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Abstract

This thesis explores the relationships between enzyme mutations and their impact on
catalytic function. This is considered from two angles: firstly, in cases where missense
mutations lead to pathological processes in humans, and secondly, from a contrasting
perspective where mutations confer benefits and are harnessed for the engineering and

optimization of enzymes.

Through the integration of genomic and proteomic data, two enzymes emerged that are
correlated with the toxicity of a-synuclein. The P5B-ATPase ATP13A2 and the phosphatase
Synaptojanin-1 (Synj-1) were independently identified to be implicated in neurodegenerative

diseases through various mutations.

In Chapter 3, | have modeled ATP13A2, focusing on elucidating details on the active site
composition, conformation, and the role of specific amino acids in the catalytic reaction. This
is needed to be able to quantitatively investigate the effect of mutations near the active site
of the protein, during the different conformational states. | show the binding mode of the ATP
substrate in the presence of one and two Mg?* cations, in the E1 conformational state leading
to E1P. The Molecular Dynamics simulations and QM/MM potential energy scans give strong
evidence that ATP13A2 completes the autophosphorylation reaction with two Mg?* ions in
the active site. | show that without Arg686 the barrier height of the reaction is considerably
higher while Lys859 is crucial for stabilizing the reactant state. Additionally, upon the analysis
of the Molecular Dynamics trajectories, several binding pockets are identified, which is likely

where the ATP13A2 cargo binds.

In Chapter 4, a method for the classification of enzyme variants is proposed, based on the
predicted effect on the catalytic rate, coming from the mutations. This method is based on
Molecular Dynamics simulations of the variants at/around the rate-limiting step and
integration with Machine Learning algorithms. | look at variants that are similar to wild type
Galactose Oxidase and variants with significant structural differences (> 10 mutations). Some

of the variants are modeled with non-native substrates to create a model that can classify



variants that convert a diverse substrate range. This approach achieves excellent classification

accuracy and high precision and recall with the current dataset.

In Chapter 5, structural exploration is conducted on the 5-phosphatase domain of
Synaptojanin-1 (Synj-1). The 5-phosphatase domain is modeled embedded in a membrane, to
gain insights into its substrate interaction. This modeling work can inform the design of

inhibitors for disorders in which Synj-1 is overexpressed.

The thesis concludes by introducing a new method for calculating electron transfer rates. This
method can be applied in the investigation of electron transfer in a biological context

involving an enzyme mutation.

Overall, this thesis aims to contribute to a deeper understanding of the structural and
functional implications of missense mutations in several specific cases, using traditional
physics-based computational approaches and to also test the integration of these methods
with Machine Learning, in the context of enzyme optimization, particularly when limited

experimental data is available.
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Chapter 1

INTRODUCTION

1.1 Motivation

Enzymes are essential for life in all six kingdoms — Bacteria, Archaea, Protista, Fungi, Plantae,
and Animalia. Whether we are referring to the smallest nitrogen-fixing cyanobacteria, the
fungi which cause pathological processes in plants, or the entirety of Homo sapiens, all
prokaryotic and eukaryotic species rely for their survival on the precise functioning and
coordination of various enzymes.>? In humans, the loss of catalytic function, caused by
missense mutations, often results in a range of pathological processes.3® Even in cases when
the catalytic function of an enzyme is not lost, mutations can lead to a range of disorders by
other mechanisms which will be discussed at length in this thesis.”® The understanding of the
exact mode in which a missense mutation impacts the catalytic activity is detrimental to
developing and assigning the right therapy. At the same time, the field of enzyme engineering
has harnessed the power of introducing mutations to create improved biocatalysts for
biotechnology, biomedicine, and life sciences, capable of catalytic activity and substrate
selectivity out of reach for native enzymes.>13 These days enzymes are routinely engineered
to improve other properties as well, such as enantioselectivity, expressibility, solubility, and

thermal stability.4

In this thesis, | aim to gain insight into the relationship between structural changes in the
three-dimensional structure of proteins, caused by missense mutations, and the respective
effect the structural change has on the catalytic function. In the 3™ chapter of this thesis, |
explore the ATP13A2 enzyme, in which missense mutations are known to cause a range of
neurodegenerative diseases,"*>~2? despite the lack of clarity on how some of these mutations
are implicated in the development of pathology. | use a combination of Molecular Dynamics
(MD) simulations, Density Functional Theory (DFT), and Quantum Mechanics/Molecular
Mechanics (QM/MM) calculations to investigate the catalytic mechanism of the wild type

protein to elucidate details on the binding of ATP and Mg?* in the active site. | then use these
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findings to investigate how the substitution of amino acids in the active site affects the
catalytic function of ATP13A2. This allows us to explain how some mutations may adversely
affect the catalytic function of the enzyme. In the 4% chapter, | study the effect of missense
mutations on Galactose Oxidase (GO) where beneficial mutations are utilized to achieve
enhanced substrate selectivity and improved activity. | use a combination of MD and Machine
Learning (ML) to predict the effect of a combination of mutations, in combination with non-
native substrates, on the catalytic rate of the GO enzyme. The 5™ chapter focuses on the
integration of genomic and proteomic data to find proteins that are correlated with the
toxicity of a-synuclein. The protein Synaptojanin-1 (Synj-1) was identified and the first fully
atomistic model of the 5-phosphatase domain in a membrane-embedded setting was
provided. Its binding to phosphatidylinositol-4,5-bisphosphate (PIP2), an important lipid in
membrane trafficking, was also probed in detail. In the final chapter of this thesis, | present a
new method for the calculation of the rate of electron transfer. This method can be used
when studying the catalytic mechanism of enzymes and might be of interest in cases where
the transfer of an electron forms part of the catalytic mechanism. There are many examples
of this, including in pathological processes. One of these examples is NADH Dehydrogenase
(Complex 1), which is a part of the mitochondrial electron transport chain. Pathological
mutations of this enzyme and other enzymes that take part in the mitochondrial-encoded
Electron Transport Chain likely disrupt the rate of electron transfer, leading to energy

deficiency and mitochondrial dysfunction, contributing to several cancers.?3

1.2 Missense mutations and their implication in pathological
processes

Mutations that happen because a single nucleotide substitution has occurred, and the amino
acid-encoding codon has changed, are defined as “missense point mutations”. The result is
that one amino acid in the enzyme sequence gets swapped for a different one (Figure 1.1).
Mutations can occur naturally during cell division and as a result of extrinsic factors in which
case the mutation is not inherited and is defined as a somatic mutation.?* Some mutations do
not occur randomly during the cell division but are rather passed through the progeny and
are defined as germline mutations. Germline mutations can be neutral and not cause any

pathogenic effects. However, in the cases when they do, such as in many cancers, the
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contribution of germline mutations towards the progression and susceptibility of the
respective cancer, has been quantified and is subject to ongoing research, such as in the
infamous BRCA1 and 2 genes.?>"%’ Variants frequently occurring in a population are termed
polymorphisms and single nucleotide polymorphisms (SNPs) are common genetic variations
among populations.?* It is important to note that the pattern of inheritance is detrimental —
dominant missense mutations are such that their presence in one allele is sufficient to cause
a phenotypic expression of the disorder. Recessive missense mutations, on the other hand,
require the mutation to be present in all alleles of the gene for the disorder to manifest. In
this work, the pattern of inheritance is not discussed as the main point of interest is how a
missense mutation affects the catalytic mechanism of the protein in situations when the
phenotype resulting from the mutation is already present. In this thesis, the term which will
be used for an amino acid swap in the protein sequence, resulting from a missense mutation,
is going to be referred to as a protein mutation. This is usually denoted in the literature with
p. before the mutation, for example, p.Thr512lle would mean that at position 512 of the
protein sequence, a threonine is swapped for isoleucine. This clarification needs to be made
as some literature sources refer to amino acid swaps as “replacements” while others refer to
the term “mutations”. Additionally, the terms “protein” and “enzyme” are used
interchangeably in this thesis as all proteins | have studied are enzymes, but it should be

clarified that there are cases this doesn’t hold.

The ways in which mutated proteins cause pathological processes can be divided into a few
categories. The first category that | am going to discuss is the one of protein mutations that
affect the protein’s thermodynamic stability and folding.?#2° Thermodynamic stability is
defined as the difference in folding free energy between the native and the denaturated state
(AG)*° and it can be quantified to calculate the difference in stability between a wild type
enzyme and a mutated variant. Mutations that impact enzyme stability frequently result in
accelerated degradation of the enzyme, causing a change in the enzyme's concentration at
the steady state. For example, specific mutations occurring in the dystrophin protein, which
is mainly found in muscle cells, lead to misfolding which reduces the presence of properly
functioning dystrophin, ultimately giving rise to muscular dystrophy. Some of the mutations

identified in patients with muscular dystrophy have been observed to play a pathological role
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by causing the protein to not fold correctly in the N-terminal actin-binding domain causing

dystrophin to aggregate in a cross-beta structure similar to that found in amyloid diseases.?!

DNA sequence DNA sequence
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@ — >—

Figure 1.1. (A) A DNA sequence of nucleotides and the wild type protein sequence resulting from the
respective DNA sequence. The three-dimensional structure resulting from the protein sequence is
shown below. (B) A single nucleotide gets exchanged for a different nucleotide which in some cases
causes an amino acid swap in the protein sequence. The three-dimensional representation below

shows how this affects the protein structurally.

Similarly, it has been shown that protein mutations in the human mismatch protein 2 (MSH2)
give rise to folding defects and subsequent proteasome-dependent speeded degradation.
Since MSH2 is responsible for recognizing and binding to DNA mismatches occurring when
the DNA strands are not correctly base-paired during replication, the increased degradation
of the protein presents itself pathologically as Lynch syndrome, an inherited disorder that
increases the risk of many types of cancer, in particular colon cancer.3? Protein mutations
affecting the structural integrity and folding can also contribute to altered protein-protein
interactions of the mutated variant or affect the interaction with other signaling biomolecules
or lipids.3334 This is the case for mutations in the CBS (cystathionine B-synthase) protein
identified in patients with homocystinuria, a disorder that affects metabolism. Missense

mutations in CBS change the structural and energetic features of the C-terminal regulatory
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domain, such that it can no longer undergo conformational changes in response to S-
adenosylmethionine, leaving it in a constantly open conformation.3® These examples from
pathological processes demonstrate the importance of being able to quantify and evaluate
the thermodynamic stability of different mutated variants. Computationally, several methods
exist for evaluating thermodynamic stability such as FoldX,3> Rosetta-ddG,3¢ and many others.
FoldX employs an empirical force field and is designed for the prediction of stability upon a
few mutations. Since it is not very computationally intensive to use, it can be a useful
supplement to the design of stabilizing mutations.3® Rosetta-ddG, while more
computationally intensive, aims to predict the change in free energy upon mutation. Rosetta-
ddG’s advantage over a lot of other methods is that it employs sampling techniques to explore
the conformational space. Its disadvantage is that it is slower and takes a longer time to
evaluate many structures. The change in AG (or AAG), when a point mutation is introduced,
is a good indication of whether the mutations will be unfavorable in terms of protein stability.
There are also many Deep Learning (DL) algorithms developed that predict thermodynamic

stability based on protein sequences and even changes in just a few amino acids.?’°

The second category or mechanism by which missense mutations contribute to the
presentation and progression of pathological processes is through affected expression and
localization of the protein within the cell.24%%2 The effect arising from these types of
mutations can be quite difficult to predict and evaluate with traditional computational
methods due to the variability of missense mutations causing mislocalization and the
immense conformational space that needs to be explored. Recently, DL algorithms such as
Bidirectional Long Short-Term Memory Networks (LSTMs), which are used for processing
sequential data such as protein sequences, have achieved great progress in predicting the
localization of proteins from purely sequence information.*® LSTMs have been successfully
used to predict the site of expression for a range of protein families and have shown great

promise in predicting the localization of the protein upon a few amino acid changes.**™*

One of the most common ways mutated proteins contribute to disease progression, however,
is through the disruption of the protein’s catalytic function.34%47 |n this thesis, these types of

mutations are of more interest and will be subject to a more thorough discussion.
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1.2.1 Subcategories of protein mutations disrupting the catalytic function
of enzymes

Protein mutations that disrupt the catalytic function can be further divided into
subcategories. The first subcategory consists of protein mutations that have an immediate
role in the catalytic mechanism of the respective protein. For example, this could be situations
in which an amino acid directly coordinates the ion cofactor in the active site or forms
contacts with the substrate.'>48 This subcategory also includes the cases where an amino
acid directly participating in the catalytic mechanism gets mutated. This could be, for
example, in situations when the amino acid performing the nucleophilic attack on the
substrate, gets swapped for a different amino acid that can no longer serve as a
nucleophile.>*® Another example for this subcategory is from cases when one of the residues
in the active site which is involved in proton transfer gets mutated.’® In some of these
examples, the loss of the catalytic function cannot be rescued, which results in the severity of

the disease being very pronounced.?

The second subcategory consists of mutations close to the active site that do not take partin
the catalytic mechanism directly but either interact with other active site residues that are
involved directly with the catalytic mechanism, change the active site conformation
geometrically,> and/or affect substrate binding.>> Most notably, when the electrostatic
potential in the active site is different, as in a situation when a negatively or positively charged
amino acid gets mutated to a neutral one, this can decrease the overall affinity of the mutated
variant for the active site substrate.”® The difference from subcategory | is that here the
mutated amino acid is not needed to create a direct interaction with the substrate such as a
stabilizing hydrogen bond but rather changes the overall affinity of the active site, i.e. the Km
constant is different. This is the case for a lot of ATPases where positively charged amino acids

like Lys and/or Arg are needed for efficient ATP binding.>3

A third subcategory can be considered which constitutes all mutations that are not spatially
in the immediate active site and/or mutations that affect the binding of substrates in domains
far from the active site3* which has allosteric implications affecting the catalytic mechanism.

Without changing the overall topology of the protein significantly, an allosteric signal can
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transmit the effect of a perturbation to a different site in the protein structure.>*>> This
category also includes mutations that affect the flexibility of certain loops, which in turn can
affect binding affinity to other important biomolecules, and again affect the catalytic

mechanism indirectly.>® This information is summarized in Table 1.1.

Table 1.1 Subcategories of mutations that cause loss-of-catalytic function or affect the catalytic rate

in enzymes. Examples from particular cases involved in disease are shown in the final row of the table.

Subcategory | Subcategory I Subcategory Il
e mutated residue e mutated residue e mutated residue is
coordinates the coordinates another not in the immediate
central metal ion. amino acid which active site but affects
e mutated residue takes part in the substrate binding in
coordinates the catalytic mechanism. the active site
substrate - ATP, e mutated residue is in allosterically/affects
GTP, etc. the immediate the ability of the
e mutated residue is a active  site  and active site to bring
nucleophilic base or interferes  sterically together the
proton/electron with the catalytic cofactor.
acceptor. mechanism.
e mutated residue
affects the charge
distribution of the
active site.
e H1069Q in ATP7B,*® e G12C, G12D in o V94M in UDP-
Wilson disease. RAS,? present in galactose, 4-
many cancers. epimerase in type lll
galactosemia.

To illustrate the discussed subcategories, three examples from human disease where

mutations affect the catalytic rate of the enzyme, are shown in Fig. 1.2.
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Figure 1.2. (A) An example of subcategory | where the amino acid that gets mutated (H1069) is directly
involved in the substrate binding by forming a hydrogen bond to the B-phosphate of the substrate. (B)
Example of subcategory Il where the amino acid that gets mutated (G12) is not coordinated to the
substrate but is in the immediate active site — pathological mutations of this residue are known to
alter the charge distribution of the active site and introduce bigger amino acids that interfere
sterically. (C) In this example for subcategory Ill the amino acid that gets mutated (V94) is not located
in the immediate active site (it does not coordinate any of the catalytic residues or cofactors) and it
does not participate in the catalytic mechanism directly but has an effect on the catalytic rate. Crystal
structures used to illustrate the subcategories are the following: 8I0Y* for the ATP7B protein, 1WQ1
for HRAS,*® and 1EK5> for the human UDP-galactose.

In the traditional computational approaches, to probe how a protein mutation affects the
catalytic rate, one needs to have a detailed description of the mechanism in the wild type
enzyme. Once the catalytic mechanism is known/established, usually a free energy profile is
obtained for the rate-limiting step. The free energy profile is then obtained for the mutated
variant.>%° By comparing differences in properties like Gibbs free energy of activation (AG*),
it is possible to observe the effect on the catalytic rate coming from the mutation —if the rate
is slower, unchanged, or faster. Depending on how much the AG* is affected, it is possible to

rule out whether there is complete or partial loss-of-catalytic function.

It is also important to introduce the concept of second-site compensatory mutations. These
types of mutations occur either very close or in a distant location from the original residue
and can alleviate the negative effects of a primary mutation, remediating the fitness loss of

the original mutation. Sometimes viruses use this mechanism to restore infectivity even when
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drastic deleterious mutations at the capsid are present.®! This type of mutation is not well-
understood, despite the important implications arising from the phenomenon. Being able to
predict this type of mutation is important in the field of enzyme engineering, where a
mutation desired for one quality, such as enhanced substrate specificity, results in diminishing
of a different quality, catalytic activity for example. This kind of problem is of interest in the

work discussed in Chapter 4.

1.3 Missense mutations in enzyme optimization

1.3.1 Directed evolution

One of the strategies for protein engineering is directed evolution. For applications relevant
to the pharmaceutical industry directed evolution is utilized to improve the substrate
selectivity and catalytic activity of enzymes, as well as tuning enantio- and regioselectivity.
The field has progressed considerably since its conceptualization in the 1960s to the point
where enzymes are routinely engineered to be more active, regio- and enantioselective with
non-native substrates. An example is the engineering of enzymes capable of biocatalytic
oxidation. These types of enzymes are excellent choices for renewable oxidation which is not
harmful to the environment and achieves excellent catalytic turnover without the need to use
toxic or unsustainable inorganic oxidants.>"3%2 A prominent example is that of Galactose
oxidase (GO) where the wild type enzyme catalyzes only a narrow range of substrates
(galactose and galactose-containing oligosaccharides) and does not oxidize secondary
alcohols but has been successfully engineered to convert a wide range of secondary alcohols,

including bulky benzylic alcohols, through the application of directed evolution.!3

The most common techniques used experimentally to enable directed evolution are error-
prone PCR (epPCR), DNA shuffling, and saturation mutagenesis (SM).%2 Error-prone PCR is a
technique that introduces mutations in already existing protein sequences during the PCR
amplification process. It is often applied when there is little information on the structure and
function of an enzyme. It can be considered “random” and requires the screening of large
protein combinatorial libraries. Error-prone PCR is also useful when there is a specific target

gene in which diversity is to be introduced through random mutations.®%%3 DNA shuffling is a
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recombination-based technique that tries to mimic the way natural evolution works to create
beneficial enzymes by the recombination of existing useful genes. It involves the combination
of DNA fragments from related sequences, such as from homologous genes. Saturation
mutagenesis (SM) is a technique that substitutes a single codon or a set of codons with all
possible amino acids at the codon position identified to be of interest. It is common for SM to
introduce mutations at sites lining the enzyme binding pocket so binding affinity to different
substrates can be evaluated with different amino acid substitutions. Iterative Saturation
Mutagenesis (ISM) builds on SM as it factors in the “best” mutant in a library at a given site
and this mutant is used as the template for SM-based randomization at another site.®* For
improving selectivity and activity, SM generally achieves better results over error-prone PCR
and DNA shuffling. All of the techniques described here are performed in a few consecutive
experimental steps: library creation with new variants, library expression, and library
screening.%%%> Some methods can generate libraries through solid-phase-based gene
synthesis or by utilizing the CRISPR gene editing system.®® Rational design is based on
structural analysis and in-depth computational modeling of enzymes by accounting for the
physicochemical properties of amino acids. Generally, directed evolution is often

complemented by rational design.

One of the main setbacks of directed evolution is that very vast combinatorial space needs to
be explored — even when mutations can be introduced in a small region of interest such as an
enzyme active site, the combination of possibilities of amino acids is huge. For instance, the
randomization of 4 amino acids in an active site to all possible amino acid combinations yields
160,000 enzyme variants that need to be screened. It needs to be pointed out that statistically
very few missense mutations achieve improved catalytic properties. About 70% of missense
mutations are estimated to be neutral, 30-50% deleterious, and less than ~1% cause
improvement of the catalytic properties. This makes it very difficult to identify mutations that
are beneficial catalytically from such a small structural change and even more difficult to
predict the effect from a combination of several mutations. In the next section, | am going to
discuss how Machine Learning (ML) algorithms can be harnessed to learn about the structure-
function relationship in enzymes from the currently existing data. | am going to outline some
approaches and pitfalls, also discussing the algorithms as a function of the training data

available.
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1.3.2 Machine Learning in protein engineering

Machine Learning (ML) has recently become a very popular tool in enzyme engineering,
largely due to the advancements in the processing power of computers and the wide
availability of powerful GPUs (Graphical Processing Units). The other main factor is the
availability of training data, with more than 251 600 000 sequence entries publicly available
on Uniprot,%”%® and more than 162 000 three-dimensional protein structures deposited in the
Protein Data Bank (PDB) as of December 2023.5° AlphaFold’s success in predicting the three-
dimensional structure of proteins from just sequence information,’%’! vastly fueled the
upheaval of Deep Learning (DL) algorithms aiming to predict various properties from protein

sequences alone.

The main advantage ML has over the experimental techniques mentioned is that once trained
to have high accuracy, ML algorithms should ideally generalize well on unseen data and can
make predictions about the effect of unseen mutations. As already mentioned, statistically
less than ~1% of point mutations achieve improved catalytic properties. This makes the
deployment of directed evolution and rational design a rather slow and cumbersome process
that usually takes many months to identify a beneficial mutation. ML does not remove the
need for directed evolution but can rather make use of already existing data. One of the
drawbacks of many current ML models is that while the goal is to generalize well on unseen
data, models are usually only successful when applied to similar proteins to the ones in the
original training set. Most commonly applied ML models based on standard Convolutional
Neural Networks (CNNs) generalize poorly on protein predictions for very distinct subfamilies
from the ones used in the training set. Therefore, the success of the model and the resultant
predictions rely on the size, type, and quality of the training data. It is not uncommon for
supervised models to generate negative examples by random association which can be an
issue when training a binary classifier. For many prediction tasks, the format of the biological
data is available only from positive examples.”? This is also relevant to my work in Chapter 4,
where variants of Galactose Oxidase with non-native substrates do not maintain the same
catalytic rate as the WT GO enzyme. This means that the model does not see a particular class
of substrates and their interactions with the protein (non-native substrates which achieve

faster rate of conversion than the WT substrate, for example). Transformer-based
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unsupervised language models can overcome some of these issues but can also suffer from
the availability of training data to sample the probability space properly. Due to the high
dimensionality of many biological problems, relative to the large unseen biological diversity,
the prediction task can become very challenging. An example can be given from the field of
computational immunology. A current challenge for Deep Learning models is the task of
predicting the immunogenicity of an antigen, concerning a particular T-cell receptor response.
Several components need to be considered by the model —the large variation of antigens, the
polymorphic nature of human MHC I molecules, and the diversity of T-cell receptor structures.
Any DL model needs to encode the sequences of all four components but also relies on the
availability of experimental data, which is very scarce compared to the number of all possible
pPMHC-TCR binding combinations (a conservative estimate predicts >3.6 x 10%°).”274 This is an
example of where CNN-based and traditional DL classification models are particularly ill-

equipped to deal with the complexity of the biological data.

What type of ML algorithm is deployed depends on the problem at hand. There is no single
model that is going to outperform the others in all cases — one needs to consider various
aspects not limited to but including time limits, application, data size, and dimensionality of

the dataset.

1.3.2.1 Ensemble algorithms

The first point of consideration is the size of the data — for a small number of data points and
features, commonly utilized are “tree-based” methods which use an ensemble of decision
trees, such as the Random Forest (RF) or Gradient Boosted Decision Trees (GBDT) algorithms.
A Random Forest is quick to train, optimize, and evaluate and a good go-to option for

experimental datasets of limited size, such as the one used in this work.

Decision trees usually work by recursively splitting the dataset into subsets based on the
calculation of the Gini index, thus selecting the most informative features. The Gini index is
used to evaluate the quality of a split at each node. Each split is chosen to maximize the
separation between classes or minimize the variance of the target variable. At each node of

the tree, a decision is made based on a specific feature and a threshold value (see Figure 1.3).
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This process continues until a stopping criterion is met, such as a maximum depth or a

minimum number of samples per leaf.”>7®

RFs incorporate a user-defined or default number of decision trees and instead of outputting
the result of a single decision tree, an RF uses the majority vote to improve the predictive
accuracy and control over-fitting. Since an RF is built from a bootstrapped sample of the
training data, and at each split, a random subset of features is considered this introduces
randomness by ensuring that different data points go into each of the trees. The GBDT
algorithm, while also an ensemble algorithm, works differently by aiming to create one strong
learner from the previously weaker learning trees rather than taking the majority vote of the
decision trees. The RF and GBDT algorithms are utilized and discussed again in Chapters 2 and

4,

A B

decision node

variant Xo X1 y

1 4.0 2.0 1 leaf node

decision node

2 3.0 50 0
3 3.1 53 0
4 4.5 1.9 1
leaf node
5 4.6 1.7 1

OO

Figure 1.3. (A) Example dataset with 5 variants and two features xo and xi1. The target variable y takes
binary values 0 and 1, which is an example of a classification task. The two features in this dataset are
average distances from 3 replicas of a Molecular Dynamics simulation. (B) Example of a single decision
tree. If a variant has a certain distance xo bigger than or equal to 4.0 A, and x; distance is smaller or
equal to 2 A, the variant gets classified in class 1. If xo is smaller than 4.0 A, it gets classified in class 0.

This is a model example where the features are ideal, which is very rarely the case in real-life datasets,
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hence the need for multiple decision trees. If a condition in a decision node is satisfied, the move is to

the left and if not satisfied, the move is to the right.

1.3.2.2 Deep Learning approaches

Predicting the structure of a protein is only one of the many aspects of enzyme engineering.
Predicting properties of the protein that arise from and depend on the dynamics of the folded
protein and its interaction with other moieties, is a multi-dimensional and very complex

problem.

To apply any DL model, one generally needs > thousand or at least several thousand data
points, in the context of protein engineering, a thousand protein sequences or three-
dimensional structures as input. Based on whether one is interested in properties such as
binding affinity to a peptide or a ligand, information on and encoding of the peptide also
needs to be available.”®”” It is possible to apply DL models on less data but one has to be
aware of overfitting. The second point of consideration is whether one is interested in
predicting a discrete value such as whether a variant is active or inactive towards a certain
substrate type, or continuous, such as by exactly what value a mutation would affect the
activation free energy of a catalytic reaction or by how many degrees the thermostability of
a protein will increase or decrease. Additionally, it is important to consider whether one is
interested in predicting the effect of a single mutation or a combination of mutation positions.
What the approach should be also depends on the format of the data available. An RF and
other tree-based algorithms require all data points to have the same number of features,
which is not the case for situations when one would be required to encode variant and
peptide sequences as different variants would have a different number of amino acids or
atoms, respectively. Where the sequential data is of varying length LSTMs have shown to
provide useful solutions.**#* Most often, the chosen input representation must be adapted
to proteins of variable lengths and be able to encode the relational information of the protein
structure.”’ Ideally, the protein structure representation should account for the properties to

make training efficient.
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It is difficult to decide what the best protein encoding approach is. Generally, a protein
sequence can be encoded in two ways — by its amino acid sequence or by the physical
properties of the amino acids. Since amino acids have specific properties like hydrophobicity
and charge, it is possible to encode an amino acid sequence as a combination of those
properties. One of the common descriptors is the Identity descriptor which is a one-hot-
encoding binary vector of the 20 natural amino acids. The zScales protein sequence
descriptor, which uses physicochemical properties calculated from NMR and thin-layer
chromatography (TLC) data, is represented by a five-dimensional vector descriptor for each
amino acid. There are numerous ways to encode protein sequences and each might be better
suited than another, based on what the purpose of the DL model is.”® The BLOSUM®62 matrix
has also been used successfully to encode protein sequences for the prediction of segments

in sequences, such as which part of the protein sequence belongs to a signaling peptide, etc.”

Currently, many DL algorithms exist that claim to be able to predict with high accuracy
properties like thermal stability® and solubility,®! as well as protein binding interfaces® and
protein-protein interactions.®®> However, predicting catalytic activity, and more specifically
how activity is influenced by the presence of one or more missense mutations, is very
challenging. The mapping from sequence to function is tremendously complex because it
involves thousands of molecular interactions that are coupled over multiple lengths and
timescales. To the best of my knowledge, there is currently no existing DL architecture that
can accurately predict the rate of catalysis in mutated proteins, across multiple protein
subfamilies, relative to the WT enzyme. As already discussed, due to the size of the dataset
used in my work, DL models were not utilized in Chapter 4. Therefore, a more in-depth
discussion of possible model architectures will not be presented. This thesis utilizes traditional
computational approaches to study the effect of missense mutations and integrates those

with tree-based ML algorithms.
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Chapter 2

METHODS

2.1 Molecular Mechanics

Molecular Mechanics (MM) methods, also known as force field methods, are applied for
systems with many atoms, for example, a protein solvated in water. Since electrons are vastly
lighter compared to nuclei, they move ultrafast, and it is assumed that the motions of
electrons average out over the timescale of nuclear motion. Within the Born-Oppenheimer
approximation and the framework of MM methods, the electronic motion is ignored.
Electrons are not present in standard atomistic MM and most atoms are treated as point
particles. Therefore, the microscopic state of the studied system is described as a function of
only the position and momenta of the respective point particles. Needless to say, MM-based

methods cannot calculate accurately properties that depend on the movement of electrons.

2.1.1 Force Field

A force field (FF) is essential for running classical MM Molecular Dynamics (MD) simulations
as it provides the equations and parameters necessary to describe the potential energy of the
modeled system. The potential energy of the system consists of the sum of all bonded and

non-bonded interactions between the particles.

2.1.1.2 Bonded interactions

Bonded interactions encompass interactions between atoms that are connected by covalent
bonds. These can be bond stretching, angle bending, dihedral or torsional interactions and

improper torsions.

A harmonic potential with a force constant, k represents the stretching of covalent

bond ’

bonds, with the magnitude of kbon representing the type and order of the bond. The

d
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equilibrium bond length between the two particles is defined as o The less rU deviates

from the equilibrium bond length Ty the closer the potential will be to zero. The bond

potential is described with the following term:
2
Upona = 2 k bond( r o) (2.1)
Angle bending is also described with a harmonic potential with the following term:

1
_ _ 2
Yangie = ,Z,/;  angie (O3 = o) (2.2)

90 is the equilibrium angle and the strength of kangle depends on the atoms in the angle.

The harmonic Urey-Bradley potential is included in some force fields to account for the
interdependence between bond stretching and angle bending. It defines an equilibrium

distance Uy between the 1,3 atoms in a bond angle.

1
— _ 2
UUrey Bradley ~ 2 ; ku ( uik uO) (2.3)

The cosine potential which describes dihedral angles of interconnected atoms, ijkl, can be
expressed in a few ways but one of the most widely used expressions is with the following

term:
dzhed;als 2 | 1 + COS( P g ~ n)] (2.4)
ykl n=

Here ijkl is a set of four connected atoms. Each triplet of atoms ijk or jkl defines a half-plane

and the angle of intersection, (pijkl’ of these half-planes is the dihedral angle. Bond dihedrals

can be described by a sum of cosine potentials, with Nminima each at a phase-shift of 5n,

with a force constant k(p .
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The harmonic potential used to model improper angles between atoms ijkl/ is described

with the following term:

— _ 2
Uimpropers - ;{; ka) ( wijkl w()) (2 5)

The sum of these terms makes up the bonded contributions of the FF which need to be
calculated to obtain the bonded interactions which contribute to the potential energy of the

system.

Values in the force field that are used for bonded interactions, such as force constants and
equilibrium values, for example, are specific to the force field used. The work in this thesis is
done utilizing the all-atom CHARMM?36 force field®* and in some cases, the Amber96% FF and
generally uses the readily available force constants. Each particle in these FFs gets assigned
an atom type, rather than simply using the element. This allows to differentiate the
environment around particles of the same element. For example, a carbon atom bonded to
oxygen will be assigned a different atom type compared to a carbon atom bonded to another
carbon. In some cases, wild card parameters are defined. Usually, new organic molecules
modeled need careful parametrization which is done by quantum mechanics-level methods

such as DFT calculations and integration of experimental data, for instance, from NMR.

2.1.1.3 Non-bonded Interactions

The Leonard-Jones potential provides a way to calculate the force between two atoms
continuously with their separation. This way of calculating the force between atoms was an
advancement over the original hard sphere potential in which the force between two atoms

was not calculated unless a collision between the said atoms occurred.
The 12-6 Lennard Jones potential is used to describe the van der Waals term of non-bonded
interactions as it gives rise to both attractive interactions at the medium to long distances

whilst still providing repulsive potential at short distances.

The Lennard-Jones potential is expressed as:
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4 i 12 o i 6
U = ) 4 l|-L -] @O
LennardJones ij r r
nonbonded pairs ij ij

where the parameter el.j represents the strength of interaction and O'l.j the distance between

particles i andj. Other functional forms also exist (e.g. 10-6 L-J, Buckingham,®® Morse

potentials).

The long-range electrostatic interactions can be described using the Coulomb electric

potential with the following term:

q,9 j
U = E _
Coulomb (2.7)
non — bonded pairs 4re 08 rel” ij

Where ql.and qj are the electric charge of the particles i and j; €, is the permittivity of free
space, €, is the relative permittivity of the environment that the particles are in and rl.j is

the distance between the two particles i and j.

2.2 Phase Space

To be able to discuss computational simulations of proteins, in particular Molecular Dynamics
(MD) simulations, it is useful to introduce the concept of Phase Space. The concept comes
from classical mechanics and is particularly useful in the study of dynamic systems, such as
molecular systems undergoing thermal motion. For a system containing N atoms, 6N values
are needed to define the state of the respective system in phase space (3 coordinates per
atom and 3 components of the momentum). Since there are multiple dimensions
corresponding to each particle's position and momentum, the overall phase space is high-

dimensional.

To illustrate this with an example molecule, if one takes the simple hydrocarbon methane,
which has 5 atoms, there would be 30 values needed to describe the state of methane in

phase space - three coordinates (x, y, z) describe the position of each of the 5 atoms and three
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momenta each define a point in the 6N-dimensional phase space. There are cases where this
does not hold, such as if you have an isotropic potential when the system’s energy will be

invariant to rotations and translations, therefore, you have 6 fewer degrees of freedom.

Having introduced this concept, one can think of an MD trajectory as a sequence of points in
phase space that are connected in time as each new configuration is calculated from the

previous one before it.

2.3 Exploring the Potential Energy Surface

The potential energy of a system is a multi-dimensional function of the coordinates of the said
system. In most general cases, the potential energy of an enzyme consisting of 2500 atoms
will be a function of 7500 Cartesian coordinates. The relationship between the energy of a
protein and its coordinates is usually explained through a potential energy surface (PES).
Running MD simulations over 1 us is not always possible due to the computational cost of
running long simulations. Due to this, many biological events which happen over longer
timescales, are not going to be observed (for example, protein unfolding). Generally, the
probability of reaching a state of higher energy decreases exponentially according to the
Boltzmann factor. For this reason, if we are interested in modeling any rare event, the
standard approach is to introduce a biasing potential along a chosen reaction coordinate (RC).
This allows to sample regions of the PES that would otherwise remain unexplored. How this
biasing potential can be removed to obtain an unbiased surface will be discussed in section

2.4.4 which summarizes some of the most common unbiasing methods.

A minimum stationary position on the PES represents a structure of the modeled protein in
which the net inter-atomic force on each atom is close to zero. A minimum on the PES doesn't
necessarily mean that the net inter-atomic force on each atom is exactly zero.
Mathematically, a “perfect” stationary point is one at which the first derivative of the
potential energy with respect to each geometric parameter is zero. In practice, an energy
minimization of the starting protein structure is performed before the start of any

conformational sampling to minimize any forces resulting from residue clashes or poor three-
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dimensional structural prediction. The user defines the number of steps for the minimization

algorithm or the minimum force to be reached in the instruction file.

2.4 Molecular Dynamics

Molecular Dynamics simulations provide a way to ‘observe’ the dynamics of a system of
interest, from which one can calculate various properties of the respective system. One can
derive atomic positions in a time sequence by applying Newton’s equations of motion. This
way of observing the dynamics is deterministic because a new state is calculated from the
previous state in which the system is found. A trajectory arising from the dynamics of the

system is obtained by solving the differential equation coming from Newton’s second law:

dt2 m,

Here in is the force acting on a particle with mass m, along one coordinate X

2.4.1 Integration algorithms

When simulating an enzyme comprising of 1000 amino acids, each containing at least 10
atoms, the force acting on each of the >10 000 particles depends on the position of each
individual particle with respect to the rest of the simulated particles. Under the influence of
a continuous potential, the motions of all particles are coupled together, giving rise to a many-
body problem that cannot be solved analytically. In this case, the equations of motion are
integrated using finite difference methods. The idea behind finite difference methods is that
the integration stage has to be broken down into small time steps separated by a fixed time
dt, which is typically between 1 and 2 femtoseconds in standard protein MD simulations. This
is done so that at each step, the total force acting on the individual particle is computed as a
vector sum of its interactions with the other particles in the simulated system. The
acceleration of the particles is then calculated from the force and combined with positions
and velocities at time f to generate new positions and velocities at a short time ahead t + 2t

During the chosen time interval, the force is assumed to stay constant. The atoms then get
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moved to new positions, and an updated set of forces acting on each atom is re-calculated in
an iterative procedure until a user-defined time limit is reached. The time a simulation has
been run can be calculated by multiplying the time step by the number of steps the user has
originally pre-defined in the instruction file. The final output is a trajectory in which one can
observe the dynamics of the system from a starting position, over the course of the selected

time. The trajectory shows how the dynamic variables change with time.

The Verlet algorithm

Originally developed in 1967, The Verlet algorithm?®’ laid the foundation for the most popular
algorithms for integrating the equations of motion used in MD simulations. It uses the
positions and accelerations at a time t, and the positions from a previous step, r(  — 7) to
calculate new positions atatime (74 ¢) , r( 4 t) . The relationship between the positions,

and the velocities at a time t can be expressed with the following equations:

r(t+6t) =1(t) + 6tv(t) + %5r2a( )+ ... (2.9)

r(t =6t) =r1(t) — otv(t) + %aﬂa(t) - ... (2.10)

Adding the two equations together results in:
r(t +6t) =2r(t) — r(t—5t) + dta(t) (2.11)

The Verlet algorithm®’ suffers from several shortcomings. One of those is that the velocities
do not appear explicitly in the algorithm. This means that velocities are only available in the
next step once the positions have been updated. This obviously can result in loss of precision,
as well as the fact that the contribution of the kinetic energy to the total energy as a function
of a specific position cannot be computed exactly. An additional shortcoming is that at the
beginning of the MD simulation, there is only one set of starting positions for all simulated
entities, however, the Verlet algorithm requires positions from a previous step also, which
requires to employ some additional methods to calculate the positions at a time step ¢ — 7.

In this sense, the Verlet algorithm is not self-sufficient.
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The Leap-frog algorithm

An improvement upon the Verlet algorithm®’ is the leap-frog algorithm® which explicitly
includes the velocity. The name of the algorithm comes from the fact that the velocities are
updated before the positions, or “leap” before the positions. The positions are then calculated

and ‘leap’ before the velocities as a result of the following relationships:

r(t +8t) =r(1) + 5tv(t + %&j (2.12)

v(r + i&) = v(l — i&) + ota(t) (2.13)
2 2

First, the velocities are calculated from the velocities at a time and the acceleration at a time

L

GEVA Y
v(t) = —|v|t + —6t| +v|t — —ot (2.14)
2 2 2

The leap-frog algorithm does not solve the problem existing originally with the Verlet — the
positions and the velocities are not updated simultaneously. Therefore, it does not solve the

issue with the kinetic energy mentioned earlier.
The velocity Verlet algorithm
The velocity Verlet algorithm®” developed by Swope et. al. in 1982 allows for the positions,

velocities, and accelerations to be calculated at the same time using the following

relationships:

r(t +6t) =1(t) + otv(t) + %Stza(t) (2.15)
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I
v(r +61) =v(1) + 56t[a(z) +a(r+80)]  (2.16)

To obtain the velocities in the final step, the algorithm is implemented as a three-stage
process. This is because the acceleration is required both at a time step f and ¢ + 0t. First,

the positions at a time step t + Ot are calculated according to eq. (2.16) using the velocities

1
and accelerations at a time £. The velocities at a time f + — are then determined using:

v(t + iét) =v(t) + l6ta( t) (2.17)
2 2

This allows us to calculate the acceleration a(r + 6r) from the new forces at the current
positions and finally in the third stage the velocities at a time ¢ + Ot can be obtained with

the following equation:

v(t+ot) =v(t) + %Sta( 1) (2.18)

2.4.2 Thermostats and barostats

When conducting MD simulations of biological systems, for example of a protein solvated in
water, the idea is to model the environment in a biological cell as closely as possible. For this
reason, standard protein simulations are usually run under an almost constant temperature
and pressure. Thermostat and barostat algorithms are introduced in MD simulations so that
NVT and NPT ensembles can be sampled correctly. The equilibration stage of an MD
simulation is a crucial step that is done before the production run or the stage of collecting
data and making observations. Equilibration involves gradually adjusting the initial
configuration of the system, typically by applying forces to the atoms or molecules within the
simulation, until the system reaches a stable state where its properties no longer significantly
change over time. Usually, the equilibration step of an MD simulation is completed in two
steps. First, under the NVT ensemble, or canonical ensemble, where the number of particles

N, the volume V, and the temperature T are constant. This is usually a fairly short step that
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aims to get the temperature to a certain user-defined constant value or heat up the system.
The next stage of the equilibration is conducted in the NPT or isobaric-isothermal ensemble
where the number of particles N, pressure P, and temperature T are constant, and the idea is
that the pressure gets quickly equilibrated to reach a plateau, while the volume is allowed to
change. Before the production run of the simulation starts, it is useful to plot the temperature
and pressure as a function of time to make sure those have reached a plateau. During the
equilibration stage when the system is heated up, the Berendsen algorithm® is usually
applied, which calculates the temperature 7'(¢) at every integration step using the

following term:

T (1) = L (2.19)

Where kB is Boltzmann’s constant, v, is the velocity of particle i, m, is the mass of particle i

N is the number of particles and Nf is the number of degrees of freedom for the N

particles.

Once T'( t) is calculated, the atomic velocities are linearly rescaled by a factor 4:

A(T-T'(1))
1+
T (1)

1=

(2.20)

Barostat algorithms allow to couple pressure baths to MD simulations. The way these
algorithms work in general is by resizing the size of the simulation box to account for the
applied pressure. While many barostat algorithms exist, normally some of these are more
appropriate for the equilibration stage of the simulation. With the Berendsen barostat®°! the
pressure is being quickly equilibrated from a starting pressure, while other barostats are more
appropriate for the production stage of the MD simulation where one assumes that pressure

is almost constant (Nose-Hoover®?>°3 or Parinello-Rahman).%
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The Parinello-Rahman®* barostat is typically used during the production run of the MD
simulation as it can produce the correct isothermal-isobaric NPT ensemble. To be

implemented, an extra term is added to the equations of motion:

F.(1) dr (1)

(1) = - M
a’() m. dt

1

2.21)

db' db
M=b"1b— + —b' [b'~!
dt dt

Where b is a matrix representing the box vectors and its equation of motion can be expressed

with the following term:

d’b

o vw—'b'—'(P— Po) (2.22)
Az2p ..
(W=1)ij=—22 (2.23)
3TP‘L

Where P is the instantaneous pressure, Po is the reference pressure, V is the volume of the

simulation box, W~ ! is the inverse mass parameter matrix determining the strength of the

pressure coupling. Prime notations indicate the variables of the extended system. ’BU is the
isothermal compressibility, Tp is the pressure time constant, and L is the largest box matrix

element.

2.4.3 Periodic Boundary Conditions

Periodic boundary conditions (PBCs) are introduced in MD simulations to model large systems
by using a unit cell. For example, a unit cell with water molecules is used to approximate water
environment. A space-filling simulation box is introduced, images of which are repeated in
the directions of the unit cell vectors. This is done in order for molecules to be uniformly
affected by long range interactions regardless of their position. When one object, such as a
water molecule, reaches the boundary of the box, it exits from one part of the unit cell, and

appears on the opposite side with the same velocity. PBCs are often used in tandem with the
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Ewald summation, where the Coulomb term is divided into a short-range component, treated

in the real space U a long-distance component U treated as reciprocal, and a

real’ reciprocal’
correction term U . for when the particle is seeing its own image:
correction
Uu =U_ +U + U (2.24)

el real reciprocal correction

The reason most MD algorithms use the Ewald summation is the computational cost in

computing Uel . The Ewald summation method uses a Fast Fourier Transform (FFT) called

Particle Mesh Ewald to compute U which considerably speeds up the calculation of

reciprocal’
the Coulomb term as a whole. Having said that, before a simulation starts one needs to set
the parameters for the Coulomb term such as a cutoff point for the short-range component,
etc. Simulations need to be overall neutral, otherwise the net electrostatic charge of the
system will sum to an infinitely large charge, because of the applied PBC. A common practice
to “neutralize” the simulated system is to add neutralizing ions such as sodium and chloride

in appropriate concentrations.

2.4.4 Unbiasing methods

To sample rare events, different techniques for enhanced sampling have been developed in
recent years. The one utilized in my work makes use of a bias potential but there are also
other enhanced sampling methods that are not limited to the use of a bias potential. Examples
are temperature-accelerated MD (TAMD),* Parallel Tampering (Replica Exchange),®® and
others.?” Most techniques for exploring rare biological events rely on the identification of a
collective variable (CV), representing a physical pathway, that allows the calculation of the
free energy profile. Choosing the CVs has to be done very carefully and, in some cases, can be
quite challenging.’’ This is, for example, when one is interested in an unbinding event,®” such

as a drug molecule leaving an active site, as opposed to a well-defined chemical reaction.



38

Weighted Histogram Analysis Method (WHAM)

Some of the methods for obtaining a free energy profile involve the prior generation of a
Potential of Mean Force (PMF) which is a biased free energy profile. The PMF represents the

free energy landscape as a function of the sampled Reaction Coordinate/s (RC/s).

One of the most common and widely used methods to unbias Umbrella Sampling (US)-type
MD simulations, which reconstructs the free energy profile along one or more chosen RCs, is

the Weighted Histogram Analysis Method (WHAM).%8

Umbrella Sampling is one of the techniques developed to overcome the sampling problem,
that of higher energy configurations being difficult to visit in unbiased MD simulations. It aims
to overcome limited sampling at these configurations by restraining the system with added

bias (typically harmonic potential). A set of NW separate umbrella simulations or windows

are carried out, with an umbrella potential being expressed as:

w (&) =KI./2(§ - 55)2 (2.25)

The potential restrains the system at the position §l¢ with a force constant Ki . From each of
the umbrella windows NW (the number of those can vary depending on how the RC is split),
an umbrella histogram is recorded, representing the probability distribution along the RC
biased by the umbrella potential. WHAM is then used to compute the PMF from the
histograms. The main idea is that if one knows the probability distribution of the
configurations with the bias potential, the probability distributions for the unbiased cases can

also be obtained.

The main equations behind WHAM are:

N,
D g (&)

i=1

P(S) = (2.26)

N

W

Z njgj_]exp[—ﬁ( wj( &) _fj)]

Jj=1
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and

exp(—pf ) = f dg exp [-pw (O PO (227)

With £ being the inverse temperature I/kBT, kB the Boltzmann constant and 7' the

temperature, and nj is the total number of datapoints in histogram hj, and fi is a free
energy constant. The statistical insufficiency g, is expressed by 8, = I + 2’[[. with the
integration autocorrelation time T, of umbrella window i . P( &) denotes the unbiased

probability distribution that is related to the PMF via #' (&) = — f~ lln[P( &) /P( 50) ]

Here, 50 is an arbitrary reference point where the PMF W(cf )is zero.’”® WHAM is an

0

iterative optimization process that aims to find the optimal unbiasing weights for each
histogram. The optimized weights are available after convergence is achieved. To obtain the
free energy profile, one needs to calculate the probability distribution first for the unbiased
case and then the free energy function. One of the shortcomings of this method is that it
assumes a proper equilibration sample was created which is often not the case. For example,
the sampling in some biased runs may not be converged if the dynamics are slow and some
high energy barrier events are not sampled.'®®WHAM also disregards the time sequence

information within simulation trajectories and therefore kinetic information is lost.

Dynamic Histogram Analysis Method (DHAM)

The dynamic histogram analysis method (DHAM)'® has several advantages over WHAM.
Unlike WHAM, it does not disregard time sequence information. The goal of DHAM is to find
the equilibrium free energy along a chosen reaction coordinate x in a way that considers
dynamical information about the resulting time correlations. Unlike WHAM, DHAM is based
on a global Markov state model (MSM) and uses a maximum likelihood estimate of a Markov
transition matrix transition probabilities by using joint unbiasing of the transition counts from
multiple US simulations along discretized RCs. The free energy profile can be obtained from
the stationary distribution of the resulting Markov transition matrix.1°! Rosta and Hummer
have developed an explicit approximation for this that does not require an iterative

solution.10?
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The relation between biased and unbiased Markov transition probability matrices M can be
expressed by solving the Smoluchowski diffusion equation!®? for transition probabilities

p(i—j,7) from state i to j within a lag time 7:

k . . X
My pli—jok

M p(i—j.0)°

Uk - Uk + U9 - UQ)Z ) (2.28)
/4D7

eXP(—((xj —x’.) + yr J N J

J 1

U9 - u%)2
J
exp(— ((xj —xl.) + y7 T‘j) /4D1)

J 1

with superscipt k denoting the biased simulation, 0 denoting the unbiased simulation. U is
the potential energy along the reaction coordinate x,and y =D / kBT is the mobility of the
system. Expanding the squared terms in Equation (2.30) and omitting all 72 terms lead to the

square root approximation at short lag times,

Q

exp( —( Uk - Ujf) /ZkBT) (2.29)

The unnormalized Markov matrix is defined as:

Tk
Ji

20 ntew( = (ul(e)) - ul(c;)))/ 2T

(2.30)

N
M, = z
J k=1
Lk—z
where data is binned along x, and T;‘i = Z 5(xk(t) €i)s(xk(t + 1) € j)gives the
’ t
transition count from bin ito bin j in simulation window k, with data saved and analyzed at

the frequency of the lag time 7 from the overall length L of simulation k. nf‘ = Z T]’fl. is
J

the number of transitions initiating from bin . The bias uf = Uﬁ - Ul.o is evaluated at each

bin center c, assuming that the biasing is also done along x.
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2.5 Quantum Mechanics-level based methods

To study bond breaking and bond formation, and chemical reactivity in general, one needs to
be able to model the movement of electrons. Clearly, for this purpose, we need to move away
from treating atoms as point particles but rather handle nuclei and electrons separately.
Electrons taking part in chemical reactions, such as the catalytic reactions modeled in this
work, need to be described quantum mechanically. All of the Quantum Mechanics (QM) and
Quantum Mechanics/Molecular Mechanics (QM/MM) methods for calculating various
properties in this thesis use Density Functional Theory (DFT) as their foundation so | am going

to give a brief introduction to the main concepts behind DFT.

2.5.1 Density Functional Theory (DFT)

The central idea underpinning DFT is that the total electronic energy is a function of the
overall electronic density. This concept was originally developed in the 1920s but in 1964
Hohenberg and Kohn were able to show that the ground state energy of a system and other
properties are uniquely defined by the electron density of the said system.'% Since every
electron has three spatial coordinates and one spin coordinate, this makes the 4N
dimensional electron wavefunction very complex. In contrast, the electron density depends
only on three spatial coordinates in which the density p is defined, regardless of the size of

the system. The aim of DFT is to express the electronic energy as a functional of the density:

E[p(?)] @31

Constructing a functional E[p] invokes some problems, because some of the contributions
from the system are difficult to define and therefore unknown, coming from the many-body
problem of interacting electrons. The great advancement came from Kohn-Sham’s formalism
which separated the interacting many-body problem into a set of non-interacting problems.
They introduced fictitious non-interacting electrons with the same density as the real
interacting system but with an effective potential that includes the effects of the electron-
electron interaction. These non-interacting electrons are subject to an effective potential,

which includes contributions from the external potential, the Hartree term (electron-electron
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repulsion), and an exchange-correlation term. This eventually resulted in the Kohn-Sham

formalism for the single determinant wavefunction expressed on a set of basis functions.

The summation over the occupied orbitals gives the electron density:

p=2 |07 @»

i
The total energy functional is then defined as:

EXS =T [{9i®*}]1 + E_ [p] +Jp] + E, [r] (2.33)

It is possible to compute every part of a Kohn-Sham DFT energy exactly apart from the last

term, the exchange correlation energy Eex[p]. The non-interacting kinetic energy can be

calculated with the Kohn-Sham wavefunction, the Coulombic interactions can also be
calculated and integrated over the density. Only the exact exchange correlation energy
functional is not known. This term accounts for the quantum mechanical effects of electron
exchange and correlation. The exchange part involves the antisymmetrization of the electron
wave function, in order not to break the Pauli exclusion principle, and it is related to the fact
that electrons are indistinguishable particles. The correlation part captures the quantum
mechanical effects arising from the electron-electron interactions beyond what is accounted
for by the mean-field approximation. The exchange-correlation functional must be
approximated in practical calculations. There are many ways developed to do that through

the years which will not be the subject of discussion here.

2.6 Quantum Mechanics/Molecular Mechanics

The hybrid Quantum Mechanics/Molecular Mechanics (QM/MM) method is a simulation
method where one part of the simulated system, usually where an important biochemical
reaction is modeled, is treated quantum mechanically, while the rest of the system is
simulated with a classical molecular mechanics-based method. The computational cost makes

it virtually impossible to treat entire proteins quantum mechanically with the current
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computing capabilities. A solution for this is to adopt QM/MM which allows to model
biomolecular systems in an efficient way. QM/MM calculations combine the accuracy of ab
initio methods with the speed of MM-based approaches thus allowing a big part of a protein
to be simulated with an MM-based method while a much smaller region of interest, such as

an active site, to be simulated with a QM-based method.

The total energy of the simulated system can be expressed in the following way:

E=E, +E,. +E, (2.34)

Where EQM is the energy of the QM part, EMM is the energy of the MM region, and Em, is

the energy of interaction of the two regions. There are several ways to handle the

electrostatic coupling which | am going to introduce briefly.

Embedding models which are applied to deal with the interaction energy El.m focus on

geometry-based ways to split the whole region into individual parts where the QM/MM
region in the case of proteins is usually split along individual chemical bonds (C-C bond in an
amino acid, for example).1%* For every bond broken, there are two unpaired atoms that need
to be somehow “capped”. This is usually done through the introduction of linker atoms,

usually hydrogens, to take up the free valence and not create a free radical unintentionally.

The simplest way to handle the electrostatic coupling between the QM and the MM regions
is mechanical embedding. In the case of mechanical embedding, the QM/MM electrostatic
interaction is treated as the electrostatics in the MM region — QM atoms are assigned the
force field parameters of the force field used to describe the MM region and non-bonded
terms are evaluated for pairs across the two regions. Mechanical embedding results in some
oversimplifications — for example, when a chemical reaction is modeled in the QM region, this
will result in a change in electron density. When the density changes, it would be expected to
update the charges of the atoms. However, updating those charges would cause

discontinuities in the PES. The MM charges assigned from the force field also do not
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reproduce the true charge distribution of the inner region correctly. There are additional

issues arising from this simplification, but those will not be discussed currently.1%

Electrostatic embedding solves some of the problems introduced by mechanical embedding
schemes. It defines the MM atoms as point charges in the QM input, thus allowing
polarization of the electron density by the MM region. It is also possible to include a
polarization effect or polarizable embedding on the MM atoms, introducing a need for a self-
consistent iteration and a force field describing the MM region which can include

polarization.10°

2.7 Machine Learning

2.7.1 Unsupervised and Supervised Machine Learning

In unsupervised learning, the algorithm’s aim is to find patterns or structures in data, without
explicit labels. Unlike supervised learning, where the algorithm learns from labeled examples
provided by a dataset, unsupervised learning operates on unlabeled data, relying solely on
the inherent structure or relationships within the data. Common unsupervised learning

methods include dimensionality reduction and clustering.

The most common dimensionality reduction techniques are the Principal Component Analysis
(PCA) or t-distributed stochastic neighbor embedding (t-SNE), which aim to represent high-
dimensional data in a lower-dimensional space while preserving the essential structure and
relationships between data points. The signal-to-noise ratio often improves after
dimensionality reduction, as the reduced-dimensional representation focuses on the most

informative aspects of the data, leading to clearer patterns and structures.06107

Clustering algorithms, such as k-means or hierarchical clustering, group similar data points
together based on their characteristics. Center-based clustering like the k-means algorithm,
partitions the data into clusters around central points or “centroids”.1%’ Each data point is
assigned to the nearest centroid, resulting in clusters that are compact and well-separated.

However, center-based clustering methods often struggle with non-spherical clusters and are
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sensitive to initialization bias.’®” Hierarchical clustering, on the other hand, builds a tree-like
hierarchy of clusters, either by agglomerative or divisive approaches. It does not require
specifying the number of clusters beforehand and can capture clusters of varying shapes and
sizes. Agglomerative hierarchical clustering starts with each data point as a separate cluster
and iteratively merges them based on a similarity measure, resulting in a dendrogram that

illustrates the nested clusters at different levels of granularity.

In supervised learning, one or several target properties, such as the enzyme thermal stability
or solvent accessible surface area, for example, are predicted based on labeled training data.
The goal is to engineer a predictor that will return labels/predictions for unseen data points
on the basis of their descriptors or ‘features’. Generally, it can be said that what sets apart
unsupervised from supervised ML is the presence of labels in the training data set. When |
discuss a predictor or a model, this refers to the mathematical structure by which the

prediction Y, is made from the input data X For a linear model, the prediction is based on a

linear combination of weighted input features.

Principal Component Analysis (PCA)

The most common approach for linear dimensionality reduction is the Principal Component
Analysis (PCA). It is used as a first-to-go approach in cases when one has many features and
would like to reduce the dimensions to two or three principal components. The idea behind
PCA is to define a set of orthogonal components through the eigendecomposition of the
covariance matrix of the input data. There are N components in total, where N is the
dimensionality of the input space. The component with the largest eigenvalue will be the one
that maximizes the variance when the data is projected on it. By projecting onto the n
components with the largest eigenvalues, the input data can be transformed into an n-
dimensional representation in which the variance amongst data points is maximized. One can
define the number of principal components that the model can then use for predictions,

instead of the full set of original features, for example.
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Clustering algorithms

There are many approaches to clustering that can be taken, depending on the type of data.
Centroid-based clustering, which was used in this thesis, organizes the input data into non-
hierarchical clusters. The most widely used centroid-based algorithm is k-means.1% It is
effective for a varying range of data types but as mentioned, it is sensitive to initial conditions
and outliers. In the example in Figure 2.1, a PCA is performed on a high-dimensional set of
features, and the first two principal components are used to check what the clusters will look
like. This is an example of a very simple way to attempt finding clusters based on datasets

with n-dimensional data set.
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Figure 2.1. Example of non-hierarchical clustering, based on an initial dimensionality reduction by PCA.

The two principal components are used to cluster the data using the k-means clustering algorithm.

Gradient Boosted Decision Trees

Gradient Boosting is an algorithm that combines many weak learners, such as decision trees,
into a single strong learner, or model, by iteratively attempting to learn from the prediction

error of the previous weaker learner.
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The goal is to make a model F to learn to predict values in the form y = F( x) by minimizing
1
the mean squared error 5 Z ( ?l. - yi) 2, where i indexes over the training set of size n
i

of values of the output variable y with: J. being the predicted value, y . the observed value,
y Y Y;

and n is the number of samples y.

The gradient boosting algorithm is built in the following way:

F . l(xl.) = Fm(xl.) + hm(xl,) =y, (2.35)

This is equivalent to hm(xi) =y, — Fm(xl.) (2.36)

1

So the algorithm will fit A toy. — Fm( X ) .The model F/| | then attempts to improve

i
the prediction based on the error of the previous model Fm . This iterative process repeats
until a stopping criterion is met, such as a maximum number of iterations or if the (stronger)

model begins to overfit.10810?

2.7.2 Splitting the Data

Any pre-processed, curated dataset, prepared to be used by a model, is typically split into
subsets, to assess how effective the trained model will be on unseen data. This is achieved by
allocating some of the data to training and testing sets, respectively. In this thesis, this was

done with the scikit-learn implementation of the module train_test_split.11°

Training Set

The training dataset is the part of the data that the model sees and learns from, to predict an
outcome. The more diverse and representative the training data is, the more likely for the

model to be able to generalize well on unseen data.
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Testing Set

The testing set is the unseen part of the data used for evaluating the model. It is independent
of the training set and should have a similar type of probability distribution of classes as the
training set. Typically, 20 or 30% of the data is left out for testing but the data could also be

split in different ways.

Validation Set

The validation set is used to fine-tune the hyperparameters of the model and provide an

objective unbiased evaluation of the model.

2.7.3 Generalization capability, Overfitting and Underfitting

One of the most important concepts in Machine learning (ML) is the generalization capability
of a model. This refers to the ability of models to predict/classify data samples never
encountered before. Usually, two reasons prevent this — overfitting and underfitting.
Overfitting refers to situations when the model learns too well on the training data. The model
uses a combination of features that result in learning characteristics of the training set that
allow it to predict well on the current testing set. However, these features and/or their
combination are not necessarily suitable to describe similar unseen data. This commonly
happens when too many features are selected on a dataset with a small sample size (50
features on a dataset with N=100 samples, for example). Underfitting results from the
inability of a model to learn enough from the training dataset. Such a model will have poor
performance in predicting the target variable of unseen data, just as well as in the case of
overfitting, but for different reasons. To illustrate both concepts, | have generated synthetic
data with a sine function and added some noise to it. | then fit polynomial regression models
with different degrees (1, 4, and 15) to the data. As can be seen in Figure 2.2A, the model is
underfitting and it cannot capture the data. In Figure 2.2B, the degree of the polynomial
captures the trends in the data. As the degree of the polynomial increases, the model
becomes more complex and fits the training data more closely. However, this increased
complexity leads to overfitting, as the model starts capturing noise in the data (Figure 2.2C)

rather than the underlying pattern.
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Degree 1 Polynomial Fit Degree 4 Polynomial Fit Degree 15 Polynomial Fit
Training Data Training Data Training Data
10 1 True Function 10 1 True Function 1 O | True Function
Degree 1 Fit Degree 4 Fit . Degree 15 Fit
0.5 0.5 0.5
0.01 0.01 0.0
-0.5 -0.5 -0.5
-1.0 -1.0 -1.0
0 1 2 3 4 5 0 1 2 3 4 5 0 1 2 3 4 5

Figure 2.2 (A) A case of underfitting, the model cannot capture the pattern of the data. (B) The data is
sampled well. (C) The degree of the polynomial is too big and it starts capturing the noise rather than

real trends in the data, resulting in overfitting.
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Chapter 3

Structural Dynamics and Catalytic
Mechanism of ATP13A2 (PARK 9)

from Simulations

This Chapter was published in The Journal of Physical Chemistry virtual special issue “Dave
Thirumalai Festschrift” in 2021 and is reproduced here with permission from: Teodora
Mateeva, Marco Klahn, and Edina Rosta, ‘Structural Dynamics and Catalytic Mechanism of
ATP13A2 (PARK9) from Simulations’, J. Phys. Chem. B, DOI:2021, 125, 11835-11847.

Copyright Journal of Physical Chemistry B 2021.

Summary of the Work

Patients diagnosed with Parkinson’s disease (PD), spastic paraplegia (SPG78), Kufor-Rakeb
syndrome, neuronal ceroid lipofuscinosis, and other similar neurological disorders often carry
a varying range of mutations in the ATP13A2 gene.116-22111-113 The mechanism through which
missense mutations are implicated in Parkinsonism is not always known. Certain protein
mutations, which are commonly present in carriers of the condition, such as G504R and
F182L, disrupt the vesicular localization of ATP13A2 and promote the mislocalization of the
enzyme to the endoplasmic reticulum, thus exposing it to speeded degradation.’> However,
for a large part of the reported missense mutations, the exact mechanism in which they are
implicated in pathogenicity, is not clear as they do not alter protein stability or affect
subcellular localization.’® And while the importance of the enzyme in regulating neuronal
integrity is established, at the time of the start of this project, there was no three-dimensional
structure of this transmembrane enzyme and no consensus on the active site composition
and conformation in terms of the number of ions taking part in the catalytic mechanism and

the precise mode of ATP binding. This makes it difficult to study how missense mutations
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close to the active site might affect the catalytic mechanism of ATP13A2 and whether those
mutations disrupt the catalytic mechanism of the protein directly or indirectly. In this chapter,
| provide a detailed description of the catalytic reaction leading to the state of the protein
where Asp513 is autophosphorylated. The MD and QM/MM simulations provide strong
evidence that two Mg?* cations are present at the active site during the catalytic reaction. |
also elucidated details of the catalytically competent ATP conformation and the binding mode
of the second Mg?* cofactor. The exact role of conserved Arg686 and Lys859 catalytic residues

was demonstrated.

Author Contribution

| conceptualized most of this work; wrote the manuscript and performed all the analysis. All
bioinformatics research needed for the modeling of this enzyme was done by me, as well as
all MD simulations. | performed all QM and QM/MM simulations in this paper and analyzed
the results from the QM calculations and potential energy scans. | produced all the figures in
the main text and the Supporting Information. My supervisors have approved the manuscript

in its final form.

Correction

On p.55, section Homology modeling, the correct Uniprot code for the ATP13A2 sequence is
QINQ11. The sequence used to model the protein in this work is correct, however, the
Uniprot code is either incorrectly reported (Q9HD20) in the original paper, or it has changed

in the Uniprot database.
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ABSTRACT: ATPI13A2 is a gene encoding a protein of the PSB subfamily of ATPases and is a PARK gene. Molecular defects of
the gene are mainly associated with variations of Parkinson’s disease (PD). Despite the established importance of the protein in
regulating neuronal integrity, the three-dimensional structure of the protein currently remains unresolved crystallographically. We
have modeled the structure and reactivity of the full-length protein in its E1-ATP state. Using molecular dynamics (MD), quantum
cluster, and quantum mechanical/molecular mechanical (QM/MM) methods, we aimed at describing the main catalytic reaction,
leading to the phosphorylation of AspS13. Our MD simulations suggest that two positively charged Mg>* cations are present at the
active site during the catalytic reaction, stabilizing a specific triphosphate binding mode. Using QM/MM calculations, we
subsequently calculated the reaction profiles for the phosphoryl transfer step in the presence of one and two Mg>* cations. The
calculated barrier heights in both cases are found to be ~12.5 and 7.5 kcal mol™’, respectively. We elucidated details of the
catalytically competent ATP conformation and the binding mode of the second Mg** cofactor. We also examined the role of the
conserved Arg686 and Lys859 catalytic residues. We observed that by significantly lowering the barrier height of the ATP cleavage
reaction, Arg686 had major effect on the reaction. The removal of Arg686 increased the barrier height for the ATP cleavage by more
than 5.0 kcal mol™" while the removal of key electrostatic interactions created by Lys859 to the y-phosphate and AspS13 destabilizes
the reactant state. When missense mutations occur in close proximity to an active site residue, they can interfere with the barrier
height of the reaction, which can halt the normal enzymatic rate of the protein. We also found large binding pockets in the full-length
structure, including a transmembrane domain pocket, which is likely where the ATP13A2 cargo binds.

Bl INTRODUCTION associated with the gene have been identified,">>”'*

The ATP13A2 gene has emerged as one of the genes strongly including some loss-of-function missense mutations of the
correlated with Parkinson’s disease (PD) and is also known as
PARK 9. The ATP13A2 gene encodes the PSB ATPase Received: June 17, 2021
ATP13A2, which has attracted interest as an enzyme Revised: ~ September 29, 2021
implicated in a range of neurodegenerative disorders: spastic Published: October 22, 2021
paraplegia (SPG78), Kufor—Rakeb syndrome, neuronal ceroid

lipofuscinosis, and various other types of neurodegenerative

disorders.”™® Currently, a multitude of molecular defects
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Figure 1. (A) Three-dimensional homology model of the ATP13A2 protein depicting mutations identified clinically™*~""'*'® (red sticks) on the
protein (green cartoon) and (B) a homology model of ATP13A2 with the transmembrane domain buried in the lipid-rich membrane while the N,
P, and A domains are located in the cytoplasm of the cell. (C) Products of the autophosphorylation reaction in cytoplasmic domains.

protein. The precise role of most missense mutations remains
unexplored, as well as the overall structural dynamics of the
protein.

ATP13A2 belongs to the haloacid dehydrogenase-like
(HAD) superfamily of enzymes that all share a hydrolase
fold. The HAD superfamily is very diverse, encompassing
phosphoesterases, P-type ATPases, phosphonatases, dehaloge-
nases, and sugar phosphomutases, which act on a wide range of
substrates, typically catalyzing carbon or phosphoryl group
transfer reactions.'> Phosphotransferase enzymes typically
require Mg?* cofactor for their catalytic activity.'®'’
ATP13A2, in particular, belongs to the big family of P-type
ATPases which is split in five distinct subfamilies: P1, P2, P3,
P4, and P5.° Most of these proteins are well studied and have
resolved crystallographic structures, including ones in different
functional states. ATP13A2 is part of the least studied
subfamily PSB, which remains the only subfamily without
any three-dimensional structures resolved.

The cytoplasmic domains of the protein include: Nucleo-
tide-binding domain N, Phosphorylation domain P and an
actuator domain A (Figure 1A). Additionally, a transmembrane
domain (T) connects the catalytic domains located in the
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cytoplasm to the extracytoplasmic area (Figure 1B). Interest-
ingly, the various mutations of the ATP13A2 protein currently
described in the literature™”™""'*'® are not confined to one
spatial region (Figure 1A) but are scattered across the entirety
of the protein and encompass all domains. The catalytically
active domains, N, P, and A, are involved in ATP binding, ATP
cleavage, and auto- and dephosphorylation. ATP13A2 has
been classified as a membrane transporter protein® with the
proposed candidates ranging from heavy metals” to Ca®
cations'’ and polyamine spermidine (SPD).>””' Recent
studies have revealed the role of ATP13A2 in polyamine
export.”> All enzymes belonging to the HAD superfamily
contain a specific form of the Rossmannoid fold. This fold has
two characteristic features that distinguish it from other
superfamilies with Rossmannoid type-folds: a f-hairpin motif
(also called a “flap”) located immediately downstream of the
first f-strand of the core Rossmanoid fold and a single helical
turn (“the squiggle”)."> This is important for ATP13A2 and
other P-type ATPases, as these motifs provide mobility which
allows the protein to alternate between the El “open”
conformation (before the binding of any cargo) and the E2
“closed” conformation. The El state is associated with the

https://doi.org/10.1021/acs.jpcb.1c05337
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Figure 2. (A) Most similar human proteins to ATP13A2 based on overall fold, percent of sequence similarity, and overall query coverage, ordered
from most to least similar. (B) Active site of the endoplasmic reticulum Ca?*—~ATPase (SERCA) in the E1 state with bound ACP molecule and one
Mg** cation (PDB code: 3tlm,* gray) and our homology model of ATP13A2 (green sticks). (C) Active site of ATP13A1 in the El state with
bound ACP molecule and 1 Mg?* cation (PDB code: 6xmgq,*” gray sticks) and our homology model of ATP13A2 (green sticks).

binding and subsequent cleavage of ATP (Figure 1C). In this
state, the protein has a high affinity for the cargo that is to be
transported from the cytoplasm to the other side of the
membrane. In ATP13A2, the ATP cleavage reaction results in
autophosphorylation of the strictly conserved Asp513.
Similarly, the E2 state is associated with the process of
dephosphorylation of the aspartate.’ In this work, we are
interested in the change from the E1-ATP to the EIP
functional state.

The active site motif DKTGT is strictly conserved among all
P-type ATPases.”®> Two other amino acids, which are highly
conserved and located immediately in the active site, are
Arg686 and Lys859. Arg686 and Lys859 were structurally
conserved in all enzymes whose crystal structures were used
further in this study,”*~° Figure SI.

Currently, none of the proteins within the PSB ATPase
family have been resolved crystallographically, including
ATP13A2, therefore, no three-dimensional structure is
resolved in any of the functional states of the protein.
Nevertheless, ATPases of the P2A and P2C subfamilies, which
are highly homologous, are available with experimentally
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determined structures. Most recently, a crystal structure of the
PSA ATPase ATP13A1 was resolved, which is currently the
most homologous protein to ATP13A2 whose three-dimen-
sional structure has been determined.** Many of the three-
dimensional P-type ATPase structures contain active-site
bound ATP-analogues, typically with synthetic nonhydrolyz-
able derivatives of ATP, such as ACP or AMPPCP.”*~*® Most
of these structures feature only one bound active site Mg**
cation.>*2° However, there are structures obtained with ADP
and AlF; that feature two Mg?* cations®”*”*' bound in the
active site. This brings up the question whether one or two
Mg* ions are present and/or required for the phosphoryl
transfer to proceed? Importantly, due to the different charge
distribution of the synthetic derivative analogues, the second
ion coordination may be captured incorrectly or not at all.
There are no structures which have been crystallized with the
catalytically competent ATP, and it is currently unknown what
the precise ATP conformation during the phosphoryl transfer
reaction is, especially in terms of its proposed second Mg**
coordination.”’ This leaves open the question of what the

https://doi.org/10.1021/acs jpcb.1c05337
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precise ATP—Mg** coordination is, as well as the overall
Mg**—Mg** distance and position.

Currently, the catalytic mechanism is not available using
atomistic details for any PS ATPase. Previous short molecular
dynamics (MD) simulations were carried out on the P2A
endoplasmic reticulum Ca*—ATPase;>> however, those did
not provide any detailed insight on the catalytic mechanism or
overall conformational dynamics of the protein. Multiscale
reactive molecular dynamics (MS-RMD) and free energy
sampling have been used to quantify the free energy profile and
time scale of the proton transport in SERCA.”®> Quantum
mechanical/molecular mechanical (QM/MM) calculations
have also previously been performed for the phosphoserine
phosphatase, which also belongs to the large HAD-like
superfamily of proteins, but it is classified in a distinctly
different family.”* We therefore performed MD, QM cluster,
and QM/MM calculations with the aim to describe this
important catalytic mechanism and quantify the role of active
site residues and active site cations in the phosphoryl transfer
reaction in the catalytically competent E1-ATP functional
state. Our QM/MM calculations found that Arg686 had a
significant effect on the barrier height similarly to arginine
fingers, however interacting with the f-phosphate of the ATP
backbone.*® Accordingly, experimental data from mutagenesis
studies of the Ca®*—ATPase suggests that this conserved
arginine is detrimental to the ATPase activity of the
homologous enzyme.”” We further show the precise effect on
the barrier height of Lys859, which is similarly very important
through interactions with both the y-phosphate of the ATP
and Asp513 in the reactant state. The results presented in this
work can suggest how missense mutations disrupting crucial
barrier-lowering interactions can have an abolishing effect on
the enzymatic activity of ATP13A2 and other PSB ATPases
with a homologous active site, specifically G877R°.

H METHODS

Homology Modeling. The E1-ATP-bound state was
modeled based on the Endoplasmic Reticulum Ca**—ATPase
(SERCA), (PDB code: 3tlm).”® The position of the ATP
molecule and the Mg®* cation was based on the position of the
ACP moiety and the Mg®* cation, respectively, in this crystal
structure.”® The crystal structure has the position of only one
Mg** resolved; hence, the initial model contained only one
Mg?*. The modeling server used was SWISS-MODEL’® and
the sequence of ATP13A2 was obtained from Uniprot®’ for
Homo sapiens (Uniprot code: Q9HD20). To account for the
most recent crystal structure available of ATP13A1, ATP13A2
was also modeled based on the PSA ATPase ATP13A1 (PDB
code: 6xmq).>° Both templates result in the same three-
dimensional structure in the active site region of interest
(Figure 2).

Molecular Dynamics Simulations. All MD simulations
were performed by using the program NAMD.*® The force
field used in the simulations was CHARMM36>° with periodic
boundary conditions and to evaluate the nonbonded long-
range interactions the particle mesh Ewald method®® was
utilized with a 12 A cutoff. The NPT ensemble was maintained
with a Langevin thermostat (303 K) and an anisotropic
Langevin piston barostat (1 atm). The simulation was repeated
at 309.15 K. The system consists of 361707 atoms. The final
crystal type of the assembled system is tetragonal with
dimensions along the X, Y, and Z axes: 150.7 A, 150.7 A,

and 170.6 A, respectively. The angles between all axes are 90
deg.

’;g['he water model was TIP3P.*! To neutralize the system, a
0.15 M KClI solution was added. The ion placing method was
by distance. The energy of the system was minimized via
steepest descent algorithm, followed by a standard six-step
equilibration for membrane-embedded systems with restrained
heavy atoms via a standard CHARMM-GUI** procedure with
a time step of 2 fs. The first step of the equilibration was done
with a time step of 1 fs. The SHAKE algorithm** was deployed
to constraint the covalent bonds involving hydrogen atoms.
The equilibration was followed by 100 ns production with all
the atoms completely unconstrained and free to move. A
second 100 ns MD simulation was performed where the
coordinates of the ATP molecule were fixed in their original
position (following the crystal structure coordinates of the
homologous template) in order to preserve the original
coordinates of the crystal structure ACP (PDB code:
3tim).*” The protein, solvent and ions were completely
unconstrained. The PPM server was used for orientation of
the protein in the membrane.”* The membrane had the
following composition: 40% cholesterol, 30% phosphatidylcho-
line lipids (PC), and 30% phosphatidylethanolamine lipids
(PE) to mimic a membrane environment in a lysosome-like
cell. The same protocol was repeated for the second homology
model of ATP13A2, which was based on the PSA ATPase
ATPI13Al.

QM Cluster Calculations. All of the QM cluster
calculations were performed by using the Gaussian09
program.** The QM region was treated with the B3LYP
hybrid density functional™ and the 6-31+G* basis set.*” The
QM region consisted of two Mg?* cations, six water molecules,
the side chain of Asp513, the side chain of Asp878, and the full
ThrS1S, as well as the full ATP molecule (Figure S3). The
geometry optimization followed standard QM cluster
procedure where the C atom where the amino acids are
truncated, is frozen. Where a single C—C bond is cut, three H
atoms are added to satisfy the C atom valency. The exact
atoms which are frozen in the calculation are illustrated in
Figure S3. The second Mg>* cation in the starting geometry of
G1 (Figure S4A) was placed based on alignment with the
crystal structure of the Na*/K*-transporting ATPase, which
has full sequence conservation within 4.5 A of the Mg** ions
and is resolved with ADP and two Mg** cations (PDB code:
3wgu).” The starting structure of G3 was taken from a
snapshot of the last nanosecond of the unconstrained MD
simulation (Figure S4C). In G2 and G4, the second Mg** ion
was placed by a manual initial guess.

Quantum Mechanical/Molecular Mechanical Meth-
ods. All QM/MM calculations were performed by Q-Chem,*®
coupled with CHARMM.*® The QM region contained: the
Mg** cation/s, six water molecules, the phosphate chain of
ATP, the side chain of AspS513, the side chain of Asp878, the
full Thr51S, the side chain of Lys859 and Arg686, the full
Gly516, and the main chain of Lys514. The QM region during
the RCS was treated with the B3LYP hybrid density functional
and 6-31+G* basis set.**"” The MM region contained all
residues and solvent within 25 A of the QM region. The
residues included in the QM region were separated from the
rest of the chain by cleaving homonuclear C—C bonds and
introducing link atoms, which were treated as hydrogen atoms
in the QM calculations. An initial energy minimization was
carried out, which constituted 1000 steps via the SCF DIIS

https://doi.org/10.1021/acs.jpcb.1c05337
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algorithm. Each minimized geometry was supplied for the RCS
as a reactant state starting point. The active site containing two
Mg** ions was obtained by aligning the ATP and second Mg**
ion from the QM cluster optimization and translating the
optimized geometry to the QM/MM model. The conforma-
tion of the ATP molecule and the position of the Mg?* ion in
the one Mg?**-model were taken directly from the one observed
in the crystal structure of the E1-ATP state of SERCA,
however, substituting one carbon atom of the crystal structure
ACP molecule to a phosphorus, in order to have the
catalytically active ATP. This structure was further minimized
for 1000 steps. We defined the reaction coordinate by the
distance from the nucleophile to the phosphorus O,p—Pg
(R1) and the phosphorus and the leaving group P;—O35 (R2).
Starting from the reactant state and moving along this
coordinate, we simultaneously decrease the Rl distance and
increase the R2 distance, to reach the product state. The
distances were changed linearly. This forward—backward
scanning is performed until energy convergence is observed.
The solvent molecules in the QM region do not undergo
reorganization from reactant to product state so the system has
not been constrained additionally. A total of 40 minimization
steps were completed each time before a data point was
recorded during the RCS. All presented scans are converged
and show the forward scan direction, going from the reactant
to the product state. Six systems were independently
minimized. The minimized structure of each was supplied
for a starting structure (reactant) of the RCS. Each system was
studied with its corresponding QM-region, and the overall
charge and atomic constitution (residues included and number
of Mg** ions) are summarized in Table S1.

Two-Mg?* Active Site Simulations. We also performed
unconstrained MD simulations with two Mg®* ions in the
active site to probe the overall stability of the system, and in
particular the ATP conformation. We performed three
replicates of 100 ns duration each. The same protocol was
used as the one already described for the one-Mg?* MD
simulations. The transmembrane domain was not used in the
two-Mg?* MD simulations, only residues 485—930. For the
starting structure, the ATP geometry was taken from the
optimized QM cluster geometry, which had the most
energetically favorable zigzag conformation of the ATP.

Pocket Analysis. Twenty frames were extracted from the
100 ns MD trajectory of the unconstrained simulation. The
frames were spaced equidistantly and covered the duration of
the MD simulation and were spaced S ns apart from each other
(Table S2). The 20 bi§§est pockets were calculated for each
frame, using the Pymol®” plugin PyVOL.*>' To find pockets on
the surface of ATP13A2, PyVOL®' was provided with the
protein chain only without the ATP or any of the Mg>* ions.
The four biggest pockets in terms of surface area were chosen
for further analysis. Upon inspection, it was observed that the
biggest pockets for every frame were observed in the N-binding
domain where ATP binding normally occurs, and in the
transmembrane domain, respectively. For this work, we define
a pocket as an “ATP-binding pocket” if the pocket was found
in a location within 1.5 A of the ATP in the respective frame
from the simulation. We define a “transmembrane pocket” if a
pocket is located within 1.5 A of where small inorganic ion
binding has been observed in the crystal structures®®* of
homologous proteins. If a pocket was calculated by PyVOL®’
to be occupying this area of interest, it was recorded as found.
If it was not calculated within this area, it was recorded as not

found (Table S2). In this way, we were able to calculate the
frequency of occurrence of those two pockets (Table S2).
Other pockets that were found consistently are illustrated in
Figure SS. However, the occurrence was not as consistent as
for the ATP pocket and the main transmembrane pocket. The
results presented are obtained from the MD simulation of the
homology model based on SERCA, but the same analysis was
performed on the homology model based on ATP13A1 and
the main transmembrane pocket was found in this model as
well.

B RESULTS

Homology Modeling. To identify the closest protein
sequences to ATP13A2 and any available structural informa-
tion on these, we performed BLAST®> and FASTA>? searches.
The most similar proteins in humans, by sequence similarity,
are as follows: ATP13A3, ATP13A4, and ATP13AS (Figure
2A), which are all part of the PSB ATPase protein subfamily.
As was proposed earlier,”” those proteins have high
conservation in the substrate binding domain and are likely
transporting and/or interacting with the same cargo within the
cell. Unfortunately, none of these proteins have three-
dimensional structures deposited in the Protein Data Bank
(PDB). The closest available proteins with experimentally
resolved structures are ATP13A1 (PSA subfamily), the Na*/
K*-transporting ATPase (P2C subfamily), the endoplasmic
reticullum Ca**—ATPase (SERCA) (P2A subfamily), and the
H*/K*—ATPase (P2C subfamily). We selected the endoplas-
mic reticulum Ca?*—ATPase (SERCA)>® and the very recently
resolved structure of ATP13A1,*° for modeling the active site
(Figure 2, parts B and C). The SERCA ATPase has a complete
conservation with ATP13A2 in the active site region of interest
(Figure S1) and was already available with several ATP
analogues bound, including water molecules crystallographi-
cally resolved.” Our final active site models match both
experimental structures very accurately (Figure 2, parts B and
C, for SERCA and ATP13Al, respectively).

We also note that any of the ATPases listed in Figure 2A
would be a suitable choice for modeling the active site of
ATP13A2 as the Mg?*-binding residues in the catalytic P-
domain are highly conserved among P-type ATPases, as well as
the other amino acids found in the immediate active site. More
structural information on the two homology models is available
in Figure S2.

Molecular Dynamics Simulations. To probe the
conformational dynamics of the protein, first, MD simulations
were performed on the membrane-embedded model based on
SERCA. The overall structure and in particular, the active site,
was well conserved during the simulations (Figure S6).

We focused on the Mg ion coordination, which was
initially octahedrally coordinated, coordinating two water
molecules, the side chain of the AspS513 residue (mono-
dentate), the side chain of Asp878 (monodentate), the main
chain of Thr51S (monodentate), and the y-phosphate of the
ATP. During the simulations, the coordination of the Mg** ion
has remained octahedral, and importantly, the binding mode of
the Asp513 residue has remained monodentate. The y-
phosphate of the ATP phosphate chain was also in the correct
orientation for the phosphoryl transfer to occur.

Importantly, the ATP molecule no longer preserved its
original “zigzag” conformation but immediately adopted a
“straight” conformation, from the first nanosecond of the
simulation (Figure S7A). This has also been observed before in

https://doi.org/10.1021/acs.jpcb.1c05337
J. Phys. Chem. B 2021, 125, 11835-11847



The Journal of Physical Chemistry B

57

pubs.acs.org/JPCB

number of K* ions
-

(=]

0 20 40

60 80 100

Time, ns

Figure 3. (A) Region of the active site where the K* jon clustering is observed during the simulation (orange spheres). (B) Number of K* ions in
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Figure 4. Optimized active site geometries for G1 and G2 (green sticks), aligned to the existing homologous active site crystal structure of the Na*/
K*-ATPase (gray sticks, pdb: 3wgu29), which is resolved with two Mg?* ions (gray spheres) and an ADP molecule (gray sticks). The green spheres
represent the two Mg?* ions in the optimized geometries and the gray spheres represent the two Mg?* ions in the crystal structure. Both structures
represent the same binding mode to the second Mg?* via two oxygen atoms of the & and § phosphates of the ATP.

the short MD simulations of SERCA.*”> Komuro et al.
suggested that the “straight” ATP conformation is incorrect
and reparameterization of the ATP molecule is needed, to
ensure that the original conformation from the crystal structure
ACP is preserved. We also noticed that there was a charge
imbalance in the active site that could possibly cause this
conformational change. The initial simulation based on the
crystal structure involved a single Mg** cation only in the
active site; however, we observed that a second cation
constantly occupied a position very close to the @ and p-
phosphates (Figure S7B). We conducted subsequent MD
simulations where the ATP molecule was fixed at its original
conformation. The rest of the ions, water, and the protein were
free to move without any constraints. In this simulation, we
also observed that K ions approached the active site for the
full simulation time as before, and were located in the same
position where a second Mg** cation was found in the crystal
structures of the homologous SERCA active site TS-like crystal
structure®® (Figure 3A). Throughout the duration of the MD

simulations, the K* jons remained a constant presence at the
active site (Figure 3B).

As crystallographic structures often lack catalytically
essential Mg?* ions, we propose that the second Mg®* ion
could be needed to stabilize the catalytically active
conformation of the ATP. Two Mg’* ions have been resolved
in the structures of homologous enzymes, however, only in TS-
like states, most likely because the chain of the synthetic
derivative analogue has a different charge than the catalytically
active ATP.

QM Cluster Calculations. To probe the catalytically active
conformation of the ATP molecule at the active site, and,
specifically, the second Mg®* ion coordination, we performed
QM cluster calculations. We generated four different ATP—
Mg2+ starting geometries, G1—G4 (Figure S4), by using
information from the crystal structures containing two active
site cations and ADP>”***! (G1) and from preliminary results
of the initial MD simulations with one Mg** in the active site
(G3) or by manual initial guess (G2 and G4). All four starting
geometries G1—G4 were optimized and upon convergence

https://doi.org/10.1021/acs jpcb.1c05337
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shown between the Lys859 and Arg686 and the ATP molecule. The O,p—P;—O;; distance is shown in the TS state. Hydrogens on the rest of the
amino acids are not shown for clarity. Throughout the RCS, the Mg®* ion coordinating AspS13 is always bound to two water molecules and the
Mg?* ion, which is coordinating the @- and f-phosphates of the ATP chain, coordinates four water molecules. Only atoms important for the
reaction are shown, for clarity purposes. The full description of the system can be found in the Methods.

yielded three distinct conformations. The optimized structures
of G1 and G2 (Figure 4, green sticks) are most energetically
favorable and agree particularly well with the conformation and
coordination mode observed in the crystal structures
containing two Mg?* ions and ADP*® (Figure 4, gray sticks),
where the second Mg?* ion is coordinating only two oxygen
atoms coming from the @ and f phosphate of the ATP
phosphate chain, and four water molecules. Importantly, the
phosphate chain in both G1 and G2 is not in a straight
conformation such as in geometries G3 and G4. Conforma-
tions G3 and G4 in which the phosphate chain is “straight”
(Figure S4, parts C and D) have considerably higher energy
and were therefore not used in any further QM/MM
calculations. Additionally, upon aligning the optimized geo-
metries G3 and G4 with “straight” chain to the crystal
structure,”’ larger deviations are clearly visible (Figure S8,
parts C and D). Conformations in which the second Mg?*
cation is coordinated by three oxygen atoms are not favorable
either (Figure S4B) and converge to the coordination mode
observed in G1 and G2, Figure 4. This ATP conformation and
coordination mode were subsequently used for QM/MM
calculations to determine the corresponding reaction profile.

QM/MM Calculations. For the QM/MM calculations, six
systems (P1—P6) were created using the same number and
species of atoms in the MM region. However, we varied the
number of atoms in the QM region to explore various effects
related to the role of the number of Mg** ions, and the Lys859
and Arg686 residues for the reaction. System P1 included one
Mg*" ion, six water molecules, the phosphate chain of ATP, the
side chain of Asp513, the side chain of Asp878 and ThrS1S,
the side chain of Lys859, Arg686, and Gly516 and the main
chain of Lys514 in the QM region. System P2 contained the
same number and atom species but also a second Mg?*. P3 and
P4 (Table S1) contain one Mg** ion in the active site and
Lys859 or Arg686, respectively, are removed from the QM
region and their MM atomic charges are set to 0. PS and P6
contain two Mg ions in the active site (Table S1) with
Lys859 or Arg686, respectively, electrostatically removed from
the system as detailed above. Reaction scans were performed
on all six systems, P1—P6, to determine the potential energy
barriers. We performed forward and backward scans until we
observed consistent energy profiles (Figure SA) and the energy
minimum was obtained. Both scans show a good convergence.
For P1, in the presence of one Mg** only, the barrier height is
~12.5 kcal mol™". During the phosphoryl transfer reaction, the

https://doi.org/10.1021/acs.jpcb.1c05337
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Figure 7. QM/MM reaction coordinate scans of the catalytic reaction of ATP13A2 containing two Mg”* ions. The energy profile depicted in red
represents the phosphate transfer reaction without Lys859 (PS). The energy profile in green represents the phosphate transfer reaction without
Arg686 (P6). The blue energy profile (P2) shows the reaction with the full QM region present.

ion is octahedrally coordinated via two water molecules, the y-
phosphate of the ATP phosphate chain, the carboxylate side
chains of Asp878 and AspS13 (in a monodentate mode), and
the main chain carbonyl of ThrS1S (Figure SB). The barrier
height for system P2, containing two Mg** ions, was calculated
to be ~7.5 kcal mol™". The second Mg** ion coordinates four
water molecules and two oxygen atoms coming from the a-
and f-phosphates of the ATP chain. Importantly, it does not
coordinate a third oxygen atom from the phosphate chain.
Kinetic studies of the Ca®*-transporting sarcoplasmic
reticulum (SR), which has a fully conserved active site with
ATP13A2, report a rate constant of 225 s™' for the
phosphorylation of the wild type enzyme by ATP in
equilibrium conditions.** This experimental report agrees
with the work of Petithory et al,*> which reports a rate
constant for formation of the phosphorylated enzyme of 220

11842

s™%. This corresponds to a barrier height of ~14.3 kcal mol™
using the Eyring equation at 298 K. Inesi et al. reported
experiments with a somewhat slower rate (100—150 s7!).%
Our potential energy barrier height obtained for the one Mg**
case is in excellent agreement with these kinetic experiments.
All experimental work agrees that the enzyme phosphorylation
reaction is fast, and it is not the rate limiting step, with the
expected free energy barrier ranging from ~14—15 kcal/mol ™.
Based on the barriers obtained from our potential energy scans,
it is possible that the enzyme operates and is sufficiently active
already with only one Mg?** ion. Missing entropic effects and
free energy calculations with conformational sampling could
also account for the relatively lower potential energy barrier
observed using two Mg’ ions in the active site.

We find that the phosphoryl transfer reaction proceeds
without any stable pentavalent phosphate intermediate. The

https://doi.org/10.1021/acs jpcb.1c05337
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Figure 8. (A) Two main binding pockets (red mesh and yellow mesh) found consistently on the surface of the homology model of ATP13A2
(green cartoon). (B) Frequency of ATP-pocket occurrence calculated from the 20 frames of the unconstrained MD simulations. (C) Frequency of
transmembrane pocket occurrence calculated for the same frames. (D) Sequence conservation in the inorganic ion-binding region in the
transmembrane between the Na*/K*—ATPase (gray sticks), SERCA (wheat sticks), and ATP13A2 (green sticks). S1, S2, and S3 stand for binding

sites 1, 2 and 3.

reaction pathway in phosphoryl transfer reactions can be
classified as associative, dissociative or concerted.’””*® In the
associative pathway, the attacking nucleophile approaches the
phosphorus atom, decreasing the bond length between the
attacking nucleophile and the reactive phosphorus while the
bond to the leaving group simultaneously increases. In this
pathway, the nucleophilic attack occurs before the departure of
the leaving group. Alternatively, in the dissociative pathway,
the leaving group departure precedes the nucleophilic attack.
In the concerted pathway, partial bond formation and bond
breaking occur simultaneously in only one step. The reaction
pathway is classified based on whether the bond formation or
bond cleavage dominates as the transition state is

approached.*® In this ATP cleavage mechanism of ATP13A2,
there is an energetically stable leaving group, a diphosphate
anion, and a dissociative pathway could be expected to
potentially be more favorable.*® To confirm, we considered the
distances between O,p—P; and Pg—O, (Figure 6A). Our
results show that the path from the reactant state (RS) to the
product state (PS) follows an associative pathway in the
protein environment, for both one and two Mg** cases.
Furthermore, we note that while the reaction can follow an
associative pathway, the TS itself does not have to be
associative.”*’ We calculated the bond order in the transition
state and obtained Wiberg bond indices for the P;—O,p and
P;—Osp bonds of 0.162 and 0.125. We therefore found that

https://doi.org/10.1021/acs.jpcb.1c05337
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while the reaction clearly follows an associative pathway
(Figure 6A), the TS itself corresponds to a loose, dissociative
structure, where both P—O bonds are already broken (Figure
6B). This is consistent both with computational work
demonstrating an associative path®” and with experimental
findings that can capture the loose TS.*

To quantify the effects of the interactions between the ATP
and Lys859 or Arg686 (P3—P6), we obtained converged
reaction coordinate scans by eliminating these interactions
(Figure 7). This allows us to observe the reaction coordinate
without the stabilizing electrostatic interactions formed
between Arg686 and the f-phosphate of the ATP chain; and
between Lys859 and both the y-phosphate and the AspS13.
Without Arg686, the barrier height increases by more than 5.0
kcal mol™ (Figure 7), which is very significant in terms of time
scales. Without Lys859, which forms key electrostatic
interactions to the side chain of Asp513 and the y-phosphate
of ATP (Figure SB), the reactant state is considerably higher in
energy than in the cases when Lys859 is present in the system.
While this results in a lower apparent barrier, the reactant state
is very destabilized and the ATP binding is likely impaired,
which might have additional consequences for the enzyme
function and stability.

We performed additional QM/MM calculations to quantify
the destabilization of the system caused by the missing Lys859
atomic charges. We calculated the single point energies for the
RS, TS, and PS optimized geometries from system P2, but
placing the Lys859 in the MM region with (blue) and without
(red) its atomic charges present (Figure S11A). This allows us
to separate the electrostatic effects of Lys859 from the
geometric ones keeping the reaction profile unchanged.
Similarly, QM/MM single point calculations were performed
for RS, TS, and PS states along the PS profile with (blue) and
without (red) the Lys859 (Figure S11B). These geometries
account for some partial geometry relaxation when Lys859
atomic charges were set to zero in the MM region.

Our results demonstrate that the energies of all states are
higher without the positively charged Lys859 (Figure S11).
The RS is destabilized most significantly compared to TS and
PS, and thus, LysS89 is not directly involved in the TS
stabilization. Lys859 is likely needed for proper binding of the
ATP in the active site, providing overall stabilization to the y-
phosphate of the ATP and the Asp513 residue, through stable
hydrogen bonding.

Our observation that the Lys859 residue is very important
for the phosphoryl transfer reaction is supported by the kinetic
analysis of mutants of the homologous Ca**—ATPase
sarcoplasmic reticulum by Sorensen et al.** This work shows
that the rate of ATP binding and subsequent phosphoryl
transfer in the Lys684Arg mutant (corresponding to
Lys859Arg in ATP13A2), was reduced SO-fold, relative to
the wild type, thus indicating the importance of this residue.
This information combined with our analysis shows that the
structural effects are also very important in case of the
Lys859Arg substitution, as the electrostatic factors here are
unchanged, which we predicted to lower the barrier; therefore,
the overall geometrical changes significantly slow down the
reaction.

Two-Mg?* Active Site Simulations. We also performed
MD simulations with two Mg?* ions present in the active site
to probe the overall stability of the system, and in particular the
ATP conformation. Starting from our QM cluster optimized
ATP conformation, we performed three replicates of unbiased

MD simulations, each 100 ns in duration. In all three
simulations, the ATP was still found in its most energetically
favorable conformation. No K" ions approached the active site.
The second Mg®* ion was stable at its original position
coordinating two oxygen atoms of the a- and f-phosphates of
the ATP. However, the catalytic Mg?* did not preserve its
coordination fully, and one of the water molecules was
replaced by an oxygen atom from Asp513 leading to a
bidentate coordination. Figure S12 illustrates the ATP
conformation in the simulations after 100 ns of unconstrained
MD.

This suggests that no additional parametrization is required
to stabilize the ATP conformation in the presence of two active
site cations. However, the metal ion coordination is
notoriously difficult to maintain in some cases using standard
force fields, and either further changes are needed in the active
site geometry that stabilize the catalytically competent Mg-
coordination, or improvements in the Mg** force field.

Binding Pockets and Transmembrane Binding Anal-
ysis. While the PSA ATPase ATP13A1 has been shown to be a
Mn-transporter,®’ it has recently been demonstrated that
ATPI13A2 is strongly implicated in polyamine export.”” It has
been known that PSB ATPases such as ATP13A2 likely
transport different cargo from ATPI13Al due to major
differences in the transmembrane domain sequence con-
servation.”” To identify binding regions on the surface of
ATP13A2, pocket analysis was performed on 20 equidistantly
spaced frames from the MD trajectories of the modeled
protein, each frame being S ns apart from the next one. The
four biggest pockets were analyzed for each frame. Not
surprisingly, for most of the frames the biggest pocket in terms
of surface area is the one where ATP binds in the N-domain
(Figure 8A). It is expected that this pocket will be conserved
for all homologous P-type ATPases due to the highly
conserved ATP binding region and mechanism in the active
site.

Interestingly, the second biggest pocket, which appears
consistently, was identified in the transmembrane region
(Figure 8A), more specifically, where inorganic ion binding
has been observed in the crystal structures of homologous
enzymes such as the P2C Nat/K*—ATPase”® and the P2A
ATPase SERCA.*® The frequency of occurrence of the two
biggest pockets is shown in Figure 8B and C. For the Na*/K*—
ATPase, the specific amino acid scaffold surrounding the three
Na* ions which bind in the transmembrane domain consists of:
Val322, Ala323, Val32S, Pro326, Glu327, Tyr771, Thr774,
Ser755, Asn776, Glu 779, Asp804, and GIn924. From this
sequence motif, we observe conservation in ATP13A2 for the
amino acids that bind one of the inorganic ions in Site 1 (S1),
Figure 8D. In ATP13A2, these correspond to Val469, Pro470,
and Asp967 (Figure 8D). The remaining amino acids that
coordinate the additional two Na® ions in the Na'/K'—
ATPase (Sites 2 and 3, Figure 8D) are not conserved in
ATP13A2. Val469 and Pro470 in S1 are also conserved
between ATP13A2 and SERCA, which transports Ca** (Figure
8D), but the amino acids coordinating the second ion in
SERCA and Na*/K*—ATPase (S2 and S3) are not conserved
in ATP13A2. Considering the amino acid conservation in the
ion-binding region of the transmembrane (Figure 8D), and
overall similar shape of the ion-binding scaffold (Figure 8D) it
is possible that ATP13A2 also can bind and transport one
inorganic ion, although this is unlikely to be either Na* or Ca*".
Additionally, this transmembrane pocket was consistently

https://doi.org/10.1021/acs.jpcb.1c05337
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(90% of the time of the analyzed frames) found within 1.5 A of
ion-binding amino acids (Val469, Pro470, Asp967) in the S1
region, which additionally supports the idea that the protein
binds cargo in this area. It is important to note that the surface
area of this pocket is considerably larger than expected from an
ion binding site alone—the average size of the transmembrane
pocket is 2264.61 A3. This suggests that this region of the
protein additionally could interact with a much bigger
substrate, likely in the S2 and S3 region, which is not
conserved between the Na*/K'—ATPase or SERCA, Figure
8D.

Two additional pockets also appeared frequently, however,
though not as consistently as the ATP pocket and the main
transmembrane pocket. These include a considerably smaller
pocket in the upper part of the transmembrane (Figure SS)
and an additional pocket around residues 985—995 and 800—
807 (Figure SS).

Bl CONCLUSIONS

In this work, we present a structural model of the PSB enzyme
ATP13A2 which has been complemented with MD, QM
cluster, and QM/MM calculations. This has allowed us to find
an accurate conformation for the catalytically competent ATP
structure and a reliable position for the second Mg?* ion with
respect to the ATP and the other Mg** active site cation. Using
this information, we have subsequently calculated the barrier
height for the phosphoryl transfer with one and two Mg?* ions.
Additionally, we present the first quantitative analysis of the
role of Arg686 and Lys859 on the barrier height of the ATP
cleavage. This work can suggest how missense mutations close
to important active site interactions in the respective catalytic
domains can have a diminishing effect on the catalytic activity
of the enzyme.

Additionally, we have analyzed the surface of the protein for
binding pockets and found two pockets that occur consistently.
The pocket that appeared most consistently was found in the
transmembrane domain of the protein. From the sequence
analysis performed and the binding pocket calculations, we
suggest that ATP13A2 also likely binds a substrate in this part
of the transmembrane, other than an inorganic ion, which is
consistent with the big size of the calculated pocket in this part
of the transmembrane.
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Future Work

Now that there is an established profile for the wild type enzyme, it would be possible to
repeat the QM/MM calculations for mutated variants where a mutation implicated in
neurodegenerative process is identified in proximity to the active site and can be incorporated
into the QM region. The now available crystal structures with the bound substrate and Mg?*
ions fully agree with our model (Fig. 3.9), which validates the QM/MM potential energy scans
and all of our prior computational calculations. Figure 3.10 shows the mutations with to-be-
determined mode of action as red sticks on the 3D crystal structure (now resolved) of
ATP13A2 (PDB code: 7N73).11% |t can be seen that some of these mutations are located in the
P and N domains, respectively, are near the active site and possibly interfere with the catalytic

mechanism.

Figure 3.9. Starting structure for the QM/MM potential energy scans (wheat sticks) and the crystal
structure of ATP13A2 (orange sticks) which was resolved after our model (PDB code: 7N75).1%* The
position of the second Mg?* ion perfectly matches our model, as well as the other residues we
modeled. The crystal structure is resolved with AlF; which represents the transition from the E1 to E1P
state, whereas our model represents the E1 conformational state immediately after ATP binding, so

slight misalignment is to be expected.
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M

Figure 3.10. Crystal structure of ATP13A2 with red sticks depicting mutations whose effect is to be
determined. Some of these mutations are located in the P and N domains, respectively, and can

potentially interfere with the ATPase activity of the enzyme.
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Chapter 4

Machine Learning Classification Pipeline for
Galactose Oxidase Variants based on Transition
State Molecular Dynamics

4.1 Introduction

Galactose Oxidase (GO) is a monomeric copper-containing oxidoreductase found in several
fungal species.'®> 17 |t oxidizes the C6-OH hydroxyl of the primary alcohol D-galactose,
converting it to its corresponding aldehyde. The wild type (WT) intracellular GO catalyzes the
oxidation of only a narrow range of substrates such as D-galactose and galactose-containing
oligosaccharides. However, in the last 20 years, the scope of substrates for GO was
significantly expanded using engineered variants of the enzyme, with the capability of
converting a range of primary alcohols.!'® The substrate scope of GO was also extended to
secondary alcohols, 13 which is of key importance for the pharmaceutical industry due to their
role in the synthesis of various compounds with global healthcare impact. Most recently, the
range of substrates was further expanded to include multiple bulky benzylic alcohols with

large side chains.'?®

In the field of GO engineering, variants that retain the optimal catalytic properties of the WT
enzyme while accommodating a broader range of benzylic substrates are of key importance.
It is often observed, however, that there exists a trade-off between the expanded substrate
specificity of a variant and its catalytic capability. Most often, GO variants with widened
substrate specificity, do not retain the optimal catalytic rate of the WT enzyme. This work
proposes a new way of utilizing Molecular Dynamics (MD) and Machine Learning (ML) to
develop a classification pipeline for GO variants based on their predicted catalytic
performance. The main aim is to be able to predict the effect on the catalytic rate of a GO

variant (positive/neutral or negative), upon the introduction of a combination of missense
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mutations. Additional complexity is added to the problem by predicting the effect on the rate
from missense mutations and when there is a non-native substrate in the active site. The
problem is handled as a binary classification - two classification categories are established.
The first category contains all variants with rates falling within the range of the WT enzyme
(£ 1.0 kcal/mol). The second category contains the variants that slow down the rate of
catalysis considerably (> 2.9 kcal/mol). The aim is to categorize the variants and predict their
catalytic efficiency irrespective of whether the substrate is a non-native primary or secondary
alcohol. The Gibbs free energy of activation (AG*) for the rate-limiting step in the WT GO is

measured experimentally to be ~13.8 kcal/mol and this is used as a reference value.*?°

A unique feature of the GO enzyme is the presence of a free radical-coupled copper active
site, 116121122 3 property of some copper metalloenzymes, combining the reactivity of a free
radical ligand with a redox-active metal centre (Figure 4.1A).223 The catalytic reaction leading
to the aldehyde product involves multiple steps with the copper ion adopting several distinct
oxidation states during the process. Crystal structures of GO from different species are
available,1?*12> which all display the central copper ion bound in a square pyramidal
coordination to Tyr272, Tyr495, His496, His581, and either a water molecule or an azide ion,
which is where the alcohol substrate binds (Figure 4.1A). Another important residue in the
immediate active site is Cys228 which is linked to Tyr272 through a thioether bond and has a
vital role in the catalytic reaction as mutational studies show a 1000-fold decrease in the
catalytic rate in the presence of the C228G mutation.'® Trp290 which rni-stacks to the Tyr272-
Cys228 moiety is also considered very important for the regulation of entry to the active site
(Figure 4.1).12> The catalytic mechanism was previously explored experimentally with
extensive spectroscopic work, isotope substitution experiments'?312¢, and theoretically with
DFT.2” There is a general agreement that the alcohol-to-aldehyde conversion is a complex
multistep process that proceeds with a proton transfer, followed by a hydrogen atom
transfer, subsequent electron transfer, O, binding, and reduction. The rate-limiting step
(Figure 4.1B) is the hydrogen atom transfer from the substrate to the equatorial modified
tyrosyl radical Tyr272. Full details on all catalytic steps can be found in the works of different
authors. 123126127 | this work, only the rate-limiting step is considered, as we are interested
in predicting the effects on the catalytic rate. The 3D structure of one of the mutated variants

(M3-5) is shown in Figure 4.1C with red sticks showing missense mutations on this variant, to
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illustrate the general location distribution of mutations in variants that convert a wider range
of alcohols. The TS with one of the non-native substrates is shown in Figure 4.1D. The non-
native alcohols are expected to bind in the active site in the same way as D-galactose, as well
as other alcohols with similar chemical composition. The active site in GO is not buried deep

in the protein, as is the case in some other metalloenzymes.

A W290 B D-galactose
% “‘\\\OH
Y272

Yo72

Y272

Figure 4.1. (A) Active site of the wild type crystal structure of GO (PDB code: 2EIE)**® with copper ion
bound in a square pyramidal geometry and an azide ion. (B) 2D representation of the TS for the rate-
limiting step in the catalytic mechanism of the WT enzyme. The hydrogen atom that is transferred
from the substrate alcohol to the tyrosyl radical is highlighted in red. Some of the hydrogen atoms are
not shown for clarity. (C) 3D cartoon representation of the M35 variant of GO, mutated residues are
represented with red sticks. (D) 3D representation of the TS with 1-phenylethanol (SS1) as the

substrate.
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The proposed pipeline involves conducting short MD simulations for 31 variants of GO
at/around the rate-limiting step of the catalytic mechanism with the following substrates
bound in the active site: D-galactose (primary alcohol, Figure 4.2A), 1-phenylethanol (SS1) and
a-Tetrol (S128), (secondary alcohols, Figure 4.2B and C). The reason for conducting the MD
simulations at/around the TS is that we are interested in predicting the effect on the catalytic
rate, which is directly related to the rate-limiting step of the enzymatic reaction. The TS for
the wild type enzyme with D-galactose in the active site was previously found and verified
using the DFT cluster TS search approach. It should be noted that this TS was verified against
the accepted catalytic mechanism and the 3D structure of the active site agreed very well.}?’
The Cartesian coordinates of the TS structure were used to restrain the active site to ensure
that subsequent MD simulations sampled in proximity of this rate-limiting TS. The last frames
from the equilibration run were extracted and for all variants, it was verified that the protein
adopted a TS-like structure before starting the production run. Throughout the MD
simulations, the three-dimensional coordinates of the enzyme’s main active site residues are
kept in a configuration closely resembling the rate-limiting step of the catalytic mechanism
through the application of restraints (added harmonic potentials), which allows to sample the
dynamics near the TS, but at the same time keeps the protein at a TS-like structure. | used
DFT calculations to define the charge distribution in the active site at the TS of the rate-

limiting step and used the obtained partial charges to re-parameterize the FF accordingly.

This approach centers on the hypothesis that since some of the protein mutations in the
simulated variants occur near the active site, these will affect the three-dimensional
conformation of the TS structure at/around the rate-limiting step. Affecting the active site
geometry together with changes in the active site charge distribution is expected to affect the
energy barrier for the respective step in the catalytic mechanism. By starting the MD
simulations at the TS conformation of the enzyme, | aim to capture potential displacements
of the active site relative to the WT GO enzyme. Mutations in variants that slow down the
reaction considerably are expected to distort the active site more significantly. The underlying
assumption is that variants with similar catalytic rates to the WT enzyme will experience little
to no displacement during the rate-limiting step, or similar “behavior” during the MD
simulations. Consequently, key distances within the active site should remain similar to the

ones observed for the WT GO. We ran simulations with three replicates for each variant,



71

extracted features from the simulation trajectories, and averaged the values for the features
over all replicas. Subsequently, we utilized Random Forest and other decision tree-based
algorithms to classify each variant based on these key features obtained from the TS MD

simulations.

Figure 4.2. 3D structures of the alcohol substrates used in this work: (A) D-galactose, (B) 1-
phenylethanol (SS1), (C) a-Tetrol (S128). Key atoms in the hydrogen transfer step are labeled. The

original atom names from the PDB databank are used.
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Figure 4.3. Proposed pipeline for the classification of GO variants based on their predicted catalytic

rate.

4.2 Methods

4.2.1 Modeling the GO variants

The structure of the wild type Galactose Oxidase (GO) enzyme was obtained from the Protein
Data Bank (PDB),%° PDB code: 2EIE.*?8 All GO mutant structures were generated with Pymol’s
mutagenesis tool.!?® Variants were then compared to crystal structures, where such were
available, and showed excellent agreement for the side chain conformation of the mutated
residue.12%125 This confirms that the Pymol mutagenesis tool can reliably predict the most

likely rotamer of the mutated residue.

To place the substrate in the active site, the 3D structure of D-galactose was aligned to the

position of the azide ion in the wild type GO crystal structure,!?

and it was also aligned to the
TS geometry previously obtained by a DFT-TS search. The TS was not obtained by me;
therefore, the approach is not discussed in detail here. The TS structure was only used as a
reference for the MD simulations and as an input for the charge distribution calculations. All
subsequent substrates modeled in the active site were aligned to the C6-OH hydroxyl group
and the H11 atom of D-galactose to make sure the crucial reactive hydroxyl group occupies
the same space for all substrates and the starting point for the MD simulations is conserved.

Any potential clashes of the surrounding residues with the non-native substrates were

resolved during the minimization steps of the MD.

All variants in this work are modeled based on the crystal structure of the WT GO enzyme in
Fusarium graminearum. First, the M1 variant was created which differs from the WT by five
missense mutations and one silent mutation, Figure 4.4. M1 was then solvated, minimized,
and equilibrated and a production run was performed according to the procedure described
in the MD setup section. The last frame from the production run of the M1 variant was
extracted and this structure was used for building all M1_383 variants shown in Figure 4.4

with all possible mutations at position 383. The same procedure was followed for variants
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W290F, W290G, and W290H. All other variants had a different substrate in the active site
(5128 or SS1, Figure 4.4), therefore, a structure of the protein already simulated with D-
galactose in the active site could not be used. Instead, the WT crystal structure was used to
introduce the mutations and then all variants were simulated for 20 ns, to have the same
overall production run time for all variants. All features extracted from the MD simulations
were used after each variant had been subjected to the same overall simulation time. The
exact mutations present in each variant and the modeled substrate are summarized in Figure
4.4, as well as in Appendix B (Table SI1). Residues shown in bold orange represent new
mutations that were not present in the parent variant. In-house Python and bash scripts were
developed to automate the process and make the inclusion of new mutations
straightforward. The same applies to the feature extraction process. All variants created from
Goh1001b modeled in this work (Figure 4.4, grey background) were suggested by and come

from the work of Yeo W. et al.11®
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Figure 4.4. Diagram illustrating how the GO variants are modeled starting from the WT crystal

structure.

4.2.2 Parametrization of the active site based on QM calculations

The charge distribution of the active site was evaluated with the electrostatic potential (ESP)
calculation as implemented in Gaussian 09 ES64L-GO9RevE.01.13° All DFT ESP calculations
were performed at B3LYP/Def2TZVP level of theory with GD3 empirical dispersion.!3%132To
obtain accurate charge distribution for the TS of the WT protein, the ESP calculation used the
TS coordinates of the active site as input with the following residues: Y272, C228, F227, Y495,

H496, H581, the D-galactose substrate, and the copper ion.
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The charges obtained from DFT were then used to re-parametrize the original force field, to
reflect the more accurate active site charge distribution at the rate-limiting step. D-galactose
was replaced with S128 and SS1, respectively, and the charge distribution was re-calculated
for each substrate. The respective charges were used in the MD simulations. The charge of
each substrate and active site residue, according to the DFT calculations, are shown in
Appendix B. Corrections had to be made for all the linker atoms, where applicable, which
added additional charge to the system. Backbone C and O atoms were generally kept at the
charge provided in the original FF library. After those corrections, it was made sure that
mutual charge transfer as predicted by DFT was preserved as well as intramolecular charge
polarization, while at the same time charges on protein backbone atoms were retained to

keep the protein FF overall consistent.

4.2.3 Molecular Dynamics setup

All MD simulations were performed with GROMACS version 2020.6.133 The force field used to
model the systems was CHARMM36.84 The protein was solvated in a cubic water box and the
water model was TIP3P.134 For the equilibration the Berendsen pressure coupling®°! was
combined with the V-rescale thermostat.’* For the production run the Parrinello-Rahman
pressure coupling® was combined with the Nose-Hoover temperature coupling®? (T =
298K). The Verlet cut-off scheme was employed to generate pair-lists and the electrostatic
interactions were evaluated with the Particle Mesh Ewald.**>'3® Minimization, equilibration,
and production steps were completed. The time step of the equilibration was 1 fs for a total
of 50,000 steps. The time step of the production run was 2 fs for a total of 5,000,000 steps. It
was further extended for another 5,000,000 steps, for a total of 20 ns simulation time for the
variants directly modeled from the crystal structure of the WT GO. Considering that the
simulations were conducted by enforcing the protein's active site to adopt a TS geometry, our
objective was to use the shortest simulation times feasible while still capturing any active site
displacement resulting from the presence of missense mutations. This approach anticipates
a trade-off between applying restraints to maintain the active site at a TS closely matching
the one obtained by DFT and simultaneously observing displacements of atomic positions
relative to the WT enzyme simulation. The force constants were decreased iteratively until

the minimum force could be used which would keep the simulations at an active site
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conformation similar to the one from the DFT (see Appendix B for force constants). The active
site structure was evaluated after every different production run (the force constants starting
from a conservative force and decreasing, depending on the bond type). Overall, 186 MD
simulations were completed. First, 93 simulations (31 variants, 3 replicas each) were run with
one set of restraints (Appendix B, Table SI3 and Sl4). Then, a further 93 simulations were run
with a different set of restraints (Appendix B, Table SI3 and SI4). The reason for the second
set of simulations was because the originally used set of restraints included substrate atoms
which might not be explicitly present in future substrates. This would limit the possibility of
expanding the dataset to other bulky secondary alcohols. For this reason, the simulations
were re-run with the second set of restraints to make sure that the future dataset can be

inclusive of substrates with a more diverse chemical composition.

4.2.4 Machine Learning

Both machine learning models utilized for classification of the variants in this work are
decision tree-based algorithms. One of the models is the Random Forest (RF) algorithm. RF is
based on bootstrap aggregation which means that it divides the dataset into subsets and
builds trees for the different data subsets. The final classification label comes from the

majority label predicted by most individual decision trees.

The other model that was tested is the Gradient Boosted Decision Trees (GBDT) algorithm
which works similarly. However, it does not obtain the result from the majority vote of
individual trees but rather builds one strong model from the weaker decision trees by

correcting the error of each previous tree, 198137

All code was written in Python 3.9.6. The Random Forest Regressor, Random Forest Classifier,
and Gradient Boosted Decision Trees models in this work were used with the implementation
from scikit-learn 1.2.2.119 The parameters used in the final models are described below for

each case.

The loss function used for the RF Regressor is the Mean Squared Error (MSE). The MSE is

calculated in the following way:
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n

MSE:iZ(Y,_— 7)2

ni= 4.1)

Where n is the number of data points, Yi are the observed values, and Yi are the predicted

values.

The loss function used for the RF Classifier and GBDT Classifier is the log loss. It is also known

as binomial deviance or binary cross-entropy. The log loss is calculated as:

n

1
LogLoss = — ;l;yi log(p(y))) + (1=»log(1-p(y)) (4.2)

Where n is the number of samples, y is the binary label (0 or 1), p(y) is the probability of

the data point being 1 for all n samples.

For the RF regressor, RF and GBDT Classifiers the parameters were set to default in scikit-

learn.

The RepeatedKFold cross validator, as implemented in scikit-learn 1.2.2,11° was used to split
the data into 100 folds. It was used for both of the described models. The parameters
specified were n_splits and n_repeats. n_splits was set to 2 and n_repeats was set to 50,
which results in 100 unique training and testing sets. To calculate the accuracy with different
splits, n_splits was also set to 3 and n_repeats set to 50 which gives rise to 150 unique folds
with 67% training and 33% testing data. The accuracy did not change considerably from the

use of different ratios. The reported accuracy in the Results section is the one from 100 folds.

Metrics

The metrics used to evaluate the performance of the classification models are discussed

below.
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The true positive rate (TPR) represents the proportion of actual positive instances that are

correctly identified by the model. It is calculated as:

TP

TPR = ——
TP+ FN

where TP is the number of true positives, and FN is the number of false negatives.

The false positive rate (FPR) is the proportion of actual negative instances that are incorrectly

identified as positive by the model. It is calculated as:

FP

FPR = —
FP + TN

where FP is the number of false positives, and TN is the number of true negatives.

A Receiver Operating Characteristic (ROC) curve shows the trade-off between sensitivity and
specificity. Classifier models that have curves that reach toward the top-left corner
demonstrate more accurate classification. The Area Under the Curve (AUC) is a quantitative
measure derived from the ROC curve which represents the area under the ROC curve and
provides a single scalar value to assess the overall performance of a classification model. A
higher AUC indicates better model performance, with a value of 1 indicating perfect

classification performance and a value of 0.5 indicating random guessing.

Classification accuracy, precision, and recall are also reported to evaluate the performance

of each predictive model. They are represented as:

(TP + TN)
Accuracy =
(TP + FP + TN + FN)
o TP
Precision =

TP + FP
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TP

Recall = ——
TP + FN

precision x recall
Fl1=2

precision + recall

4.2.4.1 Target variable

The experimentally measured kc: value was converted to AG*. Since the rate is only
dependent on the temperature at which the reaction is taking place, and the AG*, to get the
barrier for the hydrolysis reaction in kcal/mol, ket was converted to AG* by rearranging the
Eyring equation for AG* where: k. is the catalytic constant, ks is the Boltzmann constant, h is

Planck’s constant, T is the temperature, and AG* is the Gibbs free energy of activation:

k T _AG
_ B TRr
k= ¢ 4.3)
h
AG* = | -log kcm- T -kBT (4.4)
B

AG* values were used as a target variable in the ML models. To perform binary classification,
those were converted to two label classes. 0 or 1, which is further discussed in the 4.3 Results

section.

4.3 Results and Discussion

The distribution of the AG* values for all GO variants is shown in Figure 4.5. Based on this
distribution, the cutoff point to sort the variants into a binary classification system was chosen
to be the following: all variants with AG* below or at 14.4 kcal/mol were labeled as Class 0,
whereas all mutant variants with AG* above 16.7 kcal/mol were labeled as Class 1. First, MD

simulations were performed with the WT GO enzyme with its native substrate D-galactose.
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All variants labeled Class 0 had D-galactose in the active site (22 variants) while the rest of the

variants (9) had SS1 or S128 and were labeled Class 1.

D-Galactose

OH OH

=

()]

Frequency

SN

13 14 15 16 17 18 19 20
Energy of activation, (AG*)

Figure 4.5. Histogram of the GO variants based on AG* values for the catalytic reaction. All variants
with AG* below 14.4 kcal/mol had D-galactose in the active site. All variants with AG*> 16.7 kcal/mol

had SS1 or S128 as the substrate.

Since AG* for the WT enzyme is estimated to be ~13.8 kcal/mol and there is usually an
experimental error of 0.5 kcal/mol in the measurement, for a variant to be classified as

different from the WT, one would consider at least 1.0 kcal/mol difference in the barriers.

4.3.1 Feature selection

The aim was to develop an ML model that can predict the effect of mutations on the catalytic
rate of variants with different substrates in the active site. For this reason, the features
utilized by the model need to be present in all substrates and all tested variants. Therefore,
features had to come only from residues which will remain unmutated in all variants, as well

as from atoms which will be present in all of the substrates. The original approach was to
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extract inter-residue distance combinations within 6 A of the copper ion, as well as angles,
using a random approach. Then, followed by the extraction of the features, to use an ML
model to find the most important descriptors, based on supervised learning with labeled
training data. The idea is that the model will find the pattern which will fit x and create a

function f(x) that can predict y for a new x.

The cutoff distance of 6 A was chosen as it contained all the copper-coordinating residues and
other residues that are generally not used in the directed evolution for GO, except for W290,
which was not included in any feature selection as it does get mutated in some variants. New
synthetic features were also generated by using the displacement from the WT, using the
respective distance in the WT GO as a reference distance, and then subtracting the same
distance in each respective variant. Other features which could be easily calculated from the
MD trajectories and were tested as features include the Root Mean Square Deviation (RMSD)
which was obtained by calculating the deviation of the a-carbons of the protein backbone in
the starting structure versus the last frame of the production run; and the Root Mean Square
Fluctuation (RMSF). The overall RMSD and RMSF for the full protein did not appear as useful
features and were not included in the final feature set. The final set of features that used
contained only the interatomic distances coming from the active site residues within 6 A of

the copper cation. For a table of all features refer to Appendix B, (Tables SI5 and 6).

The final dataset had the following form:

'Xll X21 e XN Y

Xl2 X22 - XN, Y,

X131 X231 XN31 Y31

With 31 representing the number of rows (GO variants) and N representing the number of

columns (features).
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The initial strategy for dimensionality reduction was to conduct a PCA on the feature dataset,
which was followed by k-means clustering. However, this approach yielded 14 variants
inaccurately clustered, indicating that employing linear dimensionality reduction through PCA

is not particularly beneficial in this scenario (see Appendix B).

Instead, to find out the most important features to fit the model, a Random Forest Regressor

110 3nd the scikit-learn

(RFR) was employed. The RFR was used as implemented in scikit-learn
attribute, feature importance was used, which selects the top features the model learns the
most from. Since the dataset is very small, features need to be filtered out before a model
can be fitted in order to prevent overfitting. For this reason, only the top 5 most important
features were pre-selected. The following 5 features (interatomic distances) emerged as the
most important: Cu-CZ(Y272), O(Y495)-06(Sub), O(Y272)-NE2(H581), SG(C228)-C6(Sub),
SG(C228)-0(Y405), Figure 4.6. The importance is defined as the frequency with which a
feature is selected by the RFR averaged over all of the folds. For example, a feature that is

selected by the RFR 100 times over 100 folds of training and testing data, will be the most

important one.

A d17 d11 d6é d10 d21 B
Cu 0O(Y495) 0(Y272) SG(C228) SG(C228)
| | | | |
CZ(Y272) O(Sub) N(H581 ) C6(Sub) 0(405)
Substrate

70
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50 d10 d11H496
(] 17
2 40
©
£
o
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distancel7 distancell distance6 distancelO distance2l
Feature

Figure 4.6. (A) The most important features selected by the RFR, ranked by importance. (B) The active
site residues are shown as purple sticks, and the most important distances are shown with yellow

dashed lines.
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As expected, most of the key distances come from the tyrosyl radical which accepts the H
atom. Itis not surprising as this is the key residue in the catalytic reaction and its displacement
during the rate-limiting step is expected to be detrimental for the catalytic rate. In the TS of
the WT GO, the distance from the O(Y272) to the HX atom is 1.3 A and 3.8 A from the 0(Y272)
to the copper cation. It was observed that with most variants that were predicted to slow
down the catalytic rate, O(Y272) had a shorter distance to the copper cation and a slightly
tilted overall orientation. It had also moved from the reference position in the WT and was
on average further away from the Cu-coordinating nitrogen of H581, relative to the variants
which do not slow down the rate considerably. The orientation of the C228 residue seems to
be quite important as well; it is directly linked to Y272 through a thioether bond. This residue
seems to be critical for the proper functioning of the enzyme, which is confirmed by

116

mutational studies,**° and distances from this residue to other residues in the active site need

to be maintained similar to as in the WT GO enzyme.

The same analysis was also performed for the original 93 MD simulations which had one extra
restraint between atoms CZ(Y272) and C1(Sub), (details on the restrains are available in
Appendix B, Tables SI3 and 4). The following five distances emerged as the most important:
0O(Y495)-O(substrate), O(Y272)-NE2(H581), O(Y272)-NE2(H496), O(Y405)-Cu, and SG(C228)-
Cu. Notably, two of the most important distances are the same - O(Y272)-N(H581) and
0O(Y495)-0O(Sub) as in the other set of simulations, with the Y272 residue orientation generally

appearing to be the most important across the two feature datasets.

4.3.2 Performance evaluation

Different models for binary classification were tested to find the one achieving the highest

accuracy. The most successful model was based on an RF Classifier.

The results from the last 93 simulations are presented (as they contain the reduced restraints
set that can be used for new substrates also). The average accuracy of the classification
models was 78 for the RF and 73 for the GBDT model, respectively. On average, for the best
model, 24-25 of the 31 variants are classified correctly and 6-7 are classified incorrectly. The

reported values are the average of 100 testing sets. The mean ROC is displayed in Fig. 4.7.
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Figure 4.7. (A) TPR and TFR and ROC curve based on the Random Forest Classifier (RFC) model. (B) TPR
and TFR and ROC curve based on the Gradient Boosted Decision Trees (GBDT) model. (C) Precision,

recall, and F1 metrics for the RFC. (D) Precision, recall, and F1 metrics for the GBDT model.

If we look at the individual classification results for each variant, we can gain more insight
about the effect of single protein mutations. According to the results shown in Figure 4.8, the
variants with D-galactose in the active site, which have significantly lower experimental keat
values (raising the value of AG* considerably), in particular, N6M1_W, are hardly recognized
by the model as slowing down the rate. N6M1_R is also classified correctly only 14% of the
time. This arginine brings a charge close to the active site. Misclassification could occur
because Arg383-induced polarization is neglected. Potentially, Arg383 changes the
protonation states of other nearby residues, which is not accounted for in our simulations.
These two variants being misclassified suggests that this type of TS MD approach is likely not
sensitive enough to identify active site displacements from variants that differ from the rest

of the dataset by only 1 mutation (here meaning the other N6M1 variants). The likely reason
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is also the strong restraints used to keep the coordinates resembling the 3D structure of the
transition state. However, interestingly W290G and W290F which have only 1 mutation as a
whole, relative to the WT enzyme, are correctly labeled by the ML model. W290F, which has
similar ker to the WT enzyme arguably does not change a lot the overall catalytic rate as
phenylalanine has a very similar structure to tryptophan, which probably contributes to it
having similar m-stacking activity, and it behaves similarly in the MD simulations, upon
inspection of individual active site distances. It should be noted that in the force field used,
there is no specific term that accounts for m-stacking. The fact that W290G is generally
correctly classified could mean that the mutation at position 290 is very important, which is
also previously discussed in mutational studies of GO,'?> and due to its significance, it is
recognized by the ML models. It should also be noted that it is also the amino acid, which is
closest to the active site, out of the ones which are subject to mutation. It is therefore
expected that variants that have mutation in position 290 will displace the active site more
considerably, or at least show more distinct dynamics relative to the ones that do not.
Unfortunately, W290H is not picked up by the model as Class 1 as the extracted distances
show it behaved similarly during the MD simulations as W290F. The reason for this could be
that the protonation state for W290H could be altered and differ from the one we used in our
simulations. The protonation states for active site histidines can be very difficult to predict
accurately. The mutation at position 330 is in the immediate location to the active site, and it
also forms contact with the D-galactose substrate. Since M3-5 and its derivative variants
contain mutations at both position 290 and 330, it is expected for them to show different
dynamics during the MD simulations, or at least to present a more significant displacement
at the active site, relative to the variants that do not have those two mutations, especially
considering this as a synergistic effect. All of the variants which have a non-native substrate
in the active site are correctly classified as Class 1. It could be argued in this case that the
model does not identify the displacement coming from the protein mutations but rather from
the presence of the non-native substrate. This could be established more concretely once

variants with non-native substrates with similar rates to WT GO are included in the dataset.
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Figure 4.8. Percent of times each variant is classified correctly by the RF classification model. Light
blue and blue bars show that the variant is generally always classified correctly (~80% of the time),
and green bars show that the variant is predicted correctly most of the time (~70% of the time).

Variants that are never or rarely predicted correctly are displayed as brown or yellow bars.

Another point of consideration is why this problem was handled as a classification and not a
regression task. This type of data is possibly more suitable for regression or predicting the
exact keqt value for each variant. However, at the time when the data was curated, there were
and still are some conflicting kcqo: values reported in the literature for some of the variants, in
some cases having three different kc.: values reported for the same variant. This can be due
to various experimental conditions and factors. This results in AG* in one of the cases at 13.8,
14.4 or 14.7 kcal/mol, respectively. However, despite the three different reported values, all
of the three variants would still fall within Class 0. For this reason, upon the evaluation of the
data, it was decided to handle this problem as a classification task. There are possible
shortcomings which need to be mentioned. Most notably, all of the variants should be
modeled directly from the WT GO crystal structure and simulated for 20 ns. In the case of the
N6M1_X variants, those were modeled after the M1 variant which was already subject to 10
ns MD simulations (Figure 4.4). For this reason, the starting structure for all N6M1_X variants

is slightly different from the WT, M3-5, and M3-5-derived variants. The slightly different
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starting point for the ML simulations may create a bias in some of the interatomic distances
which is then picked by the ML models. Ideally, all variants should be modeled from the same
crystal structure, simulated with the same restraints, for the same overall simulation time, so
that the extracted distances are comparable. However, it should be pointed out that the
distances equilibrate in the course of the 20 ns MD and this introduced bias is not likely a
significant factor. This pipeline offers an excellent alternative for highly accurate variants
classification, to the more time-consuming QM/MM-based methods, and is also easily

transferable to other enzymes.

4.4 Conclusion

31 variants of GO were modeled and 3 MD simulations at/around the rate-limiting step were
performed with each one. Interatomic distances were extracted from the MD trajectories and
used as features to create an ML model that can predict, based on the dynamical behavior
during the MD simulations, whether unseen variants will have a similar catalytic rate to the
WT GO enzyme or the active site will be affected in a way which will slow down the rate of
catalysis. The best model achieving the highest accuracy of classification was based on a
Random Forest. This classification approach has advantages over QM-based methods as it
offers the opportunity to sample conformations, and it can be significantly faster, allowing for

an easily automated and high throughput approach.

Future work

Currently, the dataset for this ML pipeline is very small, which limits the type of ML that can
be utilized. | would ideally like to considerably expand the modeled variants and substrates
to include more secondary alcohols with more diverse structures. Another disadvantage of
the current dataset, apart from the small sample size, is that all variants for which the rate of
catalysis is similar to the native enzyme, have the same substrate class in the active site. It
would be interesting to model variants with non-native substrates where the rate is
comparable to WT GO or faster. There is currently more experimental data available,

compared to when this project was started, and with the current automated pipeline, it would
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be straightforward to simulate more variants and substrates, even from older studies. It might
be interesting to also include features from MD simulations of the reactant and product states

and investigate whether that allows the models to achieve higher classification accuracy.
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Chapter 5

Combining Data Integration and Molecular
Dynamics for Target Identification in a-
Synuclein-Aggregating Neurodegenerative
Diseases: Structural Insights into Synapotojanin-

1 (Synj1)

This Chapter was published in The Journal of Computational and Structural Biotechnology in
2020 and is reproduced here with permission from the authors, ‘Combining data integration
and molecular dynamics for target identification in a-Synuclein-aggregating
neurodegenerative diseases: Structural insights on Synaptojanin-1 (Synjl)’, Computational
and Structural Biotechnology Journal, DOIl: 10.1016/j.csbj.2020.04.010. Copyright

Computational and Structural Biotechnology Journal.

Summary of the Work

The aim of this work is to integrate genomic and proteomic data from toxicity studies of a-
synuclein and to identify protein targets for neurodegenerative diseases. One of the proteins
identified, which is independently shown to be strongly implicated in Parkinson’s disease
(PD), is Synapotojanin-1 (synj-1). A wide range of mutations in the gene coding for the protein
are long known. In this study, we report the full atomistic model of the 5-phosphatase domain
of synaptojanin-1, embedded in a membrane and show its binding to the substrate (PIP,).
Details on the binding of PIP, to the 5-phosphatase domain are needed for targeting of the

protein in diseases where synj-1 is overexpressed.
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Parkinson’s disease (PD), Alzheimer’s disease (AD) and Amyotrophic lateral sclerosis (ALS) are neurode-
generative diseases hallmarked by the formation of toxic protein aggregates. However, targeting these
aggregates therapeutically have thus far shown no success. The treatment of AD has remained particu-
larly problematic since no new drugs have been approved in the last 15 years. Therefore, novel therapeu-
tic targets need to be identified and explored. Here, through the integration of genomic and proteomic
data, a set of proteins with strong links to a-synuclein-aggregating neurodegenerative diseases was iden-
tified. We propose 17 protein targets that are likely implicated in neurodegeneration and could serve as
potential targets. The human phosphatidylinositol 5-phosphatase synaptojanin-1, which has already
been independently confirmed to be implicated in Parkinson’s and Alzheimer’s disease, was among those
identified. Despite its involvement in PD and AD, structural aspects are currently missing at the molecular
level. We present the first atomistic model of the 5-phosphatase domain of synaptojanin-1 and its bind-
ing to its substrate phosphatidylinositol 4,5-bisphosphate (PIP,). We determine structural information on
the active site including membrane-embedded molecular dynamics simulations. Deficiency of charge
within the active site of the protein is observed, which suggests that a second divalent cation is required
to complete dephosphorylation of the substrate. The findings in this work shed light on the protein’s
binding to phosphatidylinositol 4,5-bisphosphate (PIP,) and give additional insight for future targeting
of the protein active site, which might be of interest in neurodegenerative diseases where
synaptojanin-1 is overexpressed.

© 2020 The Authors. Published by Elsevier B.V. on behalf of Research Network of Computational and
Structural Biotechnology. This is an open access article under the CC BY license (http://creativecommons.

org/licenses/by/4.0/).

1. Introduction

Age-related diseases are rapidly increasing in their frequency
due to longer life expectancy and can have devastating effects
upon the quality of life of sufferers [1,2]. At a cellular level, Parkin-
son’s disease (PD) and other neurodegenerative diseases, including
Alzheimer’s disease (AD) and Amyotrophic lateral sclerosis (ALS)
are linked to toxic protein aggregation [3,4|. However, targeting
these protein aggregates has not led to successful drug therapies.

* Corresponding author.
E-mail address: edina.rosta@kcl.ac.uk (E. Rosta).
! Current affiliation: Institute of Molecular Systems Biology, Department of Biology,
ETH Zurich, Switzerland.

https://doi.org/10.1016/j.csbj.2020.04.010

Small drug molecules are ineffective towards them and no new
therapies for Alzheimer’s disease have been approved in the last
15 years. It is, therefore, becoming increasingly important to iden-
tify novel targets for protein-aggregating neurodegenerative dis-
eases [5,6].

In PD, a-synuclein is of particular importance as it is the pri-
mary aggregating protein [7-9], its gene amplifications and muta-
tions may lead to PD [10-12]. Human neurons are complex cells
with long lifespans, therefore, a-synuclein toxicity has been
explored in the model eukaryotic organism, Saccharomyces cere-
visiae (budding yeast) [13-15]. Budding yeast cells do not have a
homologue to a-synuclein, therefore protein expression has been

2001-0370/© 2020 The Authors. Published by Elsevier B.V. on behalf of Research Network of Computational and Structural Biotechnology.
This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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induced using a galactose inducible promoter, showing toxic
aggregation in yeast which leads to cell death [16].

The abundance of biological data from various experimental
sources (genomics, proteomics, metabolomics) offers unprece-
dented opportunities for data integration approaches for novel tar-
get identification [17]. Importantly, data integration is particularly
useful in analysing networks of protein interactions and is widely
used in developing understanding of how various cellular pro-
cesses are altered [18]. Importantly, it can inform novel targets
for atomistic studies, which is yet underutilized [19]. In this study,
we employed data integration upon two complementary studies of
o-synuclein toxicity: (i) genomics study by Khurana et al. and (ii)
proteomics study by Melnik et al. [15,20]. The first quantified the
effect of deletion and overexpression of various proteins on the
toxicity of a-synuclein in buddying yeast cells [14]. Khurana
et al. compared the lifespan of yeast cells that were modified to
express a-synuclein, with cells that expressed a-synuclein but
had one protein deleted or overexpressed. When the deletion or
overexpression of a protein significantly affected the lifetime of
the cells, this protein was labelled a disease modifier: cell death
enhancer or suppressor. The second dataset was collected from a
proteomic analysis of the perturbation in protein-wide concentra-
tions of a-synuclein induced aggregation in buddying yeast, com-
pared to yeast that did not express the aggregating protein
[15,20]. By integrating data from both studies, we identified 17
potential human protein targets.

Among the proteins identified to be of interest, we chose the
protein polyphosphatidylinositol phosphatase INP53 for further
investigation and in particular, its human homologue,
synaptojanin-1 (synj1). Apart from being a cell death enhancer
when deleted in a-synuclein expressing cells and simultaneously
showing to be downregulated when a-synuclein was overex-
pressed, it has also already been independently identified that
the gene coding for the protein SYNJ1, is a particular PARK locus,
PARK 20 [21]. Additionally, synj1 is implicated not only in PD but
also in AD [22-25]. The primary substrates of synj1 are phospho-
inositides (PIPs) with phosphatidylinositol 4,5-bisphosphate PIP,
and phosphatidylinositol 3,4,5-trisphosphate PIP; being among
the most important signalling lipids in membrane trafficking. An
imbalance in PIPs has previously been identified to be crucial in
many protein aggregating diseases, namely AD and PD [26,27].
The imbalance of phosphoinositides is heavily correlated to mal-
functions in synj1 activity, and mutations of synj1 itself are impli-
cated in various neurodegenerative diseases [22-26].

Synj1 has three domains. The main catalytic inositol 5-
phosphatase domain, the N-terminal Sacl inositol phosphatase
domain, and a C-terminal proline-rich domain that plays a role
in protein-protein interactions related to vesicle endocytosis
[9,28]. Mutations in the Sacl domain have already been linked
to the downregulation of PIPs and malfunctions in autophagy
[29].

Currently, experimentally resolved structures of the first two
domains of human synjl are unavailable. We present here the
first atomistic model of the 5-phosphatase catalytic domain of
the protein both in membrane-free and membrane-embedded
molecular dynamics (MD) simulations. Additionally, we propose
that the protein active site involves two divalent cations. It is well
accepted that 5-phosphoinositide phosphatases are Mg-
dependent enzymes [30,31], with catalytic activity supported by
Mg?* or Mn?*, however inhibited by Ca?* and other divalent
cations [32]. This behaviour is often observed in phosphate cat-
alytic enzymes, demonstrating apoptotic regulatory role of Ca?*
[33]. We suggest that one of the Mg?* ions has a role in activating
the water nucleophile, whereas the second Mg?* stabilizes the
leaving group, similar to other enzymes using a two-metal ion
catalytic mechanism [34].

2. Methods
2.1. Data integration

Two data sets were used for the data integration. The first data-
set was obtained by Khurana et al. [14] and was generated by com-
parison of the survival rate of yeast cells (S. cerevisiae) that were
modified to express o-synuclein to cells that expressed
a-synuclein but had one protein deleted or overexpressed. The
proteins were labelled as either toxicity ‘Suppressor’ (S) or
‘Enhancer’ (E), based on their toxicity modulating effect on the
o-synuclein expressing cells [14].

The second dataset was obtained by Melnik et al. [20]. The data-
set was generated using mass spectrometry-based label-free shot-
gun proteomics. a-Synuclein was expressed in yeast cells (S.
cerevisiae) by a galactose-induced promoter and the overall
changes of the protein abundancies in the proteome were com-
pared to control cells proliferating at the same time length but
transformed with an empty vector (EV). Protein abundance
changes were monitored at 6 h, 12 h, 18 h and 24 h after the
expression of a-synuclein. Proteins which had significantly per-
turbed abundance at 12 h and 18 h were selected in this work
(Table1 ESI and Fig. 3 ESI). Proteins perturbed at 6 h were not
included as very few proteins were observed to be altered at this
time suggesting that it is too early to observe the toxic effect on
the cell. The results at 24 h were also omitted as the cells were
dying and therefore many pathways were malfunctioning. The
median ratio for the protein concentration (o-synuclein expressing
cells vs. control) was the parameter used to classify the proteins as
up or down regulated. The value of 1.00 was chosen as a cut-off
point. If the average of the mean ratio value for the concentration
of the proteins between 12 h and 18 h was above 1.00, the protein
was classified ‘upregulated’, and if below 1.00, ‘downregulated’,
Fig. 3 ESL

Following this, a combined protein dataset was generated. All of
the proteins that did not appear in the two initial datasets were
removed. The list of proteins that had significant results in both
studies were then further reduced by selecting only proteins with
human homologues, using the Yeast Mine Database [35]. Finally, it
was confirmed whether the protein had been previously linked to
aggregation diseases using Malacards database [36].

2.2. Molecular dynamics simulations of Synaptojanin-1

The main catalytic 5-phosphatase domain of the human protein
synj1 does not currently have an experimentally resolved structure
in the protein data bank (PDB). Therefore, a homology modelling
server was used (SWISS-MODEL) [37] to create the three-
dimensional structure of the protein, using the amino acid
sequence from the Uniprot database [38] (code: 043426). The 3D
structure obtained from SWISS-MODEL was used for the MD sim-
ulations of synj1.

The 5-phosphatase domain of synjl (residues 500-899) was
modelled using the template OCRL-1 in complex with a phosphate
ion (PDB code 4CMN) [30]. Residues 517-894 had a sequence iden-
tity of 36.47% to OCRL and a global model quality estimate of 0.64.
A ligand with an identical phosphate head group but shortened
tails was positioned manually along with the coordinating residues
and water molecules, for an initial comparison of the ligand to PIP,.
A single magnesium ion was added by visual inspection of known
crystal structures based on the alignment of the conserved cat-
alytic sites from within the 5-phosphatase family. Magnesium
ion was chosen as the catalytic ion in the active site, as human
5-phosphoinositide phosphatases are Mg?*-dependent [30], and
Zn?*, Ca®* and other divalent ions (except for Mn?*) typically inhi-
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bit catalytic activity. The reference structure for positioning the
PIP, ligand and the magnesium ion was chosen to be the inositol
polyphosphate 5-phosphatase domain (IPP5C) of SPsynaptojanin
available in complex with inositol (1,4)-bisphosphate and a cal-
cium ion (PDB code 119Z) [39].

All Molecular Dynamics simulations were performed by using
the program NAMD [40]. The force field used in the simulations
was CHARMM36 with periodic boundary conditions and to evalu-
ate the non-bonded long-range interactions the particle mesh
Ewald method was utilised with a 12 A cutoff [41,42]. The NPT
ensemble was maintained with a Langevin thermostat (310 K)
and an anisotropic Langevin piston barostat (1 atm). CHARMM-
GUI was used to set up the simulation box of side length
107.4 A; neutralise and solvate the system; and determine the
charged state of all ionisable residues using a standard protocol
[43,44]. lons randomly replaced water molecules using a Monte
Carlo method to neutralise the system using 3 K" ions, then addi-
tional 111 K" and 111Cl™ ions were added to create a salt concen-
tration of 0.15 M. Equilibration was completed using the standard
CHARMM-GUI protocol [43,44], with the addition of constraints
upon the distance between the Mg?* ion and: (i) the phosphate
group on the fifth carbon of the inositol ring (5-P); (ii) Asp-359;
(iii) Glu-92; to be approximately 3 A [40]. 8 ns of constrained
molecular dynamics simulations were completed using the con-
straints above, and 92 ns of non-constrained MD was run to test
the stability of the membrane-free structure.

The tails of the PIP, were then reinserted to the structure of the
completed membrane-free simulation, and the whole structure (in-
cluding the bound PIP,) was uploaded to the Orientation of Proteins
in the Membrane (OPM) server which gave a membrane alignment
for the system [45]. This alignment was then input into CHARMM-
GUI to add the membrane [43,44]. The membrane was comprised of
90% phosphatidylcholine (PC), 5% phosphatidylserine (PS) and 5%
PIP,. To solvate the system the protein was inserted into cubic
pre-equilibrated TIP3P water box of with a dimensions 127.029 A
x 127.029 A x 129.809 A. Ions randomly replaced water molecules
using a Monte Carlo method to neutralise the system, then an addi-
tional ions (231 K* and 113Cl~ in total) were added to create a salt
concentration of 0.15 M. Six equilibration steps were conducted
based on standard CHARMM-GUI protocol [43,44]. 10 ns of con-
strained molecular dynamics was run, where constraints were
added upon the distance of 2 A between the Mg?* ion and the fol-
lowing: (i) 5-P; (ii) Asp-359; (iii) Glu-92; (iv) Asn-44; the phosphate
group on the fourth carbon of the inositol ring. These additional
constraint for the Asn-44 residue were added to establish if addi-
tional residues were required to stop the potassium ions approach-
ing the catalytic site. Two independent simulations of
unconstrained molecular dynamics each lasting 300 ns were com-
pleted from the constrained molecular dynamics in order to obtain
final structures for the Synaptojanin-PIP, system.

3. Results and discussion
3.1. Data integration

We combined datasets from genome-wide and proteomic stud-
ies where: (i) the effects of protein deletion and overexpression on
cell death was studied, and where (ii) overall protein perturbation
levels were measured, in a-synuclein-expressing yeast cells. We
selected those proteins that were: (i) suppressors or enhancers of
cell death when deleted or overexpressed and (ii) had their con-
centration perturbed at 12 h and 18 h post a-synuclein expression.
This data integration highlighted 62 proteins of potential interest
in Parkinson’s, Alzheimer’s or other neurodegenerative diseases,
based on the proteins’ toxicity modulating effect and concentra-
tion, as quantified in a-synuclein-expressing yeast cells. We then
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considered whether these proteins had human homologues,
whether they have already been implicated in any protein aggrega-
tion diseases, and the approximate function of the protein, if
known, in yeast. Upon removal of yeast specific proteins, which
are not of interest to human neurodegenerative disease, the pool
of proteins of interest was reduced to 47. The combined integrated
data is visually represented in Fig. 1.

We further narrowed down the list of proteins to have most sig-
nificance by proposing that the candidates of most interest for us
would be those that either: enhance toxicity when deleted and
are significantly downregulated in o-synuclein induced cells; sup-
press toxicity when overexpressed and their concentration is
downregulated in o-synuclein induced cells; enhance toxicity
when overexpressed and are significantly upregulated. These pro-
teins are represented in Fig. 1 within the circled area.

This method of data integration highlights 17 proteins (Table1
ESI). Four of the 17 proteins (INP53, RAD27, YPK9 and POR1) have
already been independently confirmed to be implicated in Parkin-
son’s, Alzheimer’s or other neurodegenerative diseases caused by
protein aggregation [36]. Therefore, our analysis demonstrates that
data integration is indeed useful in locating existing and novel pro-
tein targets that directly impact the toxicity of o-synuclein in
humans, as well as in yeast, and therefore might play an important
role in neurodegenerative diseases such as PD or AD.

Note that some of the proteins appear in multiple sections:
YPK9, RTS1, RPS14A. For all three, cell toxicity is enhanced when
the proteins are deleted, and suppressed when they are overex-
pressed. This is consistent with their roles as being overall needed
by the cells to survive in the a-synuclein-rich environment. Inter-
estingly, however, while RTS1, RPS14A are accordingly upregulated
by the cells, YPK9 appears downregulated. YPK9 therefore has a
key function, which appears to be impaired by a-synuclein overex-
pression, as the cells are unable to produce enough YPK9 to help
cell survival.

YPK9's human homologue, ATP13A2, is also identified by vari-
ous independent measures as a key protein in PD. It is one of the
PARK genes identified in human disease, PARK9, its mutations
are associated with Spastic Paraplegia (SPG78), Kufor-Rakeb syn-
drome and neuronal ceroid lipofuscinosis [47].
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Fig. 1. Effects of protein expression on a-synuclein cell toxicity. All proteins in the
diagram have human homologues. Protein downregulation (blue) or upregulation
(red) is also indicated in a-synuclein expressing cells. The circled area contains
proteins identified to be proteins of interest. The human homologues of the proteins
in italics with an asterisk are known to be involved in Parkinson's or other
neurodegenerative diseases [46]. INP53 (bold) is the protein chosen for further
molecular dynamics modelling in this work. (For interpretation of the references to
colour in this figure legend, the reader is referred to the web version of this article.)
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The RPS14A gene's human homologue encodes 40S ribosomal
protein S14. It is a member of the ribosome, a central protein of
the ribosomal protein subunit S40. It has many diverse roles and
it is required for ribosome assembly and 20S pre-rRNA processing,
therefore this might lead to its consistent role needed for cell sur-
vival [48-51].

RTS1 is a homologue of the mammalian B’ subunit of PP2A and
encodes a serine/threonine-protein phosphatase [52]. It is a central
protein with several diverse roles: it is required for maintenance of
septin ring organization during cytokinesis, for ring disassembly in
G1 and for dephosphorylation of septin [53]. Similarly to RPS14A, a
diverse regulatory function might be the reason for it being consis-
tently beneficial for cell survival.

3.2. Synaptojanin-1 as potential drug target

Next, we selected synj1 to investigate further using atomistic
molecular simulations. In our data integration, synjl showed
strong correlation with a-synuclein toxicity in the following ways:
(i) when deleted the protein increased the rate of cell death; (ii)
when a-synuclein was expressed in buddying yeast cells, the con-
centration of synj1 was downregulated compared to empty vector
(EV) control cells that did not express a-synuclein. Based on these
results the protein shows to be directly or indirectly involved in
the toxicity of the aggregating protein a-synuclein. Furthermore,
it is also independently confirmed by genetic analysis of PD
patients’ genome that mutations of the synj1 gene have strong cor-
relation to Parkinson’s disease [23]. Synjl is also a PARK gene
(PARK20) [21]. In addition, mutations of synj1 are also correlated
with Alzheimer’s disease suggesting that it is a crucial protein in
neurodegenerative diseases [25].

Synj1 does not currently have a crystallographically resolved
structure except for its proline-rich domain, therefore structural
studies will offer valuable insights for future drug discovery pro-
jects. We were also able to identify suitably accurate homology
model template for the main catalytic 5-phosphatase domain, with
an active site that is almost identical within the same phosphatase

1035

phosphoinosidtide subfamily. Other proteins of interest without
available structure had lower sequence identity to template struc-
tures in the Protein Data Bank, therefore, they were less suitable
candidates for molecular dynamics simulations at the time of the
project start.

We first determined the protein-protein interaction network of
synj1 using the STRING database [54] (Fig. 2, full list of proteins
and their corresponding function in Table 2 ESI). This network sug-
gests that synj1’s primary functional partners are proteins involved
indirectly or directly in synaptic vesicle endocytosis/vesicle traf-
ficking, either through their role in PIPs regulation (signalling
kinases) or in the cascade towards synaptic vesicle endocytosis.
Synj1 is therefore likely mainly implicated in neurodegenerative
diseases via its role in phosphatidylinositol signalling dynamics,
and does not have direct effect on protein aggregation [27,29,55].
As part of the synaptic vesicle trafficking pathway, one of its pri-
mary catalytic functions is the dephosphorylation of the 5P of
the PIP moiety in Phosphatidylinositol 4,5-bisphosphate (PIP,)
and Phosphatidylinositol 3,4,5-trisphosphate (PIP;). In this work,
we have focused on the 5-phosphatase domain of the protein,
which mainly dephosphorylates PIP,, a crucial phosphoinositide
for healthy nerve function, with known effects on neurodegenera-
tion [56,57].

3.3. Homology modelling of Synaptojanin-1

We created a homology model of synaptojanin-1 based on the
human inositol polyphosphate 5-phosphatase OCRL-1 (4CMN)
[58], which has very high active site sequence identity to
synaptojanin-1. There are six residues within 5 A of the Mg?* of
our model that are all conserved between the model and the tem-
plate protein (Fig. 1 ESI). This evidence demonstrates that the
active site of synj1 can be reliably modelled based on OCRL. Addi-
tionally, charged residues are also highly conserved, which is an
expected outcome for proteins with identical functionality, and
additionally supports the likelihood of a reliable homology model.
The sequence of synj1 (5-phosphatase domain) was also aligned

. PIK3C28B
=

Fig. 2. Predicted close functional partners of synj1. All proteins shown in larger nodes with cartoon have determined 3D structure, the small nodes represent proteins of
unknown 3D structure. Grey lines: protein-protein interaction; green: protein-chemical. Active interaction sources: experiments, gene fusion, databases, co-occurrence, co-
expression. Generated in high confidence (0.700) [54]. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this

article.)
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Fig. 3. The overall conserved fold (a) and the evolutionary conserved residues (b) of 5-phosphoinositide phosphatase proteins with their code from the Protein Data Bank
(PDB): yeast fission synaptojanin (119Z, cyan) [39], human OCRL-1 (4CMN, green) 58], human SHIP2 (4A9C, magenta) [62], human I5P2 (3MTC, orange) [58] and human Synj1
model (purple) [40,58,62]. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

and compared to other 5-phosphoinositide phosphatase proteins
(Sequence in Fig. 2 ESI) [59-61]. Comparison of 5-phosphatases
within the same subfamily with defined crystal structures: yeast
fission synaptojanin (119Z) [39], human inositol polyphosphate 5-
phosphatase OCRL-1 (4CMN) [58], human phosphatidylinositol
3,4,5-trisphosphate 5-phosphatase 2 SHIP2 (4A9C) [62] and human
Type II inositol 1,4,5-trisphosphate 5-phosphatase I15P2 (3MTC)
[58] shows the conserved overall three-dimensional fold (Fig. 3a)
and evolutionary conserved residues in close proximity to the
active site (Fig. 3b).

The completed homology model of the 5-phosphatase domain
was compared to fission yeast synaptojanin (PDB:119Z) [39] with
an overall very similar fold (Fig. 4a). It was observed that the
Asp, His and Glu, the primary conserved active site residues, are
located in the binding pocket for both the fission yeast synapto-
janin crystal structure and the homology model of human synj1
(Fig. 4b). The conserved residues correspond to Asp-359, His-360
and Glu-92 in the homology model.

<
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4. Molecular dynamics simulations
4.1. Membrane-free molecular dynamics simulation

The flexibility of the whole protein was determined by RMSD
calculations, confirming that the most flexible parts lie outside of
the catalytic domain, (RMSD in Fig. 4 and Fig. 5 ESI). Fig. 5 shows
the protein coloured according to the RMSD value with red signify-
ing flexible regions and blue the more rigid parts. The flexible
regions most likely belong to areas that are involved in protein-
protein interactions within the synj1 or with external binding part-
ners, as the simulations only use one domain of the protein and the
interacting partners are missing from the simulations. This can be
seen by the more flexible behaviour occurring at the surface of the
system, mainly involving loops. This does not affect the active site
or the PIP; interaction as the highly flexible regions are not within
significant proximity of the active site. The conformation of the
synj1 active site was first probed in a membrane-free simulation

His

Fig. 4. Comparison of the homology model of the 5-phosphatase domain of human synaptojanin-1 (green) with the crystal structure of fission yeast synaptojanin (yellow),
(PDB: 119Z) [39]. Overall fold of the 5-phosphatase domain in both proteins (a), conserved residues within active site (b). (For interpretation of the references to colour in this

figure legend, the reader is referred to the web version of this article.)
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Fig. 5. Protein coloured according to RMSD calculations of the full system (a) and catalytic domain only (b).

and remained stable throughout the MD simulations, with an
RMSD of 5 + 1 A. It was observed that potassium ions often
appeared very close to the active site and remained there for
extended periods of time. This was a surprising result, as currently
the crystal structures of 5-phosphatases within the 5-
phosphoinositide phosphatase family have not observed two metal
ions at the active site [31,39,58].

4.2. Membrane-embedded simulations

The unexpected presence of the potassium ions within the
active site was further investigated in membrane-embedded simu-
lations. The phospholipid bilayer consisted of 90% phosphatidyl-
choline (PC), 5% phosphatidylserine (PS) and 5% PIP,. The
simulation setup of the system is shown in Fig. 6, it included the
lipid bilayer, PIP, ligand, protein, and the single Mg?* cation. The
PIP, tail was indeed embedded in the membrane, and the protein
located on top of the lipid bilayer allowed the phosphosugar head-
group of the PIP, to bind to the synj1 active site.

Lipid bilayer

PR LE S RET Ry

o Q0a

Two independent simulations were conducted over 300 ns
each. The stability of the system was assessed via the radius of
gyration and solvent accessible surface area of the protein
(Fig. 7). The independent simulations present variation in values
within a narrow range, suggesting the simulations are stable. Fur-
ther analysis of the system found that the distances between both
the bilayer centre of mass and the protein centre of mass, and the
PIP, and the magnesium ion respectively, remained stable
throughout the simulation (Fig. 7). Therefore, the protein did not
penetrate the bilayer, neither did the PIP, ligand penetrate further
into the protein.

It was observed during both simulations that potassium ions
appeared for prolonged periods of time within the active site, as
quantified in Fig. 8. The active site is defined as distance of 4.5 A
or less to the 5'P atom of the PIP, ligand. Consequently, if a potas-
sium ion appears within 4.5 A of the 5'P, it is considered to reside
within the active site. There were three cases in the course of the
simulation - either 0, 1 or 2 potassium ions appeared within the
active site. We found that during the first and second simulations,

Fig. 6. Simulation setup for the membrane-embedded simulations (a). The centres of mass (black spheres) for each component of the simulation: lipid bilayer (orange
spheres and grey sticks), bound PIP, ligand (blue sticks), and protein (yellow cartoon) are shown. In membrane-free simulations the ligand was modified (b) from the
structure of PIP; (c). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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Fig. 7. Stability measures of the synaptojanin-1 complex. (a) Radius of gyration and (b) solvent accessible surface area (SASA) distributions of the protein with a resolution of
0.03 A and 20.0 A, respectively. The area under each probability distribution curve is normalized to unity. (c and d) Distances between centre of mass positions projected onto
the z axis for simulations 1 and 2, respectively (pink - lipid bilayer and protein; olive - lipid bilayer and PIP,; blue - Mg?* and PIP;). (For interpretation of the references to

colour in this figure legend, the reader is referred to the web version of this article.)
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Fig. 8. K' ions within 4.5 A of the active site during the course of simulation one (a) and simulation two (b). Percentage of 0, 1, and 2 K" ions, respectively, during simulation

one (c) and simulation two (d).

over 70% and 25% of the time respectively, there was at least one
potassium ion within 4.5 A of 5'P. This suggests that a second pos-
itive ion is required to balance the negative charge within the bind-
ing pocket. As can be seen in Fig. 8a and b, the potassium ions
approach the active site and then go away, with the number of

potassium ions fluctuating constantly between 0, 1 or 2. It was
observed that the localisation of the potassium cations within
the active site was dependent on the orientation of the 4’'phos-
phate group of the PIP, ligand. During the second simulation the
4'phosphate group undergoes rotation, which alters the site where
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Fig. 9. Main K" binding sites A and B during simulation 1 (a) and simulation 1 and 2 (b). K* population from simulation one is coloured in wheat, K* population from
simulation two is coloured in orange. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) The positions
of the K* ions are shown relative to the active site Mg2*-binding residues and the Mg?* cation of the first simulation frame.

the K* cations localise within the active site. Fig. 9 illustrates the
two preferential binding sites for the potassium ions, defined here
as binding site A and B. If the 4’phosphate group of the PIP,
remains in its original orientation for the entire 300 ns of the sim-
ulation, then the cations preferentially cluster within the same
spatial region in the active site and form only one binding site
(Fig. 9a). In a rotated orientation where the phosphate groups of
the PIP, 4’ and 5’ point in opposite directions, the K" cations cluster
in two locations, as depicted in Fig. 9b.

4.3. PIP, dephosphorylation requires 2-metal-ion active site

Our MD simulations showed that the catalytic site of synj1 has a
positive charge deficiency, attracting potassium ions to approach
and remain within 4.5 A of the catalytic site. Given the consistent
location of these potassium ions, this suggests that synj1 functions
as a two-metal ion catalytic system. Currently, all known crystal
structures of phosphoinositide 5-phosphatases have been resolved
with only a single Mg?* ion bound in the active site [30,39,58].
However, our simulations used the catalytically active ligand,
PIP,, as opposed to the inactive protein-ligand complexes with
synthetic derivatives resolved structurally. Furthermore, we also
included the membrane environment not present in these crystal-
lographic structures. We found that PIP, does not significantly
change its conformation with respect to the protein or the lipids
but rather the potassium ions do approach the highly conserved
catalytic residues, further supporting the suggestion that one mag-
nesium ion may be insufficient. The occupancy of the potassium
binding pocket within the active site continuously changes
between 0, 1 and 2 ions during the course of the simulations, high-
lighting the openness of the binding site, which is likely only stable
once the catalytic complex is correctly assembled. This could pro-
vide an explanation for the lack of crystallographic observation of
the second metal ion.

Independently from our current work, various studies suggest
that 5-phosphatases operate via the same catalytic mechanism as
Mg?*-dependent DNA restriction endonucleases, including the
members DNase | and the apurinic/apyrimidinic base excision
repair endonuclease Apel [63,64]. The conserved catalytic mech-
anism of the same 5-phosphate-type cleavage reaction is sup-
ported by evolutionarily strongly conserved amino acid

sequence motifs within the active site (Fig. 6, ESI) [64]. Various
endonuclease structures have been resolved with 2 cations within
the active site, further suggesting that synj1 might also operate as
a two-ion catalytic system [34,65]. Previous MD simulations of
Apel also suggested the possible transient transfer between the
two metal ion locations, termed “moving metal mechanism”
[66], however, we do not observe evidence for such a mechanism
in our simulations.

Additionally, biochemical experiments using various Mg?* and
Ca?* concentrations also support the two-metal ion catalytic mech-
anism. Two metal-binding sites, each with a distinct binding affin-
ity, are expected to yield biphasic inhibition curves when titrated
with a non-productive metal. These bimodal effects were observed
for APE1 further supporting that two metal ions are required for
the catalytic reaction [34].

4.4. Synaptojanin-1 binding to PIP, and the potential for drug therapy

The importance of understanding the binding mechanism
between synaptojanin-1 and the phosphatidylinositol phosphates
has been already established. This understanding creates the
potential for a new drug target. The MD simulations discussed in
this work have achieved new insight into this binding process. It
was shown that the PIP, bound to the synaptojanin-1 complex is
stable and relatively open as the protein needs to also interact with
the membrane surface to bind to PIP,. This opens the possibility of
drug molecules potentially interfering with the binding process,
which could be used to decrease the activity of the protein in neu-
rodegenerative diseases where upregulation increases the
pathogenicity of the disease, for example in Alzheimer’s disease.
The decreased expression of synaptojanin-1 in AD has been shown
to be protective and aids in amyloid-beta clearance [9,22]. Any
drug created would need to be carefully administered as uncon-
trolled downregulation of the protein can also be harmful, as seen
in our data integration results. The drug target would also need to
interact preferentially with synj1 over the other phosphatidylinos-
itol 5-phosphatases, all of which have very similar catalytic sites.
Due to this, it may be worthwhile investigating whether targeting
other regions of synj1 may be preferential. Alternatively, a drug
target may bind to a synjl-specific surface that interferes with
the membrane interactions, preventing PIP, binding.
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4.5. Using yeast to predict key proteins in neurodegenerative diseases

The utilisation of yeast to predict the most important proteins
in neurodegenerative diseases in humans has been found to have
many benefits. As yeast is a much simpler cell than a neuron and
is a single-celled organism, it significantly reduces the complexity
of the problem. It also has a much shorter lifespan making it easier
to study and collect sufficient data upon [67]. In humans, we gen-
erally use post-mortem samples or positron emission tomography
(PET), which are potentially not very effective methods for identi-
fying early markers and causative processes of a disease, as they
are not single cell methods [68]. Ideally, preferred therapies inter-
vene before significant cell death, cognitive decline and bradykine-
sia occur, enabling a higher quality of life for patients. Many
proteins that have been discovered to have an effect on human dis-
ease progression are identified by mutations that cause harmful
effects in the protein, and subsequently increase the likelihood or
speed of disease progression [69]. Using mutations to identify pro-
teins related to disease while useful, does not necessarily aid in
understanding the sporadic disease, or general disease pathway.
It is possible to identify proteins that suppress disease progression
in wild type cells, but when mutated are unable to perform their
function and lead to increased disease progression, as well as those
that are already actively exacerbating the disease in wild type cells.
Using yeast where high throughput genomic and proteomic stud-
ies are regularly conducted, it is possible to combine multiple data-
sets in the hope to provide more insight into the effect of the non-
mutated proteins on neurodegenerative diseases’ progression
[13,14,16]. However, arguably, the most significant drawback of
this method is that neurodegenerative diseases are often develop-
ing at the synapse, which is not present in yeast. For this reason,
any yeast-based method, including the data integration found in
this work, cannot identify any neuron-specific proteins or path-
ways but rather generic cell pathways that are conserved in both
humans and yeast, and so invariably they will be proteins that
are highly conserved across all eukaryotes. This is the underlying
reason why the 17 candidate proteins found are primarily involved
in processes or organelles that are ubiquitous across eukaryotes;
with many linked to the mitochondria and its associated processes.
Data integration is still a very powerful tool as it has been possible
not only to investigate the effect of o-synuclein aggregation upon
protein concentrations in the cell, but also how these perturbations
in protein concentration may be altering the toxicity of aggregation
[14,20].

5. Conclusions

The wealth of biological information currently being produced
requires new approaches to interpret and utilise the data so that
we maximally filter useful information. Data integration is one
possibility that could enable us to reuse data that is currently
under-utilised. This is particularly beneficial as it does not require
conducting more experiments to gain more information. Using this
principle of data integration, two large scale studies of a-synuclein
induction in budding yeast were analysed and used to identify 17
proteins that could be of interest in human PD and AD. Most of
these 17 proteins were found to be related to human diseases,
either directly or indirectly.

Among those, we chose to investigate further the 5-
phosphatase domain of the regulatory lipid phosphatase
synaptojanin-1. By dysregulation of various PIPs, the malfunction
of synj1 is linked to the decrease of cell health and increase of pro-
teomic stress. Synaptojanin-1 dephosphorylates the phosphatidyli-
nositol PIP, at the synapse membrane. The catalytic function is
carried out through an interaction with an essential coordinating

magnesium cofactor. Through all-atom MD simulations including
the membrane and the PIP,-bound protein, we observed that the
proposed catalytic site was stable, but potassium ions persistently
approached the binding pocket. This suggests that another positive
charge is required for a catalytically active complex. Therefore, we
propose that synj1 is likely using a two-metal ion catalytic mech-
anism for its phosphatase function. Current human phosphoinosi-
tide 5-phosphatases are all resolved crystallographically with only
a single metal ion at the active site. Future work on synj1l could
confirm our results via high-resolution crystal structures, or by
biochemical measurements on the effects of mutations at the cat-
alytic site or using Mg?* concentration-dependent catalytic rate
measurements. This would be particularly beneficial in future tar-
geting of the active site.

Our work identifies potential novel targets for o-synuclein
aggregating diseases. Furthermore, it provides the first atomistic
investigation of the human synjl main 5-phosphatase catalytic
domain. Our novel structural information could potentially enable
the design of a small molecule inhibitor that could prevent or
destabilise PIP, binding, leading to a novel avenue for disease ther-
apy where decreasing synjl activity can be beneficial.
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Chapter 6

Direct Calculation of Electron Transfer Rates
with the Binless Dynamic Weighted Histogram
Analysis Method

This Chapter was published in The Journal of Physical Chemistry Letters in 2023 and is
reproduced here with permission from: Zsuzsanna Koczor-Benda, Teodora Mateeva, and
Edina Rosta, ‘Direct Calculation of Electron Transfer Rates with the Binless Dynamic Histogram
Analysis Method’, J. Phys. Chem. B, DOI:10.1021/acs.jpclett.3c02624. Copyright Journal of
Physical Chemistry Letters 2023.

Summary of the Work

Umbrella sampling simulations are commonly employed for situations in which one is
interested in events that are difficult to visit by unbiased sampling. In these cases, artificial
bias is applied along a Reaction Coordinate (RC) to visit events that would otherwise remain
unvisited. The bias can be removed, to obtain global free energy profiles for the respective
event. An existing method that is commonly applied and achieves this is the Weighted
Histogram Analysis Method (WHAM), however, WHAM disregards time sequence and kinetic
information. An alternative method that provides kinetic information is DHAM. Here we
present Binless DHAM, which extends the applicability of DHAM to high-dimensional and
Hamiltonian-based biasing, enabling the study of electron transfer (ET) processes. By using
classical Hamiltonian-based umbrella sampling simulations and electronic coupling values
from quantum chemistry calculations, Binless DHAM successfully provides ET rates for both

adiabatic and non-adiabatic ET reactions, with excellent agreement with experimental results.
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ABSTRACT: Umbrella sampling molecular dynamics simulations are widely used to enhance
sampling along the reaction coordinates of chemical reactions. The effect of the artificial bias
can be removed using methods such as the dynamic weighted histogram analysis method
(DHAM), which in addition to the global free energy profile also provides kinetic information
about barrier-crossing rates directly from the Markov matrix. Here we present a binless
formulation of DHAM that extends DHAM to high-dimensional and Hamiltonian-based
biasing to allow the study of electron transfer (ET) processes, for which enhanced sampling is
usually not possible based on simple geometric grounds. We show the capabilities of binless
DHAM on examples such as aqueous ferrous-ferric ET and intramolecular ET in the radical
anion of benzoquinone—tetrathiafulvalene—benzoquinone (Q-TTF-Q)~. From classical
Hamiltonian-based umbrella sampling simulations and electronic coupling values from
quantum chemistry calculations, binless DHAM provides ET rates for adiabatic and
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binless DHAM
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nonadiabatic ET reactions alike in excellent agreement with experimental results.

he calculation of free energy profiles is central for

modeling chemical reactions. In molecular dynamics
(MD) simulations, it is common to employ biasing functions
to facilitate the exploration of otherwise rarely visited regions
of the free energy surface. To overcome barriers in free energy
surfaces, the umbrella sampling (US) method and analogous
biased simulations are often used, where the free energy profile
is estimated along one or more collective variables (CVs)."* In
chemical reactions, there is usually one or a small number of
nuclear coordinate changes that describe the transition from
reactants to products. In electron transfer (ET) reactions that
are not coupled to other chemical changes (e.g, proton
transfer), this is not the case. In outer-sphere ET reactions, for
example, the reactants and products are different only in the
rearrangement of the electron density and the corresponding
complex changes in the environment. For ET reactions, instead
of nuclear coordinates, the reaction coordinate is better
defined as the energy gap (ie., difference) between diabatic
charge localized states.>”

To unbias US-type enhanced sampling simulations and to
construct the free energy profile along one (or a few) reaction
coordinate(s), the weighted histogram analysis method
(WHAM)® is commonly used. However, WHAM disregards
the time sequence information within simulation trajectories
and therefore kinetic information is lost. To obtain molecular
kinetics, the dynamic histogram analysis method (DHAM) was
developed,® as well as its more robust implementation using
rate matrices instead of transition matrices via DHAMed.
However, when simulations are biased along many coordinates
or via biasing functions that may not be related to the reaction
coordinate, DHAM needs to be reformulated. We introduce

© XXXX The Authors. Published by
American Chemical Society
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here a modification of DHAM, called binless DHAM, that
approximates the unbiased Markov matrix and thus allows for
unbiasing in such cases. The term “binless” is used to reflect
the similarity to the multistate Bennett acceptance ratio
estimator (MBAR),® which is an analogous binless implemen-
tation of WHAM.’ The key advantage of binless DHAM over
MBAR is that it also directly provides reaction rates. This
provides an alternative to Eyring’s transition state theory
(TST) or Marcus theory for nonadiabatic ET, which calculates
rates from activation free energies or Marcus parameters
(driving force, reorganization energy, and electronic coupling),
respectively. Another method that reports being able to obtain
rates directly is JTRAM.'° Similarly to DHAM, dTRAM does
not require data to be sampled from global equilibrium and
provides maximum-likelihood estimates of stationary quanti-
ties. However, no rates have been reported to be calculated for
model systems. While dTRAM in principle can also provide
kinetics from multiensemble simulations, this requires that
unbiased simulation data are also included, which is typically
not available for ET simulations and in many other cases."'
We demonstrate the binless DHAM method on various
systems, focusing on condensed-phase ET reactions, where a
dynamical description of the solvent is essential. To sample

Received: September 18, 2023
Revised:  October 18, 2023
Accepted: October 19, 2023

https://doi.org/10.1021/acs jpclett.3c02624
J. Phys. Chem. Lett. 2023, 14, 9935-9942



The Journal of Physical Chemistry Letters

105

different ensembles of configurations and build diabatic free-
energy surfaces, we perform Hamiltonian-based US MD, where
we vary the charges of donor and acceptor subunits
incrementally. This US technique for ET processes has been
previously applied in semiclassical and ab initio MD
271 and is also similar to A-dynamics"
context of protein—ligand binding.

Our first example is the ferrous-ferric self-exchange ET
process, an often-used test case for new methodologies and an
example for nonadiabatic ET. Previous molecular dynamics
simulations of this system used classical force fields,''° ab
initio MD (Car—Parrinello, CPMD),'* or quantum mechan-
ics/molecular mechanics (QM/MM) MD'” to determine free
energy profiles and Marcus parameters. The electronic
coupling has been investigated with various quantum
chemistry methods such as fractional occupation number
density functional theory (FON-DFT),'® restricted open-shell
Hartree—Fock ROHF,'” and a model considering a quantal
electron and classical Fe** jons.'’ Here we use frozen density
embedding (FDE)***' to calculate the electronic coupling on
frames from MD simulations.

The second example is the intramolecular electron transfer

studies used in the

(IET) within the radical anion of the benzoquinone—
tetrathiafulvalene—benzoquinone triad (Q-TTF-Q)~ in four
different solvents: tert-butyl alcohol (tBOH), dichloromethane
(DCM), ethyl acetate (ETA), and water. The (Q-TTF-Q)~
anion is a type II compound according to the Robin-Day
classification scheme,*” in polar solvents, meaning that its
ground state is charge-localized and ET between the two parts
of the molecule is well approximated by the adiabatic
mechanism. Organic compounds capable of IET, such as
tetrathiafulvalene (TTF) derivatives, are gathering interest for
their potential as organic conductors.”> The understanding of
the IET in the (Q-TTF-Q)~ anion and other TTF derivatives
could enable the engineering of the ET process which has
potential applications in the design of molecular wires and
other applications in nanotechnology.”*** However, the
estimation of the IET currently represents a challenging task
for computational methods.”® The correct description of the
system poses a challenge for quantum chemistry methods.””~*
The electronic coupling was previously calculated with CDFT
in the gas phase,”” with CDFT on ab initio MD simulation
frames for the unconstrained charge delocalized state including
explicit solvent,”® directly with CDFT MD,* and with time-
dependent (TD) DFT.* We add to this variety of techniques
by determining the coupling with an equation-of-motion
coupled cluster (EOM-CC) approach as well.

For the ferrous-ferric ET, we achieve excellent agreement
with the experimental rate (5.2 X 10> s™* calculated vs 7.9 X10>
s™' experimental®®). For the IET in (Q-TTF-Q), the
calculated rates are within one order of magnitude of the
experimentally reported ones.

The relation between biased and unbiased Markov transition
probability matrices M can be expressed by solving the
Smoluchowski diffusion equation®” for transition probabilities
p(i > jr) from state i to j within a lag time 7 as follows:
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with superscipt k denoting biased simulation k and 0 denoting
the unbiased case. DHAM assumes a shared diffusion
coefficient D between biased and unbiased simulations,
which can nevertheless be position-dependent. U is the
potential energy along the x reaction coordinate, and y = D/
kgT is the mobility of the system. Expanding the squared terms
in eq 1 and omitting all 7> terms lead to the square root
approximation at short lag times,*®

k
ﬁ’o ~ exp(—(U} — Uf)/2k;T)
M;; ()

In regular DHAM,” the unnormalized Markov matrix is

defined as
N Tk
M, = z
’ IE {ilnilexp(—(u;(cj) - uil(ci))/ZkBT )

where data is binned along x, and

-z

Y 8(xk(t) € okt + 7) €)

t

ko
=

gives the transition count from bin i to bin j in simulation
window k, with data saved and analyzed at the frequency of 7
(lag tlme) from the overall L* length of simulation k.

nk = Z * is the number of transitions initiating from bin i.
The blas u, = Ul — U? is evaluated at each bin center c,
assuming that the biasing is also done along x.

The formally exact expression in eq 3 can be approximated
by calculating the bias at the actual value of the reaction
coordinate for each frame (x,) instead of ¢, similarly to the
binless formulation of WHAM.’ This approximation becomes
exact in the limit of very small bin sizes. With this binless
formulation, it is then stralghtforwa.rd to obtain M;; for any bias
along arbitrary coordinates g

k-7

Z §(xk(t) € i)8(xk(t + 7) €))
T XL mexp(—(u'(qf, ) — u'(g))/2ksT
4)

Equatlon 3 can also be approximated by evaluating (g} € i)
for all g data points that fall into bin i and using the average or
median values in the denominator (see section S1 of the
Supporting Information). This was also used to re-weight free
energies in a binless form of the conformational states for the
Ala$ peptide with DHAMed. "’

After normalizing the columns of Mj, its right eigenvector
corresponding to eigenvalue 1 gives the normalized equili-
brium probabilities p,, from which the free energy profile is
calculated as G; = —kzTIn p;. In the ET examples below, we

)l
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calculate the biasing energy with respect to the adiabatic
ground state energy.

1
ES - E(El - Ez) - 4Ha2b + (El - E2)2 (s)
Here E,, are the charge localized diabatic states and H,, is the
electronic coupling between them.
Within semiclassical TST the ET rate can be written*' as

] (6)

where AG* is the activation free energy, v is the nuclear
frequency factor that gives the frequency of reaching the
transition state (TS), and k is the electronic transmission
coefficient that describes the probability of electron transfer at
the transition state. I" is the quantum correction factor
accounting for nuclear quantum effects such as nuclear
tunneling that can enhance the reaction rate, and it is usually
considered to be 1; thus, we leave it out from the following
formulas to be consistent with previous studies. The magnitude
of k depends on the electronic interaction between the redox
pairs; when their interaction is sufficiently strong, then x & 1
and the reaction is labeled as adiabatic, and when their
coupling is small then x < 1 and the reaction is nonadiabatic.

In contrast, in binless DHAM the reaction rate (kM) is
calculated directly from the second largest eigenvalue (m) of
the normalized M;;:

In(m)

T

AGH
kT

k= KFuexp[—

M =
()
The rate calculated this way is equivalent to the adiabatic rate
from TST (eq 6, kK = 1 case), providing a new way to
determine the pre-exponential factor v as

v= kMexp( ]
®)

This can be compared to the common approximation of v as
kpT/h or as the frequency of the vibrational mode transforming
reactants to products (when such mode can be identified). To
access nonadiabatic rates as well, only a correction by « is
needed, which can be calculated from Landau—Zener

AGH
kT

theory.”>~*
i if AGH |
k=4{1+hz
2P,(1 — P,) f AGF < -2 (.1)
Py =1 — exp(-27y) (92)
2H
Yy = —
hl/\/lkBT (93)

Since the reorganization energy A can be determined from the
diabatic free energy profiles, the only external parameter
needed to determine the nonadiabatic rate kK™ through eqs 7
and 9.1—9.3 is H,, which is already required to build the
adiabatic ground state (eq S).

In the Condon approximation, H,, is constant along the
reaction coordinate, and its value is half the energy gap of the
two adiabatic potential energy surfaces at the transition state.
Calculating H,;, directly from the excitation energy is usually

45,46
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not reliable with single reference methods, which break near
degeneracies of the ground and excited states. However, to
ensure a balanced description of the interacting states,*” one
can take a well-behaved state such as the ground state of the
neutral Q-TTF-Q_as a starting point and use the electron
attachment variant of equation-of-motion coupled cluster
theory (EOM-EA-CC)* to get the ground and first excited
states of the radical anion (Q-TTF-Q)™.

A disadvantage of EOM-CC methods is that the solvent can
be considered only implicitly due to the high computational
cost. Explicit consideration of solvent is possible with DFT
methods; however, DFT functionals are prone to electron
delocalization error,” giving an overstabilized adiabatic state
and thus overestimating the coupling.””?’ Instead, the
electronic coupling is better calculated with constrained
density functional theory (CDET)?>” or frozen density
embedding (FDE),”>*" which have a smaller delocalization
error due to using only localized diabatic states. However,
these methods are not always reliable either, or in some cases
H,, can be particularly sensitive to the fraction of exact
exchange in the functional, e.g, CDFT-CI is known to give
erroneous couplings for the ferrous-ferric ET reaction due to
fractional charge transfer.*’

B METHODS

Details of the Monte Carlo simulations for the 1D two-state
analytical potential are given in section S2. For ferrous-ferric
ET, charges and van der Waals radii were interpolated between
the reactant (Fe’*—Fe*) and product (Fe**—Fe?") for 11
simulation windows. For (Q-TTEF-Q), reactant and TS
structures were optimized at the B3LYP/TZVP level using
the CPCM implicit water model with Gaussian 09.°" CHELPG
atomic charges for the two structures (Table S1) were linearly
interpolated to set up a total of four simulation windows.
Classical MD simulations with Amber force field*> and TIP3P
water model**** were run for 2.5 (ferrous-ferric ET) and 2 ns
(IET in (Q-TTF-Q)"), respectively, with 2 fs step size. Longer
simulations were run in the organic solvents to ensure the
proper equilibration of the systems. For further details see the
sections S2 and S3 of the SI For ferrous-ferric ET, the
electronic coupling was calculated with FDE for 10 MD frames
near the TS including only the first solvation shell. Calculations
were run with PBE functional, TZP basis set, and PW91k for
the nonadditive kinetic energy using the ADF software.>* For
(Q-TTF-Q)7, the electronic coupling was calculated at the
B3LYP/TZVP TS structure using the back-transformed PNO-
based EOM-EA-CCSD method”® available in ORCA®” with
the CPCM implicit water model, aug-cc-pVTZ basis set, and
corresponding auxiliary bases.

First, we apply binless DHAM to simple umbrella sampling
simulations for two examples, namely (i) a model potential and
(i) Na* passage through an ion channel, to test how it
compares to regular DHAM and WHAM methods. We then
present applications that are beyond reach for these methods:
ferrous-ferric ET and IET in (Q-TTF-Q)~. We compare free
energy profiles to MBAR results in these cases, and present
rates calculated directly from the Markov matrix. The results
are then compared to experimental ET rates and Marcus
parameters determined in previous works.

Binless DHAM reconstructs the exact free energy profile
successfully for the 1-D model potential, giving a profile closely
matching the regular DHAM (Figure S1). For the passage of
Na* ions through the transmembrane pore of the GLIC

https://doi.org/10.1021/acs jpclett.3c02624
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channel (Figure 1A, simulations by Zhu and Hummer’®), energy A is calculated from the fitted curves to be 53.1 kcal/

binless DHAM results are in very good agreement with both mol (see section S8), which is only slightly higher than the
experimental 48.4 keal/mol.>*%? In contrast, other classical
MD simulations significantly overestimate A, giving about 83
kcal/mol."*'® Our improved estimate of 4 is probably due to
varying the van der Waals radii between Fe?* and Fe™.
Quantum chemical description of the system was shown to
provide even more accurate 4; DFT with the four-point
approach® gives 48.7 kcal/mol,** while CPMD with a penalty

5 function spin-polarized DFT approach gives 46 kcal/ mol.**
B FDE calculations on 10 snapshots from the simulation give
o fi  —binless DHAM H,, = 0.24 + 0.03 kcal/mol, which is in good agreement with
i Al values reported in the literature: 0.25 + 0.06 kcal/mol with
FON-DFT+U,"® 0.28 kcal/mol with ROHF," and 0.35 kcal/
\r\ mol with a model considering an electron in the
pseudopotential field of two classical Fe** ions."” The ET
Y rate as a function of H,, is shown in Figure 2C. Our binless
DHAM methodology with the mean FDE coupling yields a
rate of 52 X 10* s7!, in excellent agreement with the

-20 0 20 experimental ET rate 7.9 X 10? s~'.>%%

x (A) The activation free energy AG* is 12.8 kcal/ mol, somewhat
higher than 11.3 kcal/mol with penalty function DFT.'* The
nuclear frequency factor v = 8.87 X 10" s™" is also higher than

A

Free Energy (kcal/mol)

Figure 1. Reconstruction of the free energy profile from umbrella
sampling simulations for Na® jon passage through the GLIC ion

channel. (A) Unit cell of the simulation system. The five 1.16 X 10 s~ calculated in ref 36 from the symmetric Fe—O
transmembrane units of GLIC are shown in different colors, as per stretching frequency. In comparison, kzT/h is 6.32 X 102 57!
the original depiction in ref S8. (B) Binless DHAM (blue) and at a temperature of 303.15 K. Since « is dependent on v, it is
DHAM (orange) profiles are plotted against the WHAM profile not surprising that our calculated k = 0.013 is also different
(black dashed lines) obtained by Zhu and Hummer.** from previously reported values 0.06—0.0679°° and 0.15;'"

nevertheless, it is in line with the nonadiabatic nature of this

DHAM and WHAM results (Figure 1B) using a lag time of reaction. The agreement with ref 36 is much improved if we
100 fs and bin number of 1000. Our tests show that the look at the prefactors (kv) directly. We note that although the

convergence of the profile with respect to bin size and lag time quantum correction factor I' is often assumed to be 1, previous

needs to be verified in each case®® (Figures S2—S3). For stucﬁiies6 indicate that for this reaction it can be as high as 10—

DHAM, and Markov state model-based methods in general, 70,2357 increasing the calculated rate, which would worsen the

smaller bin sizes provide more accurate results, as the diffusion agreement with experimental rates.

process is closer approximated with better discretization.*®! Both the RS and TS structures of (QTTF-Q)~ are
For the ferrous-ferric ET reaction (Flgure ZA), the diabatic nonplanar. The adiabatic ground state charge distribution is

and adiabatic free energy profiles unbiased with binless DHAM shown via the molecular orbitals occupied by the excess
are shown in Figure 2B. For unbiasing high-energy states such electron (Figure 3A and B for RS and TS, respectively), as
as the diabatic states, high numerical precision is needed.® We calculated with EOM-EA-CCSD. From the energy difference
also tested the alternative approach using the mean bias (eq of the adiabatic states at the TS, we obtain 1.0 kcal/mol
S1), but we only see a difference in performance for a coupling. In comparison, different CDFT-based approaches
significantly reduced number of data points, where it performs yielded an H,, of 3.0 kcal/mol in gas phase,”” while with
slightly worse than eq 4 (see Figure S4). Binless DHAM gives explicit water solvent H,, is calculated as 4.2 kcal/mol*®
a very similar free energy profile to MBAR (Figure SS), and the (CDFT on frames from unconstrained MD) or 2.0 kcal/mol*®
diabatic states are well approximated by a quadratic function (CDFT MD with PBEO functional). The excitation energy
(Figure S6), in line with Marcus theory. The reorganization approach with TDDFT and D-COSMO-RS solvent model for

A B ~ C

- [<}
v e £80 —G

ﬁ “ 3

e f £ 7/ §,60 ™

) > =
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Figure 2. (A) Depiction of the ferrous-ferric electron transfer reaction in water. (B) Binless DHAM free energy profiles of diabatic states (G, ,) and
the adiabatic ground state (Gg). The reorganization energy A and the activation free energy AG* are also shown. (C) ET rates calculated using
binless DHAM as a function of H,. The experimental rate © is shown in green, while H,;, values calculated with FDE (mean and standard error) are
shown in yellow.
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Figure 3. IET in (Q-TTF-Q) . Dominant molecular orbitals describe electron attachment to neutral Q-TTE-Q to form (A) the reactant state (RS)
and (B) the transition state (TS) of the (Q-TTF-Q)~ anion. Pink and purple colors represent the different phases of the wave function. (C) Binless
DHAM free energy profiles plotted using H,, coupling values from our EOM-CC calculations for water (blue line) and DCM (red line) as an
example of the very different rates of ET. (D) Calculated ET rates as a function of H,;. Experimental rates for tBOH (green), DCM (red), and ETA
(blue) are also shown as dashed lines.*®

Table 1. Calculated Energy Barriers from the First Eigenvector of the Markov Matrix, Calculated Rates from the Second
Eigenvalue of the Markov Matrix, Derived Pre-Exponential Factors and Reorganization Energies” vs Experimentally Measured

Rates for the Respective Solvents, and Measured Dielectric Constants (&)

energy barrier calculated rate
=1

solvent (kcal/mol) (&)

tBOH 6.61 9.97 x 10 5.77 X 10"
ETA 591 1.69 x 10% 3.04 x 10"
DCM 6.94 1.03 x 107 1.04 x 10"
Water 11.23 3.00 X 10% 3.73 x 108

pre-exponential factor
™

reorganization energy (4, experimentbal rate dielectric constant
(G
S

kcal/mol) &
29.69 2.89 x 10%7 10.9
26.97 2.10 x 10% 6.02
30.79 2.58 x 10% 8.93
48.24 n/a 80.1

“Derived using a coupling of Hy, = 0.97 keal/mol for the IET in four solvent environments. “See ref 68. “See ref 71.

10:1 ethyl acetate/tert-butyl alcohol resulted in 2.0 kcal/mol
coupling.”’ As H,; values are not unique, there is no standard
method of determining these. Here, we compared calculated
and experimental rates”® obtained with various choices of Hy,
using different solvents.

We calculated the free energy profiles for the intramolecular
electron transfer in four solvent environments: tert-butyl
alcohol (tBOH), ethyl acetate (ETA), dichloromethane
(DCM), and water. The binless DHAM free energy profiles
for water and dichloromethane (DCM) are shown in Figure
3C. Binless DHAM has excellent agreement with MBAR in all
cases (Figure SS). The energy barriers, the calculated rates
(using a coupling of 0.97 kcal/mol), and the reorganization
energies are summarized in Table 1, together with the
experimental dielectric constants and the measured IET rates
for all solvents except for water.”® Our calculations suggest that
the process follows similar rates in tBOH, ETA and DCM, but
it is considerably slower in water. Our predicted rates are
within an order of magnitude of the experimental rates, using
the H,, values from around 1-3 (Figure 3D), which
demonstrates a good agreement in general and shows that
our method could be used to determine H,, values if the rates
are known or vice versa, that experimental rates can be
determined if H,, values are calculated. The dielectric constant,
€, is much higher for water than the rest of the organic solvents
we modeled (Table 1), which also corresponds to the much
slower rate we observe for the IET in water. The dielectric

constants are broadly similar for the three organic solvents, as
are the ET rates, within about an order of magnitude for both
the calculated and experimental values (Table 1). We note that
while the precise ordering correlates perfectly between the
calculated rates and the reorganization energy 4, it does not
perfectly correlate across the experimental rates and measured
dielectric constants (Table 1). Experimentally, 4 is estimated
from a broad intervalence charge transfer band to be around 22
kcal/mol in 10:1 ethyl acetate/tert-butyl alcohol,64 which is
also matched well by TDDFT predictions of 16.1 kcal/mol for
the same solvent mixture.” In line with the adiabatic
classification of the reaction, the calculated x is 1.00 for all
solvent environments.

Using the calculated barrier heights and the relaxation times
from the eigenvalues of the unbiased Markov matrices, we also
calculated the pre-exponential factor v for the adiabatic rates in
the form of eq 8. We have an excellent agreement with the
standard KT /h values (6.32 X 10'2 s™* at 303.15 K, Table 1),
demonstrating that our reaction coordinate correctly captures
the rate limiting factors for this process. Using low dimensional
reaction coordinates that miss key relevant degrees of freedom
could result in too low free energy barriers, even if the
sampling is perfect.”” This could result in an apparent pre-
exponential factor that is significantly different from the kT/h
value, as observed in, e.g., umbrella sampling MD simulations
of small molecules membrane permeation (v ~ 10%).”°
Analogously, using reaction coordinates that better capture

https://doi.org/10.1021/acs jpclett.3c02624
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the rate limiting process for the IET could increase the barrier
heights in IET simulations and thus could result in better
agreement with experimental rates without invoking changes in
the nuclear tunneling effects.

We derived a binless formulation of the dynamic histogram
analysis method that can be used to build the free energy
profile from molecular dynamics simulations biased along
many arbitrary coordinates, such as Hamiltonian-based biasing.
It is especially suited for the investigation of electron transfer
(ET) reactions, which we demonstrated on two examples,
ferrous-ferric ET and IET in (Q-TTF-Q)~. With binless
DHAM, reaction rates can be directly calculated from the
Markov transition probability matrix, also providing an
alternative route to determine the nuclear frequency factor of
the transition state theory. The only external parameter needed
to access adiabatic or nonadiabatic ET rates is the electronic
coupling between redox pairs, readily calculated with frozen
density embedding, constrained density functional theory, or
excited state methods.

Our method gives nearly identical results to DHAM and
WHAM on simulations biased along a low-dimensional
reaction coordinate and to MBAR when biasing is along
arbitrary coordinates, provided that the profile is converged
with respect to bin size and lag time. Importantly, using the
binless DHAM, the pre-exponential factor can be calculated
from the unbiased Markov matrix estimate; hence, not only the
free energy but also the kinetic rates are directly obtained from
biased simulations.

Here, we demonstrate that using a binless DHAM for
unbiasing ET simulations, the rates can be directly determined
from MD simulations using different model Hamiltonians.
Using appropriate coupling values, we obtained excellent
agreement with experimental rates for both adiabatic and
nonadiabatic ET reactions. We obtain IET rates within an
order of magnitude of the experimental rates for (Q-TTF-Q)~
in three different organic solvents using our H,, coupling value
determined using EOM-CC. Additionally, our calculated
reorganization energies are also in good agreement with
experimental estimates. Apart from ET reactions, binless
DHAM can also be potentially used to calculate kinetic rates
in cases where different Hamiltonians are used for sampling
and energy calculations, e.g, higher level QM calculations on
classical MD frames, or different force fields.”
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Chapter 7

CONCLUSION

This thesis aimed to add a new understanding to the role missense mutations play in several
specific cases, with examples from disease and in enzymes that are of significant importance
to industrial applications. The thesis achieves this through the use of several computational
methods such as Molecular Dynamics simulations, DFT calculations, QM/MM simulations,
and the application of several Machine Learning algorithms. Additionally, a novel method for
the calculation of the rate of electron transfer, which can be applied in a biological context,

was developed, and tested on several different model systems.

In the 3™ Chapter, | showed that ATP13A2 conducts the autophosphorylation reaction with
the assistance of two Mg?* cations in the active site, as well as the exact mode of ATP binding
in the E1 conformational state. The QM/MM potential energy scans supported the evidence
from the MD simulations that the catalytic reaction likely proceeds with two cations in the
active site, as evidenced by the lower barrier height (7.5 vs. 12.5 kcal/mol). This is now
supported by crystal structures of the enzyme which capture the two Mg** cations,!*
demonstrating the validity of my model. Additionally, the QM/MM potential energy scans
describe the crucial role of Arg686 and Lys581 in stabilizing the transition and reactant states,
respectively. The active site Arg and Lys have been shown to be of similar importance in other
ATPases.>® By providing a full picture of the active site composition and conformation, this
modeling and simulation work allows the study of the effect of mutations near the active site,
by expanding the QM region to incorporate more residues. | also found several binding
pockets in different domains of the protein (P, N, T), after analyzing the dynamics of the
protein, from MD trajectories. This analysis suggests where the potential substrates of
ATP13A2 can bind. Some of the pockets, in particular in the transmembrane domain, agree

with the now experimentally verified binding locations of ATP13A2 cargo.!38
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In the 4" Chapter, | proposed a new method for the classification of enzyme variants, based
on the predicted effect the protein mutations have on the catalytic rate. | utilized Random
Forest and Gradient Boosted Decision Trees algorithms, with features extracted from
Molecular Dynamics simulations of the Galactose Oxidase enzyme at/around the rate-limiting
step of the alcohol conversion reaction, achieving ~78% in accuracy of classification, as well
as excellent precision and recall. Predicting the effect on the catalytic rate is particularly suited
to this type of ML approach, when one is limited by the experimental data available. In
contrast, Deep Learning models based on, for example, ensembles of CNNs need thousands
of data points, to be able to achieve accurate classification for this type of problem and are
therefore not as suitable as the proposed methodology/classification pipeline since in most
similar situations the experimental data is of limited size. Additionally, MD simulations

at/around the TS also offer a less time-consuming alternative to QM/MM simulations.

In the 5™ Chapter, | modeled and conducted Molecular Dynamics simulations of the 5-
phosphatase domain of synaptojanin-1 (Synj-1), and more specifically its binding to its
substrate phosphatidylinositol-4,5-bisphosphate (PIP;). This enzyme, similarly, to ATP13A2,
was independently identified through the integration of genomic and proteomic data, to be
implicated in various neurodegenerative diseases. Similarly to ATP13A2, mutations in the
protein give rise to various pathological processes. In this work, we provided the first three-
dimensional structure of the 5-phosphatase domain, embedded in a membrane, and bound
to its substrate, before the wide availability of tools such as AlphaFold.” Currently, what Deep
Learning models still fail to predict accurately is the exact conformation of the active site
substrates during the different stages of catalytic reactions, as well as the number and role of
the active site cations. The bioinformatics analysis | performed, homology modeling, and MD
simulations, identified that the active site residues were highly conserved between Synj-1 and
some of the Mg?*-dependent DNA restriction endonucleases,'3%1%° and Synj-1 likely also
exhibits a two-metal ion catalytic mechanism. Both my MD simulations, and the conserved
active site, support the hypothesis that this enzyme completes a two-ion dephosphorylation

of PIP,.

In the 6™ Chapter, | modeled several systems to test and apply a novel method for the

calculation of the rate of electron transfer called Binless Dynamic Weighted Histogram
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Analysis Method (DHAM). The ferrous-ferric (Fe?*-Fe3*) intermolecular electron transfer
reaction and the intramolecular electron transfer reaction in the (Q-TTF-Q)” anion represent
examples of diabatic and adiabatic coupling mechanisms, respectively. It was demonstrated
that Binless DHAM achieves excellent agreement with experimental measurements in both
types of electron transfer, achieving a predicted rate of electron transfer of 5.2 x 10% s for
the ferrous-ferric system in water and 9.97 x 107 s for (Q-TTF-Q)  anion in tBOH, respectively.
This method for the estimation of the rate of electron transfer rate has not been applied to
the study of biological systems yet, but it could be tested on enzyme active sites where the

catalytic reaction involves the transfer of electrons.
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Homology Modelling
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Figure S1. Alignment of the sequences of the most homologous proteins to ATP13A2 which have
crystallographic structures deposited in the Protein Data Bank (PDB). Only regions of interest in this
work are shown. The DKTGTLT motif is conserved among all protein structures used in this work. The
Mg?*-coordinating active site residues D513 and T515, correspond to DKTGTLT in this motif. The active
site residues R686 and K859 are also strictly conserved among all P-type ATPases used in this work.
D878 is the second aspartate amino acid which coordinates the catalytic Mg?* ion during the cleavage
of ATP. The proteins aligned here are: SERCA (PDB code: 3tlm)?, Na*/K*- ATPase (PDB code: 3wgu)?,
ATP13A1 (PDB code: 6xmq)® and the homology model of ATP13A2. The numbering below the
conserved residues corresponds to the number of the residue in the sequence of ATP13A2 for Homo
Sapiens (Uniprot* code: QONQ11).
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The active site is conserved between the two homology models (Fig. S2D and S2E). Residues
1-189 could not be modelled with SERCA as the template. These correspond to: 1-44
cytoplasmic, 45-65 intramembrane and 66-188 cytoplasmic regions of the protein,
respectively. This segment of the enzyme has some significant differences in sequence
conservation between ATP13A2, ATP13A1, as well as SERCA, therefore, neither of the
templates available to us could model this region of the protein ideally. The crystal structure
of ATP13A1 in the E1-ATP state did not have any solvent molecules resolved, which is very
important for modelling the active site. Additionally, Lys797 (corresponding to Lys859 in
ATP13A2) was resolved further away in the crystal structures of ATP13A1. We are mainly
interested in the active site, therefore we used SERCA for the modelling template as it had
crystallographic waters and the active site residues were positioned correctly for the ATP
cleavage reaction. The RMSD of the CA atoms between the two homology models of the full
protein is 4.54 A. The RMSD of the CA atoms for residues in the active site within 5 A of the
ATPis 0.66 A.
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Figure S2. (A) Three-dimensional model of ATP13A2 (green cartoon) based on SERCA (grey cartoon,
pdb code: 3tim). (B) Three-dimensional model of ATP13A2 (green cartoon) based on ATP13A1 (grey
cartoon, pdb code: 6xmq). (C) Aligned initial structures of ATP13A2 based on SERCA and on ATP13A1.
(D) and (E) show the active sites of the two models, respectively for the ATP13A2 model (green sticks)
and the template crystal structures (grey sticks). (D) shows the water molecules resolved in the crystal
structure, whereas the crystal structure in (E) did not have any water resolved.
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QM Cluster Calculations
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Figure S3. Heavy atoms included in the QM cluster geometry optimizations. Red asterisk marks where
an amino acid residue has been truncated, as well as which atom was frozen during the geometry
optimization. Each calculation contained six water molecules, two Mg?* cations, the full ATP and the

three amino acids depicted.
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Figure S4. Starting geometries G1-G4 for the QM cluster calculations (before optimization). Starting
structure G1 (A) was created based on alignment with the crystal structure resolved with ADP and 2
Mg?* ions (PDB code: 3wgu?). Structure G2 (B) exhibits an alternative binding but has the same
conformation as (A), here the second Mg?* ion is coordinating three oxygen atoms instead of two. G3
(C) was taken from the last frame of the original MD simulation (after 100 ns) and G4 (D) represents
a more unorthodox geometry that has not been observed by us in any P-type ATPase crystal structures
but was generated to explore different possibilities. The “straight” conformation of the phosphate
chain G3 and G4 in (C) and (D) is unfavorable energetically.
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QM/MM Reaction Coordinate Scans (RCSs)

Six systems were created (P1-P6) which were initially minimized for 1000 steps. To describe
the QM region, “all amino acids” refers to Asp513, Asp878, Thr515, Lys859, Arg686, Gly516
and Lys514. The minimized structure of each system was supplied as a starting point for the
reaction coordinate scan (RCS). P1 refers to the full system containing all amino acids
described to be contained in the QM region, including Arg686 and Lys859, with one Mg?* in
the active site. P2 refers to the full system containing all amino acids described to be
contained in the QM region, including Arg686 and Lys859, with two Mg?* ions in the active
site. P3 and P4 have one Mg?* ion in the active site and Arg686 or Lys859 missing, respectively.
P5 and P6 have two Mg?* ions in the active site with Arg686 or Lys859 missing, respectively.
The aim of obtaining a converged RCS for each system P1-P6 was to show the effect of Lys859
and Arg686, as well as the profile of the wild type system where all amino acids are present
and not mutated.

Table S1. Six QM/MM systems (P1-P6) were initially minimized, and subsequently QM/MM reaction
coordinate scans were run. The overall charge and atoms of each QM region, as well as the number
of Mg* ions in each active site are shown below. To test the effects of residues missing from the active
site, we neutralized the atomic charges of selected residues as indicated.

System Number of Overall Residues
Mg+ Charge Missing
P1 1 -2 none
P2 2 0 none
P3 1 -3 Lys859
P4 1 -3 Arg686
PS5 2 -1 Lys859
P6 2 -1 Arg686
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Pocket Analysis

Twenty equidistant frames from the 100 ns unconstrained MD simulation were extracted.
The twenty biggest pockets were calculated in each frame and the four biggest pockets in
terms of surface area were further analyzed. An ATP pocket was found in 75% of all frames
and a transmembrane pocket, within 1.5 A of residues Val469, Pro470 and Asp967, was found
90% of the time. The size of each pocket in the corresponding frame is listed in Table 2. Two
other pockets were found consistently, and their location is shown in Figure S5. The blue
pocket is relatively small in surface area and is found exclusively in the first 25 ns of the
simulation, whereas the orange pocket is found in the later part of the simulation (after 25
ns).

Table S2. Frames extracted from the 100 ns unconstrained MD simulation and the size of two biggest
pockets found.

Frame ATP pocket = Transmembrane

size (A3) pocket size (A3)

50 3750.0 1278.0
100 Not found 975.0
150 745.0 Not found
200 3519.0 Not found
250 2907.0 1541.0
300 Not found 2197.0
350 1093.0 1045.0
400 Not found 2998.0
450 1035.0 1818.0
500 Not found 1928.0
550 1725.0 2110.0
600 5576.0 3185.0
650 6687.0 1731.0
700 6743.0 4021.0
750 5621.0 3838.0
800 5067.0 3508.0
850 5867.0 2901.0
900 12411.0 1886.0
950 14078.0 1835.0
1000 Not found 1968.0
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Figure S5. Two additional pockets (blue mesh and orange mesh) which were found on the surface of
the ATP13A2 homology model (green cartoon).
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One Mg?* Active Site Molecular Dynamics (MD) Simulations
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Figure S6. (A) The protein colored by flexibility in the first unconstrained MD simulation. Red regions
signify more flexible parts while blue the more rigid regions. The membrane and water molecules/ions
are not included in this visualization for clarity. The RMSD of the active site features Asp513, Thr515,
Asp878, the Mg?* cation and the ATP molecule. (B) shows the RMSD of the active site alone and (C)
the RMSD of protein. (D), (E) and (F) show the same parameters for the second simulation where the
ATP molecule was fixed to its original coordinates.
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Figure S7. (A) Conformation of the ATP molecule (grey sticks) at the start of the MD simulation and
after 1 ns (yellow sticks). (B) Region of the active site where the K* ion clustering is observed during
the unconstrained simulation (orange spheres). The constant presence of the K* ions (C) suggests
insufficiency of positive charge in the active site. Since the ATP has not preserved its original “zig-zag”
conformation, the K* ions cluster ununiformly. (C) Number of K* ions in the active site throughout the
100 ns unconstrained simulation.
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QM Cluster Calculations

ADP

Figure S8. The four optimized geometries (green sticks) aligned to the crystal structure (grey sticks)
resolved with ADP and two Mg?* ions?. The conformation of G1 in (A) and G2 in (B) agree very well
with the crystal structure of the transition state, unlike the “straight” phosphate chain conformations

of G3 and G4 (C) and (D), respectively.
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Starting Geometries G1-G4 (Fig. S4) were optimized and upon convergence yielded three
distinct conformations. G1 and G2 optimize to the same type of conformation and
coordination mode. All optimized geometries with straight phosphate chain (G3 and G4) are
energetically unfavourable (Table S3) and were therefore not used in any further QM/MM
reaction coordinate scans (RCSs).

Table S3. Energy of the QM cluster optimized structures.

Optimized Energy (kcal/mol)
conformation

G1 -2725927.76

G2 -2725951.10

G3 -2725162.55

G4 -2725180.81

Transition state P5 Transition state P6 Lys859

17 X

o)
O35 2.2 k’e 26 ¢ X2 B
e e S e gD
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Asp513 O b g

~

Asp878
/N
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Arg686
rg e
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Thr515

Figure S9. Transition state for systems P5 and P6. The transition state where Lys859 is missing is
considerably affected (P5) while in system P6 the missing Arg686 does not influence the distances
between the reacting nucleophile O2p and Pg and Pg and Osg.
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Figure S10. Reaction coordinate scans (RCS) for the active site of ATP13A2 containing one Mg?* ion.
The minimum energy profile along the RCS depicted in red represents the phosphate transfer reaction
without Lys859 (P5). The profile in green represents the phosphate transfer reaction without Arg686
(P6). The blue energy profile shows the reaction in the active site when all amino acids required for
the normal enzymatic activity are present.
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Figure S11. (A) Electrostatic effects of the missing Lys859 atomic charges on the destabilization of the
RS, TS and PS using the geometries obtained with the full system (P2). (B) Geometric effects of the
missing Lys859 atomic charges (geometries taken from scan P5) cause additional destabilization of the
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system in comparison to when all Lys859 is charged, in particular for the RS.
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Two Mg?* Active Site MD Simulations

Figure S12. (A) Final active site structures of the 3 replicas after 100 ns of unconstrained MD
simulations. Water molecules coordinating the Mg?* ions are shown as red spheres. The second Mg?*
ion was coordinated by four water molecules and the catalytic Mg?* ion was coordinated by one after
100 ns. The Mg-coordinating residues are shown as sticks. (B) Top view of the ATP phosphate chain,
which was still zigzag after 100 ns of unconstrained MD.
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Table SI1. All variants modeled and subject of MD simulations in this work. The second column shows
the mutations present; the third column shows the substrate in the active site, the fourth column
shows the experimentally obtained k..: value and the last column shows the target label used in the
ML binary classification. All reported k.. values come from the works of the cited authors,31011% 35
well as from collaborators at A*STAR, Singapore.!'® If more than one k. value is reported, it means
that there was more than one experimental reporting of it. Values for k. listed as * were reported in

AG* from collaborators and started from 16.7 kcal/mol.

Mutant

WT
W290F
W290G
W290H

NeM1

N6M1_C383M

N6M1_C383A

N6M1_C383N

N6M1_C383D

N6M1_C383P

N6M1_C383E

Missense

mutations

none
W290F
W290G
W290H
S10P, M70V,
P136(silent),
G195E, V494A,
N535D
S10P, M70V,
P136(silent),
G195E, C383M,
V494A, N535D
S10P, M70V,
P136(silent),
G195E, C383A,
V494A, N535D
S10P, M70V,
P136(silent),
G195E, C383N,
V494A, N535D
S10P, M70V,
P136(silent),
G195E, C383D,
V494A, N535D
S10P, M70V,
P136(silent),
G195E, C383P,
V494A, N535D
S10P, M70V,
P136(silent),

Substrate

D-galactose
D-galactose
D-galactose
D-galactose
D-galactose

D-galactose

D-galactose

D-galactose

D-galactose

D-galactose

D-galactose

Kear [s7']

1094 503+16.2
371+43.0
1.66 +£0.28

0.24 +0.004
1100 + 41

510+15

1200 + 50

410+ 17

440+3.8

490 + 17

550+9.0

Class

O r O O
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N6M1_C383Q

N6M1_C383F

N6M1_C383R

N6M1_C383G

N6M1_C383S

N6M1_C383H

N6M1_C383T

N6M1_C383I

N6M1_C383V

N6M1_C383K

N6M1_C383W

G195E, C383E,
V494A, N535D
S10P, M70V,
P136(silent),
G195E, C383Q,
V494A, N535D
S10P, M70V,
P136(silent),
G195E, C383F,
V494A, N535D
S10P, M70V,
P136(silent),
G195E, C383M,
V494A, N535D
S10P, M70V,
P136(silent),
G195E, C383G,
V494A, N535D
S10P, M70V,
P136(silent),
G195E, C383S,
V494A, N535D
S10P, M70V,
P136(silent),
G195E, C383H,
V494A, N535D
S10P, M70V,
P136(silent),
G195E, C383T,
V494A, N535D
S10P, M70V,
P136(silent),
G195E, C383l,
V494A, N535D
S10P, M70V,
P136(silent),
G195E, C383V,
V494A, N535D
S10P, M70V,
P136(silent),
G195E, C383K,
V494A, N535D
S10P, M70V,
P136(silent),

D-galactose

D-galactose

D-galactose

D-galactose

D-galactose

D-galactose

D-galactose

D-galactose

D-galactose

D-galactose

D-galactose

170+ 12

190+ 13

8.8+0.3

1100 + 12

1100 + 30

210+5.7

3400 + 300

260+ 8.5

360+7.8

1100 + 30

0.011 + 0.0004
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N6M1_C383L

M35

M35

GOH_1052

GOH_1036

GOH_1021

M35_24

M35_32

M35_215

G195E, C383W,
V494A, N535D
S10P, M70V,
P136(silent),
G195E, C383L,
V494A, N535D
S10P, M70V,
G195E, W290F,
R330M, Q406T,
V494A, N535D
S10P, M70V,
G195E, W290F,
R330M, Q406T,
V494A, N535D
S10P, M70V,
G195E, W290F,
R330M, Q406T,
V494A, N535D,
F194A, N245W
S10P, M70V,
G195E, W290F,
R330M, Q406T,
V494A, F194A
S10P, M70V,
G195E, W290F,
R330M, Q406T,
V494A, F194A
S10P, M70V,
G195E, W290F,
R330M, E406T,
V494A, N535D,
T130S
S10P, M70V,
G195E, W290F,
R330M, E406T,
V494A, N535D,
M278T, D517V,
Y576H
S10P, M70V,
G195E, W290F,
R330M, E406T,
V494A, N535D,
D413Y, YA36F

D-galactose

S128

SS1

S128

S128

S128

SS1

SS1

SS1

450 + 17

3.5+0.04

3.6 +0.07

3.1+0.05

2.9+0.05
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Table SI2. Total charges of the active site residues and substrates calculated for the TS structure of GO

with D-Galactose, SS1, and $128. The values are reported in units of electron charge (e).

Residue D-Galactose SS1 S128
Cu 0.777 0.779 0.411
Substrate -0.344 -0.612 -0.081
HX 0.223 0.590 0.548
C228 -0.369 -0.234 -0.225
Y272 -0.149 -0.283 -0.411
H496 0.023 -0.122 0.014
H581 -0.151 -0.026 0.097
Y495 -0.088 -0.070 -0.157
P290 0.078 -0.020 -0.197

A D-Galactose

D-Galactose

Figure SI1. (A) Atoms with additional harmonic potentials. (B) The second set of simulations did not

contain the harmonic restraint between atoms CZ(Y272) and C1 (substrate); the distance is shown

with blue dashed lines.



144

X Class0
Class 1

Principal Component 2
XX

T T T T T T T T

-4 -2 0 2 4 6 8 10
Principal Component 1

Figure SI2. Data points clustered based on the first two principal components using k-means

clustering.

Table SI3. Restraints on interatomic distances used during the MD simulations. The distance marked

with an asterisk * is not restrained during the second set of 93 simulations. The units are in kJ mol™

nm™.

Atoms Force constant Reference distance (A)
HX(Sub)-O(TYX) 10000 13
HX(Sub)-C6(Sub) 10000 13

06(Sub)-Cu 100000 2.1
O(TYX)-C6(Sub) 100000 2.6
O(TYX)-06(Sub) 100000 3.3

CZ(TYX)-C1(Sub)* 100000 3.6
HH(TRR495)-06(Sub) 5000 1.7
NE2(HIS581)-CU 10000 1.9
NE2(HIS496)-CU 10000 1.9
CD2(HIS496)-CU 10000 3.0
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CD2(HIS581)-CU 10000 2.9

Table SI4. Restraints on angles during the MD simulations.

Angle Force constant Reference angle
NE2-CU-NE2(H496, H581) 359.0 153.0
NE2-06-NE2(H496, Sub, H581) 359.0 73.2
CU-06-C6(Sub) 569.0 129.6
CE1-NE2-CU(His496) 359.0 124.4
OH(Y272)-06-C6(Sub) 359.0 49.7

Table SI5. Reduced set of interatomic distances and distances created from displacement (WT

reference).

Cu-SG(C228) d1 WT d2 — Variant d2
Cu-HX(Substrate) d2 WT d3 — Variant d3
OH(Y272)-Cu d3 WT d4 — Variant d4
OH(Y495)-Cu d4 WT d5 — Variant d5
OH(Y272)-NE2(H496) d5 WT d6 — Variant d6
OH(Y272)-NE2(H581) d6 WT d7 — Variant d7
OH(Y405)-Cu d7 WT d8 — Variant d9
CZ(Y272)-C6(Substrate) d8 WT d10 — Variant d10
CG(Y272)-C6(Substrate) d9 WT d11 - Variant d112
SG(C228)-C6(Substrate) d10 WT d12 — Variant d12
OH(Y495)-06(Substrate) d11 WT d13 — Variant d13
OH(Y495)-C6(Substrate) d12 WT d14 — Variant d14
OH(Y405)-06(Substrate) d13 WT d15 — Variant d15
CZ(Y272)-SG(C228) d14 WT d16 — Variant d16
06(Substrate)-CE1(H496) d15 WT d17 — Variant d17
Cu-CZ(Y495) d16 WT d18 — Variant d18
Cu-CZ(C228) d17 WT d19 — Variant d19
CB(C228)-C6(Substrate) d18 WT d20 — Variant d20
CZ(Y272)-OH(Y495) d19 WT d21 — Variant d21
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CZ(Y495)-SG(YC228) d20

WT d22 — Variant d22

SG(C228)-OH(Y495) d21

WT d23 - Variant d23

SG(C228)-CZ(Y495) d22

WT d24 — Variant d24

SG(C228)-OH(Y495) d23

RMSD (First — Last Frame)

OH(Y405)-0H(Y272) d24

RMSF (First-Last Frame)

WT d1 - Variant d1

Table SI6. Set of interatomic distances and distances created from displacement (WT reference).

Cu-SG(C228) d1

WT d1 - Variant d1

Cu-HX(Substrate) d2

WT d2 — Variant d2

OH(Y272)-Cu d3

WT d3 — Variant d3

OH(Y495)-Cu d4

WT d4 — Variant d4

OH(Y272)-NE2(H496) d5

WT d5 — Variant d5

OH(Y272)-NE2(H581) d6

WT d6 — Variant d6

C1(Substrate)-Cu d7

WT d7 — Variant d7

OH(Y405)-Cu d8

WT d8 — Variant d8

C1(Substrate)-CZ(Y272) d9

WT d9 — Variant d9

CZ(Y272)-C6(Substrate) d10

WT d10 - Variant d10

OH(Y272)-C1(Substrate) d11

WT d11 - Variant d11

CG(Y272)-C6(Substrate) d12

WT d12 — Variant d12

CG(Y272)-C1(Substrate) d13

WT d13 - Variant d13

SG(C228)-C6(Substrate) d14

WT d14 — Variant d14

SG(C228)-C1(Substrate) d15

WT d15 - Variant d15

OH(Y495)-06(Substrate) d16

WT d16 — Variant d16

OH(Y495)-C6(Substrate) d17

WT d17 — Variant d17

OH(Y495)-C1(Substrate) d18

WT d18 — Variant d18

OH(Y405)-C1(Substrate) d19

WT d19 — Variant d19

OH(Y405)-06(Substrate) d20

WT d20 - Variant d20

CZ(Y272)-5G(C228) d21

WT d21 - Variant d21

06(Substrate)-CE1(H496) d22

WT d22 — Variant d22

Cu-CZ(Y495) d23

WT d23 - Variant d23

Cu-CZ(C228) d24

WT d24 — Variant d24
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CB(C228)-C6(Substrate) d25

WT d25 - Variant d25

CZ(Y272)-OH(Y495) d26

WT d26 — Variant d26

CZ(Y495)-SG(YC228) d27

WT d27 — Variant d27

SG(C228)-OH(Y495) d28

WT d28 — Variant d28

SG(C228)-CZ(Y495) d29

WT d29 - Variant d29

SG(C228)-OH(Y495) d30

WT d30 - Variant d30

OH(Y405)-0H(Y272) d31

RMSD (First — Last Frame)

WT d1 - Variant d1

RMSF (First — Last Frame)
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Electronic Supplementary Tables

Table 1 ESI. Proteins chosen to be of interest in this work. The corresponding human homologue of
the yeast protein is shown in the second column [1]. Third and fourth column show the disease
modulating effect of the protein on X-synuclein toxicity, as found in the Khurana et. al study [2]. Fifth
and sixth column show the median ratio for the protein concentration between -synuclein
expressing cells and control empty vector (EV) cells. The final column shows the average of the median
ratio value (X-synuclein expressing vs. control at 12h and 18h) from the Melnik et. al study [3]. Values

coloured in red signify upregulated proteins, blue - downregulated.

Yeast Human Deletion Overexpressio | Median Median Average of
Protein Homologue | Modulator | n Modulator ratio value | ratiovalue | median
for the for the ratio value
protein c. at | protein c. between
12h at 8h 12h and
18h
ERV29 SURF4 Suppressor 0.9487 0.7617 0.8552
CAB3 PPCDC Suppressor 0.9913 0.2275 0.6094
OSH2 OSBP Suppressor 0.7693 0.7696 0.7695
TIS11 ZFP36 Suppressor 0.5446 1.0161 0.7803
PSR1 CTDSP2 Suppressor 0.7297 0.3574 0.5436
FUN14 FUNDC1 Suppressor 0.5588 0.9406 0.7497
YPK9 ATP13A2 Enhancer Suppressor 0.5094 0.6475 0.5785
TPK2 PRKACB Enhancer 0.6505 0.6821 0.6663
INP53 SYNJ1 Enhancer 0.7353 1.0839 0.9096
RAD27 FEN1 Enhancer 0.8404 0.5271 0.6837
ARO10 ILVBL Enhancer 0.7201 0.9930 0.8566
IMP2 IMPP2L Enhancer 0.3738 0.3737 0.3738
RSM25 MRPS23 Enhancer 1.6853 1.5705 1.6279
YMR31 MRPS36 Enhancer 1.6649 1.7560 1.7105
POR1 VDAC1 Enhancer 1.1816 1.5695 1.3756
SEC31 SEC31B Enhancer 1.3086 1.1884 1.2485
MRPL11 | MRPL10 Enhancer 1.6600 1.6863 1.6732
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Table 2 ESI. Close functional partners to synaptojanin-1. Generated using STITCH [4].

Protein name

Function

PIK3CA

Phosphatidylinositol-4,5-bisphosphate  3-kinase, catalytic subunit alpha;
Phosphoinositide-3-kinase (PI3K) that phosphorylates Ptdins
(Phosphatidylinositol), Ptdins4P (Phosphatidylinositol 4- phosphate) and
Ptdins(4,5)P2  (Phosphatidylinositol ~ 4,5-  bisphosphate) to generate
phosphatidylinositol 3,4,5-trisphosphate (PIPs). PIP; plays a key role by recruiting
PH domain-containing proteins to the membrane, including AKT1 and PDPK1,
activating signalling cascades involved in cell growth, survival, proliferation,
motility and morphology.

PIK3CB

Phosphatidylinositol-4,5-bisphosphate  3-kinase, catalytic subunit beta;
Phosphoinositide-3-kinase (PI3K) that phosphorylates PtdIns
(Phosphatidylinositol), Ptdins4P (Phosphatidylinositol 4- phosphate) and
PtdIns(4,5)P2  (Phosphatidylinositol ~ 4,5-  bisphosphate) to generate
phosphatidylinositol 3,4,5-trisphosphate (PIP3). PIP3 plays a key role by recruiting
PH domain-containing proteins to the membrane, including AKT1 and PDPK1,
activating signalling cascades involved in cell growth, survival, proliferation,
motility and morphology.

PIK3CD

Phosphatidylinositol-4,5-bisphosphate  3-kinase, catalytic subunit delta;
Phosphoinositide-3-kinase ~ (PI3K)  that  phosphorylates  Pftdins(4,5)P2
(Phosphatidylinositol 4,5-bisphosphate) to generate phosphatidylinositol 3,4,5-
trisphosphate (PIPs). PIPs; plays a key role by recruiting PH domain-containing
proteins to the membrane, including AKT1 and PDPK1, activating signalling
cascades involved in cell growth, survival, proliferation, motility and morphology.
Mediates immune responses. Plays a role in B-cell development, proliferation,
migration, and function.

PIK3CG

Phosphatidylinositol-4,5-bisphosphate 3-kinase, catalytic subunit gamma;
Phosphoinositide-3-kinase ~ (PI3K)  that  phosphorylates  Ptdins(4,5)P2
(Phosphatidylinositol 4,5-bisphosphate) to generate phosphatidylinositol 3,4,5-
trisphosphate (PIPs). PIPs; plays a key role by recruiting PH domain-containing
proteins to the membrane, including AKT1 and PDPK1, activating signalling
cascades involved in cell growth, survival, proliferation, motility and morphology.
Links G-protein coupled receptor activation to PIP; production.

EPHB2

EPH receptor B2; Receptor tyrosine kinase which binds promiscuously
transmembrane ephrin-B family ligands residing on adjacent cells, leading to
contact-dependent bidirectional signalling into neighbouring cells. The signalling
pathway downstream of the receptor is referred to as forward signalling while the
signalling pathway downstream of the ephrin ligand is referred to as reverse
signalling. Functions in axon guidance during development. Involved in the
guidance of commissural axons, that form a major interhemispheric connection
between the 2 temporal lobes of the cerebral cortex.

SH3GL2

Endophilin-A3; Implicated in endocytosis. May recruit other proteins to
membranes with high curvature.

EPS15

Epidermal growth factor receptor substrate 15; Involved in cell growth regulation.
May be involved in the regulation of mitogenic signals and control of cell
proliferation. Involved in the internalization of ligand-inducible receptors of the
receptor tyrosine kinase (RTK) type, in particular EGFR. Plays a role in the assembly
of clathrin-coated pits (CCPs). Acts as a clathrin adapter required for post-Golgi
trafficking. Seems to be involved in CCPs maturation including invagination or
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budding. Involved in endocytosis of integrin beta-1 (ITGB1) and transferrin
receptor (TFR).

EPN1

Epsin 1; Binds to membranes enriched in phosphatidylinositol 4,5- bisphosphate
(PtdIns(4,5)P2). Modifies membrane curvature and facilitates the formation of
clathrin-coated invaginations.

BIN1

Myc box-dependent-interacting protein 1; May be involved in regulation of
synaptic vesicle endocytosis. May act as a tumor suppressor and inhibits malignant
cell transformation.

AP2A1

AP-2 complex subunit alpha-1; Component of the adaptor protein complex 2 (AP-
2). Adaptor protein complexes function in protein transport via transport vesicles
in different membrane traffic pathways. Adaptor protein complexes are vesicle
coat components and appear to be involved in cargo selection and vesicle
formation. AP-2 is involved in clathrin-dependent endocytosis in which cargo
proteins are incorporated into vesicles surrounded by clathrin (clathrin-coated
vesicles, CCVs) which are destined for fusion with the early endosome.

AP2M1

Adaptor-related protein complex 2, mu 1 subunit; Component of the adaptor
protein complex 2 (AP-2). Adaptor protein complexes function in protein transport
via transport vesicles in different membrane traffic pathways. Adaptor protein
complexes are vesicle coat components and appear to be involved in cargo
selection and vesicle formation. AP-2 is involved in clathrin-dependent
endocytosis in which cargo proteins are incorporated into vesicles surrounded by
clathrin (clathrin- coated vesicles, CCVs) which are destined for fusion with the
early endosome.

MTMR6

Myotubularin related protein 6; Phosphatase that acts on lipids with a
phosphoinositol headgroup. Acts as a negative regulator of KCNN4/KCa3.1
channel activity in CD4+ T-cells possibly by decreasing intracellular levels of
phosphatidylinositol 3 phosphatase. Negatively regulates proliferation of
reactivated CD4+ T-cells.

SYNJ2

Synaptojanin 2; Inositol 5-phosphatase which may be involved in distinct
membrane trafficking and signal transduction pathways. May mediate the
inhibitory effect of Rac1 on endocytosis.

Pl4KB

Phosphatidylinositol 4-kinase, catalytic, beta; Phosphorylates
phosphatidylinositol (PI) in the first committed step in the production of the
second messenger inositol- 1,4,5,-trisphosphate (PIP). May regulate Golgi
disintegration/reorganization during mitosis, possibly via its phosphorylation.

PI4KA

Phosphatidylinositol 4-kinase, catalytic, alpha; Acts on phosphatidylinositol
(PtdIns) in the first committed step in the production of the second messenger
inositol- 1,4,5,-trisphosphate.

PIK3C2B

Phosphatidylinositol-4-phosphate 3-kinase, catalytic subunit type 2 beta;
Phosphorylates Ptdins and Ptdins4P with a preference for Ptdins. Does not
phosphorylate Ptdins(4,5)P2. May be involved in EGF and PDGF signaling
cascades.

PIK3C2G

Phosphatidylinositol-4-phosphate 3-kinase, catalytic subunit type 2 gamma;
Generates phosphatidylinositol 3-phosphate (Ptdins3P) and phosphatidylinositol
3,4-bisphosphate (PtdIns(3,4)P2) that act as second messengers.

PIK3C2A

Phosphatidylinositol-4-phosphate 3-kinase, catalytic subunit type 2 alpha;
Generates phosphatidylinositol 3-phosphate (PtdIns3P) and phosphatidylinositol
3,4-bisphosphate (PtdIns(3,4)P2) that act as second messengers.

PPP3CA

Protein phosphatase 3, catalytic subunit, alpha isozyme; Calcium-dependent,
calmodulin-stimulated protein phosphatase. This subunit may have a role in the
calmodulin activation of calcineurin. Dephosphorylates DNM1L, HSPB1 and SSH1.
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Fig. 1 ESI. The 5-phosphatase domain of human Synj1 (Synaptojanin-1, uniport code: 043426) and
OCRL (Inositol polyphosphate 5-phosphatase, uniport code: Q01968) are aligned. The conserved
residues in the active site are marked with an asterisk. The numbering is based on synjl. The
corresponding numbering of the active site residues in the OCRL protein are shown below.

Sequence analysis was performed on proteins within the 5-phosphoinositide phosphatase
family (OCRL, I15P2, SYNJ1, SHIP2) [5-8] using the algorithm ClustalW and Muscle [9,10] (as
implemented in Jalview) [11] and visualised with Espript 3.0 [12]. The important conserved
residues within the active site are marked with a red asterisk. The Mg cation-coordinating
residues, corresponding to His 360, Asp 359 and Glu 92 in the homology model, are highly
conserved in this family and are marked with asterisk. This sequence alignment explores only
the 5-phosphatase domain of the proteins.
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Fig. 2 ESI. Amino acid sequence comparisons of the 5-phosphatase domain of human 5-
phosphoinositide phosphatases. Alignments were performed using the Clustal W and Muscle
algorithm as implemented in Jalview and visualisation was done with Espript 3.0 [9-12]. Residue
numbering is based on OCRL. The conserved residues in the active site Asp (D), His (H) and Glu (E)
found for all 5-phosphatases (SHIP2, Synj1, OCRL, INPPBS5) [5,6,8] are marked with an asterisk. These
are Mg-coordinating and correspond to His-360, Asp-359 and Glu-92 in the homology model. All
sequences are obtained from Uniprot, using the Homo sapiens sequence [13].
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Median ratio of alpha-synuclein expressing cells vs control at 12 and 18 hours
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Fig. 3 ESI. Median ratio of protein concentration in X-synuclein expressing cells vs. control at 12h and
18h. Proteins which have a median ratio value of above 1 (averaged between 12h and 18 h), have
been defined as ‘upregulated’, proteins with a value below 1 have been defined as downregulated in
&-synuclein expressing cells.
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Fig. 4 ESI. RMSD of the membrane-free simulation.
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Fig. 5 ESI. RMSD of the membrane-embedded protein (a) in simulation 1 and simulation 2 and of the

active site only (b).
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Fig. 6 ESI. Amino acid sequence of the 5-phosphatase domain of synjl aligned to the
apurinic/apyrimidinic base excision repair endonuclease Apel. All sequences are obtained from

Uniprot [13], and correspond to Homo sapiens. Visualised with Espript 3.0 [12].
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Appendix D

Correction

On p. S3, MD simulations of ferrous-ferric ET, this part of the sentence is redundant “.. and
the LINCS constraint algorithm was used to constrain bonded hydrogens”.
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S1. Alternative binless formulation
Instead of using the bias calculated for each data point as in Equation 4 of the manuscript,

a binless formulation of DHAM can also be achieved by using the average (or median) bias

17,.1 of all data points falling in bin i in simulation window / according to

T

N
Ji

M,=3 % - (81)

U nl exp(—(a, —it; )/ 2k5T

We test this approach, which is analogous to that presented in Ref. ' for the application of

Alab, on the ferrous-ferric ET example in Section S8.

S2. 1-D model potential
Monte Carlo (MC) simulations were carried out on an analytical model potential (details
can be found in Ref.?) using 50 uniformly distributed umbrella windows in the range [0.05,

1.55], with K = 200 kcal/mol biasing spring constant for 5000 steps. The average of 20

repeated simulations was used to construct the free energy profile using 500 bins.

3 DHAM
£ #"™, —binless DHAM
g ¥ . exact
<4 / "
= / \
c |\ / N
o 0 S
(0]
=0 0.5 1 1.5
X (arb. unit)

Figure S1. Free energy profiles for the 1-D model potential reconstructed with binless

DHAM (blue) and DHAM (orange) compared to the exact profile (black dashed line).
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S$3. MD simulations for ferrous-ferric ET
All MD simulations in this work were performed with GROMACS version 2019.4 3 and the
Amber force field was used to model the systems “. The distance between the cations was

fixed at 5.5 A, the optimal separation of redox centers as determined in previous studies >7. A

cubic box with 567 water molecules and approximate size of 25 x 25 x 25 A was used to
solvate the system. The solvent was described with the TIP3P water model ®° and the LINCS

constraint algorithm °

was used for constraining bonded hydrogens. Minimization,
equilibration and production steps were completed. The equilibration consisted of 500,000
steps using a step size of 1 fs. The production run consisted of 1,250,000 steps using a step
size of 2 fs. Each frame of the production run was recorded and used in the analysis. The
production step was completed in the constant-temperature, constant-volume ensemble
(NVT). The temperature of 298 K was maintained with the Nose-Hoover thermostat. The Verlet

cut-off scheme was employed to generate pair lists and the electrostatic interactions were

evaluated with the Particle Mesh Ewald .

For the ET umbrella sampling calculations, charges were changed linearly in increments
of 0.1 between reactants (Fe* + Fe*) and product (Fe®*" + Fe?*), resulting in 11 independent
simulations. The Van der Waals radius of the cations was also interpolated linearly. The
potential energy was then re-evaluated for every window with every possible charge
combination, resulting in 11 energy values for every MD frame, in total 1,250,000 frames for
each umbrella window. The potential energy of each frame was re-evaluated using the rerun

feature of mdrun.
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S4. MD simulations for IET in (Q-TTF-Q)—

A cubic box with 1112 water molecules and approximate size of 30 x 30 x 30 A was used
to solvate the system. The solvent was described with the TIP3P water model *° and the
LINCS constraint algorithm '® was used for constraining bonded hydrogens. The equilibration
step size was 1 fs for a total of 2,000,000 steps. The production run was completed with a
step size of 2 fs for a total of 1,000,000 steps. The Nose-Hoover temperature coupling was
used (303.15 K) with the Parrinello-Rahman pressure coupling for the production step. The
Verlet cut-off scheme was employed to generate pair lists and the electrostatic interactions

were evaluated with the Particle Mesh Ewald .

At the TS, the atomic charges of the two sides of the (Q-TTF-Q)™— anion are symmetric
(see Table 1), therefore, the same atom types can be used for each side. However, that is not
the case for the reactant state, or the intermediate windows. For the first and for the
intermediate windows, additional atom types were created. The charge of each atom at each

window can be found in Table S1.

For the organic solvents tBOH, ETA and DCM the same protocol was used but this time
the simulations were run longer to ensure the bulkier polar solvents were fully equilibrated.
The production run was completed with a step size of 1 fs for a total of 40,000,000 steps. Only
the last 10 ns were used to re-evaluate the potential energy, ensuring the respective system
was fully equilibrated at this point. 30 x 30 x 30 A cubic box was used to solvate the systems
with the respective number of particles corresponding to the experimental density of each

solvent (781 kg/m3 for tBOH, 1322 kg/m?® for DCM and 902 kg/m? for ethyl acetate).
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Table S1. CHELPG atomic charges of the (Q-TTF-Q)anion in the 4 simulation windows.

The atom numbering is shown in the picture insert.

ATOM | WINDOW 1 WINDOW 2 WINDOW 3 WINDOW 4
(MINIMUM) (TS)

Ci -0.091513  -0.092180667 -0.092848333 -0.093516
C2 -0.091513  -0.092180667 -0.092848333 -0.093516
Cs 0212622  -0.222454333 -0.232286667 -0.242119
Cs 0212622  -0.222454333 -0.232286667 -0.242119
Hs 0.157216 0.152515333 0.147814667 0.143114
He 0.157216 0.152515333 0.147814667 0.143114
C: 0.001152 0.008055333 0.014958667 0.021862
Cs 0.042544 0.03565 0.028756 0.021862
Co -0.076267  -0.082016667 -0.087766333 -0.093516
Cwo | -0.076267  -0.082016667 -0.087766333 -0.093516
C11 -0.277497  -0.265704333 -0.253911667 -0.242119
Ci2 | -0.277497  -0.265704333 -0.253911667 -0.242119
His 0.132185 0.135828 0.139471 0.143114
Hiq 0.132185 0.135828 0.139471 0.143114
Cis 0.660902 0.639588 0.618274 0.59696

Ow | -0.538238 -0.563756 -0.589274 -0.614792
C 0.660902 0.639588 0.618274 0.59696

O | -0.538238 -0.563756 -0.589274 -0.614792
Cio 0.518638 0.544745333 0.570852667 0.59696

Oz | -0.687509 -0.66327 -0.639031 -0.614792
C21 0.518638 0.544745333 0.570852667 0.59696

O» | -0.687509 -0.66327 -0.639031 -0.614792
S | -0.023899 -0.032792 -0.041685 -0.050578
S | -0.023899 -0.032792 -0.041685 -0.050578
S»s | -0.083244  -0.072355333 -0.061466667 -0.050578
S -0.083244  -0.072355333 -0.061466667 -0.050578
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S5. Effects of changing the number of bins on free energy profiles

Number of bins
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Figure S2. Binless DHAM free energy profiles with different number of bins for Na* passage

through the GLIC ion channel.
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Figure S3. (A) Binless DHAM free energy profiles with different number of bins for ET in (Q-
TTF-Q)~, using 2 fs lag time and Ha, = 4.2 kcal/mol and (B) free energy profiles with different

number of bins for ET in the ferrous-ferric system, using lag time 2 fs and Ha, = 0.2 kcal/mol.

S6. Average vs instantaneous bias values

Calculating the mean bias for all data points in bin j for each simulation window (according
to Equation (S1)) instead of each data point (Equation (4) of manuscript) has a negligible effect
on the results with lag time 2 fs. However, if the lag time is increased to 20 fs, the small number
of observations of large energy gaps causes a noisy free energy profile, with the original

formulation (Figure S4/A) giving numerically more stable results than the mean (Figure S4/B).
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Figure S4. Binless DHAM profiles unbiased at the actual datapoints (blue) vs. the mean of all
datapoints in the corresponding bin (red) for the ferrous-ferric ET. The lag time was increased
to 20 fs to investigate the numerical performance of the approaches, while the number of bins

was kept at 1000.

S7. Comparison of binless DHAM and MBAR profiles
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Figure S5. Binless DHAM (blue) and MBAR (red) free energy profiles for (A) ferrous-ferric
ET and (B) ET in (Q-TTF-Q)~ in water. For both reactions, 1000 bins and 2 fs lag time were
used with binless DHAM, and 100 bins with MBAR. Ha, values of (A) 0.2 kcal/mol and (B)

0.97 kcal/mol have been used.

S8. Determining the reorganization energy from diabatic free energy profiles

To determine reorganization energy A, quadratic functions are fitted to Gl’z(Figure S6),
and the free energy difference is taken between the reactant and product minimum structures
for each curve. For ferrous-ferric ET (Figure S6/A), we get A values of 53.0 and 53.2 kcal/mol,

from state 1 and 2 respectively. For further calculations we use their average value, 53.1

kcal/mol. For IET in (Q-TTF-Q)~ (Figure S6/B) we get 4 = 48.4 kcal/mol from both curves.

S8



167

A
—~ 100
5]
§ 80
0]
v
< 60
)
5 40 G
S —— 4.29e-03x2+4.77e-01x+1.33e+01
g 20 G,
= 0 —— 4.30e-03x%-4.78e-01x+1.33e+01
-100 0 100
E, — E; (kcal/mol)
B
5 100
£
=
® 75
X
>
g 50 Gy
S 25 —— 4.87e-03x2+4.86e-01x+1.22e+01
= 0 —— 4.87e-03x2-4.85e-01x+1.21e+01
-100 0 100

E; — E; (kcal/mol)

Figure S6. Binless DHAM free energy profiles for (A) ferrous-ferric ET and (B) IET in (Q-
TTF-Q)~ depicting diabatic states 1 (blue) and 2 (orange) as well as quadratic fits (black and

red) on data between bins 40 and 960.

S9



168

References
) Stelzl, L. S.; Kells, A.; Rosta, E.; Hummer, G. Dynamic Histogram Analysis To Determine
Free Energies and Rates from Biased Simulations. | Chen Theory Comput 2017, 13 (12).

https://doi.org/10.1021 /acs.jctc.7b00373.

(2)  Rosta, E.; Hummer, G. Free Energies from Dynamic Weighted Histogram Analysis Using
Unbiased Markov State Model. | Chem Theory Comput 2015, 11 (1), 276-285.

https://doi.otg/10.1021/ct500719p.

(3)  vander Spoel, D.; Lindahl, E.; Hess, B.; Groenhof, G.; Mark, A. E.; Berendsen, H. J. C.
GROMACS: Fast, Flexible, and Free. Journal of Computational Chemistry. 2005.

https://doi.org/10.1002/jcc.20291.

4  Wang, J.; Wolf, R. M.; Caldwell, J. W.; Kollman, P. A.; Case, D. A. Development and
Testing of a General Amber Force Field. | Comput Chem 2004, 25 (9).

https://doi.org/10.1002/jcc.20035.

®) Sit, P. H. L.; Cococcioni, M.; Marzari, N. Realistic Quantitative Desctiptions of Electron

Transfer Reactions: Diabatic Free-Energy Surfaces from First-Principles Molecular

Dynamics. Phys Rev Lett 2006, 97 (2). https://doi.otg/10.1103/PhysRevLett.97.028303.

(6)  Logan,].; Newton, M. D. Ab Initio Study of Electronic Coupling in the Aqueous Fe 2+-
Fe3+ Electron Exchange Process. | Chem Phys 1983, 78 (6), 4086—4091.

https://doi.org/10.1063/1.445136.

(7)  Kuharski, R. A.; Badet, J. S.; Chandler, D.; Sprik, M.; Klein, M. L.; Impey, R. W.
Molecular Model for Aqueous Ferrous-Ferric Electron Transfer. | Chem Phys 1988, 89 (5),

3248-3257. https://doi.org/10.1063/1.454929.

S10



