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Abstract. Knowledge Graph Embeddings Models project entities and
relations from Knowledge Graphs into a vector space. Despite their
widespread application, concerns persist about the ability of these mod-
els to capture entity similarity effectively. To address this, we introduce
InterpretE, a novel neuro-symbolic approach to derive interpretable vec-
tor spaces with human-understandable dimensions in terms of the fea-
tures of the entities. We demonstrate the efficacy of InterpretE in encap-
sulating desired semantic features, presenting evaluations both in the
vector space as well as in terms of semantic similarity measurements.

Keywords: knowledge graph embeddings · semantic similarity ·
interpretable vectors

1 Introduction

Since early 2010s, significant progress has been made in the development of
Knowledge Graph Embeddings Models (KGEMs). These models aim to project
the entities and relations of Knowledge Graphs (KGs) in a latent vector space.
This approach offers a sub-symbolic means of representing the entities and their
connections within the original KG [3]. KGE models have found applications
across various tasks, including KG completion, rule-based reasoning, and rec-
ommendation systems [11,25]. These models are typically trained and evaluated
with a focus on the task of link prediction where a score for plausibility of KG
triples is optimized.

However, there is a prevalent belief that KGEMs can effectively capture sim-
ilarities between underlying entities where similar entities are clustered in the
vector space. As such, KGEMs have been used for tasks such as entity or relation
similarity and conceptual clustering [9,16,21]. This notion was first challenged
by Jain et al. [14], where the authors demonstrated that entities belonging to
the same type (or ontological class) do not effectively cluster together in the vec-
tor space beyond the most basic entity types. Subsequently, other recent studies
have delved into this further, arriving at similar conclusions [1,12].
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A fundamental challenge for KGEMs in terms of capturing entity similarity
stems from the complex nature of the underlying data. Entities within the KG pos-
sess diverse features, such as attributes and relations to other entities, which sig-
nificantly influence their vector representations. This complexity makes it exceed-
ingly difficult to pinpoint the precise factors that shape the distribution of vectors
in the embedding space. With the entities having varying types and numbers of
connections in the KG, and learned vector representations consisting of hundreds
of dimensions, there exists no direct correspondence between the entity features
and the dimensions of the resulting vector. The lack of mapping leads to a defi-
ciency in semantic interpretability, with no means to comprehend why certain vec-
tors are similar, nor to identify which entity features influence the representations.

In this work, we aim to bring back the semantic interpretability for the
embedding vectors by explicitly connecting them to underlying features of the
entities. Our proposed neuro-symbolic approach InterpretE is capable of deriving
new vector spaces that can be understood in terms of the human-understandable
features of the entities in the KG, hence enabling informed decisions in down-
stream semantic tasks (e.g. recommendation systems and conceptual clustering),
debugging and comparing the models and understanding hidden biases [20]. We
design different experiments to demonstrate that the vector spaces obtained from
InterpretE can encapsulate desired semantic features and the approach is highly
flexible in terms of the number and types of the entity features. The evaluation
of the approach is presented in terms of the quality of the resulting clusters
in the derived vector space, as well in terms of the semantic similarity of the
corresponding entities. We make the code publicly available1 to promote further
research in this direction.

2 Related Work

Semantics in Knowledge Graph Embeddings. Recent critiques have questioned the
widely-held assumption that KGEMs produce semantically meaningful represen-
tations of underlying entities [12,14]. In a popular previous work, Jain et al. [14]
investigated the degree to which similar entities correspond to similar vectors and
concluded that this does not hold true universally. They demonstrated that entity
embeddings derived from KGEMs often struggle to effectively discern entity types
within a Knowledge Graph (KG), with simpler statistical methods offering com-
parable performance. Additionally, Ilievski et al. [13] observed consistent under-
performance of KGEMs compared to simpler heuristics in tasks reliant on similar-
ity, particularly within word embeddings. The authors argue that many properties
that heavily relied upon by KGEMs are not conducive to determining similarity,
thereby introducing noise that ultimately undermines performance.

Interpretable Dimensions. Several approaches have emerged to construct inter-
pretable spaces [4,5,7,20,27] using multiple data sources, predominantly texts
but also images. The term ‘interpretable space’ encompasses simple and
1 https://github.com/toniodo/InterpretE.

https://github.com/toniodo/InterpretE
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Fig. 1. Overview of InterpretE

human-understandable spaces. Conceptual spaces, introduced by Peter Garden-
fors [10], represent concepts through cognitively meaningful features known as
quality dimensions. These dimensions are typically learned from human judg-
ments and serve as an intermediary representation layer between neural and
symbolic representations. While promising for the advancement of explainable
AI, this approach has not been extended to more complex datasets such as KGs
and their representations. Our proposed approach is a first step towards iden-
tifying similar interpretable dimensions for KGEMs and deriving vector spaces
that are human-understandable in terms of the underlying features of the KG
entities.

3 InterpretE

In this section, we present the proposed InterpretE approach that aligns the
vector representations with the entity features by the manipulation of the vector
spaces. Figure 1 provides a simplified view of the proposed approach. Essentially,
n-dimensional entity vectors from a given pre-trained KGEM serve as the input,
along with a set of d features for these entities that are desired to be represented
in the vector space (these can be task driven, e.g. separating players from politi-
cians). Further details of the approach are provided below. An SVM model is
trained on the vectors, guided by the features, to produce d -dimensional Inter-
pretE vectors where the dimensions correspond to the entity features. Moreover,
entities that are similar in terms of the specified features are clustered together.
Further details of the approach are provided below.

Feature Selection. The InterpretE approach is centered around the representa-
tion of the desired features of the entities in the vector space. We designed several
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Fig. 2. Top 10 most represented entity
types in Yago3-10

Fig. 3. Top 10 most represented rela-
tions for person entities in Yago3-10

experiments with different features to test the approach2. Feature selection was
crucial as it guided experiment design.

As a first step, entities within the KG were categorized by their ontological
classes using WordNet types such as persons, organizations, and locations. For
each entity type, the most representative relations were selected and their val-
ues were categorized based on their distribution in KG triples. These categories
served as the entity features that dictate the dimensions in the InterpretE vector
spaces. An overview of the dataset analysis in terms of the most representative
entity types for the Yago3-10 dataset is shown in Fig. 2. Furthermore, the most
significant relations for the person entities are shown in Fig. 3.

For designing the experiments, different levels of abstraction were consid-
ered for features. For example, for person entities, the relation ‘wasBornIn’
(e.g., wasBornIn Paris) was found significant. One experiment mapped loca-
tions from specific cities to their corresponding countries (e.g., France), while
another grouped the cities to their respective continents (e.g., Europe), allowing
evaluation across different abstraction levels. The different experiments will be
presented and discussed in Sect. 4.

This adaptable process was primarily driven by the availability of sufficient
data points for the features within the KG. Once features were defined, enti-
ties were labeled with binary values indicating the presence or absence of each
feature. This labeled data was subsequently used for SVM training in the next
phase.

Derivation of Interpretable Vectors. After identifying the features for different
types of entities, we trained Support Vector Machine (SVM) classifiers on each
feature using a training set, following a similar methodology to that used by
Derrac et al. [7]. Although we have access to the ground truth for each vector,
we chose to use SVM classifiers instead of directly converting the ground truth

2 Note that the attributes of the KG entities could not be considered as features
since most KGEMs are not trained on them, hence such features cannot be derived
from the original vectors.
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Fig. 4. Example 2D visualization of InterpretE vectors (city entities, location as fea-
tures) in Yago3-10

into binary vectors. This approach allowed us to retain more detailed information
encapsulated in the original embeddings, rather than reducing it to simple binary
values.

To streamline the SVM training, we automated the process and defined
a set of possible parameters for the SVM. Grid search and cross validation
was performed in order to select the best estimator (with the Scikit-learn [19]
library which uses LibSVM [6]). This methodology helped prevent overfitting and
ensured a more generalized estimated hyperplane. To address class imbalance in
the KG data, weights were assigned to entities based on their class distribution.
The performance was evaluated using a test set comprising 20% of all entities
(without any overlap with the entities in the train set). At the end of this pro-
cess, new vectors were derived for each entity with each dimension corresponding
to a specific feature and the sign indicating the associated feature.

4 Experiments

Datasets and Embeddings. To derive and categorize features for different enti-
ties in the KG, their type information was essential. As such, we leveraged KG
datasets with associated ontologies, focusing on subsets of Yago (Yago3-10 [17])
and Freebase (FB15k-237) [22]. Additionally, we reused Wordnet-based entity
type mappings from Jain et al. [14].

Following previous works [12,14], several popular and benchmark KGEMs
were considered for the experiments to analyse the scalability of the Inter-
pretE approach across vector spaces generated with different methods, including
ConvE [8], TransE [2], DistMult [26], Rescal [18] and Complex [24]3.

3 The pretrained embeddings were obtained from https://github.com/nitishajain/
KGESemanticAnalysis.

https://github.com/nitishajain/KGESemanticAnalysis
https://github.com/nitishajain/KGESemanticAnalysis
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Evaluation of InterpretE Vector Space. The derived InterpretE vector spaces
are expected to cluster the vectors for the entities as per the selected features.
An example for the 2D visualization of these clusters is shown in Fig. 4, where
the experiment centered around city entities and their locations as features
(abstracted to continents). In order to evaluate these clusters and to guarantee
a general space, the Cohen’s kappa coefficient (κ score) was calculated for the
test set (following [7]). This metric measures the agreement between two depen-
dent categorical samples. The value ranges from -1 to 1, with a value closer to 1
indicating stronger agreement between the trained SVM and the ground truth on
the testing set. The values of the mean κ score for the different experiments on
Yago3-10 dataset are shown in Table 1. (The results for FB15k-237 are available
in the appendix (Table 2)). Values close to 1 for this metric for most experiments
indicates the promise of the approach.

Evaluation of Semantic Similarity. InterpretE vectors are dictated by the
selected features for the entities that they represent, as such we evaluated the
semantic similarity of the derived vectors (in terms of the features) to measure
this desirable characteristic. We propose a simple metric simtopk to measure the
similarity of entities’ neighbors. For each entity, we analyze its neighborhood to
estimate the similarity based on the corresponding feature used in the SVM
experiment. The parameter k represents the number of neighbors considered.
The score assigned to the original entity is calculated as the mean value of the
similarities computed with these neighboring entities. This process is repeated
for all entities, and the mean value of these scores is computed to serve as the final
metric. The proposed simtopk metric can be formulated as:

simtopk =
1
n

n∑

i=1

⎛

⎝1
k

∑

j∈Ni(k)

f(ni, nj)

⎞

⎠ (1)

where: n: the number of total entities; k: the number of considered neighbours;
Ni(k): the k closest neighbours of the i-th entity, determined using a euclidean
distance; f(·, ·): returns 1 if the two entities are similar in terms of features, 0
otherwise.

The values of this metric for k=10 for the original and the derived InterpretE
embeddings for the different experiments and the various embedding models
are shown in Table 1 for Yago3-10 (and Table 2 for FB15k-237 in appendix). The
scores are better for InterpretE vectors as compared to the original pre-trained
vectors (obtained from various KGEMs) across the board, indicating that similar
entities are being represented by vectors that are closer in the new vector space,
as desired.

An alternative way to evaluate the semantic similarity using large language
models was also explored and is presented in the appendix (Appendix B ).
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Table 1. simtop10 scores on the original and InterpretE vectors and κ scores on the
test set for the experiments with Yago3-10 for the different KGEMs

Entity type and chosen features ConvE TransE DistMult Rescal Complex

person: hasGender - wasBornIn
(Europe)

κ score .96 .93 .95 .96 .94

original .456 .496 .492 .507 .504

InterpretE .54 .529 .538 .543 .539

person: wasBornIn
(Europe - Asia - North America)

κ score .92 .84 .90 .94 .90

original .687 .8 .814 .871 .831

InterpretE .987 .959 .983 .987 .979

person: playsFor
(UK - Germany - Italy - US)

κ score .80 .80 .81 .80 .81

original .789 .832 .838 .828 .85

InterpretE .917 .716 .913 .9 .942

person: worksAt (university -
educational institution - organization)

κ score .31 .13 .32 .31 .30

original .467 .413 .465 .461 .465

InterpretE .868 .868 .853 .86 .807

person : type (player - artist - politician
- scientist - officeholder - writer)

κ score .77 .75 .78 .78 .74

original .745 .772 .805 .794 .662

InterpretE .953 .945 .958 .944 .938

city: isLocatedIn (Europe - Asia -
(North - South) America)

κ score .94 .96 .96 .98 .98

original .899 .959 .949 .966 .972

InterpretE .989 .993 .991 .996 .996

organizations: location (US - UK -
Canada - Japan - France - Australia)

κ score .52 .53 .51 .58 .54

original .622 .694 .658 .703 .703

InterpretE .904 .786 .912 .899 .897

scientist: hasWonPrize κ score .96 .84 .97 .85 .98

original .539 .51 .575 .538 .578

InterpretE .958 .934 .966 .926 .972

4.1 Discussion

The results from the designed experiments for each dataset demonstrate the
potential of the proposed approach. However, there are several considerations
for the experiment design that depend heavily on the data distributions and
characteristics of the underlying KG data. For example, there is often class
imbalance in entities concerning selected features (e.g., hasGender having more
male representatives than female). These factors can impact the performance of
the SVM classifier. Class-based weights have been applied to the data points to
address this issue, but it remains a design challenge.

In some experiments, our method achieves a simtopk value very close to 1.
This indicates that in the resulting space, similar entities are clustered together
nearly perfectly. However, this level of clustering is not consistently observed
across all experiments. The variability can be explained by the fact that other
underlying features, not covered in the current experiment, could contribute to
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more accurately clustering similar entities. An analogy can be drawn with the
well-known kernel trick used in SVMs, where an additional dimension (in our
case, the consideration of a new feature) is introduced to better distinguish dif-
ferent labeled data (in this context, non-similar entities). Another challenge is
the abstraction of features, especially if the underlying data is noisy and non-
canonicalized (e.g., different labels for the same value such as ‘UK’ and ‘United
Kingdom’). Resolving these issues is crucial for creating useful feature categories.
A potential limitation of this approach could be scalability. As the size of the
knowledge graph (KG) increases, the time complexity of training the SVM also
increases. The time complexity of SVM training is O(n2d), where n is the number
of entities and d is the number of dimensions. Despite these challenges, Inter-
pretE represents a significant step towards deriving interpretable vector spaces
from KGEM vectors. It is flexible and applicable to any KGEM. We aim to fur-
ther develop this approach to streamline the design and engineering process as
well as improving its scalability across various datasets.

5 Conclusion and Future Work

This paper attempts to address the oft overlooked issue of lack of semantic inter-
pretability in latent spaces generated by popular KG embedding techniques. The
proposed InterpretE approach is shown to be capable of deriving interpretable
spaces from existing KGEM vectors with human-understable dimensions that
are based on the features in the underlying KG. Through the design and evalu-
ation of different experiments, we have showcased the promise of the approach
for encapsulating entity features in the vectors for different feature abstraction
levels, customizable as per the dataset. By aiming to bridge the gap between
entity representations and human-understandable features, InterpretE paves the
way for enhanced understanding and utilization of KGEMs in various applica-
tions. Future research can further explore the implications of this approach and
extend its applicability to broader contexts within the field of knowledge repre-
sentation and reasoning.

Acknowledgement. This work was partly funded by the HE project MuseIT, which
has been co-founded by the European Union under the Grant Agreement No 101061441.
Views and opinions expressed are, however, those of the authors and do not necessar-
ily reflect those of the European Union or European Research Executive Agency. We
are also thankful for access to King’s Computational Research, Engineering and Tech-
nology Environment (CREATE). King’s College London. (2024). Retrieved June 26,
2024, from https://doi.org/10.18742/rnvf-m076.

Appendix A Statistics and Results for FB15K-237

To study the scalability of the InterpretE method across different KGs, we also
experimented with the FB15K-237 dataset, following the same design method-
ology as with Yago3-10. In this section, we present the statistics and the results
obtained on this dataset.

https://doi.org/10.18742/rnvf-m076
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Similar to Yago3-10, we conducted a statistical analysis to select features.
Figure 5 illustrates the most represented entity types in this dataset. For each
type considered, we identified the most represented relations, detailed in Fig. 6
for film entities as an example.

Fig. 5. Top 10 most represented entity
types in FB15K-237

Fig. 6. Top 10 most represented rela-
tions for film entities in FB15K-237

Following the training phase, we evaluated the semantic similarity using the
simtopk metric and obtained results as presented in Table 2. Similar to our
findings with Yago3-10, we observed enhanced semantic similarity with FB15K-
237. This improvement is evidenced by the higher simtopk value in the final
space compared to the original space.

Table 2. simtop10 scores on the original and InterpretE vectors and κ scores on the
test set for the experiments with FB15K-237 for different KGEMs

Entity type and chosen features ConvE TransE DistMult Rescal Complex

person: gender - nationality
(USA - England - UK - India - Canada)

κ score .84 .73 .83 .88 .84

original .587 .524 .575 .563 .563

InterpretE .952 .918 .936 .956 .932

organizations: locations
(USA - UK - Japan - Canada - Germany)

κ score .78 .70 .75 .58 .79

original .766 .738 .758 .731 .768

InterpretE .951 .947 .958 .959 .96

film release region
(USA - Sweden - France - Spain - Finland)

κ score .71 .69 .71 .66 .71

original .705 .66 .661 .621 .661

InterpretE .876 .866 .903 .907 .892

film genre
(drama - comedy - romance - thriller - action)

κ score .68 .65 .71 .72 .70

original .212 .217 .215 .217 .213

InterpretE .732 .719 .805 .78 .753
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Appendix B Semantic Similarity Evaluation with LLMs

We also explored an alternative way to the simtopk metric using a large language
model (LLM) in a limited experiment (Fig. 7). We attempted this approach with
few-shot prompting using Llama3-70B [23]. Additionally, we experimented with
a RAG pipeline using the entire initial knowledge graph with Mistral7B [15]
and LlamaIndex. However, the results were not consistently convincing, and the
model sometimes contradicted itself.

Fig. 7. Partial example of few-shot prompts with Llama 3 70B using HuggingChat

In our prompt to the LLM, we provided two examples: one positive and one
negative, randomly chosen from all possible entities. We also specified the type of
similarity we were evaluating, as it depended on the selected feature for a given
experiment. This method allows us to assess our approach by examining how
similar the neighborhood of a given entity is to the entity itself. This approach
needs to be applied to all entities to obtain a global evaluation metric, which we
plan to explore in future work.
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