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Abstract

Deep learning methods have seen increasing importance and rapid advancements in time-
series forecasting. These methods, which leverage the power of neural networks, have
proven to be highly effective in capturing complex patterns and dependencies in data,
offering significant improvements over traditional forecasting techniques. With the ability
to model nonlinear relationships and learn from big data, deep learning has revolutionised
time-series forecasting, leading to more accurate and robust predictions across a diversity
of domains.

In wireless communications, numerous time-series forecasting problems arise, e.g.,
predicting channel states and user mobility. Addressing these challenges is crucial for
optimising network performance, enhancing energy efficiency, and ensuring robust commu-
nications. Deep learning provides powerful tools to tackle these problems by learning from
historical data and making precise predictions, enabling adaptive network management.

This thesis presents two significant applications of deep learning for solving time-series
forecasting problems in wireless communications:

First, we propose a novel deep learning-based algorithm for channel prediction and
energy efficiency (EE) optimisation in an intelligent reflecting surface (IRS) aided Terahertz
communication system. Specifically, a multi-antenna base station with an IRS with massive
reflecting elements is designed to serve multiple moving users. A deep learning-based
prediction-optimisation scheme is presented where we first propose a transformer encoder
with channel index embedding (TE-CIE) deep learning model for time-varying channel
prediction. With the help of channel prediction, an EE optimisation algorithm is then
designed to maximise the EE in advance based on the predicted channel state information
(CSI). Finally, we combine both methods to construct a deep learning-based prediction-
optimisation scheme. Specifically, the future CSI is predicted by TE-CIE and the IRS phase-
shift and precoding matrices are optimised in advance. Simulation results demonstrate
that our proposed channel prediction method achieves close-to-optimal performance in
terms of low mean absolute error and a much faster speed than the two baseline models.
We demonstrate that the proposed EE optimisation algorithm outperforms the baseline
algorithms in terms of much better EE under diverse parameter settings. Finally, the
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proposed prediction-optimisation scheme achieves at least twice the EE improvement
compared to the baseline methods in the literature.

Second, we focus on designing a robust deep-learning model to predict user mobility
under malicious Global Navigation Satellite System (GNSS) spoofing attacks for un-
manned aerial vehicle (UAV) swarm position optimisation. UAV swarms have become a
promising solution to enhance modern wireless communication in complicated environ-
ments. However, due to the existence of real-world malicious attacks, the performance of
prediction and optimisation methods used for UAV swarms are easily degraded. In this
paper, we propose a novel deep learning-based user mobility prediction, user assignment
and drone position optimisation scheme for a UAV swarm-enabled wireless communi-
cation system with the existence of malicious GNSS spoofing attackers. Specifically, a
robust deep learning-based user mobility prediction model, namely denoising autoencoder
recurrent transformer (DART), is designed and various efficient user assignment and drone
position optimisation methods are proposed. Simulation results show that the proposed
deep learning-based prediction-optimisation scheme can provide up to 30% higher overall
sum rate compared with the adversarial trained long short-term memory (LSTM) baseline
and almost doubled the overall sum rate compared with the vanilla LSTM baseline.

To reduce the computational complexity of the DART model without compromising
its performance, we employ a technique called knowledge distillation for sustainable
purposes. By distilling the knowledge learned by the complex DART model into a simpler
and more computationally efficient architecture, such as a smaller Gated Recurrent Unit
(GRU) model, we aim to retain the essential information for user mobility prediction and
drone position optimisation. This distilled model can offer much faster inference times
and reduced resource requirements while preserving much of the performance achieved
by the original DART model, making it more practical for real-time deployment in UAV
swarm-enabled wireless communication systems under the threat of malicious GNSS
spoofing attacks. Simulation results demonstrate that the optimised sum rate using the
distilled GRU student model’s predicted user locations can achieve almost 99% compared
to the Transformer teacher model. Meanwhile, the inference time of the student model is
only 4% compared to the teacher model.

In conclusion, our research emphasises the potential of deep learning for time-series
forecasting in next-generation wireless communication scenarios. By addressing key
forecasting problems, e.g., predicting channel states and user mobility, our deep learning-
based algorithms demonstrate significant improvements in energy efficiency and network
performance. The proposed solutions for Terahertz communications, IRS systems, and
UAV swarm networks show the robustness and accuracy of deep learning models in
complex and dynamic environments. Future research will continue to explore innovative
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deep-learning techniques to solve additional time-series forecasting challenges and further
optimise wireless communication systems.
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Chapter 1

Introduction

In recent years, deep learning techniques have significantly transformed the landscape
of wireless communications [1–3]. By exploiting the capabilities of neural networks,
deep learning models can effectively address the complex and dynamic nature of wireless
communication systems. These models excel in processing large volumes of data and
adapting to various communication scenarios, thereby offering substantial enhancements
over traditional methods. The application of deep learning in wireless communications
has led to breakthroughs in optimising network performance, improving Energy Efficiency
(EE), and enhancing security measures, making it a necessary tool for advancing next-
generation communication technologies.

Some recent comprehensive surveys [1–3] on the application of deep learning in mobile
and wireless networking highlight the substantial progress made in the field, demonstrating
how deep learning models can improve various aspects of wireless communication, includ-
ing signal detection, spectrum management, and network optimisation. These surveys also
emphasise the effectiveness of deep learning methods in handling the intricate and variable
conditions of wireless networks including tackling time-series forecasting problems.

In the era of modern wireless communications, a diversity of time-series forecasting
challenges emerge, including the prediction of channel states and user mobility [1–3].
Solving these issues is essential for maximising network performance under the dynamic
communication environment, boosting EE, and ensuring reliable communications. Deep
learning offers effective solutions to these challenges by analysing historical data and
generating accurate forecasts, which facilitate adaptive network management.

For example, accurately predicting channel states can significantly improve the alloca-
tion of resources and the overall efficiency of the network. Deep learning models, such as
Recurrent Neural Networks (RNNs) [4] and Convolutional Neural Networks (CNNs) [5],
have shown great promise in this area by capturing the temporal and spatial dependencies
in wireless channel data. Additionally, forecasting user mobility patterns allows for better
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1.1 Aim

planning and resource distribution in the network, leading to enhanced user experiences
and reduced latency. Models like long short-term memory (LSTM) networks [6] and
transformer-based architectures [7] excel at learning these mobility patterns from vast
datasets, providing accurate and timely predictions.

Furthermore, deep learning offers promising solutions for robust prediction problems
in wireless networks, such as mitigating the impact of adversarial attacks. By leveraging
advanced techniques in anomaly detection and pattern recognition, deep learning models
can identify and mitigate the effects of malicious activities, ensuring the security and relia-
bility of communication systems. This capability is crucial in protecting the network from
adversarial attacks that aim to disrupt network operations or compromise data integrity.

1.1 Aim

This thesis aims to leverage advanced deep-learning methodologies to address critical
time-series forecasting challenges in wireless communication systems. By focusing on
the prediction of dynamic parameters such as channel states and user mobility patterns,
the research aims to enhance network performance by optimising EE and improving
overall system efficiency. Additionally, the thesis seeks to develop robust predictive
models capable of mitigating the impact of adversarial attacks carried out by malicious
attackers and other security threats in wireless networks. Through comprehensive empirical
evaluations and innovative algorithmic developments, the goal is to establish deep learning
as a critical tool for achieving sustainable, secure, and reliable wireless communications in
diverse environments.

1.2 Objectives

The first objective of the thesis centres on the development of a sophisticated deep learning-
based algorithm tailored for Intelligent Reflecting Surface (IRS) aided Terahertz (THz)
communication systems [8–10]. The first aspect of this objective involves creating a
predictive model using deep learning techniques to forecast the behaviour of the wireless
channel. THz frequencies are highly sensitive to environmental conditions and obstacles,
demanding accurate channel prediction to optimise transmission reliability and throughput.
Deep learning models such as Transformer-based architectures will be explored to capture
the complex temporal dependencies of the Channel State Information (CSI). These models
aim to predict how the channel conditions will change over time, enabling efficient network
management and resource allocation. The second aspect focuses on enhancing EE within
IRS-aided THz communication systems [11–13]. IRS technology utilises reconfigurable
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1.3 Contributions

reflecting surfaces to manipulate signal propagation, thereby enhancing coverage and
capacity. A sophisticated EE optimisation algorithm will be employed to optimise the
phase shift and precoding matrices of IRS elements based on predicted channel states. This
optimisation seeks to maximise EE by minimising power consumption while maintaining
or enhancing communication quality. Heuristic optimisation methods will be explored to
achieve this objective effectively.

The second objective of the thesis focuses on designing a robust deep learning model
specifically tailored to predict user mobility patterns within Unmanned Aerial Vehicle
(UAV) swarm-enabled wireless communication systems [14–17], particularly under the
threat of malicious Global Navigation Satellite System (GNSS) spoofing attacks [18–20].
The primary challenge lies in ensuring accurate user mobility prediction under poten-
tial disruptions caused by GNSS spoofing attacks. GNSS spoofing can manipulate user
location information, leading to erroneous positioning of UAVs and impacting communi-
cation reliability and efficiency. The deep learning model aims to mitigate these effects
by learning from historical data and identifying patterns that are reliable to such adver-
sarial disruptions. Key components of this objective include developing a deep learning
architecture, such as the denoising autoencoder recurrent transformer (DART), capable
of learning and predicting complex user mobility behaviours in dynamic and uncertain
environments. The model will be trained on extensive datasets to capture diverse sce-
narios and adapt to varying levels of spoofing intensity. Additionally, techniques like
knowledge distillation [21] will be explored to transfer the learned knowledge from the
complex DART model to a more computationally efficient architecture such as the Gated
Recurrent Unit (GRU) [22], ensuring scalability and real-time applicability. Furthermore,
this objective entails exploring efficient user assignment strategies and optimising drone
position planning algorithms based on deep learning predictions. By integrating these
predictive and optimisation capabilities, this objective seeks to enhance the reliability and
effectiveness of UAV swarm-enabled wireless communication systems under the persistent
threat of GNSS spoofing attacks.

1.3 Contributions

In this thesis, we have studied deep learning applications to IRS-aided THz and UAV
swarm communication systems.

Specifically, Chapter 3 proposes a novel deep learning-based algorithm for channel
prediction and EE optimisation in an IRS-aided THz communication system. The contri-
butions of this chapter are as follows:
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• We extend the commonly used IRS system models [23–25] with fixed user position
and static fading channel in the literature to a novel time-varying setting. More
specifically, user mobility and time-varying THz channel characteristics are consid-
ered in our system model. Our user-mobility-based system model is more realistic
for THz IRS systems since even a slow-moving user will cause a significant change
in the CSI. Such a severe scenario greatly impacts CSI-based optimisation and cannot
be neglected in THz IRS system models.

• We design a deep learning-based channel prediction method to predict the channel
matrix between the IRS and the users for the following time slot so that the BS
and IRS can optimise the precoding matrix and phase shifts in advance. The pro-
posed low-complexity multi-channel CSI prediction deep learning model, namely
Transformer Encoder with a Channel Index Embedding (TE-CIE), outperforms the
literature’s conventional multi-layer perception (MLP) and RNN-based channel pre-
diction methods. The proposed TE-CIE model minimises the amount of sequential
operation by the attention mechanism and allows parallelised prediction of multiple
channels by using the CIE technique.

• We study the EE optimisation problem for IRS-aided multi-user multiple-input
single-output (MU-MISO) wireless systems with THz communications and pro-
pose a covariance matrix adaptation evolution strategy (CMA-ES) and Dinkelbach’s
method-based EE optimisation algorithm. Our proposed CMA-ES-based optimisa-
tion method can maintain the same complexity as the cross-entropy (CE) method in
the literature by using the same number of iterations and candidates whilst providing
a much better EE optimisation performance than all three baselines.

• We propose a novel deep learning-based channel prediction and EE optimisation
scheme which outperforms the baseline methods by at least doubling the EE. The
proposed prediction-optimisation scheme guarantees high EE optimisation perfor-
mance with low overall computational complexity compared with the methods in the
literature. To the best of our knowledge, this is the first work that predicts the CSI of
a time-varying channel in an IRS-aided THz network using a deep learning-based
technique and then optimises the network EE.

Chapter 4 proposes a novel deep learning-based user mobility prediction, user as-
signment and drone position optimisation scheme for a UAV swarm-enabled wireless
communication system in the presence of malicious GNSS spoofing attackers. We further
distil the proposed Transformer-based teacher model into a smaller GRU model based
on the knowledge distillation method to reduce the time complexity of the model while
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maintaining its prediction power. The main contributions of this chapter are summarised
as follows:

• We propose a deep learning-based user mobility prediction, user assignment and
drone position optimisation scheme which is robust to malicious GNSS spoofing
attacks. The proposed deep learning model forecasts user locations, on which
we construct and solve assignment and position optimisation problems. It is worth
noting that we measure the spoofing success hit ratio as a spoofing probability instead
of considering a specific spoofing activity. Therefore, our proposed algorithm can
work in all cases of spoofing activities in general.

• We apply a realistic user mobility model, i.e., the exploration and preferential
(EPR) model, which can better represent real-world human mobility than the widely
used Random Waypoint (RWP) model. This setting enhances the authenticity and
reliability of our simulation results and theoretical analyses.

• We design a deep learning-based user mobility prediction method, namely DART,
to predict the user locations for the next time slot so that the UAV swarm can
optimise the user assignment and drone positions for the next time slot in advance.
Based on the proposed deep learning architecture, we design an adversarial pre-
training and fine-tuning scheme where the model learns to detect noisy locations and
reconstructs them to enhance the robustness of our deep learning against malicious
GNSS spoofing attacks.

• We distil the Transformer teacher model into a smaller GRU model based on the
knowledge distillation method to reduce the time complexity of the model while
maintaining its prediction power.

• We construct a robust optimisation problem which takes the user mobility prediction
error into account. We have added a mathematical expression for the robust version
of the optimisation problem considering the uncertainty of user location estimation
to enhance the novelty of the paper and demonstrate the difference between the
optimisation studied in this paper and those studied in the closely relevant prior
works.

• We investigate two user assignment and drone position optimisation methods, succes-
sive convex approximation (SCA) and successive differential programming (SDP),
and demonstrate the superiority of the latter over the former in terms of a larger
maximum turning angle range, better numerical stability and lower overall computa-
tional complexity through convergence and complexity analysis. Our proposed SDP
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method has proven to be more efficient and robust compared with those traditional
SCA-based methods in the closely relevant prior works such as [26–28].

1.4 Thesis Structure

The remainder of this thesis is organised as follows:
Chapter 2 is dedicated to providing the preliminaries and overview of IRS and THz

communications, UAV swarm networks, GNSS malicious spoofing attacks, time-series
deep learning algorithms, adversarial training and knowledge distillation techniques. Chap-
ters 3 and 4 are the main body of the thesis, and in each chapter, a novel solution to a
specific deep learning application problem in IRS-aided THz and UAV swarm communica-
tion systems is proposed and studied. The conclusions and some suggestions for future
works are provided in Chapter 5.

1.5 Research Publications

1.5.1 Papers Included In This Thesis

The contributions and novelties of this thesis have been drawn from and are disseminated
through the following technical papers:

Papers Published

Papers that have been published or accepted are listed as follows:
Chapter 3: [C1] Q. Wu, Y. Zhang, C. Huang, Y. Chau, Z. Yang and M. Shikh-Bahaei,

"Energy Efficient Intelligent Reflecting Surface Assisted Terahertz Communications," in
2021 IEEE International Conference on Communications Workshops (ICC Workshops),
Montreal, QC, Canada, 2021, pp. 1-6, doi: 10.1109/ICCWorkshops50388.2021.9473736.

Chapter 4: [C2] Q. Wu, Y. Zhang, Z. Yang and M. Shikh-Bahaei, "Knowledge
Distillation-Based Robust UAV Swarm Communication Under Malicious Attacks," in 2024
IEEE International Conference on Communications Workshops (ICC Workshops), Denver,
CO, USA, 2024, pp. 1023-1029, doi: 10.1109/ICCWorkshops59551.2024.10615342.

Chapter 3: [J1] Q. Wu, Y. Zhang, Z. Yang and M. Shikh-Bahaei, "Deep Channel
Prediction-Based Energy-Efficient Intelligent Reflecting Surface-Aided Terahertz Com-
munications," in IEEE Transactions on Wireless Communications, vol. 23, no. 4, pp.
2946-2960, April 2024, doi: 10.1109/TWC.2023.3304597.
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Chapter 4: [J2] Q. Wu, Y. Zhang, Z. Yang and M. Shikh-Bahaei, "Deep Learning for
Secure UAV Swarm Communication Under Malicious Attacks," in IEEE Transactions on
Wireless Communications, In Press, doi: 10.1109/TWC.2024.3419923.

1.5.2 Papers Not Included In This Thesis

Papers that are not included in this thesis are listed as follows:
[C1] Y. Zhang, Q. Wu and M. Shikh-Bahaei, "Ensemble Learning Based Robust Coop-

erative Sensing in Full-Duplex Cognitive Radio Networks," in 2020 IEEE International
Conference on Communications Workshops (ICC Workshops), Dublin, Ireland, 2020, pp.
1-6.

[C2] Y. Zhang, Q. Wu and M. Shikh-Bahaei, "Vertical Federated Learning Based
Privacy-Preserving Cooperative Sensing in Cognitive Radio Networks," in 2020 IEEE
Globecom Workshops (GC Wkshps), Taipei, Taiwan, 2020, pp. 1-6.

[J1] Y. Zhang, Q. Wu and M. R. Shikh-Bahaei, "On Ensemble Learning-Based Se-
cure Fusion Strategy for Robust Cooperative Sensing in Full-Duplex Cognitive Radio
Networks," in IEEE Transactions on Communications, vol. 68, no. 10, pp. 6086-6100,
Oct. 2020.

[J2] Y. Zhang, Q. Wu and M. Shikh-Bahaei, "A Pointer Network Based Deep Learning
Algorithm for User Pairing in Full-Duplex Wi-Fi Networks," in IEEE Transactions on
Vehicular Technology, vol. 69, no. 10, pp. 12363-12368, Oct. 2020.

24



Chapter 2

Preliminaries

This chapter briefly lays the background behind the research that will be presented later in
the thesis. The starting point is the introduction of IRS and THz communications, followed
by the concept of UAV swarm networks and GNSS malicious spoofing attacks. After that,
we briefly introduce the contents of deep learning algorithms for time-series modelling,
adversarial training and knowledge distillation techniques.

2.1 Intelligent Reflecting Surface

An IRS is an innovative technology poised to revolutionise wireless communication
networks by enhancing signal strength, coverage, and overall efficiency [8, 29, 30, 23,
31, 32]. At its core, an IRS consists of a large number of small, reconfigurable reflecting
elements that can intelligently manipulate electromagnetic waves. These elements, often
implemented as passive reflecting surfaces or meta-surfaces, are strategically deployed
to control and optimise the propagation of wireless signals in various environments. The
concept draws inspiration from concepts in meta-materials, beamforming, and Multiple
Input Multiple Output (MIMO) technologies, aiming to overcome the limitations of
traditional wireless systems and pave the way for next-generation wireless communication.

At the heart of an IRS lies its ability to passively manipulate radio waves [9, 31, 29, 33].
The individual elements within an IRS, equipped with tunable properties, can alter the
phase, amplitude, and polarisation of incident electromagnetic waves. By doing so, they
can effectively redirect, focus, or shape the wireless signals in a manner that optimises
the transmission and reception characteristics of the overall communication system. This
precise control allows for the mitigation of signal blockages, reductions in interference,
and the creation of custom signal patterns tailored to specific communication requirements.

The deployment scenarios for IRSs span a wide range of applications, encompassing
both indoor and outdoor environments [8, 34]. In indoor settings such as offices, malls, or
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smart homes, IRS can mitigate signal attenuation caused by obstacles, improving signal
quality and coverage. Similarly, in outdoor scenarios like urban areas or stadiums where
signal interference and fading are common challenges, IRS can enhance connectivity
by intelligently redirecting signals around obstacles or toward desired locations. This
technology has the potential to significantly enhance the performance of wireless networks,
enabling seamless connectivity in environments previously considered problematic for
wireless communication.

Moreover, the adaptability and programmability of IRS elements contribute to their
versatility [8, 35–37]. Through advanced algorithms and machine learning techniques,
these surfaces can dynamically adjust their configurations in response to changing environ-
mental conditions, user demands, or network requirements. This adaptive capability allows
the IRS to continuously optimise signal propagation, offering a high degree of flexibility
and efficiency in wireless communication networks.

In summary, IRSs represent a paradigm shift in wireless communication technologies.
By harnessing the principles of wave manipulation and employing an array of tunable
elements, IRS has the potential to revolutionise signal propagation, significantly improve
network performance, and enable the seamless connectivity demanded by the evolving
landscape of wireless communication.

2.2 Terahertz Communications

THz communication systems represent a cutting-edge technology poised to revolutionise
wireless communication [10, 11]. Operating in the electromagnetic spectrum between
microwave and infrared frequencies, THz waves span from 0.1 to 10 THz, offering
huge potential for high-speed data transmission, imaging, and sensing applications. The
technology utilises the unique properties of THz waves, promising unprecedented data
rates and capabilities beyond the limitations of existing wireless technologies.

At the core of THz communication lies its remarkable bandwidth capacity [38, 39].
With frequencies much higher than those used in current wireless systems, THz waves
enable data transmission rates reaching multiple terabits per second. This huge bandwidth
potential holds the promise of mitigating network congestion and meeting the escalating
demands of data-intensive applications such as high-definition video streaming, virtual
reality, and the Internet of Things (IoT).

Moreover, THz waves have exceptional abilities to penetrate various materials while
being non-ionising, making them suitable for imaging and sensing applications [40].
This characteristic makes THz communication systems invaluable for applications like
medical imaging, security screening, and material characterisation, enabling non-invasive
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and high-resolution imaging through materials that are opaque to visible light or other
electromagnetic waves.

However, deploying THz communication systems comes with its set of challenges
[10, 11, 38, 39]. One significant challenge is the propagation loss of THz waves due
to absorption by atmospheric gases and moisture, limiting their range and reliability for
long-distance communication. Scientists and engineers are actively exploring innovative
solutions such as antenna design, signal processing techniques, and material advancements
to mitigate these propagation challenges and expand the practical applications of THz
technology.

In conclusion, THz communication systems represent a paradigm shift in wireless
communication, offering unparalleled data rates and various applications in a diversity of
fields. Despite facing challenges related to propagation limitations, ongoing research and
technological advancements continue to drive the potential of THz waves, paving the way
for a new era of high-speed, high-capacity wireless communication and transformative
applications across industries.

2.3 UAV Swarm Communication Networks

A UAV swarm communication network represents an innovative paradigm in modern tech-
nological landscapes, leveraging the collaborative potential of multiple drones to establish
a robust and versatile communication infrastructure [15, 41]. Comprising interconnected
drones operating in unison, this network facilitates seamless data exchange, offering a
dynamic solution across various industries and applications. Through coordinated efforts,
UAV swarm communication networks redefine the conventional methods of information
dissemination, surveillance, and connectivity.

At its core, a UAV swarm communication network is characterised by the intercon-
nectivity and collective intelligence of multiple unmanned aerial vehicles [16, 14]. These
drones communicate with each other using sophisticated algorithms and protocols, enabling
them to act as nodes in a decentralised network. By utilising this collective intelligence,
the swarm can adapt to changing environments, dynamically reconfigure, and efficiently
distribute tasks among individual units, ensuring optimal performance and coverage.

One of the fundamental advantages of a UAV swarm communication network lies in
its flexibility [17, 42]. Unlike traditional communication systems constrained by fixed
infrastructure, these networks are highly mobile and adaptable. Drones within the swarm
can immediately reposition themselves to establish and maintain connectivity, even in
challenging or remote environments where conventional networks may be inaccessible or
impractical.
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Moreover, the scalability of UAV swarm communication networks is a key asset. By
integrating additional drones into the swarm, the network’s capabilities can be expanded,
allowing for increased coverage, data throughput, and redundancy. This scalability is
particularly advantageous in scenarios that demand extensive coverage or rapid response,
such as disaster management, search and rescue operations, or large-scale surveillance
initiatives.

In essence, UAV swarm communication networks represent a cutting-edge approach to
communication and information exchange. Their ability to autonomously organise, adapt,
and collaborate enables a wide array of applications across industries, including but not
limited to disaster relief, precision agriculture, infrastructure inspection, and military oper-
ations. As technology continues to evolve, the potential for UAV swarm communication
networks to revolutionise connectivity and data transmission is vast, promising innovative
solutions to contemporary challenges.

2.4 GNSS Malicious Spoofing Attacks

GNSS has become integral to various sectors, providing precise positioning, navigation,
and timing services worldwide [43, 18]. However, the increasing reliance on GNSS
for critical infrastructure, transportation, finance, and military applications has faced
vulnerabilities, notably the threat of malicious spoofing attacks. A GNSS spoofing attack
involves the transmission of falsified signals to deceive GNSS receivers, leading to incorrect
positioning, navigation, or timing information. This deceptive manipulation poses severe
risks, potentially causing significant disruptions and security breaches across diverse
sectors.

The mechanism of a GNSS spoofing attack involves generating counterfeit signals
that mimic authentic satellite signals received by GNSS receivers [19, 20]. Attackers can
produce fake signals using sophisticated equipment, broadcasting fake data to override
authentic signals. By imitating real GNSS signals, attackers mislead receivers into cal-
culating erroneous location information, leading to inaccurate positioning or navigation
guidance. Unlike traditional jamming attacks that disrupt signal reception, spoofing at-
tacks manipulate the receiver into accepting false location data as genuine, making them
particularly challenging to detect.

The impact of a successful GNSS spoofing attack is multifaceted and far-reaching
[44, 18]. In transportation, such attacks can cause chaos by misleading autonomous
vehicles, drones, or maritime vessels, leading to accidents or deliberate deviations from
intended routes. Within critical infrastructure, such as power grids or telecommunication
networks, reliance on accurate timing synchronisation via GNSS makes them susceptible

28



2.5 Deep Learning Algorithms For Time-Series Modelling

to disruptions, potentially resulting in service outages or compromised data integrity.
Moreover, financial systems and stock markets heavily dependent on precise timing from
GNSS could face vulnerabilities, enabling fraudulent activities or market manipulations.

Detecting and mitigating GNSS spoofing attacks present considerable challenges. The
complex and dynamic nature of GNSS signals, coupled with the sophistication of spoofing
techniques, makes it difficult to distinguish between real and fake signals. Existing receiver
technologies often lack robust security measures, leaving them vulnerable to exploitation.
Additionally, as spoofing attacks do not disrupt signals outright, but rather manipulate
received data, traditional detection methods designed for signal interference may prove
ineffective, demanding the development of advanced detection and authentication mecha-
nisms.

The existence of GNSS spoofing attacks causes a significant threat to various sectors
heavily reliant on accurate positioning, navigation, and timing services. Understanding the
mechanisms, potential impacts, and challenges associated with detecting and mitigating
these attacks is crucial in developing robust solutions to protect critical systems and
infrastructure against malicious exploitation. Addressing these vulnerabilities demands
collaborative efforts from technology developers, policymakers, and security experts to
fortify GNSS receivers, enhance detection capabilities, and establish resilient defence
mechanisms against potential spoofing threats.

2.5 Deep Learning Algorithms For Time-Series Modelling

Time-series data involves sequential observations indexed by time, found in various
domains such as finance, weather forecasting, healthcare, and more. Analysing and
predicting patterns within time-series data requires models capable of capturing temporal
dependencies and understanding sequential information. Deep learning techniques have
emerged as powerful tools for handling time-series data due to their ability to learn intricate
patterns and relationships within sequences.

2.5.1 Recurrent Neural Network

RNNs are a class of neural networks designed for sequential data processing, enabling the
modelling of temporal dependencies [6, 22]. The architecture of RNNs involves recurrent
connections that allow information to persist over time, which is shown in Fig. 2.1 where xt

is the input and ot is the output vector to the RNN cell; ht−1 and ht refer to the hidden state
vectors of the (t−1)th and tth time slots, respectively; Wi and bi are learnable weights and
biases in the RNN cell. Each node in an RNN processes an input along with information
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Fig. 2.1 RNN architecture.

from the previous node, forming a chain-like structure that is well-suited for time-series
modelling.

However, traditional RNNs suffer from the vanishing or exploding gradient problem.
As information traverses through many time steps, gradients can become extremely small
(vanishing) or large (exploding), leading to difficulties in capturing long-term dependencies.
This limitation hinders the effectiveness of RNNs in scenarios requiring the understanding
of context over extended sequences.

Despite their limitations, RNNs have found applications in various domains, including
natural language processing, speech recognition, and time-series analysis with short-term
dependencies. Researchers have developed extensions to address the issues faced by
traditional RNNs, such as LSTM networks and GRUs.

2.5.2 Long Short-Term Memory

LSTMs were introduced to mitigate the shortcomings of traditional RNNs in capturing
long-range dependencies within sequential data [6]. The architecture of LSTM is shown
in Fig. 2.2, where xt , ft , it and ot are the input vector, the activation vector of the forget
gate, the activation vector of the input gate and the activation vector of the output gate,
respectively; ht−1 and ht refer to the hidden state vectors of the (t− 1)th and tth time
slots; ct−1 and ct refer to the cell state vectors of the (t−1)th and tth time slots; c̃t is the
cell input activation vector; W f , Wi, Wc and Wo are the learnable weight matrices in the
forget gate, input gate and output gate, respectively; b f , bi, bc and bo are the learnable
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Fig. 2.2 LSTM architecture.

bias vectors in the forget gate, input gate and output gate, respectively. LSTMs incorporate
specialised memory cells with gating mechanisms that control the flow of information.
These gates (i.e., input, forget, and output gates) enable LSTMs to selectively retain or
discard information over time, allowing them to maintain long-term dependencies more
effectively.

The design of LSTMs, with their ability to remember information over long sequences
and mitigate the vanishing gradient problem, has made them a popular choice in various
time-series modelling tasks. They excel in scenarios where capturing and learning from
complex temporal relationships across multiple time steps is crucial, such as in financial
forecasting, speech recognition, and natural language understanding.

LSTMs have proven effective in handling time-series data with irregular time intervals
or gaps and have been extensively employed in tasks involving sequential information
processing, such as stock market predictions, energy load forecasting, and medical signal
analysis. Their robustness in handling long sequences makes them a go-to choice for many
time-series modelling applications.

2.5.3 Gated Recurrent Unit

GRUs represent another advancement in the realm of RNNs, offering a simpler architecture
compared to LSTMs while maintaining competitive performance [22]. The architecture of
GRU is shown in Fig. 2.3, where xt , rt , zt and h̃t are the input vector, the activation vector
of the reset gate, the activation vector of the update gate and the candidate activation vector,
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Fig. 2.3 GRU architecture.

respectively; ht−1 and ht refer to the hidden state vectors of the (t−1)th and tth time slots,
respectively; Wr, Wz, and Wh are the learnable weight matrices in the reset gate, update
gate and candidate activation unit, respectively; b f , br, bz and bh are the learnable bias
vectors in the reset gate, update gate and candidate activation unit, respectively. GRUs
aim to address the same challenges of modelling long-term dependencies but with fewer
parameters and less complex computations compared to LSTMs.

GRUs merge the functionalities of the input and forget gates in LSTMs into a single
update gate, simplifying the network architecture. This streamlined design reduces the
computational burden, making GRUs faster to train and more suitable for datasets with
limited resources or smaller sizes.

Despite their reduced complexity, GRUs have demonstrated effectiveness in various
time-series applications, particularly when handling shorter sequences or scenarios where
computational efficiency is a primary concern. They have been employed in tasks such
as human activity recognition, speech synthesis, and music generation, showcasing their
versatility in sequential data analysis.

2.5.4 Transformer Architecture

The Transformer architecture [7], introduced in the context of natural language processing
(NLP), has reshaped sequence modelling by deviating from the recurrent structure of
RNNs. Unlike RNN-based models, Transformers rely on self-attention mechanisms, which
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Fig. 2.4 Attention mechanism in the Transformer architecture.

is illustrated in Fig. 2.4, to capture relationships between different positions in the input
sequence without recurrent connections.

Transformers leverage attention mechanisms that allow the model to weigh the sig-
nificance of each element in the sequence concerning all other elements, enabling the
extraction of complex dependencies and patterns from the entire sequence simultaneously.
This parallel processing capability makes Transformers highly efficient for handling long
sequences without the limitations of sequential computation.

Since the first Transformer [7] was proposed, there have been several significant
improvements. Bidirectional Encoder Representations from Transformers (BERT) [45]
introduced bidirectional training, allowing models to understand the context from both
directions, which significantly enhanced performance across various NLP tasks. Gener-
ative Pre-Trained Transformers-3 (GPT-3) [46], with its 175 billion parameters, demon-
strated the power of large-scale language models to perform numerous tasks with minimal
task-specific training, showcasing the scalability of Transformer models. The Vision
Transformer (ViT) [47] expanded the application of Transformers to image recognition,
outperforming traditional convolutional neural networks when pre-trained on large datasets.
Text-to-Text Transfer Transformer (T5) [48] unified NLP tasks into a text-to-text frame-
work, simplifying the model architecture and improving performance across diverse
benchmarks. Finally, the development of Multi-modal Large Language Models [49] in-
tegrated multiple modalities, enhancing the ability of models to process and generate
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content across different data types, moving towards more comprehensive AI systems.
These advancements collectively highlight the versatility and expanding capabilities of
Transformer models in various domains.

Originally designed for language tasks, Transformers have been adapted for time-series
modelling by considering the temporal nature of sequential data. Modifications such as
Temporal Transformers have been proposed, tailoring the architecture to capture temporal
dependencies within time-series data effectively.

In summary, RNNs, LSTMs, GRUs, and Transformers are prominent deep-learning
architectures used in time-series modelling, each offering distinct advantages in capturing
temporal dependencies and patterns within sequential data.

2.6 Adversarial Training

Adversarial training [50–52] is a fundamental technique in machine learning aimed at
enhancing the robustness and performance of models, especially in the domain of deep
learning. This approach involves training a model in an environment where it’s exposed to
adversarial examples—subtly modified inputs crafted to deceive the model. The primary
goal is to fortify the model against such perturbations, thereby improving its ability to
generalise and make accurate predictions on unseen data.

One aspect of adversarial training involves the creation of adversarial examples through
methods like the fast gradient sign method (FGSM) or Projected Gradient Descent (PGD).
These techniques manipulate input data by introducing imperceptible perturbations, leading
the model to misclassify or produce erroneous outputs. By incorporating these examples
into the training process, the model learns to recognise and adapt to these perturbations,
bolstering its resilience to adversarial attacks.

Adversarial training serves as a proactive defence mechanism against potential vulner-
abilities in machine learning models. Subjecting the model to adversarial examples during
training fosters a robust learning process that encourages the model to detect and counter-
act potential threats. This approach helps mitigate the risk of exploitation by adversarial
attacks in real-world scenarios, contributing to more reliable and secure AI systems.

Despite its effectiveness in improving model robustness, adversarial training comes
with its challenges and trade-offs. Incorporating adversarial examples during training
can increase computational complexity and training time since generating these examples
requires additional iterations and computations. Moreover, there might be a trade-off
between accuracy on clean data and robustness against adversarial attacks, where overly
aggressive adversarial training could lead to decreased performance on normal data.
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Adversarial training continues to be an active area of research in the pursuit of devel-
oping more resilient and trustworthy machine learning models. Ongoing studies focus
on refining techniques, exploring novel defence mechanisms, and understanding the un-
derlying vulnerabilities to create models that can better generalise across diverse and
adversarial scenarios. As AI systems become increasingly integrated into various domains,
the importance of adversarial training in fortifying these models against potential threats
cannot be understated.

2.7 Knowledge Distillation

Knowledge distillation is a technique used in machine learning to transfer knowledge from
a large, complex model (teacher) to a smaller, more lightweight model (student) [21]. This
process involves training the student model to mimic the behaviour and predictions of the
larger model by leveraging the information it provides. By distilling the knowledge from
the teacher model, the student model can achieve comparable performance with reduced
computational resources and memory requirements, making it suitable for deployment in
resource-constrained environments such as mobile devices or edge devices.

The primary goal of knowledge distillation is to compress the knowledge contained
within the teacher model into a more compact form that can be effectively learned by the
student model. This compression is achieved by training the student model not only on the
original dataset but also by incorporating additional information from the teacher model’s
predictions. The student model learns to generalise and capture the essential patterns,
relationships, and decision-making processes present in the teacher model’s predictions.

One of the key aspects of knowledge distillation is the use of soft targets during
training. Instead of relying solely on the hard labels (ground truth) from the training
data, the teacher model’s softened probabilities or logits are used as targets for the student
model. This enables the student model to learn not just the correct outputs but also the
underlying probabilities and uncertainties associated with each prediction, allowing for a
more nuanced understanding of the data distribution.

Knowledge distillation can significantly improve the performance of the student model
by transferring the knowledge encapsulated in the teacher model. The distilled knowledge
helps the student model generalise better, making it more robust against noise and variations
in the data. Moreover, the computational efficiency gained through distillation enables
faster inference times, making it practical for real-time applications where speed is crucial.

While knowledge distillation has shown promising results in various domains such as
computer vision, natural language processing, and speech recognition, it is essential to note
that the effectiveness of distillation depends on various factors, including the choice of
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teacher model, student model architecture, hyperparameters, and the nature of the dataset.
Researchers continue to explore and refine knowledge distillation techniques to enhance
their applicability and effectiveness across different machine-learning tasks and scenarios.
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Chapter 3

Deep Channel Prediction-Based
Energy-Efficient Intelligent Reflecting
Surface-Aided Terahertz
Communications

3.1 Introduction

The heavy connectivity and spectral efficiency requirements of modern wireless networks
have been attracting great attention to the energy consumption problems [53–55, 12, 56,
13, 57, 58]. Hence, EE has become an important performance indicator for designing green
and sustainable future wireless networks.

One of the most recent emerging technologies for enhancing sustainable communi-
cations, namely IRS, shows significant potential for increasing EE for modern wireless
communications [29, 30, 23, 31, 32]. An IRS consists of massive tiny reflecting elements
where each element reflects electromagnetic waves by adjustable phase shifters. IRS
adapts phase shifts to enhance beamforming to suppress interference among multiple users
[31, 29, 33]. The IRS technology has been attracting researchers because of its potential
to forward the receiving wireless signals without the help of power amplifiers, from an
energy consumption perspective [35–37]. The IRS-assisted wireless systems have been
researched by various works in the literature such as [30, 59, 60]. For example, the authors
in [60] have proposed a hardware-efficient channel modelling method for IRS systems
considering the coupling effect induced by the excessively large number of closely spaced
patch antennas. Meanwhile, the authors in [30] have studied the EE optimisation problem
for IRS-aided wireless systems. The results in [30] prove that the EE of IRS systems can
be much better than that of conventional Amplify-and-Forward relaying systems if the
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IRS phase shifts are properly designed. On the other hand, an energy-efficient IRS system
has been proposed in [59] where the scenario of an IRS with an infinitely large number of
reflecting elements serving a single user by passive beamforming is considered.

3.1.1 Prior Works

Researchers have been investigating the IRS-assisted communication systems for both
indoor and outdoor environments in recent years [8, 34]. However, a recent paper [34]
highlights the outperforming of IRS-aided communications in indoor environments as
compared to outdoor use cases due to the presence of fewer scatterers in the former, which
suggests the higher potential of deploying IRS-aided systems in indoor environments. On
the other hand, it is also promising to combine THz communications with IRS systems
to further improve the system performance of indoor communication networks. THz
communications, which enables various novel applications, has become one of the potential
technologies for ultra-high data-rate transmission [10, 11]. Due to its physical constraints,
e.g., THz waves have poorer penetration and diffraction capabilities than those of millimetre
waves and microwaves, THz systems depend more on reflection transmission compared
with conventional systems [11]. As a consequence, introducing THz technology into
the IRS systems can both overcome the shortages of THz communications and improve
data rates in conventional IRS wireless systems. However, limited works have been
published on the topic of THz-IRS systems in the literature. Two different algorithms are
applied in [23] to iteratively optimise the hybrid precoding and IRS phase-shift matrices
for the IRS-assisted THz system for maximising the sum rate of the system. Besides, a
block coordinate searching (BCS) algorithm is proposed in [24] to jointly optimise the
IRS’s coordinates, phase shifts, THz sub-bands allocation and power control for sum-rate
maximisation. However, maximising the sum rate of the system may cause an increase
in energy consumption and degrade the EE. To design a green and sustainable THz IRS
system, it is critical to optimise the EE of the system. To the best of our knowledge, the
EE optimisation problem for IRS-assisted THz communications has not been thoroughly
studied in the literature, and all the aforementioned works assume fixed user positions
with static fading channels. Although the authors in the recent paper [61] propose a
novel design of a distributed IRS framework that enhances the EE of indoor THz wireless
communication systems, the mobility issue in THz communications caused by moving
users is not taken into account.

In practice, the maximum radian Doppler frequency would be large even if the user
moves slowly due to the high-frequency nature of THz communications. For example, with
a 10 THz carrier frequency and a user moving at a speed of 1 m/s, the maximum radian
Doppler frequency is approximately as high as 33 kHz. This indicates that the THz channel
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is extremely sensitive to user motion. With such a severe Doppler effect, the fading channel
changes over time dramatically, which makes optimisation results far away from optimum
since the previously collected CSI becomes outdated in a short time. This motivates us to
develop a strong algorithm which has the capability of capturing the temporal correlation
of the THz fading channels to predict the future CSI. With the predicted CSI, the IRS-
aided MU-MISO system can optimise the phase-shift and precoding matrices in advance.
Traditional channel prediction methods include deterministic parameter-based models [62],
auto-regressive predictive models [63, 64] and adaptive filtering techniques [65]. However,
these methods either fail in non-stationary and fast-varying environments [63, 64, 62] or
require high computational complexity in computing the second-order statistics of the
time-varying channel [65].

With the rapid increase of computation power and data availability in recent years, deep
learning algorithms have become a vital part of next-generation time-series forecasting
strategies. Different from traditional domain expertise-informed parametric models, deep
learning-based forecasting methods do not require any a priori knowledge and can provide
an approach to learning temporal dynamics in a purely data-driven manner. The non-linear
transformation and the universal approximation capability enable deep learning algorithms
to learn complicated implicit patterns from massive data that traditional expertise-informed
parametric models fail to capture. In the case that the underlying data pattern is extremely
complicated, using a data-driven deep learning algorithm can significantly reduce the
human supervision required for designing a reliable expertise-informed parametric model.
Numerous successful deep learning-based time-series forecasting models have been pro-
posed in the literature including both classic models such as LSTM networks and modern
models such as Transformers [7].

The time-varying Rayleigh fading channel prediction problem has been studied in
various papers [66–68]. For example, in [66], an MLP neural network model is imple-
mented to predict the Rayleigh fading channel based on the conventional Jake’s model.
Moreover, an RNN model is proposed to further improve the prediction performance [67].
The authors in [68] propose a deep learning-based method for time-varying IRS channel
prediction, which adopts an RNN-based novel architecture for joint channel decomposition
and prediction. However, there are several drawbacks to these proposed methods. First,
the existing studies only focus on single-channel prediction and require training one model
for each channel separately, which is inefficient because the number of channels is huge.
Second, the conventional Jake’s model [69] used in [66] is deterministic, which cannot
effectively represent the randomness of real-world fading channels. Third, the MLP model
treats all past CSI equally due to its nature, which cannot extract the temporal correlation
information effectively for time-series data. Although RNN models in [67, 68] have been
proven to have a strong capability of capturing temporal correlation information, both their
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training and inference speeds are slow due to the sequential input nature of the recurrent
architecture [7]. All these drawbacks motivate us to develop an efficient and strong multi-
channel prediction model that can predict the CSI of multiple channels simultaneously in
real-time.

3.1.2 Contributions

In this chapter, we propose a novel deep learning-based time-varying fading channel
prediction and EE optimisation scheme for indoor IRS-aided THz MU-MISO systems,
where the base station (BS) and IRS have fixed positions whilst the users are moving slowly.
A modified Clarke’s Rayleigh fading model is used instead of the conventional Jake’s
model to better represent the randomness of real-world fading channels. The proposed
deep learning channel prediction method collects previous CSI to predict the next CSI of
the IRS-user channel. A TE-CIE deep learning model is developed to capture the temporal
correlation of the fading channels and predict the future CSI. Our proposed TE-CIE model
can predict the CSI of multiple channels in parallel in one model for IRS-assisted MU-
MISO systems, which is much more efficient than MLP and RNN models. In addition,
different from the sequential operation of RNN models, our proposed TE-CIE applies
the self-attention mechanism to capture the temporal correlation of the history of the CSI
data, which can be parallelised to minimise the amount of sequential computation in the
model. Thus, the proposed TE-CIE model leads to a lower time complexity for sequential
prediction than the RNN architectures proposed in [67, 68]. Based on the predicted CSI, we
study the EE optimisation problem. To maximise the EE of the system for the next time slot
in advance, a CMA-ES [70] and Dinkelbach’s method-based EE optimisation algorithm
are proposed to jointly optimise the BS’s transmit power, the precoding matrix and the
phase-shift matrix for IRS. Simulation results demonstrate that our proposed channel
prediction method achieves close-to-optimal performance in terms of low mean absolute
error (MAE) and much faster inference speed than MLP and RNN models. Moreover, the
proposed EE optimisation algorithm outperforms three baseline algorithms on static fading
channels from the existing works, i.e., the random selection (RS), local search (LS) and
CE algorithms, in terms of much better EE under diverse parameter settings. Finally, our
proposed deep learning-based prediction-optimisation scheme achieves at least two times
EE improvement compared to the baseline methods in the literature.

3.1.3 Organisation and Notations

The remainder of this chapter is organised as follows. Section 3.2 introduces the IRS-
assisted THz MU-MISO system model. Section 3.3 explains our proposed deep learning-
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Fig. 3.1 The system model structure where a multi-antenna BS equipped with Nt antennas
simultaneously serves K mobile users through an IRS with N reflecting elements.

based prediction-optimisation scheme, in which a deep learning-based channel prediction
method is proposed and the CMA-ES-based EE optimisation algorithm is studied. Finally,
the simulation results are illustrated in Section 3.4 whilst the conclusions are drawn in
Section 3.5.

Notations: (.)H , (.)−1 and ∥.∥F represent the conjugate transpose operation, the inver-
sion operation and the Frobenius norm of the matrix, respectively; x, x, X and X represent
scalar, vector, matrix and high-dimensional tensor, respectively.

3.2 System Model

Fig. 3.1 shows the system model. We consider an IRS-assisted MU-MISO THz system,
where a multi-antenna BS equipped with Nt antennas simultaneously serves K mobile
users through an IRS with N reflecting elements. According to the analysis [40], THz
is extremely sensitive to molecular absorption and atmospheric attenuation. In this case,
the THz signals can experience severe path losses, which results in a huge limitation on
communication distance and quality. Therefore, only a single reflection signal by the IRS
is considered in this work and other multi-reflection signals are all ignored due to the heavy
propagation loss for THz waves [23, 40]. Moreover, for simplicity, only one data stream is
considered for transmission to each user. Therefore, the received signal vector y of size
K×1 for all users can be written as:

y = HrΘΘΘHtWs+n, (3.1)

where the complex matrix Ht = [ht,1,ht,2, ...,ht,N ]
H with size N×Nt represents the channel

matrix between the BS and the IRS with ht,n ∈CNt×1 denoting the channel vector between
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the IRS element n and the BS; the complex matrix Hr = [hr,1,hr,2, ...,hr,K]
H with size K×N

denotes the channel matrix between the IRS and the users with hr,k ∈CN×1 representing
the channel vector between the kth user and the IRS, k = 1,2, ...,K. Moreover, ΘΘΘ =

diag[e jθ1,e jθ2, ...,e jθN ] ∈CN×N is the phase-shift matrix of the IRS, and θn ∈ [0,2π) are
the phase shifts for the nth IRS reflecting element. For practicality of the design, we assume
each IRS phase shift θ is chosen from a set of discrete values F = {0,∆θ , ...,∆θ(2b−1)}
where b is the bit-quantisation number and ∆θ = 2π/2b. The precoding matrix W ∈
CNt×K satisfies a transmit power constraint ∥W∥2

F ⩽ Pmax, in which Pmax denotes the
maximum total transmit power. It is worth noting that the precoding matrix W = FRFFBB

is a coupled hybrid precoding matrix, where FRF ∈CNt×NRF and FBB ∈CNRF×K are the
analogue precoder matrix and digital precoder matrix with NRF radio frequency (RF)
chains, respectively. Furthermore, the vector n ∈ CK×1 denotes the zero-mean and σ2

variance additive white Gaussian noise (AWGN). The transmission signal vector s ∈CK×1

meets the condition E[ssH ] = IK .
A THz indoor multi-path channel model, namely Saleh-Valenzuela model [71], is

used to describe the indoor THz channel properties for the channel vector ht,n. In such a
design, massive antennas are used to mitigate the severe path loss and molecular absorption
problems of THz channels in which only a small number of paths are effective. As a
consequence, the channel vector ht,n is expressed as:

ht,n = ζ

Ln

∑
l=1

α
(l)
n ( f ,d) ·a(Nt ,φ

(l)), (3.2)

where Nt is the number of transmit antennas; Ln is the number of paths between the IRS el-
ement n and the BS; ζ =

√
Nt
Ln

is a normalisation factor [72]; α
(l)
n ( f ,d) =

∣∣∣α(l)
n ( f ,d)

∣∣∣e jψ(l)
n

represents the complex path gain of the lth ray which is a function of the distance between
the IRS and the BS d; ψ

(l)
n is the associated independent phase shift which is uniformly

distributed over the range of [0,2π) [72], f is the frequency; the array steering vector of
an uniform linear array (ULA) is denoted by a(Nt ,φ

(l)), which can be further expressed as

a(Nt ,φ
(l)) = 1√

Nt

[
e j2πm(da/λ )sin(φ (l))

]T
,m = 1,2, ...,Nt , where da is the antenna space and

λ is the signal wavelength; φ (l) ∈ [0,2π) is the angle of departure (AoD) in the horizontal
azimuth domain for the path l. Moreover, the space between adjacent reflecting elements
dr is assumed to be much smaller than the distance between the IRS and the BS. In this
case, each ht,n consisted of the same a(Nt ,φ

(l)) whilst only one beam pattern from the BS
serves the whole elements [23]. Since the THz wave operates at a relatively high frequency,
the value of dr is considered to be much larger than the signal wavelength λ . As a result,
the mutual coupling effect is negligible in this work.
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The channel response between the nth reflecting element and the kth user hr,n,k is
modelled by a modified Clarke’s two-dimensional (2D) isotropic scattering Rayleigh
fading model [73] since the users are moving objects and Doppler effect on the phase shift
should be considered. The channel response hr,n,k at time slot t is given as follows:

hr,n,k(t) =
1√
Ln

Ln

∑
l=1

e j(wdt cosal+bl), (3.3)

where wd is the maximum radian Doppler frequency; al =
2πl+ψl

Ln
and bl are, respectively,

the angle of arrival and initial phase of the lth propagation path. Both ψl and bl are
uniformly distributed over [0,2π) for all l and they are mutually independent.

Eq. (3.3) shows that even a small user movement in the indoor scenario can result in a
large Doppler spread due to the high operating frequency of THz channels. The Doppler
spread is inversely proportional to the coherence time of the channel. Hence, for a large
Doppler spread, the channel coherence time will be smaller, which in turn entails a lower
correlation between a sample at time t and the predicted one at t + δt , where δt is the
length of a time slot. Such a large Doppler spread can cause the CSI to change rapidly over
time and make the EE optimisation results far away from optimum since the previously
collected CSI becomes outdated in a short time. Therefore, a strong time-series prediction
algorithm should be employed to capture the temporal dependency of the channel and
predict the CSI in the following time slot in advance.

3.3 Deep Learning-Based Prediction-Optimisation Scheme

In this section, we explain our proposed deep learning-based prediction-optimisation
scheme in detail, whose flow chart is illustrated in Fig. 3.2. The proposed scheme consists
of two parts, channel prediction and EE optimisation. In channel prediction, the TE-CIE
model estimates and collects the CSI of the previous M slots and uses them to predict the
CSI of the next slot. The CMA-ES algorithm and Dinkelbach’s method are then applied
to optimise EE in advance based on the predicted CSI. Accordingly, the BS and IRS can
adjust the precoding matrix and phase shift matrix based on the optimisation result.

3.3.1 Deep Learning-Based Time-Varying Fading Channel Prediction

In this section, a TE-CIE deep learning model is developed to predict the CSI matrix
between the IRS and the users of the next time slot given the channel responses of the
previous M time slots. The input of the model includes the channel index vector c ∈ ZM

and the CSI matrix X ∈ RM×2 which contains a sequence of the last M CSI values, where
the dimension 2 is due to the real part and imaginary part of the CSI. More specifically, X
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Fig. 3.2 The flow chart of the proposed deep learning-based prediction-optimisation
scheme.

is a sequence of length M of the CSI of the channel between the nth IRS element and the
kth user, hr,n,k, as in Eq. (3), i.e., [hr,n,k(t−M + 1), ...,hr,n,k(t− 1),hr,n,k(t)]T , where the
real and imaginary parts are decoupled. The output of the model is a vector containing the
real and imaginary parts of the next CSI yCSI ∈ R2.

TE-CIE Model Architecture

The TE-CIE model has four parts: input embedding layers, multiple stacked transformer
encoder layers, feature aggregation layers, and the output layer.

The input embedding layers consist of three layers: the CIE layer, the CSI embedding
layer, and the positional embedding layer. These three layers embed the channel index,
CSI, and time-step index, respectively, into a high-dimensional matrix.
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Fig. 3.3 TE-CIE model architecture.

Since there are multiple channels between the IRS and the users (i.e., NK channels) in
our MU-MISO-IRS system, we first set an integer index c to each channel, ranging from
0 to NK−1. The channel index in our proposed TE-CIE model is used as an additional
feature that enables the model to distinguish between different channels. It also allows
the model to make predictions for all channels simultaneously without training one model
for each channel separately, which significantly reduces the complexity. For each time
step, the channel index is unchanged for the same channel. Thus, the channel index vector
c = [c,c, ...,c]︸ ︷︷ ︸

M

. The channel index embedding layer maps the channel index vector into a

channel index matrix with embedding dimension dmodel. The output of the CIE layer has a
shape of CCIE ∈ RM×dmodel , which is calculated as follows:

CCIE = OneHotCIE(c)WCIE, (3.4)
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where OneHotCIE(.) refers to the one-hot encoding operation which encodes the index
vector to a sparse matrix with dimension RM×NK ; WCIE ∈ RNK×dmodel is the weight matrix
of CIE.

The CSI embedding layer is similar to the CIE layer but the input is the real part and
imaginary part of the last M CSI. The CSI embedding layer maps the CSI matrix X to
CCSI ∈ RM×dmodel , whose dimension is the same as that of CCIE. The output CCSI can be
expressed as:

CCSI = XWCSI, (3.5)

where WCSI ∈ R2×dmodel is the weight matrix of CSI embedding.
The positional embedding layer embeds the time-step index to a high-dimension matrix.

This is to add position information to the input since the TE-CIE model is not sequential
such as RNN. Let m = [0,1, ...,M] be the time-step indices of M steps, the output of
positional embedding layer CPE ∈ RM×dmodel is given by:

CPE = OneHotPE(t)WPE, (3.6)

where OneHotPE(.) is the one-hot encoding operation that encodes the time-step index
vector to a sparse matrix with dimension RM×M; WPE ∈ RM×dmodel is the weight matrix of
positional embedding.

The outputs of the CIE layer, CSI embedding layer and positional embedding layer are
then added up and passed into the stacked transformer encoder layers. The output of the
input embedding layers is:

CIE = CCIE +CCSI +CPE. (3.7)

According to the implementation in the BERT paper in [45], the element-wise addition
operation on embedding sequences is equivalent to first concatenating them together and
then passing through a fully connected layer, where the simple summing is more efficient
since the addition operation has much lower computational complexity than the matrix
multiplication operation.

The stacked transformer encoder layers contain NTE Transformer encoders, which
are proposed initially in [7]. As shown in Fig. 3.3, each layer has two sub-layers, i.e., a
multi-head self-attention mechanism and a position-wise fully-connected feed-forward
network. In addition, a residual connection [74] with layer normalisation [75] is applied
after each of the two sub-layers.

Let Xlast ∈ RM×dmodel denote the output of the last layer, the output of the multi-head
attention YMHA ∈ RM×dmodel of each TE layer can be expressed as:

Yhead,i = softmax

(
XlastWQ

i (XlastWK
i )

M
√

dk

)
XlastWV

i , (3.8)
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YMHA = Concat(Yhead,1, ...,Yhead,h)WO, (3.9)

where dk = dmodel/h is the depth of each head and h is the number of heads; the projection
are parameter matrices WQ

i ∈ Rdmodel×dk , WK
i ∈ Rdmodel×dk , WV

i ∈ Rdmodel×dk and WO ∈
Rdmodel×dmodel; Concat(.) is the concatenation operation which concatenates the output of
each head Yhead,i ∈ RM×dk into a new matrix with dimension RM×dmodel .

In addition to the multi-head attention, each TE layer also applies a fully connected
feed-forward network to each position identically and separately. It consists of two linear
transformations with a Gaussian Error Linear Unit (GELU) activation function in between.
Let XFFN ∈RM×dmodel denote the input of the fully-connected feed-forward network, whose
output YFFN ∈ RM×dmodel is given by:

YFFN = GELU(XFFNW1 +b1)W2 +b2, (3.10)

where W1 ∈ Rdmodel×d f f , W2 ∈ Rd f f×dmodel , b1 ∈ Rd f f and b2 ∈ Rdmodel are projection
matrices and bias vectors, respectively; d f f is the inner-layer hidden dimension.

The feature aggregation layer contains a self-attention aggregation layer, a batch nor-
malisation [76] and a dropout layer [77] for regularisation. The self-attention aggregation
layer provides a weighted-sum operation to the final output of the stacked transformer
encoder layers for both dimensionality reduction and temporal feature aggregation. More
specifically, since the final output of the stacked transformer encoder layers is a sequence,
it is vital to apply a sequence-to-vector transformation so that only one vector representing
the predicted CSI can be obtained.

Let XSTE ∈RM×dmodel denote the final output of the stacked transformer encoder layers,
the output of the self-attention aggregation layer ySAA ∈ Rdmodel is given by:

YSA = softmax(XSTEWSA +bSA) , (3.11)

ySAA =
M

∑
t=1

(xSTE,i⊙ySA,i) , (3.12)

where WSA ∈ Rdmodel×dmodel and bSA ∈ Rdmodel are the weight matrix and bias vector for the
linear transformation of XSTE, respectively; ⊙ refers to the element-wise multiplication.

The output layer provides a simple linear regression operation to the output of the
feature aggregation layer, which is given by:

yCSI = ŷSAAWo +bo, (3.13)

where ŷSAA ∈ Rdmodel is the feature aggregation output after passing through the batch
normalisation and dropout layers; Wo ∈ Rdmodel×2 and bo ∈ R2 are the weight matrix and
bias vector for the output linear regression layer, respectively.
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Model Training

In the training phase, the training CSI sequence is split into multiple training samples by
applying the sliding window approach [78]. Each sample contains M historical CSI as the
input and one CSI of the next slot as the target.

For model parameter optimisation, the widely used Adam optimiser is applied due to
its fast convergence and stability [79]. The cosine annealing method [80] is used as the
learning rate scheduler for the training. With the i-th run, the scheduled learning rate is
given by:

ηt = η
i
min +

1
2
(
η

i
max−η

i
min
)(

1+ cos
(

Tcur

Ti
π

))
, (3.14)

where ηmin and ηmax are minimum and maximum allowed learning rates, respectively; Tcur

refers to the number of epochs since the last restart.

3.3.2 EE Optimisation Problem

In this section, we explain the proposed EE optimisation algorithms on the predicted
CSI of the next time slot. First of all, an EE optimisation problem is formulated for the
IRS-assisted THz MU-MISO system. Specifically, to solve the optimisation problem, the
zero-forcing method is applied to cancelling the co-channel interference, the Dinkelbach’s
and Lagrange multiplier method is used to optimise the power allocation, and the CMA-ES
algorithm is proposed to optimise the IRS phase-shift matrix.

Problem Formulation

We aim to jointly optimise the IRS phase-shift matrix ΘΘΘ and the hybrid precoding matrix
W based on our system model in this chapter. From Eq. (3.1), the achievable sum-rate R
for all users can be written as:

R =
K

∑
k=1

log2

1+

∣∣∣hH
r,kΘΘΘHtwk

∣∣∣2
∑

K
i=1,i̸=k

∣∣∣hH
r,kΘΘΘHtwi

∣∣∣2 +σ2

 , (3.15)

where wk is the kth column vector of W. The total system transmit power is expressed as
[30]:

Ptotal =
K

∑
k=1

(ξ pk +PUE,k)+PBS +NPn(b), (3.16)

where pk = |wk|2 is the transmit power intended for user k; ξ := ν−1 with ν being
the efficiency of the transmit power amplifier; PBS is the total hardware static power
consumption at BS; PUE,k is the hardware static power dissipated by user k; Pn(b) represents
the power consumption of each IRS phase shifter with b-bit resolution. Moreover, the EE
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is defined as the ratio between the system achievable sum rate and the total system power
consumption, i.e., ηEE ≜ R/Ptotal, which is written as:

ηEE =

∑
K
k=1 log2

(
1+

|hH
r,kΘΘΘHtwk|2

∑
K
i=1,i ̸=k

∣∣∣hH
r,kΘΘΘHtwi

∣∣∣2+σ2

)
∑

K
k=1(ξ pk +PUE,k)+PBS +NPn(b)

. (3.17)

Then the EE optimisation problem can be formulated as:

(ΘΘΘopt,Wopt) =argmaxηEE,

s.t. θn ∈ F , ∀n = 1, ...,N,

∥W∥2
F ⩽ Pmax

pk ⩾ 0, ∀k = 1, ...,K,

(3.18)

where ∥W∥2
F = ∑

K
k=1 pk = ∑

K
k=1 |wk|2 is the total transmit power.

Because of the non-convex objective function over two variables (ΘΘΘopt,Wopt), it is
challenging to solve the optimisation problem in Eq. (3.18) directly. Thus, we introduce
an iterative method which follows a similar procedure as in [23]. Firstly, we select one
phase value for each θn from F successively. Then the candidate phase shift matrix ΘΘΘ is
constructed. After that, the CMA-ES algorithm is applied to the iterative optimisation of
the phase-shift matrix ΘΘΘ. Meanwhile, with a given ΘΘΘ in each iteration, we can obtain the
optimal W with the effective channel matrix, i.e., Heq = HrΘΘΘHt , through the Dinkelbach’s
method and zero-forcing algorithm.

CMA-ES Algorithm

CMA-ES [70] is an iterative evolution strategy algorithm, in which the next generation’s
population is sampled from a multivariate normal distribution over a covariance matrix.
The CMA-ES algorithm continuously chooses the best local individual to enhance the
population’s fitness. The main advantages of the CMA-ES algorithm are its rotational
invariance, fast converging rate and its ability to efficiently solve the optimisation problem
by only sampling a few data points.

The kth offspring’s coordinates at the (g+1)th generation x(g+1)
k are drawn from Eq.

(3.19) where λ denotes the population size; the mean value of the distribution m(g) ∈ Rn,
the step size σ (g), and the covariance matrix C(g) ∈ Rn×n are computed as Eqs. (3.20)-
(3.22), where cm ⩽ 1 is the learning rate, usually set to 1; µ is parent population size; c1

and cµ are the learning rates of the rank-one and rank-µ updates, respectively; δ (hσ )∈ 0,1
is a parameter of minor correction for unusual conditions; x(g+1)

i:λ indicates the ith best
individual in the population of size λ and the positive recombination weights ω is subject
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x(g+1)
k ∼m(g)+σ

(g)N (0,C(g)), k = 1, ...,λ , (3.19)

m(g+1) = m(g)+ cm

µ

∑
i=1

ωi

(
x(g+1)

i:λ −m(g)
)
, (3.20)

C(g+1) =cµ

λ

∑
i=1

ωiy
(g+1)
i:λ y(g+1)⊤

i:λ︸ ︷︷ ︸
rank-µ update

+(1 −c1− cµ ∑ω j︸ ︷︷ ︸
can be close or equal to 0

)C(g)+ c1 p(g+1)
c p(g+1)⊤

c︸ ︷︷ ︸
rank-one update

,

(3.21)

lnσ
(g+1) =

cσ

dσ

(
∥p(g+1)

c ∥
E∥N (0,I)∥

−1

)
+ lnσ

(g), (3.22)

Algorithm 1 CMA-ES with Dinkelbach’s method for EE optimisation (outer loop)
1: Define Imax as the maximum number of iterations
2: Initialise m0, C0 and σ0

3: for i = 0, ..., Imax do
4: Randomly sample λ candidates {ΘΘΘk}λ

k=1 using mi, Ci and σ i according to Eq.
(3.19)

5: Calculate the precoding matrices {Wk}λ
k=1 for all candidates using Dinkelbach’s

method (middle loop)
6: Compute the EE values {ηEE(ΘΘΘ

k)}λ
k=1 for all candidates

7: Rank {ηEE(ΘΘΘ
k)}λ

k=1 in a descending order as ηEE(ΘΘΘ
(1)) ⩾ ηEE(ΘΘΘ

(2)) ⩾ ... ⩾

ηEE(ΘΘΘ
(λ ))

8: Update mi+1, Ci+1 and σ i+1 according to Eqs. (3.20) to (3.22)
9: end for

10: Output ηmax
EE , Wopt and ΘΘΘ

opt

to ∑ωi = 1; pσ is the conjugated evolution path used in cumulative step-length adaptation
(CSA); pc represents the evolution path; the factor cσ is the learning rate for step size
update; dσ ≈ 1 is a damping parameter; yi:λ = (xi:λ −m(g))/σ (g) is the standardised
coordinates; E∥N (0,I)∥ means the expectation of the Euclidean norm of the isotropic
multivariate normal distribution. It is worth noting that the CMA-ES algorithm updates the
covariance matrix by ranking all the sample points (i.e., IRS phase-shift matrix sets) based
on the evaluation scores (i.e., the EE values) in each iteration.

The procedure of the proposed EE optimisation algorithm is presented in Algorithm
1. First of all, we successively select one phase value for each IRS element and then
construct the candidate phase-shift matrix. The optimal precoding matrix can be calculated
by Dinkelbach’s method with a given phase-shift matrix. After that, we compare all the EE
values calculated by the constructed phase-shift matrices and the corresponding precoding
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Algorithm 2 Dinkelbach’s method for EE maximisation (middle loop)
1: Define Imax as the maximum number of iterations
2: Define ε > 0 as the convergence tolerance
3: Define P = {p1, ..., pK} as the power set
4: Initialise q0← 1
5: Initialise i← 0
6: for i = 0, ..., Imax do
7: i← i+1
8: Solve maxP R(P) − qi−1Ptotal(P) to obtain the optimal power set Popt ={

popt
1 , ..., popt

K

}
(inner loop)

9: if |R(Popt)−qi−1Ptotal(Popt)|< ε then
10: break
11: else
12: qi← R(Popt)/Ptotal(Popt)
13: end if
14: end for

matrices. Finally, the optimal EE value with the precoding matrix and phase-shift matrix
are obtained simultaneously.

Dinkelbach’s and Lagrange Multiplier Methods

In this step, we first utilise the zero-forcing method to cancel the co-channel interference
from the undesirable signals, such that Eq. (3.15) becomes:

R =
K

∑
k=1

log2

1+

∣∣∣hH
r,kΘΘΘHtwk

∣∣∣2
σ2


=

K

∑
k=1

log2

(
1+

pk |hk|2

σ2

)
,

(3.23)

where hk = hH
r,kΘΘΘHt

wk
|wk|

, which makes the numerator of the EE function convex in the
powers. In this case, the EE optimisation problem becomes a fractional optimisation
problem. Obviously, both the denominator and numerator of ηEE are convex. Hence,
this problem can be solved by jointly applying the Dinkelbach and Lagrangian multiplier
methods.

The Dinkelbach’s method, proposed in [81], appears to be an efficient iterative algo-
rithm for solving fractional programming problems with a convex numerator and denom-
inator, whose general process is listed in Algorithm 2. In each iteration, Dinkelbach’s
method introduces a new convex optimisation problem, which is given by:
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3.3 Deep Learning-Based Prediction-Optimisation Scheme

Algorithm 3 Lagrange multiplier method with binary search (inner loop)
1: Define Jmax as the maximum number of iterations for binary search
2: Define ε > 0 as the convergence tolerance
3: Define P1 =

{
p1,1, ..., pK,1

}
as the power set satisfying the condition in Eq. (3.28)

4: Define P2 =
{

p1,2, ..., pK,2
}

as the power set satisfying the condition in Eq. (3.29)
5: Initialise j← 0
6: Initialise µmin← 0

7: Initialise µmax←
Pmax+∑

K
k=1

σ2

|hk|2
K

8: while µmax−µmin > ε and j < Jmax do
9: µ j← µmin+µmax

2
10: Obtain P1 and R(P1)−qi−1Ptotal(P1) by solving Eq. (3.27) using µ j
11: if ∑

K
k=1 pk,1 > Pmax then

12: µmax← µ j
13: else
14: µmin← µ j
15: end if
16: j← j+1
17: end while
18: Obtain P2 and R(P2)−qi−1Ptotal(P2) by solving Eq. (3.27) using λ = 0
19: if R(P2)−qi−1Ptotal(P2)> R(P1)−qi−1Ptotal(P1) and ∑

K
k=1 pk,2 ⩽ Pmax then

20: Popt←P2
21: else
22: Popt←P1
23: end if

maxP R(P)−qi−1Ptotal(P)

s.t.
K

∑
k=1

pk ⩽ Pmax

pk ⩾ 0, ∀k = 1, ...,K.

(3.24)

Then consider the following expression:

L(λ ,P) = R(P)−qi−1Ptotal(P)+λ

(
K

∑
k=1

pk−Pmax

)
, (3.25)

where λ ⩾ 0 is the Lagrange multiplier. The Kuhn-Tucker condition for the optimal
solution is: ∂L(λ ,P)

∂ pk
= 0 if pk > 0

∂L(λ ,P)
∂ pk

⩽ 0 if pk = 0

}
, ∀k = 1, ...,K. (3.26)

Define x+ := max(x,0) as the ramp function, the optimal power allocation for kth user
at ith iteration can then be expressed as:
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3.3 Deep Learning-Based Prediction-Optimisation Scheme

popt
k =

(
1

ln2(qi−1 ·ξ −λ )
− σ2

|hk|2

)+

, ∀k = 1, ...,K, (3.27)

which is the optimal solution if the Lagrange multiplier λ satisfies either of the following
two conditions:

Pmax =
K

∑
k=1

(
1

ln2(qi−1 ·ξ −λ )
− σ2

|hk|2

)+

⩾
K

∑
k=1

(
1

ln2(qi−1 ·ξ −λ )
− σ2

|hk|2

)
,

(3.28)

or
λ = 0. (3.29)

For the condition in Eq. (3.28), let µ = 1
ln2(qi−1·ξ−λ )

, we can obtain the upper bound of µ ,
which is given by:

µ ⩽
Pmax +∑

K
k=1

σ2

|hk|2

K
. (3.30)

The Lagrange multiplier λ satisfying the condition in Eq. (3.28) and Eq. (3.30) can then
be found using the binary search method.

The optimal power set P of the ith iteration is the power set that gives a higher value
of the objective function with λ satisfying one of the conditions in Eqs. (3.28) and (3.29),
which follows the processes in Algorithm 3.

After that, the optimal kth vector wopt
k can be computed with the optimal power popt

k ,
which is given by:

wopt
k =

wk

|wk|
·
√

popt
k , ∀k = 1, ...,K. (3.31)

This way, we have found the optimal precoding matrix Wopt that cancels the co-channel
interference and optimises the EE given a specific phase shift matrix ΘΘΘ by jointly applying
zero-forcing and Dinkelbach’s methods.

3.3.3 Complexity Analysis

The complexity analysis for our proposed optimisation scheme can be divided into two
parts: deep learning and optimisation algorithm.

For the deep learning complexity analysis, we compare the proposed TE-CIE model
with two baseline models, RNN and MLP, respectively. The complexity of transformer
models is dominated by that of self-attention operation which has a theoretical complexity
of O(M2dmodel) [7], where M is the sliding window size and dmodel is the embedding
dimension. For RNN and MLP, the complexities of predicting a single channel are given by
O(Md2

model) and O(Mdmodel), respectively. Since there are NK channels, the complexities
of both RNN and MLP should be multiplied by NK, which results in O(NKMd2

model) and
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3.4 Simulation Result

O(NKMdmodel), respectively. However, since our proposed TE-CIE model can inherently
predict all channels in parallel by assigning a channel index to each channel, its complexity
remains O(M2dmodel) for predicting NK channels. As a result, our proposed TE-CIE
model has much lower complexity than RNN and MLP for predicting multiple channels.

For the optimisation algorithm part, we derive the complexity for the outer, middle
and inner loops separately. The outer loop is based on the CMA-ES algorithm, which
iterates Imax times with sampling λ candidates at each iteration. The ranking operation of
EE values for all candidates can be done with a complexity of O(λ log2(λ )). Therefore,
the complexity for the outer loop is O(Imaxλ (1+ log2(λ ))). It should be noted that we
use the same number of iterations and candidates for the CE method in [23] for a fair
performance comparison, i.e., the complexity is the same for CMA-ES and CE methods
in our simulation. The RS method has a complexity of O(1) since it contains no loop
and randomly chooses the angles within the feasible solution space. The LS method
has a complexity of O(N2b) since it loops over all reflecting elements and exhaustively
searches for the best angle among all 2b candidate solutions. The middle loop is based
on Dinkelbach’s method with a convergence tolerance ε . Since there are K variables, the
complexity of the middle loop can be derived as O(

√
K log2(1/ε)). Similarly, the inner

loop with the convergence tolerance ε has a complexity of O(log2(1/ε)). The overall
complexity of the optimisation algorithm is O(Imaxλ

√
K log2

2(1/ε)(1+ log2(λ )).
As a result, the overall complexity of our proposed algorithm is expressed as:

O(M2dmodel + Imaxλ
√

K log2
2(1/ε)(1+ log2(λ )). (3.32)

The overall complexity is lower than the existing methods, e.g., RNN or MLP for channel
prediction and the CE method for EE optimisation, since the proposed deep learning-based
channel prediction method has lower complexity than MLP and RNN baselines and the EE
optimisation algorithm maintains the same complexity as the CE method. Moreover, the
proposed optimisation algorithm is guaranteed to converge since the CMA-ES algorithm
[70], Dinkelbach’s method [81] and binary search [82] algorithms are all guaranteed to
converge with finite objective function space.

3.4 Simulation Result

The simulation results are illustrated in this section. First, we illustrate the performance
comparison between our proposed TE-CIE model and the baseline methods, namely MLP,
RNN and the persistence model. Then we compare the EE optimisation performance of
our proposed CMA-ES and Dinkelbach’s method with three baseline algorithms in the
literature: the RS method, LS method [23] and CE method [23]. Finally, we present the
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3.4 Simulation Result

Fig. 3.4 The training curve of the TE-CIE model where the red curve represents the
decrease of loss on the training set whilst the blue curve represents the decrease of loss on
the validation set.

Fig. 3.5 The magnitude comparison in dB between predicted CSI and groundtruth CSI by
our proposed TE-CIE model for one channel.

simulation comparison between our deep learning-based prediction-optimisation scheme
and the existing methods in the literature.

3.4.1 Channel Prediction

For channel prediction, considering a specific channel estimation method may result in
a loss of generality. Hence, we assume the channel estimation error follows complex
Gaussian distribution CN (0,0.1). All models are trained on CSI sequences with channel
estimation error (i.e., the train set) and evaluated on error-free groundtruth CSI (i.e., the
test set). We also assume the number of users K = 4; the number of IRS elements N = 64;
the THz carrier frequency fTHz = 220×109 Hz; Each user’s speed is uniformly initialised
between 0 to 1 m/s for low-mobility applications.
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3.4 Simulation Result

Fig. 3.6 Mean absolute error versus sliding
window size M comparison of the TE-CIE
model. The blue and red curves show the
MAE loss comparison between the model’s
predicted CSI and the estimated CSI and
the groundtruth CSI, respectively.

Fig. 3.7 Mean absolute error versus the
number of stacked transformer encoder
layers comparison of the TE-CIE model.
The blue and red curves show the MAE
loss comparison between the model’s pre-
dicted CSI and the estimated CSI and the
groundtruth CSI, respectively.

Fig. 3.8 Mean absolute error comparison
between TE-CIE, persistence model base-
line, MLP baseline and RNN baseline.

Fig. 3.9 The time comparison of predicting
NK channels between TE-CIE, MLP base-
line and RNN baseline.

Our training and testing datasets are both simulated using our own system model. Based
on Eq. (3.3), we generate a CSI sequence with 2000 time steps for each IRS-user path (i.e.,
NK = 256 paths in total) and use the first 1000 time steps for training and the remaining
1000 time steps for testing. The sliding window size M is set to 10. Therefore, there are
(1000−M)NK = 253440 training samples and 1000NK = 256000 testing samples.

We apply the commonly used MSE loss function for training and MAE loss for
evaluation. The MSE loss is differentiable and penalises large errors more than the non-
differentiable MAE loss, which makes it a better choice as a loss function. However, the
MAE loss measures the same unit as the dependent variable (i.e., the CSI). The MAE loss
curves on both training and testing sets are shown in Fig. 3.4.
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3.4 Simulation Result

Fig. 3.10 Mean absolute error versus the variance of channel estimation error comparison
among TE-CIE, persistence model baseline, MLP baseline and RNN baseline.

For the TE-CIE model, the embedding dimension dmodel = 32; the number of stacked
transformer encoder layers is set to be 2; the number of heads in multi-head attention layers
is set to be 8; the dimension of the feed-forward layer d f f = 64; the dropout rate equals to
0.1. For training, we use a large batch size of 4096. The maximum number of epochs is
set to be 100 for a single-cycle cosine annealing scheduler with the learning rate ranging
between 10−4 and 10−3. The MLP and RNN models use the same hyperparameters as in
[66] and [67]. It is worth noting that both MLP and RNN models also use our proposed
CIE method for a fair comparison, which is different from the original implementation in
the literature.

Fig. 3.5 shows the magnitude comparison in dB between predicted CSI and groundtruth
CSI by our proposed TE-CIE model for one channel. Our proposed TE-CIE model can
predict the CSI of the next slot with minor errors. We convert the linear magnitude to
decibels here since the decibel form can express magnitude in a more manageable scale
over a wide range of values.

Fig. 3.6 shows the MAE loss versus sliding window size M comparison for the
proposed TE-CIE model. The blue and red curves show the MAE loss comparison between
the model’s predicted CSI and the estimated CSI and the groundtruth CSI, respectively. It
is evident that the MAE loss decreases dramatically with the increase of sliding window
size M at the beginning, and then converges after M = 10. This indicates that the past 10
slots of CSI are sufficient to provide a relatively good approximation for the current CSI.
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3.4 Simulation Result

Fig. 3.7 illustrates the MAE loss versus the number of stacked transformer encoder
layers for the proposed TE-CIE model. From this figure, we can see that two stacked layers
are sufficient. Although adding more layers provides the model with a larger representation
capacity, it also leads to overfitting. Moreover, adding more stacked layers may result in
the ’gradient vanishing’ problem which makes the model harder to train.

Fig. 3.8 shows the MAE loss comparison between TE-CIE, MLP baseline, RNN
baseline and the persistence model baseline. The persistence model baseline calculates the
future CSI assuming that nothing changes between the current slot and the next slot. It
simply uses the current estimated CSI to predict the CSI of the next time slot. The figure
indicates that our proposed TE-CIE model has a much lower MAE compared to the other
three baseline models. The RNN model shows better performance in terms of lower MAE
than MLP while the persistence model baseline has the worst performance.

Fig. 3.9 shows the time comparison of predicting NK channels between TE-CIE, MLP
baseline and RNN baseline. It is evident from Fig. 3.9 that our proposed TE-CIE model has
the lowest inference time compared with the other two baseline models. The RNN model
consumes a longer inference time than MLP and TE-CIE models due to its sequential input
nature.

Fig. 3.10 compares the MAE versus the variance of channel estimation error among
TE-CIE, persistence model baseline, MLP baseline and RNN baseline. The variance of
channel estimation error is measured in a fairly wide range, i.e., 10−5 to 10, to ensure that
the performances of all possible types of channel estimation methods in the literature are
covered. From this figure, we can see that the prediction error increases with the increase
of channel estimation error for all models. This indicates that having an accurate channel
estimation method can improve channel prediction performance. Among all methods, our
proposed TE-CIE model can maintain the best prediction performance in terms of the
lowest MAE. When the variance of channel estimation error is extremely large such as
10, all deep learning-based methods tend to have the same prediction performance since
the CSI is dominated by the channel estimation error in this case. Nevertheless, all deep
learning-based methods still outperform the non-prediction-based persistence model.

3.4.2 Energy Efficiency Optimisation

For EE optimisation, we assume that perfect channel estimation and full channel informa-
tion are available to all the methods for a fair comparison. The total number of effective
rays Ln for each IRS element is assumed to be 3, the antenna space da = 0.68 mm, the bit
quantisation b = 2 and the signal wavelength is 1.36 mm. In addition, the circuit power
consumption coefficient ξ is assumed to be 1.2, the hardware static power consumption at
BS PBS = 9 dBW, the power consumption Pn(b) at the IRS element n is 10 dBm and the
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3.4 Simulation Result

Fig. 3.11 The EE versus maximum total transmit power comparison with 64 IRS reflecting
elements, 4 users and 16 transmission antennas.

hardware static power consumption PUE at each user is 10 dBm. Moreover, the number
of IRS elements N is assumed to be 64, the number of users K = 4, and the number of
transmission antennas Nt = 16.

We consider two cases for the simulation comparison. The first case is to maximise
the system sum rate whilst the second case is about using Dinkelbach’s method for EE
optimisation. All our results are averaged from 100 randomly realised channels. Since
only Case 1 is studied in [23], it is worth noting that we add Dinkelbach’s method to the
three baselines only to fairly compare our proposed method with baselines and show its
effectiveness.

Fig. 3.11 shows the EE versus maximum total transmit power comparisons between
our proposed method and the three baseline methods in [23]. From Fig. 3.11, we can see
that the EE values of all methods in the first case decrease significantly after reaching the
maximum value while the EE values of Case 2 improve with the maximum total transmit
power Pmax for low Pmax values and reaches the maximum point for high Pmax values. From
such observation, we can see that Dinkelbach’s method can effectively improve the EE of
the system by selectively using parts of the maximum total transmit power. In addition, the
EE values of the proposed CMA-ES-based method are always the highest compared with
those of the three baselines. This indicates that the CMA-ES algorithm is a more efficient
and effective non-convex optimisation method than the three baseline methods since the
correlation between the phase shift of each IRS reflecting element is considered by using a
global multivariate normal distribution to model their distributions. Moreover, with the
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3.4 Simulation Result

Fig. 3.12 The EE versus the number of transmission antennas comparison with 64 IRS
reflecting elements, 4 users and 6 dBW maximum total transmit power.

same number of iterations, the CMA-ES algorithm converges faster than the CE method
proposed in [23] by adjusting the step size. To summarise, Fig. 3.11 proves it is effective
to combine the CMA-ES algorithm with Dinkelbach’s method to jointly optimise the IRS
phase-shift matrix and the precoding matrix of the BS.

Figs. 3.12 and 3.13 shows the EE versus Nt and N comparisons. Both figures show
that using more reflecting elements helps improve the system beamforming performance.
Meanwhile, it is highlighted that the EE values increase with N and Nt due to the increase
of transmission antenna gain with the growing number of Nt . We can see from both figures
that our proposed EE optimisation algorithm provides the best EE compared to the three
baseline methods with any number of N and Nt .

3.4.3 Deep Learning-Based Channel Prediction and Energy Efficiency
Optimisation

For the deep learning-based prediction-optimisation part, we assume the same channel
estimation error as in the channel prediction part. We compare our proposed method with
MLP, RNN and persistence model-based EE optimisation methods.

Fig. 3.14 shows the EE versus maximum total transmit power Pmax comparisons
between our proposed method, MLP, RNN and persistence model methods. For a fair
comparison, all methods use CMA-ES and Dinkelbach’s method for EE optimisation. This
figure illustrates that our proposed method outperforms the three baselines in terms of EE
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Fig. 3.13 The EE versus the number of reflecting elements comparison with 6 dBW
maximum total transmit power, 4 users and 16 transmission antennas.

Fig. 3.14 The EE versus maximum total
transmit power comparisons between our
proposed method, MLP, RNN and persis-
tence model baselines with 64 IRS reflect-
ing elements, 4 users and 16 transmission
antennas.

Fig. 3.15 The EE versus the number of trans-
mission antennas comparisons between our
proposed method, MLP, RNN and persis-
tence model baselines with 16 IRS reflect-
ing elements, 4 users and 6 dBW maximum
total transmit power.

for any value of maximum total transmit power. Specifically, it outperforms RNN, MLP
and persistence model-based prediction methods by approximately 2 times, 2.5 times and
15 times higher EE, respectively. By jointly analysing Fig. 3.11 and Fig. 3.14, we can see
that using the previous slot’s CSI alone for EE optimisation (i.e., the persistence model
method) is not suitable for moving user scenarios since the EE drops up to 20 times for
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Fig. 3.16 The MAE versus user speed com-
parisons between our proposed method,
MLP, RNN and persistence model base-
lines.

Fig. 3.17 The EE versus user speed compar-
isons between our proposed method, MLP,
RNN and persistence model baselines with
16 IRS reflecting elements, 4 users, 6 dBW
maximum total transmit power and 16 trans-
mission antennas.

this non-prediction-based method. This also indicates the necessity of channel prediction
for moving users on the THz channel.

Fig. 3.15 illustrates the EE versus the number of transmission antennas Nt comparisons
between our proposed method, MLP, RNN and persistence model methods. The same
conclusion can be drawn that with the help of accurate channel prediction, the EE can be
improved by at least 2 times compared to the baseline methods. Moreover, the EE values
of all three deep learning-based methods (i.e., MLP, RNN and TE-CIE methods) increase
with Nt , whereas the EE values of the persistence model method remain the same for any
values of Nt . This indicates that increasing Nt brings no improvement on EE when the CSI
used for EE optimisation differs a lot from the groundtruth CSI.

Figs. 3.16 and 3.17 respectively show the MAE and EE versus user speed comparisons
between our proposed method, MLP, RNN and persistence model baselines. Fig. 3.16
indicates that the performance of the persistence model degrades significantly even with a
user speed as slow as 10−3 m/s. This demonstrates that even a very little movement of the
user could result in a significant CSI change due to the high operating frequency of the
THz channel. Although the RNN and MLP models can provide much lower MAE, they
are still not as robust as our proposed TE-CIE model in terms of a much smaller difference
in MAE when increasing user speeds. Fig. 3.17 indicates the success of using TE-CIE
together with the proposed EE optimisation algorithm. The comparison suggests that our
proposed deep channel prediction-based EE optimisation method is robust for both low
and high user speeds.
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The optimised EE is closely related to the prediction error whose relationship with the
user speed is shown in Fig. 3.16, though there is no closed-form mathematical relationship
between the optimised EE and user speed. To elaborate, the procedure for calculating the
EE under different user speeds (as depicted in Fig. 3.17), is given as follows:

• We first train different deep learning models based on CSI sequences generated by
various user speeds and predict the next CSI matrix Ĥr of the next slot. This results
in different prediction errors by comparing the predicted CSI matrix Ĥr with the
groundtruth Hr.

• We then use the predicted CSI matrix of the next slot, Ĥr, to optimise the EE function
and obtain the IRS phase shift matrix ˆ and the hybrid precoding matrix Ŵ.

• Finally, we calculate the groundtruth EE using ˆ and Ŵ and the groundtruth CSI of
the next slot.

The above procedure shows that the groundtruth EE depends on the accuracy of the
optimised IRS phase shift matrix ˆ and hybrid precoding matrix Ŵ which in turn is
dependent on the accuracy of the model’s prediction, i.e., a higher prediction error results
in a worse optimised EE value.

3.5 Conclusion

In this chapter, our exploration delved into a pioneering approach centred around employing
deep learning techniques to tackle the intricate challenges of channel prediction and EE
optimisation within an IRS-assisted THz communication framework. Our primary focus
revolved around devising a deep learning-driven method tailored for forecasting time-
varying fading channels. We introduced the TE-CIE model, adeptly constructed to capture
the nuanced temporal correlations between past CSI and the subsequent CSI. This model
serves as a robust predictor, crucial for anticipating channel behaviour accurately.

Simultaneously, we scrutinised the EE optimisation quandary within an IRS-assisted
MU-MISO system operating in the realm of THz communications. Our examination honed
in on optimising the precoding matrix alongside the IRS phase shift matrix, strategically
aligning them to maximise system EE while adhering to the confines of maximum transmit
power. The amalgamation of the TE-CIE channel prediction method with our devised EE
optimisation algorithm culminated in a groundbreaking deep learning-infused prediction
optimisation framework. This fusion, tailored for EE maximisation in the IRS-assisted THz
MU-MISO communication system, represents a notable stride in enhancing performance
metrics.
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3.5 Conclusion

The simulations conducted to validate our proposed scheme unequivocally underscore
its prowess. Our framework showcased a substantial enhancement, exhibiting an EE
improvement of at least twice the magnitude when juxtaposed against prevailing method-
ologies documented in the literature. Such tangible results reaffirm the efficacy and potency
of integrating deep learning methodologies into the realm of THz communication systems,
particularly in optimising EE through accurate channel prediction and strategic resource
allocation.

Moreover, the implications extend beyond the scope of THz communication systems.
The utilisation of deep learning-based time-series forecasting algorithms harbours the
potential not only to fortify IRS-based THz systems but also to fortify the security of UAV
swarm-based communication networks. The subsequent chapter is poised to pivot towards
the creation of a resilient UAV swarm position optimisation system. This pursuit aims
to mitigate security threats stemming from malicious GNSS spoofing attacks, ensuring
the robustness and reliability of these communication networks in the face of adversarial
interference.
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Chapter 4

Deep Learning for Secure UAV Swarm
Communication Under Malicious
Attacks

4.1 Introduction

UAVs [41, 14, 42], which are commonly known as drones, have attracted great attention in
a diversity of applications including aerial photography and videography, disaster zone
mapping, product delivery, etc., due to their low acquisition, maintenance costs, ease of
deployment, and high-manoeuvrability and ability to hover. UAVs are also widely used
in modern wireless communication systems such as playing a role as relays or aerial
base stations for public safety communications and network provisioning in emergencies.
Due to the high possibilities of line-of-sight (LOS) air-to-ground communication links,
UAVs have become a promising solution to enhance conventional wireless networks.
To overcome the limited coverage area and capacity problems of a single UAV, UAV
swarms [15–17], where multiple UAVs operate cooperatively, are employed to adapt to
complicated wireless communication scenarios. While UAV swarms offer tremendous
benefits for modern wireless communication, their effectiveness can be compromised by
real-world malicious attacks, especially when malicious GNSS spoofing attackers come
into play. These attackers can disrupt the precision and accuracy of UAV operations,
impacting the performance of prediction and optimisation methods utilised within UAV
swarm-enabled wireless communication systems. Therefore, the severe security problem
motivates us to develop innovative solutions that can fortify UAV swarm-enabled wireless
communication systems against the disruptive presence of malicious GNSS spoofing
attackers.
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4.1.1 Prior Works

One of the potential applications of UAV swarms is to cooperatively serve multiple ground
users [15–17, 83, 84]. Considering the UAV’s high and controllable mobility, the commu-
nication quality between UAVs and ground users can be significantly improved by proper
user assignment and drone trajectory scheduling. The authors in [26] proposed a robust
trajectory and communication design for a multi-UAV-enabled wireless communication
system in the presence of jammers with imperfect location information. An efficient convex
approximation method was proposed to jointly optimise UAV trajectory and transmission
power. In [27], a joint trajectory and power control scheme was proposed to minimise
the cross-link interference caused by the LOS-dominated propagation conditions between
UAVs. Recently, the authors in [28] proposed a novel multi-agent deep reinforcement
learning-based UAV swarm trajectory design and resource allocation scheme that can
jointly optimise the user association, UAV power allocation, and trajectory design.

Most of the existing works of such systems in the literature (i.e., in [26–28]) assume
static user locations while only a few consider user mobility [83–85]. The authors in [83]
proposed a joint trajectory and communication design for multi-UAV-enabled wireless
networks where multiple moving UAVs serve multiple ground users. Although the user
assignment and UAV position are jointly optimised, the users are assumed to have fixed
locations. Such design cannot be adapted to mobile networks where users are supposed to
occasionally move. Besides, a joint optimisation scheme for multi-UAV scenarios of access
and backhaul links was proposed in [84]. Although user mobility pattern was considered,
the algorithm proposed in [84] assumed the user locations are known to each drone. Such
an assumption is hard to realise in practice since the user location information reported to
the drones may be outdated due to the fast movement of users.

In the traditional approaches, the UAV can be assisted with a radar, range measuring
devices, or assisted methodology to track the user, e.g., the target tracking frameworks
proposed in [86, 87], to estimate the future locations. However, those traditional approaches
have a few drawbacks including LOS dependency, limited resolution, and high power
consumption. Specifically, traditional radar systems usually require a clear LOS to the
target. Obstacles, buildings, or terrain can obstruct radar signals, limiting their effectiveness
in urban environments or areas with significant obstructions. Radar systems typically
provide limited resolution, making it challenging to distinguish between multiple closely
spaced targets or to track targets with fine-grained precision. Moreover, radars often
require substantial power to operate, which can limit their operational duration in battery-
powered or remote scenarios. All these drawbacks lead to a demand for developing a
high-precision and cost-effective method, e.g., a data-driven approach such as a machine-
learning-based location forecasting model. A well-trained data-driven forecasting model is
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valuable because it considers the user’s past movements, habits, and patterns, which can
provide more accurate predictions. Moreover, equipping a forecasting model can be more
energy-efficient than using a high-power radar system. Recently, a deep learning-based
joint resource allocation and trajectory design was proposed in [85]. The authors used
joint deep reinforcement learning and deep unfolding networks to solve the non-convex
optimisation problems. A Gauss Markov (GM) model-based user mobility pattern was
applied to describe the random user movement patterns.

The ground user mobility model that is widely considered in the literature (i.e. in
[84, 85]) is either a simple RWP model in which each user randomly chooses a point as
its destination for each move or a classic GM model where the speed and direction of a
mobile terminal are updated according to their past values at earlier time intervals [88].
However, according to the latest study on human mobility [89], real-world mobile users
follow much more complicated physical laws than these two classic models. To accurately
forecast intricate mobility patterns, robust and sophisticated forecasting algorithms, such
as deep learning methods, are required.

In recent years, the availability of massive data and rapid computation power has
led to deep learning algorithms becoming a crucial aspect of next-generation time-series
forecasting techniques. Unlike traditional parametric models that require domain expertise,
deep learning-based forecasting methods solely rely on data-driven approaches and do
not require any prior knowledge. With their ability to perform non-linear transformations
and universal approximation, deep learning algorithms can capture complicated implicit
patterns that traditional parametric models cannot. In instances where the underlying data
pattern is intricate, using a data-driven deep learning algorithm can significantly decrease
the amount of human supervision required for designing a dependable expertise-informed
parametric model. Some recent works [90, 91] focus on investigating deep learning-based
user mobility prediction methods for UAVs to enhance the flying trajectory design by
recognising the complicated underlying user movement patterns.

However, the performance of prediction-based methods is highly dependent on the
‘actual’ location of the user and can be easily degraded due to malicious attacks. The
existence of malicious attackers has become a severe threat to wireless networks due to the
vulnerable nature of wireless propagation [92]. One common location-targeted malicious
attack type is called a GNSS spoofing attack where the attacker opportunistically spoofs
the victims by modifying or sending incorrect and fake location information [93, 44]. Such
attacks can significantly degrade the prediction performance of deep learning-based user
mobility forecasting which urges the use of robust training methods that are not heavily
influenced by malicious attacks. The formulation of multiple spoofers in the scene to
make a stealthy GNSS spoofing for generalised cases (including UAV-based systems) has
been studied in [94, 95]. Specifically, the authors in [94] analysed the requirements for
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successful GNSS spoofing attacks on individuals and groups of victims with civilian or
military GNSS receivers. It is also proven in [95] that the constrained power is so powerful,
and the target is unaware of the spoofing activity. The above works have not studied the
specific techniques and methods for achieving the optimal sum rate in UAV systems under
GNSS spoofing attacks. In this chapter, we mainly focus on the robust optimisation of the
overall sum rate of the UAV system. Therefore, we simplify the success hit ratio of GNSS
spoofing to a spoofing probability in general and do not consider a specific spoofing system
design. Recent works proposed in [18–20] only focused on detecting and classifying the
GNSS spoofing attacks. However, robust methods of reconstructing the information from
corrupted data and combining it with user mobility prediction have not been studied in the
literature yet. More specifically, the primary challenge of the combination problem lies in
ensuring the integrity and reliability of data that has been corrupted by GNSS spoofing
attacks. For example, when attackers manipulate GPS signals to mislead UAVs, the data
collected from these compromised sources becomes untrustworthy. Combining such data
with user mobility predictions can introduce errors and inaccuracies into the system. In
this case, using this corrupted data for solving underlying optimisation problems, e.g., the
methods proposed in [83–85], can significantly compromise the accuracy of the solution,
potentially leading to suboptimal or incorrect decisions in UAV swarm operations. On the
other hand, traditional deep learning-based user mobility prediction models or training
methods, e.g., those proposed in [90, 91], cannot ensure the robustness of the prediction
precision when the input user location information is corrupted by malicious attacks.
Therefore, it becomes critical to design a reliable deep learning architecture suitable for
user mobility prediction and to develop a dedicated training method that can yield a robust
model. In the following section, we are going to explain our novel approach to solving the
problem, i.e., we propose a novel deep learning model architecture and training pipeline
that can learn to retrieve clean data from the corrupted data and accordingly make an
accurate prediction that can be used by the underlying optimisation algorithm.

Although modern deep learning models can offer tremendous benefits for wireless
communication, they usually suffer from high computational complexity and energy
consumption, making it challenging to deploy them on energy-limited devices such as
UAVs. Specifically, the state-of-the-art (SOTA) time-series model, i.e., Transformer
[7], has a quadratic time complexity for the sequence length. Therefore, it is critical to
propose an effective method to reduce the complexity while maintaining the prediction
power. Recent advancements in knowledge distillation [21] showcase its ability to reduce
a model’s time complexity while maintaining prediction power by transferring learned
knowledge from a complex model to a smaller, more efficient one. This technique enables
smaller models to emulate the performance of larger counterparts, achieving decreased
computational demands without compromising predictive accuracy.
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4.1.2 Contributions

In this chapter, we propose a deep learning-based user mobility prediction, user assignment,
and drone position optimisation scheme for UAV swarm-enabled wireless communication
systems in the presence of malicious GNSS spoofing attackers. Specifically, multiple
drones are employed to cooperatively serve a group of moving users on the ground in
a given 2D area whose most recent location data are periodically reported to the UAV
swarm. A malicious attacker continuously tries attacking and spoofing the location data to
degrade the performance of UAVs’ user mobility predictor. It is worth noting that we do not
consider a specific spoofing activity such as jamming, meaconing, repeater-based spoofing,
etc. [96, 97]. Instead, we measure the spoofing success hit ratio as a spoofing probability.
In general, our proposed algorithm can work in all cases of spoofing activities. Based
on these assumptions, we first propose a DART model for the user mobility prediction
model which is robust to such GNSS spoofing attacks. With the predicted user location
information, we then propose two efficient user assignment and drone position optimisation
algorithms, namely SCA and SDP, respectively. Simulation results show that our proposed
DART model outperforms LSTM baselines in terms of much lower mean squared error
(MSE) loss on the test set. Meanwhile, the proposed SDP method is demonstrated to be
superior to the conventional SCA method by offering a much higher overall sum rate.
Finally, the deep learning-based prediction-optimisation scheme is proven to achieve a near-
optimal overall sum rate compared with using the ground-truth user location information
for optimisation. The pre-trained and fine-tuned DART model with the SDP method can
provide up to 30% higher overall sum rate compared with the adversarial trained LSTM
baseline and almost double the overall sum rate compared with the vanilla LSTM baseline.
It is worth clarifying that our proposed specific user location forecasting model works
on an arbitrary number of users because each sequence it processes is independent of
others. Since the model does not require user identification information and is fitted to
general user movement patterns (i.e., the EPR user mobility model), it can also adapt to any
new-coming user that follows the movement pattern. The test set used for our simulation
results is assumed to be fully out-of-sample, which means the users are not seen by the
model in the training set. Moreover, we further distil the Transformer model into a smaller
GRU model based on the knowledge distillation method to reduce the time complexity
of the model while maintaining its prediction power. Simulation results demonstrate that
the optimised sum rate using the distilled GRU student model’s predicted user locations
can achieve almost 99% compared to the Transformer teacher model. Meanwhile, the
inference time of the student model is only 4% compared to the teacher model.

The remainder of this chapter is organised as follows. Section 4.2 introduces the UAV
swarm-enabled wireless communication system model. In Section 4.3, we formulate
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Fig. 4.1 System model of the communication links between the UAV swarm and users.

the overall optimisation problem. Then in Section 4.4, we explain our proposed deep
learning-based prediction-optimisation scheme in detail and the SCA and SDP-based user
assignment and drone position optimisation methods are studied. Finally, the simulation
results are illustrated in Section 4.5, and the conclusions are drawn in Section 4.6.

4.2 System Model

Consider a UAV swarm-assisted wireless communication system, as shown in Fig. 4.1,
where a swarm of N single antenna UAVs acting as drone base stations (DBSs) is serving
M moving users in the downlink. The access link established between UAVs and users is
connected by a backhaul link to a terrestrial macro base station (MBS). Due to the high
transmission power of MBS, the backhaul link usually has a high capacity. Thus, the
bottleneck of the achievable rate is usually at the access link. In this chapter, we mainly
focus on optimising the achievable rate for the access link.

The UAV and user sets are denoted byN = {1,2, ...,N} andM= {1,2, ...,M}, respec-
tively. All UAVs are assumed to fly at a fixed height H, which is the minimum height to
avoid obstacles. The UAVs and users are all initially uniformly distributed over the square
service area with a width of r. The three-dimensional (3D) Cartesian coordinate system is
considered for the locations of UAVs and users. Therefore, the locations of UAVs n ∈N
and users m ∈M are denoted by qn = [xn,yn,H]T ∈ R3×1 and pm = [xm,ym,0]T ∈ R3×1,
respectively, where xn, yn, xm, ym all follow a uniform distribution U(0,r). To facilitate
UAV position optimisation, we consider the total service time T which is divided into K
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equal time slots dt so that T = Kdt . Thus, the locations of UAV n and user m at time slot
k are denoted by qn[k] = [xn[k],yn[k],H]T ∈ R3×1 and pm[k] = [xm[k],ym[k],0]T ∈ R3×1

where k = 1, ...,K, respectively.
Without loss of generality, we consider dynamic user assignment between UAVs and

users in each time slot by introducing a binary variable Sn,m[k] ∈ {0,1},∀n,m,k where
Sn,m[k] = 0 indicates that there is no communication between UAV n and user m at time
slot k, whilst Sn,m[k] = 1 represents that UAV n transmits data to user m at time slot k.

According to the field trials in [98, 99], the channels between UAVs and users are
mainly dominated by LOS transmission. Thus, the channel power gain between UAV
n and user m considering the free space propagation path loss can be formulated as
gn,m[k] = β0||qn[k]−pm[k]||−α where α is the path loss exponent and β0 is the reference
channel power gain. Then the achievable rate from UAV n to user m at time slot k is given
by:

Rn,m[k] = log2

(
1+

Pngn,m[k]
∑i∈N ,i̸=n Pigi,m[k]+σ2

)
,∀n,m, (4.1)

where Pi, i ∈N is the transmission power of UAV i and σ2 denotes the power of AWGN.
We assume that the UAVs are transmitting with a relatively conservative power which is
sufficient to support long-term flight and communication missions.

Recent research works [89] have indicated that the RWP model, which is widely
considered in many works in the literature, is not realistic and cannot well reflect the
real-world human mobility pattern. Therefore, we consider a family of more realistic user
mobility models, namely the EPR model [89], which can better represent the real-world
human moving trajectory pattern. The specific EPR model of individual human mobility
considered In this chapter consists of the following mechanisms:

• Waiting Time Choice. The waiting time δt between two movements of the user is
chosen randomly from the power-law probability distribution P(δt) = δ

−1−β

t e−
δt
τ ,

where parameters β and τ are two arguments of the user movement constructor.

• Action Selection. With probability Pnew = ρS−γ , the user visits a new location (i.e.,
Exploration phase); Otherwise, it returns to a previously visited location (i.e., Return
phase). S is the number of distinct locations previously visited by the user, and
parameters ρ and γ are two arguments of the constructor.

• Exploration Phase. The user randomly selects a different location within the serving
area in which case the number of distinct locations visited, S, is increased by 1.

• Return Phase. The user returns to a randomly selected visited location with equal
probability.
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The moving speed of each user is randomly selected within a specific range for each travel
in the exploration and return phases.

The users report their locations to the UAVs in each time slot. Due to the vulnerable
nature of wireless communication systems, some real-world malicious attackers (i.e.,
GNSS spoofing attackers) can modify the location information transmitted by the users
[43]. We assume there is a GNSS spoofing attacker that opportunistically modifies the
user location information with probability ps by a random location within the service
area. The corrupted user location considering the GNSS spoofing attack is denoted by
pm,∀m∈M. We assume that the MBS is responsible for offline model training, online user
mobility forecasting and online optimisation. Once the optimisation results are obtained,
the decisions for updating the UAVs’ positions are broadcast to each DBS through a control
channel in each time slot.

4.3 Problem Formulation

Considering the mentioned UAV swarm system with the EPR user mobility model, we
aim to maximise the overall sum rate of all UAVs in each time slot. It is worth noting
that the security threat in this work is based on user location modification rather than
communication disruption, which is addressed by our proposed robust deep learning
model. Therefore, we choose the general sum rate as the key performance indicator for
optimisation. Mathematically, the optimisation problem (P1) is formulated as:

(P1) : max
qn[k],Sn,m[k]

∑
n∈N

∑
m∈M

Sn,m[k]Rn,m[k],

s.t. ∑
n∈N

Sn,m[k] = 1,∀m, (4.2a)

||qn[k]−qn[k−1]||⩽Vmaxdt ,∀n, (4.2b)

||qn[k]−qn[k−1]||⩾Vmindt ,∀n, (4.2c)

||qn[k]−qi[k]||⩾ dmin,∀i,n, i ̸= n, (4.2d)

cosφn[k]⩾ cosφmax,∀n, (4.2e)

0 ⩽ xn ⩽ r,∀n, (4.2f)

0 ⩽ yn ⩽ r,∀n, (4.2g)

where Vmin, Vmax and dmin are the UAV’s minimum flying speed, the UAV’s maximum
flying speed and the minimum distance required between any two UAVs, respectively; φn

and φmax are the turning angle (i.e., the yaw angle) of UAV n and the UAV’s maximum
turning angle, respectively. In general, the number of UAVs N should be independent of
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the number of users M. In this case, a UAV in a swarm can choose to serve one or more
users if they are within its service area, or it can also choose to switch off if there is no
user nearby.

The first constraint (4.2a) guarantees that each user is guaranteed to be assigned to only
one UAV. The next two constraints (4.2b) and (4.2c) guarantee that UAVs are restricted
to flying within a certain range of speed. The fifth constraint (4.2d) ensures there is no
collision between UAVs whilst the sixth constraint (4.2e) ensures that UAVs should turn
their angles within a restricted range. The last two constraints (4.2f) and (4.2g) ensure the
drones are always flying within the service area.

The optimisation problem (P1) is a dynamic control problem since the location of
each user changes over time and the UAVs should adjust their positions accordingly.
Since the users are continuously moving, their latest reported location information can
be outdated. Moreover, the user’s reported location may be corrupted by the GNSS
spoofing attack, which makes the optimisation problem even more challenging to solve.
Therefore, the UAVs should be equipped with a forecasting model that can predict users’
future locations based on the previously reported locations considering the GNSS spoofing
attack to optimise their positions in advance. Mathematically, we are aiming to find a
mapping function which inputs the previous W corrupted locations of a user and outputs
the estimated next location as follows:

(P2) : p̃m[k] = f (pm[k−W ], ...,pm[k−1]) ,∀m. (4.3)

In this case, the optimisation problem (P1) can be decoupled and re-formulated as two
sub-problems (P2) and (P3) in each time slot considering the estimated user locations
where the problem (P3) can be expressed as:

(P3) : max
qn[k],Sn,m[k]

∑
n∈N

∑
m∈M

Sn,m[k]R̃n,m[k]

s.t. (4.2a),(4.2b),(4.2c),(4.2d),(4.2e),(4.2 f ),(4.2g),

where R̃n,m[k] is the estimated achievable rate from UAV n to user m at time slot k consider-
ing the estimated user location p̃m[k] obtained by solving the problem (P2). Specifically, the
optimisation problem (P3) is constructed on the estimated user location R̃n,m[k] predicted
by the deep learning method in (P2).

Since the solution of problem (P3) is obtained from the estimated user locations p̃m[k],
the overall sum rate is optimised if the location estimation error is guaranteed under a
robust design scenario, i.e., the Euclidean distances between the estimated user locations
and the groundtruth user locations should remain below a given threshold for all p̃m[k] in
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an uncertain region. Mathematically, the robust problem (P3) is formulated as:

Robust Problem (P3) : max
qn[k],Sn,m[k]

min
||p̃m[k]−pm[k]||⩽εerror

∑
n∈N

∑
m∈M

Sn,m[k]R̃n,m[k]

s.t. (4.2a),(4.2b),(4.2c),(4.2d), (4.4)

(4.2e),(4.2 f ),(4.2g),

where εerror characterises the uncertainty threshold of the estimated user locations. Thus,
the robust version of the problem (P3) aims at maximising the overall sum rate while
considering the worst case of the user location estimation error. According to the definition
of the uncertainty in [100], the robust problem (P3) belongs to a type of ellipsoid uncertainty
problem, i.e., the uncertain parameter p̃m[k] is confined in a range of an ellipsoidH(εerror),
where H(εerror) := {p̃m[k] | ||p̃m[k]−pm[k]||⩽ εerror}. Therefore, the optimal solution of
the robust problem (P3) can guarantee the user location estimation error constraint for all
p̃m[k] ∈H(εerror), and so the robustness of problem (P3) is in the worst case sense [101],
i.e., in the case of incurring largest error in location estimation, the estimation constraint
should also be satisfied. The robust optimisation problem (P3) can be solved using a
similar method in [102] and the details are omitted here due to the page limit.

It can be proven that minimising the user location prediction error εerror can maximise
the objective function of the optimisation problem (P3). Let R̃, q̃ and S̃ denote the overall
sum rate, the UAV locations and the user cluster optimised using the predicted user
locations, respectively. We can have the overall sum rate measured on the groundtruth
user locations R̃real = f (q̃, S̃,p) and the overall sum rate measured on the predicted user
locations R̃ = f (q̃, S̃, p̃). The error in the objective function due to the difference between
p̃ and p is given by:

εobjective = |R̃real− R̃|= | f (q̃, S̃,p)− f (q̃, S̃, p̃)|= | f (q̃, S̃, p̃+∆p)− f (q̃, S̃, p̃)|, (4.5)

where ∆p = εerror refers to the signed difference between p and p̃. We can then use the
Taylor series expansion to approximate R̃ around p̃, which is given by:

f (q̃, S̃, p̃+∆p)≈ R̃+∇R̃ ·∆p, (4.6)

where ∇R̃ is the gradient of R̃ with respect to p evaluated at p̃. The error in the objective
function can then be approximated by:

εobjective = |R̃real− R̃|= |∇R̃ ·∆p|= |∇R̃ · (p̃−p)|. (4.7)
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Fig. 4.2 The flow chart of the proposed user mobility prediction and UAV position optimi-
sation scheme.

Therefore, minimising the user location prediction error can maximise the objective
function of the optimisation problem.

In the following sections, we introduce the DART model for user mobility prediction
in detail and then propose two efficient optimisation methods, namely SCA and SDP, to
solve the non-convex optimisation problem (P3).

4.4 Proposed Algorithms

In the following, the DART model is proposed for user mobility prediction whilst SCA
and SDP algorithms are introduced to optimise the user assignment and UAV positions,
whose flow chart is illustrated in Fig. 4.2. Specifically, we aim to find an effective
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Fig. 4.3 The model architecture of our proposed DART model for adversarial pre-training.

mapping function to solve the problem (P2) and then optimise the user assignment and
UAV positions in advance to solve the problem (P3).

4.4.1 Mobility Prediction: Denoising Autoencoder Recurrent Trans-
former

In this section, a deep learning-based user mobility prediction model, namely DART, is
developed to predict the user’s location in the next time slot given its previous W location
vectors. We assume that the offline training data (i.e., historical user location sequences)
is clean and the GNSS spoofing attacker corrupts the location information in the online
inference stage. In this case, a model trained on clean data has a high probability of failing
in the online inference stage. We also assume the detection probability of the user is unity
but the number of users can vary in each time slot.

There are two major reasons why assuming clean offline training data and susceptibility
to GNSS spoofing during online inference is realistic in real-world applications. First,
during the offline training phase, data is typically collected in controlled environments or
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historical datasets where the data can be carefully curated and validated to ensure accuracy.
However, acquiring clean and reliable data in dynamic and uncontrolled environments can
be challenging in real-world applications. Factors such as signal obstructions, interference,
and the existence of spoofing attackers can introduce inaccuracies. Second, acquiring
high-fidelity real-world location data for training can be expensive and resource-intensive.
Therefore, in practice, organisations might rely on historical datasets, publicly available
data, or simulated data, which may not fully reflect the complexities and nuances of
real-world scenarios where spoofing attacks should be taken into account.

One common solution to this kind of problem is to apply ‘adversarial training’ [50–52],
i.e., introducing a similar type of noise to the model during the offline training to prevent
failure during the online inference. With such kind of training method, the model can learn
the spoofing pattern in advance. However, only applying adversarial training is not enough.
To further improve the prediction performance, we propose an adversarial pre-training and
fine-tuning scheme. In the adversarial pre-training stage, the model learns to predict which
location vector is corrupted in the sequence and tries to reconstruct or denoise it. Then in
the adversarial fine-tuning stage, the model learns to predict the future user location.

Adversarial Pre-training

The architecture of our proposed DART model for adversarial pre-training is shown in
Fig. 4.3. The general model architecture follows four layers, namely the noise layer,
the recurrent layer (i.e., the LSTM encoder layer), the stacked transformer layers, and
the concatenation and linear layers. The purpose of adversarial pre-training is to exploit
the model’s capability of distinguishing clean and corrupted location information and
then trying to denoise the sequence. The input of the model is the historical user mobility
sequence X∈RW×2 containing the last W 2D locations of the user. The output of the model
consists of two parts, namely probability of predicted mask ψ̃ψψ ∈ RW and reconstructed
location sequence X̃ ∈ RW×2, respectively.

The noise layer applies synthetic spoofing noise to the input to imitate the GNSS
spoofing attack. First, a binary mask ψψψ ∈ RW which follows the Bernoulli distribution of
probability pmask is created. Then a random sequence U ∈ RW×2 is sampled from a 2D
uniform distribution which represents random points within the service area. The output of
the noise layer, i.e., the corrupted location sequence, X̂ ∈ RW×2 is given by:

X̂ =

{
X, ψi = 0,

U, ψi = 1,∀i,
(4.8)

where ψi is the ith element in ψψψ . It is worth noting that Eq. (4.8) refers to the pretraining
noise added to the model training, which is used to teach the model how to distinguish
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clean user location information from corrupted information in the historical sequences.
With such a pertaining task, the model can learn to classify and fix the spoofed location
information from the spoofed data. The reason that we use a random noise model here
is to address a more general spoofing attack case rather than studying a specific type of
spoofing attack. On the other hand, we also aim at making the pretraining task more
difficult for the model by aggressively adding random noise instead of directional patterned
noise such as persistent false target, persistent walking target, persistent pull-off target, and
persistent walking pull-off target models in [97], though the model can also learn how to
distinguish from these types of noise theoretically by additionally incorporating them into
the pretraining task.

After the noise layer, the corrupted sequence X̂ is passed through an LSTM encoder
layer where the sequential dependence and positional relationship are learned. The LSTM
encoder consists of three key components, namely the input gate, forget gate and output
gate, respectively. These gates control the ratio of the amount of information to be stored
or forgotten. The input gate decides how much new information flows into the memory
cell whilst the forget gate determines the amount of information that should be dropped.
Meanwhile, the output gate imposes controls on the amount of information passed into
the rest of the network. The mapping function of the LSTM layer from the input X̂ to the
output H ∈ RW×dmodel is precisely specified by:

iw = sigmoid(Wx
i · x̂w +Wh

i ·hw−1 +bi), (4.9a)

fw = sigmoid(Wx
f · x̂w +Wh

f ·hw−1 +b f ), (4.9b)

ow = sigmoid(Wx
o · x̂w +Wh

o ·hw−1 +bo), (4.9c)

c̃w = tanh(Wx
c · x̂w +Wh

c ·hw−1 +bc), (4.9d)

cw = iw⊙ c̃w + fw⊙ cw−1, (4.9e)

hw = ow⊙ tanh(cw), (4.9f)

where hw is the w-th row vector in H; the operator ⊙ refers to the Hadamard product;
Wx

i ∈Rdmodel×2, Wh
i ∈Rdmodel×dmodel , Wx

f ∈Rdmodel×2, Wh
f ∈Rdmodel×dmodel , Wx

o ∈Rdmodel×2,
Wh

o ∈ Rdmodel×dmodel , Wx
c ∈ Rdmodel×2, Wh

c ∈ Rdmodel×dmodel are the corresponding weight
matrices; bi ∈ Rdmodel , b f ∈ Rdmodel , bo ∈ Rdmodel , bc ∈ Rdmodel are bias vectors; dmodel is the
model’s hidden dimension.

The output of the LSTM layer is then fed into a stacked transformer encoder network.
The Transformer architecture is an effective solution for sequential modelling problems due
to its attention mechanism, allowing it to capture long-range dependencies and relationships
within the input sequence. The stacked transformer encoder network contains three
transformer encoder layers, whose structures are originally proposed in [7]. As shown
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in Fig. 4.3, each layer consists of two sub-layers, namely the multi-head self-attention
mechanism layer and the position-wise fully connected feed-forward network, respectively.
Moreover, a residual connection [74] with layer normalisation [103] is applied after each
of the two sub-layers. It is worth noting that layer normalisation [75] is used in the original
transformer architecture as a compromise on the dynamic sequence length issue. However,
since the input sequence length is fixed as W , the batch normalisation technique is a better
choice.

In general, let Ho ∈ RW×dmodel denote the output of the last layer. The output of the
multi-head attention YMHA ∈ RW×dmodel of each transformer encoder layer is given by:

Yhead,i = softmax

(
HoWQ

i (HoWK
i )

T
√

dk

)
HoWV

i , (4.10)

YMHA = Concat(Yhead,1, ...,Yhead,h)WO, (4.11)

where dk = dmodel/h is the depth of each head and h is the number of heads; WQ
i ∈

Rdmodel×dk , WK
i ∈ Rdmodel×dk , WV

i ∈ Rdmodel×dk and WO ∈ Rdmodel×dmodel are the projection
parameter matrices; Concat(.) is the concatenation operation which concatenates the output
of each head Yhead,i ∈ RW×dk into a new matrix with dimension RW×dmodel .

Besides the multi-head attention, each transformer encoder layer also contains a fully
connected feed-forward network to each position separately and identically. It applies two
linear transformations with a GELU activation function in between. The GELU activation
function has been proven to be more empirically effective than the traditional Rectified
Linear Unit (ReLU) function with advantages such as smoothness around zero, having a
continuous derivative and being robust to variations in input data distribution. However, it
also has some drawbacks. For example, it is more computationally intensive than ReLU.
Moreover, since GELU is a non-monotonic function, it can have both increasing and
decreasing regions. This can make training more difficult, especially when compared to
simpler activation functions like ReLU, which are monotonic and generally lead to more
stable training.

Let HFFN ∈ RW×dmodel denote the input of the fully-connected feed-forward network,
whose output YFFN ∈ RW×dmodel is given by:

YFFN = GELU(HFFNW1 +b1)W2 +b2, (4.12)

where W1 ∈ Rdmodel×d f f , W2 ∈ Rd f f×dmodel , b1 ∈ Rd f f and b2 ∈ Rdmodel are projection
parameter matrices and vectors, respectively; d f f is the inner-layer hidden dimension.

After that, the outputs of all previous layers including the LSTM encoder layer are
concatenated into a new input matrix Hconcat ∈ RW×4dmodel as the input of the linear trans-
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formation layer for the mask prediction task. Such a kind of network connection is inspired
by the DenseNet architecture [104]. The output of this layer ymask ∈ RW can be expressed
as:

yw,mask = Sigmoid
(
HconcatwT

mask +bmask
)
, (4.13)

where yw,mask is the w-th element of the output, denoting the probability of having mask
at step w; wmask ∈ R4dmodel and bmask ∈ R are the projection parameter vector and bias,
respectively.

Then the output of the mask prediction layer, along with the previously concatenated
outputs, are provided as the input of the final reconstruction layer. Let Hrec ∈RW×(4dmodel+1)

denote the input. The final reconstructed sequence Yrec ∈RW×2 for adversarial pre-training
can be calculated as:

Yrec = HrecWrec +brec, (4.14)

where Wrec ∈ R(4dmodel+1)×2 and brec ∈ R2 are the projection parameter matrix and bias
vector, respectively.

The binary cross-entropy (BCE) loss is applied to the mask prediction task whilst the
weighted MSE loss is applied to the sequence reconstruction task where the corrupted
steps are given a higher weight. In comparison, the clean steps are given a lower weight.
The overall loss function is also task-wise weighted, which is given by:

Lpre = wmask ·Lmask +Lrec, (4.15)

where wmask is the loss weight set to the mask prediction task; Lmask and Lrec are the
loss of mask prediction task and sequence reconstruction task, respectively. It is worth
noting that pre-training enhances underlying task performance by leveraging large-scale
data and learning informative representations, enabling the model to generalise better and
capture intricate patterns, thus improving its ability to perform specific tasks effectively.
Designing two separate pre-training tasks, i.e., mask prediction and feature reconstruction,
is beneficial for better representation learning as it encourages the model to capture
both contextual relationships through masked sequence modelling and high-level features
through reconstruction, leading to a more robust and versatile pre-trained model.

Adversarial Fine-tuning

After the adversarial pre-training, the pre-trained model weights are re-used for the adver-
sarial fine-tuning of the next-location prediction task. The architecture of our proposed
DART model for adversarial fine-tuning is shown in Fig. 4.4. Most of the model parts are
the same as in Fig. 4.3 except for the last linear layer.
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Fig. 4.4 Model architecture of our proposed DART model for adversarial fine-tuning.

The output of all pre-trained encoder layers is first concatenated and only the last step is
taken as the input to predict the next user location. These skip connections in the proposed
DART model facilitate efficient information flow and gradient propagation across layers,
aiding in the effective learning of both local and global features. Let hW ∈ R1×4dmodel

denote the concatenated hidden vector of the last step. The final predicted user location
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Fig. 4.5 The flow chart of the proposed user mobility prediction and UAV position optimi-
sation scheme with knowledge distillation.

vector ỹ ∈ R1×2 is given by:
ỹ = hW Wpred +bpred, (4.16)

where Wpred ∈ R4dmodel×2 and bpred ∈ R1×2 are the projection parameter matrix and vector,
respectively. The MSE loss function is applied since it is a regression task. It is worth
noting that the pre-trained network part should apply a much lower learning rate than the
last linear layer (or even zero learning rate) to achieve the full benefit from the adversarial
pre-training task.

Knowledge Distillation

Although the proposed DART model has emerged as a remarkable innovation with its strong
learning capacity, its high inference complexity makes it less feasible for deployment in
resource-constrained environments. An ingenious solution is to distil the knowledge learnt
by a vast Transformer into a compact low-complexity model that can do fast inference such
as GRU. While the GRU model has inherent limitations in learning complicated patterns on
its own, its recurrent inference capability is well-suited for certain tasks. The overall flow
chart is illustrated in Fig. 4.5 and the knowledge distillation training pipeline is illustrated
in Fig. 4.6, where we train the GRU student model using a combination loss Lc, i.e., a
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Fig. 4.6 The knowledge distillation and training pipeline for the GRU student model.

weighted average of distillation loss Ld and regression loss Lr, which is expressed as:

Lc = α ·Lr +(1−α) ·Ld, (4.17)

where α is a tunable hyperparameter to control the weight between the model’s learning
process on knowledge distillation and groundtruth labels.

After training with the proposed knowledge distillation pipeline, the GRU model can
predict users’ next locations by recurrent inference, i.e., taking the past hidden states
and current locations as input and returning the updated hidden states and the predicted
locations. It is worth noting that the hidden states for GRU are initialised to all zeros in the
first time slot.
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4.4.2 Clustering and Position Optimisation: Successive Convex Ap-
proximation and Successive Differential Programming

As described in Section 4.3, solving the sub-problem (P3) requires the estimated user
location p̃m[k] predicted by the deep learning model obtained in Eq. (4.16). Since problem
(P3) is a non-convex mixed-integer optimisation problem, one commonly used approach is
to apply the block coordinate descent (BCD) [105] for successive optimisation. Specifically,
the clustering variables and UAV positions are iteratively fixed in turn. In this case, the
clustering optimisation and position optimisation problems are solved separately as two sub-
problems. In general, the position optimisation problem can be solved by approximating
and re-formulating it into a convex optimisation problem using the SCA method. Although
solving the re-formulated convex optimisation problem is mathematically efficient, there
are still some drawbacks in practice. We then propose an alternative SDP method that
outperforms the SCA method in terms of a much higher sum rate.

User Assignment Optimisation

In each iteration of successive optimisation, the UAV positions are first fixed and the
clustering variables are optimised by solving an integer linear programming (ILP) problem:

(P4) : max
Sn,m[k]

∑
n∈N

∑
m∈M

Sn,m[k]R̃n,m[k]

s.t. (4.2a). (4.18)

The above problem can be efficiently solved by any standard optimisation software library
that supports ILP such as CVXPY [106, 107] by using the branch-and-bound method
[108].

With the solved clustering variables Sn,m[k], the set of users assigned to UAV n can be
denoted by Jn. Then problem (P3) can be rewritten as follows:

(P5) : max
qn[k]

∑
n∈N

R̃n[k]

s.t. (4.2b),(4.2c),(4.2d),(4.2e),(4.2 f ),(4.2g), (4.19)

where

R̃n[k] = ∑
j∈Jn

log2

(
1+

Pngn, j[k]
∑i∈N ,i ̸=n Pigi, j[k]+σ2

)
(4.20)

is the estimated sum rate of UAV n at time slot k considering the estimated user locations.
Such a problem can be solved by SCA or our proposed SDP methods which will be
explained in detail in the following sections.
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Rlb
n [k] = log2

(
1+

1

A f
n, j[k]B

f
n, j[k]

)

− log2 e ·

 An, j[k]−A f
n, j[k]

A f
n, j[k]+

(
A f

n, j[k]
)2

B f
n, j[k]

+
Bn, j[k]−B f

n, j[k]

B f
n, j[k]+

(
B f

n, j[k]
)2

A f
n, j[k]

 ,∀n, j,

(4.23)

Convex Approximation

The optimisation problem (P5) has a non-convex objective function with three convex
constraints, i.e., (4.2b), (4.2f) and (4.2g), and three non-convex constraints, i.e., (4.2c),
(4.2d) and (4.2e). Thus, the overall problem is a non-convex optimisation problem. In the
sequel, we focus on approximating and transforming the non-convex objective function
and constraints into convex forms.

By introducing two slack variables An, j[k] and Bn, j[k], problem (P5) can be rewritten
as:

(P6) : max
{qn[k],An, j[k],Bn, j[k]}

∑
n∈N

R̂n[k]

s.t. (4.2b),(4.2c),(4.2d),(4.2e),(4.2 f ),(4.2g),
1

An, j[k]
⩽ Png̃n, j[k],∀n, j, (4.21a)

∑
i∈N ,i ̸=n

Pig̃i, j[k]+σ
2 ⩽ Bn, j[k],∀n, j, (4.21b)

where

R̂n[k] = ∑
j∈Jn

log2

(
1+

1
An, j[k]Bn, j[k]

)
(4.22)

is the transformed sum rate of UAV n at time slot k; g̃n,m[k] = β0||qn[k]− p̃m[k]||−α is the
estimated channel power gain between UAV n and user m at time slot k considering the
estimated user location.

Introducing slack variables An, j[k] and Bn, j[k] potentially enlarges the feasible region
of the problem. Specifically, we can always improve the objective value by decreasing the
values of An, j[k] and Bn, j[k] if constraint (4.21a) and (4.21b) hold with inequalities in the
optimal solution.

After the transformation, the objective function of problem (P6), i.e., Eq. (4.22),
becomes convex rather than concave with respect to An, j[k] and Bn, j[k]. Therefore, we
can apply the first-order Taylor expansion to Eq. (4.22) to obtain a concave global under-

85



4.4 Proposed Algorithms

estimation for a given feasible point
{

A f
n, j[k],B

f
n, j[k]

}
, i.e., Rlb

n [k], which can be expressed

as Eq. (4.23) where Rlb
n [k] ⩽ R̂n[k] provides a tight lower bound. It is worth noting that

the feasible point
{

A f
n, j[k],B

f
n, j[k]

}
is equivalent to the point in the previous time slot{

An, j[k−1],Bn, j[k−1]
}

with respect to UAV’s and user’s previous locations.
The new constraint (4.21a) is convex whilst constraint (4.21b) is still non-convex. With

α > 1, constraint (4.21a) can be rewritten as the following convex form:

||qn[k]− p̃ j[k]||−
(
Pnβ0An, j[k]

) 1
α ⩽ 0,∀n, j. (4.24)

Since constraint (4.21b) is non-convex, we can also introduce a new slack variable Cn, j[k].
In this case, the constraint (4.21b) can be replaced by:

∑
i∈N ,i̸=n

Piβ0Ci, j[k]−α +σ
2 ⩽ Bn, j[k],∀n, j, (4.25a)

Ci, j[k]⩾ 0,∀ j, (4.25b)

Ci, j[k]⩽ ||qi[k]−p j[k]||,∀i,n, j, i ̸= n, (4.25c)

where constraints (4.25a) and (4.25b) are convex and (4.25c) is non-convex.
To deal with the non-convexity in constraint (4.25c), the Cauchy-Schwarz inequality

||a||||b||⩾ |⟨a,b⟩| is applied. Then we have:

||qi[k]−p j[k]|| ||q f
i [k]−p f

j [k]||⩾ |(qi[k]−p j[k])T (q f
i [k]−p f

j [k])|

⩾ (qi[k]−p j[k])T (q f
i [k]−p f

j [k]).
(4.26)

Hence, we can derive the tight lower bound of ||qi[k]−p j[k]|| as:

||qi[k]−p j[k]||⩾
(qi[k]−p j[k])T (q f

i [k]−p f
j [k])

||q f
i [k]−p f

j [k]||
⩾Ci, j[k],∀i,n, j, i ̸= n. (4.27)

Similarly, constraints (4.2c) and (4.2d) can also be tightly lower bounded as:

||qn[k]−qn[k−1]||⩾ (qn[k]−qn[k−1])T (q f
n [k]−q f

n [k−1])

||q f
n [k]−q f

n [k−1]||
⩾Vmindt ,∀n, (4.28)

and

||qn[k]−qi[k]||⩾
(qn[k]−qi[k])T (q f

n [k]−q f
i [k])

||q f
n [k]−q f

i [k]||
⩾ dmin,∀i,n, i ̸= n. (4.29)
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For the angle constraint (4.2e), the dot product formula of the angle between two
vectors a and b, i.e., cosθ = aT b

||a||||b|| , is first applied to transform it into:

cosφn[k] =
xT y
||x|| ||y||

⩾ cosφmax,∀n, (4.30)

or into a more tractable form:

xT y−||x|| ||y||cosφmax ⩾ 0,∀n, (4.31)

where x = qn[k]−qn[k−1] and y = qn[k−1]−qn[k−2], respectively.
Although the new constraint (4.31) is non-convex, Proposition 3 in [109] gives an

insightful solution to address the concave lower bound of the first term xT y in (4.31),
which is given by:

xT y ⩾(x f )T y+xT y f − (x f )T y f − 1
2
||x−x f ||2− 1

2
||y−y f ||2, (4.32)

where the proof is given in Appendix C in [109].
For the second term −||x|| ||y||cosφmax in constraint (4.31), the Young inequality

ab ⩾ 1
2(εa2 + ε−1b2) can be applied. Then we have:

−||x|| ||y||cosφmax ⩾−
1
2

cosφmax
(
ε||x||2 + ε

−1||y||2
)
, (4.33)

where ε = ||y f ||
||x f ||[110]. By combining (4.32) and (4.33), the constraint (4.31) is lower

bounded by:

(x f )T y+xT y f − (x f )T y f − 1
2
||x−x f ||2− 1

2
||y−y f ||2

− 1
2

cosφmax
(
ε||x||2 + ε

−1||y||2
)
⩾ 0,∀n,

(4.34)

It is worth noting that the convexity in (4.34) is valid if and only if 0 ⩽ φmax ⩽ π

2 .
Finally, we obtain the convex transformation of the problem (P5) as:

(P7) : max
{qn[k],An, j[k],Bn, j[k],Cn, j[k]}

∑
n∈N

Rlb
n [k]

s.t. (4.2b),(4.2 f ),(4.2g),(4.24),(4.25a),(4.25b),(4.27),(4.28),(4.29),(4.34).
(4.35)

The above optimisation problem can be solved using standard convex optimisation
methods including existing software libraries such as CVXPY [106, 107]. However, there
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(P8) : min
qn[k]

L[k] = H[k]+Ppenalty[k], (4.36)

H[k] =− ∑
n∈N

R̃n[k], (4.37)

Ppenalty[k] =D

[
∑

n∈N
(||qn[k]−qn[k−1]||−Vmaxdt)

++ ∑
n∈N

(Vmindt−||qn[k]−qn[k−1]||)+

+ ∑
n∈N ,i∈N ,i̸=n

(dmin−||qn[k]−qi[k]||)++ ∑
n∈N

(
cosφmax−

xyT

||x|| ||y||

)+

+ ∑
n∈N

(−xn[k])
++ ∑

n∈N
(−yn[k])

++ ∑
n∈N

(xn[k]− r)++ ∑
n∈N

(yn[k]− r)+
]
,

(4.38)

are still some drawbacks in practice. First, the order of magnitudes of An, j and Bn, j is
either extremely large or small since the order of magnitudes of the channel power gain
is extremely small in practice (e.g., 10−13). This may cause an issue called floating-
point overflow (FPO) [111] which prevents the optimisation software from successfully
providing an optimal or even valid solution. Secondly, since the constraint (4.34) is non-
convex for the maximum angle that is larger than π

2 , the problem cannot be solved by
common convex optimisation methods for the cases that the maximum angle is larger than
π

2 . Therefore, we also propose an effective alternative optimisation method in the next
subsection, namely SDP. It does not require complicated approximation and transformation
derivation. Moreover, it is valid in the case that the maximum angle is larger than π

2 .

Differential Programming

To overcome the aforementioned drawbacks in the SCA method, we propose an alter-
native SDP algorithm. The proposed SDP algorithm relies on automatic differentiation
which is widely used in training modern deep learning algorithms such as Pytorch [112]
and Tensorflow [113]. Unlike conventional symbolic differentiation methods, automatic
differentiation does not require a closed-form mathematical expression of derivatives.
Instead, no matter how complicated the function is, automatic differentiation computes the
derivatives by applying the chain rules repeatedly to the differentiable operations in the
function. Moreover, the widely used SOTA gradient descent solvers such as Adam and root
mean square propagation (RMSprop) are proven to have a strong and stable capability of
escaping from local optimal or saddle points [114]. Thus, SDP is an effective and efficient
method to solve differentiable optimisation problems.
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Algorithm 4 Pseudocode for UAV position optimisation using Differential Program-
ming

1: Define Imax as the maximum number of iterations.
2: Define qn[k]best as the optimal value of qn[k].
3: Define H[k]best as the optimal value of H[k].
4: Initialise qn[k]← qn[k−1],∀n.
5: Initialise H[k]best← ∞.
6: for i = 0, ..., Imax do
7: Calculate L[k], H[k] and Ppenalty[k] from Eq. (4.36), (4.37) and (4.38).
8: Compute the gradient of qn[k] on L[k] using automatic differentiation.
9: Update qn[k] using any popular gradient descent algorithms [114] such as Adam

and RMSprop, etc.
10: if H[k]< H[k]best and Ppenalty[k]⩽ 0 then
11: qn[k]best← qn[k].
12: H[k]best← H[k].
13: end if
14: end for
15: Output qn[k]best as the optimal value of qn[k].
16: Output −H[k]best as the optimal value of estimated sum rate at time slot k.

Although problem (P5) is differentiable with respect to qn[k], the four constraints make
it a constrained differentiable optimisation problem which cannot be directly solved by
applying the SDP algorithm. Therefore, we introduce a penalty term to the objective and
transfer the problem (P5) into an unconstrained differentiable optimisation problem (P8)
which is given by (4.36), (4.37) and (4.38), where x+ = max(x,0) is the ramp function,
factor D is a penalty coefficient with a large positive value which controls the penalty
intensity for all the constraints. The ramp function in the penalty terms in problem (P8)
ensures the penalty terms only contribute to the objective function if and only if they are
positive, i.e., do not satisfy the original constraints.

The general process of the proposed SDP algorithm is presented in Algorithm 4. The
proposed algorithm does not have the FPO problem as in the SCA method because there
are no introduced slack variables with extreme order of magnitudes. Moreover, since
the turning angle constraint is directly addressed as one of the penalty terms, there is no
limitation on the maximum turning angle, i.e., it is always valid for any value of φmax.

Convergence Analysis

The details of the proposed successive optimisation algorithm are provided in Algorithm 5.
The overall algorithm splits the original optimisation problem (P3) into two sub-problems
(P4) and (P5) and solves them iteratively until the improvement of the objective function is
smaller than a small tolerance threshold η .
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Algorithm 5 Proposed Successive Optimisation Algorithm
1: Define η > 0 as the convergence tolerance.
2: Initialise iteration indicator i← 0.
3: Denote Sn,m[k], qn[k], An, j[k], Bn, j[k] and Cn, j[k] in the ith iteration as Sn,m[k]i+1,

qn[k]i+1, An, j[k]i+1, Bn, j[k]i+1 and Cn, j[k]i+1.
4: Initialise qn[k]0← qn[k−1].
5: repeat
6: With given qn[k]i, obtain Sn,m[k]i+1 via solving problem (P4).
7: if Use SCA method then
8: With obtained Sn,m[k]i+1, compute qn[k]i+1, An, j[k]i+1, Bn, j[k]i+1 and Cn, j[k]i+1

via solving problem (P7).
9: else if Use SDP method then

10: With obtained Sn,m[k]i+1, compute qn[k]i+1 via solving problem (P8).
11: end if
12: Update i← i+1.
13: until The convergence condition is satisfied, i.e., the improvement of the objective

value is smaller than η .

The proposed successive optimisation algorithm is guaranteed to converge since the ob-
jective function in each sub-problem is non-decreasing in each iteration if the SCA method
is used to solve the sub-problem (P5) and the maximum objective value of the problem
(P3) is finite. If the SDP method is used to solve the sub-problem (P5), the convergence is
also guaranteed since the convergence of popular gradient descent algorithms such as the
Adam and RMSprop methods on smooth non-convex objective functions has been proven
in [115].

Complexity Analysis

The problem (P3) is solved by the BCD method for successive optimisation. The overall
complexity depends on the underlying optimisation algorithms for each sub-problem.
Therefore, we calculate the complexity of SCA and SDP methods separately.

If the underlying position optimisation method is SCA, then there are 2N + 3NM
variables in each approximated convex subproblem (P7). With convergence tolerance
η , the number of iterations required is O(

√
2N +3NM log2(1/η)). At each iteration,

the complexity of solving the clustering problem (P4) depends on the complexity of
the branch-and-bound method, which has a complexity of O((NM)2.5) for the best case
and O(2NM) for the worst case [116]. At each iteration, the complexity of solving the
position optimisation problem (P7) is O(Φ2

1Φ2), where Φ1 = 2N + 2NM is the total
number of variables and Φ2 = 3.5N + 3NM + 0.5N2 is the total number of constraints
[117]. As a result, the total complexity of using SCA as the position optimisation method
is O((NM)3.5 log2(1/η)) for the best case and O(2NM(NM)0.5 log2(1/η)) for the worst
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Fig. 4.7 An example scenario generation plot for 25 users’ locations and 5 UAVs’ previous
and optimised positions.

case, given that the number of drones N is usually much smaller than the number of users
M they are serving.

If the underlying position optimisation method is SDP, then the main complexity lies
in calculating the objective function of the problem (P8). Since there are no extra slack
variables for SDP, the complexity of the objective function depends on the number of
variables which is 2N. Then with I denoting the number of iterations, the complexity
of the SDP method can be calculated as O(IN). As a result, the total complexity of
using SDP as the position optimisation method is O((NM)3 log2(1/η)) for the best case
and O(2NM(NM)0.5 log2(1/η)) for the worst case, given that IN is usually an order of
magnitude smaller than (NM)2.5. It can be seen that using SDP as the underlying position
optimisation method has lower overall complexity than using SCA for the best case and
the same complexity for the worst case.

4.5 Simulation Results

In this section, we first demonstrate the simulation results for the prediction performance of
our proposed DART model and the comparison results between DART and LSTM baseline
models. Then we compare the performance of the proposed SCA and SDP algorithms for
user clustering and UAV position optimisation. Finally, we illustrate the performance of the
deep learning-based prediction-optimisation scheme in terms of the overall sum rate. The
main environment parameters for simulation are listed in Table 4.1. An example scenario
generation plot for 25 users’ locations and 5 UAVs’ previous and optimised positions is
provided in Fig. 4.7.
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Table 4.1 The main system parameters for simulation

ParameterValue Description

r 500 m Service area width

N 10 Number of UAVs

M 50 Number of users

H 20 m Height

dt 1 sec Time slot duration

Pn 20 dBm Transmit power for each
UAV

σ2 -95 dBm Noise power

β0 1e-6 Reference channel power
gain

α 2 Path loss exponent

Vmin 5 m/s UAV’s minimum flying
speed

Vmax 30 m/s UAV’s maximum flying
speed

dmin 10 m Minimum distance among
UAVs

φmax π/3 Maximum turning angle of
UAVs

V user
min 0.2 m/s User’s minimum speed

V user
max 5 m/s User’s maximum speed

ρ 0.6 Rho argument for EPR
model

γ 0.21 Gamma argument for EPR
model

For our proposed DART model, we use a window size W of 50, hidden dimension
dmodel of 128, number of heads h of 4, inner-layer hidden dimension d f f of 512 and
dropout rate of 0.1. For the adversarial pre-training, we use a mask weight wmask of 2,
batch size of 512, a learning rate of 10−3 and weight decay of 10−6 for L2 regularisation.
For adversarial fine-tuning, we use a learning rate of 10−4 for pre-trained layers and a
learning rate of 10−3 for the extra linear output layer. The baseline LSTM model uses a
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Fig. 4.8 Mean squared error losses
smoothed by Gaussian filter with sigma=1.0
on the test set comparison of DART
between the adversarial pre-training/fine-
tuning scheme and training from scratch
(i.e., no adversarial pre-training).

Fig. 4.9 Mean squared error losses on the
test set versus spoofing probability compar-
ison between DART and LSTM baseline
with different masking probabilities for ad-
versarial pre-training.

Fig. 4.10 Predicted 2D user trajectories comparison between DART and LSTM baseline.

hidden dimension of 256 and 3 hidden layers. For knowledge distillation, we use a 1-layer
GRU, a noise probability of 0.3 for adversarial training and a distillation alpha of 0.5.

For the proposed optimisation algorithms, we consider a convergence tolerance η of
10−3, a scaling factor of 1013 for the numerical stability of the SCA method, a penalty
coefficient D of 100 and a learning rate of 0.1 for the SDP method.

4.5.1 User Mobility Prediction Performance Analysis

Figure. 4.8 shows MSE losses smoothed by Gaussian filter with sigma=1.0 on the test set
comparison of DART between the adversarial pre-training/fine-tuning scheme and training
from scratch (i.e., no adversarial pre-training). It can be seen that the pre-training helps
stabilise the loss at the fine-tuning stage and makes the model converge much faster and
better with fewer epochs than training from scratch, which demonstrates the effectiveness
of the adversarial pre-training.
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Fig. 4.11 Test loss comparison during training between DART (teacher), GRU with
distillation (student) and GRU from scratch.

Fig. 4.12 Inference time comparison between DART (teacher) and GRU with distillation
(student).

Figure. 4.9 illustrates MSE losses on the test set versus spoofing probability comparison
between DART and LSTM baseline with different masking probability for adversarial pre-
training. It can be seen that our proposed DART model outperforms the LSTM baseline in
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Fig. 4.13 Loss, sum rate and penalty comparisons between different gradient descent
algorithms for the proposed SDP method, i.e., Adam and RMSprop algorithms. Loss and
penalty terms do not have units, whereas the sum rate is measured in bits per second per
Hertz.

Fig. 4.14 Overall sum rate versus maximum
turning angle in radian with different mini-
mum speeds for SCA and SDP methods.

Fig. 4.15 Overall sum rate versus maximum
turning angle in radian with different maxi-
mum speeds for SCA and SDP methods.

terms of much lower test MSE loss. For the LSTM baseline, a higher masking probability
does not always help reduce the MSE loss on spoofing probability cases. That is, using a
higher masking probability worsens the MSE loss on smaller spoofing probability cases.
However, for our proposed DART model, a higher masking probability always helps reduce
the MSE loss significantly which makes the model more robust to the GNSS spoofing
attack.

Figure. 4.10 depicts the predicted 2D user trajectories comparison between DART and
LSTM baseline. We assume the GNSS spoofing attacker opportunistically modifies the
user location information by uniformly sampling a location within the service area with
probability ps = 0.3. It can be seen from the figure that the prediction of DART is closer
to the ground-truth trajectory than the prediction of the LSTM baseline. This demonstrates
that the DART model is more robust to GNSS spoofing attacks and can generate reliable
user trajectory predictions.
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Fig. 4.16 Overall sum rate comparison between pre-trained DART, adversarial trained
LSTM baseline, LSTM baseline from scratch with underlying SCA and SDP optimisation
methods, where GT refers to ground-truth, Pre-DART refers to pre-trained DART model,
Adv-LSTM refers to adversarial trained LSTM baseline model and LSTM is the LSTM
baseline trained from scratch, respectively.

Figure. 4.11 shows the Gaussian filter smoothed MSE losses on the test set comparison
between the DART teacher model, the distilled GRU student model and the GRU trained
from scratch. It can be seen that the GRU trained by knowledge distillation can predict the
next user locations as accurately as the teacher model under GNSS spoofing attacks whilst
the GRU trained from scratch fails to converge. This demonstrates the effectiveness of our
proposed knowledge distillation-based training method.

Figure. 4.12 compares the inference time between the DART teacher model and the
distilled GRU student model. The inference time is calculated by converting the Pytorch
models into Open Neural Network Exchange (ONNX) which is a widely used framework
to optimise model speed for real-time inference. It can be seen that the GRU model is
almost 25 times faster than the teacher model by maintaining a very close predictive power.
The reason is that the teacher model requires storing all historical time slots for inference
and the attention mechanism inside the model has a computational complexity of O(W 2)

since it cannot do recurrent inference like GRU, where W is the window size of the stored
sequence. Thus, the overall computational complexity is O(W 2) for the Transformer and
O(1) for GRU for a single-step inference.
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Fig. 4.17 Differential programming optimised sum rate comparison between Transformer
(teacher), GRU with distillation (student) and GRU from scratch.

4.5.2 User Clustering and UAV Position Optimisation Performance
Analysis

Figure. 4.13 shows the loss, sum rate and penalty comparison between different gradient
descent algorithms for the proposed SDP method, i.e., Adam and RMSprop algorithms.
In the simulation, we have found the standard gradient descent method fails to reduce the
penalty to zero and is very sensitive to the learning rate. Therefore, we don’t include it in
the comparison. It can be seen that the RMSprop algorithm shows superior convergence
speed and performance than the Adam algorithm with the same learning rate. From the
figure of the sum rate, we can see that the derivative of the sum rate curve first decreases
and then increases at around 1000 epochs. The flat plane at around 1000 epoch is a local
optimum, however, our proposed SDP method can easily escape from the local optimum
and lead the optimisation toward a better direction. Equation (4.36) shows that the loss
consists of two terms, i.e., the opposite sum rate term H[k] and the penalty term Ppenalty[k].
From Eq. (4.38), we can see that the penalty term is non-negative due to the ramp function.
Therefore, the negative loss function is caused by the opposite sum rate term in Eq. (4.37),
which is reasonable since we want to maximise the sum rate (i.e., minimise the opposite
number of sum rate). It is worth noting that a negative loss does not indicate that the
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moving average of the squared gradients, i.e., the RMS value, is negative. The RMS value
in the RMSprop algorithm remains positive and the algorithm points in the direction of
decreasing loss by looking at the direction of the gradient.

Figure. 4.14 and Fig. 4.15 illustrate the overall sum rate versus maximum turning angle
with different minimum and maximum speeds for SCA and SDP methods, respectively.
The curves of the SCA method in both figures are all partial since the SCA method can
only generate a valid solution with a maximum turning angle smaller than π/2. However,
our proposed SDP method is valid for all values of maximum turning angles. It can be seen
from both figures that the sum rates of the SDP method in both figures are much higher
than the sum rates of the SCA method where the sum rate of the maximum turning angle
of π is the maximum.

4.5.3 Deep Learning-Based Prediction-Optimisation Scheme Perfor-
mance Analysis

Figure. 4.16 shows the overall sum rate comparison between pre-trained DART, adversarial
trained LSTM baseline, and LSTM baseline from scratch with underlying SCA and SDP
optimisation methods, where GT refers to ground-truth, Pre-DART refers to pre-trained
DART model, Adv-LSTM refers to adversarial trained LSTM baseline model and LSTM
is the LSTM baseline trained from scratch, respectively. Specifically, we apply each
prediction model to the user mobility prediction. The predicted user locations in the next
time slot are then used for user clustering and UAV position optimisation. Once the users
for each UAV are arranged and the UAV position is optimised, we measure the overall
sum rate of the system based on the ground-truth user location in the next time slot. It can
be seen that the overall sum rate of our proposed Pre-DART model is very close to the
optimal value, i.e., the overall sum rate measured by using the ground-truth user locations.
Meanwhile, the SDP method outperforms the SCA method in GT and Pre-DART model-
based optimisation results but gives a similar performance on Adv-LSTM and LSTM
baseline models. This demonstrates that the SDP method can give more accurate UAV
position optimisation results with more accurate predicted user locations. To conclude,
our proposed deep learning-based prediction-optimisation scheme with the Pre-DART
model and SDP method can provide up to 30% higher overall sum rate compared with the
Adv-LSTM baseline and almost double the overall sum rate compared with the LSTM
baseline.

Figure. 4.17 shows the overall sum rate comparison between the groundtruth user
locations, the DART Transformer teacher model, the distilled GRU model and the GRU
model trained from scratch with underlying SDP optimisation methods. Specifically, we
apply each prediction model to the user mobility prediction. The predicted user locations
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in the next time slot are then used for user clustering and UAV position optimisation. Once
the users for each UAV are arranged and the UAV position is optimised, we measure the
overall sum rate of the system based on the ground-truth user location in the next time
slot. It can be seen that the overall sum rate of the distilled GRU student model is almost
99% close to the teacher model and both of them are close to the optimal value, i.e., the
overall sum rate measured by using the ground-truth user locations. However, the sum rate
optimised from the predictions of GRU trained from scratch is much worse than the other
three.

4.6 Conclusion

In this chapter, our focus has been on innovating a pioneering deep learning-centric
approach tailored to predict user mobility, optimise user assignments, and strategically
position drones within a UAV swarm-enabled wireless communication system, all while
confronting the challenges posed by malicious GNSS spoofing attackers. A cornerstone of
our proposal lies in deploying a robust deep learning model, instrumental in forecasting
future user locations. Leveraging this prediction capability, we devise a method to optimise
user assignments and determine UAV positions preemptively using efficient optimisation
techniques.

The simulation outcomes serve as a testament to the efficacy of our proposed DART
model. It exhibits near-optimal predictive performance even under diverse GNSS spoofing
attack scenarios. Furthermore, our introduced SDP method emerges as a game-changer,
surpassing the commonly employed SCA method. It not only yields superior objective val-
ues but also boasts faster convergence rates, establishing its superiority in the optimisation
landscape.

Demonstrating the robustness of our framework, the deep learning-driven prediction-
optimisation scheme showcases near-optimal overall sum rates compared to scenarios
leveraging ground-truth user location information solely for optimisation purposes. The
pre-trained and fine-tuned DART model, coupled with the SDP method, attains remarkable
performance heights, showcasing up to a 30% increase in overall sum rates in contrast
to an adversarially trained LSTM baseline. Moreover, this approach nearly doubles the
overall sum rates when compared to the vanilla LSTM baseline, underlining its substantial
leap in performance metrics.

While the Transformer-based user location forecasting algorithm introduced exhibits
superior predictive prowess, its inference speed might pose constraints for real-world
applicability. Addressing this concern, we delve into the introduction of a knowledge
distillation methodology. This strategic approach aims to streamline the complexity of
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the Transformer-based forecasting algorithm while retaining its predictive power. The
overarching goal is to distil the extensive DART model into a more manageable GRU model,
maintaining predictive efficacy while significantly reducing computational overhead.

The simulation outcomes serve as compelling evidence for the efficacy of our proposed
Knowledge Distillation-based scheme. We witness that the optimised sum rates achieved
using the distilled GRU student model’s predicted user locations nearly approach an
impressive 99% parity with the Transformer teacher model. Moreover, a significant
highlight is the striking difference in inference time between the two models, where the
student model operates at an incredibly swift pace, consuming a mere 4% of the time
required by the teacher model for inference.

This remarkable achievement underscores the potential of knowledge distillation in
streamlining complex models without compromising predictive accuracy. Not only does
our distilled GRU student model approximate the performance of the Transformer teacher
model, but its expeditious inference time renders it a more viable and practical choice for
real-time applications within UAV swarm-enabled communication systems.

The amalgamation of prediction accuracy and computational efficiency achieved
through knowledge distillation presents a pivotal advancement in the realm of user mobility
prediction and resource allocation. By distilling the extensive knowledge encapsulated
within the Transformer-based teacher model into the streamlined GRU-based student model,
we have successfully struck a balance between predictive capability and computational
expediency.
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Chapter 5

Conclusions and Potential Research
Directions

5.1 Conclusions

The thesis has delved into the pressing challenges faced by modern wireless networks,
highlighting the critical need for sustainable and secure communication protocols due to
escalating demands for connectivity and spectral efficiency, alongside the growing threat of
malicious attacks. Focusing on two vital domains within wireless communication systems -
IRS-aided THz communication and UAV swarm-enabled networks - the research has aimed
to address energy inefficiencies and fortify against security threats. Firstly, it has introduced
a cutting-edge deep learning-based algorithm, the TE-CIE, designed to predict channel
behaviour and optimise energy efficiency in IRS-aided THz communication systems,
showcasing substantial improvements in accuracy and computational efficiency. Secondly,
it has presented a robust UAV swarm position optimisation system utilising a novel deep
learning framework, the DART, which significantly mitigates the impact of malicious
GNSS spoofing attacks. Additionally, the thesis has explored knowledge distillation
techniques to streamline computational complexities, resulting in a smaller yet efficient
model, the GRU, facilitating real-time deployment in UAV swarm-based networks while
maintaining considerable performance. Overall, the research has contributed innovative
solutions for sustainable and secure wireless communication paradigms, emphasising
the significance of these advancements in enhancing energy efficiency, resilience against
attacks, and overall performance compared to established benchmarks, while paving the
way for future research in diverse wireless communication scenarios.

Specifically, in Chapter 3, we have investigated a novel deep learning-based channel
prediction and EE optimisation problem for an IRS-assisted THz communication system.
We have designed a deep learning-based channel prediction method for time-varying
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fading channel prediction. A TE-CIE model has been developed to accurately capture the
temporal correlation between past CSI and the next CSI. Meanwhile, the EE optimisation
problem has been studied in an IRS-assisted MU-MISO system with THz communications.
In the considered system, the precoding matrix and IRS phase shift matrix have jointly
been optimised for maximising the system EE when meeting the constraint of maximum
transmit power. Finally, combining the TE-CIE channel prediction method with the EE
optimisation algorithm leads to our proposed deep learning-based prediction-optimisation
scheme for EE maximisation in the IRS-assisted THz MU-MISO communication system.
We have shown in the simulation that our proposed scheme can achieve at least twice the
EE improvement compared to baseline methods in the literature.

In Chapter 4, we have proposed a novel deep learning-based user mobility prediction,
user assignment and drone position optimisation scheme for a UAV swarm-enabled wire-
less communication system in the presence of malicious GNSS spoofing attackers. A
robust deep learning model is deployed to predict the future user locations and the user as-
signment and UAV positions for the next time slot can be optimised in advance by efficient
optimisation methods. Simulation results demonstrate that our proposed DART model
can achieve near-optimal prediction performance under various GNSS spoofing attack
settings. Meanwhile, the proposed SDP method significantly outperforms the commonly
used SCA method with better objective values and faster convergence. Finally, the deep
learning-based prediction-optimisation scheme is proven to achieve a near-optimal overall
sum rate compared with using the ground-truth user location information for optimisation.
The pre-trained and fine-tuned DART model with the SDP method can provide up to 30%
higher overall sum rate compared with the adversarial trained LSTM baseline and almost
double the overall sum rate compared with the vanilla LSTM baseline.

Finally, in Chapter 5, we have proposed a novel knowledge distillation-based user
mobility prediction, user assignment and drone position optimisation scheme for a UAV
swarm-enabled wireless communication system in the presence of malicious GNSS spoof-
ing attackers. A robust and efficient deep learning model is deployed to predict the future
user locations and the user assignment and UAV positions for the next time slot can be
optimised in advance by efficient optimisation methods. Simulation results demonstrate
that the optimised sum rate using the distilled GRU student model’s predicted user loca-
tions can achieve almost 99% compared to the Transformer teacher model. Meanwhile,
the inference time of the student model is only 4% compared to the teacher model.
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5.2 Comprehensive Future Research Directions

This thesis has covered topics including the imperative need for sustainable and secure
communication protocols in modern wireless networks, advancements in IRS-aided THz
communication systems, strategies to mitigate energy inefficiencies, and fortification
against malicious attacks in wireless networks, particularly focusing on UAV swarm-
enabled communication networks. However, there are still several challenges that need to
be addressed to extend and improve the scope of the current research. Some of the points
are listed as follows:

• Adaptive Channel Prediction: Enhancing adaptive channel prediction in IRS-
aided THz systems might involve exploring reinforcement learning or other adaptive
techniques that allow the system to learn and adapt to changing channel conditions
in real time, thereby improving the accuracy of channel predictions.

• Real-Time Implementation: To validate the practicality of deep learning models
like DART and TE-CIE, future research could focus on optimising these models
for deployment in real-time scenarios. This could involve hardware acceleration,
model compression techniques, and efficient model architectures to ensure their
effectiveness in dynamic environments.

• Energy Harvesting Techniques: Exploring and integrating novel energy harvesting
techniques (solar, kinetic, RF, etc.) could be pivotal for sustaining UAV swarms and
IRS-enabled systems. Future research might focus on optimising energy harvesting
systems and energy storage solutions to maximise autonomy and operational lifetime,
which can also be enhanced by deep learning algorithms.

• Integration with 6G Networks: Investigating integration with emerging 6G net-
works involves assessing compatibility, scalability, and efficiency. Future studies
might explore how the proposed solutions align with the architectural principles and
technological advancements envisioned for 6G networks.

• Edge Computing and Decentralisation: The system models studied in this thesis
are all centralised. However, exploring the role of edge computing and decentralised
architectures in wireless communication systems can contribute to increased security
and efficiency. Future research could investigate how decentralised decision-making
and edge processing can improve latency, privacy, and resilience in UAV swarm
networks.

• Multi-Objective Optimisation: Investigating multi-objective optimisation tech-
niques would involve finding optimal solutions that balance conflicting objectives
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such as energy efficiency, spectral efficiency, and security. Future research could
explore sophisticated algorithms, such as multi-objective evolutionary algorithms or
game-theoretic approaches, to handle trade-offs effectively.

• Dynamic Security Measures: Future research could focus on developing adaptive
security measures that dynamically evolve to counter emerging threats. This might
involve Artificial Intelligence (AI)-driven threat detection systems that continuously
learn from new attack patterns, adapting network configurations in real-time to
mitigate potential vulnerabilities in UAV swarm networks.

• Resource Allocation Optimisation: Advanced resource allocation algorithms for
UAV swarm communication systems could account for dynamic user mobility pat-
terns and varying environmental conditions. Future research might delve into deep
learning-based predictive algorithms that anticipate user movement or adaptive algo-
rithms that dynamically allocate resources based on changing network conditions.

• Standardisation and Deployment Strategies: Addressing standardisation chal-
lenges involves defining protocols and interfaces that ensure interoperability among
diverse systems. Future research could focus on developing deployment strategies
that consider regulatory frameworks, scalability, and ease of integration to facilitate
the practical implementation of these advanced technologies in real-world scenarios.

• Privacy-Preserving Communication Protocols: Security issues include not only
malicious attacks but also unauthorised access or surveillance. Therefore, future
research could focus on investigating privacy-preserving communication protocols
for wireless networks, focusing on developing robust encryption techniques and
anonymisation methods to safeguard sensitive data exchanged within UAV swarm-
enabled networks, ensuring confidentiality and integrity while minimising the risk
of unauthorised access or surveillance.
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