximate water 

environment. A space-filling simulation box is introduced, images of which are repeated in 

the directions of the unit cell vectors. This is done in order for molecules to be uniformly 

affected by long range interactions regardless of their position. When one object, such as a 

water molecule, reaches the boundary of the box, it exits from one part of the unit cell, and 

appears on the opposite side with the same velocity. PBCs are often used in tandem with the  
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Ewald summation, where the Coulomb term is divided into a short-range component, treated 

in the real space , a long-distance component , treated as reciprocal, and a 

correction term  for when the particle is seeing its own image: 

 

            (2.24) 

 

The reason most MD algorithms use the Ewald summation is the computational cost in 

computing  . The Ewald summation method uses a Fast Fourier Transform (FFT) called 

Particle Mesh Ewald to compute , which considerably speeds up the calculation of 

the Coulomb term as a whole. Having said that, before a simulation starts one needs to set 

the parameters for the Coulomb term such as a cutoff point for the short-range component, 

etc. Simulations need to be overall neutral, otherwise the net electrostatic charge of the 

system will sum to an infinitely large charge, because of the applied PBC. A common practice 

to “neutralize” the simulated system is to add neutralizing ions such as sodium and chloride 

in appropriate concentrations. 

 

2.4.4 Unbiasing methods 
 
To sample rare events, different techniques for enhanced sampling have been developed in 

recent years. The one utilized in my work makes use of a bias potential but there are also 

other enhanced sampling methods that are not limited to the use of a bias potential. Examples 

are temperature-accelerated MD (TAMD),95 Parallel Tampering (Replica Exchange),96 and 

others.97  Most techniques for exploring rare biological events rely on the identification of a 

collective variable (CV), representing a physical pathway, that allows the calculation of the 

free energy profile. Choosing the CVs has to be done very carefully and, in some cases, can be 

quite challenging.97 This is, for example, when one is interested in an unbinding event,97 such 

as a drug molecule leaving an active site, as opposed to a well-defined chemical reaction. 

 
 
 
 
 
 



 38 

Weighted Histogram Analysis Method (WHAM) 
 
Some of the methods for obtaining a free energy profile involve the prior generation of a 

Potential of Mean Force (PMF) which is a biased free energy profile. The PMF represents the 

free energy landscape as a function of the sampled Reaction Coordinate/s (RC/s). 

 

One of the most common and widely used methods to unbias Umbrella Sampling (US)-type 

MD simulations, which reconstructs the free energy profile along one or more chosen RCs, is 

the Weighted Histogram Analysis Method (WHAM).98  

 

Umbrella Sampling is one of the techniques developed to overcome the sampling problem, 

that of higher energy configurations being difficult to visit in unbiased MD simulations. It aims 

to overcome limited sampling at these configurations by restraining the system with added 

bias (typically harmonic potential). A set of   separate umbrella simulations or windows 

are carried out, with an umbrella potential being expressed as:  

 
          (2.25) 

 
The potential restrains the system at the position  with a force constant  . From each of 

the umbrella windows  (the number of those can vary depending on how the RC is split), 

an umbrella histogram is recorded, representing the probability distribution along the RC 

biased by the umbrella potential. WHAM is then used to compute the PMF from the 

histograms. The main idea is that if one knows the probability distribution of the 

configurations with the bias potential, the probability distributions for the unbiased cases can 

also be obtained. 

 

The main equations behind WHAM are: 

 

          (2.26) 
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and  

          (2.27) 

 

With  being the inverse temperature ,  the Boltzmann constant and  the 

temperature, and  is the total number of datapoints in histogram , and  is a free 

energy constant. The statistical insufficiency  is expressed by   with the 

integration autocorrelation time  of umbrella window  .  denotes the unbiased 

probability distribution that is related to the PMF via . 

Here,  is an arbitrary reference point where the PMF is zero.99 WHAM is an 

iterative optimization process that aims to find the optimal unbiasing weights for each 

histogram. The optimized weights are available after convergence is achieved. To obtain the 

free energy profile, one needs to calculate the probability distribution first for the unbiased 

case and then the free energy function. One of the shortcomings of this method is that it 

assumes a proper equilibration sample was created which is often not the case. For example, 

the sampling in some biased runs may not be converged if the dynamics are slow and some 

high energy barrier events are not sampled.100WHAM also disregards the time sequence 

information within simulation trajectories and therefore kinetic information is lost. 

 
Dynamic Histogram Analysis Method (DHAM) 
 
The dynamic histogram analysis method (DHAM)100 has several advantages over WHAM. 

Unlike WHAM, it does not disregard time sequence information. The goal of DHAM is to find 

the equilibrium free energy along a chosen reaction coordinate  in a way that considers 

dynamical information about the resulting time correlations. Unlike WHAM, DHAM is based 

on a global Markov state model (MSM) and uses a maximum likelihood estimate of a Markov 

transition matrix transition probabilities by using joint unbiasing of the transition counts from 

multiple US simulations along discretized RCs. The free energy profile can be obtained from 

the stationary distribution of the resulting Markov transition matrix.101 Rosta and Hummer 

have developed an explicit approximation for this that does not require an iterative 

solution.101 
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The relation between biased and unbiased Markov transition probability matrices M can be 

expressed by solving the Smoluchowski diffusion equation102  for transition probabilities 

 from state  to  within a lag time :  

 

          (2.28) 

 
 
with superscipt  denoting the biased simulation, 0 denoting the unbiased simulation.  is 

the potential energy along the reaction coordinate , and   is the mobility of the 

system. Expanding the squared terms in Equation (2.30) and omitting all  terms lead to the 

square root approximation at short lag times, 

 

          (2.29) 

 .    
 

The unnormalized Markov matrix is defined as: 
 
 

          (2.30) 

 

where data is binned along , and gives the 

transition count from bin to bin  in simulation window , with data saved and analyzed at 

the frequency of the lag time  from the overall length   of simulation .  is 

the number of transitions initiating from bin . The bias   is evaluated at each 

bin center  assuming that the biasing is also done along .  
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2.5 Quantum Mechanics-level based methods 
 
To study bond breaking and bond formation, and chemical reactivity in general, one needs to 

be able to model the movement of electrons. Clearly, for this purpose, we need to move away 

from treating atoms as point particles but rather handle nuclei and electrons separately. 

Electrons taking part in chemical reactions, such as the catalytic reactions modeled in this 

work, need to be described quantum mechanically. All of the Quantum Mechanics (QM) and 

Quantum Mechanics/Molecular Mechanics (QM/MM) methods for calculating various 

properties in this thesis use Density Functional Theory (DFT) as their foundation so I am going 

to give a brief introduction to the main concepts behind DFT. 

 

2.5.1 Density Functional Theory (DFT) 
 
The central idea underpinning DFT is that the total electronic energy is a function of the 

overall electronic density. This concept was originally developed in the 1920s but in 1964 

Hohenberg and Kohn were able to show that the ground state energy of a system and other 

properties are uniquely defined by the electron density of the said system.103 Since every 

electron has three spatial coordinates and one spin coordinate, this makes the  

dimensional electron wavefunction very complex. In contrast, the electron density depends 

only on three spatial coordinates in which the density  is defined, regardless of the size of 

the system. The aim of DFT is to express the electronic energy as a functional of the density: 

 

           (2.31) 

 

Constructing a functional  invokes some problems, because some of the contributions 

from the system are difficult to define and therefore unknown, coming from the many-body 

problem of interacting electrons. The great advancement came from Kohn-Sham’s formalism 

which separated the interacting many-body problem into a set of non-interacting problems. 

They introduced fictitious non-interacting electrons with the same density as the real 

interacting system but with an effective potential that includes the effects of the electron-

electron interaction. These non-interacting electrons are subject to an effective potential, 

which includes contributions from the external potential, the Hartree term (electron-electron 
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repulsion), and an exchange-correlation term. This eventually resulted in the Kohn-Sham 

formalism for the single determinant wavefunction expressed on a set of basis functions.   

 

The summation over the occupied orbitals gives the electron density: 

 

           (2.32) 

 

The total energy functional is then defined as: 

 

          (2.33) 

 

It is possible to compute every part of a Kohn-Sham DFT energy exactly apart from the last 

term, the exchange correlation energy . The non-interacting kinetic energy can be 

calculated with the Kohn-Sham wavefunction, the Coulombic interactions can also be 

calculated and integrated over the density. Only the exact exchange correlation energy 

functional is not known. This term accounts for the quantum mechanical effects of electron 

exchange and correlation. The exchange part involves the antisymmetrization of the electron 

wave function, in order not to break the Pauli exclusion principle, and it is related to the fact 

that electrons are indistinguishable particles. The correlation part captures the quantum 

mechanical effects arising from the electron-electron interactions beyond what is accounted 

for by the mean-field approximation. The exchange-correlation functional must be 

approximated in practical calculations. There are many ways developed to do that through 

the years which will not be the subject of discussion here. 

 
 

2.6 Quantum Mechanics/Molecular Mechanics  
 
The hybrid Quantum Mechanics/Molecular Mechanics (QM/MM) method is a simulation 

method where one part of the simulated system, usually where an important biochemical 

reaction is modeled, is treated quantum mechanically, while the rest of the system is 

simulated with a classical molecular mechanics-based method. The computational cost makes 

it virtually impossible to treat entire proteins quantum mechanically with the current 
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computing capabilities. A solution for this is to adopt QM/MM which allows to model 

biomolecular systems in an efficient way. QM/MM calculations combine the accuracy of ab 

initio methods with the speed of MM-based approaches thus allowing a big part of a protein 

to be simulated with an MM-based method while a much smaller region of interest, such as 

an active site, to be simulated with a QM-based method.  

 

The total energy of the simulated system can be expressed in the following way: 

 

           (2.34) 

 

Where   is the energy of the QM part,  is the energy of the MM region, and  is 

the energy of interaction of the two regions. There are several ways to handle the 

electrostatic coupling which I am going to introduce briefly.   

 

Embedding models which are applied to deal with the interaction energy  focus on 

geometry-based ways to split the whole region into individual parts where the QM/MM 

region in the case of proteins is usually split along individual chemical bonds (C-C bond in an 

amino acid, for example).104  For every bond broken, there are two unpaired atoms that need 

to be somehow “capped”. This is usually done through the introduction of linker atoms, 

usually hydrogens, to take up the free valence and not create a free radical unintentionally. 

 

The simplest way to handle the electrostatic coupling between the QM and the MM regions 

is mechanical embedding. In the case of mechanical embedding, the QM/MM electrostatic 

interaction is treated as the electrostatics in the MM region – QM atoms are assigned the 

force field parameters of the force field used to describe the MM region and non-bonded 

terms are evaluated for pairs across the two regions. Mechanical embedding results in some 

oversimplifications – for example, when a chemical reaction is modeled in the QM region, this 

will result in a change in electron density. When the density changes, it would be expected to 

update the charges of the atoms. However, updating those charges would cause 

discontinuities in the PES. The MM charges assigned from the force field also do not 
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reproduce the true charge distribution of the inner region correctly. There are additional 

issues arising from this simplification, but those will not be discussed currently.105 

 

Electrostatic embedding solves some of the problems introduced by mechanical embedding 

schemes. It defines the MM atoms as point charges in the QM input, thus allowing 

polarization of the electron density by the MM region. It is also possible to include a 

polarization effect or polarizable embedding on the MM atoms, introducing a need for a self-

consistent iteration and a force field describing the MM region which can include 

polarization.105  

 

2.7 Machine Learning  
 

2.7.1 Unsupervised and Supervised Machine Learning 
 
In unsupervised learning, the algorithm’s aim is to find patterns or structures in data, without 

explicit labels. Unlike supervised learning, where the algorithm learns from labeled examples 

provided by a dataset, unsupervised learning operates on unlabeled data, relying solely on 

the inherent structure or relationships within the data. Common unsupervised learning 

methods include dimensionality reduction and clustering. 

 

The most common dimensionality reduction techniques are the Principal Component Analysis 

(PCA) or t-distributed stochastic neighbor embedding (t-SNE), which aim to represent high-

dimensional data in a lower-dimensional space while preserving the essential structure and 

relationships between data points. The signal-to-noise ratio often improves after 

dimensionality reduction, as the reduced-dimensional representation focuses on the most 

informative aspects of the data, leading to clearer patterns and structures.106,107  

 

Clustering algorithms, such as k-means or hierarchical clustering, group similar data points 

together based on their characteristics. Center-based clustering like the k-means algorithm, 

partitions the data into clusters around central points or “centroids”.107 Each data point is 

assigned to the nearest centroid, resulting in clusters that are compact and well-separated. 

However, center-based clustering methods often struggle with non-spherical clusters and are 
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sensitive to initialization bias.107 Hierarchical clustering, on the other hand, builds a tree-like 

hierarchy of clusters, either by agglomerative or divisive approaches. It does not require 

specifying the number of clusters beforehand and can capture clusters of varying shapes and 

sizes. Agglomerative hierarchical clustering starts with each data point as a separate cluster 

and iteratively merges them based on a similarity measure, resulting in a dendrogram that 

illustrates the nested clusters at different levels of granularity.  

 

In supervised learning, one or several target properties, such as the enzyme thermal stability 

or solvent accessible surface area, for example, are predicted based on labeled training data. 

The goal is to engineer a predictor that will return labels/predictions for unseen data points 

on the basis of their descriptors or ‘features’.  Generally, it can be said that what sets apart 

unsupervised from supervised ML is the presence of labels in the training data set. When I 

discuss a predictor or a model, this refers to the mathematical structure by which the 

prediction  is made from the input data . For a linear model, the prediction is based on a 

linear combination of weighted input features.  

 
Principal Component Analysis (PCA) 
 
The most common approach for linear dimensionality reduction is the Principal Component 

Analysis (PCA). It is used as a first-to-go approach in cases when one has many features and 

would like to reduce the dimensions to two or three principal components. The idea behind 

PCA is to define a set of orthogonal components through the eigendecomposition of the 

covariance matrix of the input data. There are 𝑁 components in total, where 𝑁 is the 

dimensionality of the input space. The component with the largest eigenvalue will be the one 

that maximizes the variance when the data is projected on it. By projecting onto the 𝑛 

components with the largest eigenvalues, the input data can be transformed into an 𝑛-

dimensional representation in which the variance amongst data points is maximized. One can 

define the number of principal components that the model can then use for predictions, 

instead of the full set of original features, for example.  
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Clustering algorithms  
 
There are many approaches to clustering that can be taken, depending on the type of data. 

Centroid-based clustering, which was used in this thesis, organizes the input data into non-

hierarchical clusters. The most widely used centroid-based algorithm is k-means.107 It is 

effective for a varying range of data types but as mentioned, it is sensitive to initial conditions 

and outliers.  In the example in Figure 2.1, a PCA is performed on a high-dimensional set of 

features, and the first two principal components are used to check what the clusters will look 

like. This is an example of a very simple way to attempt finding clusters based on datasets 

with n-dimensional data set. 

 

 
 

Figure 2.1. Example of non-hierarchical clustering, based on an initial dimensionality reduction by PCA. 

The two principal components are used to cluster the data using the k-means clustering algorithm. 

 
 
Gradient Boosted Decision Trees 
 
Gradient Boosting is an algorithm that combines many weak learners, such as decision trees, 

into a single strong learner, or model, by iteratively attempting to learn from the prediction 

error of the previous weaker learner.  
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The goal is to make a model  to learn to predict values in the form by minimizing 

the mean squared error  , where  indexes over the training set of size  

of values of the output variable  with: being the predicted value,  the observed value, 

and  is the number of samples . 

 

The gradient boosting algorithm is built in the following way: 

 

          (2.35) 

 

 

This is equivalent to            (2.36) 

 

 

So the algorithm will fit   to . The model  then attempts to improve 

the prediction based on the error of the previous model  . This iterative process repeats 

until a stopping criterion is met, such as a maximum number of iterations or if the (stronger) 

model begins to overfit.108,109 

 

2.7.2 Splitting the Data 
 
Any pre-processed, curated dataset, prepared to be used by a model, is typically split into 

subsets, to assess how effective the trained model will be on unseen data. This is achieved by 

allocating some of the data to training and testing sets, respectively. In this thesis, this was 

done with the scikit-learn implementation of the module train_test_split.110 

 
Training Set 
 

The training dataset is the part of the data that the model sees and learns from, to predict an 

outcome. The more diverse and representative the training data is, the more likely for the 

model to be able to generalize well on unseen data. 
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Testing Set 
 
The testing set is the unseen part of the data used for evaluating the model. It is independent 

of the training set and should have a similar type of probability distribution of classes as the 

training set.  Typically, 20 or 30% of the data is left out for testing but the data could also be 

split in different ways. 

 
Validation Set 
 
The validation set is used to fine-tune the hyperparameters of the model and provide an 

objective unbiased evaluation of the model. 

 

2.7.3 Generalization capability, Overfitting and Underfitting 
 
One of the most important concepts in Machine learning (ML) is the generalization capability 

of a model. This refers to the ability of models to predict/classify data samples never 

encountered before. Usually, two reasons prevent this – overfitting and underfitting. 

Overfitting refers to situations when the model learns too well on the training data. The model 

uses a combination of features that result in learning characteristics of the training set that 

allow it to predict well on the current testing set. However, these features and/or their 

combination are not necessarily suitable to describe similar unseen data. This commonly 

happens when too many features are selected on a dataset with a small sample size (50 

features on a dataset with N=100 samples, for example). Underfitting results from the 

inability of a model to learn enough from the training dataset. Such a model will have poor 

performance in predicting the target variable of unseen data, just as well as in the case of 

overfitting, but for different reasons. To illustrate both concepts, I have generated synthetic 

data with a sine function and added some noise to it. I then fit polynomial regression models 

with different degrees (1, 4, and 15) to the data. As can be seen in Figure 2.2A, the model is 

underfitting and it cannot capture the data. In Figure 2.2B, the degree of the polynomial 

captures the trends in the data. As the degree of the polynomial increases, the model 

becomes more complex and fits the training data more closely. However, this increased 

complexity leads to overfitting, as the model starts capturing noise in the data (Figure 2.2C) 

rather than the underlying pattern. 
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Figure 2.2 (A) A case of underfitting, the model cannot capture the pattern of the data. (B) The data is 

sampled well. (C) The degree of the polynomial is too big and it starts capturing the noise rather than 

real trends in the data, resulting in overfitting. 
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Chapter 3 

Structural Dynamics and Catalytic 

Mechanism of ATP13A2 (PARK 9) 

from Simulations 
 

This Chapter was published in The Journal of Physical Chemistry virtual special issue “Dave 

Thirumalai Festschrift” in 2021 and is reproduced here with permission from: Teodora 

Mateeva, Marco Klähn, and Edina Rosta, ‘Structural Dynamics and Catalytic Mechanism of 

ATP13A2 (PARK9) from Simulations’, J. Phys. Chem. B, DOI:2021, 125, 11835−11847. 

Copyright Journal of Physical Chemistry B 2021. 

 

Summary of the Work  

 

Patients diagnosed with Parkinson’s disease (PD), spastic paraplegia (SPG78), Kufor−Rakeb 

syndrome, neuronal ceroid lipofuscinosis, and other similar neurological disorders often carry 

a varying range of mutations in the ATP13A2 gene.1,16–22,111–113 The mechanism through which 

missense mutations are implicated in Parkinsonism is not always known. Certain protein 

mutations, which are commonly present in carriers of the condition, such as G504R and 

F182L, disrupt the vesicular localization of ATP13A2 and promote the mislocalization of the 

enzyme to the endoplasmic reticulum, thus exposing it to speeded degradation.15 However, 

for a large part of the reported missense mutations, the exact mechanism in which they are 

implicated in pathogenicity, is not clear as they do not alter protein stability or affect 

subcellular localization.15 And while the importance of the enzyme in regulating neuronal 

integrity is established, at the time of the start of this project, there was no three-dimensional 

structure of this transmembrane enzyme and no consensus on the active site composition 

and conformation in terms of the number of ions taking part in the catalytic mechanism and 

the precise mode of ATP binding. This makes it difficult to study how missense mutations 
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close to the active site might affect the catalytic mechanism of ATP13A2 and whether those 

mutations disrupt the catalytic mechanism of the protein directly or indirectly. In this chapter, 

I provide a detailed description of the catalytic reaction leading to the state of the protein 

where Asp513 is autophosphorylated.  The MD and QM/MM simulations provide strong 

evidence that two Mg2+ cations are present at the active site during the catalytic reaction. I 

also elucidated details of the catalytically competent ATP conformation and the binding mode 

of the second Mg2+ cofactor. The exact role of conserved Arg686 and Lys859 catalytic residues 

was demonstrated. 

 

Author Contribution 

 

I conceptualized most of this work; wrote the manuscript and performed all the analysis. All 

bioinformatics research needed for the modeling of this enzyme was done by me, as well as 

all MD simulations. I performed all QM and QM/MM simulations in this paper and analyzed 

the results from the QM calculations and potential energy scans. I produced all the figures in 

the main text and the Supporting Information. My supervisors have approved the manuscript 

in its final form. 

 

Correction 

 

On p.55, section Homology modeling, the correct Uniprot code for the ATP13A2 sequence is 

Q9NQ11. The sequence used to model the protein in this work is correct, however, the 

Uniprot code is either incorrectly reported (Q9HD20) in the original paper, or it has changed 

in the Uniprot database. 
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Future Work 
 

Now that there is an established profile for the wild type enzyme, it would be possible to 

repeat the QM/MM calculations for mutated variants where a mutation implicated in 

neurodegenerative process is identified in proximity to the active site and can be incorporated 

into the QM region. The now available crystal structures with the bound substrate and Mg2+ 

ions fully agree with our model (Fig. 3.9), which validates the QM/MM potential energy scans 

and all of our prior computational calculations. Figure 3.10 shows the mutations with to-be-

determined mode of action as red sticks on the 3D crystal structure (now resolved) of 

ATP13A2 (PDB code: 7N73).114  It can be seen that some of these mutations are located in the 

P and N domains, respectively, are near the active site and possibly interfere with the catalytic 

mechanism.  

 

 
 

Figure 3.9. Starting structure for the QM/MM potential energy scans (wheat sticks) and the crystal 

structure of ATP13A2 (orange sticks) which was resolved after our model (PDB code: 7N75).114 The 

position of the second Mg2+ ion perfectly matches our model, as well as the other residues we 

modeled. The crystal structure is resolved with AlF3 which represents the transition from the E1 to E1P 

state, whereas our model represents the E1 conformational state immediately after ATP binding, so 

slight misalignment is to be expected. 
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Figure 3.10. Crystal structure of ATP13A2 with red sticks depicting mutations whose effect is to be 

determined. Some of these mutations are located in the P and N domains, respectively, and can 

potentially interfere with the ATPase activity of the enzyme. 
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Chapter 4 
 

Machine Learning Classification Pipeline for 

Galactose Oxidase Variants based on Transition 

State Molecular Dynamics 
 
 
4.1 Introduction 
 
Galactose Oxidase (GO) is a monomeric copper-containing oxidoreductase found in several 

fungal species.115–117 It oxidizes the C6-OH hydroxyl of the primary alcohol D-galactose, 

converting it to its corresponding aldehyde. The wild type (WT) intracellular GO catalyzes the 

oxidation of only a narrow range of substrates such as D-galactose and galactose-containing 

oligosaccharides. However, in the last 20 years, the scope of substrates for GO was 

significantly expanded using engineered variants of the enzyme, with the capability of 

converting a range of primary alcohols.118 The substrate scope of GO was also extended to 

secondary alcohols, 13 which is of key importance for the pharmaceutical industry due to their 

role in the synthesis of various compounds with global healthcare impact. Most recently, the 

range of substrates was further expanded to include multiple bulky benzylic alcohols with 

large side chains.119 

 

In the field of GO engineering, variants that retain the optimal catalytic properties of the WT 

enzyme while accommodating a broader range of benzylic substrates are of key importance. 

It is often observed, however, that there exists a trade-off between the expanded substrate 

specificity of a variant and its catalytic capability. Most often, GO variants with widened 

substrate specificity, do not retain the optimal catalytic rate of the WT enzyme. This work 

proposes a new way of utilizing Molecular Dynamics (MD) and Machine Learning (ML) to 

develop a classification pipeline for GO variants based on their predicted catalytic 

performance. The main aim is to be able to predict the effect on the catalytic rate of a GO 

variant (positive/neutral or negative), upon the introduction of a combination of missense 
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mutations. Additional complexity is added to the problem by predicting the effect on the rate 

from missense mutations and when there is a non-native substrate in the active site. The 

problem is handled as a binary classification - two classification categories are established. 

The first category contains all variants with rates falling within the range of the WT enzyme 

(± 1.0 kcal/mol). The second category contains the variants that slow down the rate of 

catalysis considerably (³ 2.9 kcal/mol). The aim is to categorize the variants and predict their 

catalytic efficiency irrespective of whether the substrate is a non-native primary or secondary 

alcohol. The Gibbs free energy of activation (ΔG‡) for the rate-limiting step in the WT GO is 

measured experimentally to be ~13.8 kcal/mol and this is used as a reference value.120 

 
A unique feature of the GO enzyme is the presence of a free radical-coupled copper active 

site,116,121,122 a property of some copper metalloenzymes, combining the reactivity of a free 

radical ligand with a redox-active metal centre (Figure 4.1A).123 The catalytic reaction leading 

to the aldehyde product involves multiple steps with the copper ion adopting several distinct 

oxidation states during the process. Crystal structures of GO from different species are 

available,124,125 which all display the central copper ion bound in a square pyramidal 

coordination to Tyr272, Tyr495, His496, His581, and either a water molecule or an azide ion, 

which is where the alcohol substrate binds (Figure 4.1A). Another important residue in the 

immediate active site is Cys228 which is linked to Tyr272 through a thioether bond and has a 

vital role in the catalytic reaction as mutational studies show a 1000-fold decrease in the 

catalytic rate in the presence of the C228G mutation.116 Trp290 which π-stacks to the Tyr272-

Cys228 moiety is also considered very important for the regulation of entry to the active site  

(Figure 4.1).125 The catalytic mechanism was previously explored experimentally with 

extensive spectroscopic work, isotope substitution experiments123,126, and theoretically with 

DFT.127 There is a general agreement that the alcohol-to-aldehyde conversion is a complex 

multistep process that proceeds with a proton transfer, followed by a hydrogen atom 

transfer, subsequent electron transfer, O2 binding, and reduction. The rate-limiting step 

(Figure 4.1B) is the hydrogen atom transfer from the substrate to the equatorial modified 

tyrosyl radical Tyr272. Full details on all catalytic steps can be found in the works of different 

authors.123,126,127 In this work, only the rate-limiting step is considered, as we are interested 

in predicting the effects on the catalytic rate.  The 3D structure of one of the mutated variants 

(M3-5) is shown in Figure 4.1C with red sticks showing missense mutations on this variant, to 
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illustrate the general location distribution of mutations in variants that convert a wider range 

of alcohols. The TS with one of the non-native substrates is shown in Figure 4.1D. The non-

native alcohols are expected to bind in the active site in the same way as D-galactose, as well 

as other alcohols with similar chemical composition. The active site in GO is not buried deep 

in the protein, as is the case in some other metalloenzymes.  

 

 
 

Figure 4.1. (A) Active site of the wild type crystal structure of GO (PDB code: 2EIE)128 with copper ion 

bound in a square pyramidal geometry and an azide ion. (B) 2D representation of the TS for the rate-

limiting step in the catalytic mechanism of the WT enzyme. The hydrogen atom that is transferred 

from the substrate alcohol to the tyrosyl radical is highlighted in red. Some of the hydrogen atoms are 

not shown for clarity. (C) 3D cartoon representation of the M35 variant of GO, mutated residues are 

represented with red sticks. (D) 3D representation of the TS with 1-phenylethanol (SS1) as the 

substrate.  
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The proposed pipeline involves conducting short MD simulations for 31 variants of GO 

at/around the rate-limiting step of the catalytic mechanism with the following substrates 

bound in the active site: D-galactose (primary alcohol, Figure 4.2A), 1-phenylethanol (SS1) and 

α-Tetrol (S128), (secondary alcohols, Figure 4.2B and C). The reason for conducting the MD 

simulations at/around the TS is that we are interested in predicting the effect on the catalytic 

rate, which is directly related to the rate-limiting step of the enzymatic reaction. The TS for 

the wild type enzyme with D-galactose in the active site was previously found and verified 

using the DFT cluster TS search approach. It should be noted that this TS was verified against 

the accepted catalytic mechanism and the 3D structure of the active site agreed very well.127 

The Cartesian coordinates of the TS structure were used to restrain the active site to ensure 

that subsequent MD simulations sampled in proximity of this rate-limiting TS. The last frames 

from the equilibration run were extracted and for all variants, it was verified that the protein 

adopted a TS-like structure before starting the production run. Throughout the MD 

simulations, the three-dimensional coordinates of the enzyme’s main active site residues are 

kept in a configuration closely resembling the rate-limiting step of the catalytic mechanism 

through the application of restraints (added harmonic potentials), which allows to sample the 

dynamics near the TS, but at the same time keeps the protein at a TS-like structure. I used 

DFT calculations to define the charge distribution in the active site at the TS of the rate-

limiting step and used the obtained partial charges to re-parameterize the FF accordingly. 

 

This approach centers on the hypothesis that since some of the protein mutations in the 

simulated variants occur near the active site, these will affect the three-dimensional 

conformation of the TS structure at/around the rate-limiting step. Affecting the active site 

geometry together with changes in the active site charge distribution is expected to affect the 

energy barrier for the respective step in the catalytic mechanism. By starting the MD 

simulations at the TS conformation of the enzyme, I aim to capture potential displacements 

of the active site relative to the WT GO enzyme. Mutations in variants that slow down the 

reaction considerably are expected to distort the active site more significantly. The underlying 

assumption is that variants with similar catalytic rates to the WT enzyme will experience little 

to no displacement during the rate-limiting step, or similar “behavior” during the MD 

simulations. Consequently, key distances within the active site should remain similar to the 

ones observed for the WT GO. We ran simulations with three replicates for each variant, 
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extracted features from the simulation trajectories, and averaged the values for the features 

over all replicas. Subsequently, we utilized Random Forest and other decision tree-based 

algorithms to classify each variant based on these key features obtained from the TS MD 

simulations.  

 

 
 

Figure 4.2. 3D structures of the alcohol substrates used in this work: (A) D-galactose, (B) 1-

phenylethanol (SS1), (C) α-Tetrol (S128). Key atoms in the hydrogen transfer step are labeled. The 

original atom names from the PDB databank are used.  

 

 
 



 72 

 

Figure 4.3. Proposed pipeline for the classification of GO variants based on their predicted catalytic 

rate. 

 

4.2 Methods 
 
4.2.1 Modeling the GO variants 
 
The structure of the wild type Galactose Oxidase (GO) enzyme was obtained from the Protein 

Data Bank (PDB),69 PDB code: 2EIE.128 All GO mutant structures were generated with Pymol’s 

mutagenesis tool.129 Variants were then compared to crystal structures, where such were 

available, and showed excellent agreement for the side chain conformation of the mutated 

residue.120,125 This confirms that the Pymol mutagenesis tool can reliably predict the most 

likely rotamer of the mutated residue.  

 

To place the substrate in the active site, the 3D structure of D-galactose was aligned to the 

position of the azide ion in the wild type GO crystal structure,125 and it was also aligned to the 

TS geometry previously obtained by a DFT-TS search. The TS was not obtained by me; 

therefore, the approach is not discussed in detail here. The TS structure was only used as a 

reference for the MD simulations and as an input for the charge distribution calculations. All 

subsequent substrates modeled in the active site were aligned to the C6-OH hydroxyl group 

and the H11 atom of D-galactose to make sure the crucial reactive hydroxyl group occupies 

the same space for all substrates and the starting point for the MD simulations is conserved. 

Any potential clashes of the surrounding residues with the non-native substrates were 

resolved during the minimization steps of the MD. 

 
All variants in this work are modeled based on the crystal structure of the WT GO enzyme in 

Fusarium graminearum. First, the M1 variant was created which differs from the WT by five 

missense mutations and one silent mutation, Figure 4.4. M1 was then solvated, minimized, 

and equilibrated and a production run was performed according to the procedure described 

in the MD setup section. The last frame from the production run of the M1 variant was 

extracted and this structure was used for building all M1_383 variants shown in Figure 4.4 

with all possible mutations at position 383. The same procedure was followed for variants 
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W290F, W290G, and W290H. All other variants had a different substrate in the active site 

(S128 or SS1, Figure 4.4), therefore, a structure of the protein already simulated with D-

galactose in the active site could not be used. Instead, the WT crystal structure was used to 

introduce the mutations and then all variants were simulated for 20 ns, to have the same 

overall production run time for all variants.  All features extracted from the MD simulations 

were used after each variant had been subjected to the same overall simulation time. The 

exact mutations present in each variant and the modeled substrate are summarized in Figure 

4.4, as well as in Appendix B (Table SI1). Residues shown in bold orange represent new 

mutations that were not present in the parent variant. In-house Python and bash scripts were 

developed to automate the process and make the inclusion of new mutations 

straightforward. The same applies to the feature extraction process. All variants created from 

Goh1001b modeled in this work (Figure 4.4, grey background) were suggested by and come 

from the work of Yeo W. et al.119 

 

 
 
 

 



 74 

 
 
 
 
Figure 4.4. Diagram illustrating how the GO variants are modeled starting from the WT crystal 

structure. 

 

4.2.2 Parametrization of the active site based on QM calculations 
 

The charge distribution of the active site was evaluated with the electrostatic potential (ESP) 

calculation as implemented in Gaussian 09 ES64L-G09RevE.01.130 All DFT ESP calculations 

were performed at B3LYP/Def2TZVP level of theory with GD3 empirical dispersion.131,132 To 

obtain accurate charge distribution for the TS of the WT protein, the ESP calculation used the 

TS coordinates of the active site as input with the following residues: Y272, C228, F227, Y495, 

H496, H581, the D-galactose substrate, and the copper ion.  
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The charges obtained from DFT were then used to re-parametrize the original force field, to 

reflect the more accurate active site charge distribution at the rate-limiting step. D-galactose 

was replaced with S128 and SS1, respectively, and the charge distribution was re-calculated 

for each substrate. The respective charges were used in the MD simulations. The charge of 

each substrate and active site residue, according to the DFT calculations, are shown in 

Appendix B. Corrections had to be made for all the linker atoms, where applicable, which 

added additional charge to the system. Backbone C and O atoms were generally kept at the 

charge provided in the original FF library. After those corrections, it was made sure that 

mutual charge transfer as predicted by DFT was preserved as well as intramolecular charge 

polarization, while at the same time charges on protein backbone atoms were retained to 

keep the protein FF overall consistent. 

 

4.2.3 Molecular Dynamics setup 
 

All MD simulations were performed with GROMACS version 2020.6.133 The force field used to 

model the systems was CHARMM36.84 The protein was solvated in a cubic water box and the 

water model was TIP3P.134 For the equilibration the Berendsen pressure coupling90,91 was 

combined with the V-rescale thermostat.94 For the production run the Parrinello-Rahman 

pressure coupling94 was combined with the Nose-Hoover temperature coupling89,92 (T = 

298K). The Verlet cut-off scheme was employed to generate pair-lists and the electrostatic 

interactions were evaluated with the Particle Mesh Ewald.135,136 Minimization, equilibration, 

and production steps were completed. The time step of the equilibration was 1 fs for a total 

of 50,000 steps. The time step of the production run was 2 fs for a total of 5,000,000 steps. It 

was further extended for another 5,000,000 steps, for a total of 20 ns simulation time for the 

variants directly modeled from the crystal structure of the WT GO. Considering that the 

simulations were conducted by enforcing the protein's active site to adopt a TS geometry, our 

objective was to use the shortest simulation times feasible while still capturing any active site 

displacement resulting from the presence of missense mutations. This approach anticipates 

a trade-off between applying restraints to maintain the active site at a TS closely matching 

the one obtained by DFT and simultaneously observing displacements of atomic positions 

relative to the WT enzyme simulation. The force constants were decreased iteratively until 

the minimum force could be used which would keep the simulations at an active site 
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conformation similar to the one from the DFT (see Appendix B for force constants). The active 

site structure was evaluated after every different production run (the force constants starting 

from a conservative force and decreasing, depending on the bond type). Overall, 186 MD 

simulations were completed. First, 93 simulations (31 variants, 3 replicas each) were run with 

one set of restraints (Appendix B, Table SI3 and SI4). Then, a further 93 simulations were run 

with a different set of restraints (Appendix B, Table SI3 and SI4). The reason for the second 

set of simulations was because the originally used set of restraints included substrate atoms 

which might not be explicitly present in future substrates. This would limit the possibility of 

expanding the dataset to other bulky secondary alcohols. For this reason, the simulations 

were re-run with the second set of restraints to make sure that the future dataset can be 

inclusive of substrates with a more diverse chemical composition.  

 

4.2.4 Machine Learning 
 
Both machine learning models utilized for classification of the variants in this work are 

decision tree-based algorithms. One of the models is the Random Forest (RF) algorithm. RF is 

based on bootstrap aggregation which means that it divides the dataset into subsets and 

builds trees for the different data subsets. The final classification label comes from the 

majority label predicted by most individual decision trees.   

 

The other model that was tested is the Gradient Boosted Decision Trees (GBDT) algorithm 

which works similarly. However, it does not obtain the result from the majority vote of 

individual trees but rather builds one strong model from the weaker decision trees by 

correcting the error of each previous tree.108,137  

 

All code was written in Python 3.9.6. The Random Forest Regressor, Random Forest Classifier, 

and Gradient Boosted Decision Trees models in this work were used with the implementation 

from scikit-learn 1.2.2.110 The parameters used in the final models are described below for 

each case.  

 

The loss function used for the RF Regressor is the Mean Squared Error (MSE). The MSE is 

calculated in the following way: 
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           (4.1) 

 

Where  is the number of data points,  are the observed values, and  are the predicted 

values. 

 

The loss function used for the RF Classifier and GBDT Classifier is the log loss. It is also known 

as binomial deviance or binary cross-entropy. The log loss is calculated as: 

 

           (4.2) 

 

Where  is the number of samples,  is the binary label (0 or 1),  is the probability of 

the data point being 1 for all   samples. 

 

For the RF regressor, RF and GBDT Classifiers the parameters were set to default in scikit-

learn.  

 

The RepeatedKFold cross validator, as implemented in scikit-learn 1.2.2,110 was used to split 

the data into 100 folds. It was used for both of the described models. The parameters 

specified were n_splits and n_repeats.  n_splits was set to 2 and n_repeats was set to 50, 

which results in 100 unique training and testing sets. To calculate the accuracy with different 

splits, n_splits was also set to 3 and n_repeats set to 50 which gives rise to 150 unique folds 

with 67% training and 33% testing data. The accuracy did not change considerably from the 

use of different ratios. The reported accuracy in the Results section is the one from 100 folds.  

 

Metrics 
 

The metrics used to evaluate the performance of the classification models are discussed 

below.  

 



 78 

The true positive rate (TPR) represents the proportion of actual positive instances that are 

correctly identified by the model. It is calculated as: 

 

 

 

where TP is the number of true positives, and FN is the number of false negatives. 

 

The false positive rate (FPR) is the proportion of actual negative instances that are incorrectly 

identified as positive by the model. It is calculated as: 

 

 

 

where FP is the number of false positives, and TN is the number of true negatives. 

 

A Receiver Operating Characteristic (ROC) curve shows the trade-off between sensitivity and 

specificity. Classifier models that have curves that reach toward the top-left corner 

demonstrate more accurate classification. The Area Under the Curve (AUC) is a quantitative 

measure derived from the ROC curve which represents the area under the ROC curve and 

provides a single scalar value to assess the overall performance of a classification model. A 

higher AUC indicates better model performance, with a value of 1 indicating perfect 

classification performance and a value of 0.5 indicating random guessing.  

 

Classification accuracy, precision, and recall are also reported to evaluate the performance 

of each predictive model. They are represented as: 
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4.2.4.1 Target variable  
 

The experimentally measured kcat value was converted to ΔG‡. Since the rate is only 

dependent on the temperature at which the reaction is taking place, and the ΔG‡, to get the 

barrier for the hydrolysis reaction in kcal/mol, kcat was converted to ΔG‡  by rearranging the 

Eyring equation for ΔG‡ where: kcat is the catalytic constant, kB is the Boltzmann constant, h is 

Planck’s constant, T is the temperature, and ΔG‡ is the Gibbs free energy of activation: 

 

          (4.3)  

 
 

          (4.4)  

 
 
 
ΔG‡ values were used as a target variable in the ML models. To perform binary classification, 

those were converted to two label classes. 0 or 1, which is further discussed in the 4.3 Results 

section. 

 

4.3 Results and Discussion 
 
The distribution of the ΔG‡ values for all GO variants is shown in Figure 4.5. Based on this 

distribution, the cutoff point to sort the variants into a binary classification system was chosen 

to be the following: all variants with ΔG‡ below or at 14.4 kcal/mol were labeled as Class 0, 

whereas all mutant variants with ΔG‡ above 16.7 kcal/mol were labeled as Class 1. First, MD 

simulations were performed with the WT GO enzyme with its native substrate D-galactose. 
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All variants labeled Class 0 had D-galactose in the active site (22 variants) while the rest of the 

variants (9) had SS1 or S128 and were labeled Class 1. 

 

 
 
Figure 4.5. Histogram of the GO variants based on ΔG‡ values for the catalytic reaction. All variants 

with ΔG‡ below 14.4 kcal/mol had D-galactose in the active site. All variants with ΔG‡ > 16.7 kcal/mol 

had SS1 or S128 as the substrate.  

 

Since ΔG‡ for the WT enzyme is estimated to be ~13.8 kcal/mol and there is usually an 

experimental error of 0.5 kcal/mol in the measurement, for a variant to be classified as 

different from the WT, one would consider at least 1.0 kcal/mol difference in the barriers.  

 

4.3.1 Feature selection 
 
The aim was to develop an ML model that can predict the effect of mutations on the catalytic 

rate of variants with different substrates in the active site. For this reason, the features 

utilized by the model need to be present in all substrates and all tested variants. Therefore, 

features had to come only from residues which will remain unmutated in all variants, as well 

as from atoms which will be present in all of the substrates. The original approach was to 
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extract inter-residue distance combinations within 6 Å of the copper ion, as well as angles, 

using a random approach. Then, followed by the extraction of the features, to use an ML 

model to find the most important descriptors, based on supervised learning with labeled 

training data. The idea is that the model will find the pattern which will fit x and create a 

function f(x) that can predict y for a new x. 

 

The cutoff distance of 6 Å was chosen as it contained all the copper-coordinating residues and 

other residues that are generally not used in the directed evolution for GO, except for W290, 

which was not included in any feature selection as it does get mutated in some variants. New 

synthetic features were also generated by using the displacement from the WT, using the 

respective distance in the WT GO as a reference distance, and then subtracting the same 

distance in each respective variant. Other features which could be easily calculated from the 

MD trajectories and were tested as features include the Root Mean Square Deviation (RMSD) 

which was obtained by calculating the deviation of the α-carbons of the protein backbone in 

the starting structure versus the last frame of the production run; and the Root Mean Square 

Fluctuation (RMSF). The overall RMSD and RMSF for the full protein did not appear as useful 

features and were not included in the final feature set. The final set of features that used 

contained only the interatomic distances coming from the active site residues within 6 Å of 

the copper cation. For a table of all features refer to Appendix B, (Tables SI5 and 6). 

 

The final dataset had the following form: 

 

 

 

With 31 representing the number of rows (GO variants) and N representing the number of 

columns (features).  
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The initial strategy for dimensionality reduction was to conduct a PCA on the feature dataset, 

which was followed by k-means clustering. However, this approach yielded 14 variants 

inaccurately clustered, indicating that employing linear dimensionality reduction through PCA 

is not particularly beneficial in this scenario (see Appendix B). 

 
Instead, to find out the most important features to fit the model, a Random Forest Regressor 

(RFR) was employed. The RFR was used as implemented in scikit-learn110 and the scikit-learn 

attribute, feature importance was used, which selects the top features the model learns the 

most from. Since the dataset is very small, features need to be filtered out before a model 

can be fitted in order to prevent overfitting. For this reason, only the top 5 most important 

features were pre-selected. The following 5 features (interatomic distances) emerged as the 

most important: Cu-CZ(Y272), O(Y495)-O6(Sub), O(Y272)-NE2(H581), SG(C228)-C6(Sub), 

SG(C228)-O(Y405), Figure 4.6. The importance is defined as the frequency with which a 

feature is selected by the RFR averaged over all of the folds. For example, a feature that is 

selected by the RFR 100 times over 100 folds of training and testing data, will be the most 

important one. 

 

 
Figure 4.6. (A) The most important features selected by the RFR, ranked by importance. (B) The active 

site residues are shown as purple sticks, and the most important distances are shown with yellow 

dashed lines. 
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As expected, most of the key distances come from the tyrosyl radical which accepts the H 

atom. It is not surprising as this is the key residue in the catalytic reaction and its displacement 

during the rate-limiting step is expected to be detrimental for the catalytic rate. In the TS of 

the WT GO, the distance from the O(Y272) to the HX atom is 1.3 Å and 3.8 Å from the O(Y272) 

to the copper cation. It was observed that with most variants that were predicted to slow 

down the catalytic rate, O(Y272) had a shorter distance to the copper cation and a slightly 

tilted overall orientation. It had also moved from the reference position in the WT and was 

on average further away from the Cu-coordinating nitrogen of H581, relative to the variants 

which do not slow down the rate considerably. The orientation of the C228 residue seems to 

be quite important as well; it is directly linked to Y272 through a thioether bond. This residue 

seems to be critical for the proper functioning of the enzyme, which is confirmed by 

mutational studies,116 and distances from this residue to other residues in the active site need 

to be maintained similar to as in the WT GO enzyme. 

 

The same analysis was also performed for the original 93 MD simulations which had one extra 

restraint between atoms CZ(Y272) and C1(Sub), (details on the restrains are available in 

Appendix B, Tables SI3 and 4). The following five distances emerged as the most important: 

O(Y495)-O(substrate), O(Y272)-NE2(H581), O(Y272)-NE2(H496), O(Y405)-Cu, and SG(C228)-

Cu. Notably, two of the most important distances are the same - O(Y272)-N(H581) and 

O(Y495)-O(Sub) as in the other set of simulations, with the Y272 residue orientation generally 

appearing to be the most important across the two feature datasets. 

 

4.3.2 Performance evaluation 
 

Different models for binary classification were tested to find the one achieving the highest 

accuracy. The most successful model was based on an RF Classifier. 

 

The results from the last 93 simulations are presented (as they contain the reduced restraints 

set that can be used for new substrates also). The average accuracy of the classification 

models was 78 for the RF and 73 for the GBDT model, respectively.  On average, for the best 

model, 24-25 of the 31 variants are classified correctly and 6-7 are classified incorrectly.  The 

reported values are the average of 100 testing sets. The mean ROC is displayed in Fig. 4.7. 
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Figure 4.7. (A) TPR and TFR and ROC curve based on the Random Forest Classifier (RFC) model. (B) TPR 

and TFR and ROC curve based on the Gradient Boosted Decision Trees (GBDT) model. (C) Precision, 

recall, and F1 metrics for the RFC. (D) Precision, recall, and F1 metrics for the GBDT model. 

 

If we look at the individual classification results for each variant, we can gain more insight 

about the effect of single protein mutations. According to the results shown in Figure 4.8, the 

variants with D-galactose in the active site, which have significantly lower experimental kcat 

values (raising the value of ΔG‡ considerably), in particular, N6M1_W, are hardly recognized 

by the model as slowing down the rate. N6M1_R is also classified correctly only 14% of the 

time. This arginine brings a charge close to the active site. Misclassification could occur 

because Arg383-induced polarization is neglected. Potentially, Arg383 changes the 

protonation states of other nearby residues, which is not accounted for in our simulations. 

These two variants being misclassified suggests that this type of TS MD approach is likely not 

sensitive enough to identify active site displacements from variants that differ from the rest 

of the dataset by only 1 mutation (here meaning the other N6M1 variants). The likely reason 



 85 

is also the strong restraints used to keep the coordinates resembling the 3D structure of the 

transition state. However, interestingly W290G and W290F which have only 1 mutation as a 

whole, relative to the WT enzyme, are correctly labeled by the ML model. W290F, which has 

similar kcat to the WT enzyme arguably does not change a lot the overall catalytic rate as 

phenylalanine has a very similar structure to tryptophan, which probably contributes to it 

having similar π-stacking activity, and it behaves similarly in the MD simulations, upon 

inspection of individual active site distances. It should be noted that in the force field used, 

there is no specific term that accounts for π-stacking. The fact that W290G is generally 

correctly classified could mean that the mutation at position 290 is very important, which is 

also previously discussed in mutational studies of GO,125 and due to its significance, it is 

recognized by the ML models. It should also be noted that it is also the amino acid, which is 

closest to the active site, out of the ones which are subject to mutation. It is therefore 

expected that variants that have mutation in position 290 will displace the active site more 

considerably, or at least show more distinct dynamics relative to the ones that do not. 

Unfortunately, W290H is not picked up by the model as Class 1 as the extracted distances 

show it behaved similarly during the MD simulations as W290F. The reason for this could be 

that the protonation state for W290H could be altered and differ from the one we used in our 

simulations. The protonation states for active site histidines can be very difficult to predict 

accurately. The mutation at position 330 is in the immediate location to the active site, and it 

also forms contact with the D-galactose substrate. Since M3-5 and its derivative variants 

contain mutations at both position 290 and 330, it is expected for them to show different 

dynamics during the MD simulations, or at least to present a more significant displacement 

at the active site, relative to the variants that do not have those two mutations, especially 

considering this as a synergistic effect. All of the variants which have a non-native substrate 

in the active site are correctly classified as Class 1. It could be argued in this case that the 

model does not identify the displacement coming from the protein mutations but rather from 

the presence of the non-native substrate. This could be established more concretely once 

variants with non-native substrates with similar rates to WT GO are included in the dataset.  

 



 86 

 
 
Figure 4.8. Percent of times each variant is classified correctly by the RF classification model. Light 

blue and blue bars show that the variant is generally always classified correctly (~80% of the time), 

and green bars show that the variant is predicted correctly most of the time (~70% of the time). 

Variants that are never or rarely predicted correctly are displayed as brown or yellow bars. 

 

Another point of consideration is why this problem was handled as a classification and not a 

regression task. This type of data is possibly more suitable for regression or predicting the 

exact kcat value for each variant. However, at the time when the data was curated, there were 

and still are some conflicting kcat values reported in the literature for some of the variants, in 

some cases having three different kcat values reported for the same variant. This can be due 

to various experimental conditions and factors. This results in ΔG‡ in one of the cases at 13.8, 

14.4 or 14.7 kcal/mol, respectively. However, despite the three different reported values, all 

of the three variants would still fall within Class 0. For this reason, upon the evaluation of the 

data, it was decided to handle this problem as a classification task. There are possible 

shortcomings which need to be mentioned. Most notably, all of the variants should be 

modeled directly from the WT GO crystal structure and simulated for 20 ns. In the case of the 

N6M1_X variants, those were modeled after the M1 variant which was already subject to 10 

ns MD simulations (Figure 4.4). For this reason, the starting structure for all N6M1_X variants 

is slightly different from the WT, M3-5, and M3-5-derived variants. The slightly different 
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starting point for the ML simulations may create a bias in some of the interatomic distances 

which is then picked by the ML models. Ideally, all variants should be modeled from the same 

crystal structure, simulated with the same restraints, for the same overall simulation time, so 

that the extracted distances are comparable. However, it should be pointed out that the 

distances equilibrate in the course of the 20 ns MD and this introduced bias is not likely a 

significant factor. This pipeline offers an excellent alternative for highly accurate variants 

classification, to the more time-consuming QM/MM-based methods, and is also easily 

transferable to other enzymes.  

 

4.4 Conclusion 
 
31 variants of GO were modeled and 3 MD simulations at/around the rate-limiting step were 

performed with each one. Interatomic distances were extracted from the MD trajectories and 

used as features to create an ML model that can predict, based on the dynamical behavior 

during the MD simulations, whether unseen variants will have a similar catalytic rate to the 

WT GO enzyme or the active site will be affected in a way which will slow down the rate of 

catalysis. The best model achieving the highest accuracy of classification was based on a 

Random Forest. This classification approach has advantages over QM-based methods as it 

offers the opportunity to sample conformations, and it can be significantly faster, allowing for 

an easily automated and high throughput approach. 

Future work 
 
 
Currently, the dataset for this ML pipeline is very small, which limits the type of ML that can 

be utilized. I would ideally like to considerably expand the modeled variants and substrates 

to include more secondary alcohols with more diverse structures. Another disadvantage of 

the current dataset, apart from the small sample size, is that all variants for which the rate of 

catalysis is similar to the native enzyme, have the same substrate class in the active site. It 

would be interesting to model variants with non-native substrates where the rate is 

comparable to WT GO or faster. There is currently more experimental data available, 

compared to when this project was started, and with the current automated pipeline, it would 
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be straightforward to simulate more variants and substrates, even from older studies. It might 

be interesting to also include features from MD simulations of the reactant and product states 

and investigate whether that allows the models to achieve higher classification accuracy.  
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Chapter 5 

Combining Data Integration and Molecular 

Dynamics for Target Identification in a-
Synuclein-Aggregating Neurodegenerative 

Diseases: Structural Insights into Synapotojanin-

1 (Synj1) 
 
 

This Chapter was published in The Journal of Computational and Structural Biotechnology in 

2020 and is reproduced here with permission from the authors, ‘Combining data integration 

and molecular dynamics for target identification in α-Synuclein-aggregating 

neurodegenerative diseases: Structural insights on Synaptojanin-1 (Synj1)’, Computational 

and Structural Biotechnology Journal, DOI: 10.1016/j.csbj.2020.04.010. Copyright 

Computational and Structural Biotechnology Journal. 

  

Summary of the Work  

 

The aim of this work is to integrate genomic and proteomic data from toxicity studies of α-

synuclein and to identify protein targets for neurodegenerative diseases. One of the proteins 

identified, which is independently shown to be strongly implicated in Parkinson’s disease 

(PD), is Synapotojanin-1 (synj-1). A wide range of mutations in the gene coding for the protein 

are long known. In this study, we report the full atomistic model of the 5-phosphatase domain 

of synaptojanin-1, embedded in a membrane and show its binding to the substrate (PIP2). 

Details on the binding of PIP2 to the 5-phosphatase domain are needed for targeting of the 

protein in diseases where synj-1 is overexpressed. 
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Author Contribution 

 

This work was originally conceptualized by Edina Rosta, Attila Csikász-Nagy, Paola Piccotti and 

Kirsten Jenkins. Modeling and MD simulations of synj-1 were originally done by Kirsten 

Jenkins/István Szabó but further modeled and refined by me. The bioinformatics analysis and 

final homology models used in the manuscript were done by me, as well as the 2-Mg2+ MD 

simulations used in the final manuscript. Figures were done by me with the exception of 

Figures 5.5 and 5.6 which were produced by István Szabó. The trajectory analysis used in this 

work was done by me, Kirsten Jenkins and István Szabó. Most of the methodology, data 

curation, visualization, writing of the original draft, review & editing was done by me and 

Edina Rosta. All experimental proteomics data collection was done in the lab of Paola Picotti. 

If experimental data was obtained from any other authors/sources, it is mentioned in the text.  

 

The Supporting Information for the article is available in Appendix C. 



 91 

 



 92 

  



 93 

 



 94 

 



 95 

 



 96 

 



 97 

 



 98 

 



 99 

 



 100 

 



 101 

 

 



 102 

Chapter 6 
 
 

Direct Calculation of Electron Transfer Rates 

with the Binless Dynamic Weighted Histogram 

Analysis Method 

 
 

This Chapter was published in The Journal of Physical Chemistry Letters in 2023 and is 

reproduced here with permission from: Zsuzsanna Koczor-Benda, Teodora Mateeva, and 

Edina Rosta, ‘Direct Calculation of Electron Transfer Rates with the Binless Dynamic Histogram 

Analysis Method’, J. Phys. Chem. B, DOI:10.1021/acs.jpclett.3c02624. Copyright Journal of 

Physical Chemistry Letters 2023. 

 
Summary of the Work  

 

Umbrella sampling simulations are commonly employed for situations in which one is 

interested in events that are difficult to visit by unbiased sampling. In these cases, artificial 

bias is applied along a Reaction Coordinate (RC) to visit events that would otherwise remain 

unvisited. The bias can be removed, to obtain global free energy profiles for the respective 

event. An existing method that is commonly applied and achieves this is the Weighted 

Histogram Analysis Method (WHAM), however, WHAM disregards time sequence and kinetic 

information. An alternative method that provides kinetic information is DHAM. Here we 

present Binless DHAM, which extends the applicability of DHAM to high-dimensional and 

Hamiltonian-based biasing, enabling the study of electron transfer (ET) processes. By using 

classical Hamiltonian-based umbrella sampling simulations and electronic coupling values 

from quantum chemistry calculations, Binless DHAM successfully provides ET rates for both 

adiabatic and non-adiabatic ET reactions, with excellent agreement with experimental results. 
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Author Contribution 

 
I set up and performed all MD simulations for the ferrous-ferric model system in water and 

the (Q-TTF-Q)- anion in different solvents, which were used to test the binless DHAM method. 

All QM-level calculations were run by Dr. Zsuzsanna Koczor-Benda. All Hab coupling 

parameters were obtained by Dr. Zsuzsanna Koczor-Benda. The theoretical foundations of the 

method were developed by Prof. Edina Rosta. The original Matlab code used to implement 

this method was developed by Prof. Edina Rosta and later edited, optimized, and tested by 

Dr. Zsuzsanna Koczor-Benda and me. I have later contributed to a Python version of this code. 

All authors contributed to the writing and editing of this text and approved the manuscript in 

its final form. The figures in this manuscript and the corresponding SI information were 

generated with equal contributions from me and Dr. Zsuzsanna Koczor-Benda. 
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      Chapter 7 

CONCLUSION 
 

This thesis aimed to add a new understanding to the role missense mutations play in several 

specific cases, with examples from disease and in enzymes that are of significant importance 

to industrial applications. The thesis achieves this through the use of several computational 

methods such as Molecular Dynamics simulations, DFT calculations, QM/MM simulations, 

and the application of several Machine Learning algorithms. Additionally, a novel method for 

the calculation of the rate of electron transfer, which can be applied in a biological context, 

was developed, and tested on several different model systems.  

 

In the 3rd Chapter, I showed that ATP13A2 conducts the autophosphorylation reaction with 

the assistance of two Mg2+ cations in the active site, as well as the exact mode of ATP binding 

in the E1 conformational state. The QM/MM potential energy scans supported the evidence 

from the MD simulations that the catalytic reaction likely proceeds with two cations in the 

active site, as evidenced by the lower barrier height (7.5 vs. 12.5 kcal/mol). This is now 

supported by crystal structures of the enzyme which capture the two Mg2+ cations,114 

demonstrating the validity of my model. Additionally, the QM/MM potential energy scans 

describe the crucial role of Arg686 and Lys581 in stabilizing the transition and reactant states, 

respectively. The active site Arg and Lys have been shown to be of similar importance in other 

ATPases.53 By providing a full picture of the active site composition and conformation, this 

modeling and simulation work allows the study of the effect of mutations near the active site, 

by expanding the QM region to incorporate more residues. I also found several binding 

pockets in different domains of the protein (P, N, T), after analyzing the dynamics of the 

protein, from MD trajectories. This analysis suggests where the potential substrates of 

ATP13A2 can bind. Some of the pockets, in particular in the transmembrane domain, agree 

with the now experimentally verified binding locations of ATP13A2 cargo.138 
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In the 4th Chapter, I proposed a new method for the classification of enzyme variants, based 

on the predicted effect the protein mutations have on the catalytic rate. I utilized Random 

Forest and Gradient Boosted Decision Trees algorithms, with features extracted from 

Molecular Dynamics simulations of the Galactose Oxidase enzyme at/around the rate-limiting 

step of the alcohol conversion reaction, achieving ~78% in accuracy of classification, as well 

as excellent precision and recall. Predicting the effect on the catalytic rate is particularly suited 

to this type of ML approach, when one is limited by the experimental data available. In 

contrast, Deep Learning models based on, for example, ensembles of CNNs need thousands 

of data points, to be able to achieve accurate classification for this type of problem and are 

therefore not as suitable as the proposed methodology/classification pipeline since in most 

similar situations the experimental data is of limited size. Additionally, MD simulations 

at/around the TS also offer a less time-consuming alternative to QM/MM simulations. 

 

In the 5th Chapter, I modeled and conducted Molecular Dynamics simulations of the 5-

phosphatase domain of synaptojanin-1 (Synj-1), and more specifically its binding to its 

substrate phosphatidylinositol-4,5-bisphosphate (PIP2). This enzyme, similarly, to ATP13A2, 

was independently identified through the integration of genomic and proteomic data, to be 

implicated in various neurodegenerative diseases. Similarly to ATP13A2, mutations in the 

protein give rise to various pathological processes. In this work, we provided the first three-

dimensional structure of the 5-phosphatase domain, embedded in a membrane, and bound 

to its substrate, before the wide availability of tools such as AlphaFold.71 Currently, what Deep 

Learning models still fail to predict accurately is the exact conformation of the active site 

substrates during the different stages of catalytic reactions, as well as the number and role of 

the active site cations. The bioinformatics analysis I performed, homology modeling, and MD 

simulations, identified that the active site residues were highly conserved between Synj-1 and 

some of the Mg2+-dependent DNA restriction endonucleases,139,140 and Synj-1 likely also 

exhibits a two-metal ion catalytic mechanism. Both my MD simulations, and the conserved 

active site, support the hypothesis that this enzyme completes a two-ion dephosphorylation 

of PIP2.  

 

In the 6th Chapter, I modeled several systems to test and apply a novel method for the 

calculation of the rate of electron transfer called Binless Dynamic Weighted Histogram 
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Analysis Method (DHAM). The ferrous-ferric (Fe2+-Fe3+) intermolecular electron transfer 

reaction and the intramolecular electron transfer reaction in the (Q-TTF-Q)- anion represent 

examples of diabatic and adiabatic coupling mechanisms, respectively. It was demonstrated 

that Binless DHAM achieves excellent agreement with experimental measurements in both 

types of electron transfer, achieving a predicted rate of electron transfer of 5.2 x 102 s-1 for 

the ferrous-ferric system in water and 9.97 x 107 s-1 for (Q-TTF-Q)- anion in tBOH, respectively. 

This method for the estimation of the rate of electron transfer rate has not been applied to 

the study of biological systems yet, but it could be tested on enzyme active sites where the 

catalytic reaction involves the transfer of electrons. 
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Table SI1.  All variants modeled and subject of MD simulations in this work. The second column shows 

the mutations present; the third column shows the substrate in the active site, the fourth column 

shows the experimentally obtained kcat value and the last column shows the target label used in the 

ML binary classification. All reported kcat values come from the works of the cited authors,13,101,105 as 

well as from collaborators at A*STAR, Singapore.119 If more than one kcat value is reported, it means 

that there was more than one experimental reporting of it. Values for kcat listed as * were reported in 

ΔG‡ from collaborators and started from 16.7 kcal/mol. 

 

Mutant Missense 

mutations 

Substrate kcat [s-1] Class 

WT none D-galactose 1094 503±16.2 0 
W290F W290F D-galactose 371 ± 43.0 0 
W290G W290G D-galactose 1.66 ± 0.28 1 
W290H W290H D-galactose 0.24 ± 0.004 1 
N6M1 S10P, M70V, 

P136(silent), 
G195E, V494A, 

N535D 

D-galactose 1100 ± 41 0 

N6M1_C383M S10P, M70V, 
P136(silent), 

G195E, C383M, 
V494A, N535D 

D-galactose 510 ± 15 0 

N6M1_C383A S10P, M70V, 
P136(silent), 

G195E, C383A, 
V494A, N535D 

D-galactose 1200 ± 50 0 

N6M1_C383N S10P, M70V, 
P136(silent), 

G195E, C383N, 
V494A, N535D 

D-galactose 410 ± 17 0 

N6M1_C383D S10P, M70V, 
P136(silent), 

G195E, C383D, 
V494A, N535D 

D-galactose 440 ± 3.8 0 

N6M1_C383P S10P, M70V, 
P136(silent), 

G195E, C383P, 
V494A, N535D 

D-galactose 490 ± 17 0 

N6M1_C383E S10P, M70V, 
P136(silent), 

D-galactose 550 ± 9.0 0 
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G195E, C383E, 
V494A, N535D 

N6M1_C383Q S10P, M70V, 
P136(silent), 

G195E, C383Q, 
V494A, N535D 

D-galactose 170 ± 12 0 

N6M1_C383F S10P, M70V, 
P136(silent), 

G195E, C383F, 
V494A, N535D 

D-galactose 190 ± 13 0 

N6M1_C383R S10P, M70V, 
P136(silent), 

G195E, C383M, 
V494A, N535D 

D-galactose 8.8 ± 0.3 1 
 

N6M1_C383G S10P, M70V, 
P136(silent), 

G195E, C383G, 
V494A, N535D 

D-galactose 1100 ± 12 0 

N6M1_C383S S10P, M70V, 
P136(silent), 

G195E, C383S, 
V494A, N535D 

D-galactose 1100 ± 30 0 

N6M1_C383H S10P, M70V, 
P136(silent), 

G195E, C383H, 
V494A, N535D 

D-galactose 210 ± 5.7 1 

N6M1_C383T S10P, M70V, 
P136(silent), 

G195E, C383T, 
V494A, N535D 

D-galactose 3400 ± 300 0 

N6M1_C383I S10P, M70V, 
P136(silent), 

G195E, C383I, 
V494A, N535D 

D-galactose 260 ± 8.5 0 

N6M1_C383V S10P, M70V, 
P136(silent), 

G195E, C383V, 
V494A, N535D 

D-galactose 360 ± 7.8 0 

N6M1_C383K S10P, M70V, 
P136(silent), 

G195E, C383K, 
V494A, N535D 

D-galactose 1100 ± 30 0 

N6M1_C383W S10P, M70V, 
P136(silent), 

D-galactose 0.011 ± 0.0004 1 
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G195E, C383W, 
V494A, N535D 

N6M1_C383L S10P, M70V, 
P136(silent), 

G195E, C383L, 
V494A, N535D 

D-galactose 450 ± 17 0 

M35 S10P, M70V, 
G195E, W290F, 
R330M, Q406T, 
V494A, N535D 

S128 3.5 ± 0.04 

 

1 

M35 S10P, M70V, 
G195E, W290F, 
R330M, Q406T, 
V494A, N535D 

SS1 * 1 

GOH_1052 S10P, M70V, 
G195E, W290F, 
R330M, Q406T, 
V494A, N535D, 
F194A, N245W 

S128 * 1 

GOH_1036 S10P, M70V, 
G195E, W290F, 
R330M, Q406T, 
V494A, F194A 

S128 * 1 

GOH_1021 S10P, M70V, 
G195E, W290F, 
R330M, Q406T, 
V494A, F194A 

S128 * 1 

M35_24 S10P, M70V, 
G195E, W290F, 
R330M, E406T, 
V494A, N535D, 

T130S 

SS1 3.6 ± 0.07 1 

M35_32 S10P, M70V, 
G195E, W290F, 
R330M, E406T, 
V494A, N535D, 
M278T, D517V, 

Y576H 

SS1 3.1 ± 0.05 1 

M35_215 S10P, M70V, 
G195E, W290F, 
R330M, E406T, 
V494A, N535D, 
D413Y, Y436F 

SS1 2.9 ± 0.05 1 
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Table SI2. Total charges of the active site residues and substrates calculated for the TS structure of GO 

with D-Galactose, SS1, and S128. The values are reported in units of electron charge (e). 

 
Residue D-Galactose SS1 S128 

Cu 0.777 0.779 0.411 

Substrate -0.344 -0.612 -0.081 

HX 0.223 0.590 0.548 

C228 -0.369 -0.234 -0.225 

Y272 -0.149 -0.283 -0.411 

H496 0.023 -0.122 0.014 

H581 -0.151 -0.026 0.097 

Y495 -0.088 -0.070 -0.157 

P290 0.078 -0.020 -0.197 

 

 

 

 
 

Figure SI1. (A) Atoms with additional harmonic potentials. (B) The second set of simulations did not 

contain the harmonic restraint between atoms CZ(Y272) and C1 (substrate); the distance is shown 

with blue dashed lines. 
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Figure SI2. Data points clustered based on the first two principal components using k-means 

clustering. 

 

Table SI3. Restraints on interatomic distances used during the MD simulations. The distance marked 

with an asterisk * is not restrained during the second set of 93 simulations. The units are in kJ mol−1 

nm−1. 

 

Atoms Force constant Reference distance (Å) 

HX(Sub)-O(TYX) 10000 1.3 

HX(Sub)-C6(Sub) 10000 1.3 

O6(Sub)-Cu 100000 2.1 

O(TYX)-C6(Sub) 100000 2.6 

O(TYX)-O6(Sub) 100000 3.3 

CZ(TYX)-C1(Sub)* 100000 3.6 

HH(TRR495)-O6(Sub) 5000 1.7 

NE2(HIS581)-CU 10000 1.9 

NE2(HIS496)-CU 10000 1.9 

CD2(HIS496)-CU 10000 3.0 
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CD2(HIS581)-CU 10000 2.9 

 
Table SI4. Restraints on angles during the MD simulations. 

 

Angle Force constant Reference angle 

NE2-CU-NE2(H496, H581) 359.0 153.0 

NE2-O6-NE2(H496, Sub, H581) 359.0 73.2 

CU-O6-C6(Sub) 569.0 129.6 

CE1-NE2-CU(His496) 359.0 124.4 

OH(Y272)-O6-C6(Sub) 359.0 49.7 

 

Table SI5. Reduced set of interatomic distances and distances created from displacement (WT 

reference). 

 

Cu-SG(C228) d1 WT d2 – Variant d2 

Cu-HX(Substrate) d2 WT d3 – Variant d3 

OH(Y272)-Cu d3 WT d4 – Variant d4 

OH(Y495)-Cu d4 WT d5 – Variant d5 

OH(Y272)-NE2(H496) d5 WT d6 – Variant d6 

OH(Y272)-NE2(H581) d6 WT d7 – Variant d7 

OH(Y405)-Cu d7 WT d8 – Variant d9 

CZ(Y272)-C6(Substrate) d8 WT d10 – Variant d10 

CG(Y272)-C6(Substrate) d9 WT d11 – Variant d112 

SG(C228)-C6(Substrate) d10 WT d12 – Variant d12 

OH(Y495)-O6(Substrate) d11 WT d13 – Variant d13 

OH(Y495)-C6(Substrate) d12 WT d14 – Variant d14 

OH(Y405)-O6(Substrate) d13 WT d15 – Variant d15 

CZ(Y272)-SG(C228) d14 WT d16 – Variant d16 

O6(Substrate)-CE1(H496) d15 WT d17 – Variant d17 

Cu-CZ(Y495) d16 WT d18 – Variant d18 

Cu-CZ(C228) d17 WT d19 – Variant d19 

CB(C228)-C6(Substrate) d18 WT d20 – Variant d20 

CZ(Y272)-OH(Y495) d19 WT d21 – Variant d21 
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CZ(Y495)-SG(YC228) d20 WT d22 – Variant d22 

SG(C228)-OH(Y495) d21 WT d23 – Variant d23 

SG(C228)-CZ(Y495) d22 WT d24 – Variant d24 

SG(C228)-OH(Y495) d23 RMSD (First – Last Frame) 

OH(Y405)-OH(Y272) d24 RMSF (First-Last Frame) 

WT d1 – Variant d1  

 

Table SI6. Set of interatomic distances and distances created from displacement (WT reference). 

 

Cu-SG(C228) d1 WT d1 – Variant d1 

Cu-HX(Substrate) d2 WT d2 – Variant d2 

OH(Y272)-Cu d3 WT d3 – Variant d3 

OH(Y495)-Cu d4 WT d4 – Variant d4 

OH(Y272)-NE2(H496) d5 WT d5 – Variant d5 

OH(Y272)-NE2(H581) d6 WT d6 – Variant d6 

C1(Substrate)-Cu d7 WT d7 – Variant d7 

OH(Y405)-Cu d8 WT d8 – Variant d8 

C1(Substrate)-CZ(Y272) d9 WT d9 – Variant d9 

CZ(Y272)-C6(Substrate) d10 WT d10 – Variant d10 

OH(Y272)-C1(Substrate) d11 WT d11 – Variant d11 

CG(Y272)-C6(Substrate) d12 WT d12 – Variant d12 

CG(Y272)-C1(Substrate) d13 WT d13 – Variant d13 

SG(C228)-C6(Substrate) d14 WT d14 – Variant d14 

SG(C228)-C1(Substrate) d15 WT d15 – Variant d15 

OH(Y495)-O6(Substrate) d16 WT d16 – Variant d16 

OH(Y495)-C6(Substrate) d17 WT d17 – Variant d17 

OH(Y495)-C1(Substrate) d18 WT d18 – Variant d18 

OH(Y405)-C1(Substrate) d19 WT d19 – Variant d19 

OH(Y405)-O6(Substrate) d20 WT d20 – Variant d20 

CZ(Y272)-SG(C228) d21 WT d21 – Variant d21 

O6(Substrate)-CE1(H496) d22 WT d22 – Variant d22 

Cu-CZ(Y495) d23 WT d23 – Variant d23 

Cu-CZ(C228) d24 WT d24 – Variant d24 
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CB(C228)-C6(Substrate) d25 WT d25 – Variant d25 

CZ(Y272)-OH(Y495) d26 WT d26 – Variant d26 

CZ(Y495)-SG(YC228) d27 WT d27 – Variant d27 

SG(C228)-OH(Y495) d28 WT d28 – Variant d28 

SG(C228)-CZ(Y495) d29 WT d29 – Variant d29 

SG(C228)-OH(Y495) d30 WT d30 – Variant d30 

OH(Y405)-OH(Y272) d31 RMSD (First – Last Frame) 

WT d1 – Variant d1 RMSF (First – Last Frame) 
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Appendix C 
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Appendix D 
 
Correction 

 
On p. S3, MD simulations of ferrous-ferric ET, this part of the sentence is redundant “.. and 
the LINCS constraint algorithm was used to constrain bonded hydrogens”. 
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