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ABSTRACT
This paper introduces EmbedWatch, an innovative crash reporting
system specifically designed for embedded devices. EmbedWatch
integrates fat pointer principles with remote attestation, efficiently
addressing spatial memory errors across various memory segments,
including stack, heap, and global variables. The system’s notable
feature is its vulnerability analysis capability, which precisely pin-
points the exact code segment responsible for an error, significantly
enhancing error detection and resolution accuracy. We evaluate
the effectiveness and practicality of EmbedWatch by evaluating
real-world firmware and CWEs. We show that EmbedWatch accu-
rately detects the vulnerability analysis of spatial memory errors
in the analyzed firmware with a negligible overhead range (0.01%
- 2.33%), geometric mean 0.228 +0.4% encryption protocol .

CCS CONCEPTS
• Security and privacy→ Information flow control; Trusted com-
puting; • Computer systems organization→ Embedded sys-
tems.

1 INTRODUCTION
Embedded systems have unique characteristics such as limited re-
sources, restrictions on updates, and real-time constraints, which
complicate the application of traditional attack detection methods.
In particular, IoT firmware may suffer from memory errors that
lead to data-only and control-flow attacks [33] which can have se-
vere consequences such as crashes, data breaches, or even physical
damage. Previous efforts to design detection systems to address
memory errors in the embedded systems landscape have typically
relied on remote attestation methods, incorporating techniques
such as Control-Flow Integrity (CFI) [13, 39, 45]. However, these
techniques lack their ability to perform vulnerability analysis, which
is essential to identify vulnerabilities and prevent future intrusions.
Crash reporting (e.g., vulnerability analysis) is crucial yet challeng-
ing in embedded systems due to the necessity of identifying and

addressing vulnerabilities in a constrained environment where tra-
ditional debugging tools and methodologies are often limited or
impractical. In contrast, in less constrained environments, such as
desktop PCs, many products routinely collect and report crash data
to vendors. This practice, exemplified by Mozilla and Ubuntu with
their crash reporting systems [2, 8], aims to improve the quality
and security of their products.

Building upon the goal of designing a crash reporting system for
embedded devices, this paper presents EmbedWatch, - a ground-
breaking system that merges fat pointer principles with remote at-

testation, tailored specifically for embedded devices. EmbedWatch
distinguishes itself by its ability to effectively enforce the spatial mem-

ory property, performing a comprehensive analysis of various memory

segments including stack, heap, and global variables. The key inno-
vation of EmbedWatch lies in its vulnerability analysis capability,
which accurately identifies the exact code segment responsible for
a bug, enhancing precision in error detection and resolution. Unlike
conventional approaches that are reliant on Control Flow Integrity
(CFI) systems [13, 39, 45], EmbedWatch introduces a broader and
more comprehensive strategy. This system extends beyond merely
detecting control-flow hijacking vulnerabilities; it adeptly identifies
and locates vulnerabilities associated with control and data attacks.
Consequently, EmbedWatch equips IoT devices with the capability
to autonomously generate and send detailed crash reports of such
attacks, improving their security and response mechanisms.

Our framework presents an innovative static framework called
a data graph model that utilizes node selection and runtime data to
identify Out-of-Bound (OOB) memory errors, including memory
structure data attacks. It is important to note that we exclude spatial

memory errors that do not lead to successful attacks, such as scenarios

where the overflow cannot be manipulated by the input program. This
model not only pinpoints critical locations in the code prone to
OOB errors, but also guarantees their thorough monitoring dur-
ing execution. The data graph model merges flawlessly with the
existing SVF [38] framework, boosting its capabilities for accurate
interprocedural analysis and firmware code instrumentation. The
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instrumented firmware is specifically configured to monitor mem-
ory structures that are more susceptible to attacks, such as buffers,
thus effectively minimizing run-time overhead. To further opti-
mize performance and reduce this overhead, we have implemented
additional design optimizations based on the cache concept that
enhance efficiency without compromising security. During runtime,
with the support of a trusted anchor, such as ARM TrustZone [25],
the device securely transmits a minimal, yet highly reliable, data
trace that represents the current running status of the program
represented by a data graph model. This approach not only secures
the data in transit, but also ensures that the information is reflective
of the real-time execution state of the firmware. Upon reaching
the IoT backend, these data undergo a thorough processing phase.
Here, the system analyzes the information to detect any instances
of spatial memory violations. The backend is equipped with an
algorithm capable of dissecting and understanding the details of
these violations. As a result, the IoT backend generates detailed
crash reports that pinpoint the vulnerability’s origin in the source
code.

EmbedWatch has been developed to enable firmware vendors
to produce software that communicates the execution status in real
time, helping to quickly deploy patches. Consequently, we argue
that it is crucial to have access to the firmware’s source code. This
access reveals detailed information, including the position of the
memory structures, the precise sizes of each memory object, and
the techniques employed in memory management allocation.

To assess EmbedWatch, we conducted a set of experiments
that measure runtime overhead and stress the security guarantees.
Specifically, we deploy EmbedWatch in real-world firmware con-
taining genuine CWEs [17]. Our results show that EmbedWatch
exhibits remarkable precision in identifying the underlying source
of memory errors within the analyzed firmware. Additionally, we
observe a runtime overhead of range (0.01% - 2.33%), geometric
mean 0.228 +0.4% encryption protocol .

In summary, this paper makes the following contributions.

• We present EmbedWatch, a groundbreaking crash reporting
system that employs a fat pointer technique for embedded
devices in production environments. We have created, im-
plemented, and successfully tested EmbedWatch, which
accurately detects vulnerabilities in spatial memory attacks,
thus enhancing IoT backends (§6). The source code for Em-
bedWatch is open source and can be accessed at [4].
• We introduce a static framework named the data graphmodel
(§6), which examines firmware code by identifying nodes
and runtime data that can detect Out-of-Bound (OOB) mem-
ory errors. This data graph model integrates effortlessly with
the current SVF framework [38], improving its precision in
interprocedural analysis. Moreover, our framework incor-
porates optimization techniques to minimize performance
overhead and to address data attacks on memory structure
fields.
• We evaluated EmbedWatch on real-world embedded pro-
grams that cover broad scenarios of use of IoT devices, demon-
strating the efficacy and practicality of EmbedWatch in
real-world cases. Our experimental results with in place opti-
mizations demonstrate that EmbedWatch reduces the initial

overhead from range (0.07% - 36.04%), geometric mean
1.4 +0.4% encryption protocol to range (0.01% - 2.33%),
geometric mean 0.228 +0.4% encryption protocol

2 RELATEDWORK
Fat Pointer System. Fat pointer systems, like Safe-C [16], CCured

[31], and Cyclone [26], combine pointer values with associated
bounds metadata into a single structure, differing in how they store
this metadata. An alternate approach to managing bounds metadata
is through shadow memory, used in memory safety systems like
SoftBound [30], PAriCheck [46], Baggy Bounds Checking [15] and
Intel MPX. This method links objects or pointers in the main mem-
ory with metadata stored in a separate shadow memory, creating a
relationship between them. Recent developments have introduced
“low-fat pointers”, particularly effective in 64-bit systemswith exten-
sive pointer bit-width [23]. This innovative concept embeds bounds
metadata directly within the pointer’s representation, contrasting
with fat pointer or shadow space methods that store metadata in a
separate location. Our system functions similarly to a fat pointer
system. Implementing fat pointer technique in embedded systems
encounters several challenges. The main issue is that the instrumen-
tation and runtime checking of pointers required by these systems
can significantly slow down execution, making them inefficient for
embedded systems, which often have limited resources. To address
these challenges, EmbedWatch has been designed to integrate a fat-
pointer mechanism through source code instrumentation. However,
unlike traditional methods that conduct bound checking directly
on the device, EmbedWatch offloads this task to a remote verifier
through a remote attestation system.

Runtime Remote Attestation Attacks. C-FLAT [13] is the first
remote attestation protocol designed to verify the runtime correct-
ness of embedded devices. It focuses on measuring control flow
integrity and targets control flow attacks. This protocol has inspired
future runtime remote attestation protocols, such as LO-FAT [22],
which is a hardware implementation of C-FLAT that improves per-
formance. ATRIUM [47] extends the protection offered by both
C-FLAT and LO-FAT against physical attacks, that is, adversaries
who physically tamper with the embedded device. After C-FLAT,
new protocols were developed to address data-only attacks, such
as LiteHax [21]. LiteHax measures firmware data-flow and lever-
ages symbolic execution for verification, but it has a prohibitive
overhead that makes it unsuitable for production environments.
DIAT [14] proposes a coarse-grained data flow mechanism to verify
the correct data transmission among the firmware modules and
pairs it with a lightweight control flow attestation.

Among the notable works in the field of remote runtime attes-
tation, OAT [39] and a recent refinement BLAST [45] emerges as
the latest advancement, encompassing control flow verification
and data-only verification for ARM-based embedded devices. How-
ever, these systems primarily focus on attack detection, identifying
anomalies consistent with their respective attacker models. Regret-
tably, all these systems fail to provide crucial information on the
location of vulnerabilities, leaving analysts and developers without
the necessary insight to develop effective patches.

Another system that recently surfaced is IPEA [36] a framework
that includes a sanitizer IPEA-san and a fuzzer IPEA-fuzz. Even
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if IPEA uses a remote-attestation-based architecture like Embed-
Watch, the proposed systems target different use cases. Although
IPEA facilitates the test process for embedded devices, Embed-
Watch focuses on detecting spatial memory safety violations in
deployed devices. This difference reflects in the running time over-
head as IPEA incurs a significantly higher overhead compared to
EmbedWatch, as expected from a sanitizer in both general-purpose
and embedded contexts. Moreover EmbedWatch incorporates self-
protection mechanism against potential exploits and a robust pre-
processing analysis which is crucial to offloads heavy computational
tasks from the verifier, making it a lightweight component in live
detection use cases.

While exploring the realm of modern runtime remote attesta-
tion, several solutions have emerged, catering to software com-
plexities beyond simple embedded firmware. Notably, ScaRR [41]
and ReCFA [48] have paved the way for applying runtime remote
attestation to services within cloud environments. However, their
focus lies solely on monitoring control-flow integrity, disregarding
data-flow aspects. On a different front, SgxMonitor [42] presents
a pioneering runtime remote attestation protocol explicitly tai-
lored for SGX enclaves. Although SgxMonitor introduces a stateful
model, its approach remains confined to globally defined structures.
It should be noted that these protocols, similar to those for embed-
ded devices, do not perform vulnerability analysis, which is the
primary objective of EmbedWatch.

Vulnerabilities Analysis. While exploring techniques to identify
the location of bugs in the presence of anomalies, such as crashes,
there are several options. Notably, sanitizers like AddressSani-
tizer [35] (ASan), or more recent optimized versions [49] (ASan--),
stand out as state-of-the-art tools for monitoring spatial and tem-
poral errors. However, it is important to note that sanitizers are
primarily designed for testing purposes, rendering them unsuitable
for production environments. They introduce significant perfor-
mance and memory overhead while lacking protection against
evasion techniques or attacks targeting the sanitizer itself. Alterna-
tively, postmortem techniques analyze a core dump of the process
to locate errors, bypassing the need for sanitizers. Examples include
works such as [20, 43, 44], which may require additional contextual
information like process runtime traces from Intel PT, as seen in
REPT [20]. Unlike sanitizers and post-mortem techniques, Embed-
Watch excels in embedded production environments, as it avoids

prohibitive overhead and is designed to withstand attacks.

Zhenyu et al. introduced Ninja [32], a novel malware sandbox
technique built upon ARM TrustZone. The primary objective of
Ninja is to improve malware analysis by leveraging ARMTrustZone
to effectively counter malware sandbox evasion. It is important to
note that Ninja and EmbedWatch differ in their respective goals and
constraints: (1) Ninja focuses on bolstering malware analysis capa-
bilities, while EmbedWatch is specifically designed for deployment
in production environments.(2) Ninja employs distinct methods to
gather runtime information, such as capturing API/syscall invoca-
tions, whereas EmbedWatch targets bare-metal embedded devices
and collects fine-grain memory access data, among other runtime
information.

Value Set Analysis. In a specific domain of postmortem analysis,
researchers have utilized Value Set Analysis [19] (VSA) to analyze

the core dumps. VSA is a static analysis technique that infers vari-
able ranges, aiding in error localization. To enhance the precision
of VSA, POMP++ [29] proposes a VSA approach based on reverse
execution from the crash point. On the other hand, DEEPVSA [24]
addresses aliasing issues using a deep learning model. However,
both POMP++ and DEEPVSA rely on specific hardware features
such as Intel PT and rely on core dumps for analysis. Consequently,
they are unsuitable for deployment in embedded systems.

3 BACKGROUND
In this section, we introduce background information on IoT attacks
(§3.1) and ARM TrustZone (§3.2).

3.1 IoT Attacks
Advanced attacks, such as return-oriented programming (ROP)
and data-only attacks, have also emerged as a threat to embedded
devices, particularly those using the ARM architecture [28]. Given
the poor security of these devices, it is advisable for IoT backends
to assume that IoT devices in the field may be compromised and
should not be fully trusted. Even though tools [13, 39], that identify
memory attacks can be helpful, they often lack the ability to identify
the root cause of vulnerabilities. This is a crucial limitation, as
understanding the underlying cause of a vulnerability is essential
to effectively address the issue.

3.2 ARM TrustZone
Our system utilizes ARM TrustZone technology to establish a
Trusted Computing Base (TCB) [25]. TrustZone is a hardware fea-
ture that is available on both Cortex-A processors, used in mobile
and high-end IoT devices, and Cortex-M processors, used in low-
cost embedded systems. ARM TrustZone is a security extension
to the ARM processor architecture that enables the creation of a
secure environment to execute sensitive operations. It allows for
the separation of a device’s normal and secure worlds, where the
normal world contains untrusted applications, and the secure world
contains trusted applications and a small operating system.

The secure world is an isolated environment with specialized
caches, banked registers, and private memory, which ensures that
trusted applications and data are protected. TrustZone also enables
the provision of per-device private keys and certificates, which
facilitates secure communication and authentication. The normal
world can access the secure world through a set of secure monitor
calls (SMCs) which allows the normal world to request sensitive
services from the secure world, such as signing or securely storing
data. TrustZone is widely used in mobile devices, secure elements,
IoT devices, and embedded systems to provide a secure environment
for sensitive operations.

4 THREAT MODEL
Our system trusts the code running inside the Secure World (e.g.,
the measurement engine) and assumes that attackers cannot bypass
TrustZone protection. We also trust our compiler and the trampo-
line code, and assume that attackers cannot inject code into the
Normal World or tamper with the instrumented code or the tram-
poline library. This can be enforced using code integrity protection
methods for embedded devices [18, 27], which are not the focus
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of this paper. In the Normal World, attackers may exploit spatial
memory error vulnerabilities [40] in embedded systems to launch
various types of memory error attacks, such as Return-Oriented Pro-
gramming (ROP) and Data-Oriented Programming (DOP) attacks.
These attacks can compromise the control flow of the firmware
application and access critical data from an embedded program.
Additionally, attackers may abuse unprotected interfaces of the
embedded program to force the device to perform unauthorized
or unintentional operations. To address these issues, our system is
designed to detect these types of attacks against the system (§7.3).
Generally, our system adheres to the defensive strategies employed
by fat-pointer systems.

5 EMBEDWATCH OVERVIEW
Our system offers a variety of benefits compared to classic vulnera-
bility analyzers [29, 43, 44], such as (1) eliminating the requirement
of large and unnecessary core dumps, (2) reducing the amount of
traced information created by the instruction execution trace [7],
and (3) increasing resistance against attempts to circumvent the sys-
tem by attackers. To provide an understanding of EmbedWatch, we
present a practical example of vulnerability analysis in embedded
systems (§5.1). Following that, we describe the system architecture
in detail (§5.2).

5.1 Running Example
In Listing 1, we present the code snippet of the Heat Press firmware,
extracted from our dataset, designed to control a press machine.
The CWE vulnerability in question pertains to the outbound type
and is specifically found within the Modbus library used for com-
munication with peripheral devices.

In particular, the function Modbus_poll utilizes the fgetc func-
tion to read characters from the standard input (stdin) (Line 21).
These characters are then stored in a buffer named au8regs. The
firmware reads exactly one hundred characters and subsequently
calls the Modbus_get_FC3 function (Line 13), passing the regs
buffer as an argument. The issue arises from the fact that the
Modbus_get_FC3 function lacks proper boundary checks. Conse-
quently, if an attacker overflows the size of the regs buffer, adjacent
memory locations can become corrupted, leading to potential secu-
rity vulnerabilities.

To effectively identify out-of-bounds (OOB) vulnerabilities and
provide meaningful crash reports, an analyst requires ample con-
textual information. This includes details such as (1) the specific
object involved in the memory operation (e.g. memory structures,
buffers), (2) the boundaries of the object, and (3) the stack trace at
the time of the OOB occurrence.

Looking back at the example in Listing 1, we notice that the
function Modbus_get_FC3 operates on a buffer that could poten-
tially be a parameter of the function call itself. The challenge here
is that during the static analysis stage, we cannot determine which
execution path the program will take, and consequently, we do
not know which function parameters will be considered in case of
multiple calls of the same function with different buffers. This lack
of information during static analysis could lead to ambiguity in
identifying the correct object involved in the out-of-bound (OOB)
issue. However, EmbedWatch effectively resolves this ambiguity by

generating a reliable trace that accurately tracks the progression of
key variables in terms of their liveness. To achieve this, our instru-
mentation system records the base address of the relevant object,
such as au16regs in the example (line 3), by leveraging run-time
information, such as definition and the executed calls. By doing
so, EmbedWatch provides the necessary context to identify the
function’s parameters and accurately pinpoint the location of the
OOB vulnerability. For instance, when Modbus_get_FC3 is called,
our instrumentation system identifies that au16regs is being used
as the regs parameter for Modbus_get_FC3. This crucial informa-
tion reveals the actual object under consideration and allows us
to infer the boundary of regs (i.e., based on the base address and
size of au16regs). By understanding the reference of the variable
regs and the addresses present in the loop, a remote agent can
determine whether the firmware works within the correct limits.
Specifically, it can verify whether the value of regs[i] resides
within the memory range defined by au16regs.

Upon detecting an out-of-bound (OOB) issue, a remote agent
possesses the capability to generate a crash report. This compre-
hensive report includes details on the location of the OOB (line 13)
and the object involved (e.g. au16re.g.s, as defined in line 3). By
tracing the sequence of function calls, particularly in our example,
the Modbus_get_FC3 and Modbus_Poll calls, in terms of the stack
frame, the remote agent can effectively track the sequence of events
leading up to the point of vulnerability. Within this context, three
crucial challenges must be addressed:

(C1) A technique consists of detecting erroneous memory ac-
cesses through the use of the memory state (§6.1).

(C2) A remote attestation technique for remotely obtaining a
concise representation of thememory state of the embedded
device (§6.2, §6.3, and §6.4).

(C3) A vulnerability analysis utilizes the inferred memory state
and out-of-bound access to determine the bug’s location
(§6.5).

5.2 System Architecture
Figure 1 depicts the high-level architecture of EmbedWatch, which
consists of two main components: Offline Preparation and Online

Verification. In the Offline Preparation phase, we conduct program
analysis techniques on the source code ( 1 ) and instrument the
firmware to trace runtime information ( 2 ). Subsequently, we link
the instrumented firmware with a trampoline library to facilitate
communication with the trust application ( 3 ), and install it in
the embedded device ( 4 ). The compilation process also generates
a graph model M ( 5 ), outlining the usage of critical buffers in
the program. This model allows a remote agent to reconstruct the
firmware’s memory state, which aids in the effective detection of
Out-of-Bound errors and vulnerability analysis.

During the Online Verification phase, the device communicates
with the TrustZone ( 6 ), transmitting a runtime trace T to the
Verifier ( 7 ). Finally, the remote Verifier uses themodelM to identify
potential outbound accesses and generates root cause reports based
on trace T ( 8 ). In the following section, we provide an overview of
the software components and algorithms utilized by our system.
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Figure 1: EmbedWatch Architecture. During Off-line Preparation, the firmware source code is compiled and analyzed. In this
phase, we obtain an instrumented firmware and a model that describe the data-flow relationship between inputs and internal
buffers. During the online verification, the instrumented firmware is executed on a embedded device and reports a trace T to a
Verifier. The latter validates the trace T against the model M. In case of violation, the Verifier reports the incident

1 #include <stdio>
2 uint8_t au8Buffer[100];
3 uint16_t au16regs[20];
4
5 void Modbus_get_FC3(uint16_t *regs)
6 {
7 uint8_t u8byte, i;
8 u8byte = 3;
9
10 for (i=0; i< au8Buffer[ 2 ] /2; i++) {
11 regs[ i ] = word(
12 au8Buffer[ u8byte ],
13 au8Buffer[ u8byte +1 ]);
14 u8byte += 2;
15 }
16 }
17
18 void Modbus_poll(){
19
20 for(int i = 0; i < 100; i++)
21 au8Buffer[i] = fgetc(stdin);
22
23 Modbus_get_FC3(au16regs);
24 u8state = 1;
25 }

Listing 1: Code snippet showcasing a CWE vulnerability in
the Heat Press firmware, where the Modbus library is sus-
ceptible to out-of-bound access.

6 EMBEDWATCH PROTOCOL
EmbedWatch is the first work that merges fat pointer principles
with remote attestation, specifically tailored for embedded devices.
As such, one of the major challenges is the ability to keep overhead
low while effectively deducing the program variables utilized dur-
ing the firmware’s operational phase. To address this, our system
monitors dynamic information such as: the objects that are active,
determines their boundaries, and reconstructs the call stack when
an out-of-bounds (OOB) error occurs. In the following sections,
we detail how EmbedWatch achieves this goal by showing the
protocol in §6.1. We expand the example by introducing the graph
data modeling in §6.2, which allows us to find crucial instrumenta-
tion points. Then, we describe how the firmware collects runtime

information in §6.3 and an optimization to reduce overhead in loops
in §6.4. Finally, we show how EmbedWatch correctly detects and
reports OOB errors in §6.5.

6.1 The Protocol in a Glance
EmbedWatch implements a remote attestation protocol between
two points: the Prover, an inline agent defined within the firmware,
and the Verifier, an external application aimed at identifying mem-
ory violations. To trace run-time information in the Prover, Embed-
Watch uses instrumentation points provided by our data graph
model. Without loss of generality, the protocol considers two main
types of packets: Definition, which indicates the instantiation of
new variables (e.g., alive variables) and Use, which represents a
memory operation. During compilation time, our graph model as-
signs a unique ID for each Definition and Use of the variable. This
ID is used to uniquely identify the information of the variables (e.g.,
memory boundaries) during the execution path and locate their
corresponding definitions in a static view of the firmware. Figure 2
illustrates a simplified version of the protocol that only considers a
single definition and the use of the same variable. The Definition 𝐷𝑏

is related with the variable b, whose size is 10 bytes ( 1 ). The size
information is retrieved by the static components of our framework
and combined with the runtime base address from the incoming
Definition and stored in the variables alive table ( 2 ). At this point,
the Verifier is aware that the buffer b is instantiated at the address
0xFF03BA. Then, for each Use, the Verifier inspects the model to in-
fer the involved buffer and validate the memory access. In Figure 2,
the Use 𝑈𝑏 is the only use connected to Definition 𝐷𝑏 . Therefore,
the Verifier infers that 𝑈𝑏 operates on the variable 𝑏. This allows
the Verifier to decide whether the memory access falls within the
variable range ( 3 ). In case Use accesses outside the buffer, an out-
of-bound is detected ( 4 ). The operation Use reveals the location
outside the bound in the source code, while the variable involved
provides additional contextual information about the location of
the code bug location ( 5 ). The complete model is detailed in §6.2.
At runtime, our protocol collects additional information to handle
more complex cases such as aliasing and struct fields.
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...
char b[10];
char c;
int i = 0;
while (c > 0x20) {
  c = fgetc(stdin);
  b[i] = c;
  i++;
}
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Figure 2: EmbedWatch Protocol. The prover sends a stream
of Use and Definitons that represents the variable alive and
their use. The Verifier infers the firmware state from the
runtime trace and the Use-Def graph. The Use-Def graph
reduce the size of the runtime trace in two ways (1) it avoids
transmitting static information (e.g., the buffer b length), and
(2) itminimizes the instrumentation points (the only possible
out-of-bound use is Ub).

6.2 Graph Data Modeling
The core mechanism of EmbedWatch revolves around a data graph
model that represents connections between variables and their use
in the firmware code, represented by the Graph Model M ( 5 in
Figure 1). This model represents our contribution and is utilized
for the detection of Out-of-Bound errors and vulnerability analysis,
enabling the Verifier to trace the lifetime of variables and determine
their boundaries. Our primary goal is to perform a use-def analysis
on the memory objects defined in the firmware code, which necessi-
tates the creation of a value flow graph (VFG). The purpose of a VFG
is to model the flow of data values through a program, allowing the
analysis and tracking of how values are assigned, propagated, and
transformed across different variables and point of the program. To
construct the VFG, we use the SVF framework [38], which builds
an interprocedural Memory SSA form that captures definition use
chains for both top-level and address-taken variables, connecting
them with value flow edges. The interprocedural static value flow
analysis framework (SVF), built on LLVM, performs precise static
value flow analysis of C/C++ programs. It integrates Andersen’s
pointer analysis to understand pointer usage and dereferencing.

Our framework extends the SVF tool [38] to develop our data
graph model as follows. Once the VFG is constructed, our static
framework navigates the graph, recognizes the nodes based on their
roles, and labels each node with the correct ID along with dynamic
information that will be sent to an external Verifier. Specifically, we
identify three types of nodes in our model: Input functions (IN), Use
Nodes (USE), and Definition Nodes (DEF). These nodes hold various
pieces of information and aid in assessing the firmware’s integrity
status.

Input Nodes. To detect OOB accesses, EmbedWatch locates the
input functions (IN) in the firmware code. These functions act as
attack entry points, allowing adversaries to corrupt the firmware’s
internal status through OOB accesses. We need to distinguish two
types of input functions based on their semantics. SIN and PIN. SIN
functions return scalars (e.g., getc), often used in loops to transfer
single bytes to buffers (e.g., in Listing 1). For SIN functions, we trace
all written memory locations. In contrast, PIN functions directly
fill buffers (e.g., scanf) and are required to return the number of
read bytes, which we use to calculate and trace the last written
address. Our prototype encodes five popular IN functions (e.g., gets,
getc, fgets, fread, and scanf ), which were sufficient to handle
all firmware in our experiments. However, our prototype can be
extended to any function that fulfills our IN function definition,
such as uart_read [12].

Use Nodes. Once we locate the IN functions, we proceed with
a context-sensitive analysis based on the forward process in the
interprocedural VFG [38] to detect all the possible corresponding
Use nodes (USE).

There are two types of USE nodes, similar to IN functions: SUSE
and PUSE. SUSE nodes store scalars in memory regions, such as
“STR R2, [R1]” in the ARM assembly, and we trace the written
memory location for these nodes. PUSE nodes manipulate buffer
pointers, such as memcpy. We require PUSE to return the number
of bytes written, just as we do with PIN, so that we can calculate
and report only the last modified address. We need to distinguish
SIN/SUSE from PIN/PUSE because the former are implemented
as simple memory transfers (e.g., STR), from which we can easily
report each address written. For the latter, instead, we only observe
the amount of memory transferred (e.g., memcpy), thus we need to
calculate the last written address. For this purpose, we design a
specific instrumentation in §6.3.

Def Nodes. DEF nodes provide critical information about object
boundaries, which can be located in various memory regions such
as the stack, global sections, or heap, each with unique charac-
teristics. For our framework, it is essential to accurately identify
variable definitions along with their memory boundaries to infer
out-of-bound errors (OOB) and produce meaningful crash reports.
Specifically, our framework handles four types of DEF nodes: SDEF
for stack variables, GDEF for global variables, HDEF for heap vari-
ables, and FDEF for fields in structs. For stack buffers (SDEF),
which can be allocated across multiple stack frames, we further
associate an index referring to the specific stack frame in which
they are allocated. This information is useful for identifying the
execution path that triggers the attack. For SDEF and GDEF, their
sizes are extracted at compilation time. HDEF refers to malloc
allocations, with sizes computed at runtime. FDEF allows us to
infer field boundaries and detect overflows within a struct. This
data is obtained by analyzing the function data flow: for each DEF
node with a struct type, we reconstruct all accessed fields between
the definition and the corresponding use. To achieve this, we uti-
lize LLVM’s GEP (GetElementPtr) instruction [11], which provides
functionalities for accessing struct fields. By examining GEP in-
structions, we can precisely identify the memory structures and
their fields in use, thereby determining their sizes accurately. Af-
ter extracting the sizes of the definition nodes, we also need to
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trace their memory addresses at runtime to perform out-of-bounds
(OOB) checks. Therefore, at runtime, we trace the base addresses
of buffers for [G, H, S]DEF. Combining these base addresses with
the buffer sizes allows us to calculate the buffer boundaries. FDEF
is not traced at runtime but is included in the model M for trace
verification purposes (details in §6.5).

Linking Nodes Procedure. After determining all node types, sizes,
and base addresses, it is necessary to associate the appropriate uses
(USE nodes) of variables with their definitions (DEF nodes). In the
results of the application of forward-based context-aware analysis
within the interprocedural VFG [38], multiple definitions of the
same variable can be associated with a single use. For example, this
situation arises when a function is called with parameters that are
defined at different points in the code. Unfortunately, the specific
definition that will be triggered at run-time cannot be statically
determined due to the unpredictability of the program’s execution
path. To solve this problem, we initially identify all potential DEFs
that the use can target as candidates. Since each entity within
our analysis framework is assigned a unique ID, we can easily
differentiate them. At the use point, our framework gathers not
only the data pertaining to the use being executed, but also the ID
of the definition targeted by the operation.

Moreover, when memory objects are passed as function argu-
ments, our framework needs to propagate the IDs of the corre-
sponding definitions for inter-procedural analysis. This is achieved
by automatically adding an extra ID argument to each analyzed
function and modifying all corresponding call sites to propagate
the runtime information accordingly.

6.3 Firmware Instrumentation
EmbedWatch utilizes source code instrumentation to track USE
and DEF operations, ensuring the Verifier can accurately detect
out-of-bounds (OOB) accesses and produce reliable crash report
even in the presence of potential attackers (as outlined in §4).

For every Definition (DEF) node, we monitor the buffer ID and
its base address. Global Definition (GDEF) nodes are tracked during
the process’s initial bootstrapping phase and are logged only once.
In contrast, Stack Definition (SDEF) and Heap Definition (HDEF)
nodes are monitored after variable declarations by adding instru-
mentation points at the allocation sites and linking them to the
variables that reference the allocated memory regions. This pro-
vides the Verifier with information about the buffer’s location in
memory. The buffer size is inferred from the source code for static
allocations (i.e., stack or global) or traced by instrumenting the
argument of malloc-like functions for heap allocations. For each
Use (USE) instruction, we record the instruction ID and the written
address. In case of PIN/PUSE nodes, we calculate the last written
address by adding the initial buffer pointer and the number of bytes
written. When memory objects are passed as function arguments,
EmbedWatch passes along the buffer IDs and their stack index
as additional arguments. This is achieved by automatically adding
extra buffer ID/stack index arguments to each analyzed function
and modifying all corresponding call sites to propagate the runtime
information. Moreover, we track the stack frames to differentiate be-
tween the local buffers of the functions. Specifically, the embedded
device keeps a stack index that we increase and decrease at each

function’s prologue and epilogue, respectively. We then add the
stack index as an additional field along with the other model nodes.
Having the stack index helps the Verifier determine which stack
frame the firmware is currently executing. To avoid tampering, we
placed the stack index in a shadow area, as described further in
§7.3.

6.4 Loop Optimization
During our experiments, we observed that certain loops caused
significant runtime overhead, especially in scenarios involving large
communications with the TrustZone. This was primarily due to the
high number of memory operations performed by the firmware. To
solve this problem, we store the USE/DEF nodes occurring within
specific loops in a buffer in the Normal World. Once the loop (or
the firmware) ends or when the buffer is full, we transfer the stored
nodes in bulk to the Secure World. However, this optimization is
only applied to loops that do not involve function calls, indirect
jumps, or return instructions, as these could enable attackers to
evade our system by skipping the synchronization operations with
the TrustZone. In contrast, for loops without control-flow transfers,
adversaries can only activate the attack payload once the loop itself
terminates. This optimization approach is effective and secure for
two reasons. First, tampering with the cache can only occur when
the payload is activated, which happens after the loop ends and
the cache has already been flushed into the TrustZone. Second,
the cache is stored in a randomly allocated shadow area, similar
to SafeStack [10], making it difficult for adversaries to identify its
location. In our experiments, the cache mechanism significantly
improved performance, yielding approximately 13.4 times better
results compared to standard instrumentation (§7.2). More details
on the security analysis of this solution are presented in (§7.3).

6.5 Trace Validation
The Verifier (represented by 8 in Figure 1) validates the USE/DEF
nodes reported by the firmware. Its purpose is to infer the firmware’s
memory status, detect OOBs, and produce crash reports in case of
errors. The Verifier is composed of three main components: (1) one
for tracking the firmware run-time status, (2) one for identifying
OOBs, and (3) one for producing a crash report. We provide more
details in the following sections.

Firmware Execution Memory. The Verifier maintains a table of
active variables in the firmware based on the information received
by the execution trace. In particular, for each variable, it records the
following information: the stack index, node type, variable name,
size, and base address. The stack index refers to the actual stack
frame in which a node is executed. To minimize traced nodes and
keep the table information correct, the Verifier infers the allocation
of new stack frames from incoming USE/DEF traces without tracing
context switch events (such as ret/call from functions). To correctly
identify the new stack frame, the Verifier checks for the presence
of a new DEF of a local stack variable in the trace and, if found,
assumes that the previous frame is no longer in scope and removes
its information from the table, reducing the amount of stored data.
This policy is implemented in the algorithm line 7. After obtaining
the variable name, node type, base address, size, and stack depth
from the trace, the system updates the table (see line 15). This
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Algorithm 6.1: Variable Alive Update
Input: Model M
Input: Runtime Node d

1 stack_index← d.stack_index;
2 node_type← d.node_type;
3 if d is SDEF ∨ d is GDEF then
4 size← get_size(M, d.id);
5 var_name← get_var_name(M, d.id);
6 base_address← d.base_address;
7 else if d is HDEF then
8 size← d.size;
9 var_name← get_var_name(M, d.id);

10 base_address← d.base_address;
11 end if
12 if table_has(stack_index, var_name) then
13 delete_variables(stack_index, var_name);
14 end if
15 insert_table(stack_index, node_type, var_name, base_address, size);

Algorithm 6.2: OOB Detection
Input: Model M
Input: Runtime Node u

1 stack_index← u.stack_index;
2 address← u.address;
3 if u has [DEF_ID, DEF_index] then
4 d← get_defintion(M, u.DEF_ID);
5 var_name← d.var_name;
6 var_stack_index← u.DEF_index;
7 else
8 d← get_defintion(M, u.id);
9 var_name← d.var_name;

10 var_stack_index← stack_index;
11 end if
12 var_base_address← get_var_base_address(M, var_name, var_stack_index);
13 var_size← get_var_size(M, var_name);
14 if oob_detected(store_address, var_base_address, var_size) then
15 vulnerability_analysis(var_stack_index, stack_index, u, d);
16 end if

approach ensures that the information on the firmware variables is
always accurate and up-to-date.

OOB Detection. The Verifier can infer the boundaries of objects
involved in USE and IN operations and detect Out-Of-Bounds (OOB)
by using the alive variables table. The algorithm is described in
Algorithm 6.2. For each run-time node u, the Verifier obtains its
stack index and thewritten address (line 4-6). If u contains a DEF_ID
and DEF_index, it means that the node is operating on a pointer
passed as a reference. In that case, the Verifier extracts the buffer
definition, its variable name, and stack index from the node u itself
(line 4 and 6). If not, the buffer definition and the variable name
are obtained from the Use-Def graph (line 8), while the stack index
remains the same as the incoming node u (line 10). Once the variable
name and its stack frame have been inferred, the Verifier checks if
the address falls within the buffer boundaries by enquiring the table
of alive variables . The function oob_detected also detects OOB in
struct fields. If d refers to a struct, the Verifier searches for FDEFs
between the DEF associated with var_name/var_stack_index and
u in the Use-Def graph. For each traversed FDEF, the Verifier can
infer the field or subfield that the firmware is pointing to, and
compute its boundary. Finally, if an OOB is detected, the Verifier
performs a vulnerability analysis (line 15).

Crash Report. Once the Verifier detects an OOB, the function
vulnerability_analysis() produces a report on the anomaly
(line 15). In particular, the Verifier reports: (1) the line of code
where the OOB occurred, (2) the object involved in the OOB (i.e.,
buffer or structs field) and (3) the stack trace. The stack trace
is reconstructed from the table of living variables. In particular,
knowing the stack frame where a variable has been allocated (i.e.,
var_stack_index), and the stack frame of the USE node (stack_index),
allow us to infer the last functions alive in the firmware by inspect-
ing the variables alive table. This reveals contextual information to
assess and patch the observed bug.

7 EVALUATION
We assess the properties of EmbedWatch over three main research
questions: (RQ1) Does EmbedWatch produce correct vulnerability
analysis reports (Efficacy Analysis) (§7.1)? (RQ2) Can EmbedWatch
be deployed in real platforms (Performance Evaluation) (§7.2)?
(RQ3) What are the security property of EmbedWatch (§7.3)?

Prototype Details. All experiments are carried out on an ARM
Pi 3b + commercial board, which is equipped with ARM Trust-
Zone support and compatible with the OP-TEE commit 10b7b60b.
The selected board mounts a Broadcom BCM2837B0, Cortex-A53
(ARMv8) 64-bit processor @ 1.4GHz, and 1GB DDR2 RAM. We
selected this board as our reference device for prototyping because
it is a widely used IoT development board. The Trusted OS (OPTEE-
OS) runs in Secure-Mode (SEL-1), the rich OS (BusyBox) is shipped
with OP-TEE. For the compilation module and model generation,
we extend the LLVM version 13 and use the SVF commit cc3151c0.

Firmware Dataset. We assess the EmbedWatch system by eval-
uating a total of 15 open source embedded programs [3]. Among
these, two firmwares were sourced from the OAT dataset [39],
which comprises a total of 5 firmwares that were used to test the
OAT framework. We omit three firmware from the OAT dataset due
to the manual effort required to port it to our development board,
a result of the device-specific nature of embedded programs rather
than any limitation of our system. We selected nine firmwares from
well-known open source repositories—Arduino Projects [1] and
Raspberry Pi Pico Examples [9]—and the remaining four from the
Fuzzware Open Source Data Set Fuzzware [34]. As for Fuzzware, we
select firmware that already exposes spatial memory errors, making
them ideal for testing EmbedWatch’s capabilities as they contain
seven real vulnerabilities, showcasing its efficacy in practical sce-
narios. The chosen firmware projects offer diversity, reflecting the
simplicity often encountered in various embedded programs. When
needed, we make modifications to the firmware source code to
ensure library compatibility and support different architectures.
More in detail for our experiments, we created two datasets: 𝐷𝑝 for
evaluating performance and false positive rate, and 𝐷𝑠 for testing
the system’s effectiveness. For 𝐷𝑝 we carefully selected 11 embed-
ded programs that exhibit the same behavior of polling sensors and
performing specific actions on the data retrieved. This standardized
approach allows us to create a reliable and consistent benchmark
for our experiments. 𝐷𝑠 , instead, consists of 15 programs, includ-
ing the 11 programs from 𝐷𝑝 , deliberately modified to introduce
specific vulnerabilities, with one vulnerability introduced for each



EmbedWatch: Fat Pointer Solution for Detecting Spatial Memory Errors in Embedded Systems CPSIoTSec’24, October 14–18, 2024, Salt Lake City, UT, USA

firmware. Additionally, the four remaining Fuzzware firmwares
already contain genuine spatial memory vulnerabilities. More de-
tailed information on the types of vulnerability introduced in the
firmware can be found in §7.1.

7.1 RQ1: Bug Analysis & False Positives
Synthetic Vulnerabilities. To rigorously assess EmbedWatch’s ca-

pabilities in detecting attacks and performing vulnerability analysis,
we deliberately inject eleven various types of vulnerabilities into the
system’s source code (11 firmware), which include: (1) Control-Flow
Hijacking: We overwrite stack variables to disrupt the firmware’s
control-flow. (2) Global Variable Corruption: Intentional corruption
of global variables within the code. (3) Struct Field Overwrite: The
specific fields in struct data structures are overwritten. (4) Heap
Variable Overwrite: Targeting and modifying variables residing
in the heap. Our objective is twofold: to evaluate EmbedWatch’s
resilience against both control-flow attacks, which manipulate pro-
cess execution flow, and data-only attacks that exploit a program
without altering its execution flow. To thoroughly examine vulner-
ability analysis, we strategically position vulnerabilities and attack
points randomly in different code locations. The vulnerability data
set is documented in [3]. To reach and trigger these vulnerabilities,
we utilize a symbolic engine called angr [37], which generates the
attack inputs for each firmware.

For each attack, EmbedWatch successfully detects the overflow
attack and provides the exact point in the source code where the
vulnerabilities were injected, along with the buffer involved in the
operation. We manually inspect the execution trace to validate
the crash report. Our experiment demonstrates the fundamental
functioning of our prototype and confirms that EmbedWatch is a
viable method for remote verifiers, offering precise vulnerability
analysis. In addition, we conducted a thorough evaluation of false
positives in our system by running our firmware data set with
the input sets outlined in Table 1. The test inputs were generated
using a symbolic executor using a code coverage metric. We closely
monitor the generated execution traces of more than 1,300 inputs
and observe no instances of false alarms.

Real-World Vulnerabilities. Utilizing the Fuzzware dataset’s crash
analysis section [6], we carefully selected four firmware samples:
Heat Press, PLC, thermostat, and rf door lock. These chosen
firmwares contain seven spatial memory errors, with heat press
and plc exhibiting overflows on a field attribute, while the others
suffer from stack buffer overflows. Although the Fuzzware data set
provides input to trigger vulnerabilities, we enhanced the source
code with instrumentation, leading to slightly different memory
alignments compared to the original firmware. To address this, we
used the QEMU system for debugging and identifying an optimal
new input set that worked effectively with our instrumentation.

Deploying the firmware on our board, we validated Embed-
Watch’s capability to accurately infer the root bug code location.
EmbedWatch detected all spatial memory errors and automati-
cally generated identical crash reports as those already reported
in the Fuzzware dataset. This experiment significantly showcases
EmbedWatch’s effectiveness in detecting real-world vulnerabili-
ties across different classes, including dynamic memory allocation,
global buffer, and local buffer vulnerabilities.

7.2 RQ2: System Usability & Performance
Unit Test. To thoroughly assess the reliability and comprehen-

siveness of EmbedWatch, we conduct an extensive evaluation by
generating a large corpus of inputs and their corresponding ex-
pected outputs. To ensure an unbiased input generation process,
we employ symbolic execution, which allows us to automatically
create safe inputs that uniformly cover various code sections within
the firmware. Our objective is to maximize the coverage of the code
in terms of the executed instructions for 𝐷𝑝 . For this purpose, we
rely on angr [37], which provides automatic code coverage input
generation. Table 1 details statistics regarding the inputs generated.

Macrobenchmark. As a crucial performance metric, we assess
the influence of our solution on the run-time performance of the
firmware. Specifically, we conducted three sets of measurements:
one without EmbedWatch (baseline), another with EmbedWatch,
and a third with EmbedWatch along with our caching mechanism.
These measurements enable us to present the columns “Perfor-
mance Overhead”, vividly demonstrating that our approach intro-
duces an average overhead of approximately 1.44%, which dimin-
ishes to around 0.23% when the cache is applied. We set the cache
size to 128 elements as a representative value, while conducting an
ad hoc experiment on the cache performance in the following para-
graphs. The results show that EmbedWatch incurs an overhead
that range (0.07% - 36.04%), geometric mean 1.4 +0.4% encryp-
tion protocol without cache, whereas enabling the cache drops
the overhead to range (0.01% - 2.33%), geometric mean 0.228
+0.4% encryption protocol . Further investigation of the sources
of overhead reveals two different scenarios. In some firmwares,
such as clock_phone, ledmatrixpainter, and hue-motion, the
overhead is proportional to the number of instrumentation points
executed at runtime. This relationship between overhead and the
number of instrumented variables can be estimated by the results
of our framework analysis (§6.2). The more instrumentation points
are present, the greater the overhead. However, there are firmwares
that do not follow this trend (e.g., syringe_pump), which exhibits
limited overhead despite a high number of instrumentation points.
This is because these firmwares make use of idle operations, such
as sleep or loops, that extend and skew the execution time. For
example, syringe_pump uses a sleep function for liquid calibration.
The use of idle operations in the firmware is a common practice,
as many sensor data are read by waiting for events or physical
components to complete. The usage of idle operations accounts
for the discrepancy between the number of executed instrumented
points and the relative overhead in some firmware. Finally, Table 1
shows the average trace validation time for each firmware based on
the selected inputs, the trace validation is calculated with firmware
without cache to show the worst-case scenario. We also imple-
mented communication encryption to guarantee the confidentiality
and integrity of the data exchanged between the firmware and the
remote verifier. This approach protects against potential in-transit
data manipulation and can detect unauthorized access by malicious
attackers. The EmbedWatch protocol uses the AES CBC symmetric
encryption algorithm with a 128-bit key size. The key is preloaded
onto the device during the deployment phase and is also stored
in the Verifier. As illustrated in Table 1, encryption introduces a
small overhead of 0.4% in firmware execution time compared to
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the unencrypted counterpart. It is noticeable that firmware with
larger TrustZone interaction and lower execution time has higher
overhead in the encryption stage because it has more data transit
to the verifier that needs to be encrypted.

Microbenchmark. The goal of this evaluation is to identify the
main source of overhead in EmbedWatch. This overhead is caused
by the interaction between the firmware and the Trusted Applica-
tion (TA) during run-time tracing. The firmware uses a trampoline
library to call two secure functions, lib_def_use and lib_flush_
cache. The first function, lib_def_use, tracks normal USE/DEF/IN
interactions and transfers a small amount of data to the TA. The
second function, lib_flush_cache, is used for cache optimization
and performs bulk loads into the TA. We execute each secure func-
tion of the TA 1,024 times and compute the average overhead. Since
the execution of lib_flush_cache varies according to the cache
size, we repeat the experiments with 32, 64, 128, 256, 512, 1,024,
2,048, and 4,096 entries in the cache.

The overall execution time of the function lib_def_use was
found to be 1,612 ms with a standard deviation of 0.60. In contrast,
the overhead of the function lib_flush_cache depends on the
cache size, which ranges from 1,548 to 3,298 ms. In the worst-case
scenario, having 4,096 entries takes approximately twice as long
as transferring a single entry with lib_def_use. The difference in
performance is attributed to the context switch, which is the main
source of overhead for EmbedWatch.

Firmware Size. The firmware size increase results from the addi-
tion of instrumentation points and trampoline library calls during
compilation. On average, a 40% increase in size is observed, con-
trasting with the lower overhead exhibited by OAT (17%) in terms
of instrumentation points. This discrepancy is attributed to the ad-
ditional code implemented to minimize runtime overhead through
instrumentation. We were unable to replicate the BLAST results
due to the lack of source code. However, BLAST [45] reported a 64%
increase in size (best case w/o function inlining) with embench-iot
dataset [5]. In general, we consider 40% increase reasonable, thus
positioning our approach midway between OAT, which enforces
partial CF attestation, and BLAST, which achieves higher precision
through whole-program CF attestation.

Figure 3: Virtual Memory (VM) allocated by the Verifier after
24h of interaction with a firmware.

Verifier Performance. To assess the long-lasting stability of Em-
bedWatch, we carried out a comprehensive 24 hour experiment,
running the Verifier continuously while a firmware continuously
generated and sent traces. For this particular evaluation, we deliber-
ately chose xml-parser as our test subject, given its participation in

extensive memory operations, including stack and heap allocations,
making it an optimal candidate for rigorous testing.

Throughout the experiment 3, the Verifier efficiently processed
incoming traces without any noticeable delays. Regarding memory
allocation, we observed that the Verifier quickly stabilized at a us-
age of 215 MB. Verifier memory consumption depends on factors
such as the depth of the firmware call stack and the number of
new memory chunks allocated, as discussed in §6. This experiment
demonstrates the Verifier’s stability during extended runs. Con-
sidering our intention to deploy the Verifier on high-performance
machines, the allocation of 215 MB of memory is considered rea-
sonable.

Performance Comparison with State-of-the-Art. As EmbedWatch
is designed for spatial memory errors detection leveraging remote
attestation of ARM-based embedded devices, our primary points
of comparison are OAT [39] and BLAST [45]. Although there are
significant differences in the properties being attested — with Em-
bedWatch focusing on spatial memory violation detection and
OAT and BLAST aiming to ensure control flow integrity — this per-
formance comparison is still extremely valuable. We demonstrate
that the overhead associated with our system is in line with that of
other embedded system detectors.

Given that BLAST lacks open source code, our comparison was
confined to OAT. We based our evaluation on the number of Trust-
Zone invocations, both statically inserted during the compilation
phase and dynamically triggered during the testing phase. These
data serve as a suitable basis for comparison, since both frame-
works exhibit a similar overhead in their interactions with the
secure world. To collect these data, which are reported in Table 2,
we modify the OAT trampoline libraries to count interactions with
the Trusted Application (TA). This allows us to streamline the em-
ulation process while retaining the data of interest. In addition,
we add simple trace capabilities. Subsequently, we build the OAT’s
compiler, the trampoline libraries, and test our dataset compiled
with OAT tools. We exercise the firmware code with the same in-
puts as listed in Table 1 and record the number of instrumented
points hit by the execution.

Figure 4: Comparison of instrumented binary size between
EmbedWatch and OAT.

The results show that EmbedWatch exhibits a significantly lower
number of calls compared to OAT. The disparity arises because the
OAT is heavily dependent on TrustZone calls to collect information
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Table 1: Number of dynamic instrumentation points and performance overhead. We measure the firmware execution time with
cache enabled and with cache+encryption.

Firmware Input
Dyn. Instr. Performance overhead Trace Verify Execution time

DEF USE Total w/o cache (%) w/ cache (%) (byte) (sec) (msec) w/encryption encryption
mean std. dev. mean std. dev. mean total single entry w/cache w/cache (msec) overhead (%)

pixel_painter 43 6 13 19 0.64 0.0097 0.16 0.0079 254 0.05 8 × 10−5 866.52 868.03 0.1742
clock_phone 10 1363 470 1833 36.04 42.2026 2.33 2.6471 292 0.05 5 × 10−5 1300.4 1343.06 3.2810
ledmatrixpainter 100 46 100 146 10.06 0.0756 0.74 12.3331 2314 6.10 7 × 10−3 603.77 604.41 0.1060
rc 10 50 51 101 0.23 0.1258 0.01 0.0025 5780 0.52 2 × 10−5 10893.07 10895.39 0.0212
hello 3 26 2 28 1.26 0.3664 0.32 0.0057 448 0.13 7 × 10−5 10893.07 10895.39 0.0212
mini-ig-stats 3 12 33 45 1.79 0.2223 0.22 0.0250 224 0.05 6 × 10−5 722.77 723.79 0.1411
disco-keyboard 49 4 11 15 0.07 0.0058 0.00 0.0054 276 0.06 8 × 10−5 1017.95 1019.43 0.1453
hello_uart 5 3 8 11 0.35 0.0088 0.12 0.0156 206 0.22 34 × 10−5 1053.50 1056.00 0.2373
music-controller 1024 240 632 872 2.04 0.0031 0.05 0.0007 35313 3.60 3 × 10−5 10104.49 10107.12 0.0260
syringe_pump 10 1474 895 2369 0.38 0.2113 0.00 0.0000 2427 0.30 4 × 10−5 99.10 149.40 50.7568
hue-motion 46 64 88 152 19.31 8.0887 1.44 0.4508 143 0.05 9 × 10−5 402.93 404.52 0.3938

Geometric mean - 45.163 52.863 111.625 1.411 0.122 0.228 0.035 784.603 0.211 9.6 × 10−5 711.46 751.46 0.4076

Table 2: Comparison of both static and dynamic calls to
trampoline libs of OAT and EmbedWatch. For “Dynamic (TZ
calls)”, we compute the arithmetic average of the trampoline
invocations during the testing phase.

Firmware OAT EmbedWatch
Static Dynamic Static Dynamic Dynamic

(TZ calls) (trampoline calls) (TZ calls)

heat_press 52 234.7 10 33 6.0
music-controller 36 1176.6 30 872 15.0
pixel_painter 22 160.0 33 19 6.0
rc 57 1743.0 10 101 6.0
syringePump 75 1730709.6 23 2370 106.8
clock_phone 37 120.0 48 1833 94.2

on conditional branches within the firmware code, which is essen-
tial for accurate CFI attestation, as reported in [39]. In contrast,
our system focuses solely on tracking the memory structures that
depend on the input.

In our case, it is crucial to acknowledge that every time a call to
the TrustZone is made, we pass more data to the TA compared to
the OAT system. This arises from the presence of the cache, which
effectively reduces the number of context switches with the TA,
representing the primary source of overhead in such systems. The
benefit of using the cache has already been studied in §7.2. We
report the instrumentation without cache (trampoline calls) and
with cache (TZ calls) in Table 2. Similarly to §7.2, we set the cache
to 128 elements. We conclude that EmbedWatch delivers efficiency
on par with the leading state-of-the-art solutions in the embedded
systems landscape.

7.3 RQ3: Security Analysis
Our threat model takes into account the possibility that attackers
discover and exploit previously unknown vulnerabilities in the
embedded programs running in the Normal World. However, we
assume that code injection or modification is not possible, which is
already prevented by existing code integrity schemes for embedded
devices [18, 27]. To bypass EmbedWatch, an attacker would have to
take one of the following actions: (a) disable the instrumentation or
trampolines, (b) misuse the instrumentation parameters, (c) exploit

the interfaces that the measurement engine exposed to the tram-
polines, and (d) alter the execution trace, including replicating a
previous attack. In the following, we examine each case separately.

(a) To disable the instrumentation, the attacker would need to
modify the code, which is not possible because we assume that
code integrity measures are in place. To evade the instrumentation,
the attacker would need to take control of the control flow of the
application, but since the instrumented code is executed before
such actions, it is recorded in the execution trace.

(b) To successfully compromise the parameters passed to the
trampoline functions, an attacker would need to overwrite the node
IDs, the stack index, the buffer base address or the buffer size (for
HDEF). Our instrumentation is designed to protect against attacks
against these components (§6.3). We store the values of statically
inferred information, such as node IDs, as immediates in the read-
only section .text of the program during compilation. The values
of runtime attributes, such as the base address and size of a buffer,
are recorded in the corresponding DEF events immediately after the
buffer is created. Therefore, we store the base address and size in the
TA before an overflow or attack occurs. For IDs that refer to buffers
passed as function pointers and the stack index, we adopt a solution
similar to SafeStack [10]: a randomly allocated area that contains
sensitive variables (i.e., buffer ID and stack index). We also employ
a similar solution to SafeStack for protecting loop optimization. In
this case, we maintain a cache that is randomly allocated in the
Normal World, which is flushed in the TA immediately after the
loop ends. Since we assume that the loop does not contain indirect
jumps or function calls, a payload cannot attack the buffer before
the loop terminates, while an overflow would not easily reach the
cache.

(c) Implementing our compiler comes with a unique restriction:
it disallows the use of SMC (Secure Monitor Call) instructions out-
side the trampoline library. This restriction is put in place to ensure
the security and integrity of the system. It allows only the trampo-
line functions to invoke the Trusted Application (TA) interfaces,
effectively disabling the Normal World from accessing them. By
implementing this restriction, we can maintain the secure environ-
ment for the system and prevent unauthorized access to the TA
interfaces.
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(d) Our system ensures the integrity of the attestation blob
through a signature generated by TEE using a hardware-provisioned
private key. A verifier can easily check the signature and verify the
integrity of the attestation blob. Replay attacks are also prevented
by checking if the cryptographic nonce inside the attestation blob
matches the one originally generated by the verifier.

8 DISCUSSION
In this section, we discuss limitations of EmbedWatch and propose
new challenges for future work.

Aliasing of local variables. The EmbedWatch prototype tracks
buffer IDs for variables passed as function arguments, including
their aliases during runtime. However, it currently does not handle
scenarios where a static pointer is linked to multiple local variables.
To address this, we need to extend buffer ID propagation to local
variables, detecting aliases at compile time, similar to function
pointer parameters. In our experiments, we have not encountered
any such cases, so the implementation of this feature is deferred
to future improvements. However, it remains an important area of
focus for further development.

Interrupts handling. The current prototype does not integrate
the interrupt handler trace. We can easily extend EmbedWatch to
handle signals by using our graph model to analyze signal handlers
that contain attacker-controllable memory structures. Then the
existing EmbedWatch design already identifies and reports OOB
accesses within the signal handlers. Therefore, we consider the ex-
tension for interrupt handlers as a pure engineering task. Moreover,
the current target firmware does not contain interrupt handlers
with attacker-controllable input.

Temporal memory safety. EmbedWatch is primarily designed
to identify and address exploitable spatial memory safety violations.
However, we propose that its methodology and framework could
be adapted to also recognize exploitable temporal memory safety
violations. This adaptation, while promising, introduces consider-
able challenges. A key obstacle is the need to monitor the liveness
of dynamic memory allocations, a vital component in detecting
temporal errors. Such monitoring, as previously discussed, has the
potential to adversely affect system performance. Additionally, the
development of an advanced pruning system is essential. This sys-
tem should mirror the functionality of the one in EmbedWatch,
selectively instrumenting operations that pose a risk of leading to a
security breach. This targeted approach is crucial to ensure the fea-
sibility of the enhanced system in practical, real-world applications.
The full implementation of this extension requires further research
and development, representing a significant yet worthwhile direc-
tion for future advancements.

9 CONCLUSION
In this paper, we introduce EmbedWatch, a novel crash reporting
system designed for embedded devices. By combining fat pointer
mechanisms with remote attestation, it addresses the distinct chal-
lenges of attack analysis in resource-constrained and real-time en-
vironments. Our system excels in detecting and analyzing memory
errors, such as data-only and control-flow attacks, across differ-
ent memory segments. Our experimental evaluations of real-world

firmware and CWEs show that EmbedWatch is very accurate in
identifying the root causes of spatial memory errors, with a min-
imal overhead range of range (0.01% - 2.33%), geometric mean
0.228 +0.4% encryption protocol . These findings underscore the
system’s effectiveness and suitability for real-world IoT environ-
ments.
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