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Abstract

Aim: To examine the hypothesis that there would be ethnic differences in the rela-

tionship between ectopic fat and tissue-specific insulin resistance (IR) across a spec-

trum of glucose tolerance in Black African (BA) and White European (WE) men.

Materials and Methods: Fifty-three WE men (23/10/20 normal glucose tolerance

[NGT]/impaired glucose tolerance [IGT]/type 2 diabetes [T2D]) and 48 BA men

(20/10/18, respectively) underwent a two-step hyperinsulinaemic-euglycaemic

clamp with infusion of D-[6,6-2H2]-glucose and [2H5]-glycerol to assess hepatic,

peripheral and adipose tissue IR. Magnetic resonance imaging was used to measure

subcutaneous adipose tissue, visceral adipose tissue (VAT) and intrahepatic lipid

(IHL). Associations between ectopic fat and IR were assessed using linear regression

models.

Results: There were no differences in tissue-specific IR between ethnic groups at any

stage of glucose tolerance. VAT level was consistently lower in the BA population;

NGT (p = 0.013), IGT (p = 0.006) and T2D (p = 0.015). IHL was also lower in the BA

compared with the WE men (p = 0.013). VAT and IHL levels were significantly asso-

ciated with hepatic IR in the BA population (p = 0.001) and with peripheral IR in the

WE population (p = 0.027).

Conclusions: The present study suggests that BA and WE men exhibit the same

degree of IR across a glucose tolerance continuum, but with lower VAT and IHL

levels in the BA population, suggesting that IR may be driven by a mechanism other

than increased ectopic fat accumulation in BA men.
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1 | INTRODUCTION

Excessive accumulation of visceral adipose tissue (VAT) and intrahe-

patic lipid (IHL) have been proposed as central defects underlying the

development of type 2 diabetes (T2D).1–4 Exhibiting high rates of

lipolysis and a proinflammatory profile, VAT adipocytes are proposed

to drive IHL accumulation through high fatty acid flux to the liver via

the portal circulation.5,6 The accumulation of IHL may be a better

marker of the deleterious effects of obesity than VAT and, through its

association with hepatic insulin resistance (IR), the importance of

excess IHL in the pathogenesis of T2D is increasingly recognized.5,7,8

People of Black African (BA) ancestry are disproportionately

affected by T2D, but present with a distinct phenotype compared

with their White European (WE) counterparts, with markedly lower

levels of IHL and VAT,9–12 as well as greater fat-free mass13 and a

lower waist circumference,14 at the same body mass index (BMI). We

have previously demonstrated this in people with normal glucose tol-

erance (NGT)9 and people with T2D.15 Interestingly, the phenotypic

differences in a BA population occur concurrently with apparently

greater degrees of IR compared with WE populations.16,17 There have

been several suggestions for this apparent paradox, such as there

being other more significant contributors to the pathophysiology of

T2D, including reduced insulin clearance,18,19 or that BA populations

may have a lower fat threshold for the development of

IR. Importantly, in BA populations, there have also been limited stud-

ies that directly assess (tissue-specific) IR using ‘gold standard’ tech-
niques such as hyperinsulinaemic-euglycaemic clamps (HECs) and

stable isotope tracers, potentially leading to overestimation of IR with

the use of indirect indices of insulin sensitivity. Thus, it remains to be

determined whether there are ethnic differences in whole-body and

tissue-specific IR using appropriate methodology, and whether the

accumulation of VAT and IHL drive the development of T2D in people

of BA ancestry, as has been suggested in WE populations.

We have previously explored ethnic differences in the relation-

ship between tissue-specific IR and ectopic fat deposition in NGT20

and T2D21 populations of BA and WE ethnicity. In the present paper

we comprehensively explore whether there are ethnic differences in

the relationship between ectopic fat deposition, specifically VAT and

IHL accumulation, and IR across a spectrum of NGT, impaired glucose

tolerance (IGT) and T2D, using gold standard techniques for the

assessment of tissue-specific IR.

2 | MATERIALS AND METHODS

The study was conducted at the Clinical Research Facility, King's

College London, London, UK and approved by the London

Bridge National Research Ethics Committee (12/ LO/1859 and

15/LO/1121). The data were collected as part of the South London

Diabetes and Ethnicity Phenotyping (Soul-Deep) Phase I and Phase II

studies; recruitment and data collection took place during the period

April 2013 to May 2018.22

2.1 | Participants

All participants provided written informed consent prior to commenc-

ing any study procedures. Participants were recruited from local gen-

eral practices, newspaper advertisements, religious groups and

leaflets. Men aged 18–65 years, of self-reported Black (West) African

(BA) and White European (WE) ethnicity, with a BMI between 20 and

35 kg�m�2 (inclusive) were eligible to take part. A 2-h oral glucose tol-

erance test was used to confirm glycaemic status in those expected

(on clinical grounds) to have NGT or IGT.23 Those with T2D were

required to have had a diagnosis within the last 5 years, to be treated

by dietary intake and/ or metformin with glycated haemoglobin

(HbA1c) levels ≤64 mmol�mol�1. Participants were ineligible if treated

with any medications known to affect study outcomes including thia-

zolidinediones, insulin, chronic oral steroids or β-blockers, or if serum

creatinine was >150 μmol�L�1 or serum alanine transaminase level

was >2.5-fold above the upper limit of the reference range. The aim

of recruitment was to match BA and WE men within each glycaemic

group for BMI and age.

2.2 | Procedures

In the 24 h before the study visits participants consumed a standard-

ized diet including �50% energy from carbohydrate, with no more

than 30% of daily carbohydrate consumed in the evening meal. The

evening meal was consumed 10 h before arrival at the Clinical

Research Facility. Participants were asked to refrain from alcohol

intake for 24 h and physical activity for 48 h before the study visits.

2.3 | Hyperinsulinaemic-euglycaemic clamp

The procedure used for the HEC was as described previously.20,21 In

brief, a two-step (10- and 40-mU�m�2 body surface area [BSA]�min�1

insulin infusion) HEC was completed with a [6,6-2H2]-glucose and

[2H5]-glycerol tracer infusion. A cannula was inserted into the antecu-

bital fossa vein for infusion of 20% glucose (Baxter, Norfolk, UK), insu-

lin (Actrapid; Novo Nordisk) and the glucose and glycerol tracers

(CK Gases, Cambridgeshire, UK). A second cannula was inserted retro-

gradely into the dorsal hand vein of the opposite arm and placed

inside a heated hand box to obtain arterialized venous blood. Fasting

plasma glucose was determined and, if above 5 mmol�L�1, an insulin

sliding scale was used to lower plasma glucose to 5 mmol�L�1 before

commencing the protocol, as previously described.21 Thereafter, a

primed (2 mg�kg�1) continuous (0.02 mg�kg�1�min�1) infusion of

[6,6-2H2]-glucose and primed (0.12 mg�kg�1) continuous (0.0067

mg�kg�1�min�1) infusion of [2H5]-glycerol was commenced at

�120 min. At 0 min a primed continuous infusion of insulin was com-

menced at 10 mU�m�2 BSA�min�1 for 120 min for the assessment of

hepatic and adipose tissue insulin sensitivity. After 120 min, insulin

infusion was increased to a constant rate of 40 mU�m�2 BSA�min�1,
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after initial priming, for a further 120 min for the assessment of

whole-body and peripheral insulin sensitivity.24 Euglycaemia was

maintained at 5 mmol�L�1 by a variable rate infusion of 20% glucose

spiked with 8 mg�kg�1 and 10 mg�kg�1 of [6,6-2H2]-glucose during

the first and second step of the HEC, respectively. Plasma glucose

concentration was assessed every 5 min (2300 STAT Glucose Analy-

ser; Yellow Springs Instruments, Yellow Springs, OH, USA) and addi-

tional samples taken for later measurement of isotopic enrichment,

plasma insulin and non-esterified fatty acids at regular intervals. The

calculations for the assessment of whole-body and tissue-specific

insulin sensitivity are provided in the Supplementary Information.

2.4 | Magnetic resonance imaging

On a separate day, participants attended the magnetic resonance

imaging (MRI) unit of Guy's Hospital, King's College London, for the

assessment of subcutaneous adipose tissue (SAT), VAT and IHL. Scan-

ning was performed while participants lay semi-supine on a 1.5-T Sie-

mens scanner to acquire magnetic resonance images from the neck to

the knee. Details in Supplementary Information.

2.5 | Laboratory analysis

To calculate endogenous glucose production (EGP) and the rate of dis-

appearance of glucose (Rd), fractional enrichments of [6,6-2H2]-glucose

were determined in the collected plasma samples by gas

chromatography–mass spectrometry (Agilent GCMS 5975C MSD; Agi-

lent Technologies), as previously described.20,21 The isotopic enrichment

of plasma glycerol was determined as the tert-butyl trimethylsilyl

(tBDMS) glycerol derivative. [2H5]-glycerol plasma enrichments were

determined using gas chromatography–mass spectrometry (Agilent

GCMS 5975C MSD). Plasma insulin concentration was measured by

immunoassay using chemiluminescent technology (ADVIA Centaur Sys-

tem; Siemens Healthcare). Plasma non-esterified fatty acid concentra-

tions were measured using automated enzymatic colorimetric assays

(iLAB 650; Instrumental Laboratories, Holliston, MA, USA).

2.6 | Statistical analysis

The present study is part of the larger SOUL-DEEP study that investi-

gated ethnic differences in T2D pathophysiology in WE versus BA

men.22 The primary outcome for which the sample size of the study

was calculated was insulin secretory function. Thus, the present paper

reports exploratory analyses of the secondary outcomes of SOUL-

DEEP, namely, ectopic fat accumulation and tissue-specific insulin

sensitivity. Our sample size was predetermined and there was no sep-

arate sample size calculation performed for these secondary outcomes

of interest. Participant characteristics were summarized by ethnicity

and glycaemic group as mean (standard deviation) for continuous vari-

ables and count (percentage) for categorical variables. Characteristics

were compared between ethnic groups within glycaemic group using

independent samples t-tests for continuous variables and chi-squared

tests for categorical variables. For each outcome of interest (whole-

body insulin sensitivity, EGP suppression, difference in Rd, RdSS2, and

lipolysis suppression, VAT, SAT, IHL), the individual values were plot-

ted by ethnicity and glycaemic group along with the group mean. Pair-

wise independent samples t-tests were used to test for differences

between ethnic groups and between glycaemic groups.

To explore the association between VAT (explanatory variable)

and lipolysis suppression, EGP suppression, and RdSS2 (outcomes), a

set of adjusted linear regression models were fitted by ethnicity. The

confounders were selected using stepwise selection with the follow-

ing potential confounders entered into the stepwise selection: HbA1c,

age, systolic blood pressure, diastolic blood pressure, waist circumfer-

ence, BMI, total cholesterol, low-density lipoprotein cholesterol, tri-

glycerides, and fasting plasma glucose. The stepwise selection

removed variables if they were not significant at the 5% level. The

confounding variables were kept consistent across ethnic groups and

similar outcomes to aid comparison of findings. Quadratic terms for

VAT were entered into each adjusted linear regression model, but

were not significant at the 5% level in any model and therefore only

linear terms were included in the final model. The coefficient (95%

confidence interval) and p value for each model is presented. These

analyses were repeated with IHL as the explanatory variable of inter-

est, rather than VAT. Missing data were not imputed; analyses were

conducted on only complete cases. Statistical significance was

assessed at the 5% level. All analyses were performed in Stata v18.0.

3 | RESULTS

3.1 | Participant characteristics

Participant characteristics are shown in Table 1. The BA population dem-

onstrated lower WC (p = 0.013) and plasma triglycerides (p = 0.001)

compared with the WE population, primarily due to a 6.3-cm mean dif-

ference in WC, and a 0.4 mmol�L�1 mean difference in triglycerides,

within the NGT group. Splitting by glucose tolerance group revealed an

increase in age and BMI from the NGT participants to the IGT and T2D

groups. HbA1c and fasting plasma glucose also increased linearly across

the glucose tolerance groups. By design, there were no ethnic differ-

ences in BMI within glucose tolerance groups. Mean age was similar

between the WE and BA population in the NGT and T2D groups, but

the WE population was older than the BA population in the IGT group.

3.2 | Ectopic fat

Compared with WE men, BA men had consistently lower VAT levels

across the spectrum of glucose tolerance (Figure 1A; p < 0.05 for all

pairwise comparisons). In the combined population, VAT showed a lin-

ear increase from NGT to IGT (p = 0.016), but there was no further

increase in VAT from the IGT to the T2D group (p = 0.233). SAT

WHELEHAN ET AL. 3
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showed no significant ethnic differences (p > 0.05 for all pairwise

comparisons within glycaemic groups), but was greater in the T2D

than the NGT group (Figure 1B; p = 0.015). The percentage of IHL

trended towards an ethnic difference within the NGT and IGT groups

(p = 0.05), whereby the WE group had a greater percentage of IHL

than the BA group (Figure 1C). There was no difference in

IHL between BA and WE men in the T2D group (p = 0.190). IHL did

not differ among glycaemic groups (p > 0.05 for all pairwise compari-

sons between glycaemic groups).

3.3 | Insulin sensitivity

There were no ethnic differences in whole-body, peripheral, or

hepatic insulin sensitivity within each glucose tolerance group

(Figure 2A–D). Whole-body, peripheral and hepatic insulin sensitiv-

ity decreased from the NGT group to the IGT and T2D groups in

the combined population (Figure 2A–D).

3.4 | Lipolysis suppression

There were no ethnic differences in the suppression of

lipolysis, with a mean suppression of 46.1% ± 17.4% and 45.0%

± 20.3% in the WE and BA population, respectively (p > 0.05).

The degree of lipolysis suppression did not differ between

the NGT and IGT groups (p = 0.496), but this was significantly

lower in the T2D group compared with both the NGT (p = 0.014)

and the IGT group (p = 0.038; Supplementary Information

Figure S1).

3.5 | Associations

Figures 3 and 4(A–F) display the relationships between ectopic fat

deposition and tissue-specific insulin sensitivity in the WE and BA

men. In the WE group, IHL level was negatively associated with

whole-body insulin sensitivity (�0.012 [�0.020, �0.004]; p = 0.005)

TABLE 1 Participant characteristicsa.

Characteristic

Normal glucose tolerance Impaired glucose tolerance Type 2 diabetes

BA WE p valueb BA WE p valueb BA WE p valueb

n 23 23 11 13 19 15

Age, years 30.7 (12.0) 35.9 (13.9) 0.183 45.7 (7.5) 54.5 (9.9) 0.025 54.1 (7.8) 55.5 (7.1) 0.602

Weight, kg 84.1 (14.6) 86.6 (16.6) 0.595 93.8 (9.8) 94.8 (17.0) 0.870 90.6 (9.2) 94.2 (11.6) 0.326

BMI, kg�m�2 26.7 (3.6) 26.5 (4.5) 0.873 30.0 (2.1) 29.8 (4.4) 0.917 29.5 (2.6) 30.1 (2.7) 0.510

Waist circumference, cm 87.5 (9.3) 93.8 (14.6) 0.088 100.8 (8.0) 105.7 (11.4) 0.249 103.7 (8.2) 107.5 (8.8) 0.194

Systolic BP, mmHg 123.2 (12.2) 121.9 (9.1) 0.687 134.1 (9.7) 130.1 (12.1) 0.387 137.3 (14.1) 131.8 (13.9) 0.262

Diastolic BP, mmHg 70.7 (11.5) 71.1 (8.2) 0.888 83.0 (7.2) 78.3 (6.6) 0.116 85.6 (7.4) 82.9 (10.1) 0.376

HbA1c, mmol�mol�1 37.0 (5.3) 35.9 (2.9) 0.372 43.2 (3.8) 39.0 (3.3) 0.008 49.9 (7.7) 48.6 (7.8) 0.631

HbA1c, % 5.5 (0.5) 5.4 (0.2) 0.373 6.1 (0.3) 5.7 (0.3) 0.007 6.7 (0.7) 6.6 (0.7) 0.650

Total cholesterol,

mmol�L�1

4.3 (1.1) 4.8 (1.1) 0.126 4.4 (0.9) 5.0 (0.6) 0.081 4.1 (0.7) 4.3 (0.7) 0.470

LDL cholesterol, mmol�
L�1

2.7 (0.9) 3.0 (0.8) 0.191 2.7 (0.8) 3.1 (0.6) 0.271 2.3 (0.5) 2.3 (0.7) 0.794

HDL cholesterol,

mmol� L�1

1.3 (0.4) 1.3 (0.3) 0.753 1.2 (0.4) 1.3 (0.4) 0.670 1.2 (0.4) 1.2 (0.2) 0.557

Triglycerides, mmol� L�1 0.7 (0.3) 1.1 (0.6) 0.002 1.1 (0.4) 1.4 (0.5) 0.136 1.3 (0.7) 1.7 (0.7) 0.143

Fasting plasma glucose 5.1 (0.4) 5.2 (0.4) 0.570 5.6 (0.5) 5.8 (0.7) 0.573 6.7 (1.0) 6.8 (1.4) 0.732

HOMA2-β 93.9 (26.9) 97.5 (37.3) 0.710 95.3 (26.5) 106.8 (49.7) 0.500 70.2 (7.8) 84.9 (44.3) 0.281

HOMA2-S 108.2 (43.7) 113.8 (61.2) 0.721 73.5 (23.7) 80.2 (12.7) 0.668 64.9 (30.6) 56.2 (28.9) 0.413

HOMA2-IR 1.1 (0.5) 1.2 (0.7) 0.608 1.5 (0.5) 1.9 (1.1) 0.319 1.9 (0.8) 2.4 (1.7) 0.220

Diabetes duration, years - - - - - - 2.8 (1.2) 2.9 (1.0) 0.815

Metformin use, count (%) - - - - - - 8 (53.3) 14 (73.7) 0.218

Note: Data expressed as mean (standard deviation), unless otherwise stated.

Abbreviations: BA, Black African; BMI, body mass index; BP, blood pressure; HbA1c, glycated haemoglobin; HDL, high-density lipoprotein; HOMA2-β,
homeostatic model assessment of β-cell function index; HOMA2-IR, homeostatic model assessment of insulin resistance index; HOMA2-S, homeostatic

model assessment of insulin sensitivity index; LDL, low-density lipoprotein; WE, White European.
aData were complete for all variables, i.e., there were no missing data.
bDifferences in means between ethnic groups were tested within each glucose tolerance group using the independent samples t-test for continuous

variables and chi-squared test for categorical variables.
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and peripheral insulin sensitivity; both percentage change in Rd from

basal (�5.069 [�9.714, �0.425]; p = 0.033) and Rd during Step

2 (�0.069 [�0.114, �0.024]; p = 0.004). Post hoc tests did not detect

the glucose tolerance group. There was no association between

hepatic insulin sensitivity and IHL in the WE group (p < 0.05). In the

BA cohort, IHL level was negatively associated with only hepatic insu-

lin sensitivity (�1.798 [�3.472, �0.123]; p = 0.036) and, again, post

hoc tests did not detect the glucose tolerance group.

In the WE group, VAT was inversely associated with peripheral

insulin sensitivity (measured as percentage change in Rd; �0.655

[�1.231, �0.080]; p = 0.027), whereas the BA group demonstrated

an inverse association between VAT and hepatic insulin sensitivity

(�0.166 [�0.291, �0.040]; p = 0.001 [Supplementary Information,

Tables S2 and S3]). These differences were primarily due to a

statistically significant relationship in the NGT group. VAT was

not associated with hepatic insulin sensitivity in the WE group,

and it was not associated with peripheral insulin sensitivity in the

BA group. SAT was not associated with any tissue-specific insulin

sensitivity in either ethnicity. Nonlinear associations were tested

for all relationships; for most, the association was linear, except for

the two relationships shown in Table S3 in Supplementary

Information.

4 | DISCUSSION

In this study, we present data across a spectrum of glucose tolerance

to compare the relationship between IHL accumulation and tissue-

specific insulin sensitivity in BA and WE men. We present novel data

on participants classified as having IGT and combine these with

F IGURE 1 Visceral (A) and subcutaneous (B) adipose tissue deposition, and intrahepatic lipids (C) across the spectrum of glucose tolerance in
Black African (shaded symbols) and White European (open symbols) men. Circles represent the normal glucose tolerance (NGT) group, squares
represent the impaired glucose tolerance (IGT) group and triangles represent the type 2 diabetes (T2D) group. Horizontal line represents

sample mean.

WHELEHAN ET AL. 5
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data from cohorts with NGT and T2D to comprehensively assess eth-

nic differences across a spectrum of glucose tolerance.20,21 Our data

show that, at every level of glucose tolerance, BA and WE men have

equivalent insulin sensitivity, despite lower IHL and VAT levels in the

BA population. Our analysis demonstrates a novel finding that central

adiposity, including IHL and VAT, are more associated with peripheral

IR in WE men, and hepatic IR in BA men.

The present study demonstrates significantly lower IHL and VAT

in the BA compared with the WE men, in the presence of similar

whole-body and tissue-specific insulin sensitivity. This is consistent

with previous findings that have reported lower IHL and VAT levels in

BA populations compared with those of WE ancestry,10,11,25 which

has occurred at equivalent or greater degrees of IR.20,21 This finding

has led to numerous lines of speculation, including the possibility that

the role of IHL and VAT in IR development has been over-estimated,

or is of lesser importance, in the pathogenesis of T2D in BA popula-

tions. The equivalent hepatic IR between ethnicities, in the presence

of lower IHL in the BA population, could suggest that there may be

another driver, independent of IHL, of hepatic IR in the BA men. How-

ever, the finding that lower levels of VAT and IHL in the BA men were

positively associated with hepatic IR suggests that there may be eth-

nic differences in the fat ‘threshold’ for inducing IR, which aligns with

the ‘personal fat threshold’ theory, whereby the degree of susceptibil-

ity to the adverse effects of excess adiposity varies.26

It is commonly reported that increased VAT level is associated

with decreased insulin sensitivity in both WE27,28 and BA29 popula-

tions, likely due to the greater lipolytic properties of VAT and direct

drainage of fatty acids to the liver.30 In the present study we observed

F IGURE 2 Tissue-specific insulin sensitivity across the spectrum of glucose tolerance in Black African (BA; shaded symbols) and White
European (WE; open symbols) men. Circles represent the normal glucose tolerance (NGT) group, squares represent the impaired glucose
tolerance (IGT) group and triangles represent the type 2 diabetes (T2D) group. Horizontal line represents sample mean. M/I, glucose disposal rate
divided by steady-state plamsa insulin; EGP, endogenous glucose production; Rd, rate of disappearance of glucose.
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an association between VAT and IR, consistent with previous findings,

however, distinct ethnic differences were present such that VAT was

associated with peripheral IR in the WE men, and hepatic IR in the BA

men. This is interesting as, assuming VAT is the driver of IR, it sug-

gests that the VAT accumulation may be more detrimental to hepatic

IR in BA men, but to peripheral IR in WE men. Splitting these associa-

tions by glucose tolerance group reveals that they are primarily driven

by the NGT group, in both ethnicities, suggesting that increased VAT,

prior to disease development, may be driving different sites of IR by

ethnicity. This association is lost at higher levels of IR, that is, within

the IGT and T2D groups, suggesting that VAT may drive IR to a cer-

tain level, beyond which additional comorbidities or drivers are likely

to play a more important role. This is consistent with previous

research that has demonstrated ethnic differences in T2D pathophysi-

ology within a non-diabetic cohort,31 that disappear after T2D diagno-

ses.32 This could suggest VAT as an early indicator of IR (or T2D) risk,

prior to the appearance of abnormal or elevated glucose

concentrations, which highlights the importance of looking across the

glucose tolerance spectrum in the present analysis.

As with VAT, IHL accumulation was associated with peripheral

and hepatic IR in the WE and BA men, respectively. IHL was not asso-

ciated with hepatic IR in the WE population, contrary to our current

understanding of the role of hepatic lipids in the development of

hepatic IR.33 A previous cross-sectional study measured peripheral

but not hepatic IR with a hyperinsulinaemic-clamp and demonstrated

that IHL level was the greatest predictor of IR in a White population,

but this relationship did not exist in a BA population,34 aligning with

our findings. The significantly lower IHL levels in the BA population

are consistent with previous studies that have demonstrated a lower

prevalence of hepatic steatosis in BA than WE populations.35 Previous

research from Goedecke et al.36 demonstrated an association

between IHL and hepatic IR in Black but not White women, consistent

with the results of the present study. The importance of IHL in T2D

development has also been demonstrated in the Counterpoint study,

F IGURE 3 Associations
between intrahepatic fat
deposition and tissue-specific
insulin sensitivity in each ethnic
group. Circles represent the
normal glucose tolerance (NGT)
group, squares represent the
impaired glucose tolerance (IGT)
group and triangles represent the

type 2 diabetes (T2D) group.
Shaded symbols represent the
Black African population and
open symbols represent the
White European population.
Fitted lines on the adjusted
models. Dashed line represents
5.65% liver fat threshold. EGP,
endogenous glucose production;
Rd, rate of disappearance of
glucose.

WHELEHAN ET AL. 7

 14631326, 0, D
ow

nloaded from
 https://dom

-pubs.pericles-prod.literatum
online.com

/doi/10.1111/dom
.15867 by K

ings C
ollege L

ondon, W
iley O

nline L
ibrary on [07/09/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



whereby T2D remission was achieved, in a primarily White popula-

tion, in those who had a reduction in liver fat.7 However, the mecha-

nistic data from the Counterpoint study suggest that the driver of

T2D remission (defined by HbA1c below threshold and cessation

of diabetic medication) was a return of β-cell function after the reduc-

tion in liver fat. However, no direct assessments of insulin sensitivity

were performed to determine whether the reduction in IHL corre-

sponded with increased insulin sensitivity and indeed the relative

importance of enhanced insulin sensitivity in driving T2D remission. In

the present study, we measured the suppression of lipolysis with the

infusion of glycerol during a hyperinsulinaemic clamp, which we used

as a measure of adipose tissue insulin sensitivity. Interestingly, adi-

pose tissue IR was associated with VAT in WE, but not BA men. This

is likely due to the greater lipolytic properties of VAT,5 and thus the

WE population, with greater absolute VAT levels, exhibits a (nega-

tively) associative relationship with the degree of lipolysis suppres-

sion. However, there is no difference, at any level of glucose

tolerance, in adipose tissue IR between the BA and WE population.

Thus, it suggests that there is a mechanism independent of VAT vol-

ume that is driving adipose tissue IR in the BA population, further

highlighting that there may be numerous pathways contributing to (all

sites of) IR in the BA population. Indeed, previous evidence has sug-

gested that IR can develop independently of ectopic fat deposition,

with data demonstrating improvements in hepatic IR independent of

any change in IHL levels,37 and also those with the G-allelle of

patatin-like phospholipase 3 gene that develop high levels of IHL

while maintaining normal hepatic insulin sensitivity.38 Further

research should explore muscle lipid uptake, adipose tissue expand-

ability, lipogenesis and insulin signalling to help us further understand

the pathway driving adipose tissue IR in a BA population. There is cur-

rently a noticeable dearth of evidence on how the metabolic function

and cellular characteristics of adipose tissue differ by ethnicity.

It is interesting, however, to note the degree of heterogeneity in

the measure of adipose tissue IR across the spectrum of glucose toler-

ance, with no difference detected between the NGT and IGT groups,

suggesting that early adipose tissue IR may not drive any changes in

F IGURE 4 Associations
between visceral adipose tissue
deposition and tissue-specific
insulin sensitivity in each ethnic
group. Circles represent the
normal glucose tolerance (NGT)
group, squares represent the
impaired glucose tolerance (IGT)
group and triangles represent the

type 2 diabetes (T2D) group.
Shaded symbols represent the
Black African population and
open symbols represent the
White European population.
Fitted lines on the adjusted
models. EGP, endogenous
glucose production; Rd, rate of
disappearance of glucose.
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disease progression from NGT to IGT. Conversely, we observe a linear

decrease in both whole-body and hepatic insulin sensitivity from NGT

to IGT to T2D, in both ethnic groups, consistent with our current

understanding of the role IR plays in T2D development.39 Peripheral

insulin sensitivity decreases from NGT to IGT but there is no further

decrease to T2D, which could suggest that peripheral IR reaches its

lower limit earlier in disease progression, and it is other metabolic

defects, perhaps adipose tissue IR, that further drive disease progres-

sion. However, this would require verification in longitudinal studies

that measure tissue-specific IR development in disease progression.

Indeed, tracking the development of IR in combination with other dis-

ease markers such as obesity, inflammation and β-cell function, would

allow us to determine a ‘primary defect’ driving the development of

T2D, and whether this is ethnicity dependent. However, it has been

previously suggested that a ‘merging’ cluster of disease comorbidities,

in varying degrees of severity, exist concurrently,40 preventing us

from clearly defining a primary driver of disease development.

Our study has several areas of novelty and strength. Our dataset

is the first to explore, using gold standard assessments, ethnic differ-

ences at three different glucose tolerance stages, in tissue-specific

insulin sensitivity and ectopic fat deposition between BA and WE

men. Our use of a direct assessment of insulin sensitivity, including

the quantification of hepatic insulin sensitivity as the percentage sup-

pression of EGP, is a methodological choice superior to other indirect

measures.41 The indirect indices that are currently used for estimating

insulin sensitivity may not be appropriate for use in a BA population,

due to potentially lower insulin clearance and higher serum insulin

concentrations in this population, possibly leading to an overestima-

tion of IR.42

The present study included men only. Previous observational

studies have demonstrated sex-specific differences in fat storage,

with women demonstrating a greater amount of subcutaneous than

visceral fat, compared with men.43 Previous studies have also

shown a greater degree of hyperinsulinaemia and insulin resistance

in women than men,44,45 thus a comparative study in women would

be necessary to determine whether the ethnic differences observed

in the present study in men would be observed in a female popula-

tion. It is also worth noting that, while the accumulation of ectopic

fat appears to be a major driver of IR and thus T2D, it is not the

sole driver, and other factors such as chronic inflammation and

family history of T2D also need to be taken into consideration

when determining the overall ethnic differences in T2D pathophys-

iology. A further limitation of the present study is the small sample

size used and, while we have demonstrated a linear association

between hepatic IR and IHL in the BA population, it is possible this

may have been driven by a small number of data points and this is

certainly worthy of further investigation to confirm the robustness

of this finding.

In conclusion, despite significantly lower VAT and IHL deposition,

BA men exhibit the same degree of whole-body and tissue-specific

insulin sensitivity to that exhibited by WE men across a glucose toler-

ance continuum, suggesting a lower personal fat threshold in men of

BA ethnicity. Ethnic differences may exist in the relationship between

both VAT and IHL with IR, and further research should investigate the

mechanisms behind the development of IR at lower VAT and IHL in a

BA population.
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