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Abstract

Due to destructive interference electromagnetic fields contain minima, counterpart to

bright maxima. But because light is a vector wave it is rare that all components of a

field, for instance the electric field, are completely eliminated in a wave superposition.

An entity satisfying E = 0 we call a dark spot and it can only be realised artificially

by control of coherent monochromatic interfering fields, yet doing so embeds light

with deeply rich topological structures beyond simple scalar dislocation lines. We

study the imprints of vector dark spots in this thesis, including two-dimensional

(2D) paraxial dark spots, three-dimensional (3D), point-like non-paraxial dark spots

and propose a simple technique for their synthesis and position control. More specifi-

cally, paraxial dark spots are shown to always carry non-diverging polarisation struc-

tures infinitely into the far field (contrary to the universal phenomena of diffraction),

point-like dark spots are reported to develop complex, possibly vortex-like flows of

energy and momentum as well as one of six polarisation skeletons. Dark spots like

these could be powerful experimental tools for topological control, atom traps and

sub-wavelength optical microscopy. In the final chapter we present a decomposed

representation of light’s spin angular momentum density akin to the spin-orbit de-

composition of the Poynting vector, a sum of two terms, the canonical spin and

Poynting spin, whose physical meanings we lay out. The two terms relate to the

difference in canonical and spin momenta carried by left- and right-handed photons

and we apply the decomposition to a range of electromagnetic fields including a

linearly polarised vortex beam. Unifying this thesis we predict that at the centre

of the vortex beam, in its dark spot, a longitudinal chiral pressure force exists and

presents a way for the beam’s orbital angular momentum to couple to matter in a

chiral interaction.
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Chapter 1

Pockets of darkness in light

That was not only a juxtaposition. Light waves, by virtue of their being waves, can

superpose to develop complex interference patterns that contain local maxima and

minima, spots of bright and dim light, and should these waves be polarised in just

the right way minima can darken completely into pockets of pitch black, surrounded

by light elsewhere in space. These zero-brightness minima, which we would generally

identify by light’s electric field being zero (E(r, t) = 0), are what in this thesis we

call dark spots, our principle topic. This work ranges from a deep study of a dark

spot’s shape and characteristic impact on light, both in purely propagating light and

in far-stranger near fields, to a simple proposed method to move dark spots through

real and parameter spaces.

It was in the early 19th century that Thomas Young, splitting sunlight into two

beams using a card, saw apparent dark spots∗—regions of destructive interference—

amid the resulting diffraction pattern that led to the conclusion that light behaves as

a wave [1]. That Young’s cornerstone experiment is so well-known does not, however,

∗Sunlight is unpolarised and the interference minima in each frequency component would not
be aligned, though overall minima and maxima would be visible.
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mean that true dark spots are at all ordinary. For light is a vector wave and only if

the light that passes through each of Young’s slits is of one frequency and vertically

polarised, parallel to the slits, could a zero-intensity interference minimum emerge

in the electric field; the field vectors of the cylindrical waves emanating from the

slits are this way able to engage with each other and interfere without longitudinal

polarisation components, normal to the screen capturing the interference pattern†,

remaining in the minimum (this too is assuming that the interfering light is of one

colour, and that the slits’ waves’ amplitudes are equal at the minimum’s position!).

Polarised otherwise, even though obvious dark fringes appear, the electric or magnetic

field in any one minima could never truly be zero in all components. Suppose a more

general scenario: N single-colour electromagnetic waves, say plane waves randomly

polarised and each propagating in a random direction, superpose and set up the

total electric field E(r, t) =
∑N

i=1 E i. Trying then to identify a location rz where

the combined electric field is exactly and constantly zero, that is E(rz, t) = 0, we

would be unsuccessful. It cannot be guaranteed that within the span of three spatial

dimensions the three components of E are brought to zero simultaneously for all

values of t, E = 0 simply needing too many mathematical conditions to be satisfied

than can be provided by only three spatial degrees of freedom x, y, z‡. The only way

to realise a true electric field dark spot is to control the superposing waves, perhaps

by deliberately polarising them so that perfect destructive interference occurs at a

chosen position rz. A quarter of the original work of this thesis describes a method

†If the light is polarised orthogonal to the slits, then of the resulting cylindrical waves the electric
field vector lies tangent to the wavefront curvature, and at the screen has a component pointing in
the normal direction that relates to the line of sight to the slit. More detail is in chapter 4.

‡Even in far fields, where the electric field lies almost exactly tangent to spherical wavefronts
(E ≈ Et = Eθθ̂ + Eϕϕ̂) and in these tangential components, Et = 0 is required in at least one
location by the hairy ball theorem, the presence of small longitudinal field components (normal to
wavefronts, parallel to propagation) means the full, three component vector E is never zero exactly.
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to create dark spots at any desired location in plane wave interference and in near

fields.

For the very same reason that light’s vector character makes it impossible for

full suppression of the electric field to happen naturally in wave interference (meaning

without outside control of interfering fields), an artificially synthesised dark spot can

be deeply complicated in structure. The word ‘structure’ means more than simply

the size and shape of the literal dark spot that contrasts with brighter space. Not only

does single-frequency light have a certain polarisation determined by the orientation

and oscillation of the vector E , a property that is undefined when E = 0 for all time,

but it carries linear and possibly angular momentum, and transports energy in fluxes

that are disrupted by the dark spot’s presence. Subtleties in the way that polarisation

and other physical quantities in light react to dark spots are a major point of study in

this thesis, most notably in three-dimensional non-paraxial light because it is in this

regime that the most striking features can be found. These features are especially

surprising if, as is often the case, we are too accustomed to the (relatively speaking)

less interesting physics of far field light, and certainly individual plane waves. For a

plane wave is the simplest manifestation of propagating electric and magnetic fields,

travelling in a single well-defined direction k (this being the wavevector), wavefronts

perfectly planar, with the electric E and magnetic H vectors lying in-plane (that

means E ·k = H ·k = 0). Although the polarisation of the wave (conventionally the

1D or 2D shape that the periodic E vector traces in one oscillation) can vary, the

E and H fields are tightly coupled (they are polarised identically up to a rotation

about k) and the plane wave’s energy and momentum structure is ultimately very

basic. Take linear polarisation, for instance: oscillating, the amplitude of the plane

wave’s electric and magnetic fields crosses zero periodically, such that separated by

half a wavelength in the direction of k are entire planes of momentarily zero field,
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dark phasefronts within the wave that propagate at the speed of light. But because

the plane wave’s E and H fields only equal zero at periodic instants in time, the

time-averaged energy density of the wave and, therefore, the time-averaged number

of photons per unit volume is uniformly non-zero across all of three-dimensional

space (note that this means that plane waves carry infinite energy). As far as any

matter that can interact with the light is concerned, instantaneous darkness is largely

unimportant.

Single isolated plane waves cannot physically exist, their infinite size and deliv-

ery of energy being characteristics that can only be generated by a source infinite in

more than one aspect. In truth sources of light are finite and given enough distance,

wavefronts of radiation adopt a spherical curvature that lead to longitudinal field

components, tiny but non-zero, via Gauss’ law in free space ∇ · E = 0 that means

electric field lines must form closed loops. Towards another extreme, closer and closer

to source (entering its near field within one wavelength λ distance), light behaves at

its strangest: no longer is it so simple to define a direction of propagation, energy

is often shared unequally between the electric and magnetic fields, and the E and

H vectors can be oriented any way in three dimensions, free from confinement to a

transverse plane and independently from each other insofar as Maxwell’s equations

allow. The ubiquity of longitudinal field components might seem disconnected from,

even contradictory to the mental picture of light we might have developed when we

first encountered Maxwell’s equations. Yet, three-dimensional polarisation, energy

and momentum inhomogeneity are utterly compliant with Maxwell’s equations and,

in reality, it is the perfect plane wave that is non-physical. Perhaps because any elec-

tromagnetic field can be expressed by an angular spectrum, an infinite sum of plane

waves with different amplitudes and wavevectors, we might expect that light always

holds on to its constituents’ core properties. It is naive to assume, however, that
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because plane waves are individually simple their vector sum must also be simple in

terms of polarisation, energy and linear and angular momentum. This is far from

the truth!

Only relatively recently had many subtle but striking phenomena emerging

from the simple act of adding plane waves together begun to be discovered [2];

phenomena brought about by the way that vectors behave in wave interference and

that although Maxwell’s equations are themselves linear (meaning that the electric

and magnetic fields resulting from many wave interference is the vector sum of each

E and each H of the fields involved), other physical quantities in light are not linear

with respect to E and H. One such realisation (though older, relatively speaking) was

that wave dislocations or ‘scalar vortex lines’ (scalar field interference minima) are

a general feature of scalar wave interference [3]. Light’s electric and magnetic fields

are vector fields that, if comprised of one frequency and at their most complicated,

have three components that are functions of space related by ∇ · E = 0, i.e., E =

[Ex(r, t), Ey(r, t), Ez(r, t)]T , but which all oscillate sinusoidally with respect to time t.

While it is unusual for all three components to equal zero for all time, each component

is a scalar wave and, in say Ex, there generically exist one-dimensional threads where

that Ex component is permanently zero, independent of t—dark lines in individual

field components [4–6]. To stress the word ‘generically’ in this context, we mean

that no matter how structurally complicated an electromagnetic field, no matter

how many other fields of the same frequency might interfere with it nor how those

fields are individually polarised nor the direction in which they propagate, should we

measure any one component of the resulting field, there are (outside of the simplest

degenerate cases) always co-ordinates in space where there is complete destructive

interference of that component (the reason for this we shall return to later). That

electromagnetic waves interfere destructively is, by their definition as waves, far from
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surprising; we said that interference minima in light have been observed for centuries

since Young’s double slit experiment. But there is something particularly special

about scalar vortex lines, in the way that the surrounding light (where the scalar

component is non-zero) has to smoothly adapt to the presence of a one-dimensional

strand of darkness. Darkness is able to stir intrinsic orbital angular momentum into

an electromagnetic field, hence the word ‘vortex’.

Why dark spots?

The discovery that darkness in light causes orbital angular momentum to be carried

by the surrounding, non-zero field [7] has led over the last thirty years to an explosion

of interest in so-called vortex beams. Vortex beams, depending on the choice of basis,

can be imagined to contain at their centre one or two superimposed scalar vortex

lines that define a dark axis, enclosed by a bright, doughnut-shaped ring. Besides

sending particles into orbit around the beam axis, the vortex beam’s non-trivial

spatial structure can store information [8, 9] and in its intimate relationship with

polarisation, gives rise to many surprising phenomena [10]. But the physical richness

and applicability of dark spots go far beyond the vortex beam, and in the next short

sections we list some of the key motivations for a more general study of dark spots

and highlight the direct relevance of the work which we present in this thesis.

Topological control

Depending on the spatial complexity of an electromagnetic field and the number

of field components that are zero at the same time, zeros need not only take a

one-dimensional form. It is, in fact, possible to non-stably produce planar or even
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point-like, pin-prick pockets of darkness, the latter likely being a vector dark spot

where more than one component is zero in the midst of an elliptically polarised field.

Whatever its shape, be it a plane, a line or a point, a dark spot is inherently strange

because as we mentioned, just as one of or both of the electric and magnetic fields

vanish many of light’s vector physical properties become singular automatically, re-

sulting in non-trivial currents of energy, momentum and other quantities. Perhaps by

synthesising dark spots or by specially organising other topological objects related to

phase or polarisation, an electromagnetic field’s topology can be deliberately manip-

ulated, leading to richly complicated structures that sometimes are too exceptional

to form naturally [11–15]. This way light can in some sense pose as a sandbox for

exploring or inspiring the search for other topological phenomena that emerge else-

where in physics, certainly in other wave theories such as those of gravity, acoustics

and water waves [16–19]. That is why there is a strong theoretical interest in under-

standing the imprint(s) of dark spots in surrounding light fields, and to this end two

chapters of this thesis (chapters 4 and 5) are dedicated to studying vector dark spots

(when multiple components of a field are zero simultaneously) in two-dimensional

(paraxial, far-field) and three-dimensional (non-paraxial, near-field) radiation, re-

porting novel findings based on two publications [20, 21]. Seeking in part to unify

these two chapters under the umbrella of topological control, chapter 6 describes a

simple approach to creating and controlling the position of dark spots by modulating

the polarisation degrees of freedom of two plane waves. A detailed topological study

of dark spots might at first seem arcane and impractical yet, particularly in light-

matter interactions, dark spots can be remarkably effective experimental tools, most

of all in the trapping and manipulation of atoms and in super-resolution microscopy.
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Dark traps

Matter can be pushed by different aspects of an electromagnetic field, for instance

by photon impacts, by the flow of active and reactive power, or by non-uniformity

in energy density. The latter results in gradient force that normally pushes particles

towards regions where light is brightest (for example the focus of a beam) and is the

traditional mechanism driving optical trapping. But the sensitivity of a particle to

this gradient force is frequency-dependent, and it turns out that in light sufficiently

‘blue’ with respect to a resonance of the particle, the gradient force reverses direction

and pushes the particle into darkness. Then, a dark spot surrounded by blue-detuned,

higher intensity can behave as a blue-detuned trap [22] with some advantages over

conventional traps, namely that the lack of intensity increases the coherence time

of captured atoms [23] and could reduce heating effects in trapped particles, and

that a dark spot can be arbitrarily wide or narrow while the size of an intensity

maximum is constrained by wavelength (meaning a dark spot can be more size-

selective towards trapped particles). Blue-detuned traps can be realised in many

different configurations [24–27] but with our proposal in chapter 6, three-dimensional

blue-detuned traps in the form of point-like, non-paraxial dark spots (confined in

all directions) could be synthesised in any desired location in a non-paraxial field,

and moved, using far field illumination. We supplement this potential application

of controllable point-like dark spots when in chapter 5 we characterise associated

polarisation structures, flows of energy, and momentum streamlines that can couple

to forces in the dark spot’s immediate neighbourhood.
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Super-resolution microscopy

Among the many techniques at the disposal of humans for seeing microscopic detail,

optical microscopy techniques tend to be used in the study of tiny biological struc-

tures because of the transparency of cells in the visible spectrum [28]. Components

of cells like proteins can be imaged via labelling with molecules that fluoresce when

illuminated with optical-frequency light, but this sort of method is fundamentally

limited in resolution by the fact that visible wavelengths measure a large fraction

of a micron, too large for clear images of objects under a few hundred microme-

tres in size. Fluorescent molecules separated by less than half a wavelength cannot

be distinguished—this is the diffraction limit, and while to resolve finer details one

could in principle illuminate the target with shorter-wavelength light it is not al-

ways practical, especially when the target is biological. But cheating the diffraction

limit is possible, it turns out, by relying on the theoretically unlimited sharpness of

a dark spot; techniques that use dark spots such as stimulated-emission-depletion

microscopy (STED) proposed in the 1990s have since been developed significantly

and at the cutting edge allow nanometre-scale single-molecule imaging using visible

light.

The principle basis for many of these techniques, including STED [29], is to

selectively switch fluorophores (that are in too-close proximity to be individually

resolved) between detectable ‘on’ and undetectable ‘off’ states. An initial excitation

(e.g., a Gaussian spot of light, whose size is constrained by the diffraction limit) brings

a collection of impinging fluorescent particles in to fluorescence (the ‘on’ state), that

they may be observed from the far field but without being individually determined.

Then a second, doughnut-shaped beam containing a central dark spot is shone on the

target fluorophores. The frequency of this second beam is different to the first (red-
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detuned) so as to drive all illuminated particles back down into the ‘off’ state—except,

of course, for fluorophores lying in the beam’s dark centre, which remain in the ‘on’

state and can still be detected. Since the central dark spot can be arbitrarily narrow

it can isolate single molecules and so, using the two beams in sequence, fluorescent

molecules can be excited one by one and upon knowing the molecules’ locations

a sub-diffraction-limit image may be reconstructed. Determining the location of

a single molecule is not trivial and in any one approach requires that the dark-

spot-containing beam is position-controlled. More powerful still is MINFLUX [30],

which only implements a single beam with a dark spot (generically a doughnut)

at an exciting frequency. Careful control of the doughnut beam’s position while

counting emitted photons (as fluorophores are excited by the bright ring but not by

the dark centre), provides a markedly more efficient (in terms of emission) means

of locating, tracking and imaging molecules with single-nanometre precision after

post-processing.

Yet, the conventional doughnut beam’s dark spot is axial, only confined in

two dimensions, and therefore insufficient to resolve depth and construct three-

dimensional images by selective excitation of fluorophores aligned parallel to the

beam axis. One solution could be to use a point-like dark spot with full, three-

dimensional confinement. If the position of the dark spot can be controlled then it

could be possible, using a similar methodology to MINFLUX, to locate and track

fluorescent particles in three dimensions. Once more chapter 6’s proposed technique

for point-like dark spot position control is strongly relevant.
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Thesis outline

The thesis is divided into six further chapters, numbered 2-7. Dark spots in light can

be difficult to fully appreciate if one is not comfortable with the more extraordinary

physics of (non-paraxial) three-dimensional fields. They are, moreover, vector sin-

gularities of polarisation, linear momentum, and active and reactive power flow, all

of which (and other quantities) must be defined before our findings are given. Thus

the purpose of the next two chapters of this thesis. Chapter 2’s primary objective is

to define fundamental quantities, quadratic with respect to E and H, that describe

the field’s flux of energy density, its linear momentum and spin angular momen-

tum, to name a few. Meanwhile the second chapter outlines mainly the polarisation

properties of monochromatic light, beginning with the polarisation ellipse that is met

with discussion of polarisation singularities, then detailing the structural distinctions

between paraxial and non-paraxial light (chapter 3 provides a more thesis-specific

background compared to chapter 2). We begin presenting our original findings [21]

in chapter 4, a treatment of paraxial, transverse field dark spots that give rise to

non-diffracting polarisation structures that persist infinitely into the far field. Next

in chapter 5 we transition to the non-paraxial regime which can support point-like

dark spots and some of the most remarkable coupled topological structures [20]. In

both chapters 4 and 5 we probe in analytical simulations dark spots that have been

synthesised using a simple polarisation-modulation technique, with which dark spots

can be created and fully position-controlled, that we explain in chapter 6. Finally

chapter 7 of the thesis reports the results of [31] and is somewhat of an outlier, for

it attempts to clarify the physical significance and possible geometric properties of

an alternative expression of light’s spin angular momentum density. Though it is

not primarily concerned with dark spots we predict, after establishing the links be-
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tween this expression of spin density and chiral optical forces on dipolar particles,

a surprising longitudinal chiral force present at the centre of an optical vortex, a

quite appropriate last example of the sort of exceptional consequences of dark spots’

singular nature that continue to be discovered today.



Chapter 2

Fundamentals

There are four equations,

∇ · E =
ρ

ϵ0
,

∇ ·H = 0,

∇× E = −µ0
∂H
∂t

,

∇×H = J + ϵ0
∂E
∂t
.

(2.1)

that have since their introduction in the 19th century provided a unified understand-

ing of electricity and magnetism. The Maxwell equations, that above are given

in their microscopic form and which combine Gauss’ laws, Faraday’s law and the

Maxwell-Ampere law, are a set of spatial and temporal rules that lock together the

electric E(r, t) and magnetic H(r, t) fields, emerging initially from static charge den-

sity ρ(r, t) and moving charge (current) density J (r, t), and constrain their degrees

of freedom. Should these vector fields conform to all four of Maxwell’s equations at

the same time they are physically realisable, be they static (meaning ∂/∂t → 0, for

example an electric field in a fully charged capacitor; ρ ̸= 0, or the magnetic field set

20
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up around a wire carrying DC current; J ̸= 0) or oscillating, wherein time deriva-

tives are non-zero and it is possible for non-zero electric and magnetic fields to exist

beyond the bounds of charge or current density. For if the electric and magnetic

fields E and H both obey the wave equation and, as vectors, are oriented in the

correct way then energy can travel in completely free space, absent of charges, by

mutual propagation of the electric and magnetic fields at the speed of light. Accord-

ing to Maxwell’s equations one field cannot propagate through space without the

other—oscillation of, say, the electric field (change over time, ∂E/∂t ̸= 0) must be

accompanied by spatial variation in the magnetic field (∇×H ̸= 0) and vice versa—

and geometric requirements of the E and H vectors, imposed by curls ∇×, mean that

(purely propagating) electromagnetic waves are transverse waves and carry two po-

larisation degrees of freedom. When J = 0 and ρ = 0 Maxwell’s equations simplify

and mathematically treat the E and H fields equally, in a dual-symmetric regime

through which we arrive at virtually all of the findings of this thesis (on the occasion

that matter does come into play we will not generally be interested in internal fields,

only the influence and interference of scattered fields in surrounding vaccuum outside

of current and charge densities).

Although Maxwell’s equations detail the non-negotiable relationship between

the electric and magnetic fields many other quantities, some observables, are not

directly specified by the four expressions Eq. (2.1). For instance the direction of an

electromagnetic wave’s flow of energy, and its linear and angular momenta are not

explicit, which is not to say that this physical information is not implicit in Maxwell’s

equations, rather that to obtain expressions in free space we need to take extra steps

combining the E and H fields via some vector operation. Proper definitions of

light’s momenta and energy fluxes are important not only for understanding how

light can interact with matter, but for our own comprehension of the topology of



Chapter 2. Fundamentals 22

an electromagnetic field, however spatially complicated, and the singular nature of

any dark spots it may contain. Like the electric and magnetic fields these quantities

oscillate over time yet, given how quickly light in the visible regime oscillates, any

interacting matter is largely concerned with time-averaged quantities. When only

one frequency component is present in light, its time dependence is trivial and time-

averaged quantities are straightforward to define using phasors, representations of the

electric and magnetic field’s spatial and polarisation structure using complex vectors

E(r) and H(r) that are not time-dependent. We only consider monochromatic light

in this thesis and phasors are used throughout and though they are quite simple to

follow, to prevent confusion we shall explain exactly what they mean next.

2.1 Phasors (and notation)

That Maxwell’s equations are linear with respect to E and H means that no matter

how many superposing fields of the same colour, however polarised and propagating

in whichever direction, the oscillations in time of the entire superposition’s total elec-

tric field E(r, t) are predictably sinusoidal, that is E(r, t) = p(r) sinωt + q(r) cosωt

(and likewise for the magnetic field). Note that the two real vectors p(r) and q(r)

that are solely functions of r = xx̂+yŷ+zẑ completely describe the spatial structure

of the monochromatic superposition. Practically all of the interesting characteristics

that monochromatic light can possibly acquire come from the r-variation of p(r)

and q(r) and for this reason, single-frequency light’s predictable time-dependence is

often omitted, favouring time-independent but complex electric and magnetic field

phasors E and H. These relate to the instantaneous fields E and H through Euler’s
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identity, for instance,

E(r, t) = p(r) sinωt+ q(r) cosωt = ℜ{E(r) exp(−iωt)}, (2.2)

where E(r) = p(r) + iq(r) (we may represent the instantaneous magnetic field H

similarly using H = a(r) + ib(r) where a and b are different to p and q). The

imaginary part ℑ{E(r) exp(−iωt)} is merely an artefact of Euler’s identity and is

discarded; it has no real significance beyond being an image of what E(r, t) looks

like a quarter period later in time.

It is critical to now highlight the deliberate distinction in notation between E

and E. The scripted character E(r, t) is a real vector, oscillating over time, corre-

sponding exactly to the electric field that would be measured at any instant t by

a probe placed at a position r (assuming the response of the probe was arbitrarily

fast). The non-scripted character E(r) = p(r) + iq(r) is a phasor, a complex vector

that is a function of space only and whose real and imaginary parts p(r) and q(r)

contain all polarisation and spatial information of a monochromatic field—again, all

the information of real interest. A phasor like E is a mathematical convenience but

not a physical vector that can be measured directly (i.e., without measuring E and

inferring E from the measurement), convenient because one can construct a phasor

version of Eq. (2.1) wherein time-derivatives are simplified by ∂/∂t → −iω so that

the electric and magnetic phasors are proportional to each other’s curls. In free space
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(no charges or currents) these equations are:

∇ · E = 0,

∇ ·H = 0,

∇× E = iωµ0H,

∇×H = −iωϵ0E.

(2.3)

The full instantaneous representation for monochromatic light can be recovered by

multiplying each expression in Eq. (2.3) by exp(−iωt) and taking their real parts

ℜ{∗}. We adopt this convention of scripted letters denoting functions of space and

time and non-scripted letters for functions of space only (being either phasors or

time-averaged quantities) throughout this thesis.

2.2 Time-averaged quantities

For light, many quantities like the flow of electromagnetic energy are expressed by

(in broad terms) squaring the components of the time-varying electric E(r, t) and

magnetic fields H(r, t), or by inter-field multiplication. Then, the kind of quantity

that results is a function of time. For example, consider the expression

X (r, t) ⋄Y(r, t), (2.4)

where the ⋄ represents any vector product preserving linear addition such as ‘·’ or ‘×’

(so Eq. (2.4) could evaluate to a scalar or a vector). We could conceivably replace X

and Y by either E and H in any combination. Whatever the product, X ⋄Y inherits

some aspects of the behaviour in time of X and Y : if X and Y are composed of
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many frequencies then at a given point in space, X ⋄Y probably oscillates erratically.

However for monochromatic vectors, X ⋄ Y too oscillates predictably with, due to

the fact that it squares the time-dependence of X and Y , an easily defined ‘DC’

component representing the product’s time-averaged magnitude (and orientation if

it has one), and a purely oscillating component with zero mean. Explicitly, if X and

Y relate to complex phasors via

X (r, t) = ℜ{X(r)e−iωt}

Y(r, t) = ℜ{Y(r)e−iωt},
(2.5)

we can expand with trigonometry Eq. (2.4) using the real and imaginary parts of X

and Y, obtaining

[X ⋄Y ](r, t) =
1

2
ℜ{X∗ ⋄Y} +

1

2
ℜ{X ⋄Y} cos 2ωt+

1

2
ℑ{X ⋄Y} sin 2ωt. (2.6)

Out of this expansion comes a non-time-varying, DC term (1/2)ℜ{X∗ ⋄ Y} that

includes the complex conjugate X∗ (recall that X and Y are only functions of r).

Since the oscillating terms average to zero over time it is only this DC component,

the time-average of X ⋄ Y , that could have any measurable effect. It is highly

convenient to work with time-averaged quantities defined using phasors and denoted

by non-scripted letters that quantify the net effect of light’s dynamic behaviour.

2.2.1 Electromagnetic energy

We have not arbitrarily invoked a quadratic quantity X ⋄Y here for the purpose of

explanation. It turns out according to Poynting’s theorem that a vector P = E ×H

fits all the criteria of the flow of energy in light according to the continuity equation
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[32]

∇ ·P = ∇ · (E ×H) = −∂W
∂t

, (2.7)

where W represents time-varying energy density and P is called the Poynting vector.

The supreme significance of time-averaged quantities in monochromatic light is such

that the DC component P of P ,

P =
1

2
ℜ{E∗ ×H}, (2.8)

is mainly called the Poynting vector too. We adopt this nomenclature in this thesis;

rarely shall we encounter the complete time-dependent vector P and, from now on,

any time we mention ‘the Poynting vector’ we refer to the time-averaged vector P

Eq. (2.8). Instantaneous energy density in free space W takes the form [32]

W =
1

2
(ϵ0E · E + µ0H ·H) , (2.9)

which according to Eq. (2.6) has a time-averaged component given by

W =
1

4
(ϵ0E

∗ · E + µ0H
∗ ·H) , (2.10)

and the oscillating terms

1

4
ℜ{ϵ0E · E + µ0H ·H} cos 2ωt+

1

4
ℑ{ϵ0E · E + µ0H ·H} sin 2ωt. (2.11)

These expressions incorporate contributions from both the electric and magnetic

phasors (the leading 1/4 factor comes partly from time averaging and partly from

averaging electric and magnetic energy densities). It is worth keeping in mind that if,
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say, E · E = 0 then the electric energy density does not oscillate—the square length

of the instantaneous electric field vector does not change over one period—which we

shall see is characterstic of circular polarisation. Except when energy is lost due to

absorption, the time derivative of W is zero meaning ∇ ·P = 0.

The importance of placing E and H on an equal footing in the definition of W

Eq. (2.10) is most apparent in non-paraxial light. Though an in-depth description of

the difference between paraxial and non-paraxial light is not provided until the next

chapter, suffice to say that only paraxial light (including plane waves and far fields)

is dual-symmetric and has its energy density divided equally between the electric and

magnetic fields such that W = (1/2)ϵ0E
∗ · E = (1/2)µ0H

∗ · H. Non-paraxial light

(including near fields) commonly has its energy density split unevenly between E and

H in a breaking of duality symmetry with respect to the fields∗ [33–36]. Defined by a

vector cross product between E∗ and H the Poynting vector Eq. (2.8) cannot access

all of the energy density present in an electromagnetic field if there is an asymmetric

energy share between E and H, or equally, if the instantaneous E and H vectors are

not always perpendicular during oscillation. Thus when electric-magnetic asymmetry

is present in non-paraxial light a portion of energy density is stored, unavailable to

be transferred by P.

One measure of asymmetry between E and H is the reactive energy density

WRe, the difference between electric and magnetic energy densities:

WRe =
1

4
(ϵ0E

∗ · E− µ0H
∗ ·H) . (2.12)

∗Although Maxwell’s equations are known in free space to remain unchanged after a continuous
duality transform, it is not necessarily true that the electric and magnetic fields themselves keep
the same relative amplitude or polarisation throughout the transformation.
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Its flux [37] is known as the imaginary Poynting vector (IPV) [38–41],

Pi =
1

2
ℑ{E∗ ×H}, (2.13)

a frequently ignored quantity because it is zero in far fields—but in the non-paraxial

regime the IPV can be responsible for a variety of rich interactions. For the IPV

couples to a term in the total optical force exerted on Rayleigh particles [42, 43], only

recently observed [41], and whose dual-asymmetric quality (the fact that swapping

E → H and H → −E changes the sign of the IPV) has interesting consequences for

asymmetric particles [38, 39].

2.2.2 Linear momentum and wavevectors

A photon has a free-space momentum vector equal simply to ℏk, where k is the

wavevector and
√
k · k = k = 2π/λ is the free-space wavenumber. Yet producing a

consistent definition of the linear momentum carried by light has historically been a

complicated task, there being the question of whether upon entering a macroscopic

medium a photon’s free-space momentum increases or decreases by a factor of n, the

medium’s refractive index [44]. There are two quantities in conflict: the Abraham

momentum and the Minkowski momentum, which Barnett equated with kinetic and

canonical momenta respectively [44, 45], both equally meaningful. It has been sug-

gested that as the photon propagates through the medium, it displaces and locally

alters the density of atoms to create a ‘mass-density wave’ that moves in tandem

with the photon [46, 47]. Consideration of the photon’s movement alone results in

the Abraham kinetic momentum, while the coupled movement of the photon and

medium atoms recovers the Minkowski canonical momentum. Even with this and

other convincing interpretations [48, 49], not all debate of the dilemma is completely
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resolved [50, 51].

Much of the dilemma’s original debate and the many efforts to find a resolu-

tion experimentally (with no unanimous conclusions) came before researchers began

to take strong interest in non-paraxial light where, even in free space, it is not so

straightforward to define a photon’s wavevector k. Non-paraxial light’s mechanical

properties vary significantly even over sub-wavelength scales so it is useful in this

regime to deal with locally defined kinetic Π and canonical p momentum densi-

ties [51], both of which relate in some way to the Poynting vector P. The kinetic

momentum density is obtained by dividing the Poynting vector by c2,

Π =
1

2c2
ℜ{E∗ ×H}, (2.14)

while canonical momentum density has the form [51–54],

p =
1

4ω
ℑ{ϵ0E∗ · (∇)E + µ0H

∗ · (∇)H}. (2.15)

where A·(∇)B = Ax∇Bx+Ay∇By+Az∇Bz and, like the energy density Eq. (2.10), p

combines separate electric and magnetic momentum contributions. The two densities

Eq. (2.14) and Eq. (2.15) coincide for a plane wave, Π = p = (W/ω)k where W is

time-averaged energy density Eq. (2.10), whose wavevector k is easily identified,

and is constant throughout space. But when in the non-paraxial regime (including

surprisingly simple plane wave interference [2]) light’s structure grows more complex,

it is not always obvious to say in which direction the field propagates, tending to vary
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from place to place†. The kinetic momentum density Π, it turns out, cannot reconcile

some of the strangest non-paraxial phenomena such as the transfer of momentum

greater in magnitude than ℏk [55], which can occur in evanescent waves [52]. For

this reason, and because it couples to the readily measurable radiation pressure force

[42, 53], canonical momentum density is often argued to be the more meaningful

quantity in non-paraxial fields.

When normalised, canonical momentum density also serves as a ‘local’ wavevec-

tor kloc, quantifying the average phase gradient of what in the non-paraxial regime

are three-dimensional and less-restricted, complex electric and magnetic phasors. An

appropriate local phase gradient defined for these phasors is not immediately clear—

each component of a phasor is a complex scalar field with its own unique phase angle

and phase gradient—but one can calculate the weighted average of the gradient of

each component. Take, for instance, the x̂ component of the electric field phasor, a

complex scalar field,

Ex(r) = A(r)eiϕx(r), (2.16)

A = |Ex| being a real scalar and ϕx the phase angle, both of which are position-

dependent. Its gradient multiplied by E∗
x gives the expression,

E∗
x∇Ex = Ae−iϕx [(∇A)eiϕx + i(∇ϕx)Aeiϕx ]

= A∇A+ iA2∇ϕx,
(2.17)

whose second equality’s real part is half the gradient of the x̂ component intensity,

and whose imaginary part A2∇ϕx carries the phase gradient of Ex. Then, by calcu-

†in fact this is also true in a macroscopic view of far fields: a spherical wave, for instance,
propagates radially in 3D according to the phase factor exp(ikr). While, zooming in on a far-field
wavefront, the wave’s spherical curvature appears to flatten relative to wavelength distances and
propagate along a single well-defined radial wavevector, this apparent wavevector does point in the
same direction globally across the entire spherical wavefront.



31 2.2. Time-averaged quantities

lating ℑ{E∗
x∇Ex + E∗

y∇Ey + E∗
z∇Ez} = ℑ{E∗ · (∇)E} we have a sum of the phase

gradients from all three field components, weighted by their respective intensities,

and by dividing by the total electric intensity E∗ · E = |E|2 we recover the phase

gradient’s radians-per-metre units and thus a definition of a local electric wavevector

[33, 56, 57]. In complex form, and after multiplication by −i, its real part is related

to the electric contribution to the canonical momentum,

ke
loc = −i 1

|E|2
E∗ · (∇)E. (2.18)

This local wavevector is an important concept for understanding how, due to ∇ϕx,y,z

diverging, per-photon momentum can be amplified and integral curves contorted

by dark spots, particularly relevant in chapter 5 of this thesis. Often because of

the asymmetric response of matter to electric and magnetic fields, it is reasonable to

consider only electric quantities like Eq. (2.18) though, like the canonical momentum

density, only the full definition is dual-symmetric and fundamental [57],

kloc =
1

ϵ0|E|2 + µ0|H|2
(
ϵ0|E|2ke

loc + µ0|H|2km
loc

)
, (2.19)

wherein km
loc assumes an identical form to Eq. (2.18) with E → H.

We have not yet mentioned that kinetic and canonical momentum densities are

connected by a third momentum density, the spin momentum ps, in that

Π = p + ps, (2.20)

ps defined according to [33, 52],

ps =
1

2
∇× 1

4ω
ℑ{ϵ0E∗ × E + µ0H

∗ ×H}. (2.21)
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Spin momentum is generated by an inhomogeneity in polarisation and on the oc-

casions that it is isolated from canonical momentum, is responsible for surprising

optical recoil forces such as in evanescent waves [58].

2.2.3 Angular momentum

Naturally, from the expressions of linear momentum densities in light it is also pos-

sible to define angular momentum densities with respect to a chosen origin [59, 60].

Light, having a vector structure, has two angular momentum degrees of freedom, one

that originates from its spatial structure (orbital, from propagation) and a second

from local rotation of the electric and magnetic field vectors over time [61] (spin,

from polarisation). Rather than a single angular momentum density related to the

Poynting vector [62], these degrees of freedom can be described by separate angular

momentum densities: L, the orbital angular momentum (OAM) density, and S, the

spin angular momentum (SAM) density, both of which ordinarily point in the longi-

tudinal direction of a beam and sum to give the total angular momentum density of

a light field J [51, 54],

J = L + S. (2.22)

First of the two terms, the OAM density L is given by [63, 64]

L = r× p, (2.23)

where the position vector r is measured from a chosen co-ordinate origin and p is the

canonical momentum Eq. (2.15). We said that p is proportional to an inhomogeneous

field’s local wavevector, the local direction that photons are travelling—so Eq. (2.23)

can be interpreted as the moment of light’s primary pushing force with respect to
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some origin from which r is measured. That by choosing different locations of the co-

ordinate origin the length of r → r+r0, and apparently the value of L = (r+r0)×p

and its volume integral, change, is why light’s OAM is normally called extrinsic.

One can usually choose a certain co-ordinate origin so that when L is integrated

over a volume containing an electromagnetic field (such as a Gaussian beam), the

total OAM is zero—except when the field is specially structured (for instance by an

optical vortex) in such a way as to leave a residual angular momentum that cannot

be eliminated by moving the origin [62, 65] (we will attend to optical vortices in the

next chapter). This sort of seemingly origin-independent OAM appearing in vortex

beams is very often called intrinsic though it is important to note that (unlike the

truly intrinsic spin angular momentum discussed next) the density itself Eq. (2.23)

is still dependent on the choice of origin, and that in a quantum formalism it is

only the average longitudinal OAM introduced by the azimuthal linear momentum

density that is actually independent of r0 (whereas variance is not intrinsic). For

these reasons, longitudinal OAM that arises from helical wavefronts could justifiably

be called quasi-intrinsic [66].

Second, the time-averaged spin angular momentum (SAM) density vector is

[33, 36]

S =
1

4ω
ℑ{ϵ0E∗ × E + µ0H

∗ ×H}, (2.24)

another quantity including separate contributions from the electric and magnetic

fields which, as we will learn in the next chapter, are proportional to the normal

vectors of the electric and magnetic polarisation ellipses. The traditional intuition

that light’s plane of polarisation should be transverse to the wavevector might suggest

that S always points parallel to light’s direction of propagation. But it is now very

well-known that in evanescent waves [52] and non-paraxial light in general [2, 67–70]
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the E and H fields can gain significant longitudinal polarisation components and

thus spin in the transverse direction. There is no position vector r in Eq. (2.24)

and as such SAM density does not change by choice of origin. For this reason SAM

is intrinsic: provided a field is not linearly polarised (and electric and magnetic

contributions do not cancel out [71]) then S is non-zero and the field carries non-zero

spin angular momentum density‡.

As long as dual-symmetry is preserved (Maxwell’s equations Eq. (2.3) treat E

and H equally as in free space) then, in addition to energy density, there is another

conserved electromagnetic quantity for which S is the flux (in fact, there are infinitely

many conserved quantities associated with symmetry between derivative fields of E

and H, but they coincide up to a constant in monochromatic light [35, 72, 73]). This

quantity is the helicity density h [36, 74–76]§,

h = − 1

2ωc
ℑ{E∗ ·H}, (2.25)

which has been identified as proportional to the difference in energy density carried

by left and right handed photons in general [37, 43, 57, 79, 80] and so is one mea-

sure of how chiral the electric and magnetic fields are. In a plane wave and when

normalised (in appropriate units) by energy density Eq. (2.10), h is maximal for cir-

cular polarisation, positive or negative depending on handedness, and zero for linear

polarisation.

‡This is not necessarily true for the integrated spin angular momentum of a field, which may be
zero overall despite having non-zero density.

§Although it is of the form of a time-averaged quantity the helicity density h in monochromatic
light is not time-dependent. Other representations of helicity density with instantaneous vectors,
e.g., h = (A ·H−C ·E)/(2c) where A and C are magnetic and electric vector potentials (∇×A =
µ0H, ∇ × C = −ϵ0E) [35, 77], and of chirality density [73, 78], to which h is proportional in
monochromatic fields, simplify by substitution of phasors to being proportional to ℑ{E∗ ·H}.
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2.3 Chapter summary

We have provided time-averaged expressions for energy, linear and angular momen-

tum in electromagnetic fields which will serve the original findings of chapters 4 to

7. In the following, second background chapter we are concerned more specifically

with the spatial and polarisation structure of light between paraxial and non-paraxial

regimes, drawing upon some of the quantities given here.



Chapter 3

The phase and polarisation

structure of monochromatic light

The instantaneous electric E(r, t) and magnetic H(r, t) fields are vector functions of

three-dimensional space, and time. As with any vector field, each of E and H can

be visualised by imagining, at every real-space co-ordinate, abstract arrows which

in the most generic case have three components and oscillate along arbitrary paths

as time evolves. It is the trajectory that the E (H) field arrow follows over time

which we call the electric (magnetic) polarisation. While in general the electric and

magnetic fields are polarised differently, an electromagnetic wave (or a superposition

of electromagnetic waves, however complicated) must uphold a degree of symmetry

between electric and magnetic polarisation because the E and H fields always obey

Maxwell’s equations and are, therefore, not completely independent of one another.

Magnetic polarisation is sometimes ignored, however, both because of the shared

properties between electric and magnetic fields (general conclusions which one might

draw about light’s spatial electric polarisation structure often also apply to magnetic

36
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polarisation), and because matter usually has a stronger response to the electric field,

and subsequently to associated electric quantities (like electric canonical momentum

and SAM densities) that tend to be the quantities measured experimentally in light-

matter interactions.

The kind of polarisation shape that a field vector traces over time depends on

whether the light field is comprised of more than one wavelength. Light from the

sun, which contains the entire optical spectrum and more, is said to be unpolarised

because so many frequency components are present that the electric field vector does

not oscillate through a well-defined trajectory over time (there is an important dis-

tinction between 2D- and completely 3D-unpolarised light since far-field unpolarised

light, while unpredictable, still must obey the rules of the paraxial regime and lie in

a well-defined plane, transverse to propagation. This has interesting implications if

paraxial unpolarised light is subsequently focussed to establish a longitudinal field

component [70]). If we consider light of a single frequency (one colour), on the

other hand, then at a single point in space both electric and magnetic field vectors

sweep out an ellipse (the ‘polarisation ellipse’, whose trajectory can always be con-

tained by a local 2D plane, even if the orientation of the ellipse varies arbitrarily

from place to place in the field) over one wave period. This sort of light is said to

be ‘monochromatic’. Somewhere in-between unpolarised and monochromatic light

are polychromatic fields, which contain a discrete number of frequency components

greater than one. Polychromatic light has a well-defined polarisation—both E and

H trace predictable shapes as the field oscillates—though it is markedly more com-

plicated than that of the monochromatic case and depends strongly on the ratios

between frequency components. Non-linear light-matter interactions can produce

polychromatic fields, and bichromatic light composed of two colours has received

much recent attention particularly because a bichromatic field of frequencies ω and
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2ω is produced after second harmonic generation. In a paraxial field containing light

with the two frequency components ω and 2ω, a variety of closed Lissajous curves are

possible to be swept out by the electric field vector [81] (should the ratio between the

two frequencies be irrational, the Lissajous curve never closes). Meanwhile, three-

dimensional interference between waves with specially chosen frequency can give rise

to polarisation shapes which are not confined to a 2D plane, and are chiral [82–84],

perhaps even knotted [85]. This means that the electric field individually cannot be

superimposed with its own mirror image at a given point in space, which is advanta-

geous for chiral separation of small molecules that interact weakly with the magnetic

field.

This thesis will focus only on the phase and polarisation structure of monochro-

matic light. Monochromatic fields are well-studied and widely implemented, yet de-

spite being reasonably simple locally (i.e., drawing polarisation ellipses generically),

often have a deeply complex polarisation spatial structure, especially in structured

light and near fields where polarisation ellipses can be oriented in 3D and vary both in

ellipticity and phase on subwavelength scales, and hold non-trivial properties which

continue to be discovered today. Sometimes the spatial inhomogeneity of monochro-

matic light’s polarisation is called its ‘polarisation texture’, something which while

tightly coupled to the momentum of photons, can have skyrmionic properties [12,

15], and is interwoven with a tangle of topological defects called ‘polarisation singu-

larities’. The following sections in this chapter provide an in-depth background to

the polarisation ellipse and the special cases of circular and linear polarisation which

organise the polarisation singularities of general monochromatic fields. Light’s po-

larisation topology changes radically between the paraxial and non-paraxial regimes,

such as when transitioning from a source’s near field to its far field, or when a fo-

cussed beam diffracts as it propagates. Two sections are dedicated to explain the
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differences between the regimes and the role of the Poincaré sphere in paraxial light.

Later sections outline vector topological defects more broadly, beyond polarisation

singularities, when a three-component vector (that in light, could conceivably be any

of the time-averaged vectors discussed last chapter) is zero.

3.1 The polarisation ellipse

So far in this chapter we have described polarisation as the trajectory followed by the

time dependent electric field vector E(r, t) (or equivalently for the magnetic field).

For monochromatic light where the trajectory over time of E(r, t) is rather simple,

we can work with complex phasors which, between a real and imaginary vector,

have encoded all the information about a field’s spatial dependence of polarisation.

We remind the reader that phasors, for which we use the non-scripted bold letters

E(r) and H(r), are complex three-component vectors with no time dependence, for

instance,

E(r) = p(r) + iq(r), (3.1)

where p(r) and q(r) are real vector functions of space which relate to the time-

dependent electric field vector via,

E(r, t) = ℜ{E(r)e−iωt} = p(r) cosωt+ q(r) sinωt. (3.2)

Elliptical polarisation, its spatial variation and embedded singularities has on many

occasions been explained using complex phasors [86–88], the original treatment of

polarisation singularities given by Nye [89, 90]. In this section we adopt a similar

notation to Dennis and Berry in their descriptions of the polarisation ellipse [16, 56,

91]. From Eq. (3.2) it is straightforward to see that for arbitrary vectors p and q
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which point in different directions and have different lengths, an ellipse is periodically

drawn by E(r, t) in the plane normal to p× q. Examples of this ellipse, which gener-

ically has any 3D orientation specified by p and q, are shown in Fig. (3.1) in paraxial

(where the 2D co-ordinate axes are aligned tangent to the plane of the ellipse) and

non-paraxial regimes which we shall soon explain in more detail. The vectors p and

q are related to the semi-axes of the ellipse, in that E can be multiplied by a certain

complex number eiχ0(r) to rectify p and q, making them orthogonal, aligned to the

ellipse’s semi-major and semi-minor axes. Usually the phase angle χ0(r) is called

the rectifying phase, a position-dependent quantity because the complex number re-

quired to rectify p and q is different at each point in space, and is in fact given

by,

χ0 =
1

2
arctan

2p · q
p · p− q · q

=
1

2
argE · E. (3.3)

The rectifying phase is calculated modulo π since the ellipse and its semi-axes (onto

which p and q are rectified) are indistinguishable from themselves after rotation by

π radians. When in three dimensions polarisation ellipses can take any orientation

without restriction to a single plane, the rectifying phase χ0 and the ellipse normal

vector,

n = p× q =
1

2
ℑ{E∗ × E}, (3.4)

are two (usually) well-defined quantities that characterise the polarisation ellipse ge-

ometry, that is, χ0 and n can both be calculated everywhere in arbitrary monochro-

matic fields (paraxial or non-paraxial) except where exact circular and linear polar-

isation occur. The normal vector n is proportional to the electric contribution of

SAM density Eq. (2.24).

A circularly polarised electric field at some position rc produces one of the two

extremities of the generic polarisation ellipse as, instead of an ellipse with an obvious
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x

(b) four non-paraxial ellipse examples

y

x

(a) two paraxial ellipse
examples

normal n
(phase angle, not a real-space angle)

Figure 3.1: The polarisation ellipse traced in monochromatic light. Though they may rotate or
vary in ellipticity polarisation ellipses in a paraxial field (a) lie in the same plane, here the xy plane,
meaning one can consistently measure the major axis orientation angle ϕ and the ellipse handedness
(arrows on the ellipse perimeter). Vectors p = ℜ{E} and q = ℑ{E} where E is the electric field
phasor can be made right-angled and aligned to the ellipse semi-axes after rectifying E by a phase
angle χ0; E → E exp(−iχ0). In non-paraxial light (b) ellipses may be oriented any way in 3D
meaning a sense of rotation and the single angle ϕ are less simple to define consistently [92]. There
are different ways to characterise 3D polarisation though two parameters which can be consistently
calculated throughout (except at polarisation singularities) are the ellipse normal n = p × q and
rectifying phase χ0 = (1/2) argE ·E.
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major and minor axis, a perfect circle is traced out by E(rc, t). This requires of the

field phasor E(rc) that both p(rc) and q(rc) are equal in length and orthogonal.

Consequently the rectifying phase is ill-defined—if p(rc) and q(rc) are equal and

orthogonal, then they are rectified for any possible value of χ0—which must mean

that E(rc) ·E(rc) = 0 according to Eq. (3.3). We showed in Eq. (2.11) that the real

and imaginary parts of E · E relate to the oscillating components of time-dependent

electric energy density (1/2)ϵ0E · E which are zero when, as in circular polarisation,

the electric field vector keeps the same length over each period. Linear polarisation,

meanwhile, occurs at positions rl where E(rl, t) oscillates along a straight line without

any rotation to sweep out an elliptical trajectory. Because the instantaneous field

vector no longer oscillates in a 2D plane, rather along a 1D line, the direction of the

‘ellipse’ normal n is undefined (a vector singularity). Mathematically p(rl) and q(rl)

must be parallel for linear polarisation, such that p(rl) × q(rl) = 0.

It may be tempting to think of states of circular and linear polarisation as

typical in light, given that these states can be easily achieved experimentally in

beams and because any arbitrary field can be realised by adding together circularly or

linearly polarised plane waves with different wavevectors. From a purely topological

perspective, however, circular and linear polarisation are special cases of the generic

polarisation ellipse which the field vector traces out over one period. This generic

behaviour of the electric field can be accessed in random plane wave interference,

where there is very little spatial symmetry unlike in a beam or a single dipolar

source. Polarisation circles and lines pose as defects in these general fields, each defect

inscribing the field with a non-trivial arrangement of nearby polarisation ellipses. We

will return in greater detail to the properties of these polarisation singularities in a

later section of this chapter.



43 3.2. Paraxial polarisation and the Poincaré sphere

3.2 Paraxial polarisation and the Poincaré sphere

Diffraction, the spreading out of electromagnetic energy as light propagates, changes

light’s properties depending on the distance from its source or focus, transitioning

from what is called the non-paraxial regime (e.g., near fields or a beam’s focus)

through to the paraxial regime (far fields). Between the two regimes light’s polari-

sation and phase structure varies drastically, to the point where certain phenomena

(spin-momentum locking effects [93], helicity-independent transverse spin [2, 52, 67],

optical Möbius bands [94, 95], and many OAM-dependent chrioptical effects [96, 97]

to name a handful) that are of enormous recent research interest are simply impossi-

ble or undetectable in a purely paraxial field. We will first focus on the polarisation

properties of fields in the paraxial limit in this section.

Light is, broadly speaking, two-dimensional in the paraxial regime in that all

polarisation ellipses lie in the same plane, the ‘transverse plane’, being transverse to

the overall direction of propagation of the light field. In reality the paraxial regime

is only approached in the far field region of a source or a diffracted beam; in physical

paraxial fields the polarisation ellipse has a slight out-of-plane tilt due to longitudinal

components belonging to both E and H. That said, longitudinal field components

causing this tilt are so small compared to the transverse field components as to be

neglected (the only exceptional situation is when the transverse field components in

a paraxial field are zero and dominated by longitudinal components. The whole of

chapter 4 is dedicated to such a situation).

A major convenience afforded by the confinement of all polarisation ellipses to

a 2D plane is the fact that polarisation can be consistently parameterised by four

quadratic quantities, known as the Stokes parameters. This is because the polari-

sation ellipses at all points in space agree on a fixed reference frame from which to
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define a handedness of rotation of the instantaneous field vector, the ellipse’s ellip-

ticity and the ellipse’s orientation angle [see Fig. 3.1(a)]. The four Stokes parameters

are denoted S0−3 and are defined in a fixed x̂, ŷ basis as,

S0 = |Ex|2 + |Ey|2,

S1 = |Ex|2 − |Ey|2,

S2 = 2ℜ{E∗
xEy},

S3 = 2ℑ{E∗
xEy},

(3.5)

where for ease of interpretation we have defined S0−3 using the complex x and y

components of the 2D electric field phasor, E2D = (Ex, Ey), meaning Eq. (3.5) is valid

for a paraxial field propagating in the ẑ direction as is often the convention. The 0th

parameter relates to the field intensity in the transverse plane, the relative size of the

ellipse, whereas the remaining three parameters relate to the intensity discrepancy

between x and y components in the Cartesian basis (S1), diagonal components in a

diagonal basis (S2), and left- and right-handed components in a circular basis (S3).

Together S1−3 inform the ellipticity, handedness, and orientation of all polarisation

ellipses in the transverse xy plane, while holding the critical relation S2
0 = S2

1 +

S2
2 + S2

3 that defines the 2-sphere. Any 2D polarisation with a particular ellipticity,

handedness, and orientation can therefore be ‘mapped’ to an abstract space, defined

by the orthogonal axes S1, S2 and S3, as a single point on the surface of a sphere of

radius S0. Mapping to a 2D sphere surface upon which any position can be identified

by two angles is indicative of 2D polarisation, with normalised amplitude, having two

degrees of freedom. This abstract sphere is called the Poincaré sphere and is given

in Fig. 3.2.

The Poincaré sphere’s upper hemisphere belongs to right handed ellipses mean-
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linear

LH circular
LH elliptical

RH elliptical
RH circular

Figure 3.2: The Poincaré sphere, an intuitive way to characterise 2D polarisation. In paraxial
light the polarisation ellipse at any single point in real-space maps to a single point on the Poincaré
sphere, with the location on the sphere depending on ellipticity, handedness and orientation. Right-
/left-handed polarisation ellipses map to the upper/lower hemispheres, regions separated by linear
polarisation at the equator. Every fixed latitude corresponds to a fixed ellipticity. Completing a
circuit around a latitude corresponds to a polarisation ellipse in real space rotating by π radians;
the azimuth angle about the sphere’s polar axis (S3) is twice the real-space ellipse orientation angle
ϕ. Right/left circular polarisation maps to the north/south pole.

ing the instantaneous field vector E sweeps out the ellipse in an anticlockwise sense

(when viewing the transverse plane such that the propagation direction points out-

of-plane). Meanwhile the lower hemisphere contains left-handed, clockwise-rotating

polarisation ellipses. The boundary separating the upper and lower hemispheres, the

equator, corresponds to linear polarisation; as one travels around the equator, the

line of polarisation rotates by π radians. In fact on any contour of constant latitude

parallel to the equator a polarisation ellipse of fixed ellipticity undergoes this π radi-

ans rotation. Depending on its handedness, circular polarisation maps to the north

or south pole of the Poincaré sphere.

To understand the relationship between how polarisation is organised in 2D

paraxial fields and correspondingly on the Poincaré sphere we note that when mapped

into another space via some function, a subspace’s dimension generically stays the



Chapter 3. The phase and polarisation structure of monochromatic light 46

Figure 3.3: Mapping of 2D polarisation both ways between real space and the Poincaré sphere
(Stokes space). The normalised Stokes parameters can be calculated from the complex Ex and
Ey components, which are both functions of x and y, of a paraxial field propagating along z. An
arbitrary line or closed loop drawn in the real-space paraxial field (red curve in the left plot) can be
mapped to a line or closed loop on the Poincaré sphere. Conversely, points or lines on the Poincaré
sphere map, by calculating the x and y co-ordinates as a function of Si, to objects of the same
dimension in real space. Special points or regions of the sphere, such as the poles (right-/left-circular
polarisation) and a portion of the equator (linear polarisation), map to polarisation singularities in
the paraxial field (blue/yellow circles are oppositely handed C points, green lines are L lines).

same. A subspace could simply be a straight line in a parameter space, say the

a axis, which could be mapped to the xy plane by two functions x = fx(a) and

y = fy(a) producing a curve A of connected (x, y) co-ordinates. The a axis is a

1D line, and after mapping to 2D real space via fx and fy, the curve A is also

1D having acquired the extra freedom to traverse the 2D plane spanned by x and y.

The same concept applies to the Poincaré sphere as illustrated in Fig. 3.3. One could

hand-draw a 1D path in the transverse plane of an arbitrary paraxial field, obtain

the complex components Ex and Ey along that path, and from them calculate the

Stokes parameters S1−3(Ex, Ey) to draw a corresponding 1D curve on the surface

of the Poincaré sphere. In its entirety a paraxial field covers some portion of the

Poincaré sphere surface. Inside the patch of polarisations on the Poincaré sphere that
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exist in the paraxial field, an equivalent statement can be made that a point, curve

or area of the Poincaré sphere surface maps back into objects of the same dimension

in real space. With these arguments we can infer that of the two polarisation ellipse

extremities circular polarisation, which maps to the Poincaré sphere poles (points),

can only exist at points in the transverse plane (C points) while linear polarisation,

spread across the entire equator (a line), is organised in lines in 2D real space (L

lines).

Paraxial C points and L lines are topologically protected structures emerging

in generic monochromatic interference (such as the polarisation field on the left of

Fig. 3.3), which is to say that upon perturbation (addition of another interfering

field), C points and L lines are merely displaced rather than destroyed. Quite re-

markably paraxial polarisation singularities are ‘stable’ even when changing the line

of sight of the field [98] (for instance if instead of viewing the field of Fig. 3.3 along

the ẑ direction one’s line of sight is tilted, C points appear to be displaced in the

plane normal to the new line of sight).

3.3 Non-paraxial polarisation

The non-paraxial regime lifts the geometrical constraints placed on 2D paraxial po-

larisation as the electric and magnetic fields develop strong out-of-plane components.

While in the last section we described polarisation ellipses that all lie (for purposes

of explanation) on the xy plane, in a non-paraxial field, polarisation ellipses gain z

components and complicate matters tremendously, being independently oriented any

which way in 3D space [Fig. 3.1(b)]. The number of degrees of freedom of the ellipse

double to four and for this reason it is notoriously challenging to draw a consistent

mental image of non-paraxial polarisation in the same way as can be done using the
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Poincaré sphere in paraxial light.

To construct a framework to parameterise 3D polarisation is an active area

of research (though an in-depth discussion escapes the scope of this thesis). Three-

dimensional polarisation can no longer be expressed by the four 2D Stokes parameters

Eq. (3.5), but can be by nine generalised parameters [99]—though it is difficult to

construe these parameters geometrically like Eq. (3.5). One could, alternatively,

approach 3D-oriented polarisation by defining the plane of the ellipse using two

angles and within this plane, return to 2D stokes parameters (or equivalently, two

more angles) to characterise the ellipse’s ellipticity and in-plane orientation [37, 100].

Other proposals, namely the Majorana sphere [101] and Poincarana sphere [102],

retain a more palatable unit sphere (this time in real space) but account for additional

degrees of freedom by assigning two points on the sphere per 3D polarisation ellipse

(as opposed to one point per 2D ellipse on the Poincaré sphere). For a more detailed

summary, see [92] (which also describes a statistical unit sphere approach to classify

3D polarisation).

Two quantities, the ellipse normal Eq. (3.4) n and rectifying phase χ0 Eq. (3.3),

can often provide a sufficient picture of how 3D polarisation ellipses are arranged

because even in non-paraxial light, n is ill-defined wherever polarisation is linear, and

similarly for χ0 wherever polarisation is circular. These stable singularities reveal a

polarisation skeleton in non-paraxial fields, built of strands of pure linear polarisation

(L lines) and strands of pure circular polarisation (C lines) [56, 89, 90]. The reason

for the dimension of these polarisation singularities is the number of mathematical

criteria (two each) that they satisfy versus the number of spatial dimensions that they

exist in: specifically, L lines must obey px/qx = py/qy = pz/qz while C lines satisfy

ℜ{E · E} = ℑ{E · E} = 0, both sets of two scalar conditions [90] which subtracted

from three spatial dimensions 3 − 2 = 1 results in a one-dimensional structure. In
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paraxial light where all polarisation sits in the same plane, the number of important

spatial dimensions is reduced to two such that circular polarisation occurs at points

and that linear polarisation, which now only meets one condition px/qx = py/qy, is

still found in continuous lines. The number of real scalar conditions that must be

imposed on the electric field phasor at the location of a singularity can informally be

interpreted as the singularity’s codimension—so in non-paraxial light, C lines and L

lines are both codimension 2 objects.

3.4 Imprints of polarisation singularities

Every polarisation singularity disturbs nearby polarisation ellipses in a special way

depending on which aspect of the polarisation ellipse is ill-defined by the singular-

ity. Polarisation circles do not have major and minor axes and so in the plane of

circular polarisation (in paraxial fields this is simply the transverse plane while in

non-paraxial fields, the plane of polarisation, normal to n, is defined locally to each

point on the line as polarisation circles have inconstant orientation), nearby polar-

isation ellipses conform to ensure a smooth surrounding circulation of major and

minor axes by rotating, in an (anti)clockwise sense, a multiple of π radians as shown

in Fig. 3.4 in both paraxial and non-paraxial cases (an ellipse needs only to rotate

by π radians to align with its non-rotated self). In a closed loop around a C line

or C point, the sense and number of π radians rotations of ellipses undergone rela-

tive to the direction of travel along the loop is its topological index Ic, a parameter

to differentiate between these two possible states and for which Berry provided a

straightforward formula [103],

Ic =
1

2
sign(|E∗ · ∇(E · E)|2 − |E · ∇(E · E)|2). (3.6)
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In Fig. 3.4(a) there are three paraxial C points shown by the filled red, blue and green

circles, around which rectangular circuits are drawn. Traversing the red circuit in

the clockwise direction, the ellipses appear to rotate anticlockwise by one half turn

(π radians) giving the red C point an index of −1/2. The same is true of the green

C point while the blue C point has an opposite +1/2 index. If a circuit is drawn

around multiple C points, the sum of the indices of the individual enclosed C points

is the index of the circuit (see the gold circuit of Fig. 3.4(a) which contains oppositely

signed C points and has an overall index of 0). Plotting integral curves of the major

axes of polarisation ellipses in the plane of circular polarisation one sees that either

one or three curves terminate at the singularity depending on the sign of the index—

integral curves are organised in one of three possible structures, named lemon (index

+1/2, 1 terminating line), star (index −1/2, 3 terminating lines), and monstar (index

+1/2, 3 terminating lines) [91, 104]. A unique characteristic of non-paraxial C lines

arises from significant out-of-polarisation-plane field components which causes, in an

enclosing circuit, polarisation ellipses to undergo a half turn in 3D and construct a

Möbius band [94, 95].

The singular property of linear polarisation is the direction of the normal vector

n to the non-present ellipse (the normal to a line is not defined), a vector proportional

to the electric SAM density Se which circulates in some manner around L lines.

Either side of an L line in paraxial light the normal vector, defined via the right hand

rule, points in the opposite directions into or out of the transverse plane so that L lines

act as boundaries between left and right handed (with respect to the uniform overall

propagation direction) polarisation ellipses. Due to the coupling of far field electric

and magnetic polarisation structures L lines in paraxial fields also coincide with the

phase singularities of the complex scalar field E∗ ·H = ℜ{E∗ ·H}+iℑ{E∗ ·H}. At any

point along its length a non-paraxial L line creates a smooth rotation of n of nearby
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Figure 3.4: The polarisation imprint in general paraxial (a) and non-paraxial (b) fields of circular
and linear polarisation singularities. Paraxial light (a) contains C points and L lines (see Fig. 3.3).
C points disturb nearby polarisation ellipses by, along any closed circuit containing one C point,
causing them to turn by an integer multiple of π radians. Three C points (red, blue and green
circles) are shown in the paraxial field on the left of (a) as well as three closed circuits (red, blue
and gold lines) that sample the paraxial polarisation and which are unravelled in the key to the
right of (a). The red C point causes ellipses to rotate by π radians anticlockwise, gaining a −1/2
index as shown by the red circuit, arranging ellipse major axes in a ‘star’ pattern (this is true of
the green C point too). The blue C point has a +1/2 index as ellipses on the blue circuit rotate π
radians clockwise (a ‘lemon’ pattern is produced). Both the blue and green C points are enclosed
by the gold circuit whose ellipses do not undergo a net rotation because the indices of the two
enclosed C points cancel out. For non-paraxial light (b), C lines cause a rotation of polarisation
ellipses in the plane of polarisation local to each point along the line (Möbius bands are swept out
by the major axes due to out-of-plane field components). L lines cause the normal vector of nearby
ellipses to rotate in the plane normal to the electric field vector, local to points on the L line.
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(very slight) ellipses in the plane normal to the oscillation direction, the polarisation

line, with either clockwise or anticlockwise sense with respect to the direction of

travel along an L-line-enclosing loop (Fig. 3.4 also visualises these features).

3.5 Optical vortices

Scalar phase singularities exist in complex scalar fields, such as ϕ = a+ib, when both

its real and imaginary parts vanish and leave the field’s phase angle arg ϕ = χ unde-

fined. A phase singularity is ordinarily a thread-like 1D structure in 3D real space

(codimension 2) because ℜ{ϕ} = ℑ{ϕ} = 0 totals two constraints which with three

space parameters (x, y, z), can be maintained with one freely varying spatial degree

of freedom left over that sweeps out the length of the thread. Having an undefined

phase angle the singularity twists the surrounding field into a vortex, in particular χ

is forced to wind around the singularity an integer multiple l, its topological charge,

of 2π times. Because the phase vortex persists along the length of the singularity

strand, unchanging in strength and handedness, the phase singularity’s index l can

be found formally by drawing a closed loop C around any part of the singularity and

integrating ∇χ in a certain direction along the loop [16],

l =
1

2π

∮
C

∇χ · dr (3.7)

where Eq. (3.7) returns an integer. Monochromatic light’s field phasor components

are individually complex scalar fields which generically contain phase singularities.

What is significant about optical phase singularities is that the phase gradient of

an electric field component contributes towards the canonical momentum of light

and radiation pressure force, a pushing force from photons felt indiscriminately by
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scalar singularity

±2lπ

Figure 3.5: A scalar wave dislocation or scalar vortex line, an optical vortex in a complex scalar
field ϕ. The vortex line pierces a plane on which the phase angle of the field, arg ϕ, is plotted,
showing a smooth azimuthal change in phase. Integrating the phase gradient clockwise over a loop
enclosing the singularity line returns an integer l (the topological charge) multiple of 2π. Adapted
from [20].

all kinds of matter. If a phase singularity causes the scalar field’s phase in the

surrounding space to increase azimuthally, then it is possible for canonical momentum

to acquire an azimuthal component and for a light field to develop orbital angular

momentum, centred on a phase singularity—an optical vortex.

Of course E as a whole is a vector field and a phase singularity in a single

field component, say Ex = 0, does not in general amount to a vortex of momentum

which is proportional to a weighted average of the gradient of all three components

[via E∗ · (∇)E = E∗
x∇Ex + E∗

y∇Ey + E∗
z∇Ez in the electric canonical momentum,

Eq. (2.15)]. However, it is possible to design cylindrically symmetric light, propagat-

ing in a well-defined overall direction, in which phase singularities of more than one

field component are aligned to create a beam carrying orbital angular momentum.

These beams are the vortex beams we mentioned previously and have become very

well-established in optics since they were popularised during the 1990s. We said that

vortex beams can carry information in their spatial phase [8, 9] and polarisation
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structure and twist particles onto orbiting trajectories, but even from a purely the-

oretical perspective, focussed vortices have a deep and rich physics particularly in

3D polarisation and the complicated interplay of helices in light [76, 83, 105]: those

(orbit-related) of sculpted phase fronts and those (spin-related) which are drawn out

by the electric field vector.

3.6 Vector singularities in general

Polarisation singularities are special examples of a wider class of the vector singu-

larity that emerges in a real vector field V when V = 0 and the direction of the V

arrow is unspecified. A general, real, and 3D vector field whose components do not

depend on each other actually vanishes at 0D points because Vx = Vy = Vz = 0 com-

prise three real scalar conditions, but geometric constraints mean both circular and

linear polarisation singularities turn out to be 1D line structures, not points, in 3D

real space. Point-like vector singularities do, however, occur in many other electro-

magnetic quantities in light such as the instantaneous electric field E , the Poynting

vector 1/2 ℜ{E∗ ×H} or the total SAM density S = Se + Sm [71], to name a few.

These point-like singularities stir up the surrounding vector field, creating a distinct

imprint which we will quantify in this section, and share many of the same properties

of optical skyrmions [106] (the name ‘optical skyrmion’ encompasses skyrmions in

different vector fields including the instantaneous electric field and electric spin, and

even in polarisation ellipses [12, 107, 108]. Most famously ‘skyrmion’ refers to the

topologically protected quasiparticle formed in chiral magnets [109–111]).

To understand how a point-like vector singularity V = 0 disturbs the rest of V

it is useful to draw upon the lower-dimensional analogy of the optical vortex. A phase

vortex forces the scalar field’s phase angle arg ϕ, wrapping around the singularity, to
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advance through every possible value between 0 and 2π at least once. Likewise in

3D space a point-like vector singularity V = 0 forces, on a surface A enclosing the

point-singularity where the real vector V is non-zero, that the arrow representing V

realises every 3D orientation an integer number of times (this is the magnitude of the

singularity’s index). One could point their finger any way in 3D and somewhere on A,

the vector V is pointing in that exact direction. Though it is much more difficult to

picture mentally, V also ‘winds’ in orientation over this singularity-enclosing surface

with a certain sense, once again corresponding to the sign of the singularity index as

in the scalar case. In much the same way a two-dimensional optical skyrmion can be

interpreted as a vector realised in every orientation on a closed surface in parameter

space (for instance the Stokes vector calculated in a 2D polarisation skyrmion which

wraps, pointing radially, over the Poincaré sphere).

For the above reasons, we cannot use a similar expression to Eq. (3.7) to

calculate a vector point-singularity’s topological index—a 1D closed loop will not

properly enclose a point-like singularity and capture its effect on the surrounding

vector field V, rather, we must integrate over the 2D closed surface A in a higher-

dimensional definition. The vector singularity’s topological index is equivalent to the

skyrme number [106, 109], and, if we take A to be a sphere surface, is defined as,

n =
1

4π

∫
A

V ·
(
∂V

∂θ
× ∂V

∂ϕ

)
dA, (3.8)

which returns an integer whose magnitude is the order of the singularity. The order

of a singularity in V has implications for the derivatives of V at the singularity

location, because for order m, the (m− 1)th order derivatives must be zero (so for a

first-order singularity |n| = 1, only the components of V are zero while ∇V ̸= 0).

Both a vector point-singularity and skyrmion have other characteristics, relating to
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the net flow of streamlines through the singularity, which escape Eq. (3.8) and are

calculated separately. But first-order singularities can, conveniently, be completely

characterised by the vector’s Jacobian matrix as we will next explain. A first-order

singularity is arguably of most interest since it is the most stable, due to V vanishing

without imposing any further mathematical conditions on the field derivatives at the

singularity location.

3.6.1 First-order vector singularities

While Eq. (3.8) is valid for arbitrary order, it is perhaps simpler for first-order singu-

larites where n = ±1 to instead consider the field’s Jacobian matrix which contains

all necessary information on the singularity. Jacobian matrices are used repeatedly

throughout this thesis and are N -dimensional analogues to the scalar derivative (for

instance in one dimension, df = (df/dr)dr whereas inN dimensions, df = (df/dr)·dr,

df/dr being the Jacobian matrix). In three-dimensions a Jacobian matrix is 3× 3 in

size, defined for a vector V = (Vx, Vy, Vz)
T as,

J = (∇V)T =


∂Vx

∂x
∂Vx

∂y
∂Vx

∂z

∂Vy

∂x

∂Vy

∂y

∂Vy

∂z

∂Vz

∂x
∂Vz

∂y
∂Vz

∂z

 . (3.9)

The Jacobian matrix is what determines how the vector field V behaves over small

distances ∆r where first-order derivatives dominate in the Taylor expansion of V,

which is to say V(r + ∆r) ≈ V(r) + J∆r. It is particularly important evaluated at

the location of a singularity r = rz where V(rz) = 0, and hence V(rz + ∆r) ≈ J∆r,

because its three eigenvalues correspond to the singularity index and the flow of

V streamlines, while its eigenvectors inform the ‘principle axes’ of the structure
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vector field V streamlines
vector singularity where

Figure 3.6: Three cut planes of a vector field V containing a first-order direction singularity (red
circle) where V = 0. In this case the vector field has zero divergence meaning the singularity must
be a vector saddle point, characterised by Jacobian eigenvalue signs of (+,+,−) or (+,−,−). In
the xy plane integral curves of the field appear to be deflected from the singularity (which seems
reasonable given ∇ ·V = 0), while on the central xz plane V streamlines appear to emanate from
the singularity, apparently in contradiction to ∇ · V = 0. In fact the true flow of V through the
singularity can only be comprehended in 3D—apparent net outward flow like in the xz plane is
compensated by inward flow in other directions.

of the nearby flux of V, which may resemble that of Fig. 3.6. Multiplying the

eigenvalues of J gives its determinant, whose sign (+ or −) is equivalent to the

first-order singularity’s index (+1 or −1),

n = ±1 ≡ sign(detJ). (3.10)

A Jacobian matrix in three dimensions has three eigenvalues meaning a +1 index can

be realised by signed eigenvalues of sign(ei) = (+,+,+) or (+,−,−) in any order—

two situations which are topologically distinct despite sharing the same overall index.

That a singularity’s Jacobian matrix with sign(ei) = (+,+,+) is a vector source with

non-zero divergence of V, while sign(ei) = (+,−,−) corresponds to a vector saddle

point which could satisfy ∇·V = 0 is why calculating the singularity index n alone is

often insufficient, especially when dealing with electromagnetic vectors some of which
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in free space are divergence-free, but not others. Likewise a negative singularity index

is assigned to both vector sinks (−,−,−) and saddle points (+,+,−) (which is a

different saddle point to one with (+,−,−) eigenvalue signs due to the odd number

of spatial dimensions).

These concepts are used extensively in chapter 5 of this thesis where three-

component electric field phasor zeros E = 0 are studied in depth. Full electric field

singularities are special by being 3D confined in near fields and by being automati-

cally coupled to point-like singularities in other electromagnetic vectors such as the

(real and imaginary) Poynting vector, and canonical and spin momentum, each of

which can be classified by calculating the eigenvalues of their Jacobian matrices.

3.7 Chapter summary

In this chapter we have reviewed how electromagnetic vectors behave locally and

globally in monochromatic light, most notably locally that ‘polarisation ellipses’ with

an associated rectifying phase and ellipse normal vector are drawn at each point by

the electric and magnetic fields in space, and globally that over space, polarisation

ellipses are organised into strands of constant ellipticity [12, 107] whose extremes are

C lines and L lines. The phase gradient of an electromagnetic field is proportional

to the direction of canonical momentum and when field components are suppressed,

establishing dark spots, the phase gradient diverges and can acquire an azimuthal

component in nearby space indicative of helical, vortex wavefronts. Depending on

how constrained its polarisation and phase structure is light falls into one of two

regimes, namely the paraxial regime when all polarisation ellipses lie flat in a single

plane transverse to propagation (which is largely in one direction), and the non-

paraxial regime when polarisation is inhomogeneous, freely oriented in 3D, and the



59 3.7. Chapter summary

field’s phase gradient is defined locally. In non-paraxial light vortex strands and

polarisation singularities are continuous, stable singularities that either extend in-

finitely in space or form (un)knotted closed loops [6, 112–114]. What is so compelling

about the study of the singularities and spatial structure of monochromatic light is

that many of its findings are applicable to wave fields in general. For it was initially

realised that waves ordinarily contain topological defects in phase fifty years ago in

a study of ultrasound waves [3] and since then and the explosion of research that

followed the discovery of orbital angular momentum in light, analogies to many of

the phenomena in this chapter have been predicted or shown to exist in acoustic [18],

water [18, 19], and even gravitational waves [17]. The next chapter is the first of four

presenting original findings, its focus dark spots in paraxial fields.



Chapter 4

Paraxial dark spots

We mentioned in chapter 3 that the paraxial regime is one of restricted physics where

light can be considered to be two-dimensional, and to be propagating in a single

well-defined direction. Polarisation ellipses of both electric and magnetic fields are

constrained to lie tangent to the two-dimensional plane transverse to this overall

propagation direction (the ‘transverse plane’). Longitudinal field components, while

only ever truly zero in plane waves (which cannot be physically realised), are so small

compared to the transverse field components as to be ignored. The paraxial regime

is reached in the far field of absolutely any localised source.

That the source is localised is key. In practice we cannot build sources of

light that are infinite in extent and driven with infinite power; any source which we

can feasibly create, be it a light bulb, a dipole antenna, or a laser, radiates elec-

tromagnetic energy which must spread out eventually. Some solutions to Maxwell’s

equations, such as plane waves and Bessel beams, carry infinite energy—this energy,

while non-physical, does not strictly speaking spread out in space, but the propa-

gating fields that carry it can only be generated exactly by an infinite source. With

60
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more precise terminology the inevitable spreading of energy over space is known as

diffraction and occurs because, given enough distance, any physical source of light

appears to be point-like and radiating with spherical wavefronts that grow in size

as they propagate. The far field region where wavefronts become spherical is ap-

proached only after several wavelengths’ distance from the source. Zooming in on an

almost-planar patch of one of these far field spherical wavefronts, one sees that the

light’s polarisation structure is paraxial.

Focussing on phenomena in the paraxial regime this chapter is the first of four

that report the findings of our recent publications and the first of three which treat

vectorial electric field dark spots (where two or more components of the E phasor

vanish) in light. Dark spots have a remarkable ability to imbue light with surprising,

even counter-intuitive properties and a far field dark spot, in spite of the rules of

paraxiality, is no exception. We consider a paraxial dark spot at some location rz

to be a null in both the transverse field components, Et(rz) = 0, that normally

carry the majority of a far field’s energy density but must become comparable to

the radial field near to rz as they approach zero. The result is a small and very dim

non-paraxial region around rz where polarisation is 3D and, as we shall see, non-

diverging polarisation singularities and other structures emerge. Our findings in Non-

diffracting polarisation features around far-field zeros of electromagnetic radiation

[21] are presented here, a significant generalisation of a result which was reported for

a vortex beam by Afanasev et al. [115] and had also been observed on the axis of a

linearly polarised dipole [116]. The existence of these phenomena is contingent on the

different dependence of the amplitude of the transverse and radial field components

on the radial distance from the source, which we shall explain next.
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4.1 Radiation diagrams and dark spots

Spherical wavefronts set out an important simplification in defining a far field elec-

tromagnetic field analytically in a spherical co-ordinate system with the parameters

(r, θ, ϕ) representing radial distance, and elevation and azimuth angles. All advanc-

ing of phase is accounted for by a single exp(ikr) factor, and since in the paraxial

limit longitudinal (radial) field components are small, it is often sufficient to express

only the transverse field phasor Et via a radiation diagram∗,

Et =

Eθ(r, θ, ϕ)

Eϕ(r, θ, ϕ)

 =

fθ(θ, ϕ)

fϕ(θ, ϕ)

 eikr

r
. (4.1)

Since both transverse field component amplitudes Eθ and Eϕ obey a simple 1/r

radial dependence, it is possible to completely segregate the radial dependence of Et

by defining as above two functions, fθ and fϕ, which depend only on the elevation and

azimuth angles and can fully describe the far field radiation of any source. A linearly

polarised dipole, for instance, is expressed in the far field by Eθ = fθ exp(ikr)/r =

E0 sin θ exp(ikr)/r and Eϕ = 0 as illustrated in Fig. 4.1.

As with any typical function, the transverse field components contain zeros in

general where both real and imaginary parts vanish, comprising two conditions for a

zero in one of fθ or fϕ. In a 3D parameter space (r, θ, ϕ) a zero in complex scalar field

organises a line (since three parameters minus two real conditions that set the field’s

real and imaginary parts to zero equals one, the dimension of the structure) which

intersects a fixed-radius sphere at a point—hence the zeros in fθ(θ, ϕ) and fϕ(θ, ϕ)

are points (these concepts are well-known and a substantial body of work exists on

∗The radiation diagram is a θ, ϕ space representation of the far field of a source (here simply
referring to the functions fθ, fϕ) and is used frequently in engineering.
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(symmetric in yz plane)

z

x

z

x

Figure 4.1: Radiation diagrams of the θ̂ (left) and ϕ̂ (right) dipole component amplitudes (excluding
radial dependence exp(ikr)/r). Only the θ̂ component is non-zero, varying according to fθ =
E0 sin θ which is plotted in red in the left plot; the radial distance of the red curve from the centre
of the plot corresponds to fθ and vanishes at θ = (0, π), the location of the dipole’s axial dark spot.
The angle θ is measured with respect to the +z axis; cartesian x and z axes are superimposed for
visual reference. Since the dipole’s field is independent of ϕ the plots are rotationally symmetric
about z.

scalar vortex lines in light). Should fθ = 0 and fϕ = 0 coincide at the same (θ, ϕ) co-

ordinates, then a time-fixed dark spot emerges (the longitudinal radial component is

very small and does not contribute a significant intensity). A paraxial dark spot will

not, however, appear organically unless the field has a high degree of symmetry, and

otherwise requires that fθ = 0 and fϕ = 0 are forced at the same position artificially

(see chapter 6). The linearly polarised dipole is an example of a highly symmetric

far field containing a transverse field zero at θ = 0.

Thus far we have neglected the radial electric field component Er. While it is

perfectly reasonable to only consider a source’s radiation diagram if we are interested

in the field’s energy density, Eq. (4.1) does not provide a comprehensive description

of far field polarisation if there is a paraxial dark spot. This is because polarisa-

tion depends on the relative amplitude and phase of each field component and by

definition in the neighbourhood of a paraxial zero, the transverse field, ordinarily
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dominant, becomes comparable to the radial field which is required by Gauss’ law

to be non-zero as long as Et is not trivially zero everywhere in space. In some per-

haps confusing sense, polarisation near to a paraxial zero is inherently non-paraxial.

Gauss’ law ∇ · E = 0 (where E = Et + Err̂) offers a way to obtain Er from a dif-

ferential equation using the far field terms of Et. The solution of ∇ · E = 0 using

Eq. (4.1) takes the form,

Er(r, θ, ϕ) =
const

r2
+

i

kr

(
1

tan θ
Eθ +

1

sin θ

∂Eϕ

∂ϕ
+
∂Eθ

∂θ

)
. (4.2)

For our purposes we may ignore the first (constant) term because it accounts for

non-radiating static charge. Substituting expressions for Eθ and Eϕ from Eq. (4.1)

we may find the r-independent function fr,

fr(θ, ϕ) =
i

k

(
1

tan θ
fθ +

1

sin θ

∂fϕ
∂ϕ

+
∂fθ
∂θ

)
. (4.3)

with which the radial dependence of Er can be written explicitly:

Er(r, θ, ϕ) = fr(θ, ϕ)
eikr

r2
. (4.4)

By calculating Er we arrive at a surprising relationship between the transverse and

radial components of far field radiation: while in the radial direction the transverse

components reduce by 1/r [Eq. (4.1)], the radial component falls in amplitude by

1/r2. We shall explain in the following section the striking implication of this result,

that is the capacity to identify 3D polarisation structures near to a paraxial dark

spot which keep the same real-space separation independently of the growing size of

the spherical wavefronts, and hence, may be described as non-diffracting.
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4.2 Non-diffracting polarisation objects

Many physical quantities in light are quadratic with respect to the electric and mag-

netic fields. This is immediately noticeable in chapter 2 after the time-averaged

Poynting vector, SAM density, canonical momentum, energy and helicity densities

were each defined by, under some vector operation, multiplying E and H once with

themselves or their conjugates or each other. Of the scalar quadratic quantities,

electric energy density is proportional to intensity E∗ · E and always greater than

zero, increasing in all transverse directions from the minima of a paraxial zero, and

may be separated into transverse and radial contributions E∗ · E = E∗
t · Et + E∗

rEr.

We learned last section that Et and Er behave differently in the far field while wave-

fronts inflate and so in making this transverse-radial intensity separation near to

a paraxial zero, it is possible to identify a non-diffracting object. To do so, let us

first imagine an arbitrary source with a radiation diagram described by unspecified

functions Eθ(r, θ, ϕ) and Eϕ(r, θ, ϕ) and make a single assumption that both Eθ and

Eϕ are zero at an angular position (θ0, ϕ0). We will address the suitability of this

assumption (manifesting as a question of how stable the zero is) in a later section of

this chapter.

4.2.1 Transverse and radial intensity

Due to their characteristic r-dependencies, the ratio of the transverse and radial

intensities itself acquires a radial dependence, which we see using Eq. (4.1) and

Eq. (4.4),
E∗

t · Et

E∗
rEr

= r2
f ∗
θ fθ + f ∗

ϕfϕ

f ∗
r fr

= r2F (θ, ϕ). (4.5)
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Normally the ratio F (θ, ϕ) is very large while in the paraxial limit the transverse

field overwhelms the radial field. But under small displacements from a paraxial

dark spot’s location (θ0, ϕ0) these components are of similar magnitude and, by

equating the always-positive Eq. (4.5) to a relatively small constant δ (e.g., δ = 1)

we define a tube-like surface S,

S : r2F (θ, ϕ) = δ, (4.6)

which has a real-space cross section C containing (θ0, ϕ0). Notice under the definition

Eq. (4.6) that if the solid angle Ω enclosed by Cθϕ, the surface’s (θ, ϕ)-space cross

section at some radial distance, scales linearly with the value of δ, then Cθϕ must

shrink in (θ, ϕ) space around the paraxial dark spot’s position with increasing r,

at exactly the same rate as the real-space area of a spherical wavefront grows (the

coverage of (θ, ϕ) space of the sphere is constant at 4π steradians). Swept through

real space, the physical cross section C defines a non-diffracting tube enclosing the

dark spot whose cross section is constant, completely independent of radial distance.

The criterion that “the solid angle enclosed by Cθϕ scales linearly with the value of

δ” is not insignificant, but is easily met if the curve Cθϕ is an ellipse, as turns out to

be the case in a paraxial zero’s immediate vicinity where field components behave

like linear functions of space.

In this neighbourhood we can perform a lowest-order expansion of the electric

field for a simple picture of how it behaves. Only the transverse field components are

actually zero and so, defining the 2D transverse Jacobian matrix and the constant
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(zeroth-order) complex radial term Er0, we have,

E = Et + Err̂ ≈ Jv + Er0r̂ =

 ∂Eθ

∂θ
∂Eθ

∂ϕ

∂Eϕ

∂θ

∂Eϕ

∂ϕ

θ′

ϕ′

 + Er0r̂, (4.7)

where v = θ′θ̂+ϕ′ϕ̂ and θ′ = θ−θ0 and ϕ′ = ϕ−ϕ0 are angular displacements from the

dark spot centre. Importantly under the first order approximation, the electric field

intensity becomes a quadratic function of θ′ and ϕ′ as well as E. Likewise F (θ, ϕ) from

Eq. (4.5) behaves quadratically in (θ, ϕ) space such that the closed curve r2F (θ, ϕ) =

δ cuts an ellipse shape through the (θ, ϕ) plane. Our linear approximation Eq. (4.7)

of the electric field is accurate in the far field limit where, due to there being a well-

defined longitudinal propagation direction, the field components vary slowly across

the transverse plane. With sufficient distance (e.g., for r > 3λ) the influence of

higher-order derivatives on the small non-paraxial region surrounding the dark spot

is negligible and the shape and size of the non-diffracting tube (and as we shall

see, C lines) are very well-described by a first-order Taylor expansion of the field.

We will proceed with Eq. (4.7) in the following sections. Nearer to the source, on

the border of the far field region (around r = 2λ, a minimum distance for which

it is reasonable to discuss paraxial dark spots), higher-order transverse derivatives

of the field components are more significant and (combined with the assumption of

spherical wavefronts) deform our tube’s expected elliptical cross section.

Summarising this section, we demonstrated that in the far field of an arbitrary

source containing a dark spot, the setting of the ratio of the transverse and radial

component intensities to a constant δ yields an equation of the form r2F (θ, ϕ) = δ,

which in the region of the paraxial dark spot is quadratic with respect to (θ, ϕ) and

thus defines a tube with elliptical cross section. The r2 dependence of the left hand
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r = 10λ

r = 3λ

C line

L lineNon-diffracting
tube |Et|2 = |Er|2

Source

Colour plot:
argE ∙ E

Figure 4.2: A paraxial dark spot where Et = 0, equivalent to a radially polarised L line (magenta
line) extending infinitely from a source, along with a tube defined where |Et|2 = |Er|2 that does
not change in cross section. The dark spot and tube pass through two sphere patches on which
the phase angle argE · E and nearby polarisation ellipses (normalised amplitude) are plotted, the
spheres defined at radii r = 3λ and r = 10λ and centred on the source. Two non-diverging true C
lines (blue) accompany the dark spot into the far field.

side of this equation compensates for the 4πr2 surface area of each far field wavefront,

getting larger with radial distance from the source, and means the intensity-ratio tube

is immune to the diffractive effects that light’s energy density is subject to—though

because the tube exists in, by definition, a low-intensity region of space, the visibility

and applicability of the tube is perhaps limited, as we shall return to discuss at the

end of this chapter. Figure 4.2 depicts one such non-diffracting tube enclosing a

paraxial dark spot (the magenta radially polarised L line). The tube pierces patches
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of two spherical surfaces of radius r = 3λ and r = 10λ without spreading out in cross

section. Other elements present in Fig. 4.2 are discussed later on.

4.2.2 Tube cross section

We can use the tube defined by Eq. (4.6) in a first-order approximation to better

understand the geometry of its elliptical cross section. Calculating Eq. (4.5) with

Et = Jv and a radial component evaluated at the paraxial zero centre, Er(r, θ0, ϕ0) =

Er0 = fr0 exp(ikr)/r2, we may obtain the tube,

r2F (θ, ϕ) = r2
1

f ∗
r0fr0

vT
[
J∗T
f Jf

]
v = δ, (4.8)

where,

Jf =

 ∂fθ
∂θ

∂fθ
∂ϕ

∂fϕ
∂θ

∂fϕ
∂ϕ

 . (4.9)

Writing vT
[
J∗T
f Jf

]
v compacts the tube cross section’s quadratic form into a matrix

expression, wherein the eigenvalues λ1, λ2 of the 2 × 2 matrix J∗T
f Jf relate to the

semi-axis lengths a′ and b′ of the tube’s elliptical cross section in (θ, ϕ) space:

a′ =

√
δ

r

√
f ∗
r0fr0
λ1

,

b′ =

√
δ

r

√
f ∗
r0fr0
λ2

.

(4.10)

Assuming a small elliptical cross section, the enclosed solid angle is Ω = sin θπa′b′

and is thus proportional to δ, giving a real-space enclosed area A of,

A = r2Ω = πδ sin θ
f ∗
r0fr0√
λ1λ2

= πδ sin θ
f ∗
r0fr0

| detJf |
, (4.11)
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where we have used
√
λ1λ2 =

√
detJ∗T

f Jf =
√

detJ∗T
f detJf = | detJf |. Equation

(4.11) provides a general expression for the cross-sectional area of the non-diffracting

tube surrounding a far field dark spot in an otherwise arbitrary field radiated by

an unknown source. It shows clearly in the final equality that the area A is in-

dependent of r and hence does not diffract with distance from the source. While

the chosen constant δ comparing the radial and transverse field intensity scales the

size of the tube cross section, the core elliptical geometry is determined by the field

derivatives which construct the transverse Jacobian J (and subsequently Jf ). Two

‘generic’ paraxial zeros are unlikely to share the same Jacobian and can construct

non-diffracting tubes with drastically different ellipticity and extent for the same

value of δ, though ordinarily, the semi axes of the tube cross section are on the order

of a reasonable fraction of a wavelength. As in the non-generic, axially symmetric

cases of a vortex beam [115] and, as we next demonstrate, a linearly polarised dipole

(both of which contain 2D zeros), a non-diffracting cylindrical tube exists with a

diameter of 2
√
δλ/π.

4.2.3 Example: a linearly polarised dipole

We shall now apply the equation of the cross-sectional area of the non-diffracting

intensity ratio tube that exists around the dark axis of a linearly polarised dipole,

which we know to have a radiation diagram given simply by Eθ = fθ exp(ikr)/r =

E0 sin θ exp(ikr)/r and Eϕ = 0 where E0 is a complex amplitude (Fig. 4.1). Inci-

dentally, these expressions prove to be problematic when substituted into Eq. (4.11)

because the dipole’s zeros lie at θ = 0, π where the azimuth angle ϕ is not defined

and the field Jacobian is singular. In remedying this we may rotate the dipole by π/2

radians such that its axial zero passes through (θ, ϕ) = (π/2, 0) and (θ, ϕ) = (π/2, π),
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giving the following transverse components,

Eθ = E0 cos θ cosϕ
eikr

r
,

Eϕ = −E0 sin θ
eikr

r
.

(4.12)

Meanwhile, the r-independent Jacobian Jf [Eq. (4.9)] of the transverse field and the

modulus of its determinant are,

Jf =

−E0 sin θ cosϕ −E0 cos θ sinϕ

0 −E0 cosϕ

 , (4.13)

| detJf | =
√
E∗

0E
∗
0E0E0 sin θ cos2 ϕ = E∗

0E0 sin θ cos2 ϕ. (4.14)

To find the radial field component we calculate Eq. (4.2) (neglecting the constant

term), giving,

Er = E0
i

k

(
− sin θ cosϕ+

cos θ cosϕ

tan θ
− cosϕ

sin θ

)
eikr

r2
, (4.15)

which evaluates at the zero location (θ0, ϕ0) = (π/2, 0) to Er0(r, θ0, ϕ0) = −2E0i/k ·

exp(ikr)/r2. Finally, substituting Eq. (4.14) and fr0 = −2E0i/k into Eq. (4.11), we

have at the zero location (θ0, ϕ0) = (π/2, 0) a tube area of,

A = πδ sin θ0
4E∗

0E0

k2E∗
0E0 sin θ0 cos2 ϕ0

=
4πδ

k2
= δ

λ2

π
, (4.16)

which leads to a non-diffracting tube diameter of 2
√
δλ/π.

The authors of [116] identified a constant-cross-section tube of circular polarisa-

tion enclosing the linearly polarised dipole’s axis, in agreement with this subsection’s
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brief treatment (despite the fact that we have not yet considered polarisation). In

fact with almost identical arguments to those we have so far used it is possible to

show that an even number of parallel lines of true circular polarisation are produced

automatically by paraxial zeros. The axial symmetry of the linearly polarised dipole

makes a degenerate case in which a surface of circular polarisation coincides exactly

with our non-diffracting intensity ratio tube.

4.2.4 True C lines

Having an overall propagation direction the phase structure of the paraxial field is

such that on the sphere of radius r or a local transverse plane, the entire polarisation

texture of the transverse field Et extends uniformly in the radial direction as special

points of polarisation are drawn into lines and lines drawn into surfaces. But as

we discussed, a 2D zero where Et = 0 sets up a well of non-paraxial polarisation

which, before transitioning to the typical polarisation texture of a paraxial field as

one moves away from the dark spot, contains true circular and linear polarisation

singularities in the 3D field vector E = Et + Err̂, not simply in the transverse field

projection.

To find the lines of true circular polarisation in a paraxial dark spot’s neigh-

bourhood, we first calculate E · E under the first-order approximation Eq. (4.7),

E · E ≈ (Jv) · (Jv) + Er0 · Er0 = vT
[
JTJ

]
v + Er0 · Er0. (4.17)

We know from chapter 3 that the electric field is circularly polarised when E ·E = 0

allowing us to arrive at the complex quadratic equation,

vT
[
JTJ

]
v = Et · Et = −Er0 · Er0, (4.18)
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whose solutions vc locate circular polarisation. Note that the condition Eq. (4.18)

departs from Eq. (4.8) for δ = 1 by having both the 2 × 2 matrix JTJ and Er0 · Er0

being complex-valued. This means that the real and imaginary parts of vT
[
JTJ

]
v+

Er0 · Er0 = 0 each define quadratic surfaces M and N , constant in the radial direc-

tion, whose cross sections are either elliptical or parabolic (since vTℜ{JTJ}v and

vTℑ{JTJ}v need not be positive for all v). Regardless of the cross section geom-

etry of the real and imaginary parts of Eq. (4.18), be they ellipses or parabolas

or a combination of the two, we may still define principle axes for each in (θ, ϕ)

space similar to Eq. (4.10) and which in real space have r-independent arc lengths.

Then, the positions of the intersections of M : vTℜ{JTJ}v = ℜ{−Er0 · Er0} and

N : vTℑ{JTJ}v = ℑ{−Er0 · Er0} corresponding to true circular polarisation do

not diverge from the paraxial dark spot, and like the intensity ratio tube defined

in section 4.2.1, can be described as non-diffracting. Figure 4.3 illustrates how the

surfaces M and N might emerge as either a hyperbola, a degenerate hyperbola, or

an ellipse on the transverse plane, and intersect with one another in an even number

of places near to a paraxial zero where true 3D circular polarisation is located.

As a paraxial dark spot propagates further and further into the far field, the

region for which a first-order approximation of the field components is accurate

grows and envelopes the dark spot’s neighbourhood and its non-diffracting structures

(which, of course, do not grow in size). Therefore in real space near to the zero

Et · Et is almost a perfectly quadratic function of space which, due to its in-built

symmetries, satisfies Et · Et = −Er0 · Er0 in an even number of locations in the

transverse plane. We have proven in this way that an even number (0 inclusive) of

true C lines generically accompany a paraxial dark spot into the far field without

diverging, maintaining constant separation (this feature is also shown in Fig. 4.2).
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paraxial dark spot

M
N

transverse
plane

Figure 4.3: Non-exhaustive examples of paraxial zeros and the curves M : ℜ{Et · Et} = ℜ{−Er0 ·
Er0} (blue) and N : ℑ{Et ·Et} = ℑ{−Er0 ·Er0} (green) as viewed on the transverse plane near to
a dark spot (red circle), their intersections highlighted by the yellow circles.

4.2.5 Example: Young’s double slit experiment

We have learned that transverse field zeros, paraxial dark spots, always construct

non-diffracting structures that can be defined by comparing the intensity of the

transverse and radial field components† What better way to support our claims than

by revisiting an over-200-years-old experiment?

When in 1801 Thomas Young shone sunlight through two thin slits separated

by an opaque surface he observed the interference fringes indicative of light’s wave-

like nature, periodically spaced bright lines (maxima) of constructive interference and

†That the transverse and radial field components reduce by 1/r and 1/r2 is a general feature of
a paraxial field, not in any way restricted to a region around a dark spot, so it is natural to ask
whether non-diffracting structures can only be identified near zeros. The special feature of the dark
spot is that transverse intensity increases in every outward direction, while the field components
behave as linear functions of θ, ϕ nearby—so taking the intensity ratio of Et and Er results in
closed tubes. It is not generally possible to identify small closed tubes that do not diffract using the
intensity ratio elsewhere in the field (although closed tubes could be defined around local maxima,
they would likely not be diffraction-immune as maxima are non-zero stationary points of the field
components, meaning ∇tEt = 0). But in principle, one could identify non-diffracting structures—
which could be closed tubes, or parallel surfaces with constant separation—that are not associated
with zeros in intensity E∗

t · Et, but with zeros in other quadratic scalar fields (e.g. |Et · Et| or
|E∗

t ·Ht|) that are found in non-dark regions of the paraxial field.
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the dark minima of destructive interference in-between, as well as dispersive effects

[1]. The interference fringes were projected onto a screen well into the far field of

the light appearing to radiate from the two slits. Sunlight is, of course, unpolarised

though should we replace Young’s source with a single-frequency radiator, we may

obtain a monochromatic interference pattern whose well-defined polarisation can be

probed near to the interference minima that are, as the reader might have guessed,

paraxial dark spots. Suppose that we illuminate an opaque screen split by two

thin slits parallel to the z axis, separated along the x axis by a distance d, with a

plane wave propagating normal to the screen along y and linearly polarised in the x̂

direction, perpendicular to the length of the slits. The plane wave is diffracted by

the two slits which approximately behave like sources of cylindrical waves, in phase

and with the same amplitude Ap, that must carry both x̂ and ŷ field components to

obey the transversality condition; slit 1 radiates the field E1 and slit 2 the field E2.

The cylindrical fields are given by,

E1 =


Ap sinα1

−Ap cosα1

0

 eikρ1
√
ρ1
, (4.19)

E2 =


Ap sinα2

−Ap cosα2

0

 eikρ2
√
ρ2
, (4.20)

where ρ1,2 = |r − r1,2|, r1,2 = ±(d/2)x̂ being the slits’ position vectors. Two cylin-

drical waves and the relevant parameters in Eq. (4.19) and Eq. (4.20) are drawn in

Fig. 4.4(a) for a slit separation of d = 3λ, while in Fig. 4.4(b) we plot the electric

energy density We ∝ E∗ ·E in the resulting interference (the colour is saturated at 1
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E field lines
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0

Figure 4.4: Non-diffracting structures in a monochromatic version of Young’s double slit experiment
where an x̂ polarised plane wave illuminates the slits. The slits are approximated by two cylindrical
waves with x̂ and ŷ components separated as shown in (a) by 3λ. In (b) the electric energy density
in the two waves’ superposition E is plotted with a saturated colourmap while in (c) the field
lines are plotted. In (d) the phase angle of E · E, whose dislocation lines correspond to circular
polarisation, revealing non-diverging lines of circular polarisation separated by λ/π.
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a.u.—the maximum energy density a short distance from y = 0—since the cylindrical

waves become singular at ρ1,2 = 0). While individually these fields with cylindrical

wavefronts have no longitudinal components in the direction of ρ1,2, their superposi-

tion E = E1 +E2 falls onto a screen whose face is perpendicular to ŷ and, separated

a few wavelengths from the slits along the y axis, in the centre of the screen the

x̂ component of E is dominant and the ŷ component, longitudinal to the screen, is

insignificant by comparison—except in the interference minima. One in fact sees the

dominance of longitudinal field components in the field line plot of the interference

pattern [Fig. 4.4(c)]—since, according to Gauss’ law in free space ∇ · E = 0, field

lines must be closed in each interference minima they run approximately parallel to

ρ̂ and to ŷ near to x = 0 (it is, of course, the way that electric field lines must

comply with ∇ ·E = 0 in transverse field minima that results in Eq. (4.4) and all of

our reported non-diffracting features). As long as the amplitudes of the two waves

are similar (i.e., ρ1 ≈ ρ2) then the electric field x̂ component is approximately zero

in a minimum and non-diffracting structures arise in the relationship between the

longitudinal and transverse fields (the ratio of the magnitude of the transverse and

longitudinal components equals 1 when the field lines in Fig. 4.4(c) are about 45◦

relative to the axis of a dark fringe). Non-diverging C lines (C planes in 3D) with a

constant λ/π separation are observed sandwiching the two most central interference

minima as shown by the dislocation lines in the plot of argE · E in Fig. 4.4(d). These

C lines which rely on there being both x̂ and ŷ field components present in the wave

superposition would not be present were the slits vertically polarised (i.e., Ap = 0

and the ẑ components in Eq. (4.19) and Eq. (4.20) are non-zero); this would result

in scalar interference but with non-diverging C lines present in the magnetic field.
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4.3 Time-fixed and instantaneous zeros: the ques-

tion of stability

Insofar as we have described far fields using the complex field phasors E and H,

time-fixed paraxial dark spots are unstable entities. A zero in the two-component

transverse field phasor Et = 0 actually imposes four scalar conditions, ℜ{Eθ} = 0

and ℑ{Eθ} = 0 and ℜ{Eϕ} = 0 and ℑ{Eϕ} = 0; one condition too many to coalesce

naturally within the span of three spatial dimensions. We cannot expect a chance

encounter with a fixed-position paraxial dark spot in arbitrary far field radiation but

it is possible to create one synthetically, for example in a vector vortex beam or by

designing a source’s radiation diagram, a topic which we discuss in-depth in chapter

6 (dipolar and multipolar sources can also ‘radiate’ paraxial dark spots but these are

no less unstable).

If perturbed by noise, a paraxial zero is destroyed which presents a challenge for

practical application of the zero’s non-diffracting polarisation properties. However,

it is possible to reconstruct destroyed dark spots by allowing a parameter of the far

field source to vary and pose as an artificial dimension, a technique proposed by the

authors of [117] who demonstrated that a point-like zero could be recovered after

perturbation by re-tuning the source wavelength. Paraxial zeros exist stably in a

four-dimensional parameter space such as (x, y, z, λ). When destroyed in real space

at a given wavelength by noise, the dark spot is displaced in (x, y, z, λ) space and

may still be accessed at a new (x, y, z, λ) co-ordinate by re-tuning λ (of course, λ is

not the only possible changeable parameter!).

Although far field zeros in the transverse field phasor (Et = 0, zeros whose

positions do not change over time) are not topologically protected singularities
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like paraxial C points or L lines, instantaneous paraxial zeros are. An instanta-

neous paraxial zero occurs when the time-dependent, transverse electric field vector

E t = ℜ{Et exp(−iωt)} crosses zero, something which is only possible at positions

where the electric field is linearly polarised in the transverse plane. Existing only

momentarily in one position, instantaneous zeros travel smoothly and periodically

along continuous trajectories defined by paraxial L lines (lines of linear polarisation),

racing rapidly around the source’s far field radiation diagram. And at any given in-

stant in time, the conditions E t = 0 are guaranteed to be met in at least one location

somewhere in the far field region of any source. It is straightforward to explain why

using fundamental topological arguments, namely the hairy ball theorem, which in

this context states that E t, being a two-component real vector, cannot lie tangent

to (or be ‘combed’ over) each far field spherical wavefront without incurring at least

one singularity where its direction is undefined—a zero.

We must not forget the presence of the small but non-zero time-varying radial

field component Er which still obeys the 1/r2 dependence of Eq. (4.4). While there is

not enough information contained in a momentary snapshot of the electric field vector

to understand its polarisation structure, we can still compare the square lengths of the

transverse and radial field components, |E t|2 and E2
r , near to an instantaneous dark

spot and obtain a non-diffracting ratio, simply by first introducing time dependence

to our first-order approximation Eq. (4.7) and taking the real part at an instant

t = t0,

E(v, t0) ≈ J (t0)v + Er0(t0)r̂, (4.21)

where,

J (t0) =
1

r
J f (t0) = ℜ

{
Je−iωt0

}
,

Er0(t0) =
1

r2
fr0(t0) = ℜ{Er0e

−iωt0},
(4.22)
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and once again v = (θ′, ϕ′). Equating the approximated transverse and radial fields

at the instant t0 via a constant δ, we may define a time-varying square-length-ratio

tube (the time-dependent version of Eq. (4.6) using the first-order approximation):

r2
vTJ T

f (t0)J f (t0)v

fr0(t0)
= δ. (4.23)

The fact that Eq. (4.23) is written using time-varying quantities does not change

the fundamental relation between the transverse and radial field components—that

they have 1/r and 1/r2 respective radial dependencies—and so the tube Eq. (4.23) is

likewise non-diffracting, but no longer does it have a time-fixed position in angular

space. As time evolves and the instantaneous dark spot travels along its L line path

it is followed by the non-diffracting tube Eq. (4.23).

It is quite true that a changing position renders the time-dependent non-

diffracting tube unlikely to be of much practical value. But what we may conclude

from this discussion is that non-diffracting structures can be identified in some form

in all far field radiation and are, in this sense, a fundamental electromagnetic phe-

nomenon, a mandatory consequence of Maxwell’s equations that emerge at any given

instant even in unpolarised light.

4.4 Chapter summary

Paraxial electric dark spots are unstable points on the transverse plane of far field

radiation where the transverse components of the electric field phasor are zero,

Et(rz) = 0, and that defy the expected behaviour of the paraxial regime. As the

transverse field approaches zero in the neighbourhood of rz its amplitude becomes

comparable to the radial field components, ordinarily neglected but ever present in
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far fields, establishing a region of non-paraxial, 3D polarisation (though intensity is

very low). Because of their inherent instability time-fixed dark spots in the electric

field phasor do not occur naturally and must be created synthetically or identified in

particularly symmetric fields, such as from a radiating dipole. Here in the first of four

chapters of original results we showed that by comparing transverse and radial field

intensities that have different radial dependencies any paraxial dark spot develops

non-diverging structures such as an even number of parallel C lines and a tube of

constant ratio between |Et|2 and |Er|2.

Conceptually a non-diffracting property of a field, be it an intensity-ratio tube

or non-diverging C lines, could be invaluable in metrology or any discipline which in-

volves alignment of directive beams. But to measure in the far field what is unstable

to noise and can only occur in regions of low intensity due to the dominance of lon-

gitudinal field components will inevitably be challenging, requiring high-sensitivity

detectors. In the RF-microwave regime, by modulating the elements of a phased array

antenna a paraxial dark spot could be created and accompanied by non-diffracting

features of a substantial size (∼ λ/π), that could be measured in principle using high

gain antennas (which can be rotated in 3D to measure field components). Nonethe-

less, from a purely theoretical perspective we have shown that non-diffracting fea-

tures, be they time-varying or time-fixed, are remarkably general occurrences in

paraxial light because of the fundamental difference in radial dependence of the am-

plitude of the transverse and longitudinal field components.
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Non-paraxial dark spots

Before settling into the spherical uniformity of the far field region a wavefront, emit-

ted from a localised source, navigates the much more turbulent near field region

where the electromagnetic field bends many of the rules and breaks many of the

symmetries held under the paraxial limit. Complicated swirling electric and mag-

netic momentum currents and totally inhomogeneous, 3D polarisation occur in the

non-paraxial near field region as energy density is divided unevenly between the elec-

tric and magnetic fields and their non-zero parallel and antiparallel components [37].

The fact that E and H polarisation ellipses may be different in shape and ampli-

tude and not all constrained to the same plane means that non-paraxial electric dark

spots E = 0, where all three electric field components are zero, are usually point-like

singularities which are synthesised in a non-zero magnetic field. A point-like char-

acter makes the non-paraxial dark spot an interesting prospect for use in dark spot

microscopy [29, 30, 118, 119] and optical trapping and imbue the electromagnetic

field with rich topological properties which we will study in depth in this chapter,

reporting the findings of our publication 3D zeros in electromagnetic fields [20].

82
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There is also a pure theoretical interest in point-like field zeros, in that besides

what we present here, there is no framework to classify the types of zero that can

occur in the same way as topological indices exist for phase and polarisation singular-

ities. So many electromagnetic quantities are defined using the electric field phasor

that a three-component zero is not one but a whole intricate assortment of vector

singularities. Most are point-like singularities as described in section 3.6 but E = 0

also meets both the mathematical criteria of circular polarisation (E · E = 0) and

linear polarisation ℑ{E∗×E} = 0, thereby acting as a meeting point for polarisation

singularities which, as we will learn, intersect in a discrete number of combinations.

Together these vector singularities give rise to very many possible incarnations of a

point-like dark spot, in contrast to simpler singularities (for example first-order phase

singularities, which have a topological charge magnitude of 1, are differentiated by

being either left or right handed; paraxial |1/2|-index C points create three possible

polarisation ellipse patterns).

More specifically we treat first-order electric field dark spots in this chapter,

as in the previous chapter of this thesis (though this time they are point-like, rather

than line structures in the far field). This is a dark spot whose first-order spatial

derivatives are non-zero meaning no more conditions are enforced beyond those, to-

talling six, suppressing the three complex electric field components. Though they are

no more difficult to create theoretically a higher-order zero does require more degrees

of freedom which may not be available in an experimental scenario, meanwhile the

dark spot need only be first-order to act as a 3D optical trap or a microscopy tool.

Unlike paraxial dark spots, E in a non-paraxial field can be zero independently (‘in-

dependently’ insofar as Maxwell’s equations allow) from the magnetic field, which

needs to be suppressed separately to achieve a perfectly dual electromagnetic zero

(E = H = 0), which would total twelve real scalar conditions.
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In the following section where we establish how polarisation singularities inter-

act with an electric field dark spot, our conclusions apply identically to a magnetic

field zero and magnetic polarisation. It is true that an electric field dark spot may

be transformed into a magnetic dark spot via a duality operation, which preserves

dual-symmetric vector singularities (such as the Poynting vector) and switches the

sign of singularities which break dual symmetry (such as the imaginary Poynting

vector). Once more our primary tool for probing first-order non-paraxial dark spots

is the field Jacobian matrix, now in three dimensions, though because we will be cal-

culating Jacobian matrices for multiple vector fields we shall make some distinctions

in notation. The electric and magnetic field Jacobian matrices are denoted JE and

JH respectively, while to avoid untidy subscripts the Jacobian matrices of all other

electromagnetic vectors will be referred to as first-order dyadics using D(∗), e.g., for

a vector F,

D(F) =


∂Fx

∂x
∂Fx

∂y
∂Fx

∂z

∂Fy

∂x

∂Fy

∂y

∂Fy

∂z

∂Fz

∂x
∂Fz

∂y
∂Fz

∂z

 . (5.1)

Given that point-like dark spots are not in 3D real space topologically protected we

cannot expect to encounter them by chance; instead we must produce electric field

zeros artificially. At the same time our electric field zeros, while created on pur-

pose, should be as generic and unexceptional as possible, something which we can

achieve with by randomising other aspects of the field. All figures in this chapter

that depict polarisation and point-like vector singularities were produced in analytic

simulations of the interference of ten monochromatic plane waves, which while inten-

tionally polarised to enforce E(rz) = 0 at a position rz, have randomly-assigned, 3D

wavevectors (a similar approach to that which is used in other work identifying phase

and polarisation singularities in wave fields [18]). There is no particular reason for
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using ten plane waves—fewer or more than ten may be used to create non-paraxial

dark spots—but the spatial complexity of the resulting field is increased the greater

the number of interfering plane waves.

5.1 A dark spot’s polarisation singularities

Suppose that a point-like, non-paraxial electric field dark spot exists at a position

rz such that E(rz) = 0, the electric field magnitude increasing in all directions away

from rz. The polarisation of the electric field is undefined at rz but is determined

nearby in a 3D first-order approximation of E(r) about r = rz,

E ≈ JEv, (5.2)

where v = r − rz is a 3 × 1 column vector and JE is a 3 × 3 matrix. By equating

E·E = 0 and (1/2)ℑ{E∗×E} = p×q = 0 under the approximation Eq. (5.2) we can

locate any strands of circular and linear polarisation permeating the neighbourhood

of rz. Although Eq. (5.2) is accurate only very near to the dark spot where first-order

field derivatives dominate the Taylor expansion of E, it sufficiently describes core

polarisation structure imprinted by the dark spot. Since polarisation singularities

are stable, thread-like structures, they cannot abruptly terminate and any which we

identify passing through the dark spot using Eq. (5.2) will generally be preserved

even at larger displacements from rz where higher-order field derivatives take hold.
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5.1.1 C lines

Approximating E ·E, we obtain a 3D version of Eq. (4.17) that can be split into real

and imaginary parts in a vector-matrix-vector representation,

E · E ≈ vTMv + ivTNv. (5.3)

in which M = ℜ{JT
EJE} and N = ℑ{JT

EJE}. Both real and imaginary parts of

Eq. (5.3) define quadric surfaces in 3D. The solution space of vTMv + vTNv = 0

is 1D, the line(s) of intersection of the two quadrics which are each usually dou-

ble cones, vertices centred on rz because both vTMv = 0 and vTNv = 0 in the

electric dark spot. Figure 5.1 shows that two double cones, one pair representing

ℜ{E · E} = 0, the other ℑ{E · E} = 0, emerging from the same point rz have zero,

two or four intersection lines that can be visualised on the unit sphere as points of

intersection of ellipses (a cone has an elliptical cross section—note that in a first-

order approximation, the solid angle enclosed by a cone does not change with radial

distance from rz). Two closed curves can intersect stably in an even number of lo-

cations and in particular two ellipses can intersect zero, two or four times proving,

in terms of polarisation, that a point-like electric field dark spot must be crossed by

zero, two or four C lines. Degenerate cases in the first-order approximation, where

on the unit sphere in Fig 5.1 the ellipses may touch at a single point (giving an odd

number of C lines), are not preserved in the exact scalar field E · E, collapsing into

an even number of intersections as higher-order derivatives take hold.

In truth the two quadrics are double cones only if M and N are not definite

matrices meaning, for instance, that there are volumes of space where vTMv is

positive and negative, separated by the vTMv = 0 quadric. Otherwise, the real

and imaginary parts of Eq. (5.3) can either solely increase or solely decrease in all
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Figure 5.1: Quadric surfaces defined by the real (red) and imaginary (blue) parts of E ·E = 0
in a first-order approximation of E in the region of an electric field dark spot. The surfaces are
generically double cones whose vertices touch at rz, the singularity’s location, and either do not
intersect, or intersect along two or four lines. On the unit sphere the cross section of each cone
is elliptical. Two ellipses, if they intersect, cross at two or four points, which helps to visualise
the crossing of the red and blue surfaces in 3D since their angular shape is invariant with radial
distance from rz. Adapted from [20].

directions from zero at rz and if, say, M is a positive-definite matrix, then vTMv =

δ > 0 draws ellipsoidal surfaces that enclose rz. When one of M or N is positive or

negative definite, then, zero C lines pass through the dark spot (E · E = 0 is only

satisfied at rz as a byproduct of E(rz) = 0. This does not mean that rz is strictly a

C point because polarisation is completely undefined when the electric field is zero).
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5.1.2 L lines

Linear electric polarisation is identified when the electric contribution to spin angular

momentum density is zero or, identically, the normal vector to the polarisation ellipse

n = p× q is zero, where p = ℜ{E} and q = ℑ{E}. Both p and q can be calculated

in the first-order approximation as,

p ≈ ℜ{JE}v,

q ≈ ℑ{JE}v,
(5.4)

and their cross product is zero when the two vectors are parallel, that is ℜ{JE}v =

aℑ{JE}v, where a is a scalar. This leads to the eigenproblem,

ℑ{JE}−1ℜ{JE}v = av, (5.5)

whose solutions in v are parallel to the three eigenvectors of the 3 × 3 matrix

ℑ{JE}−1ℜ{JE} which are either all three real, or a mixture of one real eigenvec-

tor and a conjugate pair of complex eigenvectors. Of course v cannot point in a

complex direction, it being the position vector in our first-order approximation so

we can conclude simply that either one or three L lines always cross in real-space

through the dark spot at rz (v = 0).

5.1.3 Combinations

As C lines and L lines are forced to combine by the constraints E(rz) = 0 any of

six possible permutations of a point-like dark spot can emerge. Zero, two or four C

lines can intersect either one or three L lines as shown in Fig. 5.2, where dark spots

were deliberately synthesised in the non-paraxial interference of ten plane waves
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1 L line

0 C lines 2 C lines 4 C lines

3 L lines

Figure 5.2: Each of the six possible first-order dark spots (red circle, position rz) that can be
realised in terms of the combination of polarisation singularities (C lines, blue and L lines, green)
that intersect. Either zero, two or four C lines and one or three L lines always cross at the point-
like singularity’s position. Each dark spot is created in the interference of ten plane waves with a
unique set of random wavevectors, that are then polarised specifically to realise E(rz) = 0. The
polarisation singularities of the exact electric field function (including derivatives to all orders) are
plotted in this figure. Adapted from [20].

with random wavevectors, a different set of ten for each dark spot. Though we

used a first-order approximation of the electric field near the dark spot to argue this

result, the number of crossing polarisation singularities persists in the exact electric

field function. Polarisation singularities cannot terminate unexpectedly though it is

possible that any two C line tips or any two L line tips of the examples of Fig. 5.2

join together when followed further away from rz.

5.2 A dark spot’s point-like vector singularities

Flows of power and linear and angular momentum in monochromatic electromag-

netic fields are, in their dual definitions, calculated using both the E and H phasors.
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Therefore when E(rz) = 0 in an electric field dark spot some of these quantities—

certainly the electric field’s contribution—also vanish to form point-like vector field

singularities centred on the dark spot’s location, rz. Each vector singularity is charac-

terisable by the field in question’s Jacobian matrix [dyadic D(∗)]. The singularities,

while individually stable, are brought to coalesce unstably at the same point rz by

the conditions E(rz) = 0. In this section we will index the vector singularities in-

duced in the Poynting vector, the imaginary Poynting vector, the electric orbital and

spin currents and discuss the dark spot’s SAM density, principally by calculating the

relevant vector’s dyadic matrix—we will only consider first-order derivatives of these

vectors. This is not an unreasonable restriction because as along as the first-order

derivatives of a vector V are non-zero at rz (where V(rz) = 0), then the resultant

vector singularity at rz cannot have a topological degree greater than 1 in magnitude.

Like the azimuthal phase circulation caused by a scalar vortex, the topological im-

print of this vector singularity on the exact function of the surrounding vector field

V is always preserved on any closed surface of any size containing rz and no other

singularities of V. Derivation of dyadics can be found in this chapter’s appendix.

5.2.1 Poynting vector

We might recall from the first chapter that the Poynting vector, measuring the flux

of active power in light, is given by,

P =
1

2
ℜ{E∗ ×H}. (5.6)

The Poynting vector definition contains inter-vector multiplication of E and H so

that only one phasor need be zero for the Poynting vector to be zero too. That said,

it is also possible for the Poynting vector to vanish in regions of non-zero intensity
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Figure 5.3: Example divergence-free saddle set up in the Poynting vector in 3D space by an electric
field singularity at rz (black circle). For visualisation the flux of the Poynting vector is shown on
three cut planes; on some planes there may appear to be a net flux (e.g., on the xz and yz planes)
but this is compensated for by out-of-plane flow of the vector. Adapted from [20].

(for example a standing wave where there is no transfer of active power, but still

an oscillating electromagnetic field where the instantaneous E and H vectors are

always parallel or antiparallel). General Poynting vector singularities were studied

and indexed in [120] and the authors’ findings of ‘electric-field-induced’ singularities

apply to the case of a point-like electric field dark spot. In free space where there

are no sources or sinks of electromagnetic energy the Poynting vector must have zero

divergence according to Eq. (2.7), meaning its Jacobian matrix [first-order dyadic

D(P)] [20],

D(P) =
c2

2ω
ϵ0ℑ{(JT

E − JE)J∗
E}, (5.7)

must have a mixture of positive and negative (real or complex) eigenvalues∗; real

parts signed (+,+,−) or (+,−,−) in any order, such that two types of singularity

(both saddle points) can form in the Poynting vector when the electric field is zero.

Equation (5.7) is defined only using the electric field Jacobian JE, possible because

the H phasor in Eq. (5.6) can be replaced with the curl of E using Maxwell’s equa-

∗The divergence of a vector F is the trace of its dyadic, trD(F), equal to the sum of the dyadic’s
eigenvalues. It is only possible for the eigenvalues to sum to zero and ensure ∇ · F = 0 if they do
not all have the same sign.
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tions (a magnetic version defined using JH exists and is equally true). An example of

a Poynting vector singularity formed in a dark spot is given in Fig. 5.3, where three

orthogonal cut planes are taken with the on-plane projection of Poynting vector

streamlines. The 3D flux of the Poynting vector is divergence-less and any apparent

net flow of field lines on one cut plane is compensated on other cut planes by op-

posite flow (e.g., see the xz and yz planes of Fig. 5.3). Point-like Poynting vector

singularities have been identified recently in non-paraxial near fields [121–123]. Two-

dimensional transverse Poynting vector singularities, perhaps resembling one of the

cut planes of Fig. 5.3, exist in beams and have been studied in depth [64, 124–126].

5.2.2 Imaginary Poynting vector

Testament to how often the imaginary Poynting vector (IPV) is ignored is the fact

that the real part of the complex time-averaged Poynting vector (1/2) E∗ × H is

widely called the ‘Poynting vector’ (just as we did in the last subsection). For the

IPV, defined as

Pi =
1

2
ℑ{E∗ ×H}, (5.8)

does not describe active power flow, rather reactive power flow, the flux of reactive

energy density ∝ ϵ0|E|2−µ0|H|2. Much recent interest in the IPV is motivated by the

optical force term to which it couples [42, 43] that was only recently experimentally

measured [41], providing an additional degree of freedom beyond radiation pressure

and gradient forces that can be independently structured [40]. Unlike the familiar

Poynting vector, the IPV is dual-asymmetric meaning the sign of the vector changes

after swapping E → H and H → −E. This asymmetry could be harnessed to control
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Figure 5.4: Example sink singularity set up in the imaginary Poynting vector in 3D space by an
electric field dark spot at rz (black circle). The flux of the imaginary Poynting vector is projected
onto three cut planes. Adapted from [20].

directional scattering from Janus particles† [38, 39].

Discrepancy between the energy density contributions from E and from H sets

up sources and sinks of the IPV because of the relation [37]

∇ ·Pi =
ω

2

(
ϵ0|E|2 − µ0|H|2

)
, (5.9)

from which it follows that if E(rz) = 0 and H(rz) ̸= 0 then the divergence Eq. (5.9)

is negative at rz. Electric field zeros are able to construct sinks of the IPV while zeros

of the magnetic field phasor can construct sources of the IPV, a property intrinsic

to the imaginary Poynting vector’s dyadic,

D(Pi) = − c2

4ω
ϵ0ℜ{(JT

E − JE)J∗
E} +

c2

4ω
µ0ℜ{(JT

H − JH)J∗
H}, (5.10)

written in dual representation. Note that in the case of E(rz) = 0 Maxwell’s equa-

tions force JH to be a symmetric matrix‡ so that the second term of Eq. (5.10)

†In a Janus particle, a plane wave excites a Janus dipole which is characterised by orthogonal
electric and magnetic dipole moments that are out of phase (e.g., pd = 1x̂ and md = icŷ). This
dipole generates a flow of reactive power, the IPV, in a preferred direction.

‡The off-diagonal elements of JT
H−JH are the components of ∇×H. From Maxwell’s equations,

if E = 0 then ∇×H = 0 and therefore JT
H − JH = 0. The same is true of JE when H = 0.
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vanishes. This way the trace of D(Pi), the IPV’s divergence, is negative and equal

to the sum of the matrix’s eigenvalues which cannot, therefore, be all three positive.

The type of IPV singularity set up by the electric field dark spot can either be a sink,

or a negative divergence saddle. An example sink singularity is given in Fig. 5.4.

5.2.3 Canonical momentum

The orbital component of the Poynting vector, known as orbital current, is propor-

tional to light’s canonical momentum by a factor of c2, transferable to matter via

radiation pressure. Canonical momentum can be thought of as a local wavevector

to be defined in non-paraxial light where there is no homogeneous propagation di-

rection; it is the canonical momentum that is twisted around the OAM-carrying

optical vortex, informing the way in which matter is able to orbit the vortex centre.

Recalling from chapter 2 canonical momentum is defined fundamentally as

p = pe + pm =
1

4ω
ℑ{ϵ0E∗ · (∇)E + µ0H

∗ · (∇)H}, (5.11)

accounting for contributions from both the electric and magnetic fields. Though it

is true that an electric field dark spot alone generally does not eliminate canonical

momentum (since pm may be non-zero at a point where E = 0) it is reasonable to

consider electric and magnetic momenta separately because matter does not respond

to E and H fields equally, particles usually having a larger electric polarisability.

Singularities of p, pe and pm are all stable and point-like in ordinary monochro-

matic interference [57], and as E(rz) = 0 necessarily forces pe = 0 an electric canon-

ical momentum singularity is anchored to a dark spot at rz. But compounded by

the suppression of the electric field this dark-spot-coupled pe singularity acquires

non-generic, remarkable properties. The dyadic of pe when evaluated at the dark
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Figure 5.5: The localised vortex of electric canonical momentum established by a point-like electric
field dark spot. Streamlines of pe are plotted on two planes, one coinciding with the dark spot (blue
circle), showing the vortex-like circulation of momentum which tends to dissolve with distance from
the dark spot. This dissolution happens because the canonical momentum singularity is in fact
point-like, but always rather elongated as shown by the red volume bounding the smallest 5000
samples of |pe| in the analytic simulation of the dark spot. Adapted from [20].

spot location is

D(pe) =
1

4ω
ϵ0ℑ{JT

EJ
∗
E}, (5.12)

which unlike dyadics given earlier in this chapter, is an anti-symmetric matrix, mean-

ing D(pe) = −D(pe)
T . Anti-symmetry forces the eigenvalues of D(pe) to be purely

imaginary while the matrix’s trace is zero because pe, like the Poynting vector, is

divergence-less in free space. The consequence is that the singularity of pe at an

electric field dark spot is classed a circulation; a singularity that resembles a vortex

line in the region near to rz where first-order derivatives of pe dominate. While it

is still strictly point-like, the conditions E(rz) = 0 elongates the pe singularity and
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around it, streamlines of pe circulate in a vortex structure as shown in the example

given in Fig. 5.5. In it, streamlines of pe are projected onto two planes, one coincid-

ing with an electric field zero (blue circle), highlighting the local momentum vortex

structure about rz (losing definition with distance from rz). A red volume indicates

the elongated shape of the singularity, defined over the smallest 5000 samples of |pe|

in the analytic simulation (In Fig. 5.5 the exact function pe is plotted and is only

truly zero at a single point rz, the blue circle. If Taylor-expanded to first order

meaning pe ≈ D(pe)(r − rz), then the approximate function of pe, valid for small

displacements r−rz, is exactly zero along a line running parallel to the red volume in

Fig. 5.5. In some sense, then, the pe singularity is halfway between being a point-like

and a line structure). The real part of the local electric wavevector,

ℜ{ke} = ℜ{−ie∗ · (∇)e}=
4ω

ϵ0E∗ · E
pe, (5.13)

where e = E/
√
E∗ · E, points in the direction of electric canonical momentum, defin-

ing the local phase gradient of the electric field. While canonical momentum ap-

proaches zero near rz the electric local wavevector diverges, becoming superoscilla-

tory [57, 127]. The axis of the canonical momentum vortex can be found from the

one real eigenvector of D(pe).

5.2.4 Spin momentum

Spin momentum ps is the spin counterpart to canonical momentum satisfying c2p+

c2ps = P, P being the Poynting vector. Like canonical momentum, spin momentum

contains electric and magnetic contributions—each is half the curl of the field’s spin
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angular momentum density,

ps = ps
e + ps

m =
1

2
∇× 1

4ω
ℑ{ϵ0E∗ × E + µ0H

∗ ×H}. (5.14)

Despite the different vector operations executed in Eq. (5.11) and Eq. (5.14) electric

spin momentum’s dyadic, evaluated in an electric field zero, takes a similar form to

Eq. (5.12),

D(ps
e) = − 1

4ω
ϵ0ℑ{JEJ

∗
E}, (5.15)

though without sharing the dyadic of canonical momentum’s anti-symmetric prop-

erty. Much like the Poynting vector the point-like singularity of ps located at an elec-

tric field dark spot is a divergence-free saddle point with signed eigenvalues (+,−,−)

or (+,+,−).

5.2.5 Spin angular momentum

In chapter 2 we provided an expression for spin angular momentum (SAM) density,

S = Se + Sm =
1

4ω
ℑ{ϵ0E∗ × E + µ0H

∗ ×H}, (5.16)

whose curl is proportional to the spin momentum Eq. (5.14). Above is the dual-

symmetric definition of SAM density summing vectors which are normal to the elec-

tric and magnetic polarisation ellipses formed over space. Since we are concerned

with only the electric field being zero at a location rz a singularity in the total SAM

vector does not develop, rather only the electric spin is zero. While the behaviour of

electric spin in the neighbourhood of a dark spot we have largely already accounted

for by showing that one or three L lines (lines of zero electric spin) intersect, the
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specific texture of the Se vector is too complicated to be captured by the dyadic of

Eq. (5.16) at rz, which is zero because JH is forced to be symmetric by Maxwell’s

equations:

D(Se) =
1

4ω2
ϵ0ℜ{(JT

H − JH)J∗
E} = 0. (5.17)

A higher-order Taylor expansion of Se, including derivatives beyond the those (first-

order) accounted for by its dyadic Eq. (5.17), would be needed to properly describe

the flux of Se at a dark spot.

5.3 Remarks on duality

Our treatment of non-paraxial dark spots in this chapter has been biased towards

the electric field and its contributions to light’s dynamic quantities, neglecting to

some extent the so-called ‘electromagnetic democracy’ [33, 128] that maintains that

in free space the E and H fields belong with equal importance in the definitions

of light’s total energy, momentum and spin angular momentum densities (ensuring

that these definitions are dual-symmetric). While in light-matter interactions it is

quite reasonable to favour electric quantities (because particles normally have larger

electric polarisability), many of the vector singularities coupled to E = 0 change or

disappear entirely after a duality transform.

A continuous duality transform replaces the E and H phasors with transformed

versions E′ and H′ that mix together the original E and H vectors [34, 36],

E → E′ = E cos θ + ηH sin θ,

H → H′ = H cos θ − 1

η
E sin θ,

(5.18)
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where η =
√
µ0/ϵ0 and θ is the transformation angle. The transform’s significance

is that Maxwell’s equations are unchanged§ by substituting E → E′ and H → H′.

Equation (5.18) is a rotation through an angle θ in C2 space of an abstract vector-

valued vector, the electromagnetic bispinor [33, 52, 53, 129] for which E and H are

vector-valued components, not strictly a rotation in real space of the E and H vectors

themselves. Supposing that there is dark spot in E every quarter turn of the bispinor

swaps the dark spot between the transformed E′ and H′ fields as cos θ and sin θ

periodically pass zero. Total energy density, being shared unevenly between E and H

because only E is zero, stays constant throughout the transformation but the intrinsic

asymmetry in its distribution between the fields is exchanged between reactive energy

density (maximal when θ = 0) and a quantity sometimes called magnetoelectric

energy density [53], proportional to reactive helicity density¶, ∝ ℜ{E′∗ ·H′} [130] in

the transformed field:

1

4

(
ϵ0|E′|2 − µ0|H′|2

)
=

1

4

(
ϵ0|E|2 − µ0|H|2

)
cos 2θ +

1

2c
ℜ{E∗ ·H} sin 2θ,

1

2c
ℜ{E′∗ ·H′} =

1

2c
ℜ{E∗ ·H} cos 2θ − 1

4

(
ϵ0|E|2 − µ0|H|2

)
sin 2θ.

(5.19)

Meanwhile those of the vectors discussed in the last section that violate dual sym-

metry are, along with their singularities, altered by the C2-space rotation Eq. (5.18).

These vectors include the imaginary Poynting vector, the flux of reactive energy

§This is the continuous symmetry that in vacuum results in helicity conservation. One way to
retain this symmetry in the presence of electric charge density ρe ̸= 0 is if magnetic charge density
ρm is introduced [32].

¶Non-zero reactive energy and reactive helicity densities are exclusive to non-paraxial fields.
Reactive helicity density quantifies a type of chirality of the local geometry of the E and H vectors
that is present if the angle between them is not ninety degrees, averaged over one oscillation. Even
without considering any other vectors (e.g., k), this sort of geometry cannot be superimposed with
its mirror image (meaning after parity inversion E → −E,H → H).
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density, transformed using Eq. (5.18) according to,

P′
i = Pi cos 2θ − ωc(Se − Sm) sin 2θ, (5.20)

the electric canonical momentum, transformed according to,

p′
e = pe cos2 θ + pm sin2 θ − 1

4ωc
∇×Pi sin 2θ, (5.21)

the electric spin momentum,

ps′
e = ps

e cos2 θ + ps
m sin2 θ +

1

4ωc
∇×Pi sin 2θ, (5.22)

and the electric SAM density,

S′
e = Se cos2 θ + Sm sin2 θ +

1

2ωc
Pi sin 2θ. (5.23)

Given an electric dark spot E(rz) = 0 these vectors, which are zero for θ = 0,

obtain non-zero flux from the magnetic field after a duality transformation so that

the vector singularity no longer exists at rz. Some quantities emerging in Eqs. (5.19)-

(5.23) such as reactive spin [130] (the difference between electric and magnetic spins

Se − Sm) are scarcely (if at all) recognised in the literature though our very recent

work (in preparation) proposes a framework unifying them and other better-known

quadratic quantities in light [37]. This work has greatly helped to develop our original

comments on duality and dark spots in [20]. Further study could identify how vector

singularities behave in the volume of space around rz after a duality transform,

particularly how the intersection of electric polarisation singularities dissociates and

reforms in H (and again in E) during transformation.
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Singularities which are invariant to the transformation Eq. (5.18) can be achieved

in a perfectly dual point-like zero where E = H = 0 in non-paraxial light (note that

in paraxial fields there is a more symmetric relationship between E and H in that

if one field vanishes, the other must also vanish to obey Maxwell’s equations. This

is not the case in the non-paraxial regime where fields are freely polarisable in 3D,

for instance in the centre of an azimuthal beam or in the offset E and H field nodes

of a linearly polarised standing wave). For then the total canonical momentum den-

sity, total spin momentum density and total spin angular momentum densities, all

of which are dual-symmetric, are suppressed too. A dual dark spot is, however, an

even more unstable entity that demands twelve real scalar conditions, six per E = 0

and H = 0.

5.4 Chapter summary

Non-paraxial point-like dark spots and their coupled polarisation and vector singular-

ities have been treated in this chapter and the characterisation of these singularities

is summarised in Tab. 5.1. A key result of this chapter is that a first-order electric

field dark spot is an intersection point for one of six possible combinations of lines

of circular and linear polarisation. Based on these polarisation singularity combina-

tions, and the possible permutations of eigenvalue signs of the dyadics of the Poynting

vector P (2), the imaginary Poynting vector Pi (3), the electric spin current ps
e (2),

and the electric canonical momentum pe (1) that can occur independently, we can

infer that there are 72 possible distinct incarnations of an electric field dark spot (in

our framework).

Being a point-like, 3D-confined singularity the dark spot has skyrmionic fea-

tures both in terms of field vectors like the instantaneous electric field or the Poynting
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dyadic at rz associated singularity singularity type dyadic characteristic

JE E saddle electric field Jacobian

1. ℑ{JE}−1Re{JE} L lines n/a one or three real eigenvectors are directions of L lines

2. ℜ{JT
EJE} C lines n/a dyadics 2 and 3 define quadric surfaces

M and N , respectively. Intersection
lines of M and N are C lines3. ℑ{JT

EJE} C lines n/a

4. ℑ{JT
EJ

∗
E} pe circulation real eigenvector gives the axis of pe vortex

5. −ℑ{JEJ
∗
E} ps

e saddle
eigenvalues signs give exact

topology of minimum6. ℑ{(JT
E − JE)J∗

E} P saddle

7. −ℜ{(JT
E − JE)J∗

E} Pi saddle or sink

Table 5.1: Classification of a point-like electric field dark spot based on its coupled polarisation and
vector singularities, summarised in seven matrices (numbered). The first three matrices relate to
the number of C lines and L lines that intersect at rz. Matrices 4-7 are proportional to the dyadics
(Jacobian matrices) of electromagnetic vectors that were discussed in this chapter, evaluated at rz.
The table is adapted from [20].

vector and in also in terms of polarisation. Point-like vector singularities cause, on a

closed surface where the vector is well-defined containing the singularity, the vector

in question to point in every 3D direction at least once in the same way as an optical

skyrmion in, say, the spin vector S, realises every 3D orientation of S on a 2D sur-

face which can be wrapped over a sphere surface in 3D parameter space‖ [106, 131].

Meanwhile as the point-like dark spot can be crossed simultaneously by C lines and

L lines, on which are the extremes of the polarisation ellipse, a smooth transition

from circular to linear polarisation in the volume of the dark spot must be provided

by nested surfaces of constant-ellipticity polarisation. However, three-dimensional

polarisation ellipses have four degrees of freedom as angles—two angles specifying

the 3D direction of the ellipse normal n, and two further angles for the tilt and

ellipticity of the ellipse within the plane normal to n [92]—so it is not true that all

possible polarisation ellipse shapes in all orientations manifest in the span of three

spatial dimensions about the dark spot; this is only possible in a higher-dimensional

‖Spin skyrmions can be generated in non paraxial fields which admit transverse components to
the SAM density vector S. By specially structuring evanescent waves, for example, S can be made
to point in every 3D direction, organising certain types of skyrmion [131].
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parameter space. In a six-dimensional parameter space (in which E(r6Dz ) = 0 is

stable) the six-vector (p,q)T , a concatenation of the real p and imaginary q parts

of the electric field phasor E = p + iq, winds over a hypersphere enclosing the

singularity indicating a realisation of every 3D polarisation ellipse and every phase

in 6D space. Electromagnetic fields in ‘higher-dimensional parameter spaces’ may

sound hypothetical but have in fact been probed experimentally, for instance in [117]

where the topological properties and response to perturbation of a point-like singu-

larity created from a metasurface was determined in a four-dimensional parameter

space, (x, y, z, λ).

What motivated this study was largely the theoretical interest, given that

there was at the time no clear approach to classify point-like dark spots and their

field imprint, particularly in polarisation structure, was not understood. Although

point-like dark spots are not naturally occurring they can and have been deliberately

created experimentally [117, 132] which given the findings of this chapter, presents

the possibility for the topological control of electromagnetic fields, the capacity to

engineer complicated polarisation and other vector structures beyond what light is

capable of producing organically. Among their topological significance point-like

dark spots could serve as a (as shall be discussed in the next chapter) controllable

point-trap for matter. Optical traps usually rely on gradient force which as long as

a particle has a positive polarisability, points in the direction of increasing energy

density (electric energy density for electric particles). But at certain wavelengths for

some particles polarisabilty can become negative, switching the direction of gradient

force experienced by the particle, and it is in this way that a non-paraxial dark spot

could serve as a fully confined trap with no escape channels. Gradient force is not the

only force that particles are subject to, however—there are force terms in the dipole

approximation that couple to the canonical momentum, Poynting vector, imaginary
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Poynting vector and spin angular momentum vectors [42, 43], all of which are stirred

into topological structures by the point-like zero as we showed—so it is important

to have a comprehensive understanding of the flux of these force terms in the dark

spot’s neighbourhood as we have attempted to deliver here. We will attempt to

further argue the experimental viability of dark spots in the next chapter, where

we will present a simple technique for how dark spots can be position-controlled by

modulating the polarisation of far field illumination.

5.5 Appendix: finding dyadics

Our analysis of the vector singularities that couple to electric dark spots has hinged

on each vector’s first-order dyadic evaluated in the position of the dark spot, rz. We

remind the reader that the dyadic of a vector F, D(F), is equivalent to that vector’s

Jacobian matrix,

D(F) =


∂Fx

∂x
∂Fx

∂y
∂Fx

∂z

∂Fy

∂x

∂Fy

∂y

∂Fy

∂z

∂Fz

∂x
∂Fz

∂y
∂Fz

∂z

 , (5.24)

although throughout this chapter we have reserved the term ‘Jacobian matrix’ mainly

for those of the electric and magnetic field vectors (JE and JH). The two matrices

JE and JH we used as building blocks in the definitions of the dyadic of the Poynting

vector Eq. (5.7), the imaginary Poynting vector Eq. (5.10), canonical momentum

Eq. (5.12), spin momentum Eq. (5.15) and spin angular momentum Eq. (5.17). To

produce these definitions we first wrote relevant vector operations between E and H

as matrix-vector multiplications, usually after a substitution via Maxwell’s equations
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Eq. (2.3). For example, we can write:

1

2
E∗ ×H = − i

2ωµ0

E∗ × (∇× E), (5.25)

= −i c
2

2ω
ϵ0


E∗

y

(
∂Ey

∂x
− ∂Ex

∂y

)
− E∗

z

(
∂Ex

∂z
− ∂Ez

∂x

)
E∗

z

(
∂Ez

∂y
− ∂Ey

∂z

)
− E∗

x

(
∂Ey

∂x
− ∂Ex

∂y

)
E∗

x

(
∂Ex

∂z
− ∂Ez

∂x

)
− E∗

y

(
∂Ez

∂y
− ∂Ey

∂z

)
 , (5.26)

= −i c
2

2ω
ϵ0




∂Ex

∂x

∂Ey

∂x
∂Ez

∂x

∂Ex

∂y

∂Ey

∂y
∂Ez

∂y

∂Ex

∂z

∂Ey

∂z
∂Ez

∂z

−


∂Ex

∂x
∂Ex

∂y
∂Ex

∂z

∂Ey

∂x

∂Ey

∂y

∂Ey

∂z

∂Ez

∂x
∂Ez

∂y
∂Ez

∂z




E∗

x

E∗
y

E∗
z

 , (5.27)

= −i c
2

2ω
ϵ0(J

T
E − JE)E∗. (5.28)

Taking the real and imaginary parts of the final equality Eq. (5.28) obtains exact

electric representations of the Poynting vector Eq. (5.6) and imaginary Poynting

vector Eq. (5.8)—even though they are expressed using the electric Jacobian JE

they are three-component vectors. What we have in fact achieved in Eq. (5.28) is

an equivalent expression of the decomposition of the Poynting vector [to be seen

later in Eq. (7.3)] as well as the imaginary Poynting vector [20, 37] because, of the

individual terms found after expanding (JT
E − JE)E∗ into JT

EE
∗ − JEE

∗, the first is

the (electric) orbital contribution to the vector (1/2)E∗ ×H while the second term

is the spin contribution. We see this because JT
EE

∗ is equivalent to E∗ · (∇)E and

likewise −2iℑ{JEE
∗} ≡ ∇ × (E∗ × E), the latter holding as long as ∇ · E = 0.

By alternatively substituting E∗ = −i∇ × H∗/(ωϵ0) in the first step Eq. (5.26) a

magnetic representation of Eq. (5.28) can be found that uses JH and H.
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We find the dyadic of Eq. (5.28) by applying the product rule, namely,

D

(
1

2
E∗ ×H

)
= −i c

2

2ω
ϵ0
[
D(JT

E − JE) · E∗ + (JT
E − JE)D(E∗)

]
(5.29)

where, adopting Einstein notation, D(JT
E − JE) = D(M) is a 3 × 3 × 3 tensor ∂kMij

that multiplies into E∗ via (∂kMij)E
∗
j :

D

(
1

2
E∗ ×H

)
= −i c

2

2ω
ϵ0
[
(∂kMij)E

∗
j + (JT

E − JE)J∗
E

]
. (5.30)

While the second term of Eq. (5.30) ∝ (JT
E−JE)J∗

E multiplies only first-order deriva-

tives of E, the first term multiplies second-order spatial derivatives of E with the

zero-order electric field components E∗
j , which are by definition zero in the location

of a dark spot E(rz) = Ej(rz) = 0. Evaluated at an electric dark spot’s position,

then, only the second term of Eq. (5.30) survives and we arrive at,

D

(
1

2
E∗ ×H

)∣∣∣∣
rz

= −i c
2

2ω
ϵ0(J

T
E − JE)J∗

E, (5.31)

=
c2

2ω
ϵ0ℑ{(JT

E − JE)J∗
E} − i

c2

2ω
ϵ0ℜ{(JT

E − JE)J∗
E}, (5.32)

whose real and imaginary parts are the dyadics of the Poynting vector Eq. (5.7) and

imaginary Poynting vector Eq. (5.10) in an electric dark spot and in electric rep-

resentation [hence the factor of two difference with the electric part of Eq. (5.10)].

Expanding the brackets within the ℑ{∗} term one can arrive at the electric canonical

and spin momentum density dyadics Eq. (5.12) and Eq. (5.15), up to a c2 constant.

With very similar steps to Eq. (5.26)-(5.28) applied to electric spin angular momen-

tum density [beginning by substituting E = i∇ × H/(ωϵ0)] the dyadic Eq. (5.17),

which is zero at rz, can be calculated.



Chapter 6

Controlling dark spots

Neither a paraxial nor non-paraxial time-fixed dark spot is topologically protected

and it is due to its instability that permanent pockets of pitch dark are not normally

found in the wild. Zeros in two or three electric phasor components, which satisfy

at least four scalar conditions, must be created artificially because three spatial

dimensions do not provide enough scope to spontaneously proffer a co-ordinate where

all necessary conditions are met at the same time. Though the reader might be very

familiar with vector vortex beams (and many other possible examples), no dark-

spot-containing field is strictly ordinary and often has a certain amount of spatial

symmetry that makes it possible for the dark spot to exist.

The question of how we can make a dark spot appear at its most basic level

is clearly very important, not only for experimental measurement but also in the

interest of theory, to confirm or discover their general properties and impact on the

surrounding polarisation structure. Recent work [13, 117, 132] has attempted to

address this problem, as has our own proposed technique [133] which is the main

focus of this chapter. What any technique for creating dark spots must do is add

107



Chapter 6. Controlling dark spots 108

more, controllable degrees of freedom to a light field, extra parameters engaged in

producing the field which can be subsequently changed to tune the electric field

phasor at a chosen position.

A group at Harvard University successfully achieved this in one way using

a metasurface specially designed to sculpt non-paraxial fields [13, 117, 132]. The

metasurface is divided into pixels which each contain an array of nanostructures

whose dimensions can be tailored pixel-by-pixel using an optimisation technique,

garnering an enormous number of degrees of freedom (DOFs). By designing the

metasurface to maximise the local phase gradient of the field at a desired position

the intensity is automatically suppressed and a zero is created and ensured to be

well-confined (the field intensity grows quickly when moving away from the zero)

after illuminating the metasurface. Having a surplus of DOFs means one can target

the phase gradient in multiple locations [132] or even across entire 2D surfaces [13].

We proposed a dark-spot-making technique through modulating the polarisa-

tion and relative phase of incident plane waves using a minimum number of DOFs,

hinging on the linear relationship between the polarisation of illumination and the

field components a given point in space. Though this scheme is relatively simplistic

it has some clear advantages in theoretical modelling and the possibility to move

the zero around in real time—something which has not yet been demonstrated using

a metasurface custom-designed to construct a dark spot at an exact location in a

non-evolving field. In the following sections we outline basic theory supported by

analytical and numerical simulations, with discussion on experimental challenges and

possible applications of the technique.
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6.1 Making a dark spot using plane waves

A recurring notion in this thesis is that a number of real mathematical conditions,

larger than the number of spatial dimensions, must be met so that a dark spot

appears somewhere in real space. In this chapter we will be concerned with a non-

paraxial 3D dark spot satisfying E(rz) = 0, that is Ex = Ey = Ez = 0 in the

complex phasor, and therefore imposing a total of six real constraints, one per real

and imaginary part of three complex components, on the electric field at the zero’s

position rz. Crucially, though, we will now be choosing where the zero emerges,

selecting and fixing its (x, y, z) co-ordinates and losing the ability to spend spatial

DOFs on the six conditions E = 0. All necessary DOFs will be instead obtained from

the polarisation components of interfering plane waves. One plane wave’s electric

field phasor can be expressed simply as,

Epw(r) = (aêa + bêb) eikpw·r, (6.1)

where a and b are complex amplitudes, offering two real DOFs each, and êa,b are

unit vectors orthogonal to each other and the wavevector kpw. A single plane wave,

then, returns four real DOFs: two from the location of the wave’s polarisation on

the Poincaré sphere, and one each from the external amplitude ratio and relative

phase between the plane wave and other interfering fields (identically, one DOF from

each of ℜ{a}, ℑ{a}, ℜ{b}, ℑ{b}). If we have control of the polarisation and relative

phase of two plane waves, we have enough DOFs at our disposal to force the incident

field Einc(rz) = 0 at some position rz. Though two plane waves may at first glance

appear to offer eight real DOFs, only six are actually tangible because two DOFs

are carried mutually by both plane waves (these DOFs are the plane waves’ relative
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phase and amplitude. Of the eight apparent DOFs, two are lost because the plane

waves can be globally multiplied by a complex number to scale their amplitudes or

change their phases by the same amount without disturbing a zero at rz). Still, six

DOFs are sufficient to meet six real scalar conditions.

Happily in the interference of two plane waves (or any number of plane waves

for that matter), the linearity of Maxwell’s equations gives four terms in the total

field phasor at rz that are individually proportional to one of a and b of Eq. (6.1), or

one of the component amplitudes of the second plane wave c and d. Mathematically

we have at rz,

Einc(rz) = aêae
ik1·rz + bêbe

ik1·rz︸ ︷︷ ︸
E1(r)

+ cêce
ik2·rz + dêde

ik2·rz︸ ︷︷ ︸
E2(r)

. (6.2)

where we have adopted subscripts 1 and 2 to distinguish the different wavevectors

of plane wave 1 and 2 (meanwhile the transversality condition is also satisfied by

plane wave 2 in êc · êd = 0, êc · k2 = 0, êd · k2 = 0). Equation (6.2)’s form, though

non-threatening, turns out to be rather powerful as the proportionality of the terms

of Einc to a, b, c, d is preserved even when introducing matter to the two-wave inter-

ference [we shall see this later in Eq. (6.5)]. To create a dark spot at rz we solve

what in Eq. (6.2) is a linear system of three complex scalar equations in four com-

plex variables a, b, c, d after setting Einc(rz) = 0 (equivalent to finding the nullspace

of Eq. (6.2)’s coefficient matrix). Then, polarising the two plane waves according

to the solution of Einc(rz) = 0 (assigning a, b, c, d their solved-for values) the dark

spot is realised at position rz. One might alternatively construct and solve a linear

system of six real scalar equations by segregating the real and imaginary parts of E

and a, b, c, d—in either case, to solve a real or complex linear system of equations is

rudimentary for a language like MATLAB. Note that we have placed no restrictions
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on the wavevector of either plane wave besides that they do not point in the same

direction, k1 ̸= k2, otherwise Eq. (6.2) is not monochromatic two-plane-wave inter-

ference (as in every chapter in this thesis, we have limited the plane waves to having

the same wavenumber,
√
k1 · k1 =

√
k2 · k2, so that the resulting superposition is

time-harmonic and can contain time-fixed nodes when the electric field phasor is

zero).

There are some immediate issues stemming from the low spatial complexity

of two-plane wave interference. Any zero we successfully induce, while in one sense

three-dimensional by having suppressed all three field components, is in fact only one-

dimensional in confinement, residing in a planar node of the interference standing

wave. Although planar standing wave nodes are sometimes desirable, our goal is

to create a fully localised, point-like dark spot and there is more than one way to

accomplish this. Perhaps the two most obvious are either to add more plane waves

or to introduce a scatterer.

6.1.1 Adding more plane waves

Interference of N plane waves sets up a summation of plane wave fields evaluated at

rz over the index j,

Einc(rz) =

j=N∑
j=1

(x2j−1ê2j−1 + x2j ê2j) eikj ·rz , (6.3)

which is a linear system of three complex scalar equations in 2N complex variables.

With a large number of plane waves we have a significant surplus of DOFs that can

be used to impose more conditions on the total field E, such as creating more than

one dark spot simultaneously, suppressing the field derivatives or maximising the
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field phase gradient (this would require an optimisation process because the field’s

local phase gradient is not linear with respect to the variables x1,2,...,2N).

Point-like dark spots can be produced in the interference if N ≥ 4 assuming

that kj are chosen randomly (once chosen, the basis vectors ê2j−1 and ê2j can be

chosen and the complex amplitudes x2j−1 and x2j found). This assumption of ran-

domness avoids symmetric wavevectors which impact the dimension of the zero, for

example if for all j, each of kj lies in the same plane then the resulting interference

is only two-dimensional, being uniform in the direction orthogonal to the common

wavevector plane (zeros become line-like structures). Likewise randomness ensures

that the polarisation components of all plane waves are able to engage and inter-

fere with each other and avoid non-interfering plane wave superpositions [134]. A

three-dimensionally confined dark spot generated in the interference of plane waves

with random wavevectors is most useful in a theoretical context and was critical in

our in-depth study of non-paraxial zeros in chapter 5. To use randomly generated

wavevectors is to set up the most generic and asymmetric environment in which to

create the zero, allowing its basic features to be probed such as the intersecting po-

larisation singularities we learned in chapter 5 (of course, the combined field is not

totally random because the plane waves are polarised specially to force a zero to ex-

ist). Equally, semi-random or fully random plane wave interference helps to discover,

confirm or debunk topological properties like singularity indices or, in a prelude to

some of the findings in the next chapter, geometrical links between fundamental vec-

tor quantities in light. Primarily the need to precisely control the relative phase of

many interfering fields would, unfortunately, make recreating this method of making

dark spots very difficult experimentally since each field must be derived from the

same laser so that their relative phases can be defined. It is experimentally more

promising to return to two-plane-wave interference while introducing a scattering
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particle.

6.1.2 Adding a particle in two-plane-wave interference

In the search for experimental viability of our dark-spot-making method we will

now revert back to the interference of two plane waves that, this time, interact with

matter. Matter, responding to excitation and radiating its own field, establishes a

near field region which is non-paraxial and can accommodate three-dimensionally

confined, three-component zeros. This way we can passively inject structure to our

original two-plane wave standing wave and realise suitable dark spots using a min-

imum number of DOFs. Equation (6.2) can actually be generalised to incorporate

particles amid the interference. Consider a particle with arbitrary geometry and

unspecified material illuminated by two plane waves like in Fig. (6.1). Recall from

Eq. (6.2) that the two plane waves both have two complex components a, b and c, d

in the direction of the basis vectors êa,b and êc,d respectively; the particle scatters

power supplied by each polarisation component differently. Assume, for instance,

that the êa component of plane wave 1 has unit amplitude (a = 1): depending on

its geometry and material the particle is excited and radiates a field Escat
a that sums

with plane wave 1’s unit amplitude êa component to give a total interaction field Ea

Ea(r) = Escat
a (r) + êae

ik1·r. (6.4)

What is significant about Eq. (6.4) is that because of Maxwell’s equations’ linearity

the total interaction field scales linearly with the êa component amplitude, that is,

if plane wave 1’s êa component has amplitude a, then the total interaction field is

aEa. Likewise should we instead illuminate the particle with a different plane wave

component, say the êc component of plane wave 2, a different interaction field cEc is
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Figure 6.1: The dark spot position control concept. By controlling the polarisation and relative
phase and amplitude of two plane waves it is possible to enforce the conditions E(rz) = 0 at any
desired position rz. By introducing a particle with arbitrary geometry, a 3D near field is established
after excitation by the plane waves which enables 3D-confined, point-like dark spots to be created.
Smoothly tuning the complex component amplitudes of the two plane waves allows the dark spot
to move along a desired trajectory.

developed and thus, if we immerse the particle in the entire incident two-plane-wave

interference Eq. (6.2), the total field E is simply,

E(r) = aEa(r) + bEb(r) + cEc(r) + dEd(r). (6.5)

Once more, we have obtained a linear system of three complex scalar equations (one

per component) in the complex amplitudes a, b, c, d, though the vector fields Ea,b,c,d

are considerably more complicated than the plane wave components of Eq. (6.2).

Again, by controlling the two plane waves’ polarisation and relative phase with one

another, point-like dark spots can be enforced in the particle’s near field but it is

worth noting that no manipulation of the particle is required (the particle only serves

as a means to disrupt the two-plane-wave interference and establish a non-paraxial
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field). However, the interaction fields Ea,b,c,d depend on the particle properties and

must be known if we wish to solve E(rz) = 0 at a position rz. They may be found

analytically for simple particles (e.g., small dipolar particles) or can be found by

numerical simulation for more complex geometries as we shall soon demonstrate.

It is important to remark on how the properties of the particle can affect the

quality of any dark spot that can be created in its near field. For well-confined dark

spots the field scattered by the particle must be sufficiently strong so as not to be

dominated by the two-plane-wave incident field, which is only capable of making

planar zeros. Two factors that determine the particle’s scattering strength are its

nearness to a resonance at the chosen wavelength and size (the particle in Fig. 6.1

was labelled as being large compared to the incident wavelength for this reason).

Additionally if the particle is too small compared to the incident wavelength it can

occupy a node of the two-plane-wave interference such that, for some dark spot posi-

tions rz, the particle is not excited and the zero loses its 3D confinement, exploding

into a dark plane. A dark spot’s quality of confinement—specifically how sharply the

field intensity rises out of rz—is also position-dependent, in that zeros created nearer

to the particle where its near field is much stronger compared to the incident field

are normally more point-like. An assessment can be made using the field Jacobian

matrix as we show next.

6.1.3 Dark spot confinement

Confinement of a point-like zero can be characterised by the first-order field deriva-

tives contained in the electric field Jacobian matrix, evaluated at rz. The Jacobian

matrix J is a powerful recurring concept in this thesis that captures the immediate

behaviour of the electric field at a given point since E, smoothly varying, appears
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linear over small distances,

J =


∂Ex

∂x
∂Ex

∂y
∂Ex

∂z

∂Ey

∂x

∂Ey

∂y

∂Ey

∂z

∂Ez

∂x
∂Ez

∂y
∂Ez

∂z

 . (6.6)

Using a first-order approximation of E near to a dark spot at position rz the elec-

tric field intensity is a quadratic function of space that can be written in matrix

representation,

E∗ · E ≈ vTℜ{JTJ∗}v, (6.7)

where v = r − rz. Since intensity is an always real, always positive quantity, the

quadratic equation of space Eq. (6.7) increases on every outward direction from the

dark spot which, therefore, has an ellipsoidal shape (the dark spot, at zero intensity,

is enclosed by ellipsoidal surfaces of constant intensity). The three semi-axes d1,2,3 of

the ellipsoid defined by an iso-intensity surface of value δ are related to the eigenvalues

e1,2,3 of the 3 × 3 positive-definite matrix ℜ{JTJ∗} in the following way,

di =

√
δ

ei
(6.8)

Since the determinant of a matrix is equal to the product of its eigenvalues, detℜ{JTJ∗} =

e1e2e3 provides a measure of the confinement of the dark spot (a larger value means

an overall smaller ellipsoid in Eq. (6.7) and hence better confinement).
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6.2 Moving dark spot examples

With our proposed methodology point-like dark spots can be made in any location

near to a particle under illumination by two plane waves, and to change the dark

spot’s position, we need only adjust the polarisation and relative phase between the

plane waves. By smoothly modulating polarisation it is possible to send a dark spot

along a chosen trajectory—no modifications to the particle or plane wave wavevectors

are necessary. In this section we will provide two examples demonstrating how dark

spots can be created and moved in any desired path around particles with arbitrary

geometry using numerical simulations.

In practice as polarisation is tuned to change the dark spot’s position, there is a

certain delay before the desired interference field, including the newly positioned dark

spot, is set up as the re-polarised plane waves propagate across the particle before

being scattered. This propagation delay is so far not accounted for by our equations

which are time-harmonic but we can provide a simple proof-of-concept in Fig. 6.2,

where a dark spot is moved in a circular path in the yz plane around a doughnut-

shaped particle. We assume in this example that as the two plane waves’ polarisations

are varied the field changes instantaneously throughout the whole of space which is,

of course, not physical especially because the particle and surrounding space plotted

in Fig. 6.2(a) is larger than the incident wavelength as indicated. However as we will

show in the next subsection, as long as the dark spot moves ‘relatively slowly’ (in our

second example it completes its path in about 500 fs) the penalty of this assumption

in the dark spot’s sharpness is manageable.

The silver torus particle (its perimittivity obtained at the incident wavelength

using Palik [135]) in Fig. 6.2(a) is illuminated at λ = 800 nm by two plane waves

with wavevectors k1 = k(
√

3/2 ŷ + 1/2 ẑ) and k2 = k(
√

2/7 x̂ + 1/
√

7 ŷ − 1/
√

7 ẑ),
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Figure 6.2: Position control of a dark spot using two plane waves and a nanoparticle, in this case
a silver torus illuminated at λ = 800 nm. By controlling the complex degrees of two plane waves
(variables a, b, c, d) in (a), a dark spot is moved in a circular path around and threading the torus
(two snapshots are provided, where the field intensity is plotted. Note that a2 + b2 + c2 + d2 = 1
a.u.). Below 0.01 a.u. the colour saturates in red to highlight the dark spot position. In moving
the dark spot, the required change in polarisation and relative phase of the two plane waves can be
encoded on the Poincaré as in (b) (red line corresponds to E1, blue to E2, and green to the plane
waves’ relative phase on a superimposed Bloch sphere. All three lines begin and end in the same
place—the solid circle). Confinement of the dark spot over the course of its journey is characterised
in (c).
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and with amplitudes a, b and c, d as labeled which are gradually changed to move the

dark spot from its starting point (the top of the circle) anticlockwise with respect to

the yz plane, threading the torus before returning to its initial position. On a xy cut

plane the total electric field intensity |E|2 is plotted in arbitrary units where 1 a.u.

is equal to the incident field intensity at the origin (a2 + b2 + c2 +d2 = 1 a.u.). Below

0.01 a.u. the colour is saturated red to highlight the dark spot’s location. Meanwhile

in Fig. 6.2(b), traces of the polarisation of the two plane waves are plotted on the

Poincaré sphere as they are modulated as the dark spot progresses along the circular

path, with the red line corresponding to plane wave 1’s amplitudes (a, b) and the

blue line to the second plane wave’s (c, d) component amplitudes (since the dark spot

returns to its starting position, all traces begin and end in the same place indicated

by the solid circle). A third, green trace accounts for the relationship between the

two plane waves by calculating the Stokes parameters using the amplitudes a and

c. We should not understate the importance of the green trace as it represents the

precise control of the relative amplitude and phase of the two waves which could be

challenging to implement experimentally (the waves must be coherent). While the

two plane waves have 3D orientation meaning the azimuth position (with respect

to the S3 axis) of each trace on the Poincaré sphere is arbitrary, dependent on the

choice of basis vectors for each plane wave, what Fig. 6.2(b) demonstrates is that the

dark spot’s path is fully encoded in polarisation by three, 1D closed curves in Stokes

space relative to each plane wave’s plane of polarisation. Finally in Fig 6.2(c) the

quantity detℜ{JTJ∗}, which is related to the volume of the ellipsoidal shape of the

dark spot defined at a fixed intensity value, is plotted as a measure of confinement

of the dark spot as it follows the circular trajectory. The dark spot’s size varies as it

moves around the doughnut particle, through regions where the particle’s scattered

field would be naturally larger and able to dominate the incident field, and vice
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versa. A larger value of detℜ{JTJ∗} corresponds to a relatively smaller dark spot.

The singular nature of the dark spot, being an exact zero in the electric field, means

its absolute size is difficult to quantify, certainly compared to measuring the size of

a local maximum for example. Knowing that the incident field in Fig. 6.2 has an

intensity of 1 a.u. at r = 0 we can select a small total field intensity near to the dark

spot, say 0.01 a.u. as highlighted red in Fig. 6.2(a), and use Eq. (6.8) with δ = 0.01

to calculate the zero’s ellipsoid volume. In Fig. 6.2(c) the largest and smallest values

of detℜ{JTJ∗} are 1.75 × 10−15 a.u.3nm−6 and 3.89 × 10−18 a.u.3nm−6 leading to

ellipsoid volumes of 1.00×105 nm3 and 2.12×106 nm3 at δ = 0.01 a.u.. For reference

spheres of these volumes have radii of 28.8 nm ≈ 0.04λ and 79.7 nm ≈ 0.1λ (though

in reality the dark spot’s ellipsoid semi-axes are not always similar in length).

6.2.1 Using pulses

In a more realistic scenario a dark spot could be sent along an arbitrary trajectory

by designing four time-varying pulses (one per polarisation DOF) with the required

amplitude and phase modulation at each instant calculated in a time-harmonic ap-

proximation, which when simultaneously incident on a particle, realise an approxi-

mately zero-intensity dark spot. We demonstrate this in Fig. 6.3, where instead a

dark spot moves in a circular path that intersects with a cylindrical nanoparticle

as shown in Fig. 6.3(a) (it is perfectly possible to create dark spots inside particles

as internal fields can be calculated in numerical simulations). Once more two plane

waves, this time propagating along k1 = kx̂ and k2 = kẑ with carrier wavelength

λ = 500 nm, deliver pre-encoded pulses shown in Fig. 6.4 that move the dark spot

over the course of about 500 fs. While the pulses are calculated using our time-

harmonic expressions the field resulting from interaction with the nanocylinder is



121 6.3. A dark spot as a sensor

calculated in a full time-domain numerical simulation. Three snapshots of the dark

spot at the indicated times after the pulses enter the simulation domain are shown in

Fig. 6.3(b), plotting the instantaneous electric field magnitude on the xz plane (the

plane of the dark spot’s trajectory). Although the dark spot is only approximately

zero in intensity due to propagation delay, it remains clear amongst the rest of the

field in the plotting plane and would be sharper still using pulses with a longer du-

ration (the slower the pulses vary in time relative to the carrier period, the closer we

approach the time-harmonic approximation that we used to calculate the necessary

pulse modulation).

Each of the four pulses in Fig. 6.4 correspond to the plane wave component

amplitudes a, b, c, and d, and would be challenging to implement in an experiment

since both the polarisation and amplitude of each plane wave must be modulated

within the ∼ 500 fs pulse duration. But in order to move the dark spot in the time-

domain, what is important is that we have access to adjusting four complex DOFs

which do not necessarily need to be divided between two plane waves. Four separate,

linearly polarised plane waves offer an equally valid method of controlling the dark

spot’s position via pulses.

6.3 A dark spot as a sensor

Our focus so far on the freedom to move dark spots along arbitrary paths around

matter motivates their potential application in these experimental techniques that

might benefit from position control of an electric field. But in fact a static dark

spot could be equally useful as a probe to sense a particle’s properties because of

one of the 3D-confined, three-component dark spot’s special characteristics, namely

that E = 0 is unstable in three spatial dimensions. For reasons discussed earlier
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Figure 6.3: Control of a 3D-confined dark spot (E = 0) using four pulses in a time-domain numerical
simulation. In (a) is the simulation geometry. Two plane waves with wavevectors k1 = kx̂ and
k2 = kẑ are incident on a silver nanocylinder (600 nm long, 160 nm diameter) and move a dark spot
in a circular, cylinder-intersecting path, by modulation of the plane wave 1’s ŷ and ẑ component
amplitudes a and b, and the x̂ and ŷ amplitudes c and d of the second plane wave according to
the pulse waveforms given in Fig. 6.4. The dark spot completes its trajectory in about 500 fs, the
length of the pulses. In (b), three snapshots at indicated times are given of the instantaneous field
magnitude in the plane of the dark spot’s circular path. Results obtained in numerical simulations
using CST Microwave Studio.
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Figure 6.4: Pulse waveforms of a, b, c, and d, the component amplitudes of the two plane waves
in Fig. 6.3 that move a dark spot in a circular path around a silver nanocylinder. The combined
intensity of the pulses is constant at 1 a.u..

in this chapter’s underlying dark-spot-making theory, to create a dark spot in any

particle scenario needs prior knowledge of the total electric field that is developed

when each plane wave component interacts with the particle, that is, we need to

know the fields Ea−d of Eq. (6.5) (these fields were completely different between

the doughnut particle and nanocylinder of the last section because of their different

geometries and the different plane wave propagation directions). Suppose that we

wish to create a zero at position rz near to a particle with geometry A and are able

to obtain the fields Ea−d (analytically or by numerical simulations), leading to the

required complex amplitudes az, bz, cz, dz that force the dark spot into existence. If,

after setting up an experiment, we find that the physical particle differs slightly from

the geometry A then after illuminating the particle with polarisations defined by

az, bz, cz, dz the intended dark spot will be perturbed, and may not materialise at

all if the particle is too different to what was originally expected. This is also true

of the particle’s material (including permittivity ϵ) and its position or orientation.

Though concerning at first glance, the instability of the dark spot with respect to
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Figure 6.5: A dark spot in the ϵ-space of two spherical particles, modelled as electric dipoles.
Subfigure (a) shows the physical system of the two particles (dipoles), separated by 300 nm and
both with 160 nm diameter which informs their polarisability. Assuming the particles are silver
(ϵ = −8.28 + 0.78i at λ = 500 nm), two plane waves with wavevectors k1 = k(

√
3/2 ŷ + 1/2 ẑ)

and k2 = k(
√
2/7 x̂ + 1/

√
7 ŷ − 1/

√
7 ẑ) are polarised (amplitudes az, bz, cz, dz) in such a way as

to create a dark spot at rz exactly between the particles. Once again the incident field has an
intensity of 1 a.u. at the origin. In (b) the electric intensity is probed at rz under the same fixed
incident field while varying the actual permittivity of the two particles together, producing a plot
in complex ϵ space. The dark spot is visible at rz when the particle permittivity is the same as
what was assumed when polarising the plane waves (ϵ = −8.28 + 0.78i), while disappearing if ϵ
differs too much, even becoming a region of enhanced field relative to the incident field for some
values of ϵ. Adapted from [133].

the characteristics of the particle could act as a way to sense, for example, the

particle’s permittivity after a parameter sweep of the plane waves’ polarisation states.

Permittivity is a complex scalar spanning two real dimensions (ℜ{ϵ} and ℑ{ϵ})—

probing the electric field at a position in space while changing the permittivity of a

particle we can produce a plot of E in ‘ϵ-space’.

To see the effect of displacements in ϵ-space of a particle (or particles) on the
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exactness of a dark spot we produced an analytical model of two spherical parti-

cles, illuminated again by two plane waves with the same k vectors as in Fig. 6.2.

The particles, shown in Fig. 6.5(a), have a 160 nm diameter which is small enough

compared to the incident wavelength of 500 nm to be modelled simply as coupled

electric dipoles initially excited by the two plane waves, allowing a completely ana-

lytical simulation to be set up (we chose not to model a single dipolar scatterer as it

is too simple a system to reliably create point-like zeros). The two plane waves are

polarised with component amplitudes az, bz, cz, and dz to produce a dark spot at a

location rz in the middle of the 300 nm gap between the particle centres, assuming

that both particles are silver with ϵ = −8.28 + 0.78i at λ = 500 nm [135]. Then,

by fixing the polarisation of the two plane waves, a dark spot will only emerge at

rz if both particles truly have silver’s permittivity. In Fig. 6.5(b) the electric field

intensity is probed at the single position rz while changing only the permittivity

of the two particles together, producing a map of |E(rz)|2 in complex ϵ-space. A

dark spot exists at ϵ = −8.28 + 0.78i but grows brighter in intensity if ϵ changes

too much [in fact, the electric field at rz is enhanced relative to the incident field

amplitudes if ϵ strays into the lower-right region of Fig. 6.5(b)]. Last section we

showed that by adjusting the complex amplitudes a, b, c, d in Eq. (6.5) a dark spot

can be moved along a chosen path in real space near to a particle with fixed ϵ. With

identical methodology a dark spot at a target real-space position can be swept across

the ϵ-space of a particle of unknown material by modulating two plane waves. To

observe the dark spot in real space under a certain incident field indicates that the

material properties of the particle assumed by a, b, c, and d correctly match that of

the physical particle. Then, the corresponding location of the dark spot in ϵ-space

reveals the particle permittivity.

Permittivity is not the only particle property to which a point-like dark spot is
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sensitive. If in practice we wish to synthesise a dark spot in some position relative to

a particle (like in the last section) then, once polarised appropriately, the phase of the

plane waves would need to be tuned until the dark spot materialises since it would

be impossible to know the exact location of the particle beforehand. Subsequent

real-space displacement of the particle would then destroy the dark spot, certainly

in its absolute position, and likely in its relative position to the particle (though

re-tuning the phase of the plane waves could recover the zero). In Fig. 6.6 we probe

the electric field magnitude in a fixed position r′z = rz+∆r relative to a nanocylinder

after it is displaced in the xz plane by a vector ∆r = ∆xx̂+ ∆zẑ, keeping the phase

and polarisation of two plane waves (wavevectors k1 = kx̂ and k2 = kẑ), designed
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Figure 6.6: Sensitivity of a dark spot created near to a cylindrical nanoparticle after displacement
of the nanoparticle along the vector ∆r in the xz plane. The dark spot is originally synthesised
at position rz by two plane waves with wavevectors k1 = kx̂ and k2 = kẑ with the complex
components a, b, c, d that stay fixed. The electric field is measured in the relative position of the
dark spot r′z = rz +∆r and a (∆x,∆z)-space plot is produced. Adapted from [133].
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to create a dark spot at position rz, constant. Nuances in symmetry of the particle

and plane wave arrangement play a significant role in the sensitivity of the dark spot

to the particle orientation and position; for instance in Fig. 6.6 the dark spot in its

relative position r′z is not affected by displacements along the y axis or parallel to

the vector x̂+ ẑ due to the plane waves’ wavevectors. These have no ŷ components,

and are orthogonal such that for displacements ∆r||(x̂ + ẑ) through the wavefronts

of both plane waves an equal increase or decrease in phase is accrued. Considering

more than simple translations, on the other hand, should the cylindrical particle

rotate about a non-symmetric axis then the plane waves would need to be polarised

differently to reconstruct the dark spot. Like its permittivity, a particle’s position

and even orientation could be sensed by pre-modulating two plane waves’ complex

component amplitudes and observing (or not observing) a dark spot at an intended

location.

6.4 Other applications

We have discussed the possibility of using a dark spot as a sensor for particle per-

mittivity or position but besides this, perhaps the two most plausible fields of study

in which a moving point-like zero could be an extremely useful experimental asset

are optical microscopy and trapping. Earlier in this thesis we suggested that non-

paraxial, point-like dark spots could be used as 3D-confined optical traps for particles

in a certain wavelength regime where gradient forces reverse direction. Dark (blue-

detuned) trapping [22] has been performed using various dark-spot-containing beams

[24, 26] and even optical lattices [27] where traps are 3D-confined. By position-

controlling point-like dark spots with our proposed technique it could be possible to

move trapped particles precisely in 3D and at relatively high speeds.
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Some of the most powerful optical-frequency microscopes use dark spots to

break the diffraction barrier and achieve single-nanometre resolutions (well below

λ/2). We mentioned in chapter 1 that, by switching ‘on’ and ‘off’ collections of fluo-

rescent particles by shining on them two different-frequency beams (an ‘on’ beam and

an ‘off’ beam) in sequence, techniques like stimulated-emission-depletion microscopy

(STED) [29] can image single particles if the ‘off’ beam contains a dark spot. This

way a particle coinciding with the dark spot escapes being switched off by the second

beam. A STED-like methodology could be combined with our point-like dark spot

control, supposing that we wished to image something in the near field of an appro-

priate scatterer. Using two plane waves we could illuminate at an exciting frequency

to switch on a group of nearby fluorophores (assuming that intensity is sufficiently

high), then illuminate again at a de-exciting frequency while specially polarising the

plane waves to synthesise a dark spot at the location of a selected fluorophore, which

would remain in the measurable on state. The key advantage of this chapter’s pro-

posal is that unlike that of a doughnut beam, our dark spots are point-like and could

resolve sub-wavelength detail in three dimensions to offer an alternative mechanism

for 3D STED or similar miscroscopy methods. Meanwhile MINFLUX [30], such as

it is named, is another microscopy technique that uses a single, position-controlled

doughnut beam driven at an exciting frequency to precisely locate, track and image

fluorophores while minimising the number of emitted photons. Given that we do not

consider the 3D intensity distribution of the field beyond a single position (the dark

spot) it would be challenging to minimise photon emission using our methodology.

However, it should be possible to use similar post-processing steps (counting emitted

photons against the tracked position of the dark spot) to locate and image single

particles, again with the advantage of 3D dark spot confinement.

Suitability for these techniques of our controllable dark spots also depends
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on the ease with which they can be synthesised experimentally. Since in addition

to polarisation, accurate control of the relative phase between the minimum two

monochromatic plane waves is crucial to form a dark spot, then experimentally both

plane waves must be coherent and derive from the same laser. Whatever the design of

the optical set up that has the two plane waves propagating in different directions any

delay lines between the plane waves must not exceed the laser’s coherence length, and

to precisely know the relative phase between the two plane waves at a desired dark

spot position will require careful calibration (this also means that, if we wished for

more degrees of freedom, it would be difficult to scale up the number of illuminating

plane waves).

6.5 Chapter summary

Following two very theory-oriented chapters on electromagnetic dark spots, this chap-

ter has proposed a conceptually simple technique for synthesising dark spots experi-

mentally using a minimum of two plane waves. Our technique hinges on the linearity

of Maxwell’s equations; that the complex component amplitudes of the two plane

waves can be taken as variables in a linear system of equations describing the elec-

tric field components at a chosen position rz. By solving this system of equations

evaluated to E(rz) = 0 one obtains the plane wave complex amplitudes that force

a dark spot into existence at the desired location, and by carefully adjusting these

complex amplitudes, the dark spot can be freely moved in space. The low complexity

of plane waves and spatial symmetry arguments means that perhaps the best way

(i.e., using the minimum number of plane waves) to ensure that synthesised dark

spots are point-like is to illuminate a particle which passively sets up a non-paraxial

near field. To use our technique in this way requires that the field scattered by the
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particle, which can be calculated analytically or in numerical simulations, is known.

The act of engineering the electric field in a subwavelength region near to a

particle is one purpose of plasmonic nanoantenna design [136, 137], a field responsible

for specially designed nanoparticle geometries (e.g., bowties, dimers) that strongly

enhance light intensity in tightly confined pockets called ‘hot spots’ [138, 139]. Some

work has been dedicated to creating the hot spot’s opposite, a ‘cold spot’ [140, 141],

near to nanoantennae often showing ways of interchanging the two [142–144], though

in this context a ‘cold spot’ is a relatively loose term that is not intended to mean a

region of exactly zero electric field, rather a local minimum. Our original work which

inspired the chapter of this thesis was titled, Creating and moving nanoantenna cold

spots anywhere [133] which does not make immediately obvious that an exactly zero

electric field, our ‘cold spot’, is a singularity with all of the rich topological properties

described in chapter 5.



Chapter 7

Re-interpreting spin angular

momentum density

Now is this thesis’ final chapter which departs somewhat from the specific dark-spot

theme of chapters 3, 4 and 5; electromagnetic field zeros though not completely absent

playing a much reduced, supporting role. For here our topic is the familiar equation

for light’s total spin angular momentum density (acronym SAM, as a reminder) first

given in chapter 1 [Eq. (2.24)],

S =
1

4ω
ℑ{ϵ0E∗ × E + µ0H

∗ ×H} = Se + Sm, (7.1)

which is the vector addition of SAM carried by the electric and magnetic field, each

of these SAM vectors pointing in the direction of the respective field polarisation

ellipse. As the name suggests Eq. (7.1) is an angular momentum density expressing,

according to the right-hand rule, how and in which direction local rotation of the

electric and magnetic field vectors over time could cause matter to experience torque

and (importantly) chiral forces (chiral because if, say, in a region of at least elliptical

131
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electric polarisation the electric field’s phase increases in the direction of Se, then

over space the rotating E field vector creates rotating helical structures, which are

chiral [82–84]). Spin AM density is an intrinsic angular momentum which means that

if it is non-zero for an electromagnetic field, then no choice of co-ordinate origin can

eliminate it, unlike for the extrinsic orbital angular momentum (OAM) density L =

r× p of light that does not contain vortices [34, 54, 61, 62]. This chapter’s principle

point of discussion is an alternative representation of total spin S, a decomposition of

S into two terms that are not separate electric and magnetic contributions Se + Sm,

rather two vectors sc and sp (to be named later) that as we will discover are related

to the linear momentum that can be imparted in a chiral light-matter interaction.

When originally calculating the Jacobian matrix of Se as presented in chapter

5 it was noticed that the total SAM density vector could be recast by substitution

of Maxwell’s equations for monochromatic waves, with two vector identities, into a

different form:

S =
1

4ω2
ℜ{E∗ · (∇)H−H∗ · (∇)E} +

1

2ω2
∇× 1

2
ℜ{E∗ ×H}. (7.2)

What Eq. (7.2) presents is a decomposed version of S, a sum of two vector terms, the

first quite obscure and the second immediately recognisable as proportional to the

curl of the Poynting vector, (1/2) ℜ{E∗ ×H}. Specifically this spin decomposition

is obtained by substituting E = i(ωϵ0)
−1∇ ×H and H = −i(ωµ0)

−1∇ × E for the

un-conjugated phasors in the original expression Eq. (7.1), followed by the identities

a×(∇×b) = a·(∇)b−(a·∇)b and ∇×(a×b) = a(∇·b)−b(∇·a)+(b·∇)a−(a·∇)b

and ∇·E = ∇·H = 0 (so the form Eq. (7.2) is only valid in free space). Some fifteen

years ago Berry [33] showed that the Poynting vector could be decomposed in 3D

in the very same way using Maxwell’s equations and vector manipulation. Unlike
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the time-averaged Poynting vector, which since Berry’s work is widely known to be

decomposed in free space monochromatic waves according to,

P =
1

2
ℜ{E∗ ×H} =

c2

4ω
ℑ{ϵ0E∗ · (∇)E + µ0H

∗ · (∇)H} +
c2

2
∇× (Se + Sm), (7.3)

the decomposition of SAM density Eq. (7.2) cannot be expressed by a sum of ex-

clusively electric and magnetic contributions to the two terms—each term contains

multiplication (under a vector operation) between the E and H phasors, while in

Eq. (7.3) only E multiplies E and H multiplies H (e.g., E∗ · (∇)E).

We expect that many readers will recognise Eq. (7.3), but very few (if any)

will have seen the alternative form of spin Eq. (7.2). This is not to say that the core

relation in Eq. (7.2) is not at all known. Bliokh et. al [53] understood the coupling be-

tween chiral momentum (the first term of Eq. (7.2), (1/4ω2)ℜ{E∗·(∇)H−H∗·(∇)E},

up to a prefactor converting to units of linear momentum density) and S and the curl

of the Poynting vector by calculating the force exerted on a dipole directly by a field

in a chiral interaction. Despite this the authors did not appear to explore the rela-

tion further, nor provide any deeper physical significance. More recently, meanwhile,

Shi et. al [145] without arriving at Eq. (7.2) uncovered the proportionality between

the helicity-independent transverse spin of a linearly polarised evanescent wave and

the curl of the Poynting vector, term two of Eq. (7.2), before proposing a rather

tenuously linked set of Maxwell-esque spin-momentum equations. Scrutinising some

of these claims Bekshaev [146] demonstrated that transverse spin is in general more

strongly connected geometrically to the curl of the canonical momentum vector (a

part of the Poynting vector), while Shi and co-authors have since further explored

the relation between components of total spin and the curl of the Poynting vector

[147, 148]. Very recently Golat, a coauthor of our work inspiring this chapter, much
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more convincingly formulated four spin-momentum Maxwell-like equations in a quite

comprehensive framework that links quadratic quantities in light by representing the

electromagnetic bispinor in different bases [37].

Amid sparse coverage of the spin decomposition Eq. (7.2) in the literature we

in our publication [31] had two main objectives. First was to clarify the physical

significance of the two vectors, particularly in terms of light-matter interactions,

and any geometrical significance of the vectors as originally suggested by Shi [145],

that the curl of the Poynting vector corresponds to helicity-independent transverse

spin. Second was to promote the decomposition’s intuitive value and its fitness as

a tool to reveal striking hidden features in structured light—one such feature which

we identified in the centre of a linearly polarised vortex beam; a thesis-unifying

dark spot. The value of the Poynting vector’s (kinetic momentum) representation

as the sum of orbital and spin currents (canonical and spin momentum) is already

clear: not only does it help to visualise light’s linear momentum, given that matter

responds differently to p and ps which may point in independent directions (such as

in evanescent waves), but it even underpins the famous Abraham-Minkowski dilemma

[45]. In attempting to achieve these objectives we chose to name the two spin terms

of Eq. (7.2) canonical spin sc and Poynting spin sp for reasons we shall next address

as well as the terms’ physical meanings. A depiction of total spin, electric spin,

magnetic spin, canonical spin and Poynting spin vectors is given in Fig. 7.1.

7.1 Canonical and Poynting spin

From Eq. (7.2) the canonical spin is defined as

sc =
1

4ω2
ℜ{E∗ · (∇)H−H∗ · (∇)E}, (7.4)
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Figure 7.1: Illustration of the geometry of certain vectors with respect to electric and magnetic
polarisation in a generic non-paraxial field, developed in random plane wave interference (note that
the field is three-dimensional but has been projected into a 2D page and is inevitably distorted).
As a visual aid the diagram is oriented specially so that Poynting spin is parallel to the z′ axis
which, on an x′y′ cut plane, reveals some circulation of the Poynting vector streamlines (though the
amplitude and 3D variation of P truly informs the direction of sp). Electric (blue) and magnetic
(green) polarisation ellipses are drawn along with their normals, the electric and magnetic spin
vectors Se and Sm, being oriented freely in 3D because of the field’s non-paraxiality. Total spin
is the vector sum of Se and Sm and canonical and Poynting spin sc + sp and in this very generic
depiction, sc and sp have no geometric relation to polarisation ellipses. Adapted from [31].

and Poynting spin,

sp =
1

2ω2
∇× 1

2
ℜ{E∗ ×H}. (7.5)
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For the avoidance of confusion, any time we in this chapter mention ‘canonical spin’,

we are referring to sc Eq. (7.4), any time we mention ‘Poynting spin’ we refer to

sp Eq. (7.5), and any time we use the term ‘total spin’ we mean the total SAM

density S Eq. (7.1), equal to the sum of the two terms above S = sc + sp. Upon

seeing these expressions for the first time it is virtually impossible to tell which of

light’s properties canonical spin sc represents while Poynting spin, containing the

curl of the Poynting vector, could be viewed as an incorporation of light’s OAM into

the total spin vector, reflecting how the curl of S generates spin momentum ps in

Eq. (7.3). There are ways to better understand the physical significance of the two

terms, particularly by calculation of optical forces on Rayleigh particles.

7.1.1 Chiral force

The beauty of the sum of the two spin terms and the fact that Poynting spin mirrors

the role of the curl of the total spin in the Poynting vector P might suggest that

sc and sp, their sum S being an axial vector, are chiral analogies to canonical and

spin momenta, a notion which is strongly supported when calculating the total force

exerted by light on dipolar particles, a sum of force terms that are each classed

either as achiral (felt in the same direction by enantiomers) or chiral (felt in different

directions by enantiomers). Ignoring non-reciprocal terms the achiral force exerted
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on a particle in the Rayleigh limit (size << λ) is given by [43],

Fachiral =∇(ℜ{αe}We + ℜ{αm}Wm)︸ ︷︷ ︸
gradient force

+ 2ωℑ{αe}pe + 2ωℑ{αm}pm︸ ︷︷ ︸
radiation pressure

− k4

6πc

(
ℜ{α∗

eαm} + |αc|2
)
P +

k4

6πc
ℑ{α∗

eαm}Pi︸ ︷︷ ︸
recoil

,

(7.6)

where αe, αm and αc are electric, magnetic and chiral dipole polarisabilities (although

the inclusion of |αc|2 in Eq. (7.6) might be surprising, it—no longer a pseudoscalar

due to squaring—accounts for an achiral recoil force term experienced by chiral

particles, here grouped into the total achiral force Fachiral), We and Wm are electric

and magnetic energy densities, pe and pm are electric and magnetic contributions to

canonical momentum p = pe+pm, and P = (1/2)ℜ{E∗×H} and Pi = (1/2)ℑ{E∗×

H}. In Eq. (7.6) terms are grouped to distinguish gradient forces (related to the field

energy density gradient), radiation pressure (a direct interaction between the field

and matter) and recoil forces (caused by matter recoiling from its own radiation after

excitation). Grouping similarly the terms of the total chiral force that can be induced

by an electromagnetic field we find that the canonical spin emerges proportional to

chiral pressure:

Fchiral = ω∇(ℜ{αc}h)︸ ︷︷ ︸
helicity gradient

+ 2ωkℑ{αc}sc︸ ︷︷ ︸
chiral pressure

−ω
k4

3π
(ℜ{α∗

eαc}Se + ℜ{α∗
mαc}Sm)︸ ︷︷ ︸

spin recoil

. (7.7)

while the helicity density h = −ℑ{E∗ ·H}/(2ωc) is responsible for gradient force [149]

and electric and magnetic parts Se and Sm of total spin induce chiral recoil forces.
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In fact Eq. (7.7) differentiates between the way that canonical and Poynting spin

can communicate with matter because unlike canonical spin, Poynting spin can only

couple to relatively weaker recoil forces (compared to radiation pressure). Comparing

Eq. (7.6) and Eq. (7.7) we can conclude that for a small particle with non-zero chiral

polarisability, canonical spin and Poynting spin couple to forces that are directly

analogous to those coupled to by canonical momentum and spin momentum∗.

By nature both Eq. (7.6) and Eq. (7.7) have broad scope for manipulation and

for this reason the optical force literature tends to write equations inconsistently,

sometimes using cross sections σ∗, sometimes polarisabilities α∗, and in many cases

using different vectors that do not separate interaction and recoil terms (Golat [43]

recently clarified these different force representations). Rarely (if ever besides [53])

is the chiral pressure term in Eq. (7.7) given as a single vector; often instead (for

instance [150, 151]) given proportional to the subtraction S − ∇ × P/(2ω2). Un-

derstanding that there is a fundamental link between spin, the curl of the Poynting

vector sp and a third physically meaningful vector sc simplifies matters.

7.1.2 In a helicity basis

To solidify our claim that canonical sc and Poynting spins sp are essentially chiral

incarnations of light’s orbital and spin currents [33] we can perform what turns out

to be a remarkably simple substitution of fields written in a helicity basis. While

some core results in this subsection were reported in our original publication [31] our

∗We emphasise that Eq. (7.7)is a general expression of chiral force separated into gradient,
pressure and recoil terms. While, as we shall see, it is possible for canonical and Poynting spins
to be equal and opposite in some specific situations, meaning chiral pressure becomes proportional
to sp, only canonical spin can be associated generally with chiral pressure, in the same way as
canonical momentum is associated with radiation pressure in Eq. (7.6) even though it may be
possible circumstantially for canonical and spin momenta to be equal and opposite.
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understanding has broadened significantly through recent research [37].

Instead of the traditional electric-magnetic representation of light, a description

using an electric field E and magnetic field H, we may express monochromatic light

as a right handed field [comprised of the pair (ER,HR)] and a left handed field [the

pair(EL,HL)], coupled together by a modified set of Maxwell equations. Within the

right and left handed fields the electric and magnetic fields are specially linked via

HR(r) = (−i/η)ER(r) and HL(r) = (+i/η)EL(r) [152] where η =
√
µ0ϵ0, a feature

arising after applying Faraday’s law to the angular spectrum representation of right-

and left-circular plane waves:

E(r) =

∫∫∫
Ẽ(k)eik·rd3k

=

∫∫∫
[ẼR(k)êR(k) + ẼL(k)êL(k)]eik·rd3k

= ER(r) + EL(r),

(7.8)

H(r) =
1

η

∫∫∫
k

k
× Ẽ(k)eik·rd3k

=
1

η

∫∫∫
[−iẼR(k)êR(k) + iẼL(k)êL(k)]eik·rd3k

= HR(r) + HL(r).

(7.9)

We have used (k/k) × êR = −iêR and (k/k) × êL = +iêL to obtain Eq. (7.9), with

êR/L(k) representing the right- and left-handed circular basis vectors for a plane wave

with wavevector k (see for example [153]). Note that the relations between (ER,HR)

and (EL,HL) imply that in a pure-helicity field (which is physically realisable) the

electric and magnetic field phasors are proportional everywhere in space, sharing

the same polarisation structure in agreement with the known fact that C lines of

pairs of right and left handed E and H fields coincide with each other [154] and
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Riemann-Silberstein vortices [155, 156]. Now, to substitute E = ER + EL and H =

−i (ER − EL) /η into a certain quantity is to separate that quantity into right- and

left- handed photon contributions. Doing this for the dual canonical momentum

density, for example, reads [128]

p =
1

4ω
ℑ{ϵ0E∗ · (∇)E + µ0H

∗ · (∇)H}

=
1

4ω
ℑ{ϵ0[E∗

R + E∗
L] · (∇)[ER + EL] +

µ0

η2
[iE∗

R − iE∗
L] · (∇)[−iER + iEL]}

=
ϵ0
2ω

ℑ{E∗
R · (∇)ER + E∗

L · (∇)EL}

= pR + pL.

(7.10)

With similar algebra we can simplify the same substitution made in the definitions

of spin momentum, canonical spin and Poynting spin, and find striking connections

between them,

ps = ps
R + ps

L, (7.11)

sc =
1

k
(pR − pL), (7.12)

sp =
1

k
(ps

R − ps
L). (7.13)

Equation (7.12) shows that canonical spin arises if there is a non-zero difference

between the canonical momentum carried by right- and left-handed photons, and

similarly, Poynting spin is generated when there is a discrepancy in left-/right-handed

spin momentum Eq. (7.13).

We can draw geometric conclusions from Eqs. (7.12) and (7.13), too. Often

in an evanescent wave or a beam it is simple to define ‘longitudinal’ and ‘trans-

verse’ directions based on the field’s direction of propagation (hence the significance

of transverse spin and spin momentum [2, 52]). From the discussions of [145] (and
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as we shall soon see) it is tempting to associate sc and sp with longitudinal and

transverse components of total spin S. Yet, it is not possible to define longitudinal

and transverse directions in general interference because phasefronts may become

complicated surfaces requiring that the direction of phase increase needs to be de-

fined locally, usually via a local wavevector [56, 57] that is proportional to canonical

momentum Eq. (7.10). Since pR − pL is not generally parallel to pR + pL it cannot

be a general conclusion that sc always points in a local longitudinal direction with

reference to the local wavevector, and likewise for Poynting spin and the transverse

direction.

7.1.3 Time-varying light

So far we have only treated time-averaged quantities calculated for monochromatic

waves in free space yet, besides a small complication, it is also possible to construct

an equivalent time-varying spin decomposition. In truth the spin vector S which we

said in chapter 2 was, according to a continuity equation, the flow of helicity density

h, corresponds to just one of an infinite number of conserved quantities discovered

and named ‘zilches’ by Lipkin [72].

One interpretation of why the zilches are infinite in number is that the instanta-

neous fields E and H are simply a pair of rungs on a ladder of infinitely differentiable

fields, and each pair of rungs share a set of Maxwell-like equations, symmetric under

a continuous transformation that results in a conserved quantity related to the dif-

ference in number of right- and left-handed photons [35]. That the zilches and their

fluxes tend to be ignored in favour of helicity is in part because of the familiarity of

its dimensions, and due in time-harmonic fields to time derivatives simplifying to a

multiplication by a constant, ∂/∂t→ −iω, making the entire hierarchy of conserved
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quantities and flows including helicity density and spin proportional for monochro-

matic light [73]. But in general the zilches and their fluxes are distinct from each

other and arise from different symmetries of the form of Maxwell’s equations; the

continuous dual symmetry of the equations [invariance to continuous exchange of

E and H according to a transformation angle θ, Eq. (5.18)] gives rise to the con-

servation of helicity density while for instance chirality density, often colloquially

interchanged with helicity density, is conserved from the symmetry of Maxwell’s

equations to transformations of vector potentials [77, 157]†. It is in fact the chirality

density that is the gauge-independent quantity, whose flow F(r, t) is defined as [72,

73, 78, 158]

F =
1

2
(E × (∇×H) −H× (∇× E)) . (7.14)

Immediately we may split this expression of chiral flow into terms resembling sc and

sp using the same vector identities that obtain Eq. (7.2) and Eq. (7.3):

F =
1

2
[(E · (∇)H−H · (∇)E) + ∇× (E × H)] . (7.15)

We have arrived at a more general expression of what are chiral-flow-equivalent

terms to canonical and Poynting spin in Eq. (7.2), valid for polychromatic light at

all instants—though they are not the same as the actual time-dependent versions of

sc and sp that relate to the flow of helicity. These we may obtain in the Coulomb

gauge by appropriately swapping the fields for vector potentials, E → A and H → C.

A third term [ρ/(2ϵ)]H appended to Eq. (7.15) can account for electric charge which

give the electric field divergence, ∇ · E = ρ/ϵ .

†Chirality density C, associated with F given by Tang and Cohen [78], is C = [ϵ0E · (∇× E) +
(1/µ0)B · (∇×B)]/2, which in monochromatic light simplifies using phasors to −ωℑ{E∗ ·H}/(2c2)
[73]. On the other hand, helicity density in monochromatic light is h = −ℑ{E∗ ·H}/(2ωc) = cC/ω2

[36, 76]. The two are non-proportional, distinct quantities in time-dependent fields.
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7.1.4 As 4-vectors

Building further upon our physical understanding of canonical and Poynting spin we

shall attempt to appreciate how the spin decomposition transforms between reference

frames in the relativistic sense. To do so we must additionally calculate the time

components of S, sc and sp and construct a 4-vector version of the spin decomposi-

tion which holds across both spatial and temporal components. Each of the total,

canonical and Poynting spin vectors can, as we show, be expressed by combining

4-vectors related to the electric and magnetic fields (or rather, the field strength

tensor) in some vector operation that acts over four dimensions, but which can no

longer be written so conveniently as in three dimensions (e.g., with ∇·, ∇×).

Instead, we represent a 4-vector by a scalar expression for its µth component

where µ, like any other Greek index used in this section (ν) is free to range from

0 to 3, the 0 index corresponding to the vector’s time component. Careful use

and repetition of multiple indices with special tensors can encode inter-component

multiplication and summation. For example, ∂iXi ≡
∑
∂iXi = ∂1X1 + ∂2X2 + ∂3X3

where i = (1, 2, 3) ≡ (x, y, z) is equivalent to ∇ · X and ϵijk∂
jXk ≡ ∇ × X, where

ϵijk is the Levi-Civita symbol. Note that there is no sign difference between a 3-

vector expressed by raised and lowered indices (i.e., X i and Xi) but that there is

a difference for 4-vectors and 4-tensors in the sign of some elements, in accordance

with the Minkowski metric ηµν = diag(−1, 1, 1, 1) that transforms Xµ = ηµνX
ν .

More detail may be found in [159] and (specific to this section) in our original work

[31].

An electric field in one reference frame is a mixture of both electric and mag-

netic fields from another reference frame. The mechanics of a Lorentz transform

and this mixing of electric and magnetic fields are incorporated into the (phasor-
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representation) field strength tensor Fµν ,

Fµν =


0 −Ex/c −Ey/c −Ez/c

Ex/c 0 −µ0Hz µ0Hy

Ey/c µ0Hz 0 −µ0Hx

Ez/c −µ0Hy µ0Hx 0

 = ∂µAν − ∂νAµ, (7.16)

a 4-tensor defined by the derivatives of the electric 4-potential Aµ = (ϕ/c,A)T and

that may be converted to the instantaneous version via Fµν = ℜ{Fµν exp(−iωt)}.

Similarly defined by the magnetic potential Cµ = (ψ,−iωµ−1
0 (∇×A))T is the dual

electromagnetic tensor (a pseudo-tensor) Gµν = ∂µCν − ∂νCµ.

Already knowing the spatial definitions of the spin decomposition vectors we

can use the two 4-tensors and 4-potentials to define the 4-vectors corresponding

to total spin Sµ = (S0,S)T , sµp = (s0c, sc)
T and sµp = (s0p, sp)T such that the spin

decomposition works across all four components, i.e., Sµ = sµc + sµp. In the Coulomb

gauge for which ∇ ·A = ϕ = 0 and ∇ ·C = ψ = 0, these vectors are:

Sµ =
1

4
ℜ{A∗

νG
νµ + C∗

νF
νµ} =

 −ℑ{E∗ ·H}/(2ωc)

S

 , (7.17)

sµc =
1

4
ℜ{A∗

ν (∂µCν) − C∗
ν (∂µAν)} =

 −ℑ{E∗ ·H}/(2ωc)

sc

 , (7.18)

sµp =
1

4
ℜ{C∗

ν (∂νAµ) − A∗
ν (∂νCµ)} =

 0

sp

 . (7.19)

Total spin’s time component is the helicity density h = −ℑ{E∗ ·H}/(2ωc), whose

flux is the familiar spatial portion S according to a continuity equation [35]. We see,
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interestingly, that in the sum Sµ = sµc + sµp this time component is supplied entirely

by canonical spin for Poynting spin’s time component is zero.

7.2 Examples of the decomposition

In this section we shall apply Eq. (7.2) to a handful of monochromatic scenarios, first

in an evanescent wave where we recreate the finding of [145] for a linearly polarised

wave, then in a linearly polarised Gaussian beam, an azimuthal beam and a linearly

polarised vortex beam. For each example we contextualise the decomposition by

highlighting the direction of the (sometimes orthogonal) pressure and recoil force

terms of Eq. (7.7). A particularly surprising result is found in the centre of the

linearly polarised vortex where there lies a two-dimensional dark spot.

7.2.1 Evanescent waves

An evanescent wave, polarised with a mixture of TE and TM components, has the

following electric and magnetic phasors when propagating in the +z direction and

decaying in amplitude in the +x direction with decay constant γ =
√
k2z − k2,

E =


Ap

kz
k

As

−iAp
γ
k

 eikzz−γx H =
1

η


−As

kz
k

Ap

iAs
γ
k

 eikzz−γx, (7.20)

The complex amplitudes As and Ap determine the polarisation of the wave, for

example if (As, Ap) = (1, 0) then the wave is TE-polarised, if Ap = ±iAs then

the wave is circularly polarised. Depending on the polarisation of the wave the
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orientation of S, sc and sp,

S

W
=

1

ωkz
[γŷ + kσẑ] , (7.21)

sc
W

=
1

ωkz

[
k2z
k
σẑ

]
, (7.22)

sp
W

=
1

ωkz

[
γŷ − γ2

k
σẑ

]
, (7.23)

changes; in these expressions the wave’s polarisation is accounted for by what is the

degree of circular polarisation in the sense of a plane wave, σ = 2ℑ{AsA
∗
p}/(|As|2 +

|Ap|2), equal to 0 when the wave is linearly polarised and σ = ±1 when circularly

polarised. We have normalised each vector by the x-dependent energy density W of

the evanescent wave,

W = ϵ0
k2z
k2
e−2γx1

2

(
|As|2 + |Ap|2

)
. (7.24)

The total spin Eq. (7.21) of the wave carries a polarisation dependent (∝ σ) ẑ

component and a polarisation independent transverse ŷ component which is well-

understood [52], but what the authors of [145] identified is that this transverse com-

ponent is a product only of Poynting spin Eq. (7.23) whose ŷ component is equal

to that of S. However for an elliptically polarised wave σ ̸= 0, both canonical and

Poynting spins acquire a longitudinal component so it is untrue that Poynting spin

directly corresponds to helicity-independent transverse direction, tempting though

it may be to suggest. Quite surprisingly the Poynting spin in a circularly polarised

wave points backwards, compensating in its sum with the too-large canonical spin

that is scaled by kz/k (kz > k). Referring Eqs. (7.21)-(7.23) to the chiral force

equation Eq. (7.7), we see that only relatively weaker chiral recoil forces act in the

transverse direction in agreement with [150] while both recoil force and the relatively
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stronger chiral pressure (∝ sc) can be exerted on a particle parallel to the propaga-

tion direction—transverse and longitudinal forces in an evanescent wave are caused

by physically distinct light-matter interactions.

7.2.2 Beams

Earlier, we suggested that the Poynting spin term infuses the familiar total spin

vector S with the effects of OAM, that twist the Poynting vector into curling vortices,

and those of non-uniform, doughnut-shaped intensity profiles, in a coupling which

has striking implications for structured light. That is why in this subsection we

will calculate Eq. (7.2) for three linearly polarised, focussed beams: an x̂ polarised

Gaussian beam, an azimuthally polarised doughnut beam with planar wavefronts

and an x̂ polarised vortex beam with helical wavefronts. Strong focussing in each of

these beams introduces out-of-plane, longitudinal ẑ components that oscillate out of

phase with the in-plane transverse field, imparting electric and magnetic spin vectors

with transverse components. Factors differentiating the three beams—the intensity

profile, presence of OAM, electric and magnetic polarisation—drastically influcence

the orientation and strength of canonical spin sc and Poynting spin sp.

Non-paraxial vortex beams are notoriously challenging to model mathemati-

cally because they cannot currently be described by closed-form analytical expres-

sions. All three beams are created numerically using an angular spectrum integration

method [160], an approach that can also generate non-paraxial vector vortex beams

by first forcing the transverse electric field to match the beam’s paraxial description

precisely in the focal plane, before calculating the magnetic field and the rest of the

electric field (all of its components outside the focal plane, as well as its longitudinal

component on the focal plane) using Maxwell’s equations. While any beam gener-
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ated this way is perfectly physical (satisfying Maxwell’s equations), one potential

consequence is polarisation asymmetry between the transverse E and H fields in the

focal plane—there, only the magnetic field’s transverse components can inherit the

effects of strong focussing because, as we said, the transverse electric field compo-

nents are forced to conform to the paraxial beam expression (we might say the beam

is electric-biased). But by use of a discrete duality transform we can superimpose

an electric-biased and magnetic-biased beam (where the magnetic field matches the

paraxial description in the focal plane) to obtain a combined beam which matches

previous expansions of the linearly polarised vortex’s fields‡ [105]. The vectors that

are of interest to us, S, sc, sp, and P, are all dual-symmetric quantities. In our sub-

sequent discussions each beam propagates in the ẑ direction such that any mention

of the ‘transverse plane’ refers to the xy plane.

First, the Gaussian beam decomposed in Fig. 7.2(a). Gaussian non-uniformity

in the magnitude of the Poynting vector across the face of the beam means that even

though P is purely longitudinal, ∇ × P is non-zero giving Poynting spin, propor-

tional to this curl, a non-zero component in the transverse plane, consistent with the

well-understood presence of ẑ components of the electric and magnetic fields which

develop along with azimuthal transverse spin due to focussing. Neither total spin nor

its decomposed parts contain longitudinal components because the beam is linearly

polarised in the transverse plane. The linearly polarised Gaussian beam’s spin de-

composition resembles that of the linearly polarised (σ = 0) evanescent wave, in that

S is entirely transverse and supplied only by sp while sc = 0, but this sp-transverse-

‡In the published version of this work, an electric biased vortex beam is used which, as a
consequence, has a non-zero longitudinal component in the total SAM density S · ẑ (which is equal
to longitudinal magnetic SAM density Sm · ẑ). This alternative beam is a perfectly physical—but
less symmetric in polarisation—vortex beam and contains the same canonical spin phenomenon
that we identify in the vortex beam of this thesis.
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spin correspondence does not survive into the next example of the azimuthal beam.

In Fig. 7.2(b) P, S, sc, and sp are plotted for the azimuthal beam, the electric

field being linearly polarised and oriented azimuthally around the centre of the beam

in the xy plane, with the orthogonal magnetic field oriented radially. Once more

strong focussing creates a transverse circulation of total spin S, though this time it

is only contributed by the magnetic field (elliptically polarised in the ρz plane, radial

in the xy plane) because the electric field is in fact completely linearly polarised in 3D.

Organised in an enclosing, bright ring, most of the beam’s energy density surrounds

a dark spot at the centre of the beam, but this dark spot does not embed the beam

with OAM and has a topological charge l = 0. Like the Gaussian beam, then, it is

the variation in the magnitude |P| alone that creates Poynting spin in the transverse

plane. Unlike the Gaussian beam, however, canonical spin sc also circulates in the

transverse plane around the beam axis, contradicting the notion that could be drawn

from the Gaussian beam and evanescent wave examples that Poynting spin is always

responsible for transverse components of S.

Finally, the x̂ polarised vortex beam. Only this beam of the three so far

simulated in this section possesses OAM with sculpted, helical wavefronts, which

impart transverse components to the Poynting vector P and profoundly influence the

geometry of the sc and sp vectors in ways that the Gaussian beam and l = 0 azimuthal

beam cannot accomplish. Though paraxially the beam is linearly polarised, after

focussing both E and H fields obtain a slight ellipticity in the transverse plane

giving longitudinal components to the electric and magnetic spin densities, Se and

Sm, beside the dark axis of the beam, organised into four lobes with alternating

sign. However the dual spin density, S = Se + Sm as plotted in the third row of

Fig 7.2(c), has no longitudinal component because those of the electric and magnetic

contributions cancel completely as was reported previously [105]. Now that P twists
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Vortex (l = 1, x-pol)Azimuthal (l = 0)Gaussian
a b c
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Figure 7.2: Decomposition of the total spin S of three focussed beams, columns (a)-(c), an x̂-
polarised Gaussian beam, an azimuthal beam (topological charge l = 0) and an x̂-polarised vortex
beam (l = 1). Each beam propagates along the z axis. In the first row the beam’s normalised
energy density in the focal plane (an xy plane) is plotted along with electric (blue) and magnetic
(green) polarisation ellipses (which are oriented in 3D and elliptical due to the strong longitudinal
polarisation component introduced by focussing). The second, third, fourth, and fifth rows show
the Poynting vector P, total spin S, canonical spin sc, and Poynting spin sp plotting separately each
vector’s transverse components (projected as white arrows on to the xy focal plane) and longitudinal
components (projected as red arrows onto the xz and yz planes). Arrows in the final three rows
are plotted in a consistent scale [the vector addition of arrows in the fourth and fifth rows would
recover the third row in accordance with Eq. (7.2)]. Beams are generated numerically using the
method described in [160]. Adapted from [31].
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azimuthally around the centre of the vortex its curl and therefore sp ∝ ∇×P both

gain a ẑ component, longitudinal to the beam according to the right hand rule, which

is strongest at the centre of the vortex. Yet there is no longitudinal component to

the total spin S. The only way that S · ẑ = 0 while sp · ẑ ̸= 0 is if canonical spin

sc points, in the longitudinal direction, equally and opposite to Poynting spin so

that S · ẑ = (sc + sp) · ẑ = 0. Recalling the chiral force equation Eq. (7.7) we

are reminded that chiral pressure, the interaction term, points in the direction of

canonical spin while chiral recoil forces depend on the electric and magnetic parts

of total spin, S = Se + Sm—the implication being that at the centre of the linearly

polarised vortex where S · ẑ = 0 and both electric and magnetic spin densities are

zero, a relatively strong axial chiral pressure force is present! Chiral enantiomers

with differently signed chiral polarisabilities should experience opposing longitudinal

forces in the centre of the linearly polarised vortex which, we might interpret as a

conversion of OAM to chiral momentum, pR − pL = ksc from Eq. (7.12), given that

sp ∝ ∇ × P, sc and thus chiral pressure all three switch direction in an oppositely

handed beam (note that the longitudinal SAM density S · ẑ of the beam remains

zero, so there is not necessarily an orbit-to-spin angular momentum conversion).

Chiral interactions between OAM and dipolar particles [an assumption of Eq. (7.7)]

have been predicted only relatively recently [76, 97, 161] and these are understood

to depend on the strong longitudinal field components brought about through beam

focussing. But our identification of an axial chiral pressure force, dependent on the

sign of the topological charge of a linearly polarised vortex, seems only to hinge on

P having a non-zero curl parallel to the beam, something which should still persist

in the paraxial limit (albeit significantly weakened) even if polarisation is confined

to the transverse plane. Although it was shown around twenty years ago that OAM-
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dependent absorption did not occur in dipolar particles in the paraxial limit§ [162,

163], forces according to Eq. (7.7) arise due to extinction.

7.2.3 Spin-free chiral forces

Subtleties between the force terms in Eq. (7.7) compounded by the geometry of

the three vectors S, sc, and sp create some scope for confusion, particularly if we

claim that the axial chiral force which we predict to exist at the centre of a linearly

polarised vortex is ‘in the absence of spin’. For instance it is known that a linearly

polarised evanescent wave, consistent with our equations in section 7.2.1, exhibits a

a lateral chiral force proportional to its transverse spin [150] which could be argued

a ‘spin-free’ force since the wave may be excited by a linearly polarised source. Here

we will distinguish this force from what we have predicted in the previous section,

in two ways.

Even though it may be excited by a linearly polarised source the TE (TM)

evanescent wave itself is elliptically polarised in the magnetic (electric) field, the

plane of the polarisation ellipse parallel to the direction of propagation, its spin

vector transverse and parallel to the direction of the predicted lateral chiral sorting

force. What we have predicted in the middle of the linearly vortex beam contrasts

sharply because the chiral force, proportional to sc, points longitudinally despite the

beam being linearly polarised in the transverse plane and S = 0 in the beam’s dark

centre; we would describe this force as being spin-free in a very literal sense, not

simply that the beam can be generated from a linearly polarised source.

Secondly, as the authors of [150] explain the evanescent wave’s lateral chi-

ral force is a recoil term and arises from a dipolar particle’s unbalanced radiation.

§It is very much possible in focussed beams [97].
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Evanescent wave from Centre of linearly polarised
linearly polarised illumination vortex beam

Chiral force Fchiral Fchiral ̸= 0 (transverse) Fchiral ̸= 0 (longitudinal)
Type of chiral force Spin recoil force Fchiral ∝ S Chiral pressure force Fchiral ∝ sc

negligible in small particles dominant in small particles
Total spin S = sc + sp S ̸= 0 S = 0

Canonical spin sc sc = 0 sc ̸= 0 (longitudinal)
Poynting spin sp sp ̸= 0 (transverse) sp = −sc

Table 7.1: Comparison of the features of predicted chiral forces with reference to the spin decom-
postion in a linearly polarised evanescent wave [150] and the centre of a linearly polarised vortex.
Adapted from [31].

Meanwhile the vortex beam’s chiral force derives from the relatively stronger chiral

pressure—an enantiomer feels this longitudinal force because, for instance, it experi-

ences more impacts from right-handed photons than left-handed photons (recall that

we showed sc ∝ pR − pL). We summarise this discussion in Table 7.1

7.3 Chapter summary

One of the initial aims of the results of this chapter, published in [31], were to

better understand what at current is a little-known decomposition of light’s SAM

density vector, S = sc + sp, into two terms which we called canonical spin sc and

Poynting spin sp. For it was realised that this decomposition runs parallel to a well-

established expression of the Poynting vector P = c2p + c2ps as a sum of canonical

momentum p and spin momentum ps [33] which is important in our understanding of

achiral optical forces and definitions of momentum density in light that relate to the

Abraham-Minkowski dilemma. We showed that canonical spin and Poynting spin

are chiral analogies to canonical and spin momentum, in that the two spin terms

are proportional to the difference in their achiral linear momentum counterparts

carried by right- and left-handed photons, that is sc = (pR − pL)/k and sp = (ps
R −
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ps
L)/k. Canonical spin gives rise to chiral pressure, a direct field interaction force that

enantiomers feel in opposite directions while Poynting spin, proportional to ∇ × P

and incorporating light’s OAM, manifests only in weaker chiral recoil forces felt by

particles in the Rayleigh regime [all in accordance with Eq. (7.7)]. It is interesting to

ask whether between total spin S and canonical spin sc calculated in free space and

dispersive media there also exists an analogy to the Abraham-Minkowski dilemma.

Both canonical and Poynting spins could be measured by detecting their cor-

responding chiral forces, isolated, in different scenarios. Canonical spin could, we

suggest, be detected at the centre of a linearly polarised vortex beam where it in-

duces a longitudinal chiral pressure force while total spin (producing chiral recoil

force) is zero in addition to achiral forces being minimal due to vanishing transverse

E and H components. Careful choice of the beam’s wavelength with respect to

the chiral particles probing the beam (such that the particle’s electric polarisability

switches sign) would make it possible for the enantiomers to be trapped in the centre

of the vortex by achiral gradient forces that point in the direction of decreasing field

intensity, where they may then respond preferentially to chiral pressure. That said,

a complete analysis of the total force on a small chiral particle using its polarisabil-

ity would be needed to determine the feasibility of an experiment. Poynting spin,

on the other hand, could be measured in a linearly polarised evanescent wave by

detection of its lateral chiral force, predicted by [150], which is a recoil force that

is only contributed to by Poynting spin as [145] and we have established. A similar

experimental set up to that which detected lateral forces in evanescent waves due to

spin momentum [58] could be used.

As well as finding the physical significance of sc and sp we wished to demon-

strate what we believe to be the two primary advantages to the spin decomposition

Eq. (7.2), that might benefit the research community. The first relates to the fact
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that given the current literature surrounding chiral optical forces, it is difficult to de-

velop a consistent intuition which one can use to judge how an electromagnetic field

such as a beam would interact with matter. Conventionally we might plot the spin

(via polarisation ellipses) and flow of kinetic momentum (via the Poynting vector) of

a beam to gain a fairly good picture of its characteristics, though many crucial details

of how matter responds to the beam remain hidden until force calculations are done

in full. The decomposition of the linearly polarised vortex is an excellent example

as we showed that while total longitudinal spin S · ẑ = (sc + sp) · ẑ = 0 is zero in the

beam center, canonical and Poynting spins can individually be non zero, satisfying

sc · ẑ = −sp · ẑ. We were then led to predict the existence of an axial chiral force

in the absence of total spin, a fact which is not at all obvious if we naively assume

that the field polarisation ellipses are enough to judge whether or not chiral forces

are present. We have provided a link between total spin, related to polarisation el-

lipses, and the vorticity of the Poynting vector (Poynting spin) which are reasonably

intuitive quantities that can be used to infer details about chiral interaction forces

that stem from the difference in momentum carried by oppositely handed photons.

Besides this intuition, the spin decomposition offers another advantage in sim-

plifying optical force expressions. The literature is perhaps notoriously inconsistent

in expressing achiral and chiral forces, tending to be divided between expressions

written using cross-sections or with polarisabilities. It is conventional to divide the

total force into three terms, constituting a gradient force, an interaction force (non-

reciprocal) and a recoil force. However, because the spin decomposition is scarcely

known the chiral interaction force is often written by authors in an unnecessarily

complicated way (for example Eq. (2) of [150]). Using a definition of chiral momen-

tum pc = ksc [53] simplifies the term and results in Eq. (17) of [43], where one sees

that chiral and achiral force terms mirror each other with a very similar structure.



Chapter 7. Re-interpreting spin angular momentum density 156

Our last remark is that the spin decomposition Eq. (7.2) can be formulated in

other wave fields including those of linearised acoustics (spin-0) and linearised grav-

ity (spin-2) which both have different vector and tensor structures to light, and may

therefore be of interest to a broader community beyond optics. Gravitational waves

are tensor waves that, at large distances from their source, may be described by a

linear wave theory without self-interaction, governed by expressions which can be

made to take a remarkably similar form to Maxwell’s equations as Barnett showed

[164]. The basis for this formulation is the symmetric metric perturbation tensor

hµν whose time components are zero in the transverse-traceless gauge in far fields

[17]. By treating the rows or columns (identical due to symmetry) of the non-zero

spatial portion of the perturbation tensor hij as vector potentials Ai = hij êj we

may then define tensor analogues to the electric and magnetic fields whose ith rows

(3-vectors) are Ei = iω(hij êj) and Hi = (1/µ0)∇ × (hij êj). Subsequent gravita-

tional analogues of the energy density, Poynting vector, SAM density, helicity den-

sity take an almost identical form to the electromagnetic definitions after choosing

ϵ0 = 1/(c2µ0) = c2/(32πG) except for summation over an additional index, and a

factor of two accounting for the wave’s spin-2 character in SAM density and helicity

density. Acoustic waves, on the other hand, are described in a linearised theory by

a scalar pressure field P and a vector velocity field v. A longitudinality condition

∇ × v = 0 reduces polarisation degrees of freedom to one such that both helicity

density and the acoustic wave’s canonical spin analogue is zero (presumably acoustic

canonical spin would relate to momentum discrepancy between left- and right-handed

phonons, though phonons in longitudinal acoustic waves are spin-0 particles and do

not have any handedness, hence the canonical spin equaivalent and helicity density

are zero). Many geometric relationships between acoustic quantities, including the

proportionality between the acoustic analogies of spin and the curl of the Poynting
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vector, have been given in [165]. Table 7.2 compares quantities including canonical

and Poynting spin equivalents in light, acoustic waves and gravitational waves in

linearised theories.

Linearised Acoustics Electromagnetism Linearised gravity

Field phasors
P = −iωρφ
v = ∇φ

E = iωA

H = 1
µ0
∇×A

Ei = iω(hij êj)

Hi = 1
µ0
∇× (hij êj)

Energy density 1
4
(β|P |2 + ρ|v|2) 1

4
(ϵ0|E|2 + µ0|H|2) 1

4
(ϵ0E

∗
i · Ei + µ0H

∗
i ·Hi)

Helicity density 0 − 1
2ωc

Im{E∗ ·H} − 1
ωc

Im{E∗
i ·Hi}

Poynting vector 1
2
Re{P ∗v} 1

2
Re{E∗ ×H} 1

2
Re{E∗

i ×Hi}

SAM density 1
2ω

Im{ρv∗ × v} 1
4ω

Im{ϵ0E∗ × E + µ0H
∗ ×H} 1

2ω
Im{ϵ0E∗

i × Ei + µ0H
∗
i ×Hi}

Canonical spin 0 1
4ω2 Re{E∗ · (∇)H−H∗ · (∇)E} 1

2ω2 Re{E∗
i · (∇)Hi −H∗

i · (∇)Ei}

Poynting spin 1
2ω2∇× 1

2
Re{P ∗v} 1

2ω2∇× 1
2
Re{E∗ ×H} 1

ω2∇× 1
2
Re{E∗

i ×Hi}

Table 7.2: Comparison of time-averaged quantities in monochromatic acoustic, electromagnetic
and gravitational waves, adapted from [31] and inspired by [17, 19, 166]. For electromagnetism,
the potential is considered to be in the Coulomb gauge. For linearised gravity Einstein’s index
summation convention is used with hij being spatial components of the metric perturbation in the
transverse-traceless gauge, while êi are basis vectors. We have specially chosen the parameters
ϵ0 = 1/(c2µ0) = c2/(32πG) so that the gravitational wave’s time-averaged energy density resembles
the electromagnetic definition.



Conclusions

This marks the end of this thesis. We began with the two background chapters 2

and 3, the first’s broad focus including time-averaged electromagnetic quantities re-

lating to light’s energy, linear and angular momentum, and with the second chapter

aimed more specifically at the rest of the thesis by developing a picture of light’s po-

larisation structure and topological properties in paraxial and non-paraxial regimes.

In chapters 4, 5, and 6, we presented our original findings on the many special

features of dark spots in paraxial and non-paraxial fields, including non-diffracting

structures that extend infinitely into the far field and intersecting polarisation sin-

gularities, and proposed a simple technique to synthesise them experimentally and

control their position. We expect our discussions could prove useful in dark trapping,

sub-wavelength optical microscopy techniques and in topological control. Lastly in

chapter 7 we presented a decomposed representation of monochromatic light’s spin

angular momentum density. Rather than a sum of separate contributions from the

electric and magnetic fields we gave an alternative sum of two terms, called canonical

spin and Poynting spin, that relate respectively to the difference in canonical and

spin momentum carried by left- and right-handed photons. We predicted using our

expressions that a longitudinal chiral pressure force exists at the dark centre of a

linearly polarised vortex beam, in absence of dual spin angular momentum density.
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water-surface waves. Physics of Fluids 33. doi:10.1063/5.0056333 (2021).

19. Bliokh, K. Y., Punzmann, H., Xia, H., Nori, F. & Shats, M. Field theory spin
and momentum in water waves. Science Advances 8. doi:10.1126/sciadv.
abm1295 (2022).
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