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Abstract 

Background: Neural predictors underlying variability in depression outcomes are poorly 

understood. FMRI measures of subgenual cortex connectivity, self-blaming  and negative 

perceptual biases have shown prognostic potential in treatment-naïve, medication-free, and 

fully remitting forms of major depressive disorder (MDD). However, their role in more 

chronic, difficult-to-treat forms of MDD is unknown. 

Methods: Forty-five participants (n=38 meeting minimum data quality thresholds) fulfilled 

criteria for difficult-to-treat MDD. Clinical outcome was determined by computing percentage 

change at follow-up from baseline (four months) on the self-reported Quick Inventory of 

Depressive Symptomatology (16-item). Baseline measures included self-blame-selective 

connectivity of the right superior anterior temporal lobe with an a priori Brodmann Area 25 

region-of-interest, blood-oxygen level-dependent a priori bilateral amygdala activation for 

subliminal sad vs happy faces, and resting-state connectivity of the subgenual cortex with an a 

priori defined ventrolateral prefrontal cortex/insula region-of-interest. 

Findings: A linear regression model showed that baseline severity of depressive symptoms 

explained 3% of the variance in outcomes at follow-up (F[3,34]=.33, p=.81). In contrast, our 

three pre-registered neural measures combined, explained 32% of the variance in clinical 

outcomes (F[4,33]=3.86, p=.01).  

Conclusion: These findings corroborate the pathophysiological relevance of neural signatures 

of emotional biases and their potential as predictors of outcomes in difficult-to-treat depression. 

 

 

 



3 

 

Introduction 

Currently, treatment of major depressive disorder (MDD) is based on a trial-and-error 

approach, with only half of patients responding to their initial treatment (Rush et al. 2006). 

There is a clear need for improving treatment in patients with depression, which could be 

informed by standard clinical variables and biomarkers (Dunlop and Mayberg 2014; Fonseka, 

MacQueen and Kennedy 2018; Perlman et al. 2019). The field has started to identify various 

biomarkers showing promise, such as genetic markers (Breitenstein, Scheuer and Holsboer 

2014; Laje et al. 2009), behavioural and cognitive markers (Groves, Douglas and Porter 2018; 

Park et al. 2018; Perna et al. 2020), metabolic and inflammatory markers (Lopresti et al. 2014; 

Schmidt, Shelton and Duman 2011) and neuroimaging markers (Breitenstein, Scheuer and 

Holsboer 2014; Dichter, Gibbs and Smoski 2015; Dunlop and Mayberg 2014; Fonseka, 

MacQueen and Kennedy 2018; Fu, Steiner and Costafreda 2013). 

 Such biomarkers are thought to represent underlying biological substrates of 

depression, which can be used to predict general prognosis regardless of treatment, better 

outcome with any treatment, or differential treatment response (Simon and Perlis 2010). For 

example, baseline metabolic profile was found to differentiate between responders and non-

responders to sertraline or placebo (Kaddurah-Daouk et al. 2011), baseline C-reactive protein 

differentially predict response to escitalopram or nortriptyline (Uher et al. 2014), and baseline 

resting-state functional connectivity with the subgenual cortex differentially predicted response 

to antidepressant treatment or cognitive behavioural therapy (CBT) (Dunlop et al. 2017). 

It is important to note, however, that MDD is a multifaceted disorder associated with a 

wide range of cognitive, behavioural, emotional, and physiological symptoms (Disner et al. 

2011). As such, it is unlikely that a single clinical or biological marker can predict treatment 

outcome (Patel, Khalaf and Aizenstein 2016; Phillips et al. 2015). In fact, Lee et al. (2018) 

showed that models informed by multiple data types, such as a composite of clinical features, 
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neuroimaging, or genetic measures, were more accurate at predicting outcome than less 

complex models. Nonetheless, current clinical practice is mostly based on questionnaire- and 

interview-based assessments, which represent a wealth of clinical data which can be used to 

predict treatment outcome (Rost, Binder and Bruckl 2022). 

In recent years, machine-learning methods have been increasingly employed to 

examine which clinical variables are most predictive of response or remission, allowing 

identification of patterns of information at an individual patient level (Chekroud et al. 2021; 

Jankowsky et al. 2024). Various studies have consistently identified baseline symptom 

severity, number of depressive episodes and co-morbid anxiety disorders as predictors of 

treatment outcome (Balestri et al. 2016; Bartova et al. 2019; Chekroud et al. 2016; Iniesta et 

al. 2016; Kautzky et al. 2018; Perlis 2013). However, standard clinical variables alone capture 

a limited amount of variance in clinical outcome, with estimates in the region of 5-10% (Iniesta 

et al. 2016; Perlis 2013), and they tend to perform worse than neuroimaging measures (Dunlop 

2015; Jollans and Whelan 2016; Lee et al. 2018; Poirot et al. 2024; Schmaal et al. 2015).  

 Neuroimaging measures may be of particular interest, as dysfunctional neural 

processes are core to the development and maintenance of depressive symptoms (Godlewska 

2020). They capture emotional biases associated with depression, such as the tendency  to focus 

more on negative facial expressions than positive ones (Bourke, Douglas and Porter 2010; 

Krause et al. 2021), proneness to experience excessive self-blaming emotions, such as 

overgeneralised guilt and disgust/contempt towards oneself (Duan et al. 2022; Duan et al. 2023; 

Green et al. 2013; Weiner 1985; Zahn et al. 2015), as well as rumination, i.e. a tendency to 

engage in recursive, automatic thoughts often linked to self-critical thinking (Berman et al. 

2014; Hamilton et al. 2015; Nolen-Hoeksema, Wisco and Lyubomirsky 2008).  

Leading neuroanatomical models of MDD propose that impaired function within 

prefrontal-limbic neural circuits, particularly the subgenual cingulate cortex and amygdala, 
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explains disruptions of emotional processing and regulation associated with depression (Price 

and Drevets 2010; Ressler and Mayberg 2007). Neuroimaging biomarkers capturing the 

aforementioned – often implicit – emotional biases associated with depression have shown 

promise in predicting prognosis in MDD at an individual level, notably amygdala activation in 

response to emotional faces (Williams et al. 2015) and resting-state posterior subgenual cortex 

connectivity (Dunlop et al. 2017) in current MDD, and self-blame-selective anterior temporal-

subgenual connectivity in remitted MDD (Lawrence et al. 2022). Despite these promising 

findings, studies tend to focus on treatment-naïve and treatment-free samples of MDD, and it 

is unclear  whether these neural signatures generalise to pragmatic samples of patients 

encountered in clinical settings. Moreover, it is important to establish whether imaging 

measures provide added value in predicting clinical outcomes compared to standard baseline 

clinical variables.  

 Here, we probed the potential of these neural signatures of emotional biases in 

predicting clinical outcomes in a pragmatic sample of difficult-to-treat MDD after four months 

of primary care. These pre-registered (NCT04342299) neural signatures were selected based 

on their potential to predict response to treatment at an individual level and cover 

complementary neurocognitive aspects of MDD, i.e. self-blaming biases, negative perceptual 

biases, and dysfunction of task-independent subgenual networks. 

Methods 

The fMRI dataset reported here was collected as part of an observational sub-study within a 

feasibility trial, the Antidepressant Advisor Study (NCT03628027) (Harrison et al. 2020; 

Harrison et al. 2023). We have published tasked-based functional imaging (Fennema et al. 

2023; Fennema, Barker, O'Daly, Duan, Godlewska, et al. 2024) and resting-state fMRI results 
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(Fennema, Barker, O'Daly, Duan, Carr, et al. 2024) from the same cohort previously, but here, 

we report on the prediction model for the first time.  

Participants 

Forty-five participants fulfilled criteria for current MDD according to the Diagnostic and 

Statistical Manual of Mental Health Disorders, Fifth Edition (First et al. 2015) and had not 

responded to at least two serotonergic antidepressants. Participants were encouraged to book 

an appointment with their GP to review their medication and followed up after receiving four 

months of standard care. For more information about inclusion/exclusion criteria, recruitment, 

and assessment, please see Supplementary Methods.  

Prior to their medication review, participants attended an fMRI session, consisting of 

three paradigms: the moral sentiment task (assessing self-blame-related biases), the subliminal 

faces task (assessing bias in emotional processing), and a resting-state fMRI scan. As part of 

the moral sentiment task, participants viewed self- and other-blaming emotion-evoking 

statements. Participants were shown written statements describing actions counter to socio-

moral values described by social concepts (e.g. impatient, dishonest) in which the agent was 

either the participant (self-agency) or their best friend (other-agency) (Fennema et al. 2023). 

As part of the subliminal faces task, participants were presented with a series of faces. The 

faces were shown in pairs, briefly displaying a “target” face (expressing sad, happy or neutral 

emotion) followed by another “mask” face of neutral expression (Fennema, Barker, O'Daly, 

Duan, Godlewska, et al. 2024). As part of the resting-state fMRI scan, participants were 

instructed to keep their eyes open and let their mind wander while focusing on a cross 

(Fennema, Barker, O'Daly, Duan, Carr, et al. 2024). For more details on the fMRI paradigms, 

please see Supplementary Materials. 
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Main outcome 

As stated in our pre-registered protocol (NCT04342299), we used a continuous measure of 

clinical outcome rather than categorising participants into responders and non-responders using 

the standard definition of a 50% reduction (Nierenberg and DeCecco 2001) in self-reported 

Quick Inventory of Depressive Symptomatology (16-item; QIDS-SR16) (Rush et al. 2003) 

scores, due to an unbalanced split between the resulting groups (responders n=8; non-

responders n=30). The  outcome was defined as the percentage change at follow-up from 

baseline on our pre-registered primary outcome measure, QIDS-SR16, where negative scores 

corresponded to a reduction in depressive symptoms.  

fMRI measures 

Statistical Parametric Mapping 12 was used for blood-oxygen level-dependent (BOLD) effect 

analysis and psychophysiological interaction analysis, while Data Processing Assistant for 

Resting-State fMRI (DPARSF) was used for resting-state analysis (please see Supplementary 

Methods for more details). Regression coefficient averages (moral sentiment task and 

subliminal faces task) and cluster mean z-score (resting-state scan) over our pre-registered 

regions-of-interest (ROIs) were extracted for individual participants using the MarsBaR 

toolbox (Rorden and Brett 2000), i.e. self-blame-selective connectivity between the right 

superior anterior temporal lobe (RSATL) and posterior subgenual cortex (Brodmann Area 

[BA] 25), bilateral amygdala BOLD activation for subliminal sad vs happy faces, and resting-

state functional connectivity between the bilateral posterior subgenual cortex and left 

ventrolateral prefrontal cortex (BA47; VLPFC)/insula. For more details, please see 

Supplementary Materials. 

Statistical analysis 

Multiple linear regression was used to assess potential predictors of QIDS-SR16 percentage 

change, as well as an exploratory logistic regression to determine likelihood of response vs. 
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non-response. The aim of the study was to estimate the effect size of using our pre-registered 

imaging measures as predictors of clinical outcomes, rather than tease out the importance of 

each predictor given the limitations of our sample size. As such, we ran our main “fMRI” 

multivariable model which assessed the contribution of our three pre-registered fMRI measures 

as outlined above, with baseline Maudsley Modified Patient Health Questionnaire, 9 items 

(MM-PHQ-9; measure of severity of depressive symptoms) (Harrison et al. 2021) as a 

covariate.  

 In addition, we ran a supplementary “clinical” multivariable model to compare the 

contribution of standard clinical measures (baseline MM-PHQ-9, baseline Generalised Anxiety 

Disorder, 7-items (GAD-7; measure of severity of anxiety symptoms) (Spitzer et al. 2006), and 

Maudsley Staging Method total score (proxy of treatment-resistance based on duration, 

severity and treatment failures) (Fekadu, Donocik and Cleare 2018); please see Supplementary 

Methods for more details on the clinical measures). Another supplementary “high-quality 

fMRI” multivariable model assessed the impact of suboptimal fMRI quality, i.e. signal drop-

out and/or more motion, on the predictive value of the fMRI measures, including only 

participants with high-quality fMRI data for all three scans (n=30). Other supplementary 

models considered the individual contribution of the pre-registered fMRI measures (please see 

Supplementary Methods and Results).  

 Please note that our pre-registered imaging measures also included additional regions-

of-interest: functional resting-state subgenual cortex connectivity with the left ventromedial 

prefrontal cortex (BA10) and with the dorsal midbrain (Fennema, Barker, O'Daly, Duan, Carr, 

et al. 2024), as well as pregenual anterior cingulate cortex BOLD activation for subliminal sad 

vs happy faces (Fennema, Barker, O'Daly, Duan, Godlewska, et al. 2024). However, as our 

sample size only allowed us to model a limited number of variables without risk of overfitting, 

for our primary prediction model, we solely included variables showing univariate prediction 
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effects in our previous analyses (Fennema, Barker, O'Daly, Duan, Carr, et al. 2024; Fennema, 

Barker, O'Daly, Duan, Godlewska, et al. 2024). For more details on the exploratory “pre-

registration” model, please see Supplementary Methods. 

All variables were Fisher Z-transformed to derive beta coefficients and corresponding 

standard error. Correlation analysis (Spearman’s rho) was used to investigate the association 

between the pre-registered neural signatures. To test whether there is any link between 

treatment change and symptom change, a one-way analysis of variance was conducted (please 

see Supplementary Methods for a description of treatment change). All tests were carried out 

using IBM SPSS Statistics 27, using a significance threshold of p=.05, two-tailed. 

Results 

Subgroup characteristics 

Table 1 presents participant characteristics at baseline, split by responders and non-responders. 

Of 45 included participants, 38 had usable fMRI data (31 [82%] female, mean [SD] age = 41.8 

[14.8] years). Most participants fulfilled the DSM-5 anxious distress specifier criteria (82%) 

and met criteria for a life-time axis I co-morbidity (87%). Average baseline depression severity 

was severe according to MM-PHQ-9 (mean [SD] = 18.7 [4.7]) and QIDS-SR16 (mean [SD] = 

17.3 [3.5]), and 82% of the participants were taking a selective serotonin-reuptake inhibitor. 

There were no significant differences between responders and non-responders at baseline in 

terms of demographic and clinical characteristics (t < 1.31 and p > .20), except for current 

major depressive episode duration (responders mean [SD] = 6.3 [5.3]; non-responders mean 

[SD] = 32.8 [50.2]; t[31.2] = -2.85, p = .01). 

As part of the study, participants were encouraged to book an appointment with their 

GP to review their antidepressant medication. Even though UK care guidelines would 

recommend changing antidepressant medications in non-responders, unexpectedly, more than 
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half (55%) did not change their medication and some even stopped their medication (16%; 

Supplementary Table 1). Despite little change in treatment, on average, participants showed a 

significant reduction in depressive symptoms from baseline to follow-up in QIDS-SR16 scores 

(mean [95% CI] = -4.1 [-5.8, -2.4]). This was also the case for other self- and observer-rated 

scores (Supplementary Table 2).  

 There was a mean percentage change [SD] of -23.1 [30] in QIDS-SR16: those with a 

relevant change showed the most improvement in QIDS-SR16 (mean percentage change [SD] 

= -43.8 [20.3]), followed by participants with a minimal change (mean percentage change [SD] 

= -32.1 [32.4]) and participants with no change (mean percentage change [SD] = -17.6 [29.6]). 

However, there was no significant difference between the groups (F[2,37] = 1.78, p = .18).  

Prediction models 

The “fMRI” model using the pre-registered fMRI measures with baseline MM-PHQ-9 as a 

covariate explained 32% of the variance of QIDS-SR16 percentage change (F[4,33] = 3.86, p 

= .01, R2 = .32, R2
adjusted = .24; Table 2). When including all previously pre-registered regions, 

the overall prediction effect for the “pre-registration” model was comparable (R2 = 33%, please 

see Supplementary Results). When limiting to “high-quality fMRI”, the model explained 43% 

of the variance of QIDS-SR16 percentage change (F[4,25] = 4.67, p = .01, R2 = .43, R2
adjusted = 

.34; Supplementary Table 3). In contrast, the “clinical” model using standard clinical measures 

at baseline, i.e. MM-PHQ-9, GAD-7 and Maudsley Staging Method, explained only 3% of the 

variance of QIDS-SR16 percentage change (F[3,34] = .33, p = .81, R2 = .03, R2
adjusted = -.06; 

Table 2).  

Bilateral amygdala BOLD activation positively contributed to the variance in QIDS-

SR16 percentage change (partial β = 11.11, t[33] = 2.21), while partial effects of resting-state 

functional connectivity between the posterior subgenual cortex and left VLPFC/insula as well 

as self-blame-selective RSATL-BA25 connectivity contributed negatively (resting-state: 
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partial β = -8.15, t[33] = -1.95; RSATL-BA25: partial β = -7.28, t[33] = -1.71; Figure 1). Please 

see Supplementary Results and Supplementary Table 3 for exploratory separate prediction 

models for each fMRI paradigm showing a maximum of 18% of variance in clinical outcomes 

explained, when using the bilateral amygdala BOLD signature. 

Notably, there were no bivariate associations between the three pre-registered fMRI 

measures (self-blame-selective RSATL-BA25 connectivity and bilateral amygdala BOLD 

activation: rs[38] = -.06, p = .71; self-blame-selective RSATL-BA25 connectivity and resting-

state functional connectivity between posterior subgenual cortex and left VLPFC/insula: rs[38] 

= .09, p = .61; bilateral amygdala BOLD activation and resting-state functional connectivity 

between posterior subgenual cortex and left VLPFC/insula: rs[38] = -.09, p = .61).  

Exploratory findings responders vs. non-responders 

A logistic regression was performed to determine the effects of the pre-registered neural 

measures and baseline MM-PHQ-9 on the likelihood of response vs. non-response. The logistic 

regression model was statistically significant, χ2(4) = 11.09, p = .03. The model explained 39% 

(Nagelkerke R2) of the variance in responders and correctly classified 81.6% of the cases. 

Increased functional connectivity between the bilateral subgenual cortex and left 

VLPFC/insula was associated with an increased likelihood of response. For more details, 

please see Supplementary Results. 

Conclusions 

Discussion 

To our knowledge, this is the first study to combine complementary functional imaging 

measures of affective circuits in MDD and to probe their role in prospectively predicting 

clinical outcomes in a pragmatic setting. We show that neuroimaging markers hold promise: 

the model with the three pre-registered fMRI measures explained more variance in clinical 
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outcomes compared with the clinical model, i.e. 32% vs 3%. The model that only included 

participants with high-quality fMRI measures explained an even larger amount of variance 

(43%), highlighting the need to adequately account for signal drop-out and/or motion artifacts. 

However, it is important to acknowledge that no formal statistical tests were undertaken to 

compare the regression models as the study was not powered for such comparisons, which 

limits the interpretability of differences between the models. 

Interestingly, the effects of the three pre-registered fMRI measures were uncorrelated, 

showing that these may capture distinct aspects of MDD pathophysiology, i.e. self-blaming 

biases (right superior anterior temporal-subgenual connectivity), negative perceptual biases 

(amygdala), and dysfunction of task-independent subgenual networks. If these neural 

signatures were to relate to specific subtypes rather than independently predicting the same 

underlying general pathophysiology, then this would offer the intriguing possibility of 

stratification for neuromodulation and neurofeedback studies based on distinct neural circuits 

of interest, by either modulating self-blaming or emotional perception biases in patients non-

responsive to standard treatments. The feasibility of such interventions has recently been 

confirmed, with reports of a training-induced reduction in self-blame-selective connectivity 

(Jaeckle et al. 2023) and an enhancement of amygdala responsiveness to positive 

autobiographical memories (Young et al. 2019). 

However, it is important to first determine whether these neural signatures represent a 

trait-like feature of a fully remitting subtype of MDD, or whether it is also modulated by 

depressive state. For example, both self-blame-related and emotional perception-related 

changes have been identified in remitted MDD (Joormann and Gotlib 2007; Lythe et al. 2020; 

Ruhe et al. 2019). It is unclear whether these changes are more pronounced when people 

develop a recurrent episode or are merely due to underlying vulnerabilities which are not 

modulated by symptomatic state. This question is key to a deeper pathophysiological 
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understanding of MDD in that little is known about how trait-related changes interact with 

precipitating biological and psychological trigger events to result in a depressive brain state, 

and how it affects subsequent response to treatment.  

Limitations   

Due to our relatively modest sample size, we were unable to use cross-validated and data-

driven machine learning algorithms, which may have improved the prediction model 

performance. Moreover, our sample consisted of chronic MDD patients, often with anxious 

distress and other co-morbidities. In addition, treatment was not standardised and, unlike 

previous studies in randomised controlled trials, did not allow us to distinguish spontaneous 

remission and placebo effects from treatment-related effects. Given the selection biases in 

randomised controlled trials, however, it was important to investigate a pragmatic sample as 

we have undertaken in this study. 

Clinical utility is complicated by the heterogenous nature of MDD, resulting in patients 

with a wide variety of symptoms, disease severity and treatment history (Strawbridge, Young 

and Cleare 2017), as well as patient response to treatment (Mayberg and Dunlop 2023). Further 

complementary predictive measures, such as novel cognitive markers (Lawrence et al. 2022), 

would be useful in addition to imaging markers to achieve clinically relevant levels of 

individual prediction of response to specific types of treatment.  

Moreover, it is important to acknowledge that percentage-based reduction scores to 

define treatment response has been criticised, as it is biased towards more severe depressive 

symptoms at baseline (Rost, Binder and Bruckl 2022). As a result, it is plausible for a responder 

to still experience clinically significant distress or impairment when starting with a baseline 

score in the severe range, while a non-responder may show a clinically significant improvement 

– which was also observed in the current study.  
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Conclusions 

Taken together, we reproduced clinically relevant neural signatures in an independent, 

pragmatic sample of difficult-to-treat MDD. The findings confirm the pathophysiological 

relevance and potential of the proposed candidate neural signatures to make relevant 

contributions to the prospective prediction of clinical outcomes in more chronic, difficult-to-

treat forms of MDD and call for stratified neurofeedback and neuromodulation interventions.  
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Tables 

Table 1. Baseline demographic and clinical characteristics by responders and non-responders (n=38). 

 
Characteristic  Responders (n=8) Non-responders (n=30) 

 n (%) or mean ± SD; range 

Age, in years 42.9 ± 16.1; 19-66 41.6 ± 14.8; 20-62 

Sex   

Female 7 (88) 24 (80) 

Male 1 (13) 5 (17) 

Other 0 (0) 1 (3) 

Ethnicitya   

Asian 1 (13) 24 (80) 

Black 0 (0) 2 (7) 

White 5 (63) 3 (10) 

Other ethnicity 1 (13) 1 (3) 

Years of education, in years 17.4 ± 3.3; 12-22 16.9 ± 3.6; 10-24 

Depression severity   

Current MDE duration, in months 6.3 ± 5.3; 1-15 32.8 ± 50.2; 1-176 

Number of MDEs 7.3 ± 5.6; 3-20 6.2 ± 4.8; 1-20 

MM-PHQ-9 total score 20.0 ± 3.8; 13-25  18.4 ± 4.9; 8-27  

QIDS-SR16 total score 17.9 ± 3.9; 11-22  17.2 ± 3.5; 10-23  

MADRS total score 29.5 ± 5.0; 23-38  32.0 ± 4.9; 22-42  

SOFAS total score 55.9 ± 3.5; 52-61 53.1 ± 5.7; 33-61 

Maudsley Staging Method   

Mild 3 (38) 12 (40) 

Moderate 5 (63) 18 (60) 

Severe 0 (0) 0 (0) 

MDD DSM-5 subtype   

Anxious distress only 0 (0) 7 (23) 

Melancholic features + anxious distress 1 (13) 4 (13) 

Atypical features only 0 (0) 1 (3) 

Atypical features + anxious distress 3 (38) 15 (50) 

No specific subtype 4 (50) 3 (10) 

Treatment at baseline   

SSRI 6 (75) 25 (83) 

SNRI 1 (13) 3 (10) 

Other class 1 (13) 2 (7) 

Non-pharmacological treatment  4 (50) 6 (20) 

GAD-7 total score 10.4 ± 6.6; 1-21 11.6 ± 3.6; 5-20 
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Table 1. Continued. 

 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Life-time axis-I co-morbidity    

Posttraumatic stress disorder 2 (25) 15 (50) 

Other anxiety disorder 4 (50) 12 (40) 

Obsessive-compulsive disorder 0 (0) 3 (10) 

Eating disorder 3 (38) 10 (33) 

None  2 (25) 3 (10) 

a Missing data for one participant. Ethnicity categories have been combined: “White” includes White: British, Other, and 
Polish; “Asian” includes Asian or Asian British: Indian, Chinese, and Other Asian; “Black” includes Black or Black British: 
Caribbean.   

 

Percentages may not add up to 100 due to rounding. MDD = major depressive disorder; DSM-5 = Diagnostic and Statistical 
Manual for Mental Disorders 5th edition; MDE = major depressive episode; SD = standard deviation; MM-PHQ-9 = Maudsley 
Modified Patient Health Questionnaire, 9 items; QIDS-SR16 = Quick Inventory Depressive Symptomatology, self-rated, 16 
items; MADRS = Montgomery-Åsberg Depression Rating Scale; SOFAS = Social and Occupational Functioning Scale; SSRI 
= selective serotonin reuptake inhibitor; SNRI = selective norepinephrine reuptake inhibitor; GAD-7 = Generalised Anxiety 
Disorder, 7 items.  
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Table 2. Prediction models of clinical outcomes in depression (n=38). 
 

 Model parameters Overall 

model 

 β SE t p R2 p 

Standard clinical variables model     .03 .81 

Baseline MM-PHQ-9 .15 10.86 .01 .99   

Baseline GAD-7 3.76 8.53 .44 .66   

Maudsley Staging Method 3.37 5.35 .63 .53   

fMRI measures model     .32 .01* 

Baseline MM-PHQ-9 4.19 6.97 .60 .55   

Self-blame-selective RSATL-BA25 

connectivity 

-7.28 4.25 -1.71 .10   

Bilateral amygdala BOLD activation for sad 

vs happy subliminal faces 

11.11 5.04 2.21 .04*   

Resting-state posterior subgenual cortex-

VLPFC/insula functional connectivity 

-8.15 4.18 -1.95 .06   

* significant at p < .05 threshold, two-tailed. SE = standard error; MM-PHQ-9 = Maudsley Modified Patient Health 

Questionnaire, 9 items; GAD-7 = Generalised Anxiety Disorder, 7 items; RSATL = right superior anterior temporal lobe; BA 

= Brodmann Area; BOLD = blood-oxygen level-dependent; VLPFC = ventrolateral prefrontal cortex. 
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Figure Legends 

 

Figure 1 | Neural signatures of emotional biases associated with clinical outcomes in 

difficult-to-treat MDD. 

Three neural signatures of emotional biases were associated with clinical outcomes in UK 

primary care. More specifically, it shows cropped sections of voxel-based analyses illustrating 

the respective pre-registered a priori regions-of-interest, i.e. self-blame-selective right superior 

anterior temporal lobe-posterior subgenual cortex (BA25) connectivity, resting-state functional 

connectivity between the subgenual cortex and ventrolateral prefrontal cortex/insula, and 

bilateral amygdala blood-oxygen level-dependent activation in response to subliminal sad vs 

happy faces. These cropped sections are displayed using MRIcron at an uncorrected voxel-

level threshold of p=.005, with no cluster-size threshold (the colour bar represents t values) 

and adapted from figures previously published (Fennema et al. 2023; Fennema, Barker, O'Daly, 

Duan, Carr, et al. 2024; Fennema, Barker, O'Daly, Duan, Godlewska, et al. 2024). A linear 

model using the pre-registered fMRI measures with baseline Maudsley Modified Patient 

Health Questionnaire (9 items) as a covariate explained 32% of the variance of QIDS-SR16 

percentage change. The red and green lines display the partial effects of the fMRI measures on 
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the variance of QIDS-SR16 percentage change after four months of standard primary care. 

MDD = major depressive disorder; BA = Brodmann Area; RSATL = right superior anterior 

temporal lobe; VLPFC = ventrolateral prefrontal cortex; BOLD = blood-oxygen level-

dependent; QIDS-SR16 = Quick Inventory of Depressive Symptomatology, self-rated (16 

items). 
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Parts of this Supplementary Online Content have been adapted from a previously 

published one in Neuroimage:Clinical (doi: 10.1016/j.nicl.2023.103453).  

 

Supplementary Methods 

Additional inclusion/exclusion criteria  

In addition to the criteria mentioned in the main manuscript, participants were included if they 

met any of the following: aged 18 years and over, currently experiencing a major depressive 

episode (MDE) and at least moderately severe depressive syndrome on the Patient Health 

Questionnaire (PHQ-9; score ≥ 15) (Spitzer et al. 1999), and non-responders to at least two 

serotonergic antidepressants from the following list in current or previous episodes: citalopram, 

fluoxetine, sertraline, escitalopram, paroxetine, venlafaxine or duloxetine. 

Participants were excluded if they met any of the following: previous prescription of 

mirtazapine or vortioxetine at therapeutic dose, MRI contraindications, currently receiving 

specialist psychiatric treatment, high suicide risk on the Mini International Neuropsychiatric 

Interview (MINI) suicidality screen (Sheehan et al. 1998), past diagnosis of schizophrenia or 

schizo-affective disorder, psychotic symptoms using clinical screening questions, bipolar 

disorder, at risk of being violent, drug or alcohol abuse over the last six months, suspected 

neurological condition, pregnancy or insufficient contraception in women of childbearing age 

and breastfeeding or within six months of giving birth.  

 

Recruitment and clinical assessment 

We recruited participants from September 2018 to March 2020 partly through a cluster-

randomised feasibility clinical trial, the Antidepressant Advisor Study (ADeSS; 

NCT03628027), which evaluated the feasibility of a novel computerised decision support 

algorithm for antidepressant medications in patients with major depressive disorder (MDD) in 

primary care (Harrison et al. 2020; Harrison et al. 2022). Participants enrolled in the ADeSS 

trial were assigned to either i) use of a computerised decision-support tool by their general 

practitioner (GP) to assist with antidepressant choices, or ii) treatment-as-usual, and were asked 

to attend an optional MRI session. The computerised decision-support tool implemented 

National Institute for Health and Care Excellence guidelines, prompting GPs to increase the 

dose or switch to another antidepressant, and resembled standard care. Recruitment was halted 

due to the COVID-19 pandemic and recommenced in October 2020, using online advertising 

only, and was completed in August 2021.  
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As described in the trial protocol (Harrison et al. 2020), GP practices screened for 

patients with a history of treatment-resistance to antidepressant medications within their 

practice, i.e. non-responders to at least two serotonergic antidepressants in the current or 

previous episodes. Potential participants were approached for consent and, if given, asked to 

fill in a pre-screening questionnaire. Potentially eligible participants were invited for an in-

depth assessment by the study team, which included a clinical assessment using the Structured 

Clinical Interview for DSM-5 (SCID) to establish a current MDD (First et al. 2015), a history 

of participants’ depressive episodes, their current and past antidepressant medications, and 

completing various clinical, behavioural and experimental measures.  

A follow-up assessment was conducted to establish whether any changes in baseline 

measures had occurred. This visit took place around 14-18 weeks after enrolling in the study, 

which should allow observation of any treatment effect if there is one. The assessment included 

questions related to medications taken in the study period as well as various clinical and 

behavioural measures. The main clinical measures collected at baseline and follow-up were the 

Quick Inventory of Depressive Symptomology (16 items, self-rated; QIDS-SR16) (Rush et al. 

2003), Maudsley Modified Patient Health Questionnaire (9 items; MM-PHQ-9) (Harrison et 

al. 2021), Generalised Anxiety Disorder (7 items; GAD-7) (Spitzer et al. 2006), Montgomery-

Åsberg Depression Rating Scale (MADRS) (Montgomery and Asberg 1979), and Social and 

Occupational Functioning Assessment Scale (SOFAS, part of SCID) (First et al. 2015). Please 

refer to the ADeSS trial protocol for more details regarding these procedures (Fennema 2022; 

Harrison et al. 2020).  

 As the ADeSS trial was stopped due to the COVID-19 pandemic, an alternative 

recruitment route was employed to continue recruitment for the observational fMRI study. Trial 

adverts were posted online, with further dissemination of study adverts via university and 

institutional recruitment circulars. Interested participants were asked to complete a similar pre-

screening questionnaire as those approached for the ADeSS trial. If potentially eligible, 

participants were invited for an in-depth assessment to confirm their eligibility. This group 

resembled the treatment-as-usual arm in the ADeSS trial, receiving standard care. For more 

details, please see Fennema (2022). 

 A total of 1,755 participants with a history of MDD showed interest in participating and 

completed a pre-screening questionnaire. Potentially eligible MDD participants (n = 89) for 

the ADeSS trial and the fMRI study were invited to attend an in-depth assessment. Of those, 

45 participants enrolled in the fMRI study, attended their MRI session and completed the study. 
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Of those 45 participants, ten participants were also part of the ADeSS trial (support tool arm: 

n = 4; treatment-as-usual arm: n = 6). 

 

Sample size 

As there was no previous comparable study from which effect sizes could be drawn, we carried 

out a sensitivity analysis showing that for determining an at least 20% above chance level 

prediction model performance, a minimum of n = 44 MDD patients was required to achieve 

85% power at p = .05 using a binomial test.  

 

fMRI paradigms 

Participants were asked to complete three fMRI paradigms: the moral sentiment task, the 

subliminal faces task and a resting-state scan: 

 

1) Moral sentiment task, as described in Fennema et al. (2023) 

Participants were shown an optimised and shortened version of the fMRI paradigm outlined by 

Green et al. (2012) and Lythe et al. (2015). For details on the optimisation, please see Duan et 

al. (2023) and Fennema (2022). In brief, participants were shown 54 short written statements 

describing actions counter to social and moral values described by social concepts (e.g. 

impatient, dishonest) in which the agent was either the participant (self-agency condition 

[number of stimuli = 27]) or their best friend (other-agency condition [number of stimuli = 

27]). Participants were asked to name their best friend prior to the scanning session to allow 

personalisation of the statements. Self- and other-agency conditions used the same social 

concepts (e.g. self-agency “Tom is dishonest towards Pete” and e.g. other-agency “Pete is 

dishonest towards Tom”). In addition, there were 27 low-level null events as a baseline 

condition, i.e. fixation of a visual pattern with no button press or other response required. 

 Stimuli were presented in an event-related design for a maximum of 5 seconds, within 

which time participants had to decide whether they would feel that the imagined behaviours 

were “quite unpleasant” or “mildly unpleasant” from their own perspective. The stimuli were 

presented in a pseudo-random order, presented at jittered intervals with a mean of 4000ms 

(with steps of 500ms). The total task time was 12 minutes and 9 seconds.  
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2) Subliminal faces task, as described in Fennema, Barker, O'Daly, Duan, Godlewska, et 

al. (2024) 

Participants completed a backward masking task based on the fMRI paradigm outlined by 

Godlewska et al. (2018). Participants were shown pairs of faces, with a first “target” face 

(expressing a sad, happy, or neutral emotion), displayed for 34 milliseconds, and then 

immediately “masked” by a face of neutral expression, displayed for 66 milliseconds. The task 

followed a block design, with each participant being shown four blocks with sad faces, four 

blocks with happy faces and nine blocks with neutral faces. Each block cycled through ten 

target-mask pairs of faces, with the order varying for each block. The neutral (N) blocks were 

interleaved with sad (S) and happy (H) blocks, in one of two orders: N-S-N-H-N-S-H-N or N-

H-N-S-N-H-N-S-N. The order of blocks was determined by pseudo-randomisation, with an 

even split within the MDD and control groups and across the total sample. After each block, 

there was a 10-second block of baseline fixation. The total task time was 8 minutes and 47 

seconds. 

 

3) Resting-state scan, as described in Fennema, Barker, O'Daly, Duan, Carr, et al. (2024) 

The resting-state scan was based on the methodology as outlined by Dunlop et al. (2017). 

Participants were shown a fixation cross on the screen and were instructed to keep their eyes 

open and let their mind wander while focusing on the cross. The total scan time was 7 minutes 

and 24 seconds.  

 

Image acquisition 

Image acquisition was carried out on an MR750 3T MR system (GE Healthcare, Chicago, 

USA), using a Nova Medical 32-channel head coil. The scanning session started with 

approximately 20 minutes of structural imaging, acquiring T1-weighted, T2*-weighted and 

Fluid-Attenuated Inversion Recovery (FLAIR) images, followed by approximately 30 minutes 

of fMRI paradigms (moral sentiment, subliminal faces and resting-state). While in the MRI 

scanner, the participant’s head motion was restricted using padding, and heart rate and 

respiration rate measurements were recorded via a manufacturer-supplied finger pulse sensor 

(peripheral plethysmograph) and respiratory belt, respectively. A mirror fitted to the head coil 

allowed participants to view visual stimuli presented during image acquisition, as stimuli were 

projected onto a screen located behind the participant’s head. Verbal instructions were 

communicated via the MRI intercom, using a pre-defined script to ensure consistency between 

participants. 
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High-resolution anatomical images were acquired with a 3D Inversion Recovery 

prepared Spoiled Gradient Echo sequence (IR-SPGR; repetition time (TR) = 7.3 ms; echo time 

(TE) = 3.02 ms; inversion time (TI) = 400 ms; matrix = 256 x 256; excitation flip angle = 11 

degrees; field-of-view (FOV) = 270 mm; slice thickness = 1.2 mm, 196 slices). Images for 

incidental findings review were acquired using a 2D Fast-Recovery Fast Spin-Echo (TR = 4380 

ms; TE = 64.85 ms; matrix = 320 x 256; refocusing flip angle = 111 degrees; FOV = 240; 2 

mm contiguous slices, 72 slices) and 2D FLAIR sequence (TR = 8000 ms; TE = 128.41 ms; 

matrix = 256 x 128; refocusing flip angle = 111 degrees; FOV = 220; 4 mm continuous slices, 

36 slices) and checked by a neuroradiologist at King’s College London Hospital for any 

significant brain abnormalities that might warrant follow up, independent of additional, internal 

checks by the study team. 

For all three paradigms, shimming was automatically applied as part of the scanner’s 

“pre-scan” procedures, and four additional volumes were acquired and automatically discarded 

at the start of each fMRI run, allowing for T1 equilibration effects: 

 

1) Moral sentiment task, as described in Fennema et al. (2023) 

Functional image acquisition was obtained in the anterior commissure – posterior commissure 

plane, with slices running top to bottom, using a T2*-weighted echo-planar imaging blood-

level oxygen-dependent (BOLD) sequence (TR = 2000ms; TE = 20ms; matrix = 64x64; FOV 

= 211mm; flip angle = 75 degrees; slice thickness = 2.9mm, slice gap = 0.1mm, inter-slice 

distance = 3mm, 41 slices, 368 volumes).  

 

2) Subliminal faces task, as described in Fennema, Barker, O'Daly, Duan, Godlewska, et 

al. (2024) 

Functional image acquisition was obtained parallel to the anterior commissure – posterior 

commissure plane, with slices running top to bottom, using a standard T2*-weighted echo-

planar imaging BOLD sequence (TR = 2000 ms; TE = 30 ms; matrix = 64 x 64; FOV = 240 

mm; flip angle = 75 degrees; slice thickness = 3 mm, slice gap = 0.3 mm, inter-slice distance 

= 3.3 mm, 41 slices, 267 volumes). 

 

3) Resting-state scan, as described in Fennema, Barker, O'Daly, Duan, Carr, et al. (2024) 

Resting-state echo-planar images were acquired using a sequence which was optimised for the 

detection of ventral frontal signal (222 volumes; 41 slices; descending sequential acquisition; 
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TR = 2000ms; TE = 20ms; matrix = 64 x 64; FOV = 211mm; flip angle = 75 degrees; slice 

thickness = 2.9mm, slice gap = 0.1mm, inter-slice distance = 3mm).  

 

Image analysis 

Statistical Parametric Mapping (SPM) 12 (http://www.fil.ion.ucl.ac.uk/spm12) was used for 

BOLD effect analysis and psychophysiological interaction (PPI) analysis (moral sentiment 

paradigm, subliminal faces paradigm), while Data Processing Assistant for Resting-State fMRI 

(DPARSF) (Chao-Gan and Yu-Feng 2010) was used for resting-state analysis. 

 

1) Moral sentiment task, as described in Fennema et al. (2023) 

Standard pre-processing steps were followed: functional images were realigned, unwarped and 

co-registered to the participant’s T1 images. These images were normalised to the co-registered 

T1 image and resliced at a voxel size of 3 x 3 x 3 mm. A smoothing kernel of full-width half-

maximum equal to 6 mm was used. No slice timing correction was applied. Motion correction 

was applied in the form of censoring, i.e. identifying outliers based on framewise displacement 

and regressing them from the fMRI timeseries. Framewise displacement was calculated using 

Brain and Mind Lab (BRAMILA) tools (https://github.com/spunt/bspm/blob/master/ 

thirdparty/bramila/bramila_framewiseDisplacement.m) to identify outliers regarding motion. 

Any framewise displacement of ≥ 0.5 mm was marked as a spike in movement and scan nulling 

regressors were added to the standard six motion parameters describing movement by rotation 

and translation to account for the spike(s). Participants with spikes in more than 25% of the 

functional images overall were deemed to have moved too much and were excluded from the 

analysis. We chose a threshold of 25% of motion-contaminated volumes in combination with 

the threshold of any framewise displacement of ≥ 0.5 mm as a trade-off between retaining 

patient data with reasonable quality and avoiding overfitting with too many scanning nulling 

regressors.  

At the individual level, BOLD effects were modelled for the self-agency condition, 

other-agency condition and null event, with an event duration of 0 seconds. Movement 

parameters (i.e. six parameters describing movement by rotation and translation in three 

dimensions each, plus any scan nulling regressors) were included as covariates. No time and 

dispersion derivatives were modelled.  

Connectivity was determined using PPI analysis. We extracted the signal from our pre-

registered seed region, i.e. the right superior anterior temporal lobe (RSATL; Montreal 

Neurological Institute [MNI] coordinates: x = 58, y = 0, z = -12; 6 mm sphere), and created 
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interaction terms for the psychological variable (main effect of condition, i.e. self-agency vs. 

fixation and other-agency vs. fixation) with the physiological variable (the right superior 

anterior temporal lobe signal time course irrespective of condition).  

 

2) Subliminal faces task, as described in Fennema, Barker, O'Daly, Duan, Godlewska, et 

al. (2024) 

Standard pre-processing steps were followed: functional images were realigned, unwarped and 

co-registered to the participant’s T1 images. These images were normalised to the co-registered 

T1 image and resliced at a voxel size of 3 x 3 x 3 mm. A smoothing kernel of full-width half-

maximum equal to 6 mm was used. No slice timing correction was applied. Motion correction 

was applied in the form of censoring. Framewise displacement was calculated using 

BRAMILA tools to identify outliers regarding motion. Any framewise displacement of ≥ 1 

mm was marked as a spike in movement and scan nulling regressors were added to the standard 

six motion parameters describing movement by rotation and translation to account for the 

spike(s). Participants with spikes in more than 10% of the functional images overall were 

deemed to have moved too much and were excluded from the analysis. We chose a threshold 

of 10% of motion-contaminated volumes in combination with the threshold of any framewise 

displacement of ≥  1 mm as a trade-off between retaining patient data with reasonable quality 

and avoiding overfitting with too many scanning nulling regressors. 

Additional noise correction was applied: the MATLAB PhysIO toolbox was used to 

partially mitigate the impact of physiological noise (Kasper et al. 2017) (version R2021a-

v8.0.0, open-source code available as part of the Translational Algorithms for Psychiatry-

Advancing Science software collection (Frassle et al. 2021): 

https://www.translationalneuromodeling .org/tapas). Heart rate and respiration rate 

measurements were used in a retrospective image correction (RETROICOR) model, using 

Fourier expansions of different orders for the estimated phases of cardiac pulsation (third 

order), respiration (fourth order) and cardio-respiratory interactions (first order) (Harvey et al. 

2008). 

BOLD effects were modelled for each of the emotion blocks, i.e. sad, happy and neutral. 

Baseline fixation was not modelled to avoid overspecification of the model. Nuisance 

regressors created by the PhysIO toolbox, i.e. physiological noise regressors and motion-

related regressors, were included as covariates. Contrasts were created to examine the 

subtraction-based difference between sad and happy faces (sad vs. happy).  
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3) Resting-state scan, as described in Fennema, Barker, O'Daly, Duan, Carr, et al. (2024) 

The resting-state fMRI pre-processing followed a similar approach to that outlined in Workman 

et al. (2016), using DPARSF and Artifact Detection Tools (ART). SPM8 was used for pre-

processing steps to ensure compatibility with DPARSF. 

 Functional resting-state echo-planar images (EPIs) and IR-SPGR anatomical images 

underwent standard pre-processing steps in DPARSF. ART was used to flag spikes in motion, 

i.e. framewise signal intensity > 3 standard deviation from the global mean and framewise head 

displacement > 1mm, and to create nulling regressors. Participants with spikes in more than 

10% of the functional images were deemed to have moved too much and were excluded from 

the analysis. 

In addition, the MATLAB PhysIO toolbox was used to partially mitigate the impact of 

physiological noise (Kasper et al. 2017). Heart rate and respiration rate measurements were 

used in a RETROICOR model, using Fourier expansions of different orders for the estimated 

phases of cardiac pulsation (second order), respiration (second order) and cardio-respiratory 

interactions (first order) (Glover et al. 2000). 

Following this initial pre-processing, EPIs underwent linear detrending and nuisance 

covariates regression (6 motion parameters (Bright and Murphy 2015), white matter signal, 

cerebrospinal fluid signal, ART regressors and PhysIO regressors) and normalisation using 

non-linear transformation parameters derived during segmentation. Band-pass filtering was 

applied to retain frequencies between 0.01 and 0.08 Hz. 

 Functional connectivity maps were computed using the fully pre-processed functional 

images for each participant by correlating the average time course within the seed region (i.e. 

subgenual frontal cortex [Brodmann Area [BA] 25]) with the time course of each voxel within 

the brain, which were Fisher Z-transformed. 

 

Description of treatment change 

As part of the study, participants were encouraged to book an appointment with their GP to 

review their treatment. Exploratory analysis was undertaken to attribute a reduction in 

depressive symptoms to a change in pharmacological treatment, i.e. an increase in dose or a 

change to another medication. More specifically, participants were classified as follows: i) no 

change, i.e. participants who did not make any changes to their treatment, stopped taking their 

antidepressant, or lowered the dose of their current antidepressant; ii) minimal change, i.e. 

participants who increased their current antidepressant from an effective dose to a higher dose, 

or who changed to another antidepressant at an ineffective dose; and iii) relevant change, i.e. 
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participants who increased their current antidepressant from an ineffective dose to an effective 

dose, or who changed to another antidepressant at an effective dose.  

 Some participants had more than one change in their treatment during the follow-up 

period. In those cases, the change most relevant for the clinical outcome measure was used, 

which was usually the change occurring closest to the follow-up assessment. Moreover, the 

change to another antidepressant at an effective dose or an increase in dose had to have lasted 

at least two weeks prior to the follow-up assessment to be counted a treatment trial, which is 

in line with the Maudsley Staging Method (Fekadu et al. 2018). 

 

Exploratory prediction models 

In addition to our main multivariate prediction model, we  ran exploratory models to assess the 

contribution of the pre-registered fMRI measures individually, with baseline MM-PHQ-9 as a 

covariate: “self-blaming biases” with a focus on self-blame-selective connectivity between the 

right superior anterior temporal lobe and the posterior subgenual cortex (BA25), “negative 

perceptual biases” with a focus on bilateral amygdala BOLD activation for subliminal sad vs 

happy faces, and “subgenual resting-state networks” with a focus on subgenual resting-state 

connectivity with the ventrolateral prefrontal cortex/insula (BA47).  

Moreover, we ran an exploratory “pre-registration” model which included three 

additional neural measures as originally outlined in our pre-registered protocol 

(NCT04342299), i.e. functional resting-state subgenual cortex connectivity with the left 

ventromedial prefrontal cortex (BA10) and with the dorsal midbrain, as well as pregenual 

anterior cingulate cortex BOLD activation for subliminal sad vs happy faces.  

 

Supplementary Results 

Exploratory prediction models 

There was no association between baseline MM-PHQ-9 and the pre-registered fMRI measures, 

i.e. self-blame-selective connectivity between the right superior anterior lobe and the posterior 

subgenual cortex (BA25; rs [30] = -.19, p = .32), bilateral amygdala BOLD activation to sad vs 

happy (rs [30] = .03, p = .86) and resting-state connectivity between the subgenual cortex and 

ventrolateral prefrontal cortex/insula (rs [30] = -.18, p = .33). 

The “self-blaming biases” model explained 12% of the variance in QIDS-SR16 

percentage (F[2,35] = 2.45, p = .10, R2 = .12, R2
adjusted = .07; Supplementary Table 3). Self-

blame-selective connectivity between the right superior anterior temporal lobe and the posterior 
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subgenual cortex (BA25) negatively contributed to the variance in QIDS-SR16 percentage 

change (partial β = -9.59, t[35] = -2.10), while there was a positive contribution by baseline 

MM-PHQ-9 (partial β = 3.17, t[35] = .42). 

The “negative perceptual biases” model explained 18% of the variance in QIDS-SR16 

percentage (F[2,35] = 3.79, p = .03, R2 = .18, R2
adjusted = .13; Supplementary Table 3). Bilateral 

amygdala BOLD activation to sad vs happy subliminal faces positively contributed to the 

variance in QIDS-SR16 percentage change (partial β = 13.87, t[35] = 2.66), as did baseline 

MM-PHQ-9 (partial β = 7.19, t[35] = .98). 

The “subgenual resting-state networks” model explained 12% of the variance in QIDS-

SR16 percentage (F[2,35] = 2.28, p = .12, R2 = .12, R2
adjusted = .07; Supplementary Table 3). 

Resting-state connectivity between the subgenual cortex and ventrolateral prefrontal 

cortex/insula negatively contributed to the variance in QIDS-SR16 percentage change (partial 

β = -9.27, t[35] = -2.01), while there was a positive contribution by baseline MM-PHQ-9 

(partial β = 4.21, t[35] = .56).  

The “pre-registration” model explained 33% of the variance in QIDS-SR16 percentage 

(F[7,30] = 2.13, p = .07, R2 = .33, R2
adjusted = .18; Supplementary Table 3). Baseline MM-PHQ-

9 positively contributed to the variance in QIDS-SR16 (partial β = 3.20, t[30] = .43), while 

there was a negative contribution by self-blame-selective connectivity between the right 

superior anterior temporal lobe and the posterior subgenual cortex (BA25) (partial β = -7.53, 

t[30] = -1.65). Bilateral amygdala and pregenual anterior cingulate cortex BOLD to sad vs 

happy subliminal faces both positively contributed to the variance in QIDS-SR16 percentage 

(partial β = 11.06, t[30] = 1.99 and partial β = 2.62, t[30] = .49, respectively), as well as resting-

state subgenual functional connectivity with the ventromedial prefrontal cortex (partial β = .64, 

t[30] = .17) and with the dorsal midbrain (partial β = 2.69, t[30] = .63). Resting-state subgenual 

functional connectivity with the ventrolateral prefrontal cortex/insula negatively contributed to 

the variance in QIDS-SR16 (partial β = -7.58, t[30] = -1.70). 

 

Exploratory findings responders vs. non-responders 

Of the predictor variables to explore response vs. non-response (Supplementary Table 4), 

increased functional connectivity between the bilateral subgenual cortex and left VLPFC/insula 

was significantly associated with an increased likelihood of response (OR [95% CI] = 2.87 

[1.05, 7.84], p = .04). Increased self-blame-selective connectivity between the right superior 

anterior temporal lobe and the posterior subgenual cortex (BA25) (OR [95% CI] = 1.54 [.53, 

4.45], p = .08) and higher baseline MM-PHQ-9 scores (OR [95% CI] = 6.36 [.65, 61.82]) were 
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associated with an increased likelihood of response, whereas lower bilateral amygdala BOLD 

activation for sad vs happy subliminal faces was associated with a lower likelihood of response 

(OR [95% CI] = .226 [.04, 1.21]). 
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Supplementary Tables 
 
Supplementary Table 1. Treatment during follow-up period (n=38). 

 
Characteristic n (%) 

Main change   

No change in antidepressant 22 (58%) 

Stopped antidepressant  5 (13%) 

Lowered dose of antidepressant 0 (0%) 

Increase from effective dose to higher effective dose 5 (13%) 

Increase from ineffective dose to effective dose 0 (0%) 

Change to another antidepressant at effective dose 4 (11%) 

Change to another antidepressant at ineffective dose 2 (5%) 

Main antidepressant  

SSRI 31 (82%) 

Sertraline 8 (21%) 

Citalopram 5 (13%) 

Escitalopram 4 (11%) 

Fluoxetine 3 (8%) 

Venlafaxine (≤ 150mg) 6 (16%) 

SNRI 4 (11%) 

Duloxetine 2 (5%) 

Venlafaxine (> 150mg) 2 (5%) 

Mirtazapine 3 (8%) 

Tricyclic antidepressant 1 (3%) 

Other antidepressant 0 (0%) 

Add-on treatment 5 (13%) 

Change in mental health service use  

Started accessing mental health service 8 (21%) 

Continued care in mental health service  8 (21%) 

Stopped mental health treatment  2 (5%) 

Type of mental health service use  

CBT 3 (8%) 

Psychotherapy 5 (13%) 

Psychoanalysis 1 (3%) 

Counselling 2 (5%) 

Other 5 (13%) 

Percentages may not add up to 100 due to rounding. MDD = major depressive disorder; SSRI = selective serotonin reuptake 
inhibitor; SNRI = selective noradrenaline reuptake inhibitor; CBT = cognitive behavioural therapy. 
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Supplementary Table 2. Descriptive statistics for clinical symptom measures at 
baseline and follow-up (n=38). 
 

 Baseline  
(mean ± SD; min – 

max)  

Follow-up 
(mean ± SD; min – 

max) 

Difference 
[95% CI] 

t value 
 

p value 

QIDS-SR16 17.3 ± 3.5; 10 – 23 13.2 ± 5.6; 4 – 24 -4.1 [-5.8, -2.4] -4.80 <.001 

MM-PHQ-9 18.7 ± 4.7; 8 – 27 14.0 ± 7.8; 0 – 27 -4.7 [-6.9, -2.5] -4.28 <.001 

GAD-7 a 11.3 ± 4.3; 1 – 21 10.4 ± 5.7; 0 – 21 -1.1 [-3.0, 0.8] -1.21 .12 

MADRS 31.5 ± 4.9; 22 – 42 23.8 ± 10.9; 3 – 44 -7.7 [-10.6, -4.7] -5.30 <.001 

SOFAS 53.7 ± 5.4; 33 – 61 58.3 ± 11.2; 33 – 85 4.6 [1.7, 7.5] 3.26 .001 
a Missing follow-up data for one participant. 
MDD = major depressive disorder; CI = confidence interval; QIDS-SR16 = Quick Inventory of Depressive Symptomatology – 
self-rated, 16 items; MM-PHQ-9 = Maudsley Modified Personal Health Questionnaire, 9 items; GAD-7 = Generalised Anxiety 
Disorder, 7 items; MADRS = Montgomery-Åsberg Depression Rating Scale; SOFAS = Social and Occupational Functioning 
Assessment Scale. M = mean; SD = standard deviation; min = minimum; max = maximum. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



42 

 

Supplementary Table 3. Exploratory prediction models of clinical outcomes in 
depression. 
 

 Model parameters Overall model 

 β SE t p R2 p 

Pre-registration (n=38)     .33 .07 

Baseline MM-PHQ-9 3.20 7.40 .43 .67   

Self-blame-selective RSATL-BA25 connectivity -7.53 4.56 -1.65 .11   

Bilateral amygdala BOLD activation for sad vs 

happy subliminal faces 

11.06 5.56 1.99 .06   

Pregenual anterior cingulate cortex BOLD 

activation for sad vs happy subliminal faces 

2.62 5.31 .49 .63   

Resting-state subgenual cortex-VLPFC/insula 

functional connectivity 

-7.58 4.45 -1.70 .10   

Resting-state subgenual cortex-VMPFC functional 

connectivity  

.64 3.69 .17 .86   

Resting-state subgenual cortex-dorsal midbrain 

functional connectivity 

2.69 4.28 .63 .53   

Self-blaming biases (n=38)     .12 .10 

Baseline MM-PHQ-9 3.17 7.60 .42 .68   

Self-blame-selective RSATL-BA25 connectivity -9.59 4.57 -2.10 .04*   

Negative perceptual biases (n=38)     .18 .03* 

Baseline MM-PHQ-9 7.19 7.32 .98 .33   

Bilateral amygdala BOLD activation for sad vs 

happy subliminal faces 

13.87 5.22 2.66 .01*   

Subgenual resting-state networks (n=38)     .12 .12 

Baseline MM-PHQ-9 4.21 7.58 .56 .58   

Resting-state subgenual cortex-VLPFC/insula 

functional connectivity 

-9.27 4.60 -2.01 .05   

High quality fMRI (n=30)     .43 .01* 

Baseline MM-PHQ-9 4.11 7.59 .54 .59   

Self-blame-selective RSATL-BA25 connectivity -9.88 4.90 -2.02 .06   

Bilateral amygdala BOLD activation for sad vs 

happy subliminal faces 

9.56 6.25 1.53 .14   

Resting-state subgenual cortex-VLPFC/insula 

functional connectivity 

-11.86 4.68 -2.54 .02*   

* significant at p < .05 threshold, two-tailed. SE = standard error; MM-PHQ-9 = Maudsley Modified Patient Health Questionnaire, 9 

items; GAD-7 = Generalised Anxiety Disorder, 7 items; RSATL = right superior anterior temporal lobe; BA = Brodmann Area; BOLD 

= blood-oxygen level-dependent; VLPFC = ventrolateral prefrontal cortex; VMPFC = ventromedial prefrontal cortex. 
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Supplementary Table 4. Logistic regression of response vs. non-response in 
depression (n=38). 
 

Predictor variable β SE Wald p Odds Ratio 

[95% CI] 

Baseline MM-PHQ-9 1.85 1.16 2.54 .11 6.36  

[.65, 61.82]  

Self-blame-selective RSATL-

BA25 connectivity 

.43 .54 .64 .43 1.54 

[.53, 4.45] 

Bilateral amygdala BOLD 

activation for sad vs happy 

subliminal faces 

-1.49 .86 3.03 .08 .23 

[.04, 1.21] 

Resting-state subgenual cortex-

VLPFC/insula functional 

connectivity 

1.05 .51 4.21 .04* 2.87 

[1.05, 7.84] 

* significant at p < .05 threshold, two-tailed. SE = standard error; CI = confidence interval; MM-PHQ-9 = Maudsley Modified Patient 

Health Questionnaire, 9 items; GAD-7 = Generalised Anxiety Disorder, 7 items; RSATL = right superior anterior temporal lobe; BA = 

Brodmann Area; BOLD = blood-oxygen level-dependent; VLPFC = ventrolateral prefrontal cortex. 
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