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Critical slowing down in purely elastic ‘snap-through’ instabilities

Michael Gomez, Derek E. Moulton and Dominic Vella∗

Mathematical Institute, University of Oxford, Woodstock Rd, Oxford, OX2 6GG, UK

Many elastic structures have two possible equi-
librium states [1]: from umbrellas that become
inverted in a sudden gust of wind, to nano-
electromechanical switches [2, 3], origami pat-
terns [4, 5] and the hopper popper, which jumps
after being turned inside-out [6]. These systems
typically transition from one state to the other
via a rapid ‘snap-through’. Snap-through allows
plants to gradually store elastic energy, before
releasing it suddenly to generate rapid motions
[7, 8], as in the Venus flytrap [9]. Similarly, the
beak of the hummingbird snaps through to catch
insects mid-flight [10], while technological appli-
cations are increasingly exploiting snap-through
instabilities [11–13]. In all of these scenarios, it
is the ability to repeatedly generate fast motions
that gives snap-through its utility. However, esti-
mates of the speed of snap-through suggest that
it should occur more quickly than is usually ob-
served. Here, we study the dynamics of snap-
through in detail, showing that, even without dis-
sipation, the dynamics slow down close to the
snap-through transition. This is reminiscent of
the slowing down observed in critical phenom-
ena, and provides a handheld demonstration of
such phenomena, as well as a new tool for tun-
ing dynamic responses in applications of elastic
bistability.

Snap-through occurs when a system is in an equilib-
rium state that either ceases to exist or becomes unstable
as a control parameter varies: the system must jump to
another equilibrium state. For example, in the Venus fly-
trap it is believed that the natural curvature of the leaf
changes slightly making the ‘open’ equilibrium disappear
leaving only the ‘closed’ equilibrium [9].

Bistability and snap-through can be demonstrated us-
ing an elastic strip of length L whose edges are clamped
at equal angles α 6= 0 to the horizontal (Fig. 1a) [14, 15].
Provided that the two ends of this arch are brought
together by a large enough distance ∆L, two stable
shapes exist: the ‘natural’ mode and an ‘inverted’ shape
(Fig. 1a). However, as ∆L is gradually decreased (pulling
the two ends apart), the inverted equilibrium shape sud-
denly snaps through to the natural shape. The bifurca-
tion diagram for this system (Fig. 1a) shows that as ∆L
is decreased the inverted state becomes unstable, before
ceasing to exist at still smaller ∆L.

Snap-through due to an equilibrium state becoming
unstable, as in the above example, is generally amenable
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to linear stability analysis [6, 16]: the displacement
of each point on the arch evolves in time as ∼ eσt

for some growth rate σ. The more dynamically inter-
esting snap-through occurs when an equilibrium state
ceases to exist without first becoming unstable (known
as a saddle-node/fold bifurcation or limit-point instabil-
ity [17]). This textbook snap-through [1] can be obtained
simply by holding one end of the strip horizontally, while
the other remains clamped at the angle α (Fig. 1b).

The change in bifurcation to a saddle-node type means
that a standard linear stability analysis no longer applies.
Many previous works adopt a purely numerical approach
to study the dynamics in this scenario [14]. In a sim-
ple elastic model, transverse displacements w(x, t) of the
strip are governed by the dynamic beam equation:

ρsh
∂2w

∂t2
+B

∂4w

∂x4
+ P

∂2w

∂x2
= 0, 0 < x < L, (1)

with the material properties of the strip denoted by ρs
(density), h (thickness) and B = Eh3/12 (bending stiff-
ness, with E the Young’s modulus); P is the applied com-
pressive load (per unit width). An alternative approach
is to estimate the time scale of snapping by balancing
the first two terms in (1), suggesting that snap-through
should occur on a time scale

t∗ =

(
ρshL

4

B

)1/2

∼ L2

h
√
E/ρs

. (2)

This time scale involves the speed of sound within the
strip, (E/ρs)

1/2, and so is typically very short. However,
the above estimate frequently overestimates the speed of
snapping, with the discrepancy attributed to some form
of dissipation [9, 14]. We investigate this snap-through
‘bottleneck’ using a controlled version of our handheld
snapping experiment and detailed analysis of (1) .

We performed experiments on thin strips of polyethy-
lene terephthalate (PET) and stainless steel shim (see
Methods). A strip is clamped (with ends angled appro-
priately) and then buckled into an arch by imposing an
end-shortening ∆L (Fig. 2a). Snap-through is reached
by altering ∆L quasi-statically to values ∆L < ∆Lfold,
with the threshold ∆Lfold determined experimentally
(see appended Supplementary Information for details).
To obtain repeatable experiments with a given value of
∆L < ∆Lfold, the strip is initially prevented from snap-
ping by an indenter that fixes the displacement of the
midpoint to be that at the bifurcation point, wfold(L/2).
On removing the constraint, the strip then snaps from
rest (Fig. 2b).

A spatio-temporal plot of the midpoint position dur-
ing snap-through (Fig. 2c) reveals the nonlinear nature of
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FIG. 1. Exploring ‘snap-through’ instabilities in a simple elastic system. (a) Bringing the edges of a strip of plastic together,
while also holding them at a non-zero angle α to the horizontal, creates bistable ‘inverted’ (bottom) and ‘natural’ (top) arch
shapes. Under smaller end-shortenings ∆L, the arch snaps from the inverted to the natural shape. Analysing the bifurcation
behaviour shows that the instability underlying snapping in this case is a subcritical pitchfork bifurcation: the inverted mode
(lower solid curve) intersects an unstable asymmetric mode (not drawn) at the point marked with a red dot; here it becomes
linearly unstable (dashed curve). (Because the asymmetric mode is unstable it is not observed in practice.) (b) Introducing
asymmetry in the boundary conditions, by holding the right end horizontally, still creates a bistable system. However, the
destabilizing effect of the asymmetric mode is removed and the inverted mode remains stable up to a fold (indicated by the red
dot): the snap-through bifurcation is now a saddle-node/fold bifurcation.

the early stages and the under-damped oscillations about
the natural state. The inset of Fig. 3 shows that the dis-
placement of the midpoint initially grows quadratically
in time, in contrast to the exponential growth that is
observed in systems at the onset of instability [6, 16]; a
systematic slowing down is also seen in both the displace-
ment and the snap-through time, tsnap (inset of Fig. 4), as
the bifurcation point ∆Lfold is approached. This slowing
down behaviour is reminiscent of critical slowing down in
a number of physical phenomena [18–22].

To understand these observations, we analyse the lin-
ear beam equation, (1), incorporating the lateral con-
finement of the (inextensible) arch, which for small de-
flections is approximated by∫ L

0

(
∂w

∂x

)2

dx = 2∆L. (3)

The inclination angle α enters through the boundary con-
dition wx(0, t) = α (subscripts denote differentiation)
while the other boundary conditions are homogeneous,
w(0, t) = w(L, t) = wx(L, t) = 0. The linearity of the
beam equation (1) and the form of the confinement (3)
show that wx can be rescaled by (∆L/L)1/2 and, using L
as the natural horizontal length scale, we see immediately
that a single dimensionless parameter emerges:

µ = α

(
∆L

L

)−1/2
. (4)

The purely geometrical parameter µ is the key control
parameter in the problem and may be understood as the

ratio of the angle imposed by clamping, α, to that im-
posed by confinement, (∆L/L)1/2.

An analysis of the equilibrium solutions of (1) sub-
ject to the constraint (3) and the appropriate bound-
ary conditions allows the shape of the inverted arch to
be determined analytically where it exists (see Supple-
mentary Information for details). This analysis confirms
that bistability of the inverted shape is lost at a saddle-
node bifurcation where µ = µfold ≈ 1.782; the bifurcation
shape, wfold(x), and the associated (constant) compres-
sive force, PL2/B = τ2fold ≈ 57.55, can also be found
explicitly.

To analyse the dynamics just beyond the bifurcation
point, i.e. for end-shortenings ∆L slightly smaller than
∆Lfold, we set µ = µfold+∆µ with 0 < ∆µ� 1. Because
no inverted equilibrium exists for ∆µ > 0, we exploit the
fact that the midpoint displacement is initially the same
as at the bifurcation, i.e. w(L/2, 0) = wfold(L/2). For
small ∆µ, the initial shape of the strip is therefore ‘close’
to the bifurcation shape everywhere, w(x, 0) ≈ wfold(x)
for 0 < x < L. Introducing dimensionless variables X =
x/L, W = w/(L∆L)1/2, Wfold = wfold/(L∆L)1/2, T =
t/t∗ and τ2 = PL2/B we then seek a series solution of
the form

W (X, T ) = Wfold(X) + ∆µ1/2Wp(X)A(T ), (5)

τ(T ) = τfold + ∆µ1/2A(T ). (6)

We find that Wp(X) is a spatial eigenfunction that can
be determined analytically, while the temporal variation
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FIG. 2. Investigating the snapping dynamics of an elastic
arch. (a) A thin strip is buckled into an unstable state with
an end-shortening past the snapping transition, ∆L < ∆Lfold;
a metal indenter prevents the strip from snapping by making
contact at its midpoint and imposes w(L/2, 0) = wfold(L/2).
Scale bar 10 cm. (b) The indenter is then lowered allowing
the arch to snap (three successive stages superimposed). (See
also Methods.) (c) A spatio-temporal plot of the midpoint
reveals its trajectory during snapping (PET, L = 240 mm,
α = 21.34◦, ∆Lfold = 10.41 mm, wfold(L/2) = −16.75 mm,
∆L = 10.20 mm). The montage begins before the point when
the indenter loses contact with the strip, and ends as the
arch oscillates about the natural shape (the horizontal line is
at zero displacement). Slices through a total of 828 frames
(separated by 1 ms) are shown.

of the motion, A(T ), satisfies

∆µ−1/2
d2A

dT 2
= c1 + c2A

2, (7)

with c1 ≈ 329.0 and c2 ≈ 417.8 constants that depend
on Wp(X) and its integrals (see Supplementary Informa-
tion).

The ordinary differential equation (7) represents a
great simplification of the full system (1) and (3). Fur-
thermore, (7) is generic for the dynamics of elastic snap-
through without dissipation: the nonlinear term A2 is
inherited from the structure of the saddle-node bifurca-
tion (the parabolic geometry near the fold) and should
hold generically in inertial snap-through. With viscous
damping, a similar analysis would lead to a single time
derivative in (7). The specific details of the problem (e.g.
boundary conditions) enter only through the constants c1
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FIG. 3. Midpoint trajectories during snapping for different
end-shortenings just beyond the snapping transition. Inset:
Evolution of the midpoint position, w(L/2, t), away from the
initial value wfold(L/2) (PET, L = 290 mm, α = 19.85◦,
∆Lfold = 9.20 mm, wfold(L/2) = −20.95 mm). For each
value of ∆Lfold−∆L (given by the colour bar), three runs are
recorded and shown here (circles). The time origin, t = 0, is
the point where contact is first lost with the indenter (see Sup-
plementary Information for details); data is plotted until the
strip begins to oscillate about the natural shape. Main plot:
The same data, rescaled in terms of the amplitude variable
A(T ) as a function of dimensionless time T = t/t∗. We see
that while A(T ) remains small, the points collapse onto the
predicted asymptotic behaviour (8) (solid black curve) with
quadratic growth initially.

and c2.
Because the arch starts from rest at a shape close to

the bifurcation shape, the appropriate initial conditions
for (7) are A(0) = AT (0) = 0, giving the implicit solution

∆µ1/4T =

√
3

2

∫ A(T )

0

dξ

(3c1ξ + c2ξ3)1/2
. (8)

Expanding the right-hand side for A� 1, we obtain the
asymptotic behaviour

A(T ) ∼ c1
2

∆µ1/2T 2,

when T � ∆µ−1/4. The initial growth of the midpoint
displacement (and all other material points) is therefore
ballistic, as observed experimentally (Fig. 3 inset); vis-
cous dissipation would instead give A ∝ T . Furthermore,
the full solution for A(T ) computed from (8) compares
favourably to that observed experimentally while A . 1
(Fig. 3), with experimental data for different values of
∆µ collapsing onto a single master curve. For A � 1
our asymptotic analysis breaks down and fails to predict
how the strip approaches the natural equilibrium and os-
cillates; instead, the solution (8) blows up at time T = Tb
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FIG. 4. Slowing down of snapping dynamics near the loss
of bistability. Inset: The experimentally measured snap-
ping time, tsnap (defined as the time taken to reach the
first peak of vibrations, as labelled in Fig. 2c, averaged over
three runs), as the end-shortening ∆L approaches the snap-
ping threshold ∆Lfold from below. Data is shown for PET
strips with L = 240 mm, α = 21.34◦ (upward-pointing trian-
gles), L = 290 mm, α = 19.85◦ (circles) and L = 430 mm,
α = 21.17◦ (squares), as well as for experiments on steel strips
with L = 140 mm, α = 22.51◦ (right-pointing triangles) and
280 mm, α = 17.14◦ (diamonds). Main plot: Snapping times,
re-scaled by the inertial timescale t∗, as a function of the nor-
malized distance to bifurcation ∆µ = µ − µfold (computed
from (4)). The data collapse onto the asymptotic prediction

Tsnap ≈ 0.179∆µ−1/4 from linear beam theory (solid black
line). Horizontal error bars correspond to the uncertainties in
measurements of α (±2◦) and ∆L (±200 µm) (see Methods);
vertical error bars correspond to the standard deviation of the
measured snapping times over three runs.

where

Tb =

√
3

2
∆µ−1/4

∫ ∞
0

dξ

(3c1ξ + c2ξ3)
1/2
≈ 0.179∆µ−1/4.

(9)
This time therefore corresponds to the end of the ‘bottle-
neck phase’ in which the strip is influenced by its proxim-
ity to the inverted equilibrium at the fold. Because the
motions are rapid by this stage, Tb represents a natural
approximation for the total snap-through time. The pre-
diction (9) leads to a collapse of experimentally measured
snapping times for strips composed of different materials

and natural lengths L, and predicts the dependence on
∆µ well (Fig. 4).

The data in Fig. 4 and the expression for the snap-
through time, (9), show that as the system approaches
the snap-through transition the dynamics slow down sig-
nificantly. This is characteristic of the dynamics near
a bifurcation in a range of physical phenomena [19–23],
which is commonly referred to as ‘critical slowing down’
[18], or as a ‘bottleneck’ due to the ‘ghost’ of the nearby
equilibrium [24]. The importance of critical slowing down
in elastic instabilities such as snap-through has not been
appreciated previously, despite numerous previous ex-
periments showing signs of diverging time scales as the
threshold is approached [13, 14]. Furthermore, the iner-
tial (rather than overdamped) dynamics here changes the
exponents typically seen in critical slowing down (∆µ−1/4

rather than ∆µ−1/2 [23]).
We note that the prefactor in the scaling Tb ∼ ∆µ−1/4

depended on a detailed calculation and hence on the
boundary conditions of the problem; here the prefactor is
small, meaning that the snap-through time is comparable
to the characteristic elastic time scale t∗ for experimen-
tally attainable ∆µ. However, in other systems the ap-
propriate prefactor may be substantially larger and finer
control of the distance to bifurcation ∆µ may be pos-
sible; in such circumstances we expect that a substan-
tial disparity between the observed snap-through time
and the characteristic elastic time scale t∗ may emerge.
Biological systems such as the Venus flytrap may be
particularly prone to such a slowing down, as the ana-
logue of ∆µ is often controlled by slow processes such as
swelling or growth. In both biological and engineering
settings, snap-through would seem to require a trade-off
between the speed of snapping (a faster snap requiring
larger ∆µ) and the time/energy taken to attain a large
∆µ. Critical slowing down may also mean that very close
to the snap-through transition the system becomes over-
damped (rather than inertial) leading to different scal-
ings and slower dynamics; this possibility remains to be
fully explored and may depend on the precise nature of
the damping present (e.g. viscoelasticity in man-made
applications [14] or poroelasticity in biological systems
[7, 9]). Our analysis, combined with techniques for con-
trolling snap-through such as solvent-induced swelling
[25] or photo-initiation [26], may offer the possibility to
tune the time scale of snap-through from fast to slow by
controlling how far beyond the transition one takes the
system.
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SUPPLEMENTARY INFORMATION

Further detail on the theoretical analysis of the snap-
ping problem and the experimental procedures is avail-
able in the Supplementary Information (appended).

DATA AVAILABILITY

The experimental data that supports the plots within
this paper and other findings of this study are available
from http://dx.doi.org/10.5287/bodleian:RyGXnqJGk.

METHODS

Sample preparation. Strips were prepared from biaxi-
ally oriented polyethylene terephthalate (PET) film (Good-
fellow, Cambridge, ρs = 1.337 g cm−3, h = 0.35 mm,
E = 5.707 GPa) and stainless steel rolled shim (304 grade,
RS components, ρs = 7.881 g cm−3, h = 0.1 mm, E =
203.8 GPa). The value of the Young’s modulus E for each
material were determined by analysing the frequency of small-
amplitude vibrations of the strip. The time scale of snapping
was varied by varying the length of the strip: for PET we
used lengths L ∈ {240, 290, 430} mm while for steel we used
L ∈ {140, 280} mm. Experiments were conducted at room
temperature, well below the glass transition temperature of
PET, so that this material acts as a glassy polymer, showing
little viscous creep and dynamic dissipation (see [27, 28] for
example).

Snapping experiments. The ends of each strip are
clamped into vice clamps (PanaVise 301) which are mounted
onto a linear track so that the strip deforms in one plane only.
To minimize the effect of gravity, the strip is oriented side-
ways so its width lies in the vertical direction (see Fig. 2a,b of
the main text). The right clamp is fixed parallel to the track,
while the left clamp holds the strip at an angle α 6= 0 (con-
stant throughout each experiment) and can be moved along
the track to vary the applied end-shortening ∆L. A digital
camera mounted above the left clamp allows α to be deter-
mined to an accuracy of ±2◦, and changes in ∆L to be mea-
sured to an accuracy of ±200 µm (by measuring displacement
of the clamp from a known reference state).

The snapping dynamics are filmed using a high speed cam-
era (Phantom Miro 310) at a frame rate of 1000 fps. The
camera is placed vertically above the strip, allowing the mid-
point position (marked on the edge) to be recorded when the
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strip is in equilibrium and during motion. Beyond the fold,
i.e. when only one equilibrium exists, the strip is forced to
start close to the fold shape using a metal ruler (tip width
1 mm) attached to a laboratory jack; this is then lowered

vertically out of contact with the strip to allow snapping to
proceed. The resulting movie is cropped around the midpoint
position and converted to a spatio-temporal plot (montage)
of its trajectory using ImageJ (NIH).

[27] Shi, Y. & Jabarin, S. A. Glass-transition and melting be-
havior of poly(ethylene terephthalate)/poly(ethylene 2,6-
naphthalate) blends. J. Appl. Poly. Sci. 81, 11–22 (2001).

[28] Demirel, B. & Yaras, A. & Elçiçek, H. Crystallization

behavior of PET materials. BAÜ Fen Bil. Enst. Dergisi
Cilt 13, 26–35 (2011).
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Supplementary information for “Critical slowing down in purely elastic
‘snap-through’ instabilities”

This supplementary information gives further detail on the theoretical analysis of the snapping problem and the experimental
procedures than is possible in the main text. In particular, §I discusses the use of linear beam theory to characterize the
bistability of our system and the early-time dynamics of snap-through. In §II we discuss how we experimentally determine the
location of the fold point and extract the midpoint trajectory from the movies of snapping.

I. THEORETICAL ANALYSIS

The transverse displacement of the strip, w(x, t), is modelled using the linear dynamic beam equation [S5]

ρsh
∂2w

∂t2
+B

∂4w

∂x4
+ P

∂2w

∂x2
= 0, 0 < x < L. (S1)

Here x is the horizontal coordinate (measured from the left end), t is time, and P (t) is the (unknown) compressive force applied
to the strip (per unit width). The properties of the strip are its natural length L, thickness h, density ρs, and bending stiffness
B = Eh3/12 (with E the Young’s modulus). (Note that we use the bending stiffness appropriate for a narrow strip, see [S2].)

The left end of the strip is clamped at an inclination angle 0 < α � 1, while the right end is clamped horizontally. This
corresponds to the boundary conditions (here and throughout subscripts denote partial derivatives)

w(0, t) = 0, wx(0, t) = α, w(L, t) = wx(L, t) = 0. (S2)

We consider slender strips, h� L, well beyond the buckling threshold so that the extensibility of the strip may be neglected

(see [S8] for a discussion of this in a related problem). The lateral confinement of the strip then becomes
∫ L
0

cos θ ds = L−∆L
where θ(s, t) is the angle made by the strip to the horizontal, s is the arclength and ∆L is the imposed end-shortening. Using
the assumption of small slopes implicit in the beam equation, we identify s ∼ x and θ ∼ wx � 1 so this is approximated as∫ L

0

(
∂w

∂x

)2

dx = 2∆L. (S3)

Equation (S1) with boundary conditions (S2), the constraint (S3) and initial conditions fully specify the problem. We take
as initial conditions zero initial velocity, wt(x, 0) = 0, and initial shape w(x, 0) = w0(x), where the function w0(x) shall be
specified later.

A. Non-dimensionalization

To make the problem dimensionless, we scale the horizontal coordinate by the length L of the strip, i.e we set X = x/L.

Balancing terms in the inextensibility constraint (S3) shows that a typical slope wx ∼ (∆L/L)1/2, giving the natural vertical

length scale w ∼ (L∆L)1/2. We therefore introduce the dimensionless displacement W = w/(L∆L)1/2. Time is scaled as

T = t/t∗ where t∗ = (ρshL
4/B)1/2 is the inertial time scale (obtained by balancing inertial and bending forces in (S1)).

Inserting these scalings into the beam equation (S1), we obtain

∂2W

∂T 2
+
∂4W

∂X4
+ τ2

∂2W

∂X2
= 0, 0 < X < 1, (S4)

where τ(T )2 = PL2/B is the dimensionless compressive force.
With this non-dimensionalization, the constraint (S3) becomes∫ 1

0

(
∂W

∂X

)2

dX = 2, (S5)

while the boundary conditions (S2) are modified to

WX(0, T ) = µ ≡ α(∆L/L)−1/2, W (0, T ) = W (1, T ) = WX(1, T ) = 0. (S6)

Together with appropriate initial conditions for W and WT , these equations provide a closed system to determine the profile
W (X, T ) and compressive force τ(T )2.

By non-dimensionalizing the problem we have reduced the control parameters α and ∆L to the single parameter µ, which
enters the problem as a normalized inclination angle (the dimensionless compressive force τ2 acts as a Lagrange multiplier and
is determined as part of the solution). The parameter µ measures the ratio of the angle imposed by clamping, α, to that due

to the imposed end-shortening, (∆L/L)1/2, and so is entirely geometric in nature; it is independent of the material parameters
of the system, notably ρs and E (and also the thickness h). While the combination of parameters encapsulated in µ has been
identified empirically before [S3], the analytical understanding here is, to our knowledge, new. Finally, we note that µ is the
ratio of bending energy to stretching energy within the strip and, as such, is the analogue of the Föppl-von-Kármán number γ
for shallow spherical caps [S4].
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FIG. S1. The equilibrium behaviour of the strip, as predicted by linear beam theory. (a) Bifurcation diagram: plotting the

dimensionless midpoint displacement as a function of µ = α(∆L/L)−1/2. The upper branch (solid green curve) corresponds
to the ‘natural’ shape, while the lower branch (solid red curve) corresponds to the ‘inverted’ shape that disappears at the
saddle-node (fold) bifurcation at µ ≈ 1.7818. (b) The corresponding strip shapes, W (X), for each of these modes when µ = 1.

B. Equilibrium shapes

The solution of the static beam equation (S4) subject to the boundary conditions (S6) is

W (X) = µ
τX(cos τ − 1) + τ [cos τ(1−X)− cos τ ]− sin τX − sin τ(1−X) + sin τ

τ(2 cos τ + τ sin τ − 2)
. (S7)

To determine τ in terms of the control parameter µ, we substitute (S7) into the end-shortening constraint (S5) and rearrange
to find

µ2 =
8τ(2 cos τ + τ sin τ − 2)2

2τ3 − τ2(sin 2τ + 4 sin τ) + 4τ(cos τ − cos 2τ) + 2(sin 2τ − 2 sin τ)
. (S8)

For each value of µ, the allowed values of τ(µ) may be found numerically (e.g. using the matlab routine fsolve). Because
τ does not manifest itself experimentally, we plot the resulting bifurcation diagram in terms of W (1/2) and µ, using

W (1/2) = µ
tan(τ/4)

2τ
, (S9)

which follows from (S7). This result is shown in figure S1, and confirms that the ‘inverted’ equilibrium shape (the red branch
in figure S1) undergoes a saddle-node (fold) bifurcation when

µ = µfold ≈ 1.7818, W (1/2) = Wfold(1/2) ≈ −0.3476, τ = τfold ≈ 7.5864.

Note that it can be shown via standard techniques (see [S7], for example), that the branches represented by solid curves in
figure S1 are stable, while that represented by a blue dashed curve is unstable.

If the clamp angle α is fixed and µ is varied by changing the end-shortening ∆L (as in our experiments), the snapping
bifurcation occurs at

∆Lfold ≈ 0.315α2L.

C. Dynamics of snap-through

We now analyse the situation in which the system is placed just beyond the saddle-node bifurcation, i.e. we set µ = µfold+∆µ
with 0 < ∆µ� 1, a small perturbation. Because no inverted equilibrium exists for ∆µ > 0 (i.e. we are to the right of the fold
point in figure S1), it follows that for the strip to reach an equilibrium, it must snap upwards to the natural shape.

We take an initial condition that is ‘close’ to the shape of the arch at the fold bifurcation, i.e. W (X, 0) ≈ Wfold(X).
(Experimentally this condition is imposed by the indenter, which fixes the midpoint position to be that taken at bifurcation;
away from the midpoint W (X, 0) ≈ Wfold(X) then holds because ∆L ≈ ∆Lfold for ∆µ � 1). For ∆µ sufficiently small, we
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expect that the shape of the snapping beam will only evolve away from Wfold(X) on a time scale that is much slower than the
inertial time scale of the beam — we have that W (X, T ) ≈Wfold(X) (and also τ ≈ τfold) up to some dimensionless time T � 1.
To capture this explicitly we rescale time as T = ∆µηT , where η > 0 characterizes the duration of this slow ‘bottleneck’ phase
and will be determined as part of the analysis. In terms of scaled variables, the beam equation (S4) reads

∆µ2η ∂
2W

∂T 2
+
∂4W

∂X4
+ τ2

∂2W

∂X2
= 0, 0 < X < 1. (S10)

We now seek a series solution about the bifurcation shape of the form

W (X,T ) = Wfold(X) + ∆µ1/2W0(X,T ) + ∆µW1(X,T ) + . . . , (S11)

τ(T ) = τfold + ∆µ1/2τ0(T ) + ∆µτ1(T ) + . . . . (S12)

The choice of powers of ∆µ1/2 can be justified a posteriori and reflects the fact that the displacement (away from the bifurcation
shape) in the bottleneck is much larger than the original perturbation to the system, ∆µ. A similar scaling also arises in
bottleneck phenomena near the pattern forming threshold in the Swift-Hohenberg equation [S1].

1. Leading-order problem

Inserting (S11)–(S12) into (S10) and considering terms of O(∆µ1/2), we obtain the homogeneous equation

L(W0, τ0) ≡ ∂4W0

∂X4
+ τ2fold

∂2W0

∂X2
+ 2τfoldτ0

d2Wfold

dX2
= 0. (S13)

The end-shortening constraint (S5) and boundary conditions (S6) are also homogeneous at O(∆µ1/2):∫ 1

0

dWfold

dX

∂W0

∂X
dX = 0, W0(0, T ) = W0X (0, T ) = W0(1, T ) = W0X (1, T ) = 0.

Because the leading-order problem is homogeneous, it is equivalent to the equations governing small-amplitude oscillations about
the bifurcation shape (Wfold, τfold) restricted to neutrally stable (‘slow’) eigenmodes whose natural frequency (eigenvalue) is
zero. Using linearity of the operator L(·, ·), we may scale τ0 out from (S13) (since τ0 is independent of X) so that

(W0, τ0) = A(T )(Wp(X), 1). (S14)

Here A(T ) is an (undetermined) amplitude and Wp(X) is the eigenmode satisfying equation (S13) with τ0 = 1, i.e.

L(Wp, 1) = 0,

∫ 1

0

dWfold

dX

dWp

dX
dX = 0, (S15)

Wp(0) =
dWp

dX

∣∣∣∣
X=0

= Wp(1) =
dWp

dX

∣∣∣∣
X=1

= 0. (S16)

While this system appears to over-determine Wp(X) (there are four derivatives but five constraints), there is in fact a unique
solution

Wp(X) =
1

τfold

(
X

dWfold

dX
− µfoldX

)
+ a1 (sin τfoldX − τfoldX) + a2 (cos τfoldX − 1) , (S17)

where

a1 = −2µfold

sin2(τfold/2)
[
(τ2fold − 2) cos τfold − 2τfold sin τfold + 2

]
τ2fold (2 cos τfold + τfold sin τfold − 2)2

,

and

a2 = −µfold
τ3fold + τ2fold sin τfold(cos τfold − 2) + 2(τfold cos τfold − sin τfold)(cos τfold − 1)

τ2fold (2 cos τfold + τfold sin τfold − 2)2
.

(This solution is found by applying the boundary conditions (S16), but also satisfies (S15) since, by construction, τfold is the
value of τ taken at the fold.)

Subsequently, we shall need two integrals associated with (S17); we record the values of these integrals here:

I1 =

∫ 1

0

W 2
p dX ≈ 0.0518, I2 =

∫ 1

0

(
dWp

dX

)2

dX ≈ 0.950. (S18)

The variable A(T ) appearing in (S14) plays a key role in the snapping dynamics, because it acts as an amplitude of the
leading-order solution (and also its compressive force). More explicitly, re-arranging the original series expansion in (S11) shows
that

A(T ) ∼ ∆µ−1/2W (X,T )−Wfold(X)

Wp(X)
.

The amplitude A(T ) therefore characterizes how the strip evolves away from the bifurcation shape during the bottleneck phase.
Currently, A(T ) is undetermined. We proceed to the next order problem to determine A(T ).
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2. First-order problem

The amplitude A(T ) will be determined by a solvability condition on the first-order problem. In order to obtain dynamics at
leading order, i.e. for A to be a non-constant function of time, the inertia term must come into play at O(∆µ), which requires
η = 1/4. With this choice, at O(∆µ) the beam equation (S10) becomes

L(W1, τ1) = −Wp
d2A

dT 2
−A2

(
2τfold

d2Wp

dX2
+

d2Wfold

dX2

)
. (S19)

The end-shortening constraint (S5) and boundary conditions (S6) at O(∆µ) have the form∫ 1

0

dWfold

dX

∂W1

∂X
dX = − 1

2
A2

∫ 1

0

(
dWp

dX

)2

dX = − 1
2
I2A

2,

dW1

dX

∣∣∣∣
X=0

= 1, W1(0, T ) = W1(1, T ) =
dW1

dX

∣∣∣∣
X=1

= 0.

3. Solution for A(T )

Equation (S19) features the same linear operator L(·, ·) as in the leading-order problem, but now with an inhomogeneous
right-hand side. The Fredholm Alternative Theorem [S6] implies that solutions exist only for a certain right-hand side, yielding
a solvability condition that takes the form of an ODE for A(T ). We formulate this condition in the usual way: we multiply
(S19) by the solution of the homogeneous adjoint problem, integrate over the domain, and use integration by parts to shift the
operator onto the adjoint solution. In this case, the operator L(·, ·) is self-adjoint and so a solution of the homogeneous adjoint
problem is simply Wp(X). Performing these steps and simplifying (making use of the various boundary conditions that Wfold,
Wp and W1 satisfy) leads to

d2A

dT 2
= c1 + c2A

2, (S20)

where

c1 =
4τfold
µfoldI1

≈ 329.0, c2 =
3τfoldI2
I1

≈ 417.8, (S21)

where the integrals I1 and I2 are as defined in (S18). (Note that due to the scaled time T = ∆µ1/4T , this differs slightly to
the amplitude equation (7) given in the main text.)

Similar analyses have previously been performed for over-damped dynamics in the Swift–Hohenberg equation [S1], leading
to the over-damped version of (S20), i.e. with the second derivative on the left-hand side replaced by a first derivative. The
overdamped version of (S20) is well known as the canonical form of the dynamics close to a saddle-node bifurcation [S9] and
is, in turn, known to give rise to a bottleneck whose duration diverges as the bifurcation point is approached. We shall see that
(S20) exhibits a similar bottleneck phenomenon but emphasize that the dynamics here is purely inertial: there is no dissipation
in our model.

To solve (S20), we need initial conditions for A and AT . Because µ is perturbed by an amount ∆µ from the fold point, it
follows that W (X, 0) (the initial shape of the strip under the indenter) agrees with Wfold(X) to within O(∆µ). (Alternatively,
the steady indentation problem can be solved to obtain the shape of the beam, Windent(X); comparing this with the bifurcation

shape confirms that |Windent(X)−Wfold(X)| = O(∆µ).) The leading-order part enters the series solution in (S11) at O(∆µ1/2)
(� ∆µ), so that the initial conditions on A are homogeneous, i.e.

A(0) = AT (0) = 0. (S22)

The scaling T = ∆µ1/4T confirms the assumption that the bottleneck regime extends up to T � 1. As (S20) is an O(1)
equation for A(T ) (ignoring numerical factors), the bottleneck time scales as

T ∼ ∆µ−1/4 � 1.

In fact, we can evaluate the bottleneck time directly. Multiplying (S20) by AT and integrating twice (taking the positive root
for AT ) we obtain the full solution implicitly:

T =

√
3

2

∫ A(T )

0

dξ

(3c1ξ + c2ξ3)1/2
. (S23)

As well as showing that A(T ) grows quadratically at early times, this solution also predicts that A→∞ in a finite time

Tb =

√
3

2

∫ ∞
0

dξ

(3c1ξ + c2ξ3)1/2
=

(
64π2c1c2

3

)−1/4

Γ
(
1
4

)2 ≈ 0.179,
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or, expressed in the dimensionless but unscaled time T ,

Tb ≈ 0.179∆µ−1/4.

This blow-up corresponds to the end of the bottleneck regime — the strip is no longer influenced by its proximity to the
bifurcation shape, and is rapidly accelerating upward to the natural mode. Expanding the right-hand side of (S23) shows that
the strip accelerates out of the bottleneck according to the power law

A(T ) ∼ 6

c2
(Tb − T )−2.

Returning to our original series (S11)–(S12), we see that the perturbation variables are no longer small as soon as A(T ) grows

to O(∆µ−1/2) and hence the amplitude equation (S20) is no longer asymptotically valid. Nevertheless, our treatment here
allows us to obtain the key quantity of interest, the snapping time, which is dominated by the time spent getting through the
bottleneck.

II. EXPERIMENTAL METHODS

A. Determining the snapping transition

The strip is first placed in the inverted equilibrium with a large enough end-shortening, ∆L, so that the system is bistable.
We then decrease ∆L quasi-statically in small steps, measuring the midpoint displacement, w(L/2), until the strip snaps. The
dimensional bifurcation diagram obtained in this way is shown in figure S2a.

The bifurcation point, ∆Lfold, is never observed exactly: when we decrease ∆L, we introduce perturbations that cause
snap-through slightly before the fold is reached. We determine ∆Lfold by fitting the data points close to the transition to a
parabola (dotted curves in figure S2a) — the generic form expected close to the fold. This best-fit parabola also predicts the
corresponding midpoint position at the bifurcation point, wfold(L/2), which is then the midpoint displacement fixed by the
indenter. Note that this fitting procedure only needs to be performed once for each strip.

In determining the bifurcation diagram experimentally, various errors are introduced in the measurement of the angle α and
the end-shortening ∆L. To plot the dimensionless bifurcation diagram (figure S2b) we therefore allow the value of α to vary
(within the limits of experimental uncertainty, ±2◦) so that the experimentally determined fold point is as close as possible to

that predicted theoretically. The result, plotted in terms of µ = α(∆L/L)−1/2, is compared with the result of the linear beam
theory in figure S2b. The fitted position of the fold, µfold (as predicted from the best-fit parabola), is displayed in each case
(dotted vertical lines). Because the snapping dynamics depend sensitively on the size of ∆µ = µ− µfold, the theoretical value
of µfold (≈ 1.7818) is not used to calculate ∆µ; instead, we use the shifted values of α, and the corresponding fitted values of
µfold, since this is consistent with the observed behaviour of the strip prior to snapping. From here on, and throughout the
main text, we refer to the shifted value of α for each experiment.

B. Extracting the midpoint trajectory

For values ∆L < ∆Lfold (or equivalently µ > µfold), the strip snaps upward to the natural shape once contact with the
indenter is lost. Each snapping movie begins before the moment at which the indenter loses contact; after converting this to a
spatio-temporal plot (montage) of the midpoint position, the trajectory is therefore initially flat on the montage and it is not
clear from these plots when the snapping motion first occurs. This start of the motion is key to the snapping time, and so this
point must be determined by a fitting procedure.

The values of w(L/2, traw) are determined from the montage, with traw denoting the raw time (measured from the arbitrary
start of the montage). Figure S3a shows a typical set of trajectories obtained in this way for snap-through at different values
of ∆L < ∆Lfold; these are plotted in terms of the change in midpoint position away from the value imposed by the indenter,
∆wmid ≡ (w−wfold)|x=L/2. Even without the moment of release determined, a semi–log plot of ∆wmid would reveal a straight
line if the initial growth of the instability were exponential (as predicted by conventional stability analysis). This plot (figure
S3b) does not indicate such an exponential growth.

If we instead assume power-law growth of the form

∆wmid ∝ (traw − t0)β , (S24)

where t0 is the time when contact is first lost and β is an (unknown) exponent (assumed positive), then

traw − t0
β

=

{
d

dtraw
log ∆wmid

}−1

. (S25)

A plot of the experimentally determined RHS of (S25) as a linear function of traw is shown in figure S4a. Despite the noise in
the plot (which is due to numerical differentiation of the logarithm of our experimental data, as in (S25)), we see that our data
is entirely consistent with β = 2, i.e. the strip deflection grows quadratically in time.
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FIG. S2. (a) Midpoint position of equilibrium shapes as a function of the applied end-shortening, ∆L. Data is shown for
PET strips with L = 240 mm (red upward-pointing triangles), L = 290 mm (green circles) and L = 430 mm (blue squares).
Also plotted is data for steel strips with L = 140 mm (cyan right-pointing triangles) and L = 280 mm (magenta diamonds).
The lower branches (i.e. with w(L/2) < 0) correspond to the ‘inverted’ shape while the upper branches (i.e. with w(L/2) > 0)
correspond to the ‘natural’ shape after snap-through has occurred. In each case the best-fit (least-squares) parabola through the
6 points closest to the snapping transition is shown (dotted curves). (b) The same data plotted in dimensionless terms, where
α has been chosen within the range of experimental uncertainty (±2◦) so that the fitted bifurcation points (vertical dotted
lines) are close to the theoretical value µfold ≈ 1.7818. The final points are µfold ≈ 1.7884, α = 21.34◦ (red upward-pointing
triangles), µfold ≈ 1.9452, α = 19.85◦ (green circles), µfold ≈ 1.8800, α = 21.17◦ (blue squares), µfold ≈ 1.8174, α = 22.51◦

(cyan right-pointing triangles), and µfold ≈ 1.9236, α = 17.14◦ (magenta diamonds). The prediction from linear beam theory
(reproduced from figure S1a) is also shown (solid black curves).

A further check that the growth is quadratic is to plot the square root of the midpoint displacement as a function of traw
on linear axes (figure S4b). This confirms a linear behaviour at early times, and allows us to determine the start of the snap,
t0, from the intercept of the best-fit line with the horizontal axis. (We use the plotting procedure indicated in figure S4b to
determine t0 because this is less susceptible to noise than the approach used in figure S4a.)

In the main text, the dimensionless midpoint trajectories are plotted in terms of the amplitude A(T ), which is defined in
the main text and implicitly via (S11) and (S14) to be

A(T ) =
W (1/2, T )−Wfold(1/2)

∆µ1/2Wp(1/2)
. (S26)

In determining A, we use the value Wp(1/2) ≈ 0.3324 determined from (S17). Figure S5 shows the experimentally determined
A(T ) that were not shown in figure 3 of the main text; these experiments were performed with other lengths L and strips made
of either PET or steel.

The results in figure S5 show that there is a reasonable collapse of experimental data with different values of ∆L onto a
single curve for A(T ). However, we note that there is some dispersion of the data about the numerically predicted A(T ). We
attribute this dispersion to uncertainty in the measured value of ∆L (±200 µm), which increases the relative error in ∆µ as
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FIG. S3. Midpoint trajectories during snap-through measured at different end-shortenings beyond the snapping transition
(PET, L = 290 mm, α = 19.85◦, ∆Lfold = 9.20 mm, wfold(L/2) = −20.95 mm). (a) Evolution of the midpoint displacement
from its initial value, ∆wmid = (w − wfold)|x=L/2. For each end-shortening (given by colour bar), the snapping motion begins
at some time traw = t0 > 0 that is not known. (Note that data is plotted only until the strip begins to oscillate about the
natural shape). (b) The same data plotted on semi–log axes do not suggest the presence of a classical linear instability in the
initial motion (which would be indicated by a phase of exponential growth).

∆L→ ∆Lfold.
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FIG. S4. (a) The same data in figure S3 rescaled according to the right-hand side of (S25) (numerical differentiation was
performed using forward differences). A linear (least-squares) fit over the first 5 points in each case (dotted lines) gives the
estimates β ≈ {2.12, 1.96, 1.93, 2.29, 1.83, 2.29, 1.87, 2.10} (given in increasing order of ∆Lfold − ∆L); these are all consistent
with the expected quadratic growth, β = 2. (b) Rescaling the data according to the power-law (S24) with β = 2, together with
the best fit line over the first 5 points in each case (dotted lines). This allows the start time of snapping, t0, to be determined
from the intercept with the horizontal axis.
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FIG. S5. Dimensionless midpoint trajectories during snapping for PET and steel strips of varying natural length L. In each
plot, different trajectories correspond to different end-shortenings beyond the snapping transition, coloured as a heat-map from
small values of ∆µ (brown/red) up to large values of ∆µ (blue). Data is shown for PET strips with L = 240 mm, α = 21.34◦

(upward-pointing triangles) and L = 430 mm, α = 21.17◦ (squares), as well as for experiments on steel strips with 280 mm,
α = 17.14◦ (diamonds) and L = 140 mm, α = 22.51◦ (right-pointing triangles).


