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Highlights

How Adversarial Attacks Can Disrupt Seemingly Stable Accurate Classifiers

Oliver J. Sutton, Qinghua Zhou, Ivan Y. Tyukin, Alexander N. Gorban, Alexander Bastounis, Desmond J. Higham

• A new theory for studying accuracy, adversarial attacks,
and robustness is presented

• We present experiments confirming the theory on standard
benchmarks

• The theory reveals when adversarial attacks affect seem-
ingly stable classifiers

• Adding noise during training is inefficient for eradicating
adversarial examples
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Abstract

Adversarial attacks dramatically change the output of an otherwise accurate learning system using a seemingly inconsequential
modification to a piece of input data. Paradoxically, empirical evidence indicates that even systems which are robust to large random
perturbations of the input data remain susceptible to small, easily constructed, adversarial perturbations of their inputs. Here, we
show that this may be seen as a fundamental feature of classifiers working with high dimensional input data. We introduce a simple
generic and generalisable framework for which key behaviours observed in practical systems arise with high probability—notably
the simultaneous susceptibility of the (otherwise accurate) model to easily constructed adversarial attacks, and robustness to random
perturbations of the input data. We confirm that the same phenomena are directly observed in practical neural networks trained on
standard image classification problems, where even large additive random noise fails to trigger the adversarial instability of the
network. A surprising takeaway is that even small margins separating a classifier’s decision surface from training and testing data can
hide adversarial susceptibility from being detected using randomly sampled perturbations. Counter-intuitively, using additive noise
during training or testing is therefore inefficient for eradicating or detecting adversarial examples, and more demanding adversarial
training is required.

Keywords: neural networks, adversarial attacks, stability, measure concentration theory

1. Introduction

Adversarial attacks aim to slightly modify a piece of input
data in such a way as to significantly change the output of a
model. The sensitivity of neural networks to small perturbations
like these has been widely studied since they were first reported
in deep networks in [1]. Simple algorithms exist which enable
a malicious attacker to produce adversarial perturbations quite
easily in many cases [2]. Recent works [3, 4] have shown that
such instabilities are somewhat inevitable, even in relatively
small networks consisting of just two layers where the number
of neurons is linear in the input data dimension. It is remarkable,
therefore, that these same instabilities are rarely triggered by
random perturbations to the input data – even when these random
perturbations may be much larger than destabilising adversarial
perturbations.

This paradox of apparent stability is demonstrated in Figure 1
for a standard convolutional neural network trained on CIFAR-
10 images [5]. Although the majority of images in both the
training and test data sets are susceptible to small adversarial
attacks (panel (a)), random perturbations even an order of mag-
nitude larger mostly fail to cause the images to be misclassified
(panel (b)). Further experimental results on other image classifi-
cation datasets, including using pre-trained foundation models,
are summarised in Table 1 and discussed further in Section 3.

Several explanations for the causes of adversarial examples
have been proposed in the literature. An early work on the sub-
ject [6] suggested that adversarial images simply live in regions
of the data space to which the data distribution assigns low prob-

ability. A variant of this idea, discussed in [7], suggests that
adversarial attacks perturb inputs in a way that moves them in an
orthogonal direction to the local data manifold. This results in
adversarial images which exist in a region of data space where
no training data could have been sampled, and the decision sur-
faces of the network are therefore relatively pathological. Other
suggested mechanisms include the dimpled manifold hypothe-
sis [8], boundary tilting [9], and the existence of uncountably
large families of special distributions for which instabilities are
expected [3]. However, none of these frameworks rigorously
account for and explain the paradoxical simultaneous robustness
of these classifiers to random perturbations whose size could be
several times larger than that of the adversarial ones.

Here, we suggest a resolution to the paradox rooted in ideas
from the theory of concentration of measure, and related proper-
ties of high dimensional probability distributions. The simple,
realistic framework we introduce captures the key features of
the paradox which are observed in practice (precise definitions
of these terms are given in Section 4):

Accuracy: The classifier correctly labels non-perturbed data.

Apparent robustness/stability: There is a vanishingly small
probability that a sampled data point will be misclassified
after a large random perturbation is applied to it.

Vulnerability: Yet, with high probability, any sampled data
point is susceptible to a very small adversarial perturbation
that changes the predicted class.

Preprint submitted to Neural Networks September 6, 2024
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(a) Cumulative histogram of sizes of successful adversarial attacks.
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(b) Cumulative histogram of sizes of successful random perturbations.

Figure 1: Histograms showing the fraction of images from the ‘aeroplane-vs-cat’ binary classification problem (from the CIFAR-10 dataset) which were misclassified
after either (a) an adversarial attack (as the fraction of ordinarily correctly classified images) or (b) a random perturbation of different sizes (as the fraction of images
which were susceptible to adversarial attacks), measured as the maximum absolute change to an individual pixel channel (the ℓ∞ norm). For adversarial attacks, this
represents the smallest misclassifying attack in the adversarial direction. For the random perturbations, we record the smallest ℓ∞ norm among 2000 misclassifying
perturbations sampled from the Euclidean ball with radius 5ϵ, where ϵ is the Euclidean norm of the smallest successful adversarial attack found for each image.
Examples are shown at the size of their respective perturbation norms. Full details of the experimental results are given in Section 7.

Computability: An optimal destabilizing perturbation can be
computed from knowledge of the loss function gradient.

Our theoretical investigation reveals a tension between dif-
ferent notions of what it means for a classifier to be stable, a
subtlety which is rarely discussed in practice. A problem may
be deterministically unstable in the sense that for a given data
point there exists an arbitrarily small destabilising perturbation
which may be exploited by an attacker, while the fact that this
instability is extremely unlikely to be triggered by random noise
renders the problem probabilistically stable. This is a dangerous
situation for a performance-critical classifier: even though the
performance appears excellent at test time, adversarial insta-
bilities and the lack of deterministic robustness lurk awaiting
an unscrupulous attacker and cannot be efficiently detected at
random. An important feature of our theoretical framework (de-
veloped in Section 4) for understanding the paradox of apparent
stability is that it can be studied at various levels of generality.
This enables us to distil the fundamental origins of the paradox
without unnecessary technical details, through a hierarchy of
models incorporating different levels of complexity.

Our findings are directly supported by extensive experimen-
tal results, summarised in Section 3 and discussed in detail in
Section 7. The results demonstrate the paradox of apparent
stability, and reveal some of its real-world implications. We
show the effectiveness of simple adversarial attacks on a vari-
ety of different standard datasets and models, and contrast this
against their robustness to large random perturbations. These
experiments confirm the predictions of our theoretical results:
to observe cases in which random perturbations cause labels
to swap, many perturbations must be taken, and with a signif-
icantly larger amplitude than that of the smallest adversarial
perturbation affecting the same image. An immediate practical
consequence of this is to shed new light on algorithms which
aim to ensure or certify adversarial robustness by adding random

noise to inputs, such as those discussed in [10, 11, 12]. Our
investigation reveals that this is computationally inefficient in
high dimension, since it requires an exponentially large number
of perturbed samples per data point to expect to observe just
one which causes a misclassification of even a highly suscep-
tible input. We also find that in genuinely high-dimensional
settings adding random noise at training time causes a signifi-
cant degradation to the trained model’s accuracy, which appears
to outweigh any marginal improvements in adversarial robust-
ness. The relevant spectrum of tasks to which the above applies
includes popular image classification problems. This implies
that data pre-processing involving an appropriate dimensionality
reduction may be needed to bring out the benefits of robustness
induced by random data augmentation at training.

To study the paradox of apparent stability, we begin with a
simple model which nonetheless exhibits key features of the
paradox, and build it up to expose how different phenomena
appear and persist as the model becomes more general. We first
consider a single fixed data point (i.e. without any data sampling
process) sitting close to a (locally) linear decision surface in
Section 4.1. We prove that in this situation, the probability of
randomly sampling a perturbation which causes the data point
to be misclassified is exponentially small in the data dimension.
This already shows that dimensionality is a fundamental com-
ponent in trying to understand the relationship between random
and adversarial perturbations, and therefore in resolving the para-
dox of apparent stability. This result also shows that algorithms
which aim to detect or defend against adversarial susceptibil-
ity using random data perturbations, such as those discussed
in [10, 11, 12], may in fact require computational complexities
which are exponentially large with respect to the data dimension.

We build on this in Section 4.2 by considering a binary classi-
fication problem with a linear classifier. Data from both classes
are sampled from distributions satisfying a mild non-degeneracy

2



condition, formulated as a simplified version of the Smeared
Absolute Continuity (SmAC) condition introduced in [13] (see
Definition 3). Despite its simplicity, we prove that this setting
already exhibits the four characteristics above of the paradox
of apparent stability. We then significantly generalise the setup
in Section 4.3 to show that these phenomena persist when data
are sampled from two arbitrary distributions and classified using
nonlinear decision surfaces. Once again, this setup reveals the
same fundamental characteristics of the paradox of apparent sta-
bility. This setup admits various further generalisations, which
are discussed in Section 4.4.

As a counterpoint to the findings discussed above, Section 5 re-
veals a subtle, yet important, modification which can be made to
the setup which causes the discrepancy between adversarial and
random perturbations to disappear. Specifically, we construct a
scenario in which the typical distance from a sampled data point
to the classifiers (linear) decision boundary approaches zero in
high dimensions. In this case, the probability of a random pertur-
bation to input data causing a misclassification is separated away
from zero by a constant for arbitrarily large data dimension,
rather than exponentially decreasing as in the previous scenarios.
Having small distances from typical data points to the decision
surface is clearly undesirable in any practical application, since
it means that the classifier itself is extremely sensitive to small
changes in the data. However, this setup reveals that it is in
fact the presence of an appropriate margin between typical data
points and the decision surface which manifests itself as the
paradox of simultaneous apparent robustness to large random
perturbations and vulnerability to small adversarial attacks.

The paper is organised as follows. In Section 2 we introduce
mathematical notation that is used throughout the text. Section
3 gives an overview of the paradox of apparent stability as it
manifests itself in real image classification problems. Our main
theoretical results are presented in Section 4, introducing a hier-
archy of simple models which expose the fundamental origins
of the paradox. The alternative model analysed in Section 5
reveals the link between the existence of non-zero classification
margins and the ability to determine susceptibility to adversarial
examples using random perturbations. In Section 6 we discuss
these analytical and empirical findings and relate them to prior
work and knowledge in the area. Section 7 provides a compre-
hensive description of our experimental setup and numerical
results. Section 8 concludes the paper. Proofs of all statements
and auxiliary technical results are provided in the Appendix.

2. Notation

We use the following notation throughout:

• x · y denotes the inner product of x, y ∈ Rn and ∥x∥ =
√

x · y
denotes the Euclidean (ℓ2) norm,

• the ℓ1 norm of a vector in Rn is defined to be the sum of the
absolute values of its components,

• the ℓ∞ norm of a vector in Rn is defined to be the maximum
of the absolute values of its components,

• Bn
r (c) = {x ∈ Rn : ∥x − c∥ ≤ r} denotes the the Euclidean

ball in Rn with radius r > 0 centered at c ∈ Rn, and we use
the abbreviation Bn = Bn

1(0),

• Vn = π
n
2

Γ( n
2+1) denotes the n-dimensional volume of Bn (the

unit ball, usually assumed centred at 0), and Vn
cap(r, h)

denotes the volume of the cap with height h of the n-
dimensional ball of radius r, i.e. the volume of the set
{x ∈ Rn : ∥x∥ < r and x1 > 1 − h}, where x1 = x · e1 and
e1 = (1, 0, . . . , 0)⊤ ∈ Rn; if S ⊂ Rn then Vn(S ) denotes the
n-dimensional volume of the set S ,

• for a set S ⊂ Rn, we use U(S ) to denote the uniform
distribution on S , and IS : S → {0, 1} to denote the indi-
cator function of S , such that IS (x) = 1 for x ∈ S and 0
otherwise,

• the function Φ : R → R denotes the standard Gaussian
cumulative distribution function

Φ(s) =
1
√

2π

∫ s

−∞

e−
ξ2

2 dξ.

3. The paradox of apparent stability demonstrated on stan-
dard datasets

The phenomenon of simultaneous susceptibility to adversarial
attacks and robustness to random noise can be clearly demon-
strated using standard image classification benchmark datasets.
Here, we summarise results presented in detail in Section 7,
calculated using CIFAR-10 [5], Fashion MNIST [14], the Ger-
man Traffic Sign Recognition Benchmark (GTSRB) [15], and
ImageNet [16]. Our experimental setup is described in detail in
Section 7.1.

To present the phenomenon in the simplest possible setting,
we split each of CIFAR-10, Fashion-MNIST and GTSRB into a
set of binary classification problems, one for each pair of classes
in the dataset. A separate network (each with the same convolu-
tional structure in the form of a truncated VGG network [17])
was trained using Tensorflow [18] for each of these problems,
and each point in the training and test set was assessed for its sus-
ceptibility to adversarial examples using a gradient-based attack
algorithm. On images which were susceptible to an adversarial
attack with Euclidean norm ϵ, we applied 2000 perturbations
randomly sampled from the Euclidean ball with radius δϵ for
each value of δ in the set {1, 2, 5, 10}. This measures the sensitiv-
ity of the network to random perturbations around the training
and test images.

We complement this investigation of binary classification
problems with an analogous analysis of the adversarial and
random susceptibility of pre-trained models (with VGG19 [17]
and ResNet50 [19] architectures, from Tensorflow) using images
from the ImageNet validation set. These models are trained to
classify ImageNet images into 1,000 classes, and demonstrate
the presence of the paradox of apparent stability in real-world
models.
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CIFAR-10 Fashion MNIST GTSRB ImageNet (ResNet50) ImageNet (VGG19)

Accuracy 99.70%, 95.80% 99.51%, 99.4% 98.32%, 98.51% -, 70.8% -, 66.52%
Adversarial attack susceptibility 91.88%, 89.96% 53.58%, 53.01% 77.53%, 77.00% -, 94.2% -, 97.07%

Random attack susceptibility (δ = 2) 0.02%, 0.17% 0.07%, 0.09% 0.36%, 0.36% - -
Random attack susceptibility (δ = 5) 2.65%, 2.57% 10.71%, 13.35% 5.76%, 5.1% - -

Random attack susceptibility (δ = 10) 41.19%, 40.57% 56.84%, 57.43% 39.26%, 36.07% -, 2.5% -, 1.4%
Input dimension 32 × 32 × 3 28 × 28 × 1 30 × 30 × 3 224 × 224 × 3 224 × 224 × 3

Number of classes 10 10 6 1000 1000

Table 1: A summary of the performance of networks trained on different standard image classification benchmark datasets. We split each dataset into a set of
binary classification problems, and the results in this table are reported in the form ‘train, test’ and as the median over the binary classification problems of the form
‘class i-vs-class i + 1’ within each dataset. The symbol ‘-’ denotes values which were not computed. Full details of the experimental setup and results are given
in Sections 7.1 and 7.2. Adversarial attack susceptibility is measured as the proportion of images in both classes of each problem which were susceptible to an
adversarial attack. Random attack susceptibility with fixed δ is measured as the proportion of adversarially susceptible images which were misclassified after applying
any of 2,000 randomly sampled perturbations with Euclidean norm up to δ times as large as that of the smallest adversarial perturbation identified on that image. The
results on GTSRB were computed using a subset of classes in the original dataset, see Section 7.2.3 for details. Results for ImageNet were evaluated using pre-trained
ResNet50 and VGG19 models from Tensorflow on images from the ImageNet validation set, as described in Section 7.2.4.

The empirical essence of the phenomenon is illustrated in Fig-
ure 1 using the CIFAR-10 dataset: while the networks were eas-
ily fooled by relatively small adversarial perturbations which ap-
pear to make little perceptual difference to the image, they were
remarkably robust to randomly sampled perturbations. Here
we demonstrate this in the broadly representative case of the
‘aeroplane-vs-cat’ binary classification problem. Comparing the
inset examples in Figures 1a and 1b, the modification made by
the adversarial perturbation does not alter the overall perception
of the image as that of a ‘cat’. Moreover, it is difficult to tell
by just looking at these images which one of them has been
subjected to an adversarial attack. It is nearly equally difficult
to make out the aeroplane in the (correctly classified) randomly
perturbed image. Note that, since the original images have pixel
channel values in [0, 1], a perturbation with ℓ∞ norm greater than
1 represents a drastic change to the contents of the image, yet
one which was rarely able to cause the network to misclassify
its input.

A summary of the accuracy and susceptibility of the classifiers
is presented in Table 1, although the figures alone make it clear
that even when the random perturbations are sampled to be five
times as large as the known adversarial perturbation (δ = 5),
they still mostly fail to trigger the adversarial susceptibility of
the network. The effects are broadly consistent across all the
datasets we examined, with negligible difference between the
training and test data. Further details of the experimental setup
and full results for this and the remaining classification problems
are explored in Section 7.2.

We also provide the results of experiments on CIFAR-10 into
incorporating additive random noise to data at training time to
assess the impact this may have on adversarial susceptibility
(the experimental setup is described in Section 7.1.4 and the
results are presented in Section 7.2.1). The conclusion we draw
from these experiments is that training with even large random
perturbations does not significantly decrease the susceptibility
to adversarial attacks, and is responsible for a large drop in
accuracy.

4. The essence of the paradox

To understand the origins of the paradox of apparent stability,
we show how a hierarchy of simple, yet reasonably generic, the-
oretical models can explain the behaviour observed empirically.
First, in Section 4.1 we show that for a fixed data point close to
a model’s (locally linear) decision boundary, randomly sampled
noise is very unlikely to detect adversarial instabilities in high
dimensions. Since this example does not assume any sampling
distribution for the data point, it provides a generic setup for
understanding the difference between random and adversarial
perturbations.

We generalise this to a second scenario in Section 4.2, where
data from two classes are sampled from a reasonably general
class of distributions, and classified using a linear classifier.
The data distributions are only assumed to satisfy a mild non-
degeneracy condition (known as the SmAC condition; Defi-
nition 3). Despite its apparent simplicity, this setup already
simultaneously presents all of the symptoms of the paradox of
apparent stability: with high probability, data points are accu-
rately classified (Theorem 4) and susceptible to small adversarial
perturbations (Theorem 5), yet with high probability randomly
sampled perturbations do not cause data to be misclassified (The-
orem 6). Moreover, gradient-based algorithms are efficient for
constructing the adversarial attack (Theorem 7), and successful
attacks are even universal in sense that they also cause other
data points with the same class to be misclassified with high
probability (Theorem 8).

This setup is generalised further in Section 4.3, providing
versions of the same key results. No assumptions are placed
on the data distributions, and the results require only that the
classifier’s decision boundary is a Lipschitz warping of a plane
in its normal direction. We also show how the results from
Section 4.2 may be obtained as corollaries of these general
results.

Further generalisations of our results are considered in Sec-
tion 4.4.
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Figure 2: A data point x and the (locally linear) decision surface of a classifier
f (solid line). The point x is susceptible to an adversarial attack of size ϵ, and
randomly perturbed using random noise of size ≤ δ. These perturbed points are
sampled from the within dashed ball.

4.1. Random perturbations are inefficient for detecting adver-
sarial instability

We first consider the simple setup illustrated in Figure 2. Sup-
pose we wish to estimate the susceptibility of a fixed data point
x to adversarial attack. This may be measured as the distance
from x to the decision surface of a classifier. For simplicity, we
suppose that this decision surface is locally linear near x, and
we denote the shortest distance from x to the decision surface
by ϵ. We may therefore say that the point x is susceptible to an
adversarial attack of size ϵ, since this is the smallest perturbation
which would push x across the decision boundary. In keeping
with the setup of the paradox, we attempt to estimate the (un-
known) size of ϵ by randomly perturbing the data point x using
noise of size δ. We may do this by measuring the proportion
of random perturbations which fall on the opposite side of the
decision surface. Unfortunately, as described in Theorem 1, this
process is extremely inefficient in high dimensions.

Theorem 1 (Random perturbations are inefficient for detecting
adversarial instability). Let x ∈ Rn and let Π be a planar deci-
sion surface passing distance ϵ > 0 from x. Suppose (without
loss of generality since the setup is invariant to rigid transla-
tions) that Π passes through the origin. Suppose that points
z are sampled uniformly from a ball of radius δ ≥ ϵ around
x. Then, the probability of sampling a point z with a different
classification from x decreases exponentially with the dimension
n. Specifically, if Π has normal vector ν (with ∥ν∥ = 1) then

P(z ∼ U(Bn
δ(x)) : sign(z · ν) , sign(x · ν)) ≤

1
2

(
1 −
ϵ2

δ2

) n
2
.

This theorem is proved in Section A. The clear implication
is that exponentially many perturbed data samples would be
required to expect to find any which are misclassified. This
remains true even when the sampled noise is much larger than
the size ϵ of the adversarial attack affecting x. Since this does
not depend on any data distribution of x, it provides a first hint
at the foundations of the paradox.

It is interesting to ask whether this finding is due to the choice
of sampling noise uniformly from a ball around x. The answer to
this question is ‘no’, due to concentration properties of data dis-
tributions in high dimensions. For example, points sampled from
a uniform distribution on the cube [−1, 1]d and those sampled

from a Gaussian distribution (with mean 0 and unit variance)
both concentrate such that 1

√
d
∥x∥ is almost constant with high

probability in high dimensions [20]. Data from these distribu-
tions therefore behaves very similarly to data sampled uniformly
from a ball (albeit a ball with radius growing with

√
d).

4.2. A simple theoretical model captures the essence of the
paradox

To more completely understand the paradox, in this section
we show how it manifests itself in the case where data points
sampled from two classes are classified using a linear classi-
fier. We adopt the simple yet reasonably flexible assumption
that each data class is sampled from a distribution supported
somewhere within a ball and satisfying a mild non-degeneracy
requirement (Definition 3). A significantly more general version
of this model is analysed in Section 4.3, with fewer constraints
on the distributions and a classifier which is permitted to use a
more general nonlinear decision surface. The results and con-
clusions remain largely qualitatively similar. In particular, the
simultaneous co-existence of high accuracy, the typicality of
data susceptible to adversarial attacks, and the rarity of desta-
bilising random perturbations with bounded Euclidean norm
all extend to the more general model with nonlinear decision
boundary (see Theorems 9, 11, 14 and Corollaries 10, 12, 15).

Let us now formally define the setup considered in this section.
To assess the probabilities and typicality of events we need to
define an appropriate class of data distributions. This class
should be sufficiently flexible to capture uncertainties and the
lack of precise knowledge about data distributions while also
tractable enough to enable a mathematical assessment of the
setup. One such class of distributions is those satisfying the
Smeared Absolute Continuity property [13].

Definition 2 (Smeared Absolute Continuity (SmAC) [13]). Let
x1, . . . , xM ∈ R

n be random variables. The joint distribution of
x1, . . . , xM has the SmAC property if there exist constants α > 0,
β ∈ (0, 1), and γ > 0 such that for every positive integer n, any
convex set S ⊂ Rn such that

Vn(S )
Vn(Bn)

≤ αn,

any index i ∈ {1, 2, . . . ,M} and any points
y1, . . . , yi−1, yi+1, . . . , yM ∈ R

n, we have

P(xi ∈ B
n \ S | x j = y j, ∀ j , i) ≥ 1 − γβn.

In this work, however, we do not wish to consider a joint
distribution over multiple random variables as our main case
focuses on a single point drawn from a distribution. Furthermore,
to make the technical analysis simpler and clearer it is beneficial
to assume the existence of a probability density function that
is associated with the probability measure. Therefore, in what
follows we adopt the following restricted single-particle version
of the SmAC property which, for the sake of brevity, will be
referred to as SmAC in the rest of the paper:

Definition 3 (Single-particle SmAC with bounded density). A
distributionD on Rn is said to satisfy the single-particle smeared
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Figure 3: Two unit balls with centres separated by distance 2ϵ, and the decision
surface of the classifier f (dashed).

absolute continuity condition with bounded density if it pos-
sesses a density p : Rn → R≥0 and there exists a centre point
c ∈ Rn and radius r > 0 such that p(x) > 0 only for points x
in the ball Bn

r (c), and there exists a constant growth parameter
A > 0 such that

sup
x∈Bn

r (c)
p(x) ≤

A
Vnrn .

We note that if the growth property is satisfied with A = 1,
then the distribution is simply the uniform distribution on the
ball Bn

r (c).
Suppose that two classes of data are each sampled from data

distributionsD0 andD1 on Rn, each satisfying Definition 3. For
simplicity, we suppose that these distributions are each supported
in a ball with radius 1, with centres given by c0 = −ϵe1 for
class 0 and c1 = ϵe1 for class 1. We further suppose that both
distributions satisfy the growth bound with the same parameter
A. For brevity, we also define the combined distribution Dϵ
which samples a point fromD0 with label 0 with probability 1

2 ,
and samples a point from D1 with label 1 with probability 1

2 .
The geometry of this setup is illustrated in Figure 3.

The classification function f : Rn → {0, 1} with the highest
accuracy which can be defined for this data model without fur-
ther knowledge of the distributions is given by the simple linear
separator

f (x) =

0 if x1 < 0,
1 otherwise.

(1)

This classifier does not necessarily return the correct label in all
cases since, for ϵ ∈ (0, 1), the two data classes overlap. Despite
this, misclassified points are rare in the high dimensional setting,
even when the two balls from which points are sampled have
only a small separation between their centres. More precisely,
the probability that this classifier is correct converges exponen-
tially to 1 as the data dimension grows. This result is proven in
Section B.1.

Theorem 4 (The classifier is accurate). For any ϵ > 0, the prob-
ability that the classifier applies the correct label to a randomly
sampled data point grows exponentially to 1 with dimension n,
specifically

P((x, ℓ) ∼ Dϵ : f (x) = ℓ) ≥ 1 −
1
2

A(1 − ϵ2)
n
2 .

The sharpness of this result is verified empirically in Figure 4a,
computed for A = 1. We observe that by n = 10, 000, the
probability of sampling a point which will be misclassified is
virtually 0. To put this and the following results into context,
the 32 × 32 × 3 images used in CIFAR-10 have 3,072 attributes,
while the size of 256 × 256 × 3 commonly used for the images
in ImageNet have 196,608 attributes, placing them firmly within
the range of dimensionalities where the effects described here
are active.

On the other hand, even accurately classified points in this
model are still close to the decision surface since the ball centres
are only separated by distance ϵ. Because of this, for any δ > ϵ,
there are points sampled from each class which are susceptible
to an adversarial attack s ∈ Rn with ∥s∥ ≤ δ which causes f
to predict the wrong class. Moreover, in high dimensions, data
points sampled from such a distribution concentrate at distance
ϵ from this decision surface, meaning that the probability of
sampling a point which is susceptible to an adversarial attack is
high. This may be encapsulated in the following result, which is
proven in Section B.2.

Theorem 5 (Susceptible data points are typical). For any ϵ ≥ 0
and δ ∈ [ϵ, 1 + ϵ], the probability that a randomly sampled data
point is susceptible to an adversarial attack with Euclidean norm
δ grows exponentially to 1 with the dimension n, specifically

P
(
(x, ℓ) ∼ Dϵ : there exists s ∈ Bn

δ such that f (x + s) , ℓ
)

≥ 1 −
1
2

A(1 − (δ − ϵ)2)
n
2 .

Although this susceptibility may therefore be viewed as typi-
cal in high dimensions, however, the probability of detecting it
by sampling random perturbations of data points is paradoxically
very small, as shown by the following result which is proven in
Section B.3.

Theorem 6 (Destabilising perturbations are rare). For any δ >
ϵ ≥ 0, the probability that a randomly selected perturbation with
Euclidean norm δ causes a randomly sampled data point to be
misclassified is bounded from above as:

P
(
(x, ℓ) ∼ Dϵ , s ∼ U(Bn

δ) : f (x + s) , ℓ
)

≤ A
(
1 −

( ϵ
1 + δ

)2) n
2
.

In particular, when δ is independent of dimension n, this proba-
bility converges to 0 exponentially with n.

This probability bound is compared against empirically sam-
pled data in Figure 4b. While the bound is not particularly sharp
in low dimensions, it accurately describes the key phenomenon
which is the convergence of the probability to 0 in high dimen-
sions. This phenomenon is startlingly persistent, even when the
magnitude of the sampled perturbations is 50 times greater than
the distance between the centres of the spheres (when δ = 2.5).

We note that some care needs to be taken when considering
perturbations with fixed ℓ∞ norms. The corresponding ℓ2 norm
of these perturbations scales as

√
n, affecting convergence to 0

of the probability of destabilisation (see Theorem 6).
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Figure 4: Comparison of the theoretical bounds in Theorems 4 and 6 against empirical results computed using 10,000 data points sampled fromDϵ , with ϵ = 0.05,
and 10,000 perturbations sampled fromU(Bn

δ) for various values of δ. We see that, even for perturbations 50 times larger than the separation distance between the
balls (i.e. δ = 2.5), the probability of randomly sampling a perturbation which changes the classification of a random data point is very small in high dimensions.

Even though randomly sampled perturbations are unlikely
to affect the classifier, it is often straightforward to construct
special adversarial perturbations which will affect a specific
data point. Common algorithms for constructing adversarial
attacks work by perturbing the target input in such a way as to
increase an appropriate loss function. Gradient-based methods
for this, such as the Fast Gradient Sign Method [6], compute
the gradient of the loss function with respect to the components
of the input, evaluated at the target input with its true class.
Perturbing the input in the direction of this gradient therefore
moves it in the direction of steepest ascent of the loss function
locally, thereby representing a good candidate for an adversarial
direction. The minimal scaling to be applied to this adversarial
direction, required to form the final adversarial input, can then
be determined via a line search in the adversarial direction.

In the case of this model setup, such an algorithm (with a
standard choice of loss function) will successfully provide the
optimal direction for an adversarial attack: the most direct path
to move the input along in order to cross the decision surface.
To show this, we first observe that the classifier f in (1) can be
equivalently defined as f (x) = H(g(x)), where H : R → {0, 1}
denotes the (piecewise constant) Heaviside function, and the
linear function g(x) = e1 · x − 1

2 . To construct gradient-based
attacks, we use a differentiable version f̃ of f constructed as
f̃ (x) = σ(g(x)), where σ : R→ (0, 1) is a continuously differen-
tiable version of the Heaviside function which is monotonically
increasing with σ(0) = 1

2 . An example of such a function is the
standard sigmoid function. Then, the following result, proved in
Section B.4, shows that gradient-based attacks on this classifier
will always return the optimal attack direction.

Theorem 7 (Gradient-based methods find the optimal adversar-
ial attack). Let L : R>0 → R denote any differentiable, monoton-
ically increasing loss function, and let (x, ℓ) ∼ Dϵ . Then, with
probability 1 with respect to the sample (x, ℓ), the gradient of the
loss L(| f̃ (x)−ℓ|) with respect to the components of x corresponds
to a positive multiple of the optimal attack direction (1 − 2ℓ)e1.

A further aspect of this model problem is that successful
adversarial attacks are universal in high dimensions. To state this
property mathematically, we define the destabilisation margin
to be the distance by which a destabilising perturbation pushes a
data point across the decision threshold of the classifier (1). This
is measured by the functions dℓ : Rn × Rn → R associated with
each class ℓ = 0, 1, where, for a data point x and a perturbation
s,

d0(x, s) = max{x1 + s1, 0},

and

d1(x, s) = max{−x1 − s1, 0}.

The following result then holds, as proven in Section B.5.

Theorem 8 (Universality of adversarial attacks). Let ϵ ≥ 0 and
suppose that x, z ∼ Dϵ are independently sampled points with
the same class label ℓ. For any γ ∈ (0, 1], the probability that x
is destabilised by all perturbations s ∈ Rn which destabilise z
with destabilisation margin dℓ(z, s) > γ converges exponentially
to 1 as the dimension n increases. Specifically, for ℓ ∈ {0, 1} and
z ∈ Rn, let S z = {s ∈ Rn : dℓ(z, s) > γ}. Then,

P(x, z ∼ Dℓ : f (x + s) , ℓ for all s ∈ S z)

≥
(
1 − A

(
1 −
γ2

4

) n
2
)2

This bound shows that in high dimensions we may expect
pairs of sampled points to share their sets of adversarial pertur-
bations. The dependence on the margin γ by which the perturba-
tion destabilises z is an interesting feature. Roughly speaking,
the result suggests that in low dimensions only severe perturba-
tions which push points a long way past the decision threshold
may be regarded as universal in the sense of having a high prob-
ability of destabilising other sampled points. As the dimension
n increases, however, perturbations which produce smaller and
smaller margins on individual points become universal in the
sense that they have a constant probability of destabilising other
sampled points.
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4.3. A generalised theoretical model

We now show that the simple case presented in Section 4.2
extends to more general cases in which the classification surface
is not assumed to be flat, and the data are sampled from more
general distributions. To demonstrate that these abstract results
are true generalisations of the results proven in Section 4.2, we
derive corollaries to each result for a general SmAC distribution
with a flat decision surface. These corollaries are therefore
directly comparable with the results in Section 4.2 for specific
indicated values of the parameters.

Let ν,w ∈ Rn with ∥ν∥ = 1, and define the plane

π = {x ∈ Rn : (x − w) · ν = 0} ⊂ Rn,

which passes through w and is normal to the vector ν. Denote
by Π : Rn → π the orthogonal projection operator onto π in the
Euclidean inner product, given by

Πx = x − ((x − w) · ν)ν.

Let ϕ : π→ R be continuous, and define the surface

S = {x ∈ Rn : x − ϕ(Πx)ν ∈ π} ⊂ Rn.

A projector Γ : Rn → S onto the surface S (along the vector ν)
can be defined by

Γx = Πx + ϕ(Πx)ν.

We also introduce the signed directed distance function dπ :
Rn → R measuring the signed distance from a point x to the
plane π along the normal vector ν, given by

dπ(x) = (x − Πx) · ν = (x − w) · ν,

and dS : Rn → R measuring the signed distance from a point x
to the surface S along the vector ν, given by

dS (x) = (x − Γ(x)) · ν = (x − Πx) · ν − ϕ(Πx)
= dπ(x) − ϕ(Πx).

Finally, we can define the distance from a point x to the surface
S by

σ(x) = inf
ŷ∈S
∥x − ŷ∥,

noting the trivial inequality

σ(x) ≤ |dS (x)|, (2)

for any x ∈ Rn, since dS only measures distance to S in the
direction of ν while σ measures the shortest distance to S in any
direction.

With these constructions, we can define a binary classifier
with decision surface S as the function f : Rn → {0, 1} given by

f (x) =

0 if dS (x) ≤ 0,
1 otherwise.

(3)

To show how our previous results extend into this more gen-
eral case, suppose that data points of class 0 are sampled from a
distributionD on Rn, and that data points of class 1 are sampled
from the distributionD′ on Rn. In the interests of simplicity, we
only study the behaviour of the classifier for data from the class
0, as the result for the class 1 is analogous. We study this more
general model in parallel with the results of Section 4.2.

We first observe that the accuracy of the classifier may be
controlled in an analogous way to the simple case in Section 4.2.
The supremum in this result (and the suprema and infima in sub-
sequent results) is simply present to ensure an optimal balancing
for the two terms; a valid (though possibly sub-optimal) result
may be obtained by selecting any value of α ≥ 0.

Theorem 9 (Accuracy of the classifier f ). Let x ∼ D. Then,
the probability that x is correctly classified as class 0 by the
classifier f is at least

P(x ∼ D : f (x) = 0)
≥ sup
α≥0

[
P(x ∼ D : |ϕ(Πx)| ≤ α)

− P(x ∼ D : dπ(x) > −α)
]
.

The proof of this result is given in Section D.1. The first term
appearing on the right hand side controls how far the surface S
may be expected to deviate from the plane π (and is therefore
simply 1 in the case when ϕ ≡ 0 and so S = π; in this case the
optimal balancing of the terms will be obtained when α = 0).
The second term, on the other hand, estimates the probability
that a point is correctly classified by the plane placed parallel to
π, but offset by distance α to account for the variability of ϕ.

We demonstrate this result in the setting of a linear classifier
with a distribution E which satisfies the SmAC condition of
Definition 3 with radius r > 0 and centre c such that dπ(c) = −η
for some η ∈ [0, r). Then, Theorem 9 takes the following form,
from which we obtain Theorem 4 when r = 1 and η = ϵ.

Corollary 10 (Accuracy for SmAC distributions). Suppose that
points with label 0 are sampled from the distribution E, and
suppose that ϕ ≡ 0. Then, for x ∼ E, the probability that the
classifier f correctly assigns x class 0 is at least

P(x ∼ E : f (x) = 0) ≥ 1 −
1
2

A
(
1 −

(η
r

)2) n
2
.

We may also prove a generalised version of the susceptibility
result of Theorem 5 in our abstract setting in Section D.2. The
probability of sampling a data point which is susceptible to an
adversarial attack of size δ may be bounded from below as in
the following result. The form of this result is similar to that of
Theorem 9, although we note the crucial difference in the second
term.

Theorem 11 (Susceptibility to adversarial perturbations). Sup-
pose that points with label 0 are sampled from the distribution
D. Then, for any δ > 0, the probability that a point sampled at
random from the class 0 is susceptible to an adversarial attack
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with Euclidean norm δ is at least

P(x ∼ D : there exists s ∈ Bn
δ with f (x + s) , 0)

≥ sup
α≥0

[
P(x ∼ D : |ϕ(Πx)| ≤ α)

− P(x ∼ D : dπ(x) ≤ α − δ)
]
.

When applied to the SmAC distribution E, this result takes
the following form, from which we obtain Theorem 5.

Corollary 12 (Susceptibility for SmAC distributions). Suppose
that points with label 0 are sampled from the distribution E, and
suppose that ϕ ≡ 0. Then, for any δ ∈ [η, r], the probability that
a point sampled at random from the class 0 is susceptible to an
adversarial attack with Euclidean norm δ is at least

P(x ∼ E : there exists s ∈ Bn
δ with f (x + s) , 0)

≥ 1 −
1
2

A
(
1 −

(δ − η
r

)2) n
2
.

We next derive a generalised version of Theorem 6, which
bounds the probability of sampling a random perturbation which
is adversarial for f . For this result, we assume that the surface S
has some regularity, in the sense that the function ϕ is Lipschitz
with constant L ≥ 0; i.e. for any x̂, ŷ ∈ π we have |ϕ(x̂) − ϕ(ŷ)| ≤
L∥x̂ − ŷ∥. Geometrically, for any x ∈ Rn this defines a cone of
points containing x in which f is guaranteed to be constant. This
property allows us to prove the following lower bound on σ by
dS in Section D.3, which may be viewed as a companion to (2)

Lemma 13 (Lipschitz regularity gives control of σ). Suppose
that ϕ is Lipschitz with parameter L. Then, for any x ∈ Rn,

σ(x) ≥ |dS (x)| sin θ, (4)

where θ = arctan(L−1).

This crucial property allows us to prove the following general-
isation of Theorem 6 in Section D.3, indicating that destabilising
random perturbations may be expected to be rare.

Theorem 14 (Probability of sampling misclassifying random
perturbations). Suppose that points with label 0 are sampled
from the distribution D, and suppose that ϕ is Lipschitz with
parameter L. Then, for any δ > 0, the probability that a point
sampled at random from the class 0 will be misclassified after
the application of a perturbation randomly sampled uniformly
from Bn

δ is bounded by

P(x ∼ D, s ∼ Bn
δ : f (x + s) , 0)

≤ inf
α,γ≥0
t∈T (L)

[
P(x ∼ D : |ϕ(Πx)| ≥ α)

+ P
(
x ∼ D : dπ(x) ≥ −α −

t
sin θ

)
+ ∆(L)

1
2

(
1 −

( t
δ
− L

)2) n
2
·

·
(
P(x ∼ D : dπ(x) ≤ γ − t)

+ P(x ∼ D : |ϕ(Πx)| > γ)
)]
,

where ∆(L) = 1 for L ≤ 1 and 0 for L > 1, and the set T (L) =
[min{L, 1}δ, δ].

For the SmAC distribution E, Theorem 14 produces the fol-
lowing corollary (proved in Section D.3) from which Theorem 6
follows when r = 1 and η = ϵ. In this case, we have L = 0 and
so θ = π2 and sin θ = 1.

Corollary 15 (Destabilising random perturbations are rare for
SmAC distributions). Suppose that points with label 0 are sam-
pled from the distribution E, and suppose that ϕ ≡ 0. Then,
for any δ ∈ [η, r], the probability that a point sampled a ran-
dom from the class 0 is misclassified after the application of a
perturbation sampled uniformly from the ball Bn

δ is bounded by

P(x ∼ E, s ∼ Bn
δ : f (x + s) , 0) ≤ A

(
1 −

( η
r + δ

)2) n
2
.

Finally, we also obtain a generalised analogue of the univer-
sality result of Theorem 8. We define the notion of the desta-
bilisation margin in this setting to be the distance by which a
perturbation pushes a data point across the decision threshold
of the classifier (3). This is measured for class 0 by the function
d0 : Rn ×Rn → R, where, for a data point x and a perturbation s,

d0(x, s) = max{dS (x + s), 0}.

The following result then holds, as proven in Section D.4.

Theorem 16 (Universality of adversarial attacks). Suppose that
x, z ∼ D are independently sampled points with label 0, and
suppose that ϕ is Lipschitz with parameter L. For any δ, γ ∈ R,
the probability that x is destabilised by all perturbations s ∈ Bn

δ

which destabilise z with destabilisation margin d0(z, s) > γ is
bounded from below by

P(x, z ∼ D : f (x + s) , 0 for all s ∈ S z(δ))

≥ sup
α≥0,t∈R

[(
P(z ∼ D : |ϕ(Πz)| ≤ α)

− P(z ∼ D : dπ(z) > t + χ)
)
·

·
(
P(x ∼ D : |ϕ(Πx)| ≤ α)

− P(x ∼ D : dπ(x) ≤ t − χ)
)]
,

where χ = 1
2γ − Lδ − α, and for z ∈ Rn and δ ∈ R, we define

S z(δ) = {s ∈ Bn
δ : d0(z, s) > γ}.

For the SmAC distribution E, this result takes the form shown
in Corollary 17. Theorem 8 follows from this result in the case
when r = 1 and η = ϵ. Interestingly, this result does not depend
on the perturbation size δ, due to the fact that the decision surface
is assumed to be flat.

Corollary 17 (Universality of adversarial perturbations for
SmAC distributions). Suppose that points with label 0 are sam-
pled from the distribution E, and suppose that ϕ ≡ 0. For any
γ ∈ R, the probability that x is destabilised by all perturba-
tions s ∈ Bn which destabilise z with destabilisation margin
d0(z, s) > γ is bounded from below by

P(x, z ∼ E : f (x + s) , 0 for all s ∈ S z)

≥
(
1 − A

(
1 −
γ2

4r2

) n
2
)2
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Figure 5: Different scenarios to which the simple two ball model may be generalised.

4.4. Further generalisations

Despite their simplicity, the models presented above cover
a wide variety of settings. The results in Section 4.2 include
data sampled from many common distributions such as uniform
distributions and truncated Gaussian distributions. This setup
is depicted in Figure 5a. The results may be naturally extended
to a case where only one of the data classes is sampled from
a distribution satisfying the SmAC property, or where the clas-
sifier’s decision surface is only locally linear (such as ReLU
networks), as illustrated in Figure 5b. Furthermore, the results
may be applied in a fully local sense, to locally SmAC distribu-
tions, and locally linear classifiers. This generalisation is shown
in Figure 5c.

The generalised setup introduced in Section 4.3 already in-
corporates general data distributions, and only assumes that the
classifier’s decision boundary is a Lipschitz warping of a plane
in its normal direction. This setup can also be directly extended
to incorporate other ‘wiggly’ decision surfaces. For instance,
if S cannot be expressed as a modification of a hyperplane in
its normal direction, one could instead consider the surfaces
defined by the upper and lower graphs of S with respect to π.
For example, if S is given by a multi-valued function, one could
instead just take the maximum or minimum values, and where
necessary work with a Lipschitz extension of these surfaces. Our
results extend to this case, albeit with some additional looseness
reflecting the ‘uncertainty’ this imposes on the location of the
decision surface of the classifier.

Our results also naturally extend to standard multiclass classi-
fication problems. In this case, the decision boundary separating
any pair of classes may be viewed locally as a binary classi-
fier, and our results therefore apply locally (as in Figure 5c, for
example). In regions of data space where a small number of
classes meet (relative to the data dimension), analogous versions
of the results will hold. This is because in these regions we
can apply our result to the boundary between the sampled data
point and each other class separately, and collect them together.
The exponential nature of our bounds in the data dimension
will therefore dwarf the additional looseness introduced by con-
sidering the class boundaries separately. To treat the situation
when the number of classes meeting near a sampled data point
is large relative to the data dimension, additional theoretical
developments would be required. However, standard geometric
arguments would suggest that these regions of data space would
have only a very small measure, implying that data points from

non-degenerate distributions are unlikely to be sampled from
them.

We do not attempt to treat all these generalised scenarios here,
in order to present the main ideas in a simple framework.

5. Class separation margins hide adversarial susceptibility

A further intriguing component of the paradox of apparent
stability is that it may no longer occur when the two data classes
are separable, but have no margin separating them1. To model
this situation, we introduce the two half-balls model. The model
comprises two data classes, with binary labels {0, 1}, each sam-
pled uniformly from a half-ball in dimension n > 0. These
half-balls have their flat face parallel to each other and are sep-
arated by distance 2ϵ ≥ 0. Data of class 0 are sampled uni-
formly from the half-ball D0 = {x ∈ Rn : x + ϵ e1 ∈ H−Bn},
where e1 = (1, 0, . . . , 0)⊤ ∈ R, while data from class 1 are
sampled uniformly from D1 = {x ∈ Rn : x − ϵ e1 ∈ H+Bn}.
Here, we use the notation H−Bn = {x ∈ Bn : x · e1 < 0} and
H+Bn = {x ∈ Bn : x · e1 > 0}. Any pair of data points x, y
sampled with opposite classes therefore satisfy ∥x− y∥ ≥ 2ϵ. We
denote the combined distribution byDϵ = U(D0 ∪ D1).

A classification function which correctly labels this data for
any ϵ ≥ 0 can be defined by

f (x) =

0 if x1 < 0,
1 otherwise.

(5)

Data points sampled from either class are separated from the
decision surface of this classifier by distance at least ϵ. On the
other hand, for any δ > ϵ, there are clearly points sampled from
near the boundary of each class susceptible to perturbations
s ∈ Bn

δ such that f (x + s) , f (x). In high dimensions, con-
centration effects ensure that data points sampled from either
class concentrate close to the flat surface of their respective half
ball, and therefore close to the decision surface. This means that
the probability of sampling a point which is susceptible to an
adversarial attack is high, as encapsulated in the following result,
which is proved in Section C.1.

1We note that the two balls model of Section 4.2 is unable to capture this
scenario since when ϵ = 0 the two balls overlap and the classifier is just 50%
accurate
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δ).

Theorem 18 (Susceptible data points are typical). For any ϵ ≥ 0
and δ ∈ [ϵ, 1 + ϵ], the probability that a randomly sampled data
point is susceptible to an adversarial attack with Euclidean norm
δ grows exponentially to 1 with the dimension n, specifically

P
(
x ∼ Dϵ : there exists s ∈ Bn

δ such that f (x + s) , f (x)
)

≥ 1 − (1 − (δ − ϵ)2)n/2.

Analogously to Theorem 6, we also derive the following
bound on the probability of a random perturbation destabilising
a sampled data point, the proof of which is in Section C.2.

Theorem 19 (Destabilising perturbations are rare). For any
δ > ϵ ≥ 0, the probability that a randomly selected perturbation
with Euclidean norm δ causes a randomly sampled data point
to be misclassified is bounded from above as

P
(
x ∼ Dϵ , s ∼ U(Bn

δ) : f (x + s) , f (x)
)

≤
1
4

(
1 −

( ϵ
δ

)2)n/2
.

Surprisingly, for ϵ = 0 (when the two half balls meet along
their flat faces) this probability does not converge to zero with
increasing dimension n. To illustrate that this is not simply a
looseness in the bound, we present empirical data in Figure 6
demonstrating that the probability of sampling a destabilising
perturbation at random remains approximately constant, even in
high dimensions.

A deeper theoretical analysis reveals that the probability of
a label swap in the model with ϵ = 0 is always separated away
from zero for all dimensions n > 1. In particular, the following
result holds, the proof of which is provided in Section C.3.

Theorem 20 (No place to hide when margins are zero). Con-
sider the two half-balls model with ϵ = 0, n > 1, and let δ > 0.
Then

lim
n→∞

P(x ∼ Dϵ , s ∼ U(Bn
δ) : f (x + s) , f (x)) ≥

sup
p∈(0,1)

2p

1 − Φ  √
2| log(1 − p)|
δ

 ,

where Φ is the standard cumulative distribution function.

According to Theorem 20, the probability of label swaps
due to additive and independent random perturbations sampled
fromU(Bn

δ) does not converge to zero when n grows arbitrarily
large in this model when ϵ = 0. This is in stark contrast with
the case when the separation margin ϵ is non-zero, where the
analogous upper bound from Theorem 19 goes to zero with
increasing dimension n. We conclude from these results that it
is the presence of a non-zero margin ϵ > 0 separating pairs of
typical data points that is responsible for ‘hiding’ the adversarial
susceptibility of the classifier such that it cannot be efficiently
detected using random perturbations.

6. Discussion and relation to prior work

6.1. Existence of adversarial examples

Since the seminal work [1] reporting the discovery of adver-
sarial examples in deep neural networks, the topic of adversarial
examples as well as their origins and the mechanisms behind
their occurrence have been the focus of significant attention in
theoretical and computational machine learning communities.
One hypothesis, expressed in [1] was that the existence of the ad-
versarial examples could be attributed to the inherent instabilities
– i.e., large Jacobian norms leading to large Lipschitz constants
for the classification maps. Theorems 5, 6 (see also Theorems 18
and 19 in Section 5) show that whilst the latter mechanism may
indeed constitute a feasible route for adversarial examples to
occur, our presented framework reveals a simple pathway for
adversarial data to emerge naturally in systems without large
Jacobian norms.

6.2. Fragility of adversarial examples

It has been empirically observed in [21, 22] that the capability
of adversarial examples to fool the classifiers for which they have
been designed can be hindered by perturbations and transfor-
mations which are naturally present in real-world environments.
Here we show and prove (Theorems 6 and 19) that in the vicinity
of the target images, adversarial examples may indeed occupy
sets whose Lebesgue measure is exponentially small. Hence, the
addition of a small but appropriate perturbation to an example
of that type will have the capability to make it non-adversarial.
Our results also show that simply adding random noise to an
adversarially attacked image is very unlikely to produce some-
thing which would be correctly classified. Taken together, these
two observations suggest that random image perturbations have
a significantly different effect on standard image classification
models from natural environmental changes to images.

6.3. Certifying robustness of classifiers to adversarial perturba-
tions

There is a body of work in the literature dedicated to de-
tecting, mitigating, and defending against adversarial attacks
using randomly sampled noise; see, for example, the algorithms
discussed in [10, 11, 12] amongst many others. If many such
randomly sampled perturbations are used, our results suggest
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that only a small fraction of them would change the classifica-
tion of an image. Indeed, this fraction is exponentially small
(in the data dimension n) when the classifier’s decision surface
is locally linear around the perturbed data point (Theorems 6
and 14). Equivalently, this suggests that such algorithms would
need to take exponentially many (in n) samples to find even one
which changes the classification. This implies that, to reliably
detect or defend against an adversarial attack, algorithms based
on this approach require an exponentially large computational
complexity.

6.4. Universal adversarial perturbations

Another striking feature of adversarial examples is the exis-
tence of seemingly universal adversarial perturbations. These
are small image-agnostic perturbations which can be applied to
most, if not all, images in a dataset to cause the image to be
misclassified by a given model. The phenomenon of universal
adversarial perturbations was first reported in [23] and since
then observed in a wide range of tasks and architectures [2].
Several explanations justifying the existence of universal adver-
sarial perturbations have been proposed in the literature. This
includes the view that universal perturbations may exploit cor-
related lower-dimensional structures in the classifier’s decision
boundaries. It has been less clear how to explain the simultane-
ous existence, fragility, typicality, and universality of adversarial
perturbations. Theorems 5, 6, and 8 show that the combination
of these correlations with the high dimensionality of data may
explain the co-existence of the typicality of adversarial examples,
their fragility, and at the same time universality.

6.5. Notions of stability

Our results reveals a new unexplored relationship between
stability and the existence of adversarial data. We show that the
ubiquitous presence of adversarial perturbations which desta-
bilise the classifier is not contradictory to the robustness of the
classifier to random perturbations of the data. If we view the
former as a form of deterministic instability (i.e. there exist
small, and potentially arbitrarily small, destabilising perturba-
tions which can be constructed by an attacker), and the latter as
a form of probabilistic stability (destabilising perturbations are
unlikely to be sampled at random), it becomes apparent that the
probabilistic stability is in fact masking the underlying instabil-
ity. Since these two notions of stability are clearly not equivalent,
it is imperative to understand the difference between the two. To
clarify this intriguing relationship, let us first recall two relevant
definitions of stability (cf. [24]).

Definition 21 (ϵ-stability). The classification map f : Rn →

{0, 1} is ϵ-stable at x if

f (x + s) = f (x) for all s ∈ Bn
ϵ .

Otherwise, if there is an s ∈ Bn
ϵ for which f (x + s) , f (x), we

say that the classification map f is not ϵ-stable at x, or that f is
ϵ-unstable at x.

Figure 7: Adversarial susceptibility of seemingly stable classifiers. Points x and
y are in the ∆ thickening of disc intersecting the ballD1 along one of its largest
equators. For n sufficiently large, most points sampled fromU(D1) belong to
this domain. Both x and y are (ϵ − ∆)-stable. At the same time, they are also
δ-stable with confidence υ ≂ 1.

Definition 22 (ϵ-stability with confidence υ). Let µ be a proba-
bility distribution on Bn

ϵ . The classification map f : Rn → {0, 1}
is ϵ-stable at x with confidence υ w.r.t. the distribution µ if

P(s ∼ µ : f (x + s) = f (x)) ≥ υ.

At the core of the phenomenon explored in Theorems 5 and
6 is the fact that a “typical” point x is δ-stable with confidence
υ with respect to perturbations sampled from U(Bn

δ), where υ
approaches 1 exponentially in n. This makes the finding of
adversarial perturbations by adding random samples s ∼ U(Bn

δ)
difficult and unlikely.

At the same time, for n sufficiently large, typical points are lo-
cated in some ∆ < ϵ vicinity of the equators of the n-dimensional
unit balls supportingD0 andD1. This implies that these typical
points are ϵ − ∆-stable in the sense of Definition 21. This is
visualised in the diagram shown in Figure 7. In the absence of
the margin ϵ separating the centres of D0 and D1, there is no
room to “hide” adversarial examples among random perturba-
tions. This leads to the intriguing observation that, for some
appropriate value of ϵ:

The existence and prevalence of adversarial examples
which are undetectable via random perturbations can
be enabled by the ϵ-stability of ‘typical’ data samples.

This is further illustrated through the two half-balls model
investigated in Section 5. The choice of sampling two data
classes were sampled from complementary half-balls separated
by margin ϵ ≥ 0 was motivated by its ability to represent two
separable classes without any margin or overlap. As shown
numerically in Figure 6, in the absence of margins (which is
an admissible case in the setup adopted in [25]) the probability
of registering misclassifications due to random perturbation is
significant and does not change much with dimension. This is
confirmed theoretically by Theorem 20.

6.6. Other theoretical frameworks explaining the phenomenon
of adversarial examples

Several works have presented feasible mechanisms explain-
ing some elements of the paradox considered in this work. For
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example in [25], [26] the authors exploited concentration of mea-
sure arguments to determine conditions when small destabilising
perturbations can be typical in high dimensional settings. In [27]
the authors looked at the relationships between the relative sizes
of class-altering perturbations in random directions and their
worst-case counterparts (adversarial). Sample-inefficiency of
robust training with random noise as well as the impact of the
choice of norms have been discussed in [7]. Relevant geometric
concepts explaining the feasibility of the expected emergence of
adversarial examples have been suggested in [8] (the dimpled
manifold hypothesis) and [9] (the boundary tilting mechanism).

In our work, we focused on presenting a single simple theoret-
ical framework that could holistically explain the simultaneous
rarity of destabilising random perturbations, the typicality of
adversarial examples (see Figure 6 and the discussion below),
their universality, their potential fragility, and the relationship
between the presence of non-zero independent on dimension sep-
aration margins (i.e. stability) and the possibility to successfully
hide vulnerability to adversarial perturbations in the apparent
robustness to random perturbations. Revealing the connection
between all these phenomena within a single setting is a key
feature of our framework.

The typicality of such coexistence in a broad class of problems
distinguishes our work from other relevant theories and expla-
nations focussing on showing the existence of tasks in which
instabilities are expected in otherwise accurate classifiers (see
e.g. [3], [4]).

7. Experimental investigation of the paradox of apparent
stability

We experimentally explored the paradox of apparent stability
using several standard benchmark image classification datasets.
We first describe the experimental methodology in Section 7.1,
and the results are reported in Section 7.2. The results for each
benchmark are reported separately in the following sections:

• results for the CIFAR-10 dataset [5] are in Section 7.2.1

• results for the Fashion MNIST dataset [14] are in Sec-
tion 7.2.2

• results for the German Traffic Sign Recognition Benchmark
(GTSRB) [15] are in Section 7.2.3

• results for the ImageNet benchmark [16] are in Sec-
tion 7.2.4

To present the phenomenon in the simplest possible setting, for
CIFAR-10, Fashion MNIST and GTSRB, we arranged the n
classes of each benchmark dataset into 1

2 n(n − 1) binary classi-
fication problems. A convolutional neural network was trained
and assessed for each problem using a standardised protocol
described below. To complement these experiments, we also
investigated two pre-trained foundation models on the 1000-
class image classification ImageNet benchmark, as described in
Section 7.1.5.

Layer Size Output channels Number of trained parameters

Conv-1 3 × 3 64 1,792
Conv-2 3 × 3 64 36,928

Max pool 2 × 2
Conv-3 3 × 3 128 73,856
Conv-4 3 × 3 128 147,584

Max pool 2 × 2
Conv-5 3 × 3 256 295,168
Conv-6 3 × 3 256 590,080

Global max pool
Dense 512 131,584
Dense 1 513

Table 2: Architecture used for the binary classification problems. All convolu-
tional layers do not pad their output, and are followed by a leaky ReLU activation
function with leakiness parameter 0.1. The final dense layer has a standard sig-
moid activation function. The number of trainable parameters depends on the
size of the input data, and we use CIFAR-10 as an example.

The results here are presented normalised to the setting of
images with pixel values in [0, 1], regardless of the native scal-
ing of the datasets or pre-trained models. This enables us to
conveniently and comparably discuss the sizes of individual
adversarial or random perturbations.

These results were computed using the CREATE HPC facili-
ties at King’s College London [28].

7.1. Experimental setup

7.1.1. Network architecture
Convolutional neural networks were trained on each of these

problems, using a similar architecture and training regime for
each problem. Here, we describe the default settings, and any
variations made for specific datasets are documented in the sec-
tion describing the results computed on that dataset. We used a
simplification of the VGG architecture [17], the details of which
are given in Table 2.

For each pair-wise binary classification problem, the classes
were assigned the labels 0 and 1, for compatibility with a stan-
dard sigmoid function on the output node of the network. A
mean square error loss function was used to train the network in
Tensorflow [18] using stochastic gradient descent using a batch
size of 128 for 100 epochs with Nesterov momentum parameter
0.9 and an initial learning rate of 0.1, which was halved every
20 epochs. Dropout was used on the convolutional layers during
training, with a parameter of 0.4.

For the binary classification problem of distinguishing class
i from class j, we denote the training set by Xi, j, and the test
set by Yi, j. The subsets of training and test images which were
correctly classified by the network are then denoted by Xcorr

i, j ⊂

Xi, j and Ycorr
i, j ⊂ Yi, j respectively.

We are therefore able to compute the training and test accuracy
of the network for the binary classification problem involving
class i and class j as the percentages

100
card(Xcorr

i, j )

card(Xi, j)
and 100

card(Xcorr
i, j )

card(Xi, j)
, (6)

respectively, where we use card to denote the cardinality of a
set.
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7.1.2. Adversarial attacks
To investigate the susceptibility of the networks to adversarial

attacks, we used a standard gradient-based algorithm on a loss
function, which can be viewed as an Euclidean version of the
Fast Gradient Sign Method (FGSM) introduced in [6]. Specifi-
cally, if L(x, y,N) denotes the mean square error loss function
evaluated on the neural network N at the target image x with
label ℓ, we compute the adversarial attack direction as

a(x) =
∇xL(x, ℓ,N)
∥∇xL(x, ℓ,N)∥

,

where ∥ · ∥ denotes the Euclidean norm. We then tested 256
equally-spaced scalings ϵ ∈ [0, 5] to determine the smallest value
such that |ℓ − N(x + ϵa(x))| > 1

2 . This value of ϵ therefore gives
the Euclidean norm of the smallest perturbation (among those
tested) in the direction of a(x) such that the network therefore
predicts the wrong class for the attacked image. The value of
ϵ therefore provides an upper bound on the minimal Euclidean
distance of the image x from the decision surface of the neural
network N.

For the class i vs class j binary classification problem, we
use Xadv

i, j ⊂ X
corr
i, j to denote the set of training images x ∈ Xcorr

i, j
such that x was correctly classified by the network, but x + ϵa(x)
was misclassified for at least one of our tested values of ϵ. The
equivalent subset of the test set is denoted by Yadv

i, j ⊂ Y
corr
i, j . We

may then define the adversarial susceptibility of the network for
the training and test sets as the percentages

100
card(Xadv

i, j )

card(Xcorr
i, j )
, and 100

card(Yadv
i, j )

card(Ycorr
i, j )
, (7)

respectively, where we use card to denote the cardinality of a
set.

7.1.3. Random perturbations
To assess the effect on the network of random perturbations

to the images, we sampled a set P of 2000 random perturbations
from a uniform distribution on the d-dimensional ball with Eu-
clidean norm ≤ 1, where d denotes the number of individual
attributes of an image from the dataset. Then, for each pair i, j
of classes, we performed the following experiment. For each
image x in the subsets Xadv

i, j and Yadv
i, j of the training and test sets

which were susceptible to an adversarial attack, we constructed
the perturbed image x + δϵs for each s ∈ P, where ϵ denotes
the Euclidean norm of the smallest successful adversarial attack
on x, scaled by each value of δ ∈ {1, 2, 5, 10} sequentially. In
other words, we evaluated the network on an image which was
perturbed by a random perturbation with Euclidean norm scaled
by a fixed multiple of that of the (known successful) adversarial
attack.

For the class i vs class j binary classification problem, we
define the set Xrand,δ

i, j ⊂ Xadv
i, j as the set of images which were

susceptible to one or more random perturbations with scaling
factor δ, as described above. The set Yrand,δ

i, j ⊂ Yadv
i, j is defined

analogously on the test set of images.
This enables us to define the random perturbation suscep-

tibility of each network for the training and test sets as the

percentages

100
card(Xrand,δ

i, j )

card(Xadv
i, j )
, and 100

card(Yrand,δ
i, j )

card(Yadv
i, j )
, (8)

respectively for each tested value of δ, where we use card to
denote the cardinality of a set.

7.1.4. Training with random perturbations
We explored the effect of applying additive random noise

to images during training on adversarial robustness. For sim-
plicity, we only explored this using the CIFAR-10 benchmark.
To do this we inserted a layer at the beginning of the network
architecture described in Table 2 which sampled noise from a
prescribed distribution independently for each input and added
it to the input. The precise random perturbation added to each
image is therefore different each time the image is presented to
the network during training. The random perturbation layer is
only active during training, so does not affect how the trained
network is assessed at test time. We experimented with noise
sampled uniformly from the cube [−a, a]n (i.e. with maximum
ℓ∞ norm a > 0 and with noise sampled from the ball Bn

b (i.e.
with maximum Euclidean norm b > 0), with a ∈ {0.1, 0.5, 1.0},
b ∈ {3.2, 16, 32}, where n is the dimension of a single image
in the dataset. These values of a and b were selected to ensure
that for each pair of a and b values the samples from each distri-
bution would have approximately the same Euclidean norm on
average. This enables us to observe whether the sampling distri-
bution makes a significant impact on the results, independently
of the magnitude. Each network was otherwise trained exactly
as described in Section 7.1.1.

7.1.5. ImageNet experimental setup
Experiments using the ImageNet image classification bench-

mark [16] were performed using the pretrained VGG 19 [17] and
ResNet50 [19] neural networks available from Tensorflow [18].
These architectures were selected because the VGG-19 network
resembles the smaller networks we trained for the other datasets,
while the ResNet50 architecture enables us to compare how our
findings translate to a significantly different family of models.
For these experiments, we sampled 20,480 images from the stan-
dard validation split of the ImageNet dataset, and assessed the
accuracy, adversarial susceptibility and random susceptibility
of each network as described above. Since ImageNet has 1,000
classes, we ensured that every class was represented in the sam-
pled data, although did not require the same number of images
from each class. Our notions of adversarial and random suscep-
tibility in this setting are ‘one-vs-all’: an adversarial attack or
random perturbation is considered to cause a misclassification if
it causes the predicted class label to change to any other class.
Since our aim is simply to understand the relationship between
random and worst-case perturbations, this treatment does not ac-
count for the widely-reported close semantic similarity between
various pairs of ImageNet classes (see [29], for example).
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Index Name

0 Aeroplane
1 Automobile
2 Bird
3 Cat
4 Deer
5 Dog
6 Frog
7 Horse
8 Ship
9 Truck

Table 3: CIFAR-10 — Class names associated with each class index.

7.2. Experimental results

7.2.1. Experimental results on CIFAR-10
The English names associated with each of the 10 classes are

provided in Table 3.

Network performance.. The training and test accuracy of the
networks trained on each of the binary classification problems is
shown in Table 4. The mean accuracy on the training set of the
networks trained for all of the binary classification problems was
99.57% (standard deviation 0.24), with a minimum of 98.74%.
In comparison, the mean accuracy on the test set was 94.09%
(standard deviation 3.78), with a minimum of 82.6%. These
figures indicate that the networks were generally quite capable
to learning these binary classification problems, despite the fact
they were trained using the same regime for only 100 training
epochs each, and no specific tweaks were applied to improve the
performance of any network.

Adversarial attacks.. We report the adversarial susceptibility
of each network (as defined in Section 7.1.2) in Table 5. On
average over all the binary classification problems, 85.0% of
the training images were susceptible to an adversarial attack
(standard deviation 9.71) with a minimum of 70.28%, while the
average on the test set was 79.48% (standard deviation 7.91)
with a minimum of 69.82%. We note that both minima were
attained on the same task ‘frog-vs-ship’ (6-vs-8). In the vast
majority of the binary classification problems, over 80% of im-
ages in the training and test sets could be adversarially attacked
in such a way that they would be misclassified by the network.
This demonstrates the susceptibility of all of the networks to
adversarial attacks, implying that the decision surface in each
case passes close to most of the points in the training and test
sets.

To measure just how close the decision surface passes to each
data point, we also explore the sizes of the computed adversarial
perturbations measured in several norms. In Table 6 we show the
mean and standard deviations over each training and test set of
the Euclidean norms of the smallest computed adversarial attack
on each image. Similarly, Table 7 shows the mean and standard
deviations over each training and test set of the ℓ1 norms of the
adversarial attacks, while Table 8 shows the same information
for the ℓ∞ norms.

The summary statistics reported in these tables are broken
down in violin plots for a representative sample of the binary

Figure 8: CIFAR-10 — The distribution of the ℓ1 norms of the successful
adversarial attacks found for each image using the algorithm in Section 7.1.2,
shown for a representative sample of the binary classification problems. The
plotted distributions were fitted to the data using a standard Kernel Density
Estimation algorithm and therefore only provide an approximation of the true
empirical distribution.

classification problems (selected, for simplicity, as the ‘i-vs-(i +
1)’ problems). These show an approximation of the distribution
of the Euclidean norms (Figure 9), ℓ∞ norms (Figure 10) and
ℓ1 norms (Figure 8) of adversarial attacks. In each case, this is
the distribution across the whole training or test set of the norm
of the smallest misclassifying adversarial attack found for each
image using the algorithm described in Section 7.1.2. It is clear
from these plots that for the majority of the adversarial attacks
the largest change to any individual pixel value is comparatively
small: the ℓ∞ norm is less than 0.2 for most of the images across
all tasks. The ℓ1 norms, on the other hand, compute the sum of
the absolute values of all changes to all pixels, so are expected
to be a much larger value. Scaling these ℓ1 norms by the number
of pixel channels (32 × 32 × 3 = 3, 072), we obtain the mean
absolute change to a single pixel. Taking 100 as a representative
maximum value for the ℓ1 norm across the majority of cases,
we can therefore observe that this would correspond to a mean
absolute change of approximately 0.03. Comparing this value
to a similarly representative value of less than 0.5 for the ℓ∞

norm of the adversarial attack, it is clear that this implies that
the attacks are typically very localised since most of the change
must be focused in just a few pixels.

The plots also indicate that the networks trained on certain
tasks (such as ‘bird-vs-cat’ (2-vs-3) and ‘cat-vs-deer’ (3-vs-4)
seem to be much more susceptible to small adversarial attacks.
We mean this in the sense that while the overall attack suscepti-
bility (Table 5) is quite typical, the attacks themselves on these
classes appear to have much smaller norms.

The conclusion from these experiments is that most points
in all of the training and test sets lie very close to the decision
surface of the neural network, implying that the networks are
susceptible to small perturbations to most of their training and
test data.
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1 2 3 4 5 6 7 8 9

0 99.88, 96.45 99.31, 91.70 99.40, 95.20 99.36, 94.65 99.67, 95.45 99.25, 96.05 99.49, 96.45 99.73, 94.10 99.77, 95.40
1 99.67, 96.65 99.46, 95.95 99.78, 98.10 99.75, 97.55 99.17, 96.85 99.91, 98.80 99.72, 96.85 99.77, 93.65
2 99.08, 85.20 99.70, 87.25 99.35, 87.05 99.68, 91.05 99.63, 92.90 99.58, 95.30 99.42, 95.80
3 98.74, 86.70 99.77, 82.60 99.09, 88.80 99.68, 91.35 99.53, 96.05 99.47, 95.05
4 99.59, 90.60 99.84, 94.90 99.78, 90.30 99.58, 97.20 99.42, 96.75
5 99.79, 93.95 99.72, 90.40 99.60, 96.85 99.41, 96.05
6 99.85, 96.70 99.40, 97.10 99.72, 97.20
7 99.70, 97.65 99.85, 97.60
8 99.78, 95.80

Table 4: CIFAR-10 — Accuracy of the networks on the binary classification problems, reported in the form ‘train accuracy, test accuracy’, where accuracy is
calculated as the percentage of images which were correctly classified. The row and column headers indicate the classes used in each binary classification problem.

1 2 3 4 5 6 7 8 9

0 88.33, 86.88 95.69, 96.24 86.74, 86.08 95.19, 94.35 85.27, 83.97 83.43, 81.68 89.47, 88.02 92.78, 91.87 74.23, 73.69
1 86.25, 86.08 84.52, 83.79 93.59, 92.92 89.94, 88.83 85.23, 85.91 97.17, 97.17 89.62, 88.80 87.85, 88.04
2 91.88, 89.96 99.54, 99.66 96.93, 96.50 96.75, 96.05 92.97, 93.16 85.14, 83.89 92.73, 92.75
3 93.85, 92.85 99.86, 99.82 98.49, 98.65 98.95, 98.63 91.93, 92.04 78.84, 78.12
4 98.97, 98.34 98.99, 98.79 99.77, 99.56 80.96, 80.45 90.02, 90.08
5 96.19, 95.48 99.61, 99.61 84.14, 83.32 72.53, 71.63
6 98.63, 98.76 70.28, 69.82 87.35, 88.22
7 82.60, 83.56 96.85, 96.82
8 79.41, 78.03

Table 5: CIFAR-10 — Susceptibility of the networks to adversarial attacks, reported in the form ‘train susceptibility, test susceptibility’, where susceptibility is
calculated as in (7) as the percentage of images from the training set and test set which were misclassified after an adversarial attack using the algorithm described in
Section 7.1.2. The row and column headers indicate the classes used in each binary classification problem.

1 2 3 4 5 6 7 8 9

0 train 1.25 (0.92) 0.76 (0.60) 1.19 (0.86) 0.96 (0.84) 1.32 (0.94) 1.21 (0.83) 1.24 (0.92) 0.84 (0.81) 1.20 (1.01)
test 1.25 (0.94) 0.79 (0.66) 1.21 (0.92) 0.97 (0.81) 1.36 (0.97) 1.24 (0.83) 1.26 (0.94) 0.83 (0.83) 1.25 (1.03)

1 train 1.32 (0.93) 1.00 (0.58) 1.13 (0.82) 1.27 (0.71) 0.96 (0.63) 1.50 (0.92) 1.08 (0.86) 0.75 (0.74)
test 1.35 (0.96) 1.00 (0.58) 1.14 (0.86) 1.28 (0.70) 0.99 (0.62) 1.47 (0.91) 1.06 (0.87) 0.74 (0.75)

2 train 0.40 (0.31) 0.48 (0.37) 0.64 (0.53) 0.56 (0.45) 0.86 (0.70) 1.05 (0.72) 1.21 (0.89)
test 0.37 (0.32) 0.47 (0.41) 0.63 (0.58) 0.57 (0.51) 0.86 (0.75) 1.06 (0.75) 1.22 (0.90)

3 train 0.47 (0.41) 0.40 (0.26) 0.74 (0.55) 0.58 (0.45) 1.27 (0.87) 0.72 (0.45)
test 0.44 (0.40) 0.35 (0.31) 0.73 (0.58) 0.57 (0.46) 1.29 (0.89) 0.72 (0.46)

4 train 0.68 (0.50) 0.54 (0.40) 0.65 (0.44) 1.17 (0.90) 1.03 (0.75)
test 0.67 (0.53) 0.53 (0.43) 0.63 (0.50) 1.21 (0.91) 1.07 (0.76)

5 train 0.75 (0.58) 0.73 (0.50) 1.33 (0.90) 0.94 (0.68)
test 0.77 (0.59) 0.70 (0.53) 1.32 (0.90) 0.98 (0.71)

6 train 0.82 (0.49) 1.38 (1.06) 0.94 (0.56)
test 0.83 (0.51) 1.42 (1.08) 0.97 (0.58)

7 train 1.39 (0.93) 1.05 (0.69)
test 1.41 (0.97) 1.05 (0.66)

8 train 1.14 (1.02)
test 1.13 (1.05)

Table 6: CIFAR-10 — Means and standard deviations of the Euclidean norms norms of the smallest successful adversarial attack on each image in the training and
test set, reported in the form ‘mean (standard deviation)’. The numbers in the row and column headers indicate the classes used in each binary classification problem.
The ‘train’ row shows the values computed over the training set, while the ‘test’ row shows the values computed over the test set.
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1 2 3 4 5 6 7 8 9

0 train 43.58 (31.63) 24.81 (19.52) 40.77 (30.04) 32.93 (29.12) 43.40 (31.07) 40.08 (27.55) 43.21 (32.21) 27.75 (26.27) 41.17 (34.03)
test 43.75 (32.53) 25.80 (21.35) 41.29 (31.76) 33.23 (28.07) 44.58 (31.90) 41.01 (27.42) 43.99 (32.61) 27.31 (26.69) 42.73 (35.09)

1 train 43.67 (30.41) 31.26 (18.66) 37.92 (26.88) 41.80 (23.68) 30.91 (20.83) 50.20 (30.37) 36.27 (28.58) 23.48 (22.71)
test 44.62 (31.28) 31.42 (18.83) 38.38 (28.13) 42.21 (23.44) 31.85 (20.46) 49.17 (29.95) 35.49 (28.86) 23.24 (23.52)

2 train 13.21 (10.15) 15.77 (12.02) 20.75 (17.32) 18.44 (14.49) 28.16 (23.22) 34.41 (23.75) 39.90 (29.16)
test 12.27 (10.59) 15.37 (13.53) 20.27 (18.76) 19.03 (16.61) 28.24 (24.51) 34.76 (24.91) 40.46 (29.26)

3 train 15.75 (13.50) 12.88 (8.26) 23.30 (17.50) 19.21 (14.39) 43.05 (29.57) 23.97 (15.48)
test 14.86 (13.22) 11.22 (9.67) 23.05 (18.58) 18.90 (15.04) 43.74 (30.26) 24.07 (15.69)

4 train 23.18 (17.02) 18.52 (13.60) 19.96 (13.64) 38.80 (30.40) 33.26 (23.93)
test 22.81 (18.14) 18.22 (14.59) 19.39 (15.33) 40.01 (30.97) 34.66 (24.06)

5 train 23.89 (18.77) 23.76 (15.43) 45.22 (30.63) 30.60 (22.05)
test 24.53 (19.03) 22.78 (16.78) 45.22 (30.79) 31.86 (23.00)

6 train 27.77 (16.80) 46.02 (35.74) 30.55 (18.78)
test 27.97 (17.57) 47.44 (36.49) 31.66 (19.39)

7 train 47.05 (31.64) 35.33 (22.86)
test 47.78 (33.38) 35.27 (22.17)

8 train 38.53 (34.28)
test 38.29 (35.17)

Table 7: CIFAR-10 — Means and standard deviations of the ℓ1 norms of the successful adversarial attacks on each training and test set, reported in the form ‘mean
(standard deviation)’. The numbers in the row and column headers indicate the classes used in each binary classification problem. The ‘train’ row shows the values
computed over the training set, while the ‘test’ row shows the values computed over the test set.

1 2 3 4 5 6 7 8 9

0 train 0.14 (0.11) 0.09 (0.08) 0.13 (0.09) 0.11 (0.10) 0.16 (0.12) 0.14 (0.10) 0.14 (0.11) 0.10 (0.10) 0.14 (0.12)
test 0.14 (0.11) 0.10 (0.09) 0.13 (0.10) 0.12 (0.10) 0.17 (0.13) 0.14 (0.10) 0.15 (0.12) 0.10 (0.10) 0.14 (0.12)

1 train 0.16 (0.12) 0.13 (0.08) 0.13 (0.10) 0.15 (0.09) 0.11 (0.07) 0.18 (0.12) 0.13 (0.11) 0.10 (0.10)
test 0.16 (0.13) 0.13 (0.08) 0.13 (0.11) 0.16 (0.09) 0.11 (0.07) 0.18 (0.12) 0.13 (0.11) 0.09 (0.10)

2 train 0.05 (0.04) 0.06 (0.04) 0.08 (0.07) 0.07 (0.06) 0.11 (0.10) 0.13 (0.09) 0.15 (0.12)
test 0.04 (0.04) 0.05 (0.05) 0.08 (0.07) 0.07 (0.06) 0.11 (0.11) 0.13 (0.10) 0.15 (0.12)

3 train 0.05 (0.05) 0.06 (0.04) 0.10 (0.07) 0.08 (0.06) 0.15 (0.11) 0.09 (0.06)
test 0.05 (0.05) 0.05 (0.05) 0.10 (0.08) 0.07 (0.07) 0.15 (0.11) 0.09 (0.06)

4 train 0.08 (0.06) 0.06 (0.05) 0.09 (0.07) 0.15 (0.11) 0.13 (0.10)
test 0.07 (0.06) 0.06 (0.06) 0.09 (0.07) 0.15 (0.11) 0.13 (0.10)

5 train 0.10 (0.08) 0.10 (0.08) 0.15 (0.11) 0.12 (0.09)
test 0.10 (0.08) 0.10 (0.08) 0.15 (0.11) 0.12 (0.10)

6 train 0.10 (0.06) 0.17 (0.13) 0.11 (0.07)
test 0.10 (0.06) 0.17 (0.14) 0.12 (0.07)

7 train 0.16 (0.11) 0.13 (0.09)
test 0.16 (0.12) 0.13 (0.08)

8 train 0.15 (0.14)
test 0.15 (0.15)

Table 8: CIFAR-10 — Means and standard deviations of the ℓ∞ norms of the smallest successful adversarial attack on each image in the training and test set, reported
in the form ‘mean (standard deviation)’. The numbers in the row and column headers indicate the classes used in each binary classification problem. The ‘train’ row
shows the values computed over the training set, while the ‘test’ row shows the values computed over the test set.
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Figure 9: CIFAR-10 — The distribution of the Euclidean norms of the successful
adversarial attacks found for each image using the algorithm in Section 7.1.2,
shown for a representative sample of the binary classification problems. The
plotted distributions were fitted to the data using a standard Kernel Density
Estimation algorithm and therefore only provide an approximation of the true
empirical distribution.

Figure 10: CIFAR-10 — The distribution of the ℓ∞ norms of the successful
adversarial attacks found for each image using the algorithm in Section 7.1.2,
shown for a representative sample of the binary classification problems. The
plotted distributions were fitted to the data using a standard Kernel Density
Estimation algorithm and therefore only provide an approximation of the true
empirical distribution.

Random perturbations. To explore whether the adversarial sen-
sitivities described above could be triggered by random per-
turbations to the input data, we used the approach outlined in
Section 7.1.3. We report the random perturbation susceptibility
of each network (as defined in Section 7.1.3) in Table 9 for δ = 1,
Table 10 for δ = 2, Table 11 for δ = 5, and Table 12 for δ = 10.

The remarkable story shown by this data is that the networks
are almost universally insensitive to random perturbations to
the images, even when those perturbations become quite dras-
tic. This puzzling feature is demonstrated in Figures 11 and 12,
where we show examples from the ‘aeroplane-vs-cat’ binary clas-
sification problem (0-vs-3), of images of a cat and an aeroplane
(original image in panel (a)) which were correctly classified
by the network, alongside the same image after an adversarial
attack which successfully changed the network’s predicted class
in panel (b). This adversarial attack makes only a small change
to the image (the largest change to any single pixel channel is
0.19 for the cat and 0.05 for the aeroplane). When the image is
perturbed using a large random perturbation, as shown in panel
(c), however, the network still produces the correct classification.
For comparison, in panel (d) we show a random perturbation
which caused the network to misclassify the image. Both of
these random perturbations were obtained using δ = 10 as in
Section 7.1.3 and therefore have similar norms. To the human
eye, however, there is no significant difference between the two
randomly perturbed images, or between the original image and
the adversarially attacked image. Even in these cases where a
random perturbation was found which caused a misclassification,
it is to be noted that only a small fraction of the 2,000 sampled
random perturbations did so (4.15% for the cat and 0.2% for the
aeroplane).

The data from Tables 9–12 shows that as the scale of the
random perturbations increases (as controlled by δ), so too does
the probability of causing a perturbed image to be misclassified.
In itself, this observation is unsurprising, but the data in Table 11
shows that, even when the random perturbations are scaled to
be 5 times larger than the known adversarial attack (measured
in the Euclidean norm, corresponding to δ = 5), typically fewer
than 5% of images were misclassified after applying any of the
random perturbations.

In Figures 13b–13a we show the distributions of the smallest
random perturbation found to cause an image to be misclassified,
as measured in the Euclidean, ℓ∞ and ℓ1 norms respectively, for
δ = 10 on a representative sample of the binary classification
problems (the ‘i-vs-(i + 1)’ problems, cf. Figures 9–8). Recall
that the random perturbations were sampled from a ball with Eu-
clidean norm less than or equal to 1 (although high dimensional
concentration phenomena ensure that the all of the random per-
turbations have Euclidean norm very close to 1), and were scaled
by δ times the Euclidean norm of the smallest successful adver-
sarial attack when used to attack each image. This explains the
underlying similarity between these distributions and those in
Figures 9–8, which show the size distributions of the adversarial
attacks. However, it is readily apparent here once again that sig-
nificantly larger random perturbations are required as compared
to adversarial perturbations. This is visible (and shown in more
detail for the ‘cat-vs-aeroplane’ problem (0-vs-3) in Figure 14
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(a) Original (b) Misclassified adversarially attacked cat
(attack
ℓ1 norm: 67.98,
Euclidean norm: 1.94,
ℓ∞ norm: 0.19)

(c) Correctly classified randomly perturbed
cat (δ = 10, perturbation
ℓ1 norm: 856.28,
Euclidean norm: 19.41,
ℓ∞ norm: 1.83)

(d) Misclassified randomly perturbed cat
(δ = 10, perturbation
ℓ1 norm: 860.64,
Euclidean norm: 19.41,
ℓ∞ norm: 1.65)

Figure 11: CIFAR-10 — An example of an adversarially attacked image of a
cat, taken from the ‘cat-vs-aeroplane’ binary classification problem (0-vs-3),
alongside examples of large random perturbations to the same image which
did and did not cause the network to misclassify the image. Of the 2,000
sampled random perturbations, 83 (4.15%) caused this image to be misclassified.
Components of the modified image which were outside the range [0, 1] have
been clipped into the range for plotting, although not for the classification.

from the fact that the random perturbation distributions appear
to have much thicker tails than those for the adversarial pertur-
bations; if simply a fixed fraction of all random perturbations
were successful in causing an image to be misclassified then
the distributions would shrink by a constant factor along their
length.

Together, this evidence indicates that the decision surface
does not pass close to the image in all directions, but rather only
in one or a few specific adversarial directions.

Training with random perturbations.. For brevity, we only re-
port the results of these experiments for the representative subset
of ‘class i-vs-class i + 1’ binary classification problems. These
are given in Tables 13, 15 and 17 for random perturbations sam-
pled uniformly from the cube [−a, a]n with a ∈ {0.1, 0.5, 1.0}
respectively, and Tables 14, 16 and 18 for noise sampled uni-
formly from the ball Bn

b with b ∈ {3.2, 16, 32} respectively (see
Section 7.1.4 for details of the experimental setup). These results
are also plotted against the size of the sampled perturbations
in Figures 15 and 16 for perturbations sampled from the cube
and ball respectively. From these results, it is clear that additive

(a) Original (b) Misclassified adversarially attacked
aeroplane (attack
ℓ1 norm: 13.53,
Euclidean norm: 0.39,
ℓ∞ norm: 0.05)

(c) Correctly classified randomly perturbed
aeroplane (δ = 10, perturbation
ℓ1 norm: 172.99,
Euclidean norm: 3.92,
ℓ∞ norm: 0.37)

(d) Misclassified randomly perturbed aero-
plane (δ = 10, perturbation
ℓ1 norm: 174.23,
Euclidean norm: 3.92,
ℓ∞ norm: 0.32)

Figure 12: CIFAR-10 — An example of an adversarially attacked image of
an aeroplane, taken from the ‘cat-vs-aeroplane’ binary classification problem
(0-vs-3), alongside examples of large random perturbations to the same image
which did and did not cause the network to misclassify the image. Of the 2,000
sampled random perturbations, 4 (0.2%) caused this image to be misclassified.
Components of the modified image which were outside the range [0, 1] have
been clipped into the range for plotting, although not for the classification.
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1 2 3 4 5 6 7 8 9

0 0, 0.06 0, 0.06 0, 0.06 0, 0.11 0, 0.12 0.01, 0 0.01, 0.12 0.10, 0.12 0.01, 0
1 0, 0.06 0, 0 0.01, 0.11 0, 0 0.04, 0.06 0, 0 0, 0.06 0.01, 0
2 0, 0.26 0.01, 0.06 0, 0.12 0, 0 0, 0 0, 0.06 0, 0
3 0.04, 0.12 0, 0.18 0, 0 0, 0.06 0, 0 0, 0
4 0, 0.06 0, 0.05 0, 0 0, 0.06 0.02, 0.06
5 0, 0.06 0, 0.06 0, 0 0, 0
6 0, 0 0, 0 0.01, 0.06
7 0, 0 0, 0
8 0.05, 0

Table 9: CIFAR-10 — Susceptibility of the networks to random perturbations, as described in Section 7.1.3 for δ = 1. This is reported in the form ‘train susceptibility,
test susceptibility’, where susceptibility is calculated as in (8) as the percentage of adversarially attackable images from each set which were misclassified after
applying any of the 2,000 random perturbations. The row and column headers indicate the classes used in each binary classification problem. Here, we use 0 without
any trailing decimal places to indicate a value which was actually zero, and not simply rounded to zero when rounding to two decimal places.

1 2 3 4 5 6 7 8 9

0 0.17, 0.42 0.02, 0.06 0, 0.06 0.07, 0.17 0.04, 0.31 0.01, 0 0.04, 0.29 1.11, 1.33 0.89, 0.78
1 0.02, 0.06 0.01, 0 0.03, 0.27 0, 0 0.05, 0.06 0, 0 0.59, 0.81 0.06, 0.36
2 0.02, 0.26 0.02, 0.12 0.06, 0.24 0.07, 0.06 0.01, 0.12 0, 0.19 0, 0
3 0.11, 0.31 0.01, 0.24 0.01, 0 0, 0.06 0.01, 0 0, 0
4 0, 0.17 0.03, 0.05 0, 0.06 0.05, 0.06 0.03, 0.11
5 0.03, 0.06 0, 0.11 0.01, 0 0.03, 0.07
6 0, 0 0.03, 0 0.01, 0.06
7 0, 0 0.04, 0
8 0.97, 1.47

Table 10: CIFAR-10 — Susceptibility of the networks to random perturbations, as described in Section 7.1.3 for δ = 2. This is reported in the form ‘train susceptibility,
test susceptibility’, where susceptibility is calculated as in (8) as the percentage of adversarially attackable images from each set which were misclassified after
applying any of the 2,000 random perturbations. The row and column headers indicate the classes used in each binary classification problem. Here, we use 0 without
any trailing decimal places to indicate a value which was actually zero, and not simply rounded to zero when rounding to two decimal places.

1 2 3 4 5 6 7 8 9

0 9.67, 10.56 1.55, 2.38 3.87, 4.58 9.94, 10.30 4.06, 4.93 1.75, 1.85 7.52, 8.42 8.93, 9.43 14.85, 16.57
1 7.61, 7.33 0.58, 0.25 5.99, 6.20 1.04, 1.27 1.11, 1.14 3.67, 3.12 11.06, 11.57 0.53, 0.75
2 0.12, 0.85 0.27, 0.40 0.61, 1.31 2.02, 2.46 1.65, 1.56 0.32, 0.56 2.30, 2.14
3 0.53, 0.99 0.25, 1.03 0.63, 0.63 0.23, 0.33 2.42, 2.94 0.34, 0.40
4 0.11, 0.56 0.44, 0.59 0.18, 0.56 3.46, 3.39 3.83, 3.96
5 2.97, 4.91 0.11, 0.33 2.36, 2.66 9.51, 9.74
6 0, 0.10 2.86, 3.24 0.07, 0.23
7 2.65, 2.57 1.40, 1.48
8 10.37, 10.37

Table 11: CIFAR-10 — Susceptibility of the networks to random perturbations, as described in Section 7.1.3 for δ = 5. This is reported in the form ‘train susceptibility,
test susceptibility’, where susceptibility is calculated as in (8) as the percentage of adversarially attackable images from each set which were misclassified after
applying any of the 2,000 random perturbations. The row and column headers indicate the classes used in each binary classification problem. Here, we use 0 without
any trailing decimal places to indicate a value which was actually zero, and not simply rounded to zero when rounding to two decimal places.

1 2 3 4 5 6 7 8 9

0 41.49, 40.57 14.02, 16.71 29.34, 32.15 47.37, 49.55 27.49, 30.07 27.92, 28.11 50.40, 52.41 41.44, 42.16 50.82, 49.72
1 41.82, 42.67 29.38, 28.98 27.18, 28.96 41.01, 43.16 15.90, 17.79 30.90, 29.43 36.98, 36.92 29.42, 31.09
2 4.76, 6.78 16.74, 18.75 9.12, 10.48 34.10, 34.42 22.70, 23.11 19.20, 20.08 32.67, 31.80
3 5.54, 6.58 9.57, 11.04 19.86, 19.24 6.99, 8.49 28.58, 29.07 26.54, 28.01
4 5.59, 6.40 14.37, 14.77 3.87, 4.73 38.19, 39.58 31.07, 33.56
5 43.20, 42.81 6.99, 9.00 22.66, 23.23 56.10, 58.79
6 16.45, 16.70 26.87, 30.53 8.64, 8.92
7 42.90, 44.36 26.44, 26.14
8 45.04, 45.08

Table 12: CIFAR-10 — Susceptibility of the networks to random perturbations, as described in Section 7.1.3 for δ = 10. This is reported in the form ‘train susceptibility,
test susceptibility’, where susceptibility is calculated as in (8) as the percentage of adversarially attackable images from each set which were misclassified after
applying any of the 2,000 random perturbations. The row and column headers indicate the classes used in each binary classification problem.
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(a) ℓ1 norms

(b) ℓ2 norms

(c) ℓ∞ norms

Figure 13: CIFAR-10 — The distribution over all images in Xrand,10
i, j (from the

training set, see Section 7.1.3) and Yrand,10
i, j (from the test set) of the smallest

norm of a random perturbation which caused the network to misclassify the
image. Black dashed lines show the size of the largest adversarial attack re-
quired on each data set. These were fitted to the data using a standard Kernel
Density Estimation algorithm and therefore only provide an approximation of
the distribution.

Figure 14: CIFAR-10 — A direct comparison of the size distributions over
all attackable images in the training and test sets of the smallest successful
adversarial attack and smallest misclassifying random perturbation for the ‘cat-
vs-aeroplane’ problem (0-vs-3), as measured in various norms. The plotted
distributions were fitted to the data using a standard Kernel Density Estimation
algorithm and therefore only provide an approximation of the true empirical
distribution.

random noise has little impact on the adversarial susceptibility
of the networks, and large perturbations cause the networks’
accuracy to decrease.

It should be stressed that additive noise sampled from the
cube [−1, 1] (the largest cube we tested) represents a significant
modification to an image where each pixel value is in [0, 1]. We
also recall that the adversarial susceptibility is only calculated as
the fraction of correctly classified images which are susceptible
to adversarial attacks, meaning that the drop in accuracy of the
classifier is implicitly decreasing the pool of images which were
tested for adversarial attacks. Interestingly, the average norm
of the successful adversarial attacks does seem to increase with
the size of the random perturbations applied during training.
However, this could once again be due to the observed drop in
accuracy: training and test points which were near the decision
boundary of the original classifier trained without perturbations
would be those which were susceptible to the smallest adversar-
ial attacks. These would also be the points which would be most
likely to be misclassified by the less accurate classifiers trained
with randomly perturbed data, so would not be included when
the adversarial attacks were computed. Consequently, while
large additive random noise may eliminate some of the smallest
adversarial attacks, it does so at the expense of a significant drop
in accuracy.

7.2.2. Experimental results on the Fashion MNIST dataset
The Fashion MNIST dataset consists of 28×28 pixel grayscale

image (which we converted to RGB by simply duplicating the
channels), separated into 10 classes. The English names for
these classes are given in Table 19 The network structure used
in this case is similar to that described in Table 2, but with the
layers Conv-5 and Conv-6 removed. The same training and
evaluation procedures outlined in Section 7.1 were applied, and
the results are given below. For brevity, we only present the
results on the problems of the form ‘class i-vs-class i + 1’.

Table 20 shows the accuracy and susceptibility to adversar-
ial and random perturbations of the network trained on each
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0 vs 1 1 vs 2 2 vs 3 3 vs 4 4 vs 5 5 vs 6 6 vs 7 7 vs 8 8 vs 9

Accuracy train 99.85 99.39 96.93 98.85 98.71 98.29 99.87 99.57 99.33
test 96.40 96.60 82.45 85.90 87.45 92.45 96.35 98.05 94.75

Adv. susceptibility train 87.85 95.14 90.49 99.96 99.46 98.67 98.87 84.85 95.94
test 85.63 95.19 90.12 99.88 99.43 98.86 98.75 85.06 95.30

Adv. attack ℓ1 norm train 23.14 (35.17) 19.11 (27.94) 10.78 (17.35) 11.94 (16.84) 13.57 (18.69) 19.38 (26.04) 14.23 (19.03) 20.55 (33.22) 22.12 (32.41)
test 23.33 (36.73) 19.75 (29.04) 10.42 (17.82) 11.92 (18.32) 12.66 (18.25) 20.58 (27.78) 14.39 (19.51) 20.68 (33.56) 22.46 (33.46)

Adv. attack ℓ2 norm train 0.68 (1.04) 0.57 (0.83) 0.32 (0.52) 0.34 (0.47) 0.40 (0.56) 0.59 (0.79) 0.42 (0.55) 0.60 (0.96) 0.64 (0.94)
test 0.69 (1.08) 0.59 (0.87) 0.31 (0.54) 0.34 (0.51) 0.38 (0.54) 0.63 (0.84) 0.42 (0.57) 0.60 (0.97) 0.65 (0.97)

Adv. attack ℓ∞ norm train 0.07 (0.12) 0.06 (0.09) 0.03 (0.06) 0.04 (0.05) 0.04 (0.06) 0.08 (0.11) 0.05 (0.06) 0.07 (0.11) 0.08 (0.11)
test 0.08 (0.12) 0.06 (0.10) 0.03 (0.06) 0.04 (0.06) 0.04 (0.06) 0.08 (0.11) 0.05 (0.06) 0.07 (0.11) 0.08 (0.12)

Table 13: CIFAR-10 — Performance results when images are randomly perturbed during training using additive random noise sampled from the cube [−a, a]n with
a = 0.1. The abbreviation ‘Adv.’ should be read as ‘Adversarial’. The quantities computed are defined in Section 7.1. Accuracy and susceptibility are reported as
percentages. The norms of the adversarial attacks are reported in the form ‘mean (standard deviation)’, calculated by averaging over all of the correctly classified and
adversarially susceptible images in each of the training and test sets.

0 vs 1 1 vs 2 2 vs 3 3 vs 4 4 vs 5 5 vs 6 6 vs 7 7 vs 8 8 vs 9

Accuracy train 99.83 99.69 95.33 99.02 99.39 99.45 99.82 98.64 99.45
test 96.10 96.90 84.20 86.25 89.05 92.80 96.80 97.15 95.05

Adv. susceptibility train 90.03 91.64 92.53 99.95 99.59 99.03 98.04 94.83 96.92
test 88.29 91.12 92.58 100.00 99.38 98.81 97.99 94.96 96.79

Adv. attack ℓ1 norm train 25.16 (36.97) 18.58 (27.80) 9.94 (17.17) 11.45 (16.26) 11.95 (16.51) 17.81 (24.96) 14.97 (20.01) 22.23 (33.69) 22.58 (32.08)
test 25.23 (37.82) 18.71 (28.24) 9.69 (16.88) 11.55 (18.15) 11.25 (16.89) 18.76 (25.94) 15.12 (21.37) 22.50 (34.12) 23.19 (33.62)

Adv. attack ℓ2 norm train 0.74 (1.10) 0.56 (0.83) 0.30 (0.53) 0.32 (0.46) 0.35 (0.49) 0.56 (0.78) 0.44 (0.59) 0.65 (0.99) 0.65 (0.93)
test 0.74 (1.12) 0.56 (0.84) 0.30 (0.52) 0.33 (0.51) 0.33 (0.50) 0.58 (0.80) 0.44 (0.62) 0.66 (1.00) 0.67 (0.98)

Adv. attack ℓ∞ norm train 0.08 (0.13) 0.06 (0.10) 0.04 (0.07) 0.03 (0.05) 0.04 (0.06) 0.07 (0.11) 0.05 (0.07) 0.07 (0.12) 0.08 (0.11)
test 0.08 (0.13) 0.06 (0.10) 0.04 (0.07) 0.03 (0.06) 0.04 (0.06) 0.08 (0.11) 0.05 (0.07) 0.07 (0.12) 0.08 (0.12)

Table 14: CIFAR-10 — Performance results when images are randomly perturbed during training using additive random noise sampled from the ball Bn
b with b = 3.2.

The abbreviation ‘Adv.’ should be read as ‘Adversarial’. The quantities computed are defined in Section 7.1. Accuracy and susceptibility are reported as percentages.
The norms of the adversarial attacks are reported in the form ‘mean (standard deviation)’, calculated by averaging over all of the correctly classified and adversarially
susceptible images in each of the training and test sets.

0 vs 1 1 vs 2 2 vs 3 3 vs 4 4 vs 5 5 vs 6 6 vs 7 7 vs 8 8 vs 9

Accuracy train 92.82 94.43 91.57 92.89 95.75 94.60 98.96 97.50 89.54
test 89.50 92.05 81.50 82.80 86.95 88.80 94.65 95.40 85.35

Adv. susceptibility train 76.02 98.56 98.21 99.26 98.55 94.27 99.20 95.57 83.88
test 74.36 98.32 97.98 99.03 98.45 93.24 99.26 95.07 83.54

Adv. attack ℓ1 norm train 35.56 (50.17) 21.88 (33.12) 24.70 (34.77) 22.03 (33.51) 28.38 (35.91) 28.85 (37.80) 22.88 (29.34) 27.83 (39.89) 45.61 (55.12)
test 35.17 (50.80) 21.82 (32.95) 25.02 (36.26) 21.81 (33.94) 27.13 (35.90) 29.06 (38.87) 23.70 (31.22) 27.50 (39.63) 45.39 (54.85)

Adv. attack ℓ2 norm train 1.01 (1.44) 0.65 (0.98) 0.70 (1.00) 0.61 (0.91) 0.82 (1.04) 0.87 (1.13) 0.67 (0.85) 0.78 (1.11) 1.27 (1.53)
test 1.01 (1.47) 0.65 (0.98) 0.71 (1.04) 0.60 (0.93) 0.78 (1.04) 0.88 (1.17) 0.69 (0.91) 0.77 (1.10) 1.27 (1.53)

Adv. attack ℓ∞ norm train 0.10 (0.15) 0.07 (0.11) 0.07 (0.10) 0.06 (0.09) 0.08 (0.11) 0.10 (0.13) 0.07 (0.09) 0.08 (0.12) 0.13 (0.17)
test 0.11 (0.16) 0.07 (0.11) 0.07 (0.11) 0.06 (0.09) 0.08 (0.11) 0.10 (0.13) 0.07 (0.10) 0.08 (0.12) 0.13 (0.17)

Table 15: CIFAR-10 — Performance results when images are randomly perturbed during training using additive random noise sampled from the cube [−a, a]n with
a = 0.5. The abbreviation ‘Adv.’ should be read as ‘Adversarial’. The quantities computed are defined in Section 7.1. Accuracy and susceptibility are reported as
percentages. The norms of the adversarial attacks are reported in the form ‘mean (standard deviation)’, calculated by averaging over all of the correctly classified and
adversarially susceptible images in each of the training and test sets.

0 vs 1 1 vs 2 2 vs 3 3 vs 4 4 vs 5 5 vs 6 6 vs 7 7 vs 8 8 vs 9

Accuracy train 95.08 96.21 88.05 93.85 96.42 90.75 98.97 97.06 89.75
test 91.10 94.40 78.30 82.30 85.45 85.65 94.95 95.50 85.45

Adv. susceptibility train 79.44 97.78 93.16 99.38 99.16 92.32 99.36 96.46 85.86
test 77.22 97.72 92.40 99.45 99.06 90.37 99.53 96.07 85.08

Adv. attack ℓ1 norm train 34.08 (47.83) 25.09 (36.56) 32.75 (41.78) 20.49 (31.84) 26.35 (34.00) 33.95 (41.52) 24.59 (31.05) 30.17 (42.56) 47.84 (56.68)
test 32.84 (46.83) 24.62 (36.20) 32.60 (42.07) 20.69 (33.00) 25.62 (34.86) 33.66 (42.43) 25.21 (32.42) 29.99 (42.89) 46.48 (55.40)

Adv. attack ℓ2 norm train 0.99 (1.40) 0.74 (1.07) 0.93 (1.19) 0.56 (0.87) 0.76 (0.98) 1.02 (1.24) 0.71 (0.89) 0.83 (1.17) 1.33 (1.57)
test 0.97 (1.39) 0.73 (1.06) 0.93 (1.20) 0.57 (0.90) 0.74 (1.00) 1.01 (1.26) 0.73 (0.93) 0.83 (1.17) 1.29 (1.54)

Adv. attack ℓ∞ norm train 0.10 (0.15) 0.08 (0.11) 0.10 (0.13) 0.06 (0.09) 0.08 (0.10) 0.12 (0.14) 0.07 (0.09) 0.09 (0.12) 0.14 (0.17)
test 0.10 (0.15) 0.07 (0.11) 0.09 (0.13) 0.06 (0.09) 0.07 (0.10) 0.11 (0.14) 0.07 (0.10) 0.08 (0.12) 0.13 (0.16)

Table 16: CIFAR-10 — Performance results when images are randomly perturbed during training using additive random noise sampled from the ball Bn
b with b = 16.

The abbreviation ‘Adv.’ should be read as ‘Adversarial’. The quantities computed are defined in Section 7.1. Accuracy and susceptibility are reported as percentages.
The norms of the adversarial attacks are reported in the form ‘mean (standard deviation)’, calculated by averaging over all of the correctly classified and adversarially
susceptible images in each of the training and test sets.
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0 vs 1 1 vs 2 2 vs 3 3 vs 4 4 vs 5 5 vs 6 6 vs 7 7 vs 8 8 vs 9

Accuracy train 85.65 89.84 82.44 85.20 85.20 90.75 93.56 94.50 76.09
test 84.00 88.40 76.40 80.40 81.30 87.75 91.15 92.45 74.60

Adv. susceptibility train 75.66 98.90 93.92 97.79 93.96 97.41 98.57 96.96 61.51
test 74.40 98.81 92.41 98.07 93.97 97.26 98.08 97.13 61.93

Adv. attack ℓ1 norm train 47.29 (60.24) 22.74 (35.90) 38.53 (49.56) 25.62 (41.16) 46.07 (52.80) 26.32 (39.04) 39.02 (45.31) 31.71 (44.80) 55.25 (68.60)
test 45.52 (58.87) 22.06 (35.82) 38.01 (49.77) 25.61 (41.41) 45.18 (52.78) 27.85 (41.27) 39.61 (46.00) 31.00 (44.60) 54.28 (67.73)

Adv. attack ℓ2 norm train 1.29 (1.64) 0.66 (1.04) 1.06 (1.36) 0.67 (1.08) 1.29 (1.48) 0.77 (1.14) 1.12 (1.30) 0.86 (1.21) 1.44 (1.78)
test 1.25 (1.61) 0.64 (1.03) 1.05 (1.36) 0.67 (1.08) 1.26 (1.47) 0.82 (1.21) 1.13 (1.31) 0.84 (1.21) 1.41 (1.76)

Adv. attack ℓ∞ norm train 0.12 (0.15) 0.07 (0.11) 0.10 (0.13) 0.06 (0.10) 0.13 (0.15) 0.08 (0.12) 0.11 (0.13) 0.08 (0.12) 0.13 (0.16)
test 0.11 (0.15) 0.06 (0.10) 0.10 (0.13) 0.06 (0.10) 0.12 (0.15) 0.08 (0.13) 0.11 (0.13) 0.08 (0.12) 0.12 (0.16)

Table 17: CIFAR-10 — Performance results when images are randomly perturbed during training using additive random noise sampled from the cube [−a, a]n with
a = 1. The abbreviation ‘Adv.’ should be read as ‘Adversarial’. The quantities computed are defined in Section 7.1. Accuracy and susceptibility are reported as
percentages. The norms of the adversarial attacks are reported in the form ‘mean (standard deviation)’, calculated by averaging over all of the correctly classified and
adversarially susceptible images in each of the training and test sets.

0 vs 1 1 vs 2 2 vs 3 3 vs 4 4 vs 5 5 vs 6 6 vs 7 7 vs 8 8 vs 9

Accuracy train 86.82 91.61 84.19 85.79 84.17 90.45 94.29 93.40 80.22
test 84.55 89.85 78.55 80.25 80.80 88.10 91.35 91.20 77.25

Adv. susceptibility train 72.14 98.50 94.35 98.18 92.23 97.63 98.26 98.73 68.44
test 71.08 98.16 93.19 98.32 92.51 97.73 98.14 98.85 68.41

Adv. attack ℓ1 norm train 43.25 (58.85) 25.08 (38.16) 34.84 (47.12) 25.38 (40.59) 48.40 (54.21) 25.85 (39.18) 38.47 (45.03) 29.10 (42.32) 53.87 (66.98)
test 42.76 (58.44) 24.30 (37.83) 34.82 (48.19) 25.47 (40.99) 46.92 (53.64) 27.88 (42.30) 39.74 (46.60) 28.83 (42.06) 54.82 (67.20)

Adv. attack ℓ2 norm train 1.18 (1.61) 0.72 (1.09) 0.95 (1.28) 0.67 (1.06) 1.36 (1.52) 0.75 (1.12) 1.10 (1.29) 0.78 (1.13) 1.41 (1.75)
test 1.18 (1.61) 0.69 (1.07) 0.95 (1.31) 0.67 (1.07) 1.32 (1.50) 0.81 (1.22) 1.13 (1.33) 0.77 (1.13) 1.43 (1.76)

Adv. attack ℓ∞ norm train 0.11 (0.15) 0.07 (0.11) 0.09 (0.12) 0.06 (0.09) 0.13 (0.16) 0.07 (0.11) 0.10 (0.13) 0.07 (0.11) 0.13 (0.16)
test 0.11 (0.16) 0.07 (0.11) 0.09 (0.13) 0.06 (0.09) 0.13 (0.15) 0.08 (0.12) 0.11 (0.13) 0.07 (0.11) 0.13 (0.16)

Table 18: CIFAR-10 — Performance results when images are randomly perturbed during training using additive random noise sampled from the ball Bn
b with b = 32.

The abbreviation ‘Adv.’ should be read as ‘Adversarial’. The quantities computed are defined in Section 7.1. Accuracy and susceptibility are reported as percentages.
The norms of the adversarial attacks are reported in the form ‘mean (standard deviation)’, calculated by averaging over all of the correctly classified and adversarially
susceptible images in each of the training and test sets.
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Figure 15: CIFAR-10 — Plots showing how the performance of the network is affected by various magnitudes of random perturbations added to the images during
training. This figure shows the results for random perturbations sampled from the cube [−a, a]n for a ∈ {0, 0.1, 0.5, 1}. This visualises the results in in Tables 13, 15
and 17 compared to the previous data computed with no random perturbations (corresponding to a = 0). The data is plotted as separate lines for the training and test
sets. ‘Susceptibility’ here refers to the adversarial susceptibility reported in the tables, and ‘Attack mean ℓp’ indicates the mean across each data set of the ℓp norm of
the smallest adversarial perturbation affecting each image. The perturbation size plotted on the x axis is the size of a.
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Figure 16: CIFAR-10 — Plots showing how the performance of the network is affected by various magnitudes of random perturbations added to the images during
training. This figure shows the results for random perturbations sampled from the ball Bn

b for b ∈ {0, 3.2, 16, 32}. This visualises the results in in Tables 13, 15 and 17
compared to the previous data computed with no random perturbations (corresponding to b = 0). The data is plotted as separate lines for the training and test sets.
‘Susceptibility’ here refers to the adversarial susceptibility reported in the tables, and ‘Attack mean ℓp’ indicates the mean across each data set of the ℓp norm of the
smallest adversarial perturbation affecting each image. The perturbation size plotted on the x axis is the size of a.
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Index Name

0 T-shirt/top
1 Trouser
2 Pullover
3 Dress
4 Coat
5 Sandal
6 Shirt
7 Sneaker
8 Bag
9 Ankle boot

Table 19: Fashion MNIST — Class names associated with each class index.

binary classification problem. The random perturbations are
categorised by their size in the Euclidean norm in the form of δ,
since they are uniformly sampled at random from the ball with
radius δϵ, where ϵ denotes the Euclidean norm of the smallest
adversarial perturbation identified on each image, while Table 21
shows the norms of the adversarial attack constructed with the
smallest Euclidean norm on each image.

Violin plots for the distributions of the ℓ1, Euclidean and ℓ∞

norms of the successful adversarial and random perturbations
are given in Figures 17 and 18.

7.2.3. Experimental results on the German Traffic Sign Recog-
nition Benchmark dataset (GTSRB)

The German Traffic Sign Recognition Benchmark (GTSRB)
dataset consists of RGB colour images with size 30 × 30 × 3,
divided into more than 40 classes. Here, we have demonstrated
our results using six of these 40 classes, selected to be relatively
visually distinct from each other, and therefore to produce binary
classification problems which may be expected to be more robust
to adversarial attacks. The names of these data classes is given
in Table 22. The network structure used in this case is the
same as the Fashion MNIST dataset in Section 7.2.2, which
is as described in Table 2 but without Conv-5 or Conv-6. The
experimental setup was otherwise as described in Section 7.1.
For brevity, we report the results on the problems of the form
‘class i-vs-class i + 1’.

Table 23 shows the accuracy and susceptibility to adversar-
ial and random perturbations of the network trained on each
binary classification problem. The random perturbations are
categorised by their size in the Euclidean norm in the form of δ,
since they are uniformly sampled at random from the ball with
radius δϵ, where ϵ denotes the Euclidean norm of the smallest
adversarial perturbation identified on each image, while Table 24
shows the norms of the adversarial attack constructed with the
smallest Euclidean norm on each image.

Violin plots for the distributions of the ℓ1, Euclidean and ℓ∞

norms of the successful adversarial and random perturbations
are shown in Figures 19 and 20.

7.2.4. Experimental results on ImageNet
The ImageNet dataset [16] consists of RGB images of various

sizes from 1,000 classes. We experimented using a pre-trained
VGG19 [17] and ResNet50 [19] network as described in Sec-
tion 7.1.5.

Table 25 summarises the results of these experiments. In
contrast to previous experiments, we only report random suscep-

(a) ℓ1 norms

(b) ℓ2 norms

(c) ℓ∞ norms

Figure 17: Fashion MNIST — Distribution of norms of smallest successful
adversarial attacks on each image.
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0 vs 1 1 vs 2 2 vs 3 3 vs 4 4 vs 5 5 vs 6 6 vs 7 7 vs 8 8 vs 9

Accuracy 99.44, 99.35 99.51, 99.40 97.73, 96.85 97.77, 96.45 99.95, 99.95 99.96, 99.80 99.98, 99.95 99.84, 99.70 99.41, 99.35
Adversarial susceptibility 56.42, 56.87 61.81, 62.73 26.29, 27.36 62.10, 61.43 29.51, 29.96 38.73, 38.28 26.95, 28.21 53.58, 53.01 55.36, 55.81

Random susceptibility (δ = 1) 0, 0 0, 0 0.03, 0 0, 0 0, 0 0, 0 0.06, 0 0.02, 0 0, 0
Random susceptibility (δ = 2) 0, 0 0, 0 0.26, 0.38 0.07, 0.08 0, 0 0.58, 0.39 1.30, 1.42 0.87, 1.04 0.05, 0.09
Random susceptibility (δ = 5) 2.48, 3.27 0.45, 0.32 4.25, 5.47 7.56, 7.68 10.71, 13.52 22.06, 23.69 16.73, 19.15 30.39, 31.98 13.72, 13.35

Random susceptibility (δ = 10) 52.12, 52.92 50.39, 49.32 54.30, 55.47 56.84, 55.44 56.63, 57.43 61.88, 59.55 67.92, 71.45 84.33, 84.58 84.77, 83.95

Table 20: Fashion MNIST — Accuracy and susceptibility of the networks to adversarial and random attacks, reported as percentages in the form ‘train, test’

0 vs 1 1 vs 2 2 vs 3 3 vs 4 4 vs 5 5 vs 6 6 vs 7 7 vs 8 8 vs 9

Adv. attack ℓ1 norm train 68.18 (30.79) 83.46 (34.56) 59.53 (36.77) 50.06 (34.27) 59.45 (26.16) 49.61 (27.06) 54.79 (26.78) 47.29 (25.40) 52.12 (24.77)
test 68.12 (30.56) 83.34 (35.36) 59.12 (38.72) 49.78 (35.26) 61.72 (26.30) 52.11 (27.52) 57.76 (26.42) 47.41 (23.36) 52.84 (25.64)

Adv. attack ℓ2 norm train 2.75 (1.17) 3.07 (1.16) 2.39 (1.33) 1.76 (1.20) 2.60 (1.15) 2.40 (1.24) 2.63 (1.20) 2.22 (1.08) 2.32 (1.12)
test 2.75 (1.15) 3.06 (1.19) 2.36 (1.40) 1.75 (1.24) 2.70 (1.16) 2.52 (1.26) 2.79 (1.17) 2.24 (1.01) 2.34 (1.14)

Adv. attack ℓ∞ norm train 0.45 (0.22) 0.41 (0.17) 0.34 (0.19) 0.23 (0.16) 0.29 (0.14) 0.32 (0.17) 0.33 (0.15) 0.32 (0.15) 0.28 (0.14)
test 0.44 (0.21) 0.41 (0.17) 0.34 (0.19) 0.23 (0.17) 0.30 (0.14) 0.33 (0.17) 0.35 (0.15) 0.33 (0.15) 0.29 (0.15)

Table 21: Fashion MNIST — Means and standard deviations of the norms of the smallest successful adversarial attack on each image in the training and test set,
reported in the form ‘mean (standard deviation)’.

Index Class name

0 Speed limit (20km/h)
1 End of no passing for vehicles > 3.5 tons
2 Keep right
3 Turn right ahead
4 Road work
5 General caution
6 End of speed limit (80km/h)

Table 22: GTSRB — Class names associated with each class index.

tibility for δ = 10. Experiments with random perturbations for
δ ∈ {1, 2, 5} produced virtually zero misclassifications, despite
the apparently high adversarial susceptibility of the networks,
and for brevity the detailed results are not reported here.

Figures 21 and 22 show distributions of the sizes of successful
adversarial attacks measured in different norms for each model.
It is clear from these plots that in both cases the majority of
images are susceptible to small adversarial perturbations. For
ResNet50, 93.3% of images were susceptible to an adversarial
attack with ℓ∞ norm (measuring the absolute value of the largest
change to any individual pixel) less than 0.1, while this was
94.3% for VGG19. Despite this, the results in Table 25 show
that ≤ 2.5% of images were misclassified by any of the 2,000
random attacks sampled from the ball with radius 10 times
larger than the Euclidean norm of the adversarial attack. We
observe that the rate of misclassification after these large random
perturbations is significantly smaller than for the other datasets.
The theoretical results presented above suggest that this may be
due to the much higher dimensionality of the images. Both of the
pretrained networks we use accept inputs of size 224 × 224 × 3,
meaning that they have 150,528 individual attributes, in contrast
with 3,072 attributes for CIFAR-10 images.

8. Conclusion

Our new framework for studying the paradox of apparent
stability in classification problems allows for rigorous proba-
bilistic bounds that are consistent with empirical observations
concerning the simultaneous vulnerability to easily constructed
worst-case adversarial attacks (Theorems 5 and 7) which may

universally affect a whole data class (Theorem 8), and robust-
ness against randomly sampled perturbations (Theorem 6). The
results are generic in the sense that they deal with small per-
turbations under which any smooth and accurate classifier will
behave like the optimal linear classifier (1). As illustrated in
Figure 5 and Section 4.4, the setup can be generalised to cover to
broad range of input distributions and classification boundaries
and multi-class setups. In addition to quantifying vulnerabilities,
our analysis also raises new issues concerning the most relevant
and useful notions of stability in classification.

The overlapping unit ball model that we used, and the two
half-ball model in Section 5, are closely tied to the use of the
Euclidean norm. We note that there are several applications
where spherical input data arises naturally, including remote
sensing, climate change modeling, global ionospheric prediction
and environmental governance, [30]. It would of course be
of interest to establish the extent to which these results can
be extended to other choices of norm and input domain. We
also note that more customised results could be investigated for
specific classification tools by exploiting further information,
for example, about the architecture, training regime and level of
floating point accuracy.
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(a) ℓ1 norms

(b) ℓ2 norms

(c) ℓ∞ norms

Figure 18: Fashion MNIST — Distribution of norms of the smallest misclassify-
ing random perturbations found on each image. Black dashed lines indicate the
size of the largest adversarial attack required on each data set.

(a) ℓ1 norms

(b) ℓ2 norms

(c) ℓ∞ norms

Figure 19: GTSRB — Distribution of norms of smallest successful adversarial
attacks on each image.
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(a) ℓ1 norms

(b) ℓ2 norms

(c) ℓ∞ norms

Figure 20: GTSRB — Distribution of norms of the smallest misclassifying
random perturbations found on each image. Black dashed lines indicate the size
of the largest adversarial attack required on each data set.
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[29] L. Beyer, O. J. Hénaff, A. Kolesnikov, X. Zhai, A. van den Oord, Are we
done with imagenet? (2020). arXiv:2006.07159.

[30] H. Feng, S. Huang, D.-X. Zhou, Generalization analysis of cnns for clas-
sification on spheres, IEEE Transactions on Neural Networks and Learn-
ing Systems 34 (9) (2023) 6200–6213. doi:10.1109/TNNLS.2021.

3134675.
[31] A. P. Morse, The behavior of a function on its critical set, Annals of

Mathematics 40 (1) (1939) 62–70.
URL http://www.jstor.org/stable/1968544

[32] S. Li, Concise formulas for the area and volume of a hyperspherical cap,
Asian Journal of Mathematics & Statistics 4 (1) (2010) 66–70.

[33] A. N. Gorban, D. V. Tyukin, Ivan Y.and Prokhorov, K. I. Sofeikov, Ap-
proximation with random bases: Pro et contra, Information Sciences 364
(2016) 129–145.

Appendix A. Proof of Theorem 1

Expanding the probability as an integral, using the fact that the
density of the uniform distributionU(Bn

δ(x)) is just the reciprocal
of the volume of a ball with radius δ, we have

P(z ∼ U(Bn
δ(x)) : sign(z · ν) , sign(x · ν))

=
1

Vnδn

∫
Bn
δ(x)
I{sign(z·ν),sign(x·ν)}dz.

Since ν is the fixed normal vector to the plane Π, the integral
here is simply measuring the volume of a spherical cap. If we
assume (without loss of generality) that x · ν < 0, then this cap
may be expressed as the set

C = {z ∈ Rn : ∥z∥ ≤ δ and z · ν ≥ 0}.

Since a spherical cap may be contained within a hemisphere of
a different ball, we may prove the following bound:

Lemma 23 (Spherical cap volume bound). Let n be a positive
integer, and r ≥ h > 0. Then,

Vn
cap(r, h) ≤

1
2

Vnrn
(
1 −

(
1 −

h
r

)2) n
2
.

By assumption, the height of the cap C is δ − ϵ, and therefore∫
C

1dz ≤
1
2

Vnδn
(
1 −

(
1 −
δ − ϵ

δ

)2) n
2
,

and the result of the theorem follows.

Appendix B. Proofs of results for the two balls model in
Section 4.2

Appendix B.1. Proof of Theorem 4
Expanding the probability using the definition of the distribu-

tionDϵ , and the definition of the classifier f , we have

P((x, ℓ) ∼ Dϵ : f (x) = ℓ)

=
1
2

P(x ∼ D0 : f (x) = 0) +
1
2

P(x ∼ D1 : f (x) = 1)
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Histograms of sizes of successful adversarial attacks for ResNet50 on ImageNet

Figure 21: ImageNet — Histograms showing the distribution of sizes of successful adversarial attacks on images from the ImageNet validation set for a pre-trained
ResNet50 model.
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Figure 22: ImageNet — Histograms showing the distribution of sizes of successful adversarial attacks on images from the ImageNet validation set for a pre-trained
VGG19 model.
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The factor of 1
2 is due to the fact that samples with either label are

sampled with equal probability. Negating these two probabilities
and expressing them as integrals using the densities p0 and p1
associated withD0 andD1 respectively (the existence of these
densities is a requirement of the SmAC property), we have

P((x, ℓ) ∼ Dϵ : f (x) = ℓ)

= 1 −
1
2

∫
D0

I{x1>0}p0(x)dx −
1
2

∫
D1

I{x1<0}p1(x)dx.

The bound on the density p provided by the SmAC property in
Definition 3 (recalling that r = 1 for both distributions) therefore
implies that

P((x, ℓ) ∼ Dϵ : f (x) = ℓ)

≥ 1 −
A

2Vn

( ∫
D0

I{x1>0}dx +
∫

D1

I{x1<0}dx
)
.

By symmetry, the two integrals have the same value, so we only
compute the first. Since ϵ > 0, this corresponds to the volume of
a section of a ball which is smaller than a hemisphere, we may
write it as ∫

D0

I{x1>0}dx = Vn
cap(1, 1 − ϵ).

Lemma 23 implies that

Vn
cap(1, 1 − ϵ) ≤

1
2

Vn(1 − ϵ2)
n
2 ,

and the result therefore follows.

Appendix B.2. Proof of Theorem 5
Using the definition of the classification function f and con-

ditioning on the class label, we may rewrite the probability in
question as

P
(
(x, ℓ) ∼ Dϵ : there exists s ∈ Bn

δ such that f (x + s) , ℓ
)

=
1
2

P(x ∼ U(D0) : x1 > −δ) +
1
2

P(x ∼ U(D1) : x1 < δ).

Symmetry implies that these two probabilities have the same
value, so we only need to compute the first one. Negating the
probability and expanding it as an integral using the density p0
ofD0, we find that

P(x ∼ U(D0) : x1 > −δ) = 1 −
∫

D0

I{x1<−δ}p0(x)dx.

The bound on the density provided by the SmAC property (Defi-
nition 3) therefore implies that

P(x ∼ U(D0) : x1 > −δ) ≥ 1 −
A

Vn

∫
D0

I{x1<−δ}dx.

Since this integral corresponds to the volume of a spherical
cap with height smaller than its radius (due to the fact that
1 > δ > ϵ > 0), we may apply Lemma 23 to show that∫

D0

I{x1<−δ}dx = Vn
cap(1, 1 − (ϵ − δ))

≤
1
2

Vn(1 − (δ − ϵ)2)
n
2 ,

and the result therefore follows.

Appendix B.3. Proof of Theorem 6
To prove Theorem 6, we begin by expanding the probability

by conditioning on the label value, finding

P((x, ℓ) ∼ Dϵ , s ∼ U(Bn
δ) : f (x + s) , ℓ)

=
1
2

P(x ∼ U(D0), s ∼ U(Bn
δ) : x1 + s1 > 0)

+
1
2

P(x ∼ U(D1), s ∼ U(Bn
δ) : x1 + s1 < 0).

The symmetry here implies that these two probabilities are equal,
so we proceed by only bounding the first. Expanding this as an
integral using the density p0 ofD0 and the fact that s is sampled
from a uniform distribution, we observe that

P(x ∼ U(D0), s ∼ U(Bn
δ) : x1 + s1 > 0)

=
1

Vnδn

∫
D0

∫
Bn
δ

I{s1>−x1}ds p0(x) dx.

The bound on the density provided by the SmAC property (Defi-
nition 3) therefore implies that

P(x ∼ U(D0), s ∼ U(Bn
δ) : x1 + s1 > 0)

≤
A

(Vn)2δn

∫
D0

∫
Bn
δ

I{s1>−x1}dsdx.

For each fixed value of x, the inner integral is just computing
the volume of a section of a ball with radius δ. When x1 > 0,
this volume is at least a hemisphere, while when x1 < 0 this
volume is less than a hemisphere. On the other hand, for fixed
s, the integral over x is also calculating the volume of a section
of the unit ball. Since the volume of the ball concentrates in
high dimensions about its equator, a section which is smaller
than a hemisphere may be expected to have small volume, while
a section larger than a hemisphere may be expected to have
large volume. This is the intuition we apply here by splitting
the integral into two parts: one for x1 < −t and one for x1 ≥ −t
for some arbitrary t ∈ [0, ϵ]. In the first part, we will be able
to obtain ‘smallness’ in our bound from the fact that we are
integrating s over just a spherical cap, while in the second case
we are integrating x over a spherical cap. We write this splitting
as ∫

D0

∫
Bn
δ

I{s1>−x1}dsdx (B.1)

=

∫
D0

∫
Bn
δ

I{x1<−t}I{s1>−x1}dsdx

+

∫
D0

∫
Bn
δ

I{x1>−t}I{s1>−x1}dsdx.

The first term of this splitting may be bounded above by extend-
ing the indicator function over s to all those points with s1 > t
(since −x1 > t), which enables us to separate the integrals to find
that ∫

D0

∫
Bn
δ

I{x1<−t}I{s1>−x1}dsdx

≤

∫
D0

I{x1<−t}dx
∫
Bn
δ

I{s1>t}ds.
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These integrals may be expressed as volumes in the form∫
D0

I{x1<−t}dx
∫
Bn
δ

I{s1>t}ds

= (Vn − Vn
cap(1, 1 − (ϵ − t)))Vn

cap(δ, δ − t),

and Lemma 23 and the fact that the volume of a spherical cap is
non-negative implies that∫

D0

I{x1<−t}dx
∫
Bn
δ

I{s1>t}ds ≤
1
2

(Vn)2δn
(
1 −

( t
δ

)2) n
2
.

Returning to the second integral in (B.1), we may similarly
bound the indicator function over s from above by simply the
constant 1. This implies that∫

D0

∫
Bn
δ

I{x1>−t}I{s1>−x1}dsdx ≤
∫

D0

I{x1>−t}dx
∫
Bn
δ

ds

= Vn
cap(1, 1 − (ϵ − t))Vnδn,

and Lemma 23 consequently provides∫
D0

∫
Bn
δ

I{x1>−t}I{s1>−x1}dsdx

≤
1
2

(Vn)2δn(1 − (ϵ − t)2)
n
2 .

Combining these bounds and using the fact that t ∈ [0, ϵ] was
arbitrary, we find that

P((x, ℓ) ∼ Dϵ , s ∼ U(Bn
δ) : f (x + s) , ℓ)

≤
1
2

A inf
t∈[0,ϵ]

[(
1 −

( t
δ

)2) n
2
+ (1 − (ϵ − t)2)

n
2

]
,

and the theorem follows by noting that, for t = ϵδ
1+δ , the two

terms inside the infimum are equal (this choice of t is valid since
δ

1+δ ∈ [0, 1] for δ ≥ 0).

Appendix B.4. Proof of Theorem 7

When ℓ = 0, we have | f̃ (x) − ℓ| = σ(g(x)), since σ(t) ∈ (0, 1)
for t ∈ R. In this case, the attack may therefore be computed as

e1σ
′(g(x))L′(σ(g(x))), (B.2)

since g′(x) = e1. Since σ and L are assumed to be continuously
differentiable and monotonically increasing, the Morse-Sard
theorem [31] implies that σ′(t), L′(t) > 0 everywhere except
on a set of Lebesgue measure zero. The SmAC property on
the distribution Dϵ implies that the probability of sampling x
from a set of Lebesgue measure zero is zero, and therefore with
probability 1 the attack direction (B.2) is a positive multiple of
e1 for all t ∈ R, as required. Analogously, when ℓ = 1 we have
| f̃ (x) − ℓ| = 1 − σ(g(x)), and we therefore obtain a negative
mutiple of e1 with probability 1, and the result follows.

Appendix B.5. Proof of Theorem 8
Since the statement and setup are symmetric with respect to

the class label ℓ, we focus only on the class 0 and the statement
for class 1 follows analogously. In this case, the statement that

f (x + s) , ℓ for all s ∈ Rn such that dℓ(z, s) > γ,

is implied by the condition that z1 < x1 + γ, and therefore

P(x, z ∼ U(D0) : f (x + s) , 0 for all s ∈ Rn

such that d0(z, s) > γ)
≥ P(x, z ∼ U(D0) : z1 < x1 + γ).

Introducing t ∈ [0, γ], this probability is clearly at least

P(x, z ∼ U(D0) : z1 < x1 + γ and x1 > −ϵ − t).

We note that if x1 > −
1
2γ− ϵ and z1 <

1
2γ− ϵ then it follows that

z1 < x1 + γ, and therefore

P(x, z ∼ U(D0) : z1 < x1 + γ) ≥

P(x, z ∼ U(D0) : z1 <
1
2
γ − ϵ and x1 > −

1
2
γ − ϵ).

This last probability has the property of involving two events
which separately depend on the independent variables x and z,
and may therefore be expressed as the product

P(z ∼ U(D0) : z1 <
1
2
γ − ϵ)P(x ∼ U(D0) : x1 > −

1
2
γ − ϵ).

Negating both of these probabilities and recalling the bound on
the density provided by Definition 3 with r = 1, we obtain the
lower bounds

P(z ∼ U(D0) : z1 <
1
2
γ − ϵ) ≥ 1 −

A
Vn

∫
D0

I{z1<
1
2 γ−ϵ}

dz,

and

P(x ∼ U(D0) : x1 > −ϵ −
1
2
γ) ≥ 1 −

A
Vn

∫
D0

I{x1<−ϵ−
1
2 γ}

dz.

Since D0 is simply a ball for which the centre has first coordi-
nate −ϵ, it follows that both of these integrals are simply the
volume of a spherical cap, with value Vn

cap(1, 1 − 1
2γ), and using

Lemma 23, we therefore conclude that

P(x, z ∼ U(D0) : z1 < x1 + γ) ≥
(
1 − A

(
1 −
γ2

4

) n
2
)2

Appendix C. Proofs of results for the two half balls model
in Section 5

Appendix C.1. Proof of Theorem 18
Using the definition of the classification function f , we may

rewrite the probability in question as

P
(
x ∼ Dϵ : there exists s ∈ Rn with ∥s∥ ≤ δ

such that f (x + s) , f (x)
)
= P(x ∼ Dϵ : |x1| < δ).
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Expanding the probability as an integral, and using the fact that
Dϵ is a uniform distribution over two disjoint half-balls and
therefore has density (Vn)−1, we may further express this as

P(x ∼ Dϵ : |x1| < δ) =
1

Vn

( ∫
D0

I{x :−δ<x1<−ϵ}dx

+

∫
D1

I{x : ϵ<x1<δ}dx
)
,

and the remaining problem is to compute the two remaining
integrals, the values of which are equal by symmetry. We may
express the set {x ∈ D1 : ϵ < x1 < δ}, which geometrically
represents the slab of the half-ball D1 within δ − ϵ distance of
its planar face, as the complement of a spherical cap, implying∫

D1

I{x : ϵ<x1<δ}dx =
1
2

Vn − Vn
cap(1, 1 − (δ − ϵ)),

and therefore

P(x ∼ Dϵ : |x1| < δ) = 1 −
2Vn

cap(1, 1 − (δ − ϵ))

Vn .

We may further estimate this from below, to show the exponen-
tial behaviour of this quantity with respect to n, by enveloping
the spherical cap within a small half-ball. The Pythagorean
theorem implies that

{x ∈ D1 : ϵ < x1 < δ} ⊂ G

where

G = {x ∈ Rn : x1 > ϵ and ∥x − ϵ e1∥
2 ≤ 1 − (δ − ϵ)2},

and therefore

2Vn
cap(1, 1 − (δ − ϵ))

Vn ≤ (1 − (δ − ϵ)2)n/2,

which proves the theorem.

Appendix C.2. Proof of Theorem 19
Since D0 and D1 are disjoint half-balls of a unit ball, it follows

that the density associated withDϵ is simply (Vn)−1, while the
density associated withU(Bn

δ) is (δnVn)−1. Writing the proba-
bility as an integral with this density, we therefore find that

P
(
x ∼ Dϵ , s ∼ U(Bn

δ) : f (x + s) , f (x)
)

=
1

δn(Vn)2

( ∫
D0

∫
Bn
δ

I{x,s : s1>−x1}dsdx

+

∫
D1

∫
Bn
δ

I{x,s : s1<−x1}dsdx
)
.

Since the values of these two integrals are equal by symmetry,
we proceed by only estimating the first. For x ∈ D0, we have
x1 < −ϵ, and therefore∫

D0

∫
Bn
δ

I{x,s : s1>−x1}dsdx ≤
∫

D0

dx
∫
Bn
δ

I{s : s1>ϵ}ds

=
1
2

Vn
∫
Bn
δ

I{s : s1>ϵ}ds.

The remaining integral over s now takes the form of the volume
of a spherical cap, which we may bound by enveloping the cap
in a small half-ball. Arguing as in the proof of Theorem 18, it
follows that ∫

Bn
δ

I{s : s1>ϵ}ds = Vn
cap(δ, (δ2 − ϵ2)1/2)

≤
1
2
δnVn

(
1 −

( ϵ
δ

)2)n/2
.

The result therefore follows by combining the components
above.

Appendix C.3. Proof of Theorem 20

Consider the hyperplane h passing through the origin and
whose normal is e1. This hyperplane is the decision boundary of
the classifier f (see (5)) which separates D0 and D1 in the sense
that, with probability one, the classifier assigns correct labels to
samples drawn fromDϵ , ϵ = 0.

Pick any ∆ ∈ (0, 1). The probability p that a point x ∼ Dϵ
lands within the ∆-distance from the hyperplane h is bounded
from below as:

p > 1 − (1 − ∆2)
n
2 .

Conversely, if one picks the value of p ∈ (0, 1), then the value of
∆ corresponding to this probability must satisfy:

∆ < (1 − (1 − p)
2
n )

1
2 = ρ(p, n).

In what follows, we are interested in the event

E1(x, s, δ, n) : f (x + s) , f (x), s ∼ U(Bn
δ).

It is clear that the event

E2(x, s, δ,∆, n) : f (x + s) , f (x), |x · e1| ≤ ∆, s ∼ U(Bn
δ)

implies event E1(x, s, δ, n). Hence

P( f (x + s) , f (x), s ∼ U(Bn
δ)) ≥

P( f (x + s) , f (x), s ∼ U(Bn
δ) and |x · e1| ≤ ∆)

= P( f (x + s) , f (x), s ∼ U(Bn
δ) | |x · e1| ≤ ∆)p,

(C.1)

where the last equality follows from the definition of the con-
ditional probability and the fact that p = P(|x · e1| ≤ ∆) is the
probability of x ∼ Dϵ landing within the ∆-distance from the
hyperplane h.

Consider the event

E3(x, s, δ, p, n) :[
0 ≤ x · e1 ≤ ∆ and s · e1 ≤ −ρ(p, n)

]
or[

−∆ ≤ x · e1 < 0 and s · e1 ≥ ρ(p, n)
]
.

Given that ∆ < ρ(p, n), the event E3(x, s, δ, p, n) implies
E2(x, s, δ,∆, n). Hence taking (C.1) into account, the follow-
ing holds true:

P(E1(x, s, δ, n)) ≥ P(E2(x, s, δ,∆, n)) ≥ P(E3(x, s, δ, p, n)).
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Therefore, a lower bound for P(E3(x, s, δ, p, n)) is also a lower
bound for P(E1(x, s, δ, n)).

Noticing that x and s are independent, we obtain

P(E3(x, s, δ, p, n)) =P(0 ≤ x · e1 ≤ ∆)P(s · e1 ≤ −ρ(p, n))+
P(−∆ ≤ x · e1 < 0)P(s · e1 ≥ ρ(p, n))

=
p
2

P(s · e1 ≤ −ρ(p, n)) +
p
2

P(s · e1 ≥ ρ(p, n)).

Observe that the symmetry ofU(Bn
δ) implies P(s·e1 ≥ ρ(p, n)) =

P(s · e1 ≤ −ρ(p, n)), and hence

P(E3(x, s, δ, p, n)) = pP(s · e1 ≥ ρ(p, n)).

Let us now bound the probability of E3(x, s, δ, p, n) from be-
low.

Case 1: 0 < δ ≤ ρ(p, n). In this case

f (x + s) = f (x) for all s ∈ Bn
δ,

and hence P(E3(x, s, δ, p, n)) = 0.
Case 2: δ > ρ(p, n). The probability of P(s · e1 ≥ ρ(p, n)) is

the ratio
Vn

cap(δ, δ − ρ(p, n))

Vn
cap(δ, δ)

,

where Vn
cap(δ, δ − ρ(p, n)) is the volume of the spherical cap

whose radius is δ and whose height is δ − ρ(p, n).
Consider Vn

cap(δ, δ − ρ(p, n)) [32]:

Vn
cap(δ, δ − ρ(p, n)) =

π(n−1)/2

Γ( n−1
2 + 1)

δn
∫ cos−1(ρ(p,n)/δ)

0
sinn(θ)dθ.

Rewriting the integral through the change of variables t = cos(θ)
results in

Vn
cap(δ, δ − ρ(p, n)) =

π(n−1)/2

Γ( n−1
2 + 1)

δn
∫ 1

ρ(p,n)/δ
(1 − t2)

n−1
2 dt,

and hence

P(s · e1 ≥ ρ(p, n)) =

∫ 1
ρ(p,n)/δ(1 − t2)

n−1
2 dt∫ 1

0 (1 − t2)
n−1

2 dt
. (C.2)

Let us now bound the integral∫ 1

ρ(p,n)/δ
(1 − t2)

n−1
2 dt (C.3)

from below. First, observe that

(1 − t2) ≥ (1 − t2α +
t4α2

2
) (C.4)

for any α > 1 and

0 < t ≤
√

2(α − 1)
α

.

At the same time, using Taylor’s theorem we see that if t, α > 0
there exists a c ∈ (0, tα2) so that

e−αt2
= 1 − t2α +

t4α2

2
−

e−ct6α3

3!
< 1 − t2α +

t4α2

2

1 − t2α +
t4α2

2
> e−αt2

.

(C.5)

Applying the same argument, one can conclude that for any
p ∈ (0, 1) and all n ≥ 1 the following holds true:

(1 − p)
2
n = elog(1−p) 2

n > 1 + log(1 − p)
2
n
.

This implies that

ρ(p, n) <

√
2| log(1 − p)|
√

n

for all n ≥ 1.
Let

τ(α) =
√

2(α − 1)
α

,

N be defined by

N(α, p, δ) := max
{

1,
2| log(1 − p)|
δ2τ(α)2

}
,

and

β(p, δ, n) :=

√
2| log(1 − p)|
√

nδ
.

Suppose that n > N(α, p, δ). Then we must have

ρ(p, n)
δ
< β(p, δ, n) < τ(α).

In particular, for n > N(α, p, δ), the integral (C.3) can be
bounded from below as∫ 1

ρ(p,n)/δ
(1 − t2)

n−1
2 dt >

∫ τ(α)

β(p,δ,n)
(1 − t2)

n−1
2 dt (C.6)

Pick an
n > N(α, p, δ),

and consider the right-hand-side of (C.2). According to (C.6)

P(s · e1 ≥ ρ(p, n)) >

∫ τ(α)
β(p,δ,n)(1 − t2)

n−1
2 dt∫ 1

0 (1 − t2)
n−1

2 dt
.

Invoking (C.4) and (C.5) we arrive at

P(s · e1 ≥ ρ(p, n)) >

∫ τ(α)
β(p,δ,n) e−α

t2(n−1)
2 dt∫ 1

0 (1 − t2)
n−1

2 dt
.

Changing the integration variable as t
√

n − 1 = ξ yields:

P(s · e1 ≥ ρ(p, n)) >

∫ τ(α)
√

n−1
β(p,δ,n)

√
n−1 e−α

ξ2

2 dξ∫ √n−1
0

(
1 − ξ2

n−1

) n−1
2 dξ
.
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Note that (cf. [33], p. 135, inequality (23))(
1 −

ξ2

(n − 1)

)n−1

≤ e−ξ
2

for all n > 1, n ∈ N and any ξ2 ≥ 0.
Therefore

P(s · e1 ≥ ρ(p, n)) >

∫ τ(α)
√

n−1
β(p,δ,n)

√
n−1 e−α

ξ2

2 dξ∫ √n−1
0 e−

ξ2
2 dξ

.

for all n > N(α, p, δ). Changing the integration variable yet
again in the top integral as ζ =

√
αξ and pre-multiplying both

the nominator and the denominator by 1/
√

2π results in:

P(s · e1 ≥ ρ(p, n)) >
1
√
α

1
√

2π

∫ √ατ(α)
√

n−1
√
αβ(p,δ,n)

√
n−1

e−
ζ2

2 dζ

1
√

2π

∫ √n−1
0 e−

ξ2
2 dξ

. (C.7)

Recalling the standard cumulative distribution function

Φ(s) =
1
√

2π

∫ s

−∞

e−
ξ2

2 dξ,

the right-hand side of (C.7) becomes

1
√
α

(
Φ

(√
ατ(α)

√
n − 1

)
− Φ

(√
αβ(p, δ, n)

√
n − 1

))
Φ(
√

n − 1) − 1
2

.

Therefore, for any p ∈ (0, 1), δ > 0, α > 1, and n > N(α, p, δ)

P(E3(x, s, δ, p, n)) >

p
(
Φ

(√
ατ(α)

√
n − 1

)
− Φ

(√
αβ(p, δ, n)

√
n − 1

))
√
α
(
Φ(
√

n − 1) − 1
2

) .

For any fixed α > 1 and n → ∞, the right-hand side of the
above expression reduces to

p 1
√
α

(
1 − Φ

(
√
α

√
2| log(1−p)|
δ

))
1
2

.

Given that the value of α can be chosen arbitrarily in (1,∞), in
the limit

lim
n→∞

P(E3(x, s, δ, p, n)) ≥

sup
α>1

2p
√
α

1 − Φ  √α√
2| log(1 − p)|
δ


= 2p

1 − Φ  √
2| log(1 − p)|
δ

 , δ > 0.

Finally, taking sup over p ∈ (0, 1), results in the following
asymptotic bound:

sup
p∈(0,1)

2p

1 − Φ  √
2| log(1 − p)|
δ

 .
□

Appendix D. Proofs of results for the general model in Sec-
tion 4.3

Appendix D.1. Accuracy of the general model: Proof of Theo-
rem 9 and Corollary 10

Appendix D.1.1. Proof of Theorem 9
We can measure the accuracy of the classifier for class 0 as

acc0( f ) = P(x ∼ D : f (x) = 0) = P(x ∼ D : dS (x) ≤ 0).

For any t ∈ R, the condition that dS (x) ≤ t can be rewritten as

dπ(x) − ϕ(Πx) ≤ t,

which is implied by the condition that

dπ(x) + |ϕ(Πx)| ≤ t.

Introducing the events

A(α) : x ∼ D is such that |ϕ(Πx)| ≤ α,
B(β) : x ∼ D is such that dπ(x) ≤ β,

(D.1)

parameterised by the arbitrary values α ≥ 0, β ∈ R, we find that

A(α) ∧ B(t − α) ⇒ dπ(x) + |ϕ(Πx)| ≤ t. (D.2)

Putting these pieces together, we find that

acc0( f ) ≥ P(x ∼ D : dπ(x) + |ϕ(Πx)| ≤ 0)
≥ P(x ∼ D : A(α) ∧ B(−α)).

Negating this event and applying the union bound, we therefore
find that

acc0( f ) ≥ P(x ∼ D : |ϕ(Πx)| ≤ α)
− P(x ∼ D : dπ(x) > −α).

Since α ≥ 0 was arbitrary, it therefore follows that

acc0( f ) ≥ sup
α≥0

[
P(x ∼ D : |ϕ(Πx)| ≤ α)

− P(x ∼ D : dπ(x) > −α)
]
.

Appendix D.1.2. Proof of Corollary 10
Since ϕ ≡ 0 in this case, it follows that

P(x ∼ E : |ϕ(x)| ≤ α) = 1,

for all α ≥ 0. We may therefore take α = 0 in the second term
of Theorem 9, and we proceed by bounding

P(x ∼ E : dπ(x) ≥ 0)

from above.
Recalling the bound on the density p of E in Definition 3, we

have

P(x ∼ E : dπ(x) ≥ 0) ≤
A

Vnrn

∫
Bn

r (c)
I{x : dπ(x)≥0}dx,
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and the definition of dπ implies that this is∫
Bn

r (c)
I{x : dπ(x)≥0}dx =

∫
Bn

r (c)
I{x : (x−w)·ν≥0}dx,

which is zero for (w − c) · ν > r and simply a spherical cap
otherwise. Note that the assumption that dπ(c) = −η for some
η > 0 implies that this spherical cap is less than half the ball
Bn

r (c). Therefore, Lemma 23 implies that

P(x ∼ E : f (x) = 0) ≥ 1 −
1
2

A
(
1 −

(η
r

)2) n
2

Appendix D.2. Susceptibility to adversarial perturbations of
the general model: Proof of Theorem 11 and
Corollary 12

Appendix D.2.1. Proof of Theorem 11
The susceptibility of points sampled from class 0 to an ad-

versarial attack with Euclidean norm δ may be measured analo-
gously using the function

sus0( f ) = P(x ∼ D : there exists s ∈ Bn
δ with f (x + s) , 0).

The set of points x satisfying the condition in this probability
may be seen to be those contained in the union R ∪ T of the
disjoint sets

R = {x ∈ Rn : dS (x) > 0}

and

T = {x ∈ Rn : dS (x) ≤ 0 and σ(x) ≤ δ};

in the first case, since these points are already misclassified it
follows that f (x+ s) , 0 for s = 0 ∈ Bn

δ , while in the second case
the points are correctly classified but they lie within Euclidean
distance δ of the decision surface S , due to the definition of σ.
To simplify this condition slightly, we observe that

{x ∈ Rn : dS (x) ≥ −δ} ⊂ R ∪ T,

and therefore

sus0( f ) ≥ P(x ∼ D : dS (x) ≥ −δ)

Arguing as above, we have

dS (x) = dπ(x) − ϕ(Πx) ≥ −δ,

which is implied by the condition that

|ϕ(Πx)| − dπ(x) ≤ δ.

Recalling the events A(α) and B(β) from (D.1), we see that for
any α ≥ 0 this event is in turn implied by the event

A(α) ∧ not B(α − δ),

from which it follows that

sus0( f ) ≥ P(x ∼ D : A(α) ∧ not B(α − δ)),

and negating this event and applying the union bound therefore
implies that

sus0( f ) ≥ P(x ∼ D : A(α)) − P(x ∼ D : B(α − δ)),

and, since α ≥ 0 was arbitrary,

sus0( f ) ≥ sup
α≥0

[
P(x ∼ D : |ϕ(Πx)| < α)

− P(x ∼ D : dπ(x) < α − δ)
]
.

Appendix D.2.2. Proof of Corollary 12
To prove the Corollary, we start from the result of Theorem 11.

Setting ϕ ≡ 0 and selecting α = 0, we find that

P(x ∼ E : there exists s ∈ Bn
δ with f (x + s) , 0)

≥ 1 − P(x ∼ E : dπ(x) < −δ).

To prove the result, we therefore bound this final term on the
right from above.

Recalling the bound on the density p of E in Definition 3, we
have

P(x ∼ E : dπ(x) < −δ) ≤
A

Vnrn

∫
Bn

r (c)
I{x : dπ(x)<−δ}dx.

Here, the assumption that δ ∈ (η, r] implies that this integral is
over a spherical cap which is smaller than a hemisphere, and so
we conclude that

P(x ∼ E : dπ(x) < −δ) ≤
1
2

A
(
1 −

(δ − η
r

)2) n
2
,

and the result follows.

Appendix D.3. Probability of sampling misclassifying random
perturbations for the general model: Proof of
Lemma 13, Theorem 14 and Corollary 15

Appendix D.3.1. Proof of Lemma 13
Geometrically, for any point x ∈ Rn, the Lipschitz condition

on ϕ defines a cone C(x) of points y such that y ∈ C(x) implies
that dS (y) ≤ 0, where

C(x) = {y ∈ Rn : (y − Γ(x)) · ν ≤ m∥y − Γ(x)∥},

with m = − cos θ and θ = arctan(L−1).
Suppose that z ∈ Rn is a point which f classifies as class 0,

i.e. such that dS (z) ≤ 0. The Lipschitz condition on ϕ provides
a cone of points C(z) containing z which are guaranteed to also
be assigned class 0 by f . This allows us to use a geometric
argument to find a lower bound on σ in terms of dS . Placing a
ball Bn

ϵ (z) of radius ϵ around z for some ϵ ≥ 0, we can observe
that the cone C(z) is tangent to this ball when ϵ = |dS (z)| sin θ.
This is due to the fact that z lies on the central axis of C(z) (which
is oriented in the direction of ν) and |dS (z)| therefore measures
the distance from z to the vertex of C(z). This therefore implies
the lower bound that

σ(z) ≥ |dS (z)| sin θ,

which we may view as the companion to the upper bound (2).
This allows us to control σ from below using dS , which would
not have been possible without such a regularity condition on
the surface S .
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Appendix D.3.2. Proof of Theorem 14
Define the probability of randomly sampling an adversarial

perturbation as

rand0( f ) = P(x ∼ D, s ∼ U(Bn
δ) : f (x + s) , 0),

for fixed δ as in the statement of the theorem. If x is correctly
classified, and sampled with σ(x) > δ then there is no possibility
of sampling a perturbation s which can destabilise it. We may
therefore ignore these points, implying that

rand0( f ) = P(x ∼ D, s ∼ U(Bn
δ) : f (x + s) , 0

and (σ(x) ≤ δ or f (x) , 0)).

Recalling the definition of f , we can rewrite this as

rand0( f ) = P(x ∼ D, s ∼ U(Bn
δ) : dS (x + s) > 0

and (σ(x) ≤ δ or dS (x) > 0)).

To obtain an upper bound, we slightly refine this splitting of the
points x by treating those points which are very close to the deci-
sion boundary along with those which are already misclassified.
Specifically, let t ∈ [0, δ] and introduce

K = {x ∈ Rn : dS (x) > 0 or σ(x) ≤ t},

which contains those points which are misclassified by f along-
side those points which are correctly classified but very close to
the decision boundary, and

U = {x ∈ Rn : dS (x) ≤ 0 and σ(x) ∈ (t, δ]},

which contains the correctly classified points which are in a
small strip close to, but separated from, the decision boundary.
Since these two sets are disjoint and between them contain all of
the points which are susceptible to a perturbation of size δ, we
have

rand0( f ) (D.3)
= P(x ∼ D, s ∼ U(Bn

δ) : x ∈ K and f (x + s) , 0)
+ P(x ∼ D, s ∼ U(Bn

δ) : x ∈ U and f (x + s) , 0),

and we proceed by obtaining bounds on these two terms sepa-
rately. Analogously to the proof of Theorem 6, the philosophy
here is that the first term is ‘small’ since it only contains those
points which are misclassified by a slightly worse classifier,
while the second term is small because only a small fraction of
the sampled perturbations s ∈ Bn

δ are sufficiently large to push
the points across the decision boundary.

To bound the first term of (D.3), we use the lower bound
of Lemma 13 on σ in terms of dS to show that the condition
σ(x) ≤ t implies that |dS (x)| ≤ t

sin θ . From this, the set inclusion

K ⊂ V =
{
x ∈ Rn : dS (x) ≥ −

t
sin θ

}
follows, enabling us to simplify the term to be bounded as

P(x ∼ D, s ∼ U(Bn
δ) : x ∈ K and f (x + s) , 0)

≤ P(x ∼ D : x ∈ K) ≤ P(x ∼ D : x ∈ V).

Recalling the definition of the events A(α) and B(β) introduced
in (D.1), for any α ≥ 0 the event A(α) ∧ B(−α − t

sin θ ) implies
that the event x < V holds, and therefore

P(x ∼ D : x ∈ V) = 1 − P(x ∼ D : x < V)

≤ 1 − P
(
A(α) ∧ B

(
− α −

t
sin θ

))
.

Inverting this final probability, the union bound implies that

P(x ∼ D : x ∈ V) ≤ P(not A(α))

+ P
(

not B
(
− α −

t
sin θ

))
,

and since α ≥ 0 was arbitrary it follows that for any t ∈ [0, δ]

P(x ∼ D : x ∈ V) (D.4)

≤ inf
α≥0

(
P(x ∼ D : |ϕ(Πx)| ≥ α)

+ P
(
x ∼ D : dπ(x) ≥ −α −

t
sin θ

))
,

which completes our bound on the first term of (D.3).
Turning to the second term of (D.3), we can simplify things

by including the set U into the larger set

U ⊂ G = {x ∈ Rn : dS (x) < −t},

where the inclusion holds due to the upper bound (2) on σ. The
reason for this inclusion is that it allows us to study the intersec-
tion of the cone C(x) of points with the same classification as x
(the existence of which is ensured by the Lipschitz property on
ϕ) with the ball of perturbed data points Bn

δ(x). Specifically, for
any x ∈ G, define the set

H(x) = Bn
δ(x) \ (Bn

δ(x) ∩C(x))

of perturbations of x which are taken outside the cone C(x) of
points guaranteed to be correctly classified.

Suppose that L ≤ 1. Then, for t > δL the set H(x) may be
included in a spherical cap which forms less than a hemisphere of
Bn
δ(x), and which may itself be contained in the larger spherical

cap

H(x) ⊂ {y ∈ Bn
δ(x) : (y − x) · ν > |dS (x)| − δL}.

Since x ∈ G implies that dS (x) < −t, it follows that

H(x) ⊂ J(x) = {y ∈ Bn
δ(x) : (y − x) · ν > t − δL},

and Lemma 23 implies that the volume of J(x) may be bounded
by

1
2

Vnδn
(
1 −

( t
δ
− L

)2) n
2

Consequently, since perturbations are sampled uniformly from
Bn
δ, we obtain the bound

P(x ∼ D, s ∼ U(Bn
δ) : x ∈ U and f (x + s) , 0)

≤
1
2

(
1 −

( t
δ
− L

)2) n
2 P(x ∼ D : x ∈ G).
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To compute the probability of sampling x ∈ G, we once again
recall the definition of the events A(α) and B(β) introduced
in (D.1), and observe that for any γ ≥ 0

A(γ) ∧ not B(γ − t) ⇒ dS (x) > −t,

and therefore, since

P(x ∼ D : x ∈ G) = 1 − P(x ∼ D : dS (x) > −t)
≤ 1 − P(x ∼ D : A(γ) ∧ not B(γ − t)),

it follows from negating this event, applying the union bound,
and recalling that γ ≥ 0 was arbitrary, that

P(x ∼ D : x ∈ G) (D.5)
≤ inf
γ≥0

[
P(x ∼ D : dπ(x) ≤ γ − t) (D.6)

+ P(x ∼ D : |ϕ(Πx)| > γ)
]
. (D.7)

For L > 1, however, it is not possible to take t > δL since
t ∈ [0, δ] and so selecting t = δ provides an optimal result here.
In this case, the set U is empty, so this term is simply zero.

Combining the bounds (D.4) and (D.5), we therefore find that

rand0( f )

≤ inf
α,γ≥0
t∈T (L)

[
P(x ∼ D : |ϕ(Πx)| ≥ α)

+ P
(
x ∼ D : dπ(x) ≥ −α −

t
sin θ

)
+ ∆(L)

1
2

(
1 −

( t
δ
− L

)2) n
2
·

·
(
P(x ∼ D : dπ(x) ≤ γ − t)

+ P(x ∼ D : |ϕ(Πx)| > γ)
)]
,

where ∆(L) = 1 for L ≤ 1 and 0 for L > 1, and the set T (L) =
[min{L, 1}δ, δ].

Appendix D.3.3. Proof of Corollary 15
Since ϕ ≡ 0, it follows that L = 0 and therefore sin θ = 1.

Applying these facts to the result of Theorem 14, and selecting
α = γ = 0, we immediately find that

P(x ∼ E, s ∼ Bn
δ : f (x + s) , 0) (D.8)

≤ inf
t∈[0,δ]

[
P(x ∼ E : dπ(x) ≥ −t)

+
1
2

(
1 −

( t
δ

)2) n
2 (P(x ∼ E : dπ(x) ≤ −t)

)]
.

Using the crude bound

P
(
x ∼ E : dπ(x) ≥ −t

)
≤ 1,

this may be simplified to

P(x ∼ E, s ∼ Bn
δ : f (x + s) , 0)

≤ inf
t∈[0,δ]

[
P(x ∼ E : dπ(x) ≥ −t) +

1
2

(
1 −

( t
δ

)2) n
2
]
.

Recalling the bound on the density p of E in Definition 3, we
have

P(x ∼ E : dπ(x) ≥ −t) ≤
A

Vnrn

∫
Bn

r (c)
I{x : dπ(x)≥−t}dx,

and, arguing as in the proof of Corollary 10, we note that this
may be bounded by

P(x ∼ E : dπ(x) ≥ −t) ≤
1
2

A
(
1 −

(η − t
r

)2) n
2

for any t ∈ [0, δ]. Substituting this bound into (D.8) and selecting
t = ηδ

r+δ (which is a valid choice of t because ηδ
r+δ ∈ [0, ηr+1 ] for

δ ∈ [0, 1] and η ∈ [0, r)) produces the result.

Appendix D.4. Universality of adversarial perturbations for
the general model: Proof of Theorem 16 and
Corollary 17

Appendix D.4.1. Proof of Theorem 16
Since ϕ satisfies the Lipschitz condition with parameter L, a

simple geometric argument shows that if x ∈ Rn is such that

dS (z) ≤ dS (x) − 2Lδ + γ,

then f (z + s) > γ =⇒ f (x + s) > 0 for all s ∈ Bn
δ. Therefore,

we bound the probability

P(x, z ∼ D : dS (z) ≤ dS (x) − 2Lδ + γ).

For any t ∈ R, this probability is at least the probability that

P(x, z ∼ D : dS (z) ≤ dS (x) − 2Lδ + γ

and dS (x) > t + Lδ −
1
2
γ).

When dS (x) > t+Lδ− 1
2γ, the condition that dS (z) ≤ t−Lδ+ 1

2γ
implies that dS (z) ≤ dS (x)−2Lδ+γ, and therefore the probability
above is bounded from below by

P(x, z ∼ D : dS (z) ≤ t − Lδ +
1
2
γ and dS (x) > t + Lδ −

1
2
γ),

which may be expressed as the product

P(z ∼ D : dS (z) ≤ t − Lδ +
1
2
γ)·

· P(x ∼ D : dS (x) > t + Lδ −
1
2
γ),

since x and z are sampled independently.
Arguing as in the proofs of the previous theorems, using the

definitions of the events A(α) and B(β) introduced in (D.1), we
find that, for any α ≥ 0,

P(z ∼ D : dS (z) ≤ t − Lδ +
1
2
γ)

≥ P(z ∼ D : |ϕ(Πz)| ≤ α) − P(z ∼ D : dπ(z) > t + χ),

and

P(x ∼ D : dS (x) > t + Lδ −
1
2
γ)

≥ P(x ∼ D : |ϕ(Πx)| ≤ α) − P(x ∼ D : dπ(x) ≤ t − χ),

where χ = 1
2γ − Lδ − α. The result of the theorem therefore

follows since α and t were arbitrary.
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Appendix D.4.2. Proof of Corollary 17
In this scenario ϕ ≡ 0, and we have L = 0 and may therefore

take α = 0. This then implies that χ = 1
2γ, and so, selecting

t = −η (where we recall that η = dS (c) for the SmAC distribution
E), the bound from Theorem 16 becomes

P(x, z ∼ E : f (x + s) , 0 for all s ∈ S z(δ))

≥
(
1 − P(z ∼ E : dπ(z) > −η +

1
2
γ)

)
·

·
(
1 − P(x ∼ E : dπ(x) ≤ −η −

1
2
γ)

)
.

Noting that the bound does not depend on δ, we may switch to
using the generic S z rather than S z(δ).

The bound on the density guaranteed by the SmAC property
in Definition 3 implies that

P(x, z ∼ E : f (x + s) , 0 for all s ∈ S z)

≥
(
1 −

A
Vnrn

∫
Bn

r (c)
Idπ(z)>−η+ 1

2 γ
dz

)
·

·
(
1 −

A
Vnrn

∫
Bn

r (c)
Idπ(x)≤−η− 1

2 γ
dx

)
,

and we observe that both integrals are simply the volume of
a spherical cap with height r − 1

2γ, and Lemma 23 therefore
implies that

P(x, z ∼ E : f (x + s) , 0 for all s ∈ S z)

≥
(
1 − A

(
1 −
γ2

4r2

) n
2
)2
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