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Abstract

Polymer-based nanoparticles (PNP) are receiving increasing attention as potential

cancer therapeutics to replace conventional cancer treatments. What differenti-

ates PNP from current cancer therapeutics is their specificity towards cancer cells,

which, among many advantages, increases the efficacy of the drug, lowers systemic

toxicity, and allows for higher tolerable doses. Despite these advantageous char-

acteristics, PNP still have a long way to go before becoming standardized cancer

therapeutic delivery vehicles, as their mechanisms of action remain unknown. This

thesis employs a multi-scale simulation approach to elucidate the mechanisms of

action of PNP formed by amphiphilic block co-polymers. In particular, all-atom

(AA) and coarse-grain (CG) simulations are used to understand key processes of

PNP that will contribute to their application as cancer therapeutics, such as their

self-assembly process, drug encapsulation, and selectivity towards cancer cells.

These processes are extremely dynamic, making them either impossible or very

hard to study using experimental techniques. The motivation behind this thesis is to

contribute to the knowledge of the rational design of PNP and to create platforms

to standardize and automate the analysis of PNP simulations, enabling scientists to

apply these methods to any other PNP of interest.

A fundamental problem in PNP rational design is to deduce the overall micelle

characteristics from the individual polymers, which are normally not the same. To

address this, in this thesis AA MD simulations of the same PEO-PMA polymers

(same monomer and polymer numbers) but arranged in a different topology were

performed. Here, it was demonstrated that polymer topology plays a key role
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in the overall micelle physical characteristics, drawing a link between topologies

and specific micelle characteristics such as size or hydration. It was also shown

that polymers that form a micelle with a clear hydrophobic core and hydrophilic

corona, adopt location-specific polymer conformations. Furthermore, in this the-

sis, CG simulations were conducted on an experimentally validated PEG-PLGA

NP loaded with anti-cancer peptides, aiming to understand its cargo encapsulation

and selectivity toward cancer cells. Regarding drug storage, it was shown that the

polymers in the PEG-PLGA NP also take location specific conformation, and that

these conformations form local microenvironments within the NP that lead to the

solubilization of the peptide in several storage locations. Additionally, to study the

experimentally validated selectivity of this NP towards cancer cells, the NP was

simulated with a model cancer and healthy membrane. From these simulations, the

changes induced by the NP-membrane interactions on both, the NP physicochemi-

cal characteristics and membrane disruption, were quantified and compared. It was

found that changes in both -NP and membrane- were more substantial in the cancer

simulation, meaning that the selectivity of this NP could also be observed in silico.

The key force driving the NP-membrane interactions was the interactions between

the PEO polymers and a specific lipid species, that is present in higher percentages

in cancer membranes. This suggests that preferential polymer-lipids interactions

may play a vital role in the PNP selectivity towards cancer cells. Moreover, a set

of parameters to assess the selectivity of PNP towards cancer cells in silico are

proposed, which can be applied to other NP-membrane systems.

To conduct such a detailed analysis of polymer systems, it was necessary to

develop novel analysis tools. To this end, a graph theoretical cluster algorithm was

developed to track changes in polymer aggregation throughout a simulation. Also,

to study the specific polymer conformations within the micelle, dimensionality

reduction unsupervised machine learning and clustering techniques were applied.

Finally, to be able to analyse simulation properly, an algorithm to make molecular

structures whole across the periodic boundary when its size is greater than half the
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box size was created. These analysis tools, along with others developed in this the-

sis, have been incorporated into the publicly available PySoftK software package.

This way, PySoftK aims to provide an automated computational analysis workflow

to study complex properties of soft-matter.
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Chapter 1

Introduction

1.1 Motivation of the thesis

Polymer-based nanoparticles (PNP) are promising candidates to replace current

cancer therapies, primarily due to their high specificity toward cancer cells, which

reduces overall systemic toxicity. However, there has been limited clinical trans-

lation of NP-based cancer therapy, mainly because our understanding of their

mechanisms of action remains incomplete. This includes aspects ranging from pre-

dicting PNP cargo storage location to their selective targeting of tumorous tissue.

The results presented in this thesis aim to provide new insights into the molecular

mechanisms by which PNP self-assemble, store their cargo, and deliver therapeutics

targeting cancer cells over healthy cells. This has been achieved by a multi-scale

study which combines all-atomistic and coarse-grained molecular dynamics sim-

ulations, combined with a wide variety of novel analysis techniques that utilise

unsupervised machine learning and graph theory. These analysis tools have been

included into the newly published software package, PySoftK, so that the entire

soft-matter community can benefit from their development. Overall, the work pre-

sented in this thesis proposes new parameters to consider for the rational design

of PNP, new key interactions between PNP and cancer membranes to assess PNP

preference toward cancer cell lines (which are vital for the in silico screening of NP)

and new analysis techniques to better understand and quantify the physicochemical

characteristics of polymer-based PNP.
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1.2 Cancer Nanotechnology

1.2.1 Cancer and current therapies

There are over 100 different types of cancers, but they are all characterised by

anomalous and uncontrolled cell growth with the ability to invade other tissues [3].

This unrestrained replication occurs due to mutation of genes that alter the repli-

cation and death rate of cells. Most of these mutations are not inherited, but are

caused by DNA damage, such as exposure to UV radiation or endogenous errors

in DNA replication [4]. The scientific journey of finding therapies to cure cancer

started back in the early XX century [5]. Only 50 years later, the first nation-wide

effort to tackle this disease materialized with the creation of the Cancer Chemother-

apy National Service Center in the USA [6]. However, more than 100 years later,

cancer is still the second leading cause of death world-wide, causing one of every

six deaths in 2008 [7]. Also, it is estimated that in 2020 in the US alone, 1,806,590

people were diagnosed with cancer, and in the same year there were more than 600

thousand deaths [8] due to this disease. Furthermore, global demographics charac-

teristics point towards a steep increase in cancer incidences within the next decades.

It is estimated that by 2025 more than 20 million cancer cases will be diagnosed an-

nually worldwide [9]. Figure 1.1 displays the statistics for the most common types

of cancer deaths for women and men in 2023 in the USA.

The main reason why the mortality of cancer remains high is due to the ten-

dency of cancer to spread across the body (moving away from the primary tumour),

also known as metastasis, until it becomes incurable. Metastasis is the cause of

90% of deaths from solid tumours [10]. Furthermore, the elevated mortality is a

result of the limited treatment options for cancers that are inoperable or do not

respond to targeted or hormonal therapy. For example, one of the cancers with

the highest mortality is lung cancer [11], which is often challenging to operate.

Lung cancer is the first leading cause of cancer death for men and women in the
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(a) (b)

Figure 1.1: Ten leading cancer types for new deaths in the USA in 2023. (a) For men
and (b) for women. Statistics obtained from Siegel et al.[1]

U.S.A [1]. For these types of cancer and for any advanced cancer, the most common

treatment option is a combination of surgery, radiation and/or chemotherapy [3, 12].

Surgery aims to remove the tumorous tissue, while radiation therapy uses a

targeted ionising radiation on the cancerous tissue either to directly kill the cancer

cells or to induce genetic changes that lead to cell death [13]. Even though radiation

therapy tries to minimize the damage to the surrounding healthy tissue, normally

the radiation dose required to achieve sufficient cancer cell death exceeds the dose

tolerated by the healthy tissue [14]. Chemotherapy consists of the administration

of cytotoxic chemicals to eradicate the cancer cells, or reduce the tumour. These

cytotoxic chemicals are normally administered to the patient in combinations of

several drugs to avoid tumour cell resistance and to try to reduce the toxicity to

healthy cells [15]. However, chemotherapy is not typically curative, as it has low

specificity towards cancer cells [15, 16, 17], limiting the maximum delivery dose

tolerable for the patient. It is also common to combine these therapies with cancer

inmunotherapy, which aims to eradicate the disseminated tumor cells in the blood

stream and organs to reduce the overall risk of distant metastases [12]. This is

achieved by stimulating the patient’s immune system. Unfortunately, only a small
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amount of patients respond to this type of treatment, since many types of tumors

quickly develop drug resistance [18]. Thus, there is a critical need to find therapeu-

tics with high selectivity towards cancer cells [19, 20, 21] to reduce the side-effects

of cancer treatment and to increase the maximum tolerated drug dose. These thera-

peutics would improve the patient’s quality of life during treatment and also boost

the chances of total recovery from cancer for the patient.

1.2.2 Introduction to Cancer Nanotechnology

Nanotechnology is an interdisciplinary field dedicated to creating and manipulating

novel products at the nano-scale level [20, 21], encompassing biology, physics,

chemistry, engineering, and medicine. In the last 30 years, nanomedicine has

attracted a lot of attention as a potential candidate for cancer therapy [19, 20].

Nanotechnology for cancer involves the use of biocompatible semiconductors, met-

als and polymeric particles with novel and complex optical, electronic, magnetic

and structural properties that cannot be achieved with individual molecules or bulk

solids [22]. These properties are pivotal for applications in cancer detection, diag-

nosis and treatment [20].

There are many different nano-structures that are used in cancer nanotechnol-

ogy, such as liposomes; which are the simplest nanovector and are used to encap-

sulate therapeutics [20, 23]. There are already approved liposome-based cancer

therapies. For example, Doxil, which is doxorubicin encapsulated PEGylated nano-

liposomes [20, 24]. Another example of cancer nanotechnology devices are carbon

nanotubes, these are carbon cylinders composed of benzene rings mainly used for

high-specificity sensing of DNA and proteins [20, 23].

One of the nano-structure that has attracted the most attention as a potential cancer

drug delivery vehicle, and that will be the main focus of this thesis are nanoparti-

cles (NP) [19]. NP are submicron-sized particles that are able to encapsulate and

transport therapeutics [20]. NP have several characteristics that make them ideal de-

livery vehicles for cancer therapeutics: the ability to transport drugs across biologial
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barriers; such as the blood-brain barrier [20], the increased circulation time of the

encapsulated drug [25], the enhanced protection of the drug from bio-degradation,

the capacity to deliver a large drug concentration in a specific site [17], and in the

case of polymeric NP the biodegradability of their components [26]. Nevertheless,

the most attractive characteristics of NP as potential cancer therapeutics is their po-

tential to be engineered to posses high specificity towards cancer cells, resulting in

lower toxicity [19, 23].

1.2.2.1 Polymeric nanoparticles for cancer cell delivery

Polymeric NP (PNP) are biodegradable and biocompatible polymeric colloidal par-

ticles with submicron diameters [19, 27]. These NP are able to carry drugs within

their polymeric matrix or have therapeutics adsorbed or conjugated onto their sur-

face [19, 20]. Furthermore, polymeric NP are capable of sustained released of their

cargo by tuning polymers to respond to specific cell environment changes that ap-

pear in diseased cells, such as acidic pH or high oxidative stress, which enhances

tissue targeting [27, 28]. They can also be designed to deliver drugs across several

biological barriers. For example, PNP coated with polysorbates have been used to

deliver therapeutics into the brain across the blood-brain barrier [19, 20]. In general,

polymeric NP have been shown to greatly increase the concentration of anticancer

drugs in brain tumours [19]. Once the PNP has delivered its cargo, due to the bio-

compatibility and biodegradability of its polymeric components, the NP degrades

into molecules that are harmless to the human body. Therefore, polymeric NP-based

cancer therapy enhances drug specificity and reduces systemic toxicity. For illustra-

tion purposes, examples of snapshots from computer simulations of polymer-based

NP are represented in Figure 1.2.

PNP can encapsulate hydrophilic and hydrophobic drugs. The polymer shell of

PNP serves a dual purpose – it shields the encapsulated drugs from enzymatic degra-

dation [27] and safeguards them against external agents within the human body. In

addition to preserving drug integrity and facilitating targeted delivery, NP reduce

drug clearance, which extends the circulation time of drugs. This effect is achieved

through the incorporation of hydrophilic polymers like polyethylene glycol (PEG)
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(a) (b)

Figure 1.2: Snapshot of polymer based NP from computer simulations performed as
part of this thesis. (a) Coarse-grained representation of a PEG-PLGA NP
loaded with an anticancer peptide. PEG is in blue, PLGA in pink and the
anticancer peptide in yellow and purple. (b) All-atomistic representation of
micelle made up of PMA-PEO-PMA polymers. PMA is in sky blue and PEO
in orange. Representations are not to scale

or polyvinyl alcohol (PVA), which are both non-toxic and blood-compatible. These

hydrophilic polymers form a protective corona on the outer surface of the PNP,

inhibiting phagocytosis by non-targeted cells [27]. This corona, primarily com-

posed of hydrophilic polymers, envelops the hydrophobic core of the NP. Notably,

several hydrophobic polymers have been extensively studied for use in NP loaded

with cancer therapeutics, including poly-lactide-co-glycolide (PLGA), polyhydrox-

yalkanoates (PHAs), and polylactic acid (PLA) [27, 29]. Since PNP are able to

deliver a targeted and controlled release of cancer therapeutic drugs, which reduces

the toxicity and improves the pharmacokinetics of the cancer formulations, they are

a powerful alternative to conventional cancer therapies.

1.2.2.2 PNP synthesis methods

NP synthesis typically allows for straightforward and scalable production in the

laboratory, enabling the synthesis of large quantities in a single batch [19, 20, 27].

There are several methods for polymeric NP synthesis. Some of the most com-

mon methods are emulsification-solvent evaporation or extraction, double emulsion

and evaporation, and precipitation [27]. Emulsion-solvent evaporation is divided
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Figure 1.3: Schematic representation of PNP formation via precipitation. Schematic
representation of a drug-loaded polymer-based NP formed via precipitation.
Figure adapted from Chen et al.[2]

into two steps. The first step is the emulsification of the polymer solution into an

aqueous phase. In the second step the solvent is evaporated and the polymers are

precipitated as nanopsheres [27, 30]. On the other hand, the double emulsion and

evaporation method is used to synthesize PNP loaded with hydrophilic drugs. This

is done by adding aqueous drug solutions to the polymer solution while stirring to

form an emulsion[30]. Finally, the PNP studied experimentally in this thesis were

formed via precipitation. This method consists of adding drop by drop the polymer

dissolved in a water-miscible solvent (acetone, ethanol, etc..), and if needed also

the drug, into the aqueous phase [27, 30, 31]. A schematic representation of this

method is illustrated in Figure 1.3.

1.2.3 Mechanisms behind NP cancer selectivity

As mentioned above, a major challenge in current cancer therapies is the lack of

selectivity in affecting only cancer cells while sparing healthy ones. NP, including

PNP, offer a solution to this problem since they can selectively target cancer cells.

This not only reduces systemic toxicity, but also lowers the necessary drug dose,

since the majority of the drug will be delivered to the target tissue or cells [32].

NP achieve this selective delivery to tumor tissue via passive or active targeting

[19, 20, 23].
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(a) (b) b

Figure 1.4: Schematic representation of the vasculature of cancer and healthy tissue.
(a) Representation of the ’leaky vasculature’ of tumors. The lack of tight junc-
tions and the bigger spacing between adjacent endothelial cells (EPR effect)
allow the NP entry into tumorous tissues. (b) Representation of the vascula-
ture of healthy cells, the spaces between the adjacent endothelial cells are quite
small and with tight junctions, which hinder the entry of NP into these tissues.

1.2.3.1 Passive targeting

Passive targeting is the accumulation of the NP in the cancer tissue due to the NP

physico-chemical and pharmacological properties. It has long been believed that

the most important factor that affects NP passive targeting of cancer cells is the

Enhanced Permeability and Retention (EPR) effect [19, 23, 27, 33], also known as

the ’leaky vasculature of tumours’. The EPR effect cause NP to accumulate more in

cancer tissue than in healthy tissue due to two main reasons. First, growing tumors

produce endothelial growth factors that induce angiogenesis. This new vasculature

has abnormally enlarged junctions (between 600−800 nm [20] ) between adjacent

endothelial cells in tumor tissue, allowing NP to easily pass through these junctions

[20, 22]. Figure 1.4 shows a schematic representation of the EPR effect and also

of the vasculature of healthy cells for comparison. From this Figure, it is clear

that the enlarged spaces between adjacent endothelial cells favour the entry of NP

into tumorous tissue. Additionally, the second reason why the EPR effect leads

to a higher accumulation of NP in cancerous tissues is that tumors have a faulty

lymphatic drainage system, which facilitates particle accumulation [22, 27].

Therefore, these characteristics of the vasculature of tumours lead to a higher

accumulation of NP in cancer tissue than healthy tissue, increasing the bioavail-

ability and efficacy of anti-cancer drug loaded NP [20]. Typically, after entering
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through the tight-junctions, NP navigate the trans-endothelial transport pathways

that support tumor growth and nutrition [34, 35], allowing them to reach various

regions within the tumorous tissue. Furthermore, recent research shows that the NP

entry into tumours may also be enhanced by a specific type of endothelial cell found

in cancer tissue [36].

Apart from the EPR effect, there are other mechanisms of passive targeting

that contribute to the specificity of NP towards cancer cells. These mechanisms of

selective targeting rely on the tumor microenvironment, which is different to the

one of healthy cells. For example, since cancer cells rapidly divide, they have a

higher metabolitic rate, needing a higher supply of oxygen and nutrients than their

healthy counterparts. To obtain that extra energy, cancer cells use glycolysis. This

leads to a change in the pH, making the environment more acidic [20]. Therefore,

a NP that is stable at physiological pH but degrades at a lower pH, would also be

a mechanism of passive targeting, since the physicochemical properties of the NP

contribute to the delivery of the drug.

1.2.3.2 Active targeting

Active targeting involves the entry of NP into tumor tissue via receptor mediated

endocytosis [27]. This process is achieved by functionalizing NP with attached

ligands, which can be small molecules, peptides, antibodies, and more [20, 37].

When a NP is loaded with a drug and have ligands, they are referred to as ‘ternary-

structured NP’ [20, 27]. The choice of ligand depends on various parameters, in-

cluding the receptors exclusively expressed by the target cancer cells, their distribu-

tion within the cells [20, 27], and their abundance [19]. This mechanism is effective

because, upon the initiation of the interaction between the ligand and receptors,

the plasma membrane invaginates around the NP, forming an endosome [19, 20].

Subsequently, the endosome is transported to a specific target organelle. Examples

of receptors targeted with ligands include folate receptors, epidermal growth factor

receptors, and transferrin receptors [27].
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1.2.3.3 Differences between cancer and healthy cells: lipidomics

As stated above, an ideal cancer therapeutic should be selective towards cancer cells

even at the early stages of the disease [23], and leave healthy cells unaltered. To

achieve this, it is necessary to find clear cancer biomarkers that can be targeted by

anti-cancer drugs. This allows cancer therapeutics to treat the disease even at initial

stages, and also reduces the damage produced to healthy cells. There are several

differences between cancer and healthy cells that could be cancer biomarkers, such

as the tumour microenvironment or the metabolic rate [20]. This thesis will focus

on the differences in the cell membrane lipid composition across cancer and healthy

cells.

Lipid metabolism can be altered by different diseases, such as diabetes,

Alzheimer’s disease and cancer[38]. Cancer cells have a different lipid compo-

sition than their healthy counterparts. Several studies have shown that many lipid

species increase in cancer cells, for example, lysophospholipids in ovarian cancer

or gylcerophospholipids in prostate cancer [39]. Therefore, lipidomics, which is

the quantification of lipids confined in a biological entity [39], e.g cell membrane,

is a promising cancer biomarker.

In cancer, the cell membrane of a tumor influences its ability to grow and attach

to neighbouring cells, as well as its metastasis speed[3]. In general, cancer cells

possess an overall negative charge due to higher percentages of negatively charged

lipids such as phosphatidylserine (PS), O-glycosylated mucins, or sialyated gan-

gliosides [40], while healthy cells tend to have a more neutral overall charge due

to the zwitterionic nature of their major lipid components such as phospatodyl-

choline (PC) or phosphatidylethanolamine (PE). Furthermore, it is hypothesized

that cancer cells exhibit greater membrane fluidity compared to their healthy coun-

terparts. This increased fluidity, attributed to lower percentages of cholesterol in

cancer membranes, may enhance the activity of certain drugs by facilitating mem-

brane destabilization [3]. Cholesterol protects healthy cells from the insertion of

therapeutics, as cholesterol makes healthy membranes less fluid and more rigid
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[41, 42]. Finally, cancer lipids also contribute to making cancer cells have a larger

surface area than healthy cells, increasing the possible number of contacts between

therapeutics and the cancer membrane [43].

All these characteristics favour NP selectivity towards cancer cells. Further-

more, there are specific polymers that are more likely to interact with cancer cells

lipids. For example, previous studies on PEG polymers, have shown the preference

for PEG to interact with certain lipid types such as 1-palmitoyl-2-oleoyl-sn-glycero-

3-phospho-(1’-rac-glycerol) (POPG) which are present in higher percentages in

some types of cancer membranes than in healthy cell membranes [44].

1.2.4 Limitation of polymeric NP for drug delivery

Despite successful NP drug delivery to cancer cells in vitro and mouse models, there

has been very little clinical translation [45] due to various limitations. Regarding

limitations of NP synthesis, many fabrication methods for NP are only suitable for

lab-scale synthesis, so better methods need to be designed for large-scale produc-

tion. Also, dry forms of NP easily aggregate, making them hard to handle [46].

Moreover, there are also issues with respect to the NP distribution within the body.

For example, some NP tend to accumulate in the liver, spleen and lung [46, 47]. If

NP release their cargo in any of these organs, it could increase the overall systemic

toxicity of NP. Other common issue when using NP as drug delivery system is the

lack of EPR effect in regions with very low permeability or microvessels, making

these tissues harder to target [46].

Nevertheless, one of the main reasons why NP based cancer therapy is being

hindered is due to the limited understanding of NP mechanisms of action [48].

Many studies have focused on understanding the various mechanisms involved in

the delivery of NP-loaded drugs into cancer cells, such as the forces that drive

NP-cancer membrane interactions [35, 45, 49, 50, 51, 52], how changes in the

physichochemical properties of NP [49, 53] tune their specificity towards cancer
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cells [37], the mechanisms behind successful NP cargo storage [54] and delivery

into the cells [55]. Unfortunately, there is still no clear comprehension of these

NP processes and characteristics, impeding the design of novel cancer-specific NP

for efficient drug delivery into tumors. The processes mentioned above are still

not fully understood because they are highly dynamic, making them challenging

to study experimentally. However, a deep understanding at the molecular level

is possible with molecular dynamics (MD) simulations [49, 50, 56] as it will be

discussed in Section 1.4.

1.2.5 NP cargo: antimicrobial peptides as anticancer peptides

Antimicrobial peptides (AMPs) belong to the innate immune system of several

species, protecting them against bacteria, fungi, protozoa and viral infections.

AMPs are short proteins, normally between 5 and 40 aminoacids in length, typ-

ically positively charged, amphiphatic and normally take an α-helical or β -sheet

structure when they come in contact with a cell membrane [57]. These character-

istics allow them to disrupt bacterial membranes [3, 57, 58], which, among other

traits, tend to be negatively charged. Thus, AMPs first became of interest as a

potential alternative to antibiotics during the mid 1990s [59]. One of the mecha-

nisms of AMPs to disturb the membrane is by pore formation. There are different

types of pore that AMPs can form. The most common is known as the barrel-stave

model: a highly ordered cylindrical water pore formed by trans-membrane inserted

peptides. AMPs can also act via the toroidal pore model: where they absorb on the

surface of the membrane and lead to membrane thinning and expansion of the head

group region, inducing membrane curvature [60]. Finally, another mechanism is

membrane dissolution; where AMPs assemble on the surface of the membrane and

disrupt it forming a smaller pore, or lipid-peptide domain formation [3, 40, 57]. It is

hypothesized that AMPs are able to overcome antimicrobial resistance because they

target cells depending on their lipid membrane composition. This makes it harder

for bacteria to develop resistance against them, due to the difficulty to change their

membrane lipid composition.
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Similarly to bacterial membranes, cancer membranes also have a more nega-

tively charged lipid composition compared to healthy cells [40]. Therefore, some

of the peptides that have been proven to be AMPs can also serve as anti-cancer

peptides (ACPs) [3, 58] and most of them have either an α-helical or β -sheet sec-

ondary structure [40]. ACPs are able to kill cancer cells using the same mechanisms

that they use to disrupt bacterial membranes. The main reason behind cancer cell

targeting characteristic of ACPs is due to the presence of more negatively charged

lipids in cancer cells membranes compared to healthy membrane, which promotes

the initial electrostatic interaction between the naturally cationic ACP and the can-

cer membrane. Research also shows that ACPs may not only kill cancer cells by

disrupting the cell membrane, but also by disrupting the membranes of organelles

such as the mitochondrial membrane, inducing apoptosis [58]. ACPs are known for

their low toxicity, attributed to their precise targeting and high specificity. They also

exhibit excellent tumor penetration. Similar to how bacteria have lower resistance

to AMPs, cancer cells show reduced resistance to ACPs, making them promising

chemotherapeutics with high potential [58].

However, AMPs suffer from poor stability, solubility, and salt sensitivity in

vivo, which has hindered their success in clinical trials [61, 62]. Yet, when encap-

sulated within PNP, their stability increases and they are protected from proteolytic

degradation [62]. PNP also prevent AMPs from being recognized by the immune

system, achieved by, for example, PEG polymers shielding the positive charges of

AMPs [61]. Furthermore, polymeric NP increase the circulation time of AMPs in

the body [61] and enable the delivery of a high dose to the target tissue [62]. The

combined specificity of PNP and AMPs makes them a potential therapeutic option

with high specificity and low toxicity for cancer therapy.
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1.3 Polymers
Polymer science officially started in 1920s. It was Herman Staudinger who in

1922 published an article setting the basis of polymerization. He defined polymers

as repeating units of small chemical units (monomers) linked via covalent bonds.

In 1953 he received the Nobel prize for his discoveries on these macromolecules

[63, 64]. Since then, polymers have been used for a wide variety of applica-

tions. For instance, the use of polymers like nylon, poly(methylmethacrylate), or

polyvinyl chloride in surgical sutures, known as Nylon sutures, began in the mid-

1940s [65]. Currently, advances in synthetic chemistry have enabled the creation of

increasingly complex polymers [66]. These versatile materials are now employed in

various cutting-edge applications, including sensing, soft robotics, and self-healing

technologies [67].

1.3.1 Block Copolymers

Block copolymers (BCPs) have been a key research topic for many years now,

mainly due to their ability to self-assemble and form complex structures [66, 68].

They are made of at least two different monomers, for instance A and B, that can

be arranged in several morphologies. Examples include diblock AB, triblock ABA,

alternating AB blocks (also knowns as multiblock), pentablock (ABABA) and so

on [66, 68]. BCPs give raise to materials with unique interesting properties that

differ from those of the individual constituent polymers.

The specific spacial arrangement of the blocks within a polymer is known as

topology. Polymers with an identical number of monomer species, but differing in

topology, exhibit very different behaviors, especially when they form larger struc-

tures [69]. Figure 1.5 shows polymers made up of ethylene oxide (EO) and methyl

acrylate (MA), with the same number and type of monomer species, but arranged

in a different topology. The most common polymer topologies are: diblock linear,

which only has two types of blocks, A and B, and they are positioned in a single

chain. This topology is depicted for a PEO-PMA polymer in Figure 1.5 (a). Also,
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(a) (b) (c) (d)

Figure 1.5: AA representation of block co-polymers with different topology. Snapshots
of PEO-PMA polymers with the same number and type of monomer species,
but arranged in a different topology. The topologies are (a) diblock PEO-PMA,
(b) triblock PEO-PMA-PEO, (b) triblock PMA-PEO-PMA and (c) PEO-PMA
ring polymer. MA is shown in pink and EO in blue. All topologies have 15
MAs and 30 EOs.

linear triblock; three blocks position wihtin a single chain, two triblock topologies

(A-B-A and B-AB) are depicted in Figures 1.5 (b) and (c). Furthermore, the cyclic

topology, depicted in Figure 1.5 (d), forms a ring-shaped structure within a linear

chain by connecting the ends. Finally, the last most common type of topology is the

branched topology; where several chains or branches extend from the main poly-

mer backbone. Examples of branched topologies are star polymers, with multiple

branches radiating out from a central core or dendritic polymers with a tree-like

structure [70].

BCPs are also interesting because most of them undergo microphase separa-

tion, which consists in spontaneously forming phase-separated structure with mi-

croscopic length when in bulk or in solvent. In other words, for the case of diblock

AB polymers, micro domains of A and B type are formed and arranged in a regu-

lar periodic structure [71]. The macrophase separation of BCPs depends on three

parameters: the degree of polymerization (N), which is the number of a specific

monomer species in a polymer. N is proportional to the molecular weight [68]. The

volume fractions of the blocks ( f ), which is a way of defining the composition of

the BCP, for the case of a diblock (AB) polymer it would be: fA = NA
Ntotal

, such that

fA+ fB = 1, and where Ntotal is the total number of monomer species of the polymer

of interest, and NA is the total number of monomer species A of the same polymer.

Finally, the last parameters is the Flory-Huggins parameter (χAB), which describes

the thermodynamic interactions between two different monomers [68, 66] that drive
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phase separation. For a diblock copolymer χAB in bulk is given by:

χAB =
z

kBT
[εAB −

1
2
(εAA + εBB)] (1.1)

Where z is the number of nearest neighbours per repeat unit in the polymer, kBT

is the thermal energy and εAA,εBB and εAB are the interaction energies per repeat

unit of A-A, B-B and A-B respectively [66]. Basically, this equation represents the

exchange energy required to interchange two different monomers, divided by the

thermal energy. Monomer species that have low affinity for each other, so a lower

tendency for polymers to phase separate, will be given by lower values of χ and

vice versa.

The degree of the microphase separation is given by the segregation product χN.

For BCPs, as χN decreases or the temperature increases, the polymers become

more disorder, since the combinatorial entropy increases [66]. It is important to

note that when phase separation of polymers occurs in solution, Equation 1.1 gets

more complex since the solvent and its interactions with the different polymer

monomers need to be taken into account.

One of the block copolymers studied in this thesis is poly(ethylene oxide)-

poly(methyl acrylate) (PEO-PMA), which has a diblock topology composed of two

building blocks: ethylene oxide (EO) and methyl acrylate (MA). The PEO-PMA

structure involves repeating units of EO followed by all MA monomers. Another

block copolymer examined in this thesis, poly(ethylene glycol)-poly(lactic acid-co-

glycolic acid) (PEG-PLGA), has a more complex structure, featuring alternating

units of lactic acid (LA) and glycolic acid (GA) after the PEG monomers.

1.3.2 Amphiphilic polymers

Amphiphilic molecules are those that have a hydrophobic (lacking affinity for wa-

ter) and hydrophilic (affinity for water) region. Therefore, an amphiphilic BCPs

present both hydrophobic and hydrophilic building blocks [70]. If the ratios of
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hydrophobic to hydrophilic are right and their concentration is above the critical

aggregate concentration (CAC) [72], amphiphilic polymers can self-assemble in

solution. The self-assembled structure can have different shapes such as spherical,

cylinder-like, lamellar and vesicular [70]. Having hydrophobic and hydrophilic

domains makes them ideal candidates for drug delivery, since this enables the en-

capsulation of hydrophobic or hydrophilic drugs within them.

The polymers PEO-PMA and PEG-PLGA are also amphiphilic polymers and they

self-assemble into micelles or PNP. In the case of PEO-PMA, PEO is the hy-

drophilic part of the polymer since it has a high affinity for water and PMA con-

stitues the hydrophobic block. Similarly for PEG-PLGA, PEG is the hydrophilic

block while PLGA is hydrophobic.

1.3.3 Self-assembly of block copolymers

As mentioned above, amphiphilic block copolymers can self-assemble into com-

plex structure if the concentration in solution is above the CAC. Self-assembly is

the spontaneous process by which discrete components organize into a larger or-

dered structure, driven by their inter-molecular interactions and without any external

forces. The fact that self-assembly leads to ordered structures is important, since it

sets it appart from other aggregation processes that yield disordered structures, such

as precipitation [73].

In the case of BCPs, the physicochemical characteristics of these higher-order

structures depend on the properties of their individual components. However, the

properties of the larger aggregate differ from those of the individual blocks. Conse-

quently, deducing the properties of the larger structure from those of the individual

polymers can be challenging. Nonetheless, this presents the advantage that achiev-

ing specific complex characteristics or behaviors in the self-assembled structure

only requires tuning the individual polymers [73] rather than altering the overall

structure.

Furthermore, polymers can be engineered to respond to external factors, such

as pH or temperature, to induce structural changes in the self-assembled polymers
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[74, 75]. The easy tuning combined with the large variety of morphologies that arise

from self-assembled BCPs structures, and the complex physicochemical character-

istics of these ensembles, place amiphiphilic BCPs at the center of contemporary

polymer research.

There are two types of self-assembly: equilibrium self-assembly (ESA) and

dynamic self-assembly (DySA). ESA occurs when the structure reached is in stable

equilibrium, meaning that it is an entropy maximum for that system. On the other

hand, DySA leads to non-equilibrium structures, so they need supply and dissipa-

tion of energy to be maintained [73]. In this thesis, we will focus on ESA, since

amphiphilic BCPs follow this process. Interestingly, BCPs not only self-assemble

into ordered structures, but can also undergo liquid-liquid phase (LLP) separation.

LLP leads to the formation of a polymer-rich liquid phase coexisting in equilibrium

with a polymer-depleted liquid phase [76]. However LLP is not very common, since

amphiphilic BCPs tend to self-assemble, particularly when polymer amphiphilicity

or the degree of polymerization are increased [75].

When amphiphilic BCPs self-assemble in solution, they can form structures

with varying shapes. Some examples of these morphologies are spherical micelles

or vesicles. A spherical micelle is an ordered spherical structure with a well-defined

core consisting of the hydrophobic part of the polymer and an outer corona formed

by the hydrophilic polymer species. At this point, it is necessary to make a dis-

tinction between NP and micelle. Micelles have a distinct hydrophobic-core and

hydrophilic shell. NP do not have such clearly separated hydrophobic-hydrophilic

regions, but tend to be homogeneous in composition throughout. Furthermore, mi-

celles are smaller in size (0-100 nm) when compared to NP which can reach hun-

dreds of nanometers. [77, 78] As we have discussed in the previous section, NP and

micelles made of amphiphilic polymers have the potential to carry both, lipophilic

and lipophobic drug, so they show great potential as drug delivery vehicles. On the

other hand, BCPs can adopt a rod morphology. These are cylindrical-like micelles,

with a cylindrical core and corona [66]. Rods can also be used as drug delivery
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(a) (b)

Figure 1.6: Schematic representation of self-assembled structures of amphiphilic
BCPs Schematic representation of (a) micelle and (b) vesicle. The hydropho-
bic block of the polymer is represented in red and the hydrophilic in blue.

vehicles, since their cylindrical shape allows them to encapsulate therapeutics and

enhances endocytosis [79]. Finally, another morphology are vesicles. These are

hollow spheres formed by a bilayer wall. In vesicles, polymers arrange such that

the hydrophilic part is at the external interfaces of the wall, and the hydrophobic

blocks in the inside. Schematic representations of a NP and a vesicle formed by

BCPs are depicted in Figure 1.6.

The theory underlying ESA self-assembly of amphiphilic BCPs is a combina-

tion of intermolecular forces and energetic considerations, leading to the formation

of the above mentioned nanoarchitectures. As mentioned previously, entropy gain

is a key factor in this process. The increase in entropy allows polymers to organize

into distinct phases, enabling them to explore a vast number of microstates and

spontaneously create ordered structures [80]. Additionally, the hydrophobic effect

also has a crucial role in the self-assembly of amphiphilic BCPs. Hydrophobic

segments tend to minimize their exposure to the aqueous environment, leading to

the segregation of these blocks into hydrophobic-rich domains. Conversely, hy-

drophilic segments interact with the surrounding solvent and position themselves
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in hydrophilic-rich domains. Precisely controlling this effect is essential for the

formation of nanoparticles and other structures. Furthermore, there are other in-

teractions and forces that exert a smaller influence on self-assembly, such as Van

der Waals interactions, which help stabilize neighboring polymer chains within

the self-assembled domains [80]. Other interactions are hydrogen bonds between

polymer segments, which can shape secondary structures and impact the overall ar-

chitecture. Also, electrostatic interactions, arising from interactions between polar

or charged segments, can also influence how polymers arrange themselves during

self-assembly. Furthermore, thermal fluctuations in energy, resulting from tem-

perature changes, affect the equilibrium between the self-assembled components.

Lastly, chemical specificity enables precise coordination and alignment among

polymer segments. It is the combined action of these forces that allows amphiphilic

BCPs to spontaneously self-assemble into complex nanostructures.

As mentioned before, the hydrophobic effect is key for the nanostructures that

arise from the self-assembly of BCPs, since it influences the packing of the polymer

chains. Because of this, predicting the morphology of a self-assembled nanostruc-

ture is possible by calculating its “critical packing parameter” (CPP). The CPP

describes the balance between the hydrophobic volume, hydrophilic surface area,

and hydrophobic tail length of amphiphilic molecules, and how this influences their

self-assembly into various structures. The CPP is given by the following formula:

CPP =
V

aolc
(1.2)

Here, V is the volume of the hydrophobic chains, ao is the surface of the head

group and lc is the length of the hydrophobic tail. The CPP value determines the

morphology of the self-assembled structure in the following way [81]:
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if 0 <CPP ≤ 1
3

: Spherical micelle

if
1
3
<CPP ≤ 1

2
: Cylindrical micelle

if
1
2
<CPP ≤ 1 : Vesicle

So for polymers with the same hydrophobic chain length, a big headgroup

would mean that they self-assemble into spherical micelles, while a smaller head-

group will lead to vesicles.

BCPs are not the only molecules that self-assemble, surfactants and lipids can

also self-assemble and form different structures. Nevertheless, amphiphilic BCPs

are the preferred material for self-assembly due to four main reasons. First, BCPs

allow the creation of structures within a wide nanometer range just by changing

parameters such as molecular weight or monomer structure. Secondly, it is easy to

control the morphology of BCPs architectures, since just by altering the polymer

topology we can get different morphologies. Furthermore, also thanks to the devel-

opment of synthetic chemistry techniques, we have a precise control over polymer

synthesis, so we can tune individual polymers to adopt specific properties. Finally,

self-assembled BCPs structure also benefit from the advantages of polymers over

other materials, such as their flexibility, cost effectiveness, toughness and perme-

ability control [68].

1.4 MD simulations for the study of polymer NP
In 1977 the first molecular dynamics (MD) simulation of a biomolecule was per-

formed. This simulation consisted of just one globular protein and it ran for 0.5

ps [82]. Thirty five years later, MD allows us to simulate objects in the nanometer

range for up to hundreds of micro seconds, primarily due to advancements in com-

putational power [83]. As a result, MD is now a simulation technique that allows
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us to understand biological processes at the molecular scale, providing insight at

a level that currently no experimental technique can. For example, crystallogra-

phy and nuclear magnetic resonance (NMR) techniques can determine structural

characteristics of biomolecules [83, 84]. However, MD can capture the dynamics

and kinetics between the different atoms involved in the biological process being

simulated, by using simple approximations used in classical physics [84]. There-

fore, MD simulations are a powerful tool to understand the molecular mechanisms

behind polymeric NP formation, cargo loading and the mechanisms of action be-

hind PNP drug delivery to cancer cells. Nevertheless, it is important to note that

experiments and MD simulations should be used together to advance faster in the

polymeric NP field. Simulations will always need to be corroborated by experi-

ments, and also experiments are needed to study longer and larger processes that

exceed what is currently computationally possible. Similarly, simulations provide

a zoomed-in molecular understanding and real-time picture in a way that experi-

mental techniques cannot capture. Therefore, their combination will lead to a more

complete understanding of PNP for cancer therapy.

This section explores how MD simulations have been used to study polymer

self-assembly into PNP, as well as how PNP encapsulate their cargo and interact

with model cancer and healthy membranes. Before diving into the details, it is

necessary to differentiate two different scales for MD simulations used in this the-

sis, all-atom (AA) and corse-grain (CG) simulations. AA is the most traditional

type of MD simulation. Here, each particle being simulated is an atom. Therefore,

each force and motion of the system is calculated for every atom. The time span of

AA simulations normally range between nanoseconds to a few microseconds. As

AA MD simulates every particle, they are particularly good in capturing polymer

conformational changes and peptide folding and partitioning into membranes [83].

On the other hand, CG MD simulations are able to capture processes in soft matter

at the micrometer length scale, such as phase transformations that take longer than

hundreds nanoseconds [85, 86]. For this type of phenomena, it would be impos-
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sible to compute AA simulations, due to the sheer computational load involved.

In CG simulations, atoms are grouped together into a single bead or interaction

site, effectively reducing the degrees of freedom in the system [86]. This simpli-

fication results in fewer computations during the simulations, as there are fewer

particles and interactions to consider. As a result, CG simulations are well-suited

for simulating larger systems over longer timescales. Further details on the scales of

simulations can be found in Section 2.1.2. In this thesis, both methods, AA and CG

MD simulations, have been used and combined to better understand the molecular

mechanisms behind PNP formation and selectivity towards cancer cells.

1.4.1 MD simulations of BCP self-assembly

The physicochemical characteristics of BCP self-assembled structures can be stud-

ied experimentally with techniques such as Small-Angle X-ray Scaterring (SAXS)

[87], Cryo-Transmission Electron Microscopy (Cryo-TEM) [88], Dynamic Light

Scattering (DLS) [89] or Nuclear Magnetic Resonance (NMR) [90]. However,

these techniques cannot be used to monitor the self-assembly process. Fortunately,

classical MD simulations can track this process at an atomistic level, which cur-

rently no experimental technique can [91]. Furthermore, there have been numerous

studies that have validated that the nanostructures formed by the self-assembly of

specific BCPs in simulations agree in morphology, size and shape with those ob-

tained experimentally [91, 92]. Therefore, MD simulations are a powerful tool to

gain a molecular insight of the self-assembly of BCP aggregates.

There are numerous advantages of using MD simulations to study BCP self-

assembly. For instance, AA simulations allow the study of packing motifs within

structures, that is to say, how the polymer chains arranged within the structure

and how they interact with each other. Also, it is possible to study the initial

self-assembly pathways with AA simulations, which provide important informa-

tion about the initial driving forces and stacking motifs of the self-assembly [91].

Finally, AA simulations facilitate the study of dynamic evolution and relaxation
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within idealized self-assembled structures, yielding a more realistic depiction.

Some examples of AA MD simulation studies of the self-assembly of NPs are:

Stipa et al. [29], who delved into the self-assembly of poly (lactic acid) (PLA)

and PLGA polymers, shedding light onto their assembly process. In another study,

Jafari et al. [93] examined various combinations of polyethylene glycol (PEG) and

PLGA, (PEG, PEG-PLGA, PEG-PLGA-PEG, and PLGA-PEG-PLGA) to under-

stand the differences in their packing to form NP.

Regarding CG simulations, the most clear advantage is that we can study

larger systems for longer, since CG allows the study of self-assembly processes

at the microsecond scale [92]. Also, due to their higher computational efficiency,

CG can be used for high-throughput simulations [91], which is key in the in silico

screening of therapeutics. Additionally, CG simulations also provide information

about the packing motifs and can be used to study idealized structures. Although

it is important to note that due to their lower number of degrees of freedom, the

molecular picture is less detailed. Nevertheless, CG simulations have been widely

used in the literature to study the self-assembly of BCPs. For example, Srinivas et

al. [92] studied how varying the molecular weight of diblock co-polymers leads

to different nanostructures. Their computational results agreed with experiments.

Also, Parket al. [94] used CG simulations to study the self-assembly of polymers

with a bottle-brush topology.

1.4.1.1 Currently available software for polymer simulations and its

limitations

One of the most technically complex steps in using MD simulation to study polymer

systems is obtaining the initial polymer models. This is particularly true for the set

up of simulations with several types of polymers or different variations of the same

polymer (topology, molecular weight, etc.) [95]. The reason is that large molecules

with complex architectures are hard to parameterize and to structurally model them.

Because of this, many computational platforms have been developed to try to make
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this process easier. For example, PolyParGen [96] is able to parameterize polymers,

once the structure file is given. Nevertheless, it has limitations to which types and

length of polymers it can do. Other softwares such as PolyMaps [97], MoSDeF [98],

pysimm [99], RadonPy [100], CHARMM-GUI polymer builder [101] or Polymer

Structure Predictor [102] also aim to generate the input structures and parameters

needed for simulations. However, all of these software require a lot of chemical

input information from the user, making them quite manual. Furthermore most of

these software only allow the user to create homopolymers and simple topologies

[95]. In order to try to fill this big gap in computational polymer research, and to

provide a user-friendly platform for scientist to build, simulate and analyse complex

polymer simulations, the modular python software PySoftK [95] was developed.

PySoftK is presented in this thesis in Chapter 4.

1.4.2 MD simulations of NP drug encapsulation

MD simulations are valuable not only for capturing the self-assembly of BCPs into

NP but also for studying the encapsulation of therapeutics within them. Experimen-

tal techniques, such as Cryo-EM [103] and Energy-Dispersive X-ray Spectroscopy

(EDS) [104], are commonly used to examine the distribution of cargo and other

components within NP. However, these techniques provide static snapshots of NP,

(frozen samples during analysis), and lack atomistic resolution. In contrast, MD

simulations offer several advantages over these methods. MD simulation enable

the observation of the dynamic process of drug encapsulation, whether during NP

self-assembly [93] or the adsorption onto pre-formed NP [54]. MD simulations

provide a detailed, time-resolved view of drug encapsulation and behavior within

NP at an atomistic level.

As mentioned earlier, NP formed by amphiphilic BCPs can encapsulate both

types of drugs, hydrophobic drugs in the core and hydrophilic ones at the core-shell

interface. The atomistic insights provided by MD simulations are of particular

significance, as they offer essential information regarding the encapsulation pro-
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cess. This information includes whether a specific drug can be encapsulated and

stably maintained within a NP [29], the cargo storage location of a specific drug in

a particular NP [54] or how protected the cargo is from the external environment.

However, there is a scarcity of computational studies focused on how experimen-

tally validated polymer-based NP self-assemble encapsulating cancer therapeutics.

This knowledge gap is addressed in Chapter 5.

1.4.3 MD simulations of NP membrane interactions

The mechanisms of action behind NP selectivity towards cancer cells are not

well understood [48]. Several experimental techniques allow scientists to study

how NP interact with cells. These methods include fluorescence microscopy [2],

which permits real-time tracking of interactions, confocal microscopy [105], of-

fering higher spatial resolution than fluorescence microscopy, and atomic force

microscopy (AFM) [106], providing high-resolution images of nanoparticle-cell

interactions, including surface interactions, mechanical changes, and potential

membrane disruptions. These technique are highly valuable and can be used to

study NP-membrane interactions for periods much longer than MD simulation can

currently achieve, from minutes to days. However, MD simulations still present

some advantages to study NP-membrane interactions over the aforementioned ex-

perimental techniques. The main three benefits are: first, as in the other cases, the

atomic-level or molecular-level details of MD simulations. This level of resolution

enables the study of how individual atoms, residues, and molecules interact at the

interface between NP and lipid membranes, providing insights into the binding

mechanisms and forces involved [107]. Secondly, MD simulations provide a mech-

anistic understanding, by simulating the dynamic behaviour of NP as they interact

with lipid membranes. Therefore, MD simulations can elucidate key steps such

as NP insertion, membrane disruption, and deformation [108], leading to a deeper

mechanistic understanding of NP-membrane interactions. Finally, MD simulations

of NP-membrane interactions offer predictive insights into how different physico-

chemical characteristics of NP affect their interactions with lipid membranes [109].
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Figure 1.7: CG snapshot of a NP interacting with a cancer membrane. Snapshot of a
CG simulation of a PLGA NP (pink) loaded with proteins as its cargo (yellow),
interacting with a cancer membrane. For clarity, only the phosphate group of
the lipids in the membrane are represented (green).

Figure 1.7 is a snapshot of an MD simulations of a CG peptide-loaded NP inter-

acting with a cancer membrane. In this snapshot it is clear that the NP is inducing

curvature on the membrane.

There are numerous studies that have utilised MD simulations to understand

NP-cell interactions. For instance, Das et al. [110] compared AA and CG simu-

lations of a NP with a pure DMPC (1,2-dimyristoyl-sn-glycero-3-phosphocholine)

and a mixture of DMPC and DMPG (1,2-dimyristoyl-sn-glycero-3-phospho-(1-rac-

glycerol)) membranes, to determine the most suitable simulation method based on

the research objective. Also Ding et al. [51], among many other aspects, studied

computationally how membrane curvature affects NP translocation. However, most

MD studies aiming to understand NP-membrane interactions, use overly simplis-

tic lipid membranes, typically composed of one, two or at most three lipids types.

These reduced models overlook the significant differences in lipid composition be-

tween cancer cell membranes and those of healthy cells, as elucidated in Section

1.2.3.3. To achieve a more comprehensive understanding of the molecular mech-

anisms that drive PNP selectivity toward cancer cells, it is necessary to conduct

simulations that incorporate complex and realistic lipid compositions, reflecting the

distinct lipid profiles of cancer and healthy cells. Chapter 6 of this thesis delves into

this area of study.



Chapter 2

Methods

2.1 Molecular Dynamics Simulations

Molecular Dynamics (MD) simulations are a powerful computational technique

used to investigate the dynamic behavior of atoms and molecules at the molecular

scale. The theoretical idea behind MD is to numerically solve the classical equa-

tions of motion for every atom or bead at each time step. The integration of the

classical equations can get very complicated, since the force on each atom is the

result of all the inter and intra-molecular forces that are acting upon on it, and as

systems get larger the complexity of these calculations also increases. The general

workflow of an MD simulation would be the following: first it is necessary to set

the initial coordinates and velocities of the molecules in the system at the initial

time unit or time step. Secondly, the force on each atom is calculated. Finally, each

atom should move accordingly to those forces, the velocities are updated, and the

simulation time advances by one time step. These three steps are repeated until the

desired simulation time is reached. The resultant trajectory provides insights into

the temporal evolution of molecular systems and using statistical mechanisms it is

possible to calculate any thermodynamic observable. In this Section, the theoretical

background of MD simulations will be discussed.
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2.1.1 Newton’s second law

The most accurate description of molecules is based on quantum mechanics. How-

ever, computations taking into account these effects, are very expensive as it is

necessary to include additional calculations at each time step, such as electronic

structure calculations. The increased computational cost limits the system size and

simulation length. MD overcomes this issue by calculating the motion of atoms

using a Newtonian approximation, which is less computationally intensive. This

approximation provides accurate results on the dynamic and structure of molecules

from their microscopic interactions. Therefore, in MD simulations Newton’s second

law of motion is calculated on every atom [82, 83, 84, 111], as shown in Equation

2.1:

F⃗i = mia⃗i = mi
d2⃗ri

dt2 (2.1)

Where F⃗ is the total force on the particle, i is the specific particle index, m is the

mass of the particle, and a is the acceleration of the particle, which is the same as

the second derivative of its position r with respect to time t. Note that the arrow

denotes a vector quantity. The total force (F⃗i) is calculated as the negative of the

gradient of the potential:

F⃗i =−∇U (⃗ri) (2.2)

Generally, the velocity (⃗v) and positions (⃗r) of any body can be obtained from its

acceleration by following the classical equations of motion:

v⃗i = v⃗i0 +
1
m

∫ t

0
F⃗idt (2.3)

r⃗i = r⃗i0 +
∫ t

0
v⃗idt (2.4)

2.1.2 Molecular Scale of Computer Simulations

According to the phenomena of interest, it may be desired for a simulation to span

just a few nanoseconds with very few molecules, or to occur within the microsecond

and micrometer range. Depending on the time and length scale that one wants to

study, simulations can be performed at different molecular levels. Also, another
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Figure 2.1: Schematic representation of the molecular scale of MD simulations. The
main molecular techniques to simulate different scales are displayed in increas-
ing order of time and space range.

aspect to take into consideration would be the computational cost of the simulation,

of course it will always be more accurate to stimulate at the smaller scale, but it

is currently computationally impossible to simulate large systems with significant

chemical detail. There are five main scales to run MD simulations on. The different

molecular scales that will be discussed in this section are depicted in Figure 2.1.

From smaller to larger ranges, the first one would be ab initio MD simulations,

also referred to as first-principle simulations, which use quantum-mechanical de-

scriptors of molecules without relying on empirical parameters. These simulations

solve the Schrödinger equation for the electrons in the system using methods such

as Hartree-Fock or density functional theory (DFT). Therefore, they provide very

accurate results but are extremely computationally expensive, so it can only sim-

ulate very small systems of a few tens or hundreds of atoms and normally in the

tens of picoseconds range [112]. Next would be the Quantum Mechanics-classical

simulations (QM/MM), these combine ab initio with classical MD. Here, the elec-

tronic structure of a subset of atoms is treated with ab initio methods, while the
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remaining part of the system follows classical MD forcefields. This is normally

used for systems where the quantum effects are important, but due do the size and

length of the system, the rest of the atoms need to be treated classically [113].

For example, QM/MM can be used to study photo-induced electron transfer [114].

Continuing with the increasing order of the molecular scale, the next one would be

all-atomistic (AA) simulations. AA is the most traditional type of MD simulations.

In this type of simulation, each particle being simulated is an atom. Therefore,

each force and motion of the system is calculated for every atom. The time span

of AA simulations normally range between nanoseconds to few microseconds. As

AA MD simulates every particle, they are particularly good in capturing molecular

conformational changes and peptide folding and partitioning into membranes [83].

Chapter 3 in this thesis uses AA MD simulations. The next simulation technique is

United-atom (UA) MD. This method consists of reducing the degrees of freedom of

the system by grouping hydrogens with their corresponding heavy atoms into sin-

gle interaction sites [115], which allows systems to run for longer compared to AA

simulations. This computationally more efficient method can be used in systems

where the behaviour of hydrogen atoms is not particularly important, such as lipid

membranes, where the hydrogens in the hydrocarbon region have low biophysical

importance [116]. Finally, the MD method that allows the simulation of larger

systems for longer time scales is CG. There are processes in soft matter that require

structures in the micrometer length scale, such as self-assembly of macromolecules,

or phase transformations that take longer than hundreds of nanoseconds [85, 86].

For this type of phenomena, it would be impossible to use AA simulations, as

the computations would be extremely resource intensive. To deal with this issue,

CG models have been developed. This simulation method consists of grouping

heavy atoms together into one bead or interaction site. Particularly, the forcefield

MARTINI groups every four heavy atoms and their corresponding hydrogens into

one bead, lowering the degrees of freedom of the system [86]. This atom grouping

lessens the number of computations that will be performed during the simulations,

as the number of particles is smaller and there is a smaller number of neughbouring
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(a) (b)

Figure 2.2: Same protein in AA and CG representation. (a) AA representation of the
EEK cancer peptide. (b) CG representation of the EEK cancer peptide. The
coloring of the residues is the same in both representations for a better compar-
ison between the two. Representations are not to scale

particles to consider. For example, the aminoacid glycine which consist in 10 atoms

in AA forcefields, it would be transformed into only one bead in CG forcefields.

Therefore, the difference in the number of particles is of roughly of one order of

magnitude between these two simulation methods. Due to this atom grouping, CG

also operates on a larger time step than AA, AA simulations tend to have a time

step of around 1 to 0.5 fs, while CG operates with a time step of at leas 10 fs, again

the difference is of around one order of magnitude between the two. Furthermore,

the reduced degrees of freedom due to the atom grouping in CG, contributes to a

smooth energy landscape resulting in faster diffusion. The merger of these charac-

teristics speed up the simulations [85]. Several simulations presented in this thesis

are performed using CG MD. The conversion from AA to CG of a protein is shown

in Figure 2.2.

2.1.3 System set-up

The first step to run a MD simulation is to set up the system, that is to say; to define

all the molecules that will be simulated, including the solvent and ions, with their
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initial positions. Generating the initial system can be challenging, specially if the

molecules are very large or have very complex architectures. More importantly,

molecules must be placed with care, since it is always better to have an initial

structure that is closed to the equilibrated state, to reach and speed up the simula-

tion convergence and also to avoid steric clashes. A steric clash is an unphysical

effect and occurs if a group of non-bonding atoms overlap or come into very close

proximity within a molecular structure, that is to say, that their van der Waals radii

are overlapping [117]. This must be avoided in MD simulations since it leads to

unphysical behaviors and introduces artefacts in the simulations, which all lead to

nonphysical values in the energy and dynamics of the system. Doing this manu-

ally can be tedious and long, so there are computational platforms that have been

developed to make this process of initialising the system fast and straightforward.

Depending on the type of molecules to be simulated, there are different ways to ob-

tain a close-to-equilibrium initial structure. For example, in the case of proteins, the

Protein Data Bank (http://www.rcsb.org/pdb/) contains the structural data of many

macromolecules, obtained with crystallography or cryo-EM, which can then be

used as starting configurations in MD simulations. In the case of lipid membranes,

there are many platforms, the ones used in this thesis are CHARMM-GUI mem-

brane builder [118] for AA MD simulations and CHARMM-GUI MARTINI maker

[119] for CG membranes. They are used to create planar lipid bilayers, and the user

can specify the lipid types. CHARMM-GUI works by first placing spheres mim-

icking the headgroup of the different phospholipids on the bilayer space, and once

everything fits, then they are replaced by the equilibrated lipid structures, making

sure the tails do not overlap and getting rid of any undesirable interaction. Finally,

some of the polymers generated in this thesis were created using, PolyParGen [96].

In a nutshell, PolyParGen obtains the simulation input parameters for soft polymers

by dividing up the polymer, acquiring the parameters of each structure and then

combining all the parameters for the whole polymer [96]. However, PolyParGen

has a limit on which types of topologies and length of polymers it can generate.

That is why, polymers with a more complicated topology in this thesis were built

http://www.rcsb.org/pdb/
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with Python Scripts and Pysoftk [95]. More details on Pysoftk will be provided in

Chapter 4. Alternatively, short CG polymers can also be generated with MARTINI

maker [119].

2.1.4 Initialising velocities

Once the system has been created, before running any MD simulations, it is impor-

tant to provide all atoms in the system with a certain initial velocity, since it would

be nonphysical to have a system with no motion. The principle of equipartition of

kinetic energy states that each momentum coordinate in the canonical phase space

has kT
2 of thermal energy on average, where k is the Boltzmann constant, and T the

temperature of the system. That is to say, each degree of freedom of a molecule

contributes equally to the average kinetic energy. This principle is used in MD

simulations to initialize the atomic velocities according to the Maxwell-Boltzmann

distribution [120, 121]. This distribution describes the velocity of atoms in three-

dimensions at equilibrium and it is given by the following formula:

f (v) = 4π

( m
2πkT

) 3
2

v2e−
mv2
2kT (2.5)

Here, f (v) is the probability density function for a velocity v, m is the mass of the

particle, k is the Boltzmann constant and T is the temperature of the system. This

equation shows that the velocity of particles follow a Gaussian distribution around

a mean velocity at a given temperature, therefore this distribution accounts for the

various kinetic energies of all particles that all together define the temperature of a

system. Therefore, it is necessary to initialise the velocity of all atoms with values

that will ensure that the simulation follows the Maxwell-Bolztmann distribution. At

thermal equilibrium, this can be achieved by using the principle of equipartition

of kinetic energy, which leads to the equation of 1
2mv2 = 3

2kT for a 3-dimensional

system. Since in a 3-dimensional space, we can assume every atom has 3 degrees

of freedom and each degree of freedom contributes kT
2 to the average kinetic en-

ergy, such that KE = 3 · 1
2kT = 3

2kT . If the atoms are initialised with the previous
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equation, the atoms will follow the Maxwell-Bolztmann distribution. Note that in

order to remove the system’s drift (net system momentum) the initial velocities are

scaled to ensure the mean kinetic energy reflects the desired temperature.

2.1.5 Integrating the equations of motion

Once the system is set up, and the initial velocities given, the computations of the

velocities and positions of each atom can begin. However, it is quite complex to use

Equations 2.3 and 2.4, since for systems with many particles it is impossible to solve

these integrals analytically, so a different method must be used. Finite difference

methods are numerical techniques used to approximate the derivatives of functions.

They provide a way to numerically solve ordinary differential equations (ODEs),

and it can be used in MD simulations to integrate the equations of motion over

discrete finite time steps. This is achieved by discretizing time and approximating

the trajectories over these small time steps. A common finite difference method

integrator used in MD simulations is the velocity-Verlet algorithm [122, 123], which

is based on the Taylor series expansions of the particle’s trajectories. This algorithm

integrates the equations of motion over a finite time interval δ t, also known as the

time step, following these steps:

Update positions: r⃗(t +δ t) = r⃗(t)+ v⃗(t) ·δ t +
1
2

a⃗(t) ·δ t2 (2.6)

Update velocities: v⃗(t +
δ t
2
) = v⃗(t)+

1
2

a⃗(t) ·δ t (2.7)

Calculate accelerations: a⃗(t +δ t) =
F⃗ (⃗r(t +δ t))

m
(2.8)

Update velocities again: v⃗(t +δ t) = v⃗(t +
δ t
2
)+

1
2

a⃗(t +δ t) ·δ t (2.9)

Basically, the current force is evaluated, then r⃗ is computed for the next time step.

Then, the current force term is added to the v⃗ (which updates the velocity midway

through the time step). This is followed by the computation of the new force, and

then the v⃗ is updated again, resulting in the velocity of the next time step. The
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fact that this algorithm updates the velocity at the middle of the time step improves

it accuracy since it takes into account the updated positions when computing the

velocities. This algorithm is second-order accurate, time-reversible and easy to

implement [122].

From looking at the above equations, it is clear that choosing an appropriate δ t

will be key to model the correct motion of the particles. Equations 2.6-2.9 show that

the velocity and accelerations are constant over the time step (δ t). Therefore, the

time step needs to be as large as possible so that the simulation is computationally

efficient (if the time step is very small, it will take a large number of computations

to reach the desired time length of the simulation) but it also needs to be short

enough to produce relevant data. Normally, the time step needs to be approximately

an order of magnitude smaller than the highest frequency of vibration in the system,

which is C-H bonds in most atomistic systems [124].

2.1.6 Force field

Once the method for the integration of the equations of motion is set, the next step

is to define the equation that will govern the forces being applied on the atoms, this

equation is called the “force field”. Force fields rely on three main assumptions.

First, force fields assume electronic motion can be ignored, computing only the

motion for the nuclei. Therefore, atoms are treated as point particles described by

classical motion, and the microscopic state of the system is described as a function

of their position and momenta. This assumption is the Born-Oppenheimer approx-

imation [125], which allows for the separation of nuclear and electronic motion.

Since electronic motion is set to a stationary state, AA MD simulations (and larger

simulation scales) can ignore the quantum mechanical calculations involving elec-

trons, making it computationally much more efficient and simple. Furthermore,

MD force fields assume that the total potential energy of a system can be written as

a sum of different potentials. Because of this, the interactions between atoms are

considered pairwise, and the total energy of the system is the sum of all these con-

tributions. This approach simplifies the calculations needed to simulate many-body
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systems. The last assumption is transferability, which assumes that the potential en-

ergy function describing interactions for a small set of molecules can be applied to a

wide range of molecules undergoing similar interactions (similar chemical groups).

This means that the knowledge obtained from one simulation can be transferred

to others, avoiding the need to parameterize every new system to be simulated.

In classical MD force fields, the potential energy of the system is expressed as a

combination of bonded and non-bonded interactions [126, 127]. The total potential

energy (Utotal(⃗r)) of the simulation is obtained from the intra and inter molecular

interactions of the different particles in the system as illustrated by Equation 2.10.

Utotal(⃗r) =Ubonded(⃗r)+Unon-bonded(⃗r) (2.10)

The bonded terms are associated with the deformation of bond and angle geometry

(extension and compression of bonds and angle bending) and rotation around di-

hedral angles (torsions), so they cover intra-molecular interactions, while the non-

bonded terms are associated to the electrostatic interactions, the dispersion inter-

actions and the Van der Waals forces [125], covering inter-molecular interactions.

These bonded and non-bonded terms are represented in Equation 2.11 and this split-

ting of the potentials contributing to the total energy is the same in all MD force

fields:

Utotal = ∑
bonds

Ubond + ∑
angles

Uangle + ∑
dihedrals

Udihedral + ∑
impropers

Uimpropers

︸ ︷︷ ︸
bonded interaction

+ ∑
atompair

Uelectrostatics + ∑
atompair

ULJ

︸ ︷︷ ︸
non-bonded interaction

(2.11)

Therefore, from Equation 2.11, the terms related to the bonds, angles, dihedrals and

impropers are part of the bonded interactions, while the electrostatics and Lennard

Jones potential terms are related to the non-bonded interactions. As stated above,

Equation 2.11 is true for all MD force fields, however, the specific terms and func-

tional forms to describe the bonded and non-bonded potential energy terms in var-
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ious force fields can be different. In this section, I present the specific functional

forms used in the MARTINI force field [126, 127], since this is the forcefield that

has been used the most in the simulations presented in this thesis. Note that the

type of function used to describe each term (harmonic, cosine...) is the same in all

force fields, so the explanation given in this section applies to AA force fields. The

MARTINI force field equation has the following form:

Utotal = ∑
bonds

Kr

2
(r− req)

2

︸ ︷︷ ︸
covalent bonds

+ ∑
angles

Kθ

2
[cos(θ)− cos(θeq)]

2

︸ ︷︷ ︸
bond angles

+ ∑
dihedrals

Kφ [1+ cos(nφ −φeq)]

︸ ︷︷ ︸
bond dihedrals

+ ∑
improper

Kd(ψ −ψeq)
2

︸ ︷︷ ︸
improper dihedrals

+∑
i< j

[
4εi j

[(
σi j

Ri j

)12

−
(

σi j

Ri j

)6]

︸ ︷︷ ︸
Lennard Jones interactions

+
qiq j

εDRi j

]

︸ ︷︷ ︸
electrostatics

(2.12)

where the K is the force constant of each term and the subscript eq denotes the

equilibrium value of each quantity. For the sum over the energies of the bonds, r

represents the intramolecular distance, θ is the intramolecular angle, φ is the dihe-

dral angle and the n in the dihedral sum is the number of minima of the function.

also known as the multiplicity. Likewise, ψ is the improper dihedral angle. Further-

more, for the non-bonded interactions in Equation 2.12, i and j refer to two different

atoms for which the non-bonded interaction is being calculated. σi j is a Lennard-

Jones parameter, which represents the distance between the two atoms at which

the potential between them is zero. Similarly, εi j is the minimum potential energy,

which occurs when the distance between the two particles is r = 2
1
6 σ . Moreover,

Ri j is the distance between the two atoms. For the Coulomb term, q is the partial

charge of an atom and εD is the dielectric constant.

The parameters from Equation 2.12, such as σ , ε , the force constants K, the

partial charges q and the equilibrium values are vital to reproduce real molecular

behaviours. These are normally obtained from density functional theory (DFT),

via experimental approaches, like spectroscopy [83, 111], or through simulations at
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different scales. The combination of these parameters are called a force field. For

example, for AA simulations the most popular ones are: CHARMM [128], OPLS

[129], GROMOS [130] and AMBER [131], which even though they have different

parameters, they all give fairly similar results [111, 83]. In the next sections, Section

2.1.6.1 and 2.1.6.2 the bonded and non bonded terms will be explained in more

detail.

2.1.6.1 Bonded potential

The bonded potential describes the interactions of atoms that belong to the same

molecule. From Equation 2.12, it is clear that the bond term, which represents

the covalent bond stretching, is modelled by a harmonic potential, and it describes

the harmonic behavior of bonds around their equilibrium positions. A schematic

representation of this term is depicted in Figure 2.3 (a). In Equation 2.12, Kr is the

bond constant and it is normally around 100 kcal mol−1, meaning that the amount

of energy required to compress a bond is quite large, although this is dependent

on the bond order. This ensures that bond lengths tend to return to req, which is

the reference bond length. Note that covalent bonds cannot be created nor broken

during a MD simulation, so they need to be defined at the beginning as part of

the initial topology of the molecules inputted into the simulation. In the case of

simulating chemical reactions, there are force fields such as ReaxFF [132] that can

account for bond breaking and creation.

The second term of the bonded interactions from Equation 2.12 describes the

angle deformation and it is displayed in Figure 2.3 (b). This term is also de-

scribed with a harmonic potential, again the quadratic nature of this energy func-

tion creates a restorative force that tends to bring angles back to their equilibrium

value θ0. However, the value for the angle constant Kθ is smaller than Kr [125],

meaning that it takes less energy to deform an angle by a degree than it does to

extend or compress a bond by an Angstrom. Note that some force fields, like

CHARMM, include the Urey-Bradley term, which is an additional harmonic term

that quantifies the potential energy of angle deformation associated to the bending

between a central atom and its two surrounding atoms. It has the following form:
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(a) (b) (c)

(d)

Figure 2.3: Schematic representation of bonded potential terms. Schematic represen-
tation of (a) bond term, (b) angle term, (c) dihedral term and (d) improper
dihedral term. Particles are represented in pink and bonds in grey.

UUB = ∑Ku(u−ueq)
2, where u is the distance between the outer atoms of a bonded

triplet. Therefore the Urey-Bradley term describes the connection between angle

bending and bond stretching. This term provides a more accurate description of

vibrational spectra[111].

The next term in the bonded potential is the dihedral energy term, schemat-

ically represented in Figure 2.3 (c). From this Figure, it is clear that this term

characterizes the rotation around a torsion angle. This term includes atoms that are

separated by three bonds. The dihedral term is expressed using a periodic potential

energy function, which captures the periodicity of torsional rotations, allowing for

the simulation of molecular conformations with varying degrees of rotation around

specific bonds. The energies involved in the dihedral torsions are much smaller than

the bond and angle deformation energies. In this term, kφ is the force constant, n is

the number of minima in the energy function, since there can be several minima in

a dihedral potential due to the possible torsions, and φeq is the equilibrium torsion

angle, which is the position of the minima.

Finally, the last term of the bonded interactions is the improper dihedrals poten-

tial, depicted in Figure 2.3 (d). ‘Regular’ dihedrals describe the torsions of atoms
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around single bonds, while improper dihedrals preserve the planar alignment of

(four) atoms, such that its equation has the corrective term with the constant Kd ,

which penalized if atoms get out of plane. This is of vital importance to fix incor-

rect molecular conformations.

2.1.6.2 Non-bonded potential

The remaining contributions to the total potential energy in Equation 2.12 are

the non-bonded potentials, which describe the pair-wise interactions of particles

that do not belong to the same molecule. The fifth term in Equation 2.12 is the

Lennard-Jones potential. Figure 2.4 (a) shows a model Lennard-Jones potential with

ε =σ = 1 and reduced units for clarity. The first term of the Lennard-Jones equation

(R−12) describes the repulsion of particles at short distances (e.g. when Ri j < σi j).

The second term (R−6) describes the attractive long range dispersion interaction

between pairs of atoms. Therefore, the Lennard-Jones potential describes the phys-

ical phenomena by which if atoms are closer to each other than their characteristic

size (as defined by σi j they repel each other (due to the Pauli exclusion principle)

and it also characterizes the longer range interactions that arise from the fluctuating

electron distributions of atoms, which leads to changes in their charge distribution

inducing instantaneous dipoles, known as dispersion forces. The Lennard-Jones

potential has an absolute minimum at ri j = 2σ
(1/6)
i j , which determines the stable

equilibrium distance between two interacting atoms. At this minimum, ULJ =−εi j,

which is the depth of the potential well, as depicted in Figure 2.4 (a). Therefore, εi j

determines the strength of the interactions between two atoms. On the other hand,

σi j is the ri j value at which the potential crosses the x-axis, meaning that the poten-

tial changes from positive to negative, from describing an attractive interaction to a

repulsive interaction. The values of εi j and σi j are different for each pair of chem-

ical elements involved in the interaction since they are based on the chemistry of

each atom. If the interaction is between two different atoms types, these parameters

are calculated using the Lorentz-Berthelot mixing rule, which consists of combin-

ing the individual σ and ε parameters of the individual atom types to obtain the

mixed interactions parameters. For two interacting atoms A and B, the calculation
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(a) (b)

Figure 2.4: Non-bonded potential terms. (a) Lennard-Jones potential with ε = σ = 1.
(b) Schematic representation of Coulomb interactions. The distance between
the two particles is Ri j on both (a) and (b). In (b) the positive sign means the
particle is positively charged and the negative sign negatively charged. Since
their charges are opposite the force between them is attractive, represented by
the black arrow.

of the mixed parameters using the Lorentz-Berthelot rule would be:

εAB =
√

εAεB (2.13)

σAB =
σA +σB

2
(2.14)

From Equations 2.13 and 2.14 it is clear that the Lorentz-Berthelot rule consists in

taking the geometric mean of the interaction strengths (ε) and the arithmetic mean

of the Van der Waals radii (σ ). Also, it is important to note that when r → ∞,

ULJ → 0, which is shown in Figure 2.4 (a) by the dotted grey line. Nevertheless,

to reduce computational complexity in MD simulations a radial cutoff (rcuto f f ) is

applied to limit the number of Lennard-Jones interactions between atoms. Nor-

mally, rcuto f f = 12 Å , so that from this value ULJ = 0. Moreover, to maintain

smooth energy transitions near the cutoff, a switching or shifting function is often

employed, this ensures that the potential energy gradually goes to zero as rcuto f f is

reached, preventing abrupt discontinuities in simulations [127]. It is important to

note that when rcuto f f is applied to the Lennard-Jones potential, since long-range

interactions are neglected, this can lead to an underestimation of pressure in the
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system. To correct for this, a pressure correction term needs to be applied.

The last term of Equation 2.12, is the final non-bonded potential contribution

to the Utotal and it is the Coulomb potential which describes the electrostatic inter-

molecular pair-wise interaction of atoms. These interactions arise from the electro-

static forces between charged particles. A schematic representation of two atoms

with opposite signs interacting via the Coulomb potential is depicted in Figure 2.4

(b). The Coulomb potential describes the long-range nature of these electrostatic

interactions. In Equation 2.12, qi and q j represent the fixed-point partial atomic

charges of atoms i and j. These partial charges reflect the asymmetric distribu-

tion of electron density across covalent bonds, so the partial charge of an atom

depends on its local chemical environment and the conformation of the molecule

[125]. Furthermore, the Coulomb potential captures attractive forces between op-

posite charges (negative potential energy) and repulsive forces among charges of

the same sign (positive potential energy). In MD simulations, a radial cutoff of nor-

mally 12 Å is also applied to the Coulomb potential, to avoid high computational

costs. The theory and methods behind calculating long-range interactions for the

non-bonded interactions will be described in more detail in Section 2.1.7.

The last point to note is that keeping track of all the atoms that are interacting

with each other can be computationally heavy. For this, MD simulations use a

Verlet neighbour list, which contains all of the atoms that are within a distance from

each other smaller than the cutoff distance such that ri j < rcuto f f + δ , where δ is

a small distance. This list is updated over the course of the simulation [133], such

that the non-bonded interactions are only calculated on those pairs of atoms that

are on each other’s neighbour list. Note that this list reduces the computational cost

of the simulation because it does not need to be updated at every time step, since

in most simulated system, atoms do not move significantly between consecutive

time steps. Therefore, the list remains constant over short intervals. The frequency

at which this list is updated will depend on the simulation parameters, size of the

system and desired balance between accuracy and efficiency.
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2.1.6.3 TIP3P and Martini Polarizable Water Models

In simulations it is important to capture the behavior of water, including polariza-

tion. In the case of the CHARMM force field, the TIP3P water model. This is

a three-site water model with partial charges on each water molecule atom [134],

which allows this model to simulate dipoles. This model represents water molecules

with three-sites, two hydrogens and one oxygen. The oxygen has a particle charge

of −0.834qe and the hydrogens 0.417qe where qe is the fundamental charge. This

charge difference within the water molecule accounts for the oxygen greater elec-

tronegativity of oxygen [134]. On the other hand, the polarizable water model in

MARTINI is the MARTINI polarizable water model[135]. This model uses three-

beads to represent four water molecules, and it has been shown to account for the

polarizability of water, reproducing its dielectric nature. The three beads consist of

a central bead called W which is neutral (just this bead would be the standard water

model in MARTINI), and then two particles named WP and WM, bounded to W that

have a positive and negative charge of +q and −q respectively. The central atom W

interacts with the rest of particles in the system via Lennard-Jones interactions, and

WM and WP interact only with the Coulomb function, and of course WM and WP

belonging to the same particle do not interact with each other. This, combined with

the fact that the bonds W-WP and W-WM are constraint to a certain length, make

WP and WM rotate around the W particle, changing its dipole momentum [135].

Note that for simulations using the polarizable MARTINI model, the background

dielectric constant is set to 2.5, instead of the non-polarizable MARTINI dielectric

constant which is normally set to 15 [136]. Both, the TIP3P and MARTINI model

are used in the simulations showed in this thesis.

2.1.7 Calculating Long-Range interactions

As mentioned in the previous section, not all possible pair-wise non-bonded inter-

actions are calculated, only those where the atoms are within the cutoff distance
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rcuto f f . The interactions outside of this range are called ’long-range interactions’

and they are essential to understand the behavior, structure and properties of the

system. An important point when calculating long-range interactions is to smooth

the potential when approaching the cutoff value to avoid artifacts that lead to un-

physical behavior during the simulation. Since the Lennard-Jones and electrostatic

potential decay at different rates (they are different functions), the methods applied

to smooth their potential are different.

The Lennard-Jones potential can be smoothed with a shift or switch function

[125], which modifies the force as derivative of the potential, and preferably the

second derivative of the potential go to zero when approaching the cutoff value.

This shifting (instead of an abrupt truncation) ensures a smooth energy landscape.

However, the same method cannot be applied to Coulomb interactions. One of

the reasons why the shifting method works for the Lennard-Jones but not for the

Coulomb potential is that the Lennard-Jones values are closer to 0 at the cutoff dis-

tance than the values of the Coulomb potential. Therefore, shifting the potential

to 0 is easier for the Lennard-Jones because its values are naturally closer to the

truncated value, but for the electrostatic interactions they are normally much larger

than 0. This can also can be deduced since the Coulomb potential decays ∝ r−1
i j

while the Lennard-Jones potential decays much faster. The are different methods

that address this issue of accurately calculating long-range electrostatic interactions,

but the most used in MD simulations is the Particle Mesh Ewald (PME) method

[137, 125]. PME is based on the Ewald summation method, which separated the

long-range interactions into two components: real space (particles in the vecinity)

and reciprocal space (covering longer-range interactions). In the real space, interac-

tions are calculated directly between particles within a cutoff distance, and beyond

the cutoff the interactions are smoothly truncated to zero. But, to compensate this

truncation, a complementary term is introduced in the reciprocal space. This term

is a Fast Fourier Transform of the charge distribution. Therefore, the real and recip-

rocal space contributions can be summed, eliminating the truncation artifacts [137].

The PME method is an interpolation of the reciprocal-space Ewald sum [125]. It
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calculates explicitly the interactions that are local and then the long-range interac-

tions are approximated by a discrete convolution on an interpolating grid using a 3D

fast Fourier transform (FFT) [137] to perform the convolution. This means that the

charge distribution is mapped onto a 3D grid, and then the FFT is used to transform

charge densities between the real and reciprocal space, reducing the computational

burden, since when the grid is converted into the reciprocal space, the values can

be evaluated in a single sum, instead of multiple sums as occur in the Ewald sum-

mation method. Therefore this method is not pair-wise and it does not cut off the

potential but converts the system into a periodic system.

Note that electrostatics are treated differently in MARTINI, in this case, long range

interactions are calculated using the reaction field method. This method assumes

that the solvent has a dielectric constant different from that of the solute (the

molecules of interest). The choice of dielectric constants for the solute and solvent

is a parameter in the MARTINI force field that can be adjusted to tune the strength

of electrostatic interactions in the simulations, depending on the specific system

being studied. The reaction field method simplifies the calculations by treating

long-range electrostatics in a continuum approximation, which is computationally

more efficient than explicitly calculating pairwise interactions between all particles

in the system over long distances. In MARTINI simulations, the dielectric constant

is typically set to infinity for distances greater than the radial cutoff. This choice

effectively means that long-range electrostatic interactions are treated as if they are

in a vacuum, and there is no damping of the electrostatic forces beyond the cutoff

distance.

2.1.8 Constraint algorithms

MD simulations model particles with multiple degrees of freedom, since they pos-

sess translational, rotational and vibrational motion. However there are certain de-

grees of freedom that are not as important to simulate the behavior of molecules.

These degrees of freedom are mainly those related to bond vibrations, such as bonds

involving hydrogen atoms, which have a very high frequency and can therefore

change very rapidly compared to other atom motion. This raises the issue that to
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capture these hydrogen vibrations, a much shorter time step would be needed, in-

creasing the computational cost and introducing time step limitations. However,

since these vibrations are normally not of interest, to avoid calculating them, which

allows us to increase the time step, constraint algorithms are applied to eliminate

these bond vibrations computations [125, 138]. Eliminating these faster degrees of

freedom allows the time step to be increased by a factor of four, really improving

the computational efficiency [138].

Constraint algorithms work by restraining specific geometries of molecules,

reducing their degrees of freedom. There are many algorithms, but the most com-

mon ones are SHAKE [139] and LINCS [138]. The SHAKE algorithm iteratively

adjusts the atomic positions according to constraint forces by applying Lagrange

multipliers, while LINCS enforces bond length constraints by iteratively adjusting

atomic positions while preserving the linearity of bond vectors. Both, LINCS and

SHAKE allow the simulation time step to increase to 2 fs, moreover it has been

shown that LINCS is not only more stable than SHAKE, but it also performs three

to four times faster [125, 138]. The simulations in this thesis use the LINCS con-

straint algorithm.

2.1.9 Energy Minimisation/gradient descent

In the context of MD simulations, energy minimization aims at finding a stable

and low-energy configuration for a system. As mentioned in Section 2.1.3, it is

important to avoid overlapping atoms or abnormal molecular conformations in the

system, as this leads to unphysical behavior. Fixing a system with these artifacts

can be done via energy minimisation. Energy minimisation iteratively adjust the

positions of atoms to reach a configuration where the potential energy is minimised

while satisfying all the imposed constraints (such as bond length or angles). An

energy minimsed structure is synonymous of a stable state, which will not have

steric clashes or high energy molecular conformations, allowing MD to accurately

capture the system’s dynamics and interactions.

The most common minimisation technique is the ’gradient descent algorithm’.
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In the GROMACS [140] package, this algorithm is applied on every atom and it

implemented in the following form:

r⃗i(t +∆t) = r⃗i(t)−
F⃗i(t)

max(|F(t)|)h(t) (2.15)

where r⃗i(t) is the atomic position of atom i at the current step, r⃗i(t + ∆t) is the

atomic position of i at the next step, F⃗i(t) is the force acting on atom i at the cur-

rent step, which is given by the gradient of the potential energy F⃗(t) = ∇U(r⃗(t)).

max(|F(t)| is the modulus of the largest force acting on any atom of the system at

step t. hi(t) is the maximum atomic displacement from step t to step t +∆t. At

each next step, if the potential energy is smaller than the one from the previous

step, the new coordinates are accepted, and if not they are rejected. Therefore, in a

nutshell, the gradient descent algorithm iteratively minimizes the potential energy

of a system by adjusting its atomic position along the direction of the steepest

energy decrease. This process is continued until a desired max(|F(t)|) or number

of iterations is reached. This way, a minimum in the potential energy is found,

removing high energy interactions or configurations.

2.1.10 Thermostat and Barostat

The methods described above allow the simulations of systems in the microcanoni-

cal ensemble (NVE), this means constant number of particles (N), volume (V) and

energy (E). However a NVE ensemble is not a realistic biological environment,

since it corresponds to an isolated system. The systems that we can study in the

lab are normally under constant pressure (P) and temperature (T). Therefore, MD

needs to be able to simulate systems that keep these two state variables constant,

but not V or E. Thermostat and Barostats are tools in MD simulations for control-

ling temperature and pressure respectively, which creates realistic thermodynamic

environments. These more realistic thermodynamic settings that MD simulations

normally work on are the canonical ensembles (NVT) with constant V and T and

isothermal-isobaric (NPT) ensembles, where T and P are constant. Both ensembles
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have been used in all simulations of this thesis.

It is common to start MD simulations utilising the NVT ensemble, since this

allows the temperature of the system to equilibrate [122]. In the NVT ensemble,

the thermostat regulates the temperature of the system while keeping V and N con-

stant. It achieves this by rescaling atomic velocities or applying stochastic forces,

such that it simulates the interactions between the system and a heat bath, making

the system remain at the desired temperature throughout the simulations and allow-

ing the system to explore its energy landscape. A very common thermostat, used

in this thesis is the Nosé-Hoover thermostat [141]. The Nosé-Hoover thermostat

introduces an additional damping dynamic variable into the equations of motion,

which adjusts the velocities of atoms as if the system is exchanging energies with

the heat bath. The modification of the equations in the Nosé-Hoover thermostat are:

mia⃗i(t) = F⃗i(t)−ξ mi⃗vi(t) (2.16)

dξ (t)
dt

=
1
Q

N

∑
i=1

[
mi⃗vi(t)2

2
− (3N +1)kBT

2

]
(2.17)

Where ξ is the damping parameter, Q is the heat bath’s mass which controls the

damping parameters and T is the target temperature. In Equation 2.17 the +1 in

the second term of the parenthesis accounts for the extra degree of freedom intro-

duced by the Nosé-Hoover thermostat [141]. Also, from Equation 2.17 is is clear

that if the system is at equilibrium, so when ∂tξi = 0, the kinetic energy is given

by the equipartition theorem. Into the velocity-Verlet algorithm the Nosé-Hoover

thermostat is introduced in the following way:

r⃗(t +δ t) = r⃗(t)+ v⃗(t) ·δ t +
δ t2

2
[⃗a(t)−ξ (t)v(t)] (2.18)

v⃗(t +
δ t
2
) = v⃗(t)+

δ t
2
[⃗a(t)−ξ (t)v(t)] (2.19)

F⃗(t +δ t) = F⃗ (⃗r(t +δ t)) (2.20)

ξ (t +
δ t
2
) =

1
2Q

N

∑
i=1

[
mi⃗vi(t)2

2
− (3N +1)kBT

2

]
(2.21)
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In this thesis, NVT ensembles were used in most of the equilibration steps of

the simulation studies.

All production steps in this thesis were performed in a NPT ensemble, so

constant P and T, since it represents lab conditions better. In MD, barostats adjust

the simulation box dimensions to maintain a desired pressure. It mimics the effect

of an external pressure on the box, and it allows the simulation box to expand or

contract in response to this pressure. Therefore, by controlling the box dimensions,

the barostat regulates the system’s density and pressure, also enabling simulations

of condensed-phase systems. A common barostat, also used in the simulations

presented in this thesis is the Parrinello-Rahman barostat [142, 143]. This barostat

employs a fictitious mass-spring system to adjust the box dimensions, letting it

respond to the external pressure changes and it also allows anisotropic and isotropic

pressure coupling [143]. This barostat enhances the accuracy of simulations that

study phase transitions, structural changes dependent on pressure changes and many

other pressure-dependent phenomena.

2.1.11 Periodic Boundary conditions

Systems cannot be simulated within a ’solid’ box, since this would restrain atom

movement, and would lead to box-size-dependent or even unphysical behavior. The

most common approach to solve this problem is the use of periodic boundary con-

ditions (PBC). Figure 2.5 illustrates the PBC of the simulation box highlighted in

black. As illustrated in this Figure, the PBC repeat the image of the simulation box

infinitely in every dimension. The central box, delimited by the black lines, is the

actual simulation box which is being replicated, and all periodic images, simulation

boxes in grey, will move like the central box. Of course, due to the periodicity of

this set up, when a particle leaves the central box, the opposite image of this particle

will enter into the box (through the opposite side), and this will happen in every box

of the system. Therefore, it is only necessary to keep track of the molecules in the

central box [125]. Also, the most common PBC geometries used are rectangular
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Figure 2.5: Schematic representation of PBC and minimum image convention. The
main simulation box is in black and the periodic images in grey.

and cubic boxes, since their geometry is simple, which facilitates calculations.

Furthermore, to calculate short-ranged interactions in PBC conditions, the

technique of the ‘minimum image convention’ also known as ‘nearest image con-

vention’ is used, which is also illustrated in Figure 2.5. The ‘minimum image

convention’ technique calculates interactions by considering the shortest distance

between particles and also their periodic image [125, 144], so that only the ‘near-

est’ interactions are taken into account. This prevents artifacts that could arise from

particle-image interactions that could be farther apart than particle-particle interac-

tions. For example, in Figure 2.5, the green particle is closer to the periodic image

than to the real image of the yellow particle. Therefore, the distance used for the

computation of their interaction will be the distance through the periodic boundary.

This is also true for the interactions of the red and blue particles in Figure 2.5.

However, the interactions between the red and yellow particles and green and blue

particles will be computed with the distance in the real image, since it is shorter than

the periodic distance. On the other hand, long-range interactions are harder to cal-

culate with PBC conditions. For this, methods such as PME (described in Section

2.1.7) need to be employed, since these techniques account for the infinite replicas
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of the simulations box. PBC has limitations, such that sometimes molecules can

interact with themselves, or the fact that angular momentum is not preserved by

PBC. However, PBC has very little or no effect on the equilibrium properties of the

system [125], so it is widely used in all MD simulations.

2.1.12 Parallelisation

The advancement of MD simulations comes hand by hand with the advances in

computational power. One of the most fundamental strategies to run considerably

sized systems with MD simulations is parallelization, which allows the harness-

ing of high-performance computing (HPC) to expedite computations. In a nutshell,

HPC parallelization decomposes task into smaller ones and distributes them across

multiple processors or nodes, accelerating simulations and enabling the study of

larger and more complex systems. Furthermore, techniques like data parallelism,

domain decomposition, and the use of the Message Passing Interface (MPI) facili-

tate efficient communication and synchronization among processors. This results in

significant speedup, allowing simulations that would otherwise take months to com-

plete on a single processor to be finished in a fraction of the time. Moreover, paral-

lelization also enhances sampling methods, supports larger parameter explorations,

and advances our understanding of complex biological and material phenomena.

However, it is important to choose the adequate communication strategies and opti-

mization algorithms to achieve optimal performance and scalability in parallelized

MD simulations.

2.1.13 Calculating observable quantities

MD simulations produce at each time step the positions, velocities, forces and other

quantities of all atoms of the system. From this time-dependent data, thermody-

namic observable quantities can be obtained thanks to the link between ensemble

averaging and time averaging [145]. An ensemble average consists in averaging

over the configurations samples (microstates) from the trajectory, since each config-

uration is a point in phase space, this average captures the diversity in conformations
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and interactions. Ensemble averaging is useful because according to the ergodic

hypothesis, systems explore all accessible states in phase space with equal proba-

bility throughout a sufficient amount of time. The average over time of a quantity is

the same as that quantity averaged over the statistical ensemble[145]. This concept,

allows us to measure macroscopic observables from MD simulations, because while

MD simulations do not cover all possible microstates, the thermodynamic variables

can be obtained from the time-average of the corresponding microscopic quantity.

Also, the ergodic hypothesis assumes that given a sufficiently long time, the results

from ensemble and time averages are consistent. In summary, MD simulations

allow the calculation of time-averages of microscopic quantities, from which the

macroscopic variables can be obtained.

2.2 Applications of Graph Theory to Molecular Sim-

ulations
MD simulations generate large amounts of data that need to be analysed in order

to understand the biophysics of the system. There are many different techniques

and software that extract the time evolution of specific structural properties, like

hydrogen-bond distances, radial distribution functions of atoms or root mean square

displacement of global structures (RMSD). However, there are not that many com-

putational analysis methods that provide a direct knowledge of the changes in the

global 3-d structures over time [146]. For this purpose, graph theory can be of use,

since this is a mathematical framework that analyzes relationships between entities,

often represented as nodes, and their interactions, represented as edges, which can

be updated across time steps. Furthermore, graph theory is computationally very

efficient, so it can be used for large system with small computational cost [146].

As its core, a graph G(V,E) is made up of vertices V (also known as nodes),

that are connected by edges E. These nodes can represent different entities, either

single atoms or the center of mass of a molecule. The edges are the relationships,

interactions or connections that exist between these nodes, for example covalent
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(a) (b)

A =




0 1 1 0
1 0 0 1
1 0 0 0
0 1 0 0




Figure 2.6: Conversion from adjacency matrix A to Graph G(V,E). (a) Adjacency ma-
trix A and (b) its corresponding graph representation.

bonds, Hydrogen bonds or a simple distance criteria. Therefore, it is easy to use

graph theory to track global structural changes, since the high dimensionality of

the simulation trajectory can be reduced by examining the network connectivity

between the nodes and edges changes throughout the simulation. The information

to create the graph is obtained from the adjacency matrix A. The adjacency matrix

is a symmetric matrix that summarizes the network connectivity information of a

graph. Figure 2.6 shows an example of how the connectivity of a graph can be

obtained from the adjacency matrix.

In Figure 2.6 (a) each element of the matrix is an element of the graph. If

the element Ai j of the matrix is 1, it means that nodes i and j are connected with

an edge, while if it is 0 it means they are not connected. For example, the first

rwo of the matrix in Figure 2.6 (a) has 1s in the second and third element, mean-

ing that element 1 is connected to element 2 and 3, as depicted in Figure 2.6 (b).

This type of matrix, where the edges are just 0s and 1s, so that the edges have no

associated weights to them, are called unweighted graphs. These are the type of

graphs that will be used in this thesis. The use of graph theory to analyse molecular

simulations is not new, it has been used to track hydrogen bonding [147], studying

the solvation of lipid headgroups [148] or to study molecular isomorphism [146]

among many other physical and chemical properties. However, there is currently

no openly available software that uses graph theory to study the self-assembly of

soft NP. All graph-based analysis done in Python in this thesis has been performed

with Networkx [149].
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2.2.1 Graph theoretical cluster algorithm

Studying the structure of the self-assembly of micelles is not trivial. Polymers do

not tend to form perfect NP structures, where all polymers are clearly packed in the

same way during the whole simulation. Actually, it is quite common for polymers

to not only form one micelle, but to form various clusters within the simulation

box and for these clusters to fluctuate over time. This makes the analysis of the

simulation more difficult, since always selecting the largest or most stable micelle

in each time step separately is not trivial, and there is currently no openly available

software to do this.

In this thesis, a novel graph theory-based clustering algorithm is developed,

and has been introduced into the software package PySoftK so that it is openly

available to analyse any simulations where there are aggregates (it can be used for

aggregates formed by lipids, polymers, proteins, etc.) More details on the imple-

mentation of this code into PySoftK and case studies will be discussed in Chapter

4.

This method uses an unweighted undirected graph G(V,E), where V are in-

dividual polymers and E are the interactions between them. These interactions

are defined as a distance criteria, in such a way that if the distance between two

molecules i and j, is less than the cut off distance (that is defined by the user),

they are connected and form part of the same graph. The combination of connected

subgraphs of G form the specific cluster at a given time. The nodes are also defined

by the user. The user can define as many nodes to represent a molecule as they wish.

For example, in the case of an amphiphilic molecule, each molecule can be defined

with two different atoms, one in the hydrophobic part and one in the hydrophilic

part, and and edge is made between this molecule i and another molecule j is the

distance between any of these two atoms of molecules i and any of the two atoms

of molecule j is less than the cutoff. Examples of the applications of this code can

be seen in Figure 2.7, here (a) - (c) are snapshots of polymer simulations, where
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(a) (b) (c)

(d) (e) (f)

Figure 2.7: Novel graph-theory based clustering algorithm applied on different poly-
mer micelles. (a) - (c) Plots of non-clustered micelles, where each color repre-
sents a different polymer. (d) - (f) Result of applying the clustering algorithm
to each systems respectively. Polymers belonging to the same micelle have the
same color. From here it is clear that the aggregates within the same system are
distinctly separated.

they do not form a clear defined single micelle. The results of the application of

this algorithm to them are shown in (d) - (f), from here it is clear that the algorithm

successfully identifies the clusters and groups them into the different aggregates

and micelles present in the simulation, which facilitates the analysis of each micelle

individually.

2.3 Applications of machine learning to molecular

simulations

Due to the vast amount of data that MD simulations produce, sometimes it may be

hard to extract meaningful insights from simulations manually. Machine learning

(ML) has emerged as a powerful tool for analysing, interpreting and finding patterns

within the vast amount of data produced by MD simulations. Broadly, ML is a type

of artificial intelligence that allow computers to improve their performance at a task

over time by identifying patterns in the data. There are two types of ML, supervised
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and unsupervised learning. Supervised learning, consists of training a model to

make predictions or classifications based on labeled data. These algorithms nor-

mally involve feeding the model with input features and the corresponding target

labels, such that the model learns to generalize from the labeled data and can predict

properties for new input. In the case of MD simulations, the input parameters can

be obtained from simulations, such as atomic coordinates or energy values, and

their labels could be physical characteristics, such that the model could predict new

properties from unseen atomic configurations. On the other hand, there is unsu-

pervised learning, which deals with extracting patterns, structures and relationships

from unlabeled data, so that the output is completely unknown. This approach is

particularly useful if the underlying data is not well understood. In the context of

molecular simulations, unsupervised learning can be used to understand complex

behaviours or to cluster molecular conformations throughout a simulation. Typical

unsupervised learning techniques are clustering and dimensionality reduction. In

this thesis, unsupervised learning techniques (clustering and dimensionality reduc-

tion) are applied in Chapters 3 and 5 to better understand site specific polymer

conformations within a NP and their role in drug encapsulation and micelle forma-

tion.

2.3.1 Dimensionality reduction

As mentioned in the above section, dimensionality reduction is a typical unsu-

pervised learning technique. MD simulations often output high-dimensional data

spaces. This high-dimensionality makes this data hard to visualize, interpret and

analyse effectively. Dimensionality reduction is a powerful technique that can con-

vert high-dimensional data into a lower-dimensional representation while preserv-

ing as much of the relevant information as possible. Therefore, dimensionality re-

duction can be applied to MD simulation data to better understand and analyse the

system, since the reduction of dimensionality allows the discovery of underlying

patterns, relationships and structures within the data. There are many different tech-

niques for dimensionality reduction, such as principal component analysis (PCA),
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autoencoders, or diffusion maps. The dimensionality reduction technique used in

this thesis is UMAP [150], which is a non-linear dimensionality reduction tech-

nique.

UMAP stands for Uniform Manifold Approximation and Projection for Di-

mension reduction, and it is used in this thesis to obtain 2-d embedded spaces rep-

resentation of high dimensional input data (polymer distances). UMAP is inspired

by concepts from topological data analysis and manifold learning, and it aims to

capture both, local and global relationships of the data [150]. Unlike other dimen-

sionality reduction methods, UMAP does not only rely on preserving pairwise dis-

tances or variables of nearby data, but it preserves the topological structure of the

data. This allows UMAP to maintain the intrinsic relationship between data points

on a manifold, capturing features of the data that would be impossible with linear

dimensionality reduction techniques such as PCA. In summary, UMAP is able to

capture non-linear relationships within the data points, and also can preserve lo-

cal and global information in the low-dimensional embedding. UMAP works by

creating a topological description of the original data (which is a weighted graph),

and then it uses a gradient descent technique to optimise the low-dimensional rep-

resentation (low-dimensional graph) to be as closed to the high-dimensional one as

possible.

In this thesis, UMAP is used to reveal if polymers adopt location-specific

conformation within NP and the influence of these conformations in NP stability

and drug-loading. Probably the most important step when applying UMAP to MD

data is to select input data that, in this case, better captures the possible confor-

mations polymers can take. In the work described in Chapter 3 all input data are

intra-polymer distances, but the selection of these distances change depending on

the topology. In this Chapter, the distances that better capture polymer conforma-

tion would be those that are able to describe the extension of the hydrophobic and

hydrophilic blocks of the individual polymers. Note that molecular symmetry had

to be taken into account when preparing the input data, since some of this topolo-

gies were chemically symmetric. More details on distance selection and symmetry
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considerations for the UMAP input data are discussed in the respective Chapter. In

Chapter 5 the location-specific polymer conformation was also studied, but in this

case the polymers had a CG representation and they were much bigger (around 200

monomers). However, since they had a diblock topology, it was only necessary to

use two distances (per polymer) to capture their possible conformations: the dis-

tance between the hydrophobic and hydrophilic block. This system was particularly

big, around 200 polymers, which shows that UMAP works really well to reduce

the complexity of high-dimensional space with a relative low dimensional input

features.

2.3.2 Clustering

Once the embedded space of the low-dimensional data is obtained with UMAP, it is

necessary to group the data into clusters so that, in this case, the polymer conforma-

tions can be identified. The clustering technique used in this thesis is HDBSCAN

(Hierarchical Density-Based Spatial Clustering of Applications with Noise) [151],

which is an advanced clustering algorithm that can identify clusters and outliers in

complex data. It builds upon the foundation of traditional density-based cluster-

ing methods, but extends their capabilities by introducing a hierarchical approach

that captures the clusters of varying densities and shapes. HDBSCAN works by

dividing up the input space into regions of high density, and identifies them as po-

tential cluster cores. It also identifies regions of smaller density, which HDBSCAN

classifies them as noise. Then, it forms a distance weighted graph to represent the

non-noise data, and it then finds its minimum spanning tree (MST). The MST of a

weighted graph is the set of vertices that generate a fully-connected acyclic graph

while minimising the total weight of its vertices. The MST of a graph is depicted

in Figure 2.8. Figure 2.8 (a) depicts the original graph and Figure 2.8 (b) is MST

representation. From here, it is clear that the graph in Figure 2.8 (b) contains the

same number of nodes, but the difference is in the edges. The MST method creates

the minimum number of edges to main the full connectivity of the original graph.

For example, the graph in Figure 2.8 (b) does not need an edge between node 2
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(a) (b)

Figure 2.8: Visual representation of the MST of an unweighted graph. (a) Unweighted
graph and (b) its MST representation. The MST graph contains the same num-
ber of nodes but minimises the number of edges.

and 5 because they are both already connected through node 4. Therefore, the MST

creates a fully connected graph with vertices with the minimal weight. On the MST

graph that HDBSCAN generates, the clustering hierarchy is applied and different

sets of clusters are found, trying to make all clusters similar. HDBSCAN uses two

hyperparameters to identify these clusters, the minimum number of points to form

a cluster and a cluster cutoff distance (points at a distance shorter than the cutoff

will be merged onto the same cluster), these hyperparameters are defined by the

user. Correctly using HDBSCAN is an iterative process, which consists in trying

different hyperparameters until the clusters obtained have physical meaning.

2.4 Other novel analysis tools

The work presented in this thesis also involves the creation of other novel tools

for the analysis of simulations. All analysis tools developed in this thesis that can

be transferable and applied to other systems or simulations, have been added to

PySoftK so that the wider MD community can benefit from them. This section

highlights two analysis tools developed for the analysis of simulations and that

solve two long-standing problems that the MD community faces.
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2.4.1 Solving the unwrapping of complex molecules

As previously described in Section 2.1.11, molecules can be broken across the PBC.

During the simulation this is not an issue, since the image of the simulation box

is repeated in every dimension, so molecules keep being whole in the simulation

thanks to their periodic images. However, molecules breaking across the PBC can

raise issues during the analysis, since sometimes analysis tools do not take PBC

properly into account and this ends up giving very large or unphysical values of

the system’s characteristics. For example, in the case of polymer-based NP, if a

NP is broken across the PBC, this can lead to very large values for the radius of

gyration (does not take into account the periodic distance) or in the case of interac-

tions between molecules, since the molecule is broken across the PBC, it is not able

to capture all its interactions with the surrounding atoms properly (including the

surrounding atoms of the periodic image). GROMACS [152] and also the python-

based library MDAnalysis [153] have developed methods to account for this that

are able to make molecules or structures whole. Also MDAnalysis, includes an

optional parameter called ‘PBC’ in some of its functions, such as in the distance

analysis functions [153], so that it takes into account the periodic boundary condi-

tions of the system. However, when the structure of interest has a size larger than

half the box size, MDAnalysis and GROMACS are not able to make this structure

whole across the PBC, nor are they able to perform the analysis correctly.

In this thesis a function named make cluster whole has been developed

to account for this issue. This code is able to reconstruct molecules and structures

even when they are bigger than half the box size, and the coordinates of the whole

structure can be used to perform the correct analysis of the simulations. This func-

tion takes as the input the positions of the atoms of the structure that needs to be

made whole. Then, it bins the positions within a range of bins defined by the user,

which is recommended to be at least the size of the simulation box in one of its

directions. Once the positions are binned, and the number of atoms within each

bin are counted, it is outputted as an array. Therefore, when the structure is bro-
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ken across the PBC, this array will contain specific numbers, followed by zeros,

and then numbers again, as for example [1,2,3,4,5,6,0,0,0,0,6,5,4] so that the

bins corresponding to 0 are the space through which the structure is broken, since

a whole molecule should not have its atoms split into two regions of the binned

space. Then, the atoms that are after the broken binned space are then moved to-

wards the filled binned space, taking into account the dimensions of the box, in such

a way that the previous array would now be: [6,5,4,1,2,3,4,5,6,0,0,0,0] so that

the atoms have been moved across the broken space, making the structure whole

and independently of the box length. This is why make cluster whole can

make structures whole when they are bigger than half the box length, when GRO-

MACS or MDAnalysis fail. Furthermore, this function has been developed so that

it can also wrap the solvent around the whole structure. Examples of how to call

this function and more practical examples will be discussed in Chapter 4.

2.4.2 Ring-ring stacking

The ring-ring stacking calculation tool developed in this thesis is able to determine

if molecules within a simulation have inter molecular stacking of their ring struc-

tures. It is not only able to detect pair-wise stacking, but it obtains any series of

molecules with rings stacked. Measuring ring stacking is of interest, particularly

for polymeric materials, since polymeric materials with ring stacking exhibit inter-

esting optical and/or electrical properties as a consequence of collective phenom-

ena such as building block agglomeration or crystallization processes [154] Figure

2.9 shows two polymers with ring stacking identified by this algorithm. Currently,

PySoftK is the only code that offers an open-source implementation enabling this

analysis.

Briefly, this code works by first using RDKit [155] to find the atoms belonging

to the ring structure of each polymer in the system. Then, the distance between

all polymers of the system are calculated, and for those polymers which distance

is below a certain cutoff, that is to say, for those polymers that are close enough

that could be interacting, the distance between their rings is calculated. Afterwards,

if the distance between the rings is below the stacking distance cutoff, the angle
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(a)

Figure 2.9: Conjugated polymer ring stacking identified by ring-stacking calculation
tool (a) Snapshot of two conjugated polymers with ring structures. The rings
in the red square shows the stacking of the rings of these two polymers. This
stacking is the output of the ring-stacking calculation tool developed in this
thesis.

between the planes formed by their rings is calculated. If this angle is within the

user-defined angle range, then they are considered to be stacked. The angle cal-

culation between the rings is not trivial, it is necessary to perform singular value

decomposition (SVD) to find the right unitary singular vector that is normal to the

plane of the ring. Then the angle is calculated with the following formula:

θ =

∣∣∣∣arccos
(

v⃗ ·⃗ k
|⃗v| |⃗k|

)∣∣∣∣ (2.22)

Where v⃗ and k⃗ are the unitary singular vectors orthogonal to the ring belonging to

polymer 1 and 2 respectively, that are found via SVD, and θ is the angle between

the two planes formed by the ring atoms. As an optional output of this algorithm

the pdb files of pairs of polymers with their rings stacked are printed. Then, to

further explore the ring stacking structure, a tool to obtain the polymer network

connected by ring stacking was developed. This method works similar to the graph-

based clustering tool, if two polymers have their rings stacked they are added as

vertices of the same subgraph. This outputs the network of polymers connected via

ring stacking within the simulation box. Example of the usage and output of this
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algorithm are displayed in Chapter 4.



Chapter 3

Effect of polymer topology on the

self-assembly of micelles

This Chapter investigates the effect of polymer topology on the self-assembly of mi-

celles using MD simulations. For this purpose, the self-assembly of poly(ethylene

oxide)-poly(methyl acrylate) (PMA) block copolymers were studied with three

different topologies: diblock (PEO-PMA), triblock (PMA-PEO-PMA and PEO-

PMA-PEO) and ring (PEO-PMA-). All polymers had the same number of monomer

species and all simulations had the same number of polymers for an appropriate

comparison. The simulations reported in this Chapter show that polymer topology

influences the size of the micelle and number of polymers per micelle. The ring

topology leads to the smallest micelle in size and polymer number, followed by the

EO-terminated micelle and afterwards the MA-terminated one. Diblock polymers

result in the largest micelle in terms of size and polymer count. Interestingly, all

micelles have a defined hydrophobic core primarily composed by MA monomers

with a minimal amount of water, except for the MA-terminated triblock. This mi-

celle does not have a distinct hydrophobic core, which leads to a high amount of

water molecules being encapsulated within the micelle. Furthermore, in this Chap-

ter, unsupervised machine learning (UMAP) was applied to show that polymers

adopt specific spatial conformations. Moreover, these specific conformations are

location-specific within the micelle, if the micelle has a clear defined hydrophobic

core-hydrophilic shell structure. If the micelle does not have a clear structure, as for
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the MA-terminated polymers, then these polymer conformations are not confined

to specific environments of the micelle. Overall, this work quantifies the changes in

physical and structural properties of micelles depending on their topology, showing

that polymer topology is a key parameter for the rational design of polymer nanos-

tructures.

This Chapter consists of an article that was published on Nanoscale in 2023

with DOI:10.1039/D3NR01204B. The supporting information of the article is pro-

vided in this thesis in Appendix A. I, the first author of the paper, performed all

the molecular dynamics simulations and data analysis, produced all figures and

visualizations and wrote the manuscript.

https://pubs.rsc.org/en/content/articlelanding/2023/NR/D3NR01204B
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Topology-controlled self-assembly of amphiphilic
block copolymers†

Raquel López-Ríos de Castro,a,b Robert M. Zioleka and Christian D. Lorenz *a

Contemporary synthetic chemistry approaches can be used to yield a range of distinct polymer topologies

with precise control. The topology of a polymer strongly influences its self-assembly into complex nano-

structures however a clear mechanistic understanding of the relationship between polymer topology and

self-assembly has not yet been developed. In this work, we use atomistic molecular dynamics simulations

to provide a nanoscale picture of the self-assembly of three poly(ethylene oxide)-poly(methyl acrylate)

block copolymers with different topologies into micelles. We find that the topology affects the ability of

the micelle to form a compact hydrophobic core, which directly affects its stability. Also, we apply unsu-

pervised machine learning techniques to show that the topology of a polymer affects its ability to take a

conformation in response to the local environment within the micelles. This work provides foundations

for the rational design of polymer nanostructures based on their underlying topology.

Introduction

The ability of amphiphilic polymers to self-assemble into
specific morphologies in solution has driven interest in their
deployment for a diverse range of applications.1–4 The topology
of block copolymers exerts great influence over their properties
and therefore their potential applications. Ring polymers are
one synthetically accessible topology that have drawn consider-
able attention as a result of the unique properties that they
exhibit in comparison to their linear counterparts.5–13

Functional polymer nanostructures have been typically fabri-
cated using linear polymers but significant synthetic advances
in the past two decades have made ring copolymer synthesis
possible. Ring polymers demonstrate distinct self-assembly
behavior,9,12,13 which leads to their resultant micelles posses-
sing markedly different properties,9 including the size and
shape,14 morphology,15,16 temperature, salt tolerance,17,18 and
degradation14 with respect to micelles formed from analogous
linear polymers.

In drug delivery applications, the ability to control the size
and stability of micellar aggregates is particularly important.
The size of such micelles is one of the most critical features in
determining biodistribution and the stability can be tuned to
prevent premature release or to enable a controlled release of
therapeutics. Ring polymers have shown great promise as
potential drug and gene delivery vehicles because they often
show improved drug loading and releasing capacity,19,20

greater efficacy,21–24 longer in vivo circulation times,25,26 and
high cancer cell uptake25–28 as the same polymers with a linear
topology.

While interest in the application of self-assembling ring
polymers in drug-delivery applications is building, there is a
relative lack of detailed understanding of the molecular-scale
mechanisms that drive the emergence of their desirable pro-
perties. Molecular-scale simulations present the unique oppor-
tunity to build this level of understanding. Simulations have
recently been used to develop understanding of the unique
properties of ring polymers within polymeric melts,29,30 exten-
sional flows31,32 and thin films.33,34 However, relatively few
simulation studies have investigated the underlying mecha-
nisms that lead to the properties of ring polymers in aqueous
environments observed experimentally. Studies that have been
performed have primarily utilized coarse-grain polymer
models to gain insight into how polymer topology affects the
morphology of the micelles that form.23,35–39

In this manuscript, we employ all-atom molecular dynamics
simulations to gain a detailed understanding of the atomistic
interactions and molecular mechanisms that drive the self-
assembly of a ring polymer consisting of poly(methyl acrylate)
and poly(ethylene oxide) blocks (-(MA12EO31-)) in comparison to

†Electronic supplementary information (ESI) available: (i) A detailed description
of the analysis carried out for the various simulations, (ii) plots of the RG and
eccentricity of the micelles as a function of time (iii) the contacts between the
EO monomers and the hydration of the EO monomers on the polymers within
each micelle (iv) the intrinsic density of the various components within the
simulations for each micelle and (v) the outputs of the dimensionality reduction
and clustering of the molecules within each micelle. See DOI: https://doi.org/
10.1039/d3nr01204b

aBiological Physics and Soft Matter Group, Department of Physics, King’s College

London, London, WC2R 2LS, UK. E-mail: chris.lorenz@kcl.ac.uk;

Tel: +44 207 848 2639
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its analogous linear diblock topology (MA12EO30) and triblock
topologies (MA-terminated (MA6EO31MA6) & EO-terminated
(EO15MA12EO15)) (see Fig. 1(e)–(h)). We provide a detailed
description of the internal structure of the micelles that each
polymer forms, which plays a key role in drug solubilization, as
well as the stability of micelles as drug delivery vehicles.

Results
Effect of polymer topology on the size & shape of micelles

In order to determine the size, shape and compactness of the
micelles formed by the different polymers, we measured the
number of polymer molecules in each micelle within our simu-
lations at stationarity. We also measured the radius of gyration
(RG) and the eccentricity of the largest micelle in each system
(Fig. S2†).

Fig. 1(a)–(d) shows the probability distribution of the aggre-
gation number for the different topologies. The MA-terminated
linear polymers form one micelle which contains approxi-
mately 19 (of the 20) polymers (Fig. 1(a)). The EO-terminated
linear polymers self-assemble into two micelles, one with
approximately 14 polymers and the other with 6 polymers
(Fig. 1(b)). The ring polymers form multiple micelles with the
largest one containing approximately 11 polymers (Fig. 1(c)).
Finally, the diblock polymers predominantly form one micelle
with all 20 polymers (Fig. 1(d)). The values of RG correlate
directly with the aggregation numbers, such that the diblock
polymer micelle has the largest RG, followed closely by the MA-
terminated linear polymer one and then, in decreasing order,
the EO-terminated linear polymer and the ring polymer
(Table 1). Despite the difference in size of the micelles for the
four different polymers, all of the micelles are approximately
spherical (eccentricities ∼0.1) (Table 1).

We have also carried out simulations of each of the
different polymer topologies that contain 30 polymers at the

same concentration as in the 20 polymer simulations. We
found the very similar aggregation numbers in these larger
systems for each of the topologies, except for the diblock (see
Fig. S3†). In the diblock system, we once again see that nearly
all of the polymers self-assemble into a single micelle.

Effect of polymer topology on the internal structure of
micelles

We calculated the radial density (Fig. 2) of the micelles, as well
as the corresponding intrinsic density using the intrinsic core–
shell interface (ICSI) method40 (Fig. S6†), in order to under-
stand how the internal structure of each micelle is affected by
the topology of each polymer. For all topologies, the corona of
the micelle is constituted primarily of the EO blocks. In the
case of the MA-terminated linear polymer, we observe that
approximately 20% of the polymers have at least one MA-termi-
nated end in the corona of the micelle. Therefore, the micelle
core formed by these polymers has significantly more EO
monomers and as a result, more water, present in its core than
either of the other micelles (Table 2). Regarding the other
topologies, the diblock, EO-terminated linear polymer and the
ring polymer have a small amount of EO monomers in the
core (Fig. 2(b)–(d) & Table 2). However the ring polymer has a
slight increase in the density of EO monomers (also seen in
the intrinsic densities as shown in Fig. S8†) in the core as
there are no free ends of the polymer, instead both ends of the

Table 1 Effect of polymer topology on the size and shape of micelles.
The average and standard deviation for the RG, the eccentricity ε and the
average aggregation number Nagg

Topology RG (Å) ε Nagg

MA-terminated linear 28.2 ± 1.4 0.10 ± 0.06 19 ± 1
EO-terminated linear 23.3 ± 0.5 0.09 ± 0.06 14 ± 1
Ring 19.5 ± 0.4 0.07 ± 0.04 11 ± 1
Diblock 29.3 ± 0.9 0.10 ± 0.07 20 ± 1

Fig. 1 Size and shape of micelles. Probability distribution of Nagg for the (a) MA-terminated polymers, (b) EO-terminated polymers, (c) ring polymers
and (d) diblock polymers. Snapshots of the (e) MA-terminated (f ) EO-terminated, (g) ring polymers and (h) diblock polymers. MA is shown in pink
and EO in blue.
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EO block are attached to MA blocks. As there is a peak in the
MA density which corresponds to the peak in EO density in
the core of the micelle, it is clear that the peak in the EO
density is a result of its connectivity to the MA monomers. It
should also be noted that while the peaks in each curve look
significant, as the volume measured that close to the core of
the micelle is quite small and so the actual amount of EO is
quite small.

The core of each micelle consists primarily of MA blocks.
Fig. 3(a)–(d) show the normalized intermolecular contacts of

the (chemically equivalent, except for the case of the diblock,
where there are no chemically equivalent atoms) MA mono-
mers in the MA-terminated linear, EO-terminated linear, ring
and diblock polymer micelles. In all topologies except the
diblock polymer, the number of contacts increases the further
a MA monomer is from the EO blocks in each polymer with
MA6, the monomer furthest away from the EO blocks, under-
taking the highest number of contacts. In the diblock polymer
micelles, the MA monomers that are closest to the EO blocks,
are also the monomers with the lowest number of contacts.
But in this case, the MA monomers found in the middle of the
PMA block are the ones that have the highest contacts.

While all of the MA monomers contribute to the micelle’s
core, the MA monomers furthest away from the EO blocks are
the monomers that play the most significant role in the for-
mation and stabilization of the micelle core. The MA-termi-
nated linear polymers have the lowest number of contacts
between their MA monomers as a result of the MA monomers
being divided into two blocks which are separated by the block
of EO monomers and the number of MA monomers outside
the core. Fig. 3(e)–(h) show the normalized number of water
molecules within the first hydration shell of the carbonyl
oxygens in the different chemically equivalent MA monomers
within each polymer. The MA-terminated linear polymers have

Fig. 2 Radial density of micelle components. The radial density of micelles formed from the (a) MA-terminated polymer, (b) EO-terminated
polymer, (c) ring polymer and (d) diblock polymer. MA monomers are displayed in pink, EO in blue and water in dark blue.

Table 2 Hydration of the micelle core

Topology MAH2O EOH2O EOcore

MA-terminated linear 3.0 ± 1.0 10.6 ± 3.8 51.0 ± 15.8
EO-terminated linear 0.4 ± 0.2 4.6 ± 3.1 7.9 ± 3.2
Ring 0.5 ± 0.1 2.3 ± 0.9 11.7 ± 3.0
Diblock 0.5 ± 0.1 8.8 ± 6.5 11.7 ± 6.4

The core was defined by the intrinsic surface created by the MA
monomers. The two first columns are the average and standard
deviation for the number of water molecules per monomer in the core
with respect to the monomer units inside the core. The last column is
the average and standard deviation of the number of EO monomers in
the core over the trajectory.
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the largest coordination number values, which is consistent
with the measured water densities that demonstrate that more
water is found within the core of this micelle. In all micelles,
the most hydrated monomer is MA1 which is directly bonded
to an EO monomer, and generally the hydration decreases as
the monomer is further from the EO monomers.

Effect of polymer topology on polymer conformations within
micelles

While the MA monomers are key in the formation and stability
of the micelles, the conformations that each topology of the
polymers take within the micelle is significantly different. To
investigate the specific conformations that different polymers
adopt within a micelle, we applied a two step machine learn-
ing protocol:41 dimensionality reduction using the Uniform
Manifold Approximation and Projection (UMAP) algorithm,42

followed by clustering in the resulting embedded space using
Hierarchical Density-Based Spatial Clustering of Applications
with Noise (HDBSCAN)43 (see the ESI section:†
‘Dimensionality reduction and clustering’ for the full method-
ology and results of this protocol). In each embedding, three
clusters were identified representing the different groupings of
similar conformations taken by each polymer (see Fig. S7†). In
each case, there is less than 8% of the data that is not clus-
tered by HDBSCAN, which is shown in the bar charts in gray.
Fig. 4 shows the probability distribution of each cluster in the
various micelles as well as representative structures of each
cluster of conformations for each polymer. The representative
structures show that the conformations are clearly differenti-
able by the relative extension of the EO and MA blocks.

We then use the ICSI method to measure the location of
the various polymer conformations within each micelle
(Fig. 4). Snapshots of each micelle with its constituent poly-
mers colored by the corresponding cluster number are also
shown in Fig. 4. In the MA-terminated linear polymers, the

intrinsic densities of the various clusters are less than found
in the other micelles, which is indicative of more water present
in the core as shown in Fig. 2(a). Also there is not a significant
difference in the distributions of the three conformations
within the micelle. The most extended conformation (cluster
2) is representative of the previously mentioned polymers that
have at most one MA block in the core of the micelle, and is
also slightly more commonly found in the core. In the EO-ter-
minated linear and cyclic micelles that have a more stable
core, the polymers take specific conformations depending on
their position within the core of the micelle. For example, the
most extended conformation of the EO-terminated linear poly-
mers (cluster 2) is more likely to be found in the core of the
micelle with the MA block spanning the micelle and the two
EO blocks extended into solution. Closer to the core–shell
interface, there is an increased density of the other two confor-
mations which have more collapsed MA blocks resulting in the
MA monomers shielding the core of the micelle from the sur-
rounding water.

For the ring polymer micelle, the adopted conformations
that are most elongated (clusters 1 and 3) are found to be
enriched in the core of the micelle. In these conformations,
the EO block is more extended so that it can reach the micelle
corona and interact with the surrounding aqueous environ-
ment. The polymers at the interface of the core of the ring
polymer micelle take on a more conventional ring shape
(cluster 2), allowing the EO block to expand to maximize its
contact with the surrounding water and the MA block to
embed into the core to minimize its interaction with water.

For the diblock polymer micelle, the pattern is similar as
for the cyclic one. The most extended conformations (cluster 1
and 2) are predominate in the core of the micelle. In these con-
formations, the MA is more extended, allowing it to maximize
its contacts with the rest of the MA present in the core. Finally,
cluster 3 is more likely to be found at the core–shell interface.

Fig. 3 Interactions within the MA core of the polymer micelles. The normalized intermolecular MA contacts within the core of the (a) MA-termi-
nated polymer, (b) EO-terminated polymer, (c) ring polymer and (d) diblock polymer micelles. Average hydration of the carbonyl oxygen atoms in
the PMA backbone of the (e) MA-terminated polymers, (f ) EO-terminated polymers, (g) ring polymers and (h) diblock polymers.
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Fig. 4 Effect of topology on the internal structure of the polymer micelles. From left to right, a bar chart shows the percentage of each cluster of
conformations within the micelle, then there are representative snapshots of the polymers within each cluster, and then plots of the intrinsic density
of the various clusters within the micelle and finally a snapshot of the micelle with each polymer color-coded for the cluster it belongs to. These are
shown for the (a) MA-terminated polymer micelle, (b) EO-terminated polymer micelle (c) ring polymer micelle and (d) diblock polymer micelle. Sizes
are not to scale.
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This cluster presents a collapsed MA and extended EO, which
allows the EO to maximise its contacts with the water, while
the MA minimizes its contacts with this solvent by collapsing
within itself.

Discussion

The results of our simulations show excellent agreement with
previous experimental work studying the effect of topology on
the self-assembly of block copolymers. In this work, we show
that the linear polymer with the hydrophobic monomers on
either end of the polymer (MA-terminated linear polymer)
forms larger aggregates that are less stable than those formed
from the cyclic or diblock polymer. Honda et al. have studied
MA-EO-MA linear and MA-EO ring block copolymers and
found that the linear polymers form micelles that have larger
hydrodynamic diameters and aggregation numbers, while also
being less thermally and salt stable than the corresponding
ring polymer.18 The same authors also studied butyl acrylate
(BA)-ethylene oxide linear and cyclic block copolymers and
found that the size of the micelles from the two polymers were
similar but the ring polymer showed greater thermal stabi-
lity.17 Our simulations show that there are more MA–MA con-
tacts within the core of ring polymer as compared to the MA-
terminated linear polymer which results in a more compact
(ring: ∼119 Å2 per polymer; MA-terminated linear: ∼124 Å2 per
polymer) and more stable micelle (ring has smaller fluctu-
ations in RG than MA-terminated; Table 1). We also find that
the MA-terminated linear polymers form micelles which have
a significant number of EO monomers internalized into the
core of the micelle which results in there being a significant
amount of water within the core (Table 2). This increased
amount of the water in the core reduces the stability of the
micelle (Table 1).

Our ability to identify three distinct conformations of each
of the polymers allows us to provide a detailed picture of the
internal structure of the micelles. In doing so, we show that
for the linear polymer with the hydrophobic monomers on
either end (MA-terminated linear) there are two conformations
where the MA blocks are near to one another and one confor-
mation in which the polymer is fully extended with the MA
blocks separated from another. This is consistent with the
general picture suggested for the MA-EO and BA-EO polymers
studied by Honda et al.17,18 as well as for Pluronics which
contain blocks of propylene oxide (PO) and ethylene oxide.44

In each case, the authors suggest that these polymers with the
hydrophobic monomers on the terminal ends form flower-like
micelles where a majority of the polymers have both terminal
ends within the core of the micelle, and some of the polymers
have a hydrophobic terminal end in solution. The results of
our simulations for the MA-terminated linear polymers show
that ∼20% of the polymers take conformations which result in
at least one of the MA-blocks being in the corona of the
micelle. Interestingly, with the larger aggregation number for
the MA-terminated linear polymers than for the micelles

formed from the EO-terminated linear polymers, we find that
both micelles have roughly the same number of MA monomers
(∼360) in the core of their micelles.

We found that in the micelles formed by the EO-terminated
triblock, the diblock and the ring polymers, which have a well
defined core and corona, the polymers take different confor-
mations depending on their location within the micelle. In the
case of the EO-terminated linear polymer we find that the poly-
mers in the core of the micelle have a propensity to have an
elongated MA block which maximizes the hydrophobic contact
between MA monomers and more compact EO blocks which
lie on the surface of the micelle. The polymers at the core/shell
interface of the micelle have more compact MA blocks which
allows the polymers to more effectively shield their hydro-
phobic blocks and the EO blocks are more extended in order
to maximize their hydration. While in the ring polymer
micelle, we find two more elongated conformations which are
most prominent in the core of the micelle, whereas the other
more ring-like conformation sits at the core–corona interface.
These conformations taken by the ring polymers in the
different parts of the micelles allow the polymers to maximize
the hydrophobic contact of the MA blocks while also allowing
the EO monomers to maximize their interaction with the sur-
rounding water. In the case of the diblock polymer micelle, we
find that the conformations where the MA blocks are the most
extended are located closer to the core, while the conformation
with a collapsed MA block is found close to the core–shell
interface. Then, it is clear that these conformations are the
result of the MA monomers maximising their hydrophobic
interactions and minimising their contact with the aqueous
environment. Therefore our findings show that polymers that
can take location specific conformations will form stable
micelles that have hydrophobic cores which are shielded by
the hydrophilic monomers, and those that cannot, the MA-ter-
minated polymer in this case, will not.

Conclusions

Our simulations provide a mechanistic picture of what leads to
the difference in size and stability of micelles formed by block
copolymers that differ in topology but not in the chemical
composition of their constituent monomers. Additionally, we
have been able to demonstrate the range of conformations that
are taken by four different topologies of polymers within the
micelle and how they determine the stability of the micelles.
We have also shown how the conformations of the polymers
change as their position within the micelle changes, which is
particularly interesting when considering loading these
micelles with small molecule therapeutics, as the location and
the hydration of the drug within the micelle will be driven
largely by the conformations of the polymers in its local
environment. This understanding allows polymer topology to
become another parameter that can be used to perform
rational design of polymer nanoparticles for the use in a
variety of applications including drug delivery.45–47
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Methods

Each simulation reported consists of 20 polymers placed in a
simulation box with initial dimensions of 147 Å × 147 Å ×
147 Å containing approximately 105 000 water molecules,
resulting in 3 wt% solutions of each polymer. We used the
OPLS forcefield parameters as prescribed by the PolyParGen
webserver48 to describe the interactions of the polymers and
the TIP3P water model.49 All of the simulations were per-
formed using GROMACS50 versions 2019.2 and 2020.4. The
same simulation protocol was followed for each of three simu-
lations, which begins with energy minimization by steepest
descent, followed by a 125 ps simulation in the NVT ensemble
using the Nosè–Hoover thermostat to control the temperature
(target temperature 300 K) with a timestep of 1 fs.
Subsequently we ran 1 μs production simulations in the NPT
ensemble using the Nosè–Hoover thermostat and the
Parrinello–Rahman barostat to control the temperature (target
temperature 300 K) and pressure of 1 atm, respectively with a 2
fs timestep while all hydrogen-containing bonds were con-
strained using the LINCS algorithm.51 In all simulations, the
non-bonded interactions were cut off at 12 Å while the par-
ticle-mesh Ewald (PME) algorithm was used to calculate long-
range electrostatic interactions. Appropriate burn-in times
were calculated, with only the stationary portion of the pro-
duction simulations used for analysis. A description of all of
the analyses conducted on these simulations is described in
the ESI.†
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Chapter 4

PySoftK v2.0: tools for the analysis of

polymer simulations

Molecular dynamics (MD) simulations are widely used for the study of polymer

systems. However, the vast amount of data outputted by these simulations is some-

times complex to analyse, as this data is high dimensional and polymers are nor-

mally very dynamic. This causes the analysis of polymer simulation to be com-

plicated, needing the implementation of specific algorithms to analyse the proper-

ties of the system. Therefore, there is a need for automated computational anal-

ysis workflow and tools to analyse polymer simulations with minimal user input.

Such platform would also standardize polymer simulation analysis to facilitate re-

producibility and replicability within the field. In this Chapter, PySoftK v2.0 is

introduced as a platform with tools for the analysis of polymer simulations. The

module pol analysis has been added to the already published PySoftK [95] in

a modular fashion. Key features of this software include a fast clustering algorithm

to account for changes in the number of polymers conforming a micelle over time,

a ring-stacking analysis tool, to study the ring-stacking networks in a polymer sys-

tem, and an analysis tool to make molecular structures whole, even when their size

is greater than half the box length, that can be applied very efficiently in every step

of the simulation to properly account for the periodic boundary conditions in the

analysis. Note that there is currently no openly available software that contains the

tools highlighted here. These analysis tools, and the other that comprise PySoftK
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v2.0, are designed to require minimal user input, and are easy to use so that very

complex polymer analysis can be performed by any user, no matter their coding ex-

perience. Also, it is important to note that, while the primary focus of this software

is on polymers, it has been coded with a general approach, allowing its application

to other molecules like proteins or lipids. PySoftK v2.0 aims to provide a platform

for automating and standardizing complex polymer analysis.

It is worth noting that I have developed all analysis tools presented in this Chapter,

except for the intrinsic density analysis tool, which is based on the python pack-

age pySoftWhere. In this case, I implemented it into PySoftk and made it more

generalisable.

4.1 Introduction

Polymers play a key role in materials science, spanning applications from efficient

thermoelectric materials [156] to drug delivery systems [2]. Furthermore, advances

in synthetic chemistry now enable the creation of increasingly complex polymers

[157, 158], which means that the possibilities of creating polymeric materials with

unique characteristics are endless. At the heart of understanding the behavior and

properties of these polymeric materials lies the complex interplay of the molecu-

lar structure, conformational dynamics and intermolecular interactions of the con-

stituent polymer molecules. Establishing general structure-property relationships

for materials constituted by polymers imply a precise understanding in how indi-

vidual properties can dynamically change by the surrounding environment of the

moiety [159].

Effectively, molecular dynamics (MD) simulations can provide a realistic

framework to statistically determine mathematical correlations between individual

components (polymers) and the interactions among these units from a molecular de-

scription, which currently no experimental technique can resolve. For example, MD

simulations have been used to study the self-assembly of polymers [160], and also

how polymer-specific characteristics affect the overall material properties [69]. Ad-

ditionally, MD simulations can be used to calculate physical properties of polymeric

https://github.com/rmziolek/pySoftWhere
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materials, such as the thermal conductivity of carbon nanotubes[161] and polymer

nanofibers [162], as well as polymer chain diffusivity [163] and chiral optical prop-

erties in polymer films [14], among other characteristics [164]. It is evident that

MD simulations are a powerful tool for gaining deeper insights into polymer-based

materials. Nevertheless, MD simulations of polymers are often complex to set up,

especially for long or complex polymer structures, such as branched topologies.

This complexity arises because many computational platforms lack these options

[95]. To address this gap, our group developed PySoftK [95], a modular software

for generating and modeling polymers structures with different topologies.

Independent of how a MD simulation of polymers is set up, the simulation will

generate a significant amount of data, often making it challenging to extract rele-

vant information. This difficulty arises from interpreting multidimensional data, the

dynamic nature of polymers, characterizing dynamic equilibria, or deriving accu-

rate quantitative metrics for molecular-scale interactions that drive self-assembly or

contribute to the function of polymeric material. Interpreting and quantifying the

result from polymer MD simulations is not trivial, and it requires advanced compu-

tational tools to quantify such complex behavior. As a result, it is often not possible

to replicate experimental findings or to reproduce quantifiable results [165].

While the scientific community has invested significant effort in simplifying

the creation of input for polymer simulations, as exemplified by tools like PySoftK,

Polymer Structure Predictor [102] or Radonpy [100], a comprehensive package for

analyzing specific polymer material properties has been notably absent. To address

this issue, PySoftK v2.0 introduces a toolkit designed for advanced analysis of poly-

mer (and other soft matter) simulations, seamlessly incorporated into the existing

PySoftK framework. The main advantage of PySoftK v2.0 is its provision of an uni-

fied computational framework in which modelling and analysis can be streamlined

under modern software development standards. This feature ensures both prove-

nance of data and results reproducibility. In line with the commitment of PySoftK

to minimal user input and highly efficient code, PySoftK v2.0 retains these princi-

ples, enabling the analysis of large-scale systems with ease.

https://github.com/Lorenz-Lab-KCL/full_pysoftk/tree/main
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In this Chapter, the analysis tools will be described, providing illustrated case

studies and example results, along with links to Jupyter Notebook tutorials for

demonstration. The tools are divided into two analysis groups, properties of aggre-

gates and molecular-sale interactions analysis. Furthermore, this software can be

employed to investigate different kind of soft matter systems, since the implemented

algorithms are agnostic in their design. This new module of PySoftK will allow

the computational polymer community to use the analysis tools and also build upon

on it to understand complex polymer structures and interactions. Furthermore, the

existence of an open-access analysis tool will contribute to the better reproducibility

and replicability of polymer computational experiments and measurements, accel-

erating the understanding of polymer science.

4.2 Software development

PySoftK v2.0 can be easily installed using the pip command strategy: pip

install pysoftk, just like PySoftK v1.0. PySoftK v2.0 has been thoroughly

tested and is compatible with Linux and macOS operating systems. It requires

Python 3.9 or a higher version. Furthermore, PySoftK utilizes three python li-

braries: MDAnalysis v2.5 [153], pySoftWhere and Networkx [149]. In order

to enhance computational efficiency of this module, parallel strategies have been

implemented. These strategies utilize the concurrent.futures library or

MDAnalysis.lib.distances function for parallel distance calculations.

PySoftK v2.0 has been built using modern code development practices. To

ensure the preservation of functional software, Continuous Integration (CI) strate-

gies have been implemented in PySoftK v2.0. Firstly, a peer-reviewed process

through constant code committing has been carried out ensuring the detection of

inconsistencies between versions of PySoftK. Secondly, a new set of tests has been

developed and the new version of PySoftK has been used within each test ensur-

ing its compatibility. Finally, code-coverage has been employed for ensuring the

maximum compatibility between versions. The tests designed for PySoftK v2.0

https://github.com/rmziolek/pySoftWhere
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rigorously check the functionality of all the new analysis tools. Each function is

tested with various polymer types to ensure broad coverage of the analysis tools.

Successful tests lead to continuous deployment, allowing for seamless updates

of PySoftK. Additionally, jupyter notebook tutorials showing working examples

(based on our tests) have been developed for all the analysis functions of PySoftK

v2.0.

4.3 Software Overview
PySoftK v2.0 is a modular Python package that has the same functionality as

PySoftK v1.0 [95] with an additional module named pol_analysis. This new

module focuses on the analysis of polymer simulations to extract time dependent

properties of polymer systems with minimal user input and high efficiency to tackle

large systems. The analysis tools of this module are divided into two blocks, prop-

erties of aggregates and molecular-scale interactions analysis.

4.3.1 Properties of aggregates

The functions encompassed in this section are for the analysis of overall physi-

cal properties of soft-matter aggregates, such as polymer micelles. The functions

that belong to this category are: SCP, make micelle whole, rgyr, ecc,

spherical density and intrinsic density.

SCP: spatial clustering of polymers. Polymers are highly dynamic, which

makes tracking their self-assembly process quite challenging. This complexity

arises because polymers will form different sized aggregates during their self-

assembly, and a given polymer can move from one aggregate to another [69]. Con-

sequently, to properly analyse polymer aggregates, it is essential to isolate the rel-

evant polymers belonging to the clusters while excluding others from the calcula-

tion. Additionally, this polymer clustering must be performed at each time step, so

it should have minimal computational cost. For this purpose, the SCP class clusters

polymers using a graph theory approach described in Section 2.2.1. In essence, each

https://github.com/Lorenz-Lab-KCL/full_pysoftk/tree/main/pysoftk/pysoftk/pol_analysis/pol_tutorials
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Figure 4.1: Schematic representation of how SCP work. The selected polymer atoms
are assigned as nodes of a graph. If two atoms belonging to different polymers
are at a distance lower than a specific cutoff, then an edge is created between
those two nodes, becoming part of the same subgraph. This way the connection
between all polymers belonging to the same cluster is tracked.

polymer is a node V of a graph G. If the distance between any specific atoms (spec-

ified by the user) of two polymers is below an user-defined cutoff, an edge is drawn

between these two nodes (polymers) in G(V,E). This is repeated for each polymer

in the simulation. Therefore, when two polymers are within the cutoff distance,

they are added to the same subgraph if one of them already belongs to an existing

subgraph, or they form a new subgraph. If a molecule (node) in one subgraph is

found to be connected (share an edge) with another subgraph, the two subgraphs

are combined. Any polymer that is not found to be part of any aggregate is stored

as a unimer. A schematic representation of the polymer graph is depicted in Figure

4.1. New graphs are generated at each time step, and the time steps selected for the

calculations are set by the user.

The atom selection for determining which polymers are in contact varies de-

pending on the polymer. The user can select as many atoms as it deems necessary

to describe its system. The SCP tool will calculate the distances between all the

selected atoms of both polymers. If any of these distances is below the cutoff it will

then add them to the same subgraph. It is important to note that a lower number of

selected atoms leads to faster calculation. To efficiently select the atoms for the clus-

tering calculation, it is key to take into account polymer topology, since the atoms
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chosen need to be those that better represent the polymer interactions that form the

polymer clusters. For instance, in the case of a linear diblock amphiphilic polymer

in solution, the main forces driving its self-assembly will be the hydrophobic ef-

fect, so it should be sufficient to pick only one atom in the hydrophobic block of

the polymer. However, in the case of an amphiphilic triblock ABA polymer, where

A is hydrophobic, it will be necessary to pick one atom for each of the hydropho-

bic blocks (two atoms in total), since at least one of these needs to be close to the

hydrophobic block of another polymer for both of them to be part of the same mi-

celle. Figure 4.2 shows how the atom selection affects the clustering. Figure 4.2 (a)

shows the system to cluster, two micelles formed by ABA triblock polymers, with B

representing the hydrophobic monomers and A the hydrophilic monomers. Figure

4.2 (b) displays the correct clustering of Figure 4.2 (a). This result is achieved by

selecting the backbone C atom of the middle monomer of the hydrophobic block.

Since the hydrophobic block tightly interacts with those of other polymers in the

micelle, picking atoms within this domain is a good choice. On the other hand, 4.2

(c) shows the clustering done for the same system but picking atoms at the end of

the hydrophilic blocks. In this case, the clustering is not accurate because the hy-

drophilic atoms at the end of the polymer do not significantly contribute to micelle

formation. Therefore, these atoms are not a good selection for clustering.

Furthermore, the other user input required to run the clustering tool is the cutoff

distance. This distance will determine if two polymers belong to the same cluster

or not. The distance can be obtained from the radial distribution function of the se-

lected atoms, but it is recommended to use distances between 10 Å and 13 Å , since

this range outputted correct results for the different polymer simulations in Chapter

3. The reason of this range is that polymers may not be interacting directly (hav-

ing the smallest distance) between the atoms selected for the clustering calculation.

Therefore, it is necessary to give some distance margin between these atoms, since

if two atoms of two distinct polymer hydrophobic blocks are at a distance smaller

than 13 Å the polymers are likely to be part of the same aggregate. Also, picking

the right distance may vary per simulation and may be an iterative process: picking
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(a) (b) (c)

Figure 4.2: SCP atoms selection affects polymer clustering. (a) Triblock hydrophilic ter-
minated polymer system to cluster. (b) SCP algorithm applied on the system in
(a) picking the middle hydrophobic monomer C atoms for the clustering. Poly-
mers with the same color belong to the same cluster outputted by the algorithm.
Clearly, the clustering here is done correctly. (c)SCP algorithm applied on the
system in (a) picking the ending hydrophilic atoms. Polymers with the same
color belong to the same cluster outputted by the algorithm. It is evident that
the clustering is done badly when these atoms are used. The ending hydrophilic
monomers do not play a key role in the intermolecular interactions with other
polymers during the self-assembly of the micelle, so they are not good cluster-
ing candidates.

distances within the 8-13 Å range, and checking by visual inspection if they output

the right clustering.

The code in Figure 4.3 shows an example of how to use the SCP algorithm.

From this code snippet, it is clear that to obtain the clustering of a simulation, apart

from the atom names and the cutoff distance, all that is needed are the topology

and trajectory of the simulation, the start and stop frames to define the time range

for running the clustering algorithm, and the step parameter, which determines the

number of frames to skip. Finally, results name is the name of the output of

the SCP function, which is a parquet file that contains a pandas data frame with the

resids of the polymers grouped by the micelle they belong to per time step.

Aditionally, The code snippet in Figure 4.4 illustrates the output for the SCP

clustering. This Figure displays a pandas data frame containing three columns, the

first one is the time in ps, the second one is the resids of the polymers that belong

to the same cluster. The polymers belonging to the same cluster are grouped by

square brackets (a pythonic list). And the last column is the micelle size (number of

polymers) of each of the clusters in the simulation. Note that the SCP tutorial

can be found on github, with a step by step guide on how to use the SCP tool in two

different case examples.

https://github.com/Lorenz-Lab-KCL/full_pysoftk/blob/main/pysoftk/pysoftk/pol_analysis/pol_tutorials/SCP_tutorial.ipynb
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Figure 4.3: Code snippet showing how to run the SCP function.

Figure 4.4: Code snippet showing the output of the SCP function.
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Figure 4.5: SCP applied to a CG protein simulation to measure protein aggregation.
Since the input needed to run this tool is not exclusive to polymers, it can be
applied to any other type of system to measure molecular clustering. In this
case, this is the result of the SCP being applied on CG transmembrane proteins
inserted into a membrane. This is a top-view of the protein-membrane system.
Proteins colored in the same way belong to the same cluster, and non-clustered
proteins are in yellow. Also the phosphate group of the lipids are represented
in dark green.

Finally, the implemented agnostic algorithm can be employed to further anal-

yse different system such as protein or lipids, and not being limited by the applica-

tions presented in this chapter. For instance, Figure 4.5 shows the result of applying

the SCP tool to a CG protein simulation to measure protein aggregation.

make micelle whole: making a structure whole across the PBC. An

important feature that is needed to perform reliable analysis in soft-matter systems

is the correct connectivity (i.e. all atoms are connected through bonds) of the moi-

eties. To enable this, different algorithms have been implemented in codes such as

GROMACS or MDAnalysis, that make structures whole across the PBC. However,

it has been highlighted that when molecules or aggregates occupy spaces larger than

half of the simulation box size, these algorithms are not reliable to reconstruct the

connectivity across the PBC [166]. In contrast, PySoftK make micelle whole

tool is able to obtain the coordinates of molecular structures broken across the PBC,

even if their size is greater than half the box size. Theoretical details on this algo-
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(a) (b) (c) (d)

Figure 4.6: Effect of make micelle whole function on the calculation of the radius
of gyration. Result from running MDAnalysis radius of gyration()
on the system broken across the PBC as depicted in (a) with the
(b) pbc=True MDAnalysis option and (c) on the whole coor-
dinates obtained with make micelle whole. It is clear that
radius of gyration(pbc=True) does not take PBC effects prop-
erly into account during the radius of gyration calculation. (d) Snapshot of the
micelle studied made whole with the radius measured with VMD.

rithm are described in Section 2.4.1. Therefore, make micelle whole not only

provides a clearer representation of the system, but also ensures the accurate com-

putation of physical properties across the PBC. For example, certain functions of

MDAnalysis, such as radius of gyration() or moment of inertia(),

may produce erroneous results when applied to broken molecules, leading to arte-

facts in the simulation analysis. For instance, Figure 4.6 shows the difference be-

tween using solely the MDanalysis radius of gyration(pbc=True) func-

tion (Figure 4.6 (b)) and the MDanalysis radius of gyration() function ap-

plied on the whole structure created by make micelle whole (Figure 4.6 (c)) of

a broken micelle depicted in Figure 4.6 (a). From Figure 4.6 (b), it is clear that MD-

Analysis with the pbc=True parameter is not able to calculate the correct radius

of gyration of a broken micelle. However, Figure 4.6 (c) shows that when this same

function radius of gyration() is applied on the whole coordinates obtained

with make micelle whole the radius of gyration is properly calculated. There-

fore, it is evident that ensuring the correct reconstruction of the connectivity of a

system across the PBC is essential for the accurate analysis of polymer simulations.

Furthermore, Figure 4.7 illustrates that the make micelle whole tool of-

fers a superior algorithm for producing connected moiety. Figure 4.7 (a) displays

a micelle that is broken across the PBC. Figure 4.7 (b) shows the same micelle but
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(a) (b) (c) (d)

Figure 4.7: Effect of make micelle whole on structure that is greater than half
the box length. Trying to make the micelle in (a) which is broken across
the pbc and that is greater than half the box length in one dimension using
(b) make micelle whole (c) MDAnalysis transformation (d) GROMACS
gmx trjconv -pbc mol command. It is clear that only the PySoftK anal-
ysis tool make micelle whole is able to properly make the micelle whole
across the PBC even if one of its dimensions is greater than half the box length.

successfully reconstructed with PySoftK’s make micelle whole. On the other

hand, Figure 4.7 (c) and (d) demonstrate that MDAnalysis v2.5 and GROMACS,

respectively, are not able to reconstruct the connected bond structure of the micelle

using the same input as files as make micelle whole. A jupyter notebook tu-

torial titled example mdanalysis vs make micelle whole illustrates an

example of a polymer micelle, broken across multiple sites due to the PBC, and of

large size. This tutorial shows that MDAnalysis transformation tools fail to make

the micelle whole, but PySoftK’s make micelle whole outputs the micelle dis-

playing the expected spatial bond-connected distribution. Thereby, using this func-

tion to obtain the coordinates of a soft-matter system is the most reliable method to

perform analysis of simulations.

The make micelle whole class is composed of three functions. The

first one, obtain largest micelle resids, can be used to extract the

largest micelle polymer residues from the pandas dataframe obtained with SCP.

This function was implemented because, in many cases, the structure of in-

terest is the largest aggregate within the simulation. The code snippet in

Figure 4.8 demonstrates how to use this tool. This Figure shows that the

obtain largest micelle resids function only requires the result from

SCP as input. It then produces a list, with as many entries as time steps evaluated,

containing the resids of the molecules that belong to the largest cluster at each time

https://github.com/Lorenz-Lab-KCL/full_pysoftk/blob/main/pysoftk/pysoftk/pol_analysis/pol_tutorials/example_mdanalysis_vs_micelle_whole.ipynb
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Figure 4.8: Code snippet showing how to use obtain largest micelle resids.

step.

Furthermore, another pivotal function in the make micelle whole class is

make cluster whole, which is its core function. This function performs the

calculations to obtain the coordinates of the connected bond structure. The output

of this function is a numpy array with the atom coordinates. An example of how

to run this function is illustrated in Figure 4.9. From here, it is clear that the only

inputs required are: the resids on which the calculation will be performed, the time

steps for the calculation and the resname of the molecules forming the structure.

This function can accept multiple resnames as needed.

Finally, the last function of this class, obtain snapshot, is designed to

output an user-defined pdb file for the whole structure at the selected frame. This

can be convenient if the user wants to input the structure into a different simulation

box, for example, if the user wants to study the interaction of a micelle with a

membrane, it can obtain the micelle pdb file with this function and then insert it

into the membrane box. Figure 4.10 displays a code snippet showing how to use the

function. The code in Figure 4.10 will write the pdb file into the directory and with

the name specified in results name.
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Figure 4.9: Code snippet showing how to use running make cluster whole.

Thus, PySoftK’s implementation of make micelle whole provides a more

reliable algorithm to reconstruct structures broken by the PBC while enabling the

user to produce a single and streamlined workflow. Furthermore, this is done with

minimal input from the user. An illustrated and step-by-step guide on how to use

all the functions in the make micelle whole class is provided in the jupyter

notebook tutorial micelle whole tutorial. Furthermore, in this tutorial, it

is shown how different polymer aggregates can be selected from the simulation,

not just the largest micelle. In this Chapter, all the examples displayed are with

the largest micelle for simplicity. Nevertheless, the SCP tool outputs a pandas

dataframe with the resids of polymers belonging to all aggregates in the system.

https://github.com/Lorenz-Lab-KCL/full_pysoftk/blob/main/pysoftk/pysoftk/pol_analysis/pol_tutorials/micelle_whole_tutorial.ipynb
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Figure 4.10: Code snippet showing how to use obtain snapshot.
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Therefore, choosing other aggregates to analyse, such as the two smallest aggre-

gates per time step (as illustrated in the tutorial), it is as easy as manipulating the

pandas data frame to select the desired data.

rgyr: radius of gyration. This function allows the user to easily cal-

culate the radius of gyration of a structure that is not always formed by the

same molecules throughout the simulation. It utilises the MDAnalysis function

radius of gyration(), but allows users to specify the atom positions and

resids on which to perform this calculation at each time step. The radius of gyration

calculation is given by the following formula:

Rg =

√
∑i mi⃗ri

∑i mi
(4.1)

Where Rg is the radius of gyration, i is a specific particle of the system, mi is the

mass of particle i and r⃗i is the distance of particle i from the center of mass of

the selection. Figure 4.6 shows the comparison between using the MDAnalysis ra-

dius of gyration function alone compared to the PySoftK rgyr, which captures

the right radius of gyration of the micelle when computed on the whole coordi-

nates from make micelle whole. An illustrative example is provided in the

Jupyter notebook tutorial rgyr mdanalysis vs pysoftk, where the radius of

gyration of a micelle broken across the PBC is compared using MDAnalysis and

PySoftK, demonstrating the effectiveness of PySoftK in computing this property

with minimal user input. The code snippet in Figure 4.11 shows how easily the

radius of gyration can be calculated for a micelle with varying number of polymers

over the simulation.

As illustrated in Figure 4.11, the inputs for the rgyr tool are: the topology

and trajectory of the simulation, resids, atom pos and the frames (start,

stop, step) to analyse. resids is a numpy array containing the resids of the

molecules that belong to the structure of interest at each time step. In this way, it is

very easy for the user to account for the varying conformation of the micelle. Also,

https://github.com/Lorenz-Lab-KCL/full_pysoftk/blob/main/pysoftk/pysoftk/pol_analysis/pol_tutorials/rgyr_mdanalysis_vs_pysoftk.ipynb


4.3. Software Overview 121

Figure 4.11: Code snippet showing how to use rgyr.

atom pos is the numpy array containing the whole atom positions. It is important

to keep in mind, that atom pos must include the coordinates of all the atoms

contained in resids. The output rgyr micelle whole from Figure 4.11 is

a numpy array with the radius of gyration of the micelle over the selected time

frames. The jupyter notebook tutorial named rgyr tutorial provides a step

by step example on how to run the radius of gyration calculation using PySoftK’s

rgyr tool.

https://github.com/Lorenz-Lab-KCL/full_pysoftk/blob/main/pysoftk/pysoftk/pol_analysis/pol_tutorials/rgyr_tutorial.ipynb
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ecc: eccentricity calculation. The eccentricity is a measure of how much a

structure deviates from a sphere, so it can be used to measure the shape of spherical-

like soft-matter aggregates. The ecc class calculates the eccentricity of a molec-

ular structure. The eccentricity computation employes the MDAnalysis function

moment of inertia(). MDAnalysis calculates the moment of inertia tensor I

for a group of N atoms, where each atom i has mass mi with coordinates ri relative

to the center of mass of the selection:

I =
N

∑
i=1

mi⃗ri
2 (4.2)

Given the moment of inertia, the eccentricity is calculated using the following for-

mula:

ε = 1− Imin

Imean
(4.3)

Where ε is the eccentricity value, Imin is the minimum moment of inertia across all

axis, and Imean is the mean moment of inertia over all axis. A perfect sphere corre-

sponds to ε = 0, while increasing values indicate more oblong structures. Similar

to the rgyr calculation, the ecc tool can account for varying number of molecules

within the structure and ensures accurate calculations without artefacts from PBC

by considering whole atom coordinates. Figure 4.12 illustrates how ecc accurately

computes the eccentricity of a micelle over time compared to the MDAnalysis strat-

egy. The input parameters of ecc are the same as rgyr, and the output is a numpy

array that contains the eccentricity values of the desired structure at each time step.

The tutorial ecc tutorial shows how to use this function.

spherical density: spherical density calculation. Understanding the

internal distribution of components within molecular ensembles is essential for

characterizing their structure. For molecular structures that are approximately

spherical, this can be studied with the spherical density. There are numerous MD

studies that measure the density of components of polymer micelles [167, 54, 160],

but there are limited open-sourced codes that can compute the spherical density.

https://github.com/Lorenz-Lab-KCL/full_pysoftk/blob/main/pysoftk/pysoftk/pol_analysis/pol_tutorials/ecc_tutorial.ipynb
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(a) (b) (c)

Figure 4.12: Eccentricity calculation of polymer micelle. Calculation of the eccentric-
ity of a micelle solving Equation 6.2 over time with (a) only MDAnalysis
moment of inertia() and (b) PySoftK ecc function. It is clear that
ecc can easily use the correct polymers belonging to the cluster at each time
step and the correct atom positions across the PBC to compute the eccentric-
ity values, while the MDAnlysis function on its own, even with pbc=True is
not able to compute them properly. (c) Snapshot of the micelle on which the
eccentricity is being calculated, clearly it is slightly spherical, so the values
from (b) are the correct ones. The micelle representation is not to scale.

PySoftK spherical density tool allows users to easily calculate the spherical

density over time, even for structures with varying molecule numbers throughout

the simulation. It computes the average density (over time) with respect to the

distance from the center of mass of the molecular structure. This is achieved by

dividing up the molecular structure in spherical bins whose origin is placed at the

center of mass. For each of these bins, the number of particles in them is counted

and divided by the volume of the bin. A 2-d representation of this calculation is

depicted in Figure 4.13.

The formula for the spherical density calculation is defined as:

ρbin =
Nparticles

4
3π(R3 − r3)

(4.4)

Where ρbin is the density per bin, Nparticles is the number of particles in that bin,

R is the outer bin radius and r the inner bin radius. The outer and inner radius are

depicted in Figure 4.13. The user can define the number of bins and size of the

bins to divide the space. It is recommended to pick a range of bins large enough to

account for the whole extension of the molecular structure. It is important to keep in

mind that optimizing the number of bins and their width is an iterative process. This
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Figure 4.13: 2d-radial density calculation Representation of 2D radial density calcula-
tion, in this case the density being computed is of the yellow shell. Therefore
the number of blue particles in the yellow shell will be counted and divided
by the area (2-d representation) of the yellow bin. For a 3-d calculation, the
number of particles would be divided by the volume instead of the surface. R
is the outer radius and r the inner radius of the surface/volume calculation.

function is very intuitive, as shown in Figure 4.14 where an example is provided.

Figure 4.14 shows that the inputs needed to run spherical density are:

the trajectory, the topology, the type of string selection for all the molecules of the

molecular ensemble, the selection of all the molecules of the ensemble, the whole

atom coordinates of all the molecules of the ensemble and the names of the com-

ponent of the density calculation. For the string selection type, in this example the

option ’resids ’ is selected. However, note that all different keywords available

in MDAnalysis (i.e. ’resname’, ’name’, among others) can be employed as an input

for this parameter. The resids parameter in Figure 4.14 represents the selection

of all molecules belonging to the same molecular structure (per time step) on which

the density calculation will be performed. Here, resids is a list containing the

resids of all the molecules that belong to the micelle. If the string selection param-

eter had been a different one, such as the atom name, instead of a list of resids, this

parameter would have been a list of names. atom pos is a numpy array with the

whole atom positions of molecules listed in resids. Finally, names total are

the atom names of the component for the density calculation, which needs to be a

list of str. The output spherical density whole is a numpy array with the

average density over time per bin. The bins are stored in the array binned space.

Additionally, the spherical density water class provides a cus-
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Figure 4.14: Code snippet showing how to run the spherical density function.
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tomized version of this algorithm to investigate only the water density. It is a

separate function because to properly calculate the distances of water with respect

to the center of mass of the molecular structure, the water coordinates need to be

wrapped around the whole coordinates of the structure. Since this process is com-

putationally more expensive, it was created in a different class. It works in exactly

the same way as the spherical density, but the atom names of the solvent

need to be inputted by the user. In the case of water, it is enough to only select

the water oxygens for the density calculation. Examples of both spherical density

calculations, for the micelle components and water, are illustrated in the tutorial

spherical density. This tutorial shows how to calculate and plot the density

in both cases.

intrinsic density: intrinsic density calculation. In cases where

molecular structures have irregular internal and interfacial structures, spherical den-

sity approaches do not work. For these cases, intrinsic interface techniques have

been previously employed to analyse the distribution of components within such

irregular structures [168]. A computational method that has been used to study the

intrinsic density of polymer micelles with a distinct core-shell structure, is the in-

trinsic core-shell interface method (ICSI) developed by Ziolek et al [160]. This

approach divides the molecular structure of interest into the core and shell region

with an intermediate region in between these. The masses of the core and shell

are determined, and the volumes of the core, shell, and interface are calculated.

The total density of the molecular ensemble is then computed by dividing the total

mass by the sum of the volumes of the core, shell, and interface, which accounts

for the varying properties of the core and shell. PySoftK’s intrinsic density

class harnesses the existing ICSI method from the Python package PySoftWhere to

perform intrinsic density calculations. However, in PySoftK, this method is imple-

mented modularly and can easily operate on the whole reconstructed coordinates

of the system (provided by make micelle whole). Also, it can handle varying

numbers of molecules constituting the structure of interest at each time step. The

https://github.com/Lorenz-Lab-KCL/full_pysoftk/blob/main/pysoftk/pysoftk/pol_analysis/pol_tutorials/spherical_density_tutorial.ipynb
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(a) (b)

Figure 4.15: Density calculation comparison. Density calculation of a spherical mi-
celle formed by PEO-PMA polymers using: (a) spherical density (b)
intrinsic density. The results are very similar, since the micelle is
spherical and has a clear core-shell interface. Therefore, in this case both
methods can be used to determine the distribution of components within the
micelle.

usage of this function closely resembles that of the spherical density function. Ad-

ditionally, there is a intrinsic density water class for the computation of

the intrinsic density of water.

The intrinsic density class outputs a a numpy array with the average

densities (over time) with respect to the distance to the core-shell interface, being 0

the location of this interface. It also outputs another numpy array with the values of

the bins used in the density calculation. Figure 4.15 shows density calculations of

the same system using the spherical density tool and intrinsic density tool respec-

tively. It can be seen that PySoftK spherical density tools output the density as a

function of the distance from the center of mass of the micelle (Figure 4.15 (a)),

while the intrinsic density outputs the density as a function of the distance from

the core-shell interface (Figure 4.15 (b)). Therefore, negative distance values in the

intrinsic density represent atoms within the core. In this case, since the micelle was

spherical, both density methods produce similar results.

The tutorial titled intrinsic density tutorial covers how to run the

intrinsic density of the hydrophobic component of a polymer micelle and the water

of the system with PySoftK’s intrinsic density tools.

https://github.com/Lorenz-Lab-KCL/full_pysoftk/blob/main/pysoftk/pysoftk/pol_analysis/pol_tutorials/intrinsic_density_tutorial.ipynb
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4.3.2 Molecular-scale interactions analysis

The functions encompassed in this section, are the tools for the analysis of different

aspects of intermolecular interactions of molecules within a system, such as ring-

stacking, hydration or contacts between the system’s components. This analysis is

useful to understand the driving forces behind the molecular structure formation.

Furthermore, it is important to note that, as all the other functions, these are not

specific to polymers, and they can all be used in other soft-matter systems.

contacts: quantification of intermolecular interactions. Understanding

which and how molecules interact within a molecular ensemble is essential for com-

prehending the forces driving the formation of a molecular structure. This can be

achieved by computing the intermolecular contacts between molecules of a system.

The contacts class calculates the contacts between polymers by measuring the

distance between selected polymer atoms. If the intermolecular distance between

two selected polymer atoms falls below a user-defined cutoff, it is considered a

contact. This calculation is done per timestep, and the atoms and distance cutoff

are defined by the user. The values of the distance cutoff can oscillate depend-

ing on the aim of the analysis. Nevertheless, for the quantification of standard

atomic-interactions, distance cutoff values between 4 Å and 7 Å have been used

previously in the literature[69, 169, 170]. A visual representation of intermolecu-

lar contacts between two polymers in the same micelle is depicted in Figure 4.17

(a). The distinctive feature of the contacts class is that it uses the output from

the make micelle whole tool, ensuring that, at each timestep, the molecules

considered for contact analysis are made whole, thus enabling accurate distance

calculations.

Figure 4.16 presents a code snippet illustrating the usage of the contacts

tool. It requires several input files: the topology and trajectory of the simulation,

the resids of the molecules on which the analysis will be performed on (resids),

the whole atomic coordinates of the molecular ensemble (atom pos), the atom

names for both groups involved in the contact calculation (MA names, MA names)
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Figure 4.16: Code snippet showing how to run the contacts function.
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(a) (b)

Figure 4.17: Normalized contacts output. (a) Snapshot of two cyclic polymer within a
micelle that are in contact. The distance between some of their atoms is below
7 Å. This is represented in the figure by the atoms inside the rectangle with a
vertical size of 7 Å. These inter-molecular interactions would be picked up by
the contacts algorithm as contacts. (b) Output of the calculation of the in-
termolecular contacts of PEO-PMA polymers forming a micelle. The output
matrix is represented as a heatmap. The color bar represented the normal-
ized number of contacts throughout the analysis, with 1.0 being the maximum
number of contacts. The rows and columns represent the contact groups of
the calculation.

and the cutoff distance (cutoff). In Figure 4.16, intermolecular contacts are cal-

culated between atoms of the same type, which is why MA names is selected for

both contact groups. However, users have the flexibility to calculate contacts be-

tween different atom groups, as demonstrated in Figure 4.17 (b), which illustrates

normalized contacts between PMA and PEO atoms. The output of the contacts

class, in this case contacts matrix, is a contact matrix containing the total

number of intermolecular contacts between atoms of both contact groups. Rows

correspond to atoms belonging to the first contact group, and columns correspond

to the second contact group. Figure 4.17 (b) shows a heatmap representation of the

normalized matrix generated by contacts illustrating intermolecular EO-MA in-

teractions of a PEO-PMA polymer. It is important to note that to ensure consistency

in performing this analysis, the frames from the user-provided trajectory employed

in SCP and make micelle whole need to be the same, as depicted in Figure

4.16. For a step-by-step guide on using the contacts tool and recommendations

for result plotting, refer to the tutorial named contacts tutorial.

RSA: Ring Stacking Analysis. Non-covalent forces are the main driving

mechanism in which individual moieties can interact with each other in real space.

https://github.com/Lorenz-Lab-KCL/full_pysoftk/blob/main/pysoftk/pysoftk/pol_analysis/pol_tutorials/contacts_tutorial.ipynb
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Among them, an important interaction is the one produced between aromatic units

adjacently stacked. Thus, the so-called ring-ring stacking interaction has been found

to be the source of many collective phenomena ranging from DNA base pairing,

protein-drug binding, and “through-space” charge transfer in conjugated polymers

[171]. Computer simulations have played a crucial role providing a detailed insight

to peruse relevant structure-property relationships at atomistic resolutions. Specifi-

cally, MD simulations can supply dynamical information to investigate the organi-

sation of molecular building blocks in a non-covalent manner. In the context of ring

stacking, it has been widely studied experimentally, however there is only one study

that has provided a network-level picture of this phenomenon from MD simulations

[172]. Having a molecular picture from MD simulations of ring interactions will be

key to control the optical properties of these materials, but this analysis can be quite

complex.

To address this issue, a new class to establish ring-ring interactions based on

user-provided geometrical parameters has been developed and included in PySoftK

v2.0. The implemented algorithm consists of three stages. Firstly, all atoms belong-

ing to aromatic (conjugated) rings are detected for a single selected moiety. Sec-

ondly, pairs of molecular complexes are screened employing a user-provided cutoff

to define molecules in close contact. Finally, moieties which fulfill the previous

condition are selected for computing the distances between aromatic units. Since

this interaction is highly directional, the algorithm has been designed to compute

the best fitting plane for the atoms computed in step one, providing the normal vec-

tors and whose projection (dot product) defines the angle between aromatic units,

as explained in detail in Section 2.4.2. Therefore, the RSA class allows users to

identify ring stacking patterns within a simulation and obtain the stacking polymer

network and its evolution over time. This tool implemented in PySoftK enables the

user to perform this analysis based on minimal input parameters. This algorithm has

been tested and can be used on any type of conjugated polymer simulation, such as

a polymer melt, as illustrated in Figure 4.18.

The code snippet in Figure 4.19 shows how to use this function. This code
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Figure 4.18: Example of ring-ring stacking calculation using the RSA class on a poly-
mer melt. RSA is able to obtain ring stacking in complicated and large sys-
tems.

illustrates that the required input parameters are the topology and trajectory of the

simulation, a ring-ring distance cutoff (dist cut), a maximum angle between ring

units (angle cut), and the name of the output file name (output). The cutoff

distance represents the maximum spatial separation allowed between aromatic units

for the calculation of their stacking angle. The value has been set to a default of 4

Å . Based on previous research, a maximum of 7 Å is recommended [172] for the

cutoff distance. Similarly, the angle cutoff value will depend on the system and the

properties of interest. The angle cutoff defines the angle range between two rings

that is counted as stacking (angle between rings either smaller than the cutoff angle

or larger than π − cuto f f ). The default recommended value is 30 °[172], but for

very tight ring stacking, smaller values can be used. The output of the RSA tool

is a pandas dataframe with all the resids of the polymers that are stacked and also

the pdb files of pairs of stacked polymers. Furthermore, the RSA class has a another

function find several rings stacked that uses as input the output from the

rings stacking calculation and outputs the network of polymers that are interacting

via ring stacking. It creates a graph object (G(V,E)) in the same manner that was

defined in SCP class to keep track of the polymers that are connected. The tutorial

titled RSA tutorial shows how to run both RSA functions.

Thus, PySoftK v2.0 allows users to conduct ring-stacking analysis, including

the possibility to investigate the formation of dynamical networks in MD simula-

tions. Therefore, this class makes ring stacking calculations available to any user,

contributing to the progress of computational research on conjugated polymers.

https://github.com/Lorenz-Lab-KCL/full_pysoftk/blob/main/pysoftk/pysoftk/pol_analysis/pol_tutorials/RSA_tutorial.ipynb
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Figure 4.19: Code snippet showing how to run the RSA tool.

hydration: solvation calculation. Solvation analysis plays a cru-

cial role in understanding the hydrophobic characteristics of PNP. It helps in

elucidating the solvation shell around these NP and predicting the encapsu-

lation behavior of hydrophobic and hydrophilic drugs within them [69, 93].

Unfortunately, there is currently no openly available software that facili-

tates easy solvation calculations in this context. MDAnalysis has the class

MDAnalysis.analysis.waterdynamics, but it focuses on the dynamics of

water and the interactions of water with other molecules via hydrogen bonds, which

may not be applicable to study the solvation of polymers that cannot form hydrogen

bonds. PySoftK’s hydration class fills this gap by providing a straightforward

method for quantifying solvation. It determines the number of solvent molecules

within the first solvation shell of the specified molecules.

The hydration class operates similarly to the contacts class, where dis-
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tances between selected atoms of the molecules and specific solvent atoms are com-

puted. If the distance is shorter than a user-defined cutoff, the atom is considered

to be solvated. Both atom groups are inputted by the user. Users input both atom

groups and define the cutoff distance, which is recommended to be no greater than

the second peak in the radial distribution function between the solvent and the poly-

mer of interest. This is because this distance corresponds to the first hydration shell.

When using water as the solvent, it is recommended to select just the oxygen water

atoms to speed up calculations. Like all other tools in PySoftK v2.0, the solvation

code can easily take into account the varying number of molecules conforming the

structure and the whole atomic coordinates at each time step. The code snippet in

Figure 4.20 shows how to use this function.

Thus, as it can be seen in Figure 4.20 the required inputs for this function are:

the topology and trajectory files (water topology, water trajectory),

the frames for the calculation (start, stop, step), the resids of the

molecules for the solvation calculation (resids), the whole atomic posi-

tion of all molecules in resids (atom pos), the name of the solvent

molecules (water name), the selected polymer atoms for the solvent calcula-

tion (molecule names) and the cutoff distance to compute the solvation shell

(cut). The output, in this case hydration number, is a list where each entry

represents the solvation of the selected atoms across all molecules in the system.

There are as many entries as the frames in the calculation. Figure 4.21 shows the

average solvation number calculated for all hydrophobic monomers of a micelle.

The tutorial named hydration tutorial shows step by step how to use the

hydration function to calculate the solvation of specific atoms of polymers be-

longing to the same micelle, and how to further process and plot the output data.

4.3.3 tools

All PySoftK analysis classes use the pysoftk.pol analysis.tools mod-

ule, which has two classes, MDA input and utils tools. The MDA input

class is used to load the trajectory as an MDA universe for all calculations. On

https://github.com/Lorenz-Lab-KCL/full_pysoftk/blob/main/pysoftk/pysoftk/pol_analysis/pol_tutorials/hydration_tutorial.ipynb
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Figure 4.20: Code snippet showing how to run the hydration class.
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(a) (b)

Figure 4.21: Hydration calculation of polymer micelle. Average solvation of a diblock
BCP micelle. (a) Average over time of water coordination numbers for all
monomers of hydrophobic block. (b) Snapshot of the diblock polymer being
studied. PMA in pink and PEO in blue. Polymer representation is not to scale.

the other hand, utils tools contains all recurrent functions that the analy-

sis classes use in their computations. Therefore, both tools.utils mda and

tools.utils tools need to be imported whenever a PySoftK analysis tool is

used.

4.4 Conclusion
Pysoftk v2.0 adds a complete module for polymer simulation analysis on top of

PySoftK. This module is divided into two types of analysis, properties of aggre-

gates and molecular-scale interactions analysis. These are designed to offer a wide

variety of analysis possibilities, from density calculations to ring-ring conjugated

polymer interactions. One of the key features of PySoftK v2.0 is that it is able to

reconstruct broken molecules across the pbc when other software, such as GRO-

MACS or MDAnalysis fail. This is particularly convenient if the final structure

wants to be inputted in a different simulation, and also to calculate all types of

physico-chemical properties without artefacts, since MDAnalysis and GROMACS,

do not account for the PBC properly in some of their analysis functions, as ex-

plained previously. A wide set of testing scripts have been created aiming to cover

all the code to ensure its correct functionality. Furthermore, PySoftK v2.0 is de-

signed to provide maximum flexibility to the user, so most functions output the

data per frame, so that the user can decide how to represent or further process the



4.5. Future work 137

data. Another important feature, is that although PySoftK has a special focus on

polymers, the analysis module can be used for any type of molecule, since every-

thing that is needed are just resids, resnames or atom names of interest. The goal

of this module, is to create an open-source platform that allows users to analyse

complex characteristics of their simulations, such as intrinsic density or ring-ring

interactions, with minimal user input. PySoftK v2.0 contributes to the standardisa-

tion of polymer simulation analysis which will allow accurate comparisons across

different types of polymer simulations, speeding up the in silico rational design of

polymeric materials.

4.5 Future work
PySoftK is an evolving project driven by the collaborative efforts of its contributors,

with the aim of providing a robust computational tool for the polymer research

community. Therefore, it is constantly being developed. One immediate focus

is the adaptation of the make micelle whole code so that it is able to make

whole any molecular structure. Currently, it fails when the molecular structure is

bigger than the box size, leaving a low amount of atoms broken across the PBC, as

illustrated in Figure 4.22.

This is not concerning because in this cases, the number of affected atoms is

normally relatively low, so analysis tools are able to compute average quantities.

Additionally, simulations where the structure is bigger than the box length in at

least one dimensions are not good practice, since there is a risk of the structure in-

teracting with itself, which leads to unphysical results. Nevertheless, a function that

is able to make a structure whole and place it in a new box with larger dimensions

is being currently developed.
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Figure 4.22: Limit of make micelle whole. This CG NP is bigger in size than the box
length in one of the dimensions, so make micelle whole cannot make the
micelle completely whole. Atoms inside the red circle are the ones that are
not clustered, PBC box size is in dark blue.



Chapter 5

Therapeutic peptides are

preferentially solubilized in specific

microenvironments within

PEG-PLGA polymer nanoparticles

Polymeric nanoparticles have demonstrated promising results in vitro. However,

the limited understanding of the molecular mechanisms underlying their drug solu-

bilization and controlled release capabilities has hindered efficient clinical transla-

tion of such technologies. Polyethylene glycol-poly(lactic-co-glycolic) acid (PEG-

PLGA) nanoparticles have been widely studied as cancer drug delivery vehicles.

In this Chapter, unbiased coarse-grained molecular dynamics simulations are em-

ployed to model the self-assembly of a PEG-PLGA nanoparticle and its solubuliza-

tion of the anticancer peptide, EEK. This nanoformulation has been shown to be

efficacious against triple negative breast cancer cells in vivo, with the simulations

in this Chapter in agreement with the physical characteristics previously reported

experimentally. Following this validation process, unsupervised machine learning

techniques are utilised to quantify the conformations that polymers adopt at various

locations within the nanoparticle. Findings reveal that the local microenvironments

formed by the various polymer conformations promote preferential EEK solubiliza-

tion within specific regions of the NP. This demonstrates that these microenviron-
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ments are key in controlling drug storage locations within nanoparticles, implying

that the individual polymer conformations within such nanoparticles are potentially

tunable parameters for the rational design of new polymer nanoparticles for thera-

peutic applications.

The work described in this chapter was submitted for publication as a letter

entitled Therapeutic peptides are preferentially solubilized in specific microenvi-

ronments within PEG-PLGA polymer nanoparticles in October 2023.

5.1 Introduction

In the last decades, nanomedicine, and in particular drug-loaded polymeric nanopar-

ticles (NPs) [19, 27], have attracted significant attention as potential candidates for

improving therapeutic delivery, including in tackling cancer [19]. Polymer-based

NPs have several characteristics that make them ideal delivery vehicles for can-

cer therapeutics, such as the biodegradability of their polymeric components [26],

increased circulation time of the encapsulated drug [25, 173] and high NP drug-

loading capacity [17, 174]. In particular, PEG-PLGA NPs have been the subject

of numerous studies, as they have been shown to successfully deliver anti-cancer

drugs to tumorous tissues in vitro [17, 175] and in animal models [33, 176]. Both,

PEG and PLGA, are FDA approved polymers [177].

PEG-PLGA block copolymers are amphiphilic, self-assembling into core-shell

nanoparticles with significant drug encapsulation potential [29, 93, 178]. PEG,

which principally forms the hydrophilic corona of these NPs, increases the water

solubility of the NPs, leading to an increased circulation lifetime and reduced toxic-

ity [179, 180]. Furthermore, PEG-coated NPs have a significantly reduced systemic

clearance time compared to non-PEG NPs [33]. On the other hand, the PLGA

blocks form the hydrophobic core of these PEG-PLGA NPs. PLGA plays an im-

portant role in the controlled drug release [33], reduces the cellular uptake of the NP

by healthy cells via the endocytic route, and increases the drug circulation time in

vivo [181]. Also, due to their amphiphilic nature, PEG-PLGA NPs can encapsulate

drugs with low water-solubility inside the PLGA core [180], and hydrophilic drugs
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within the PEG corona [54].

While PEG-PLGA NPs have been shown to be successful in encapsulating a

range of small molecule therapeutics and delivering them to cancer cells in vitro and

in mouse models, the lack of a clear understanding of the molecular mechanisms

that govern the structure of these NPs, their ability to encapsulate small molecules

and their interactions with cells has prohibited them from having similar success in

clinical applications [45, 48]. These processes are highly dynamic and challeng-

ing to study experimentally, however, a deep understanding at the molecular level

is possible with molecular dynamics (MD) simulations. For example, Stipa et al.

[29] have used all-atom MD simulations to study how PLGA and PLA NPs inter-

act with paracetamol, prednisolone and isoniazid. However, in this work the drugs

were randomly added to the NPs, so the encapsulation process of the drugs was not

captured. Most literature only focuses on small PLGA NPs [54, 182] or simplified

models consisting of only one drug molecule and very small polymer concentra-

tions [93, 183]. It is important to note that to the author’s best knowledge, there

is no MD simulation study of the formation of polymer-based nanoparticles with

the same polymer species, polymer rations and drugs as that of a experimentally

validated NPs. Since the polymer species, length and concentration will affect the

self-assembly, structure and physico-chemical characteristics of the nanoparticle,

a molecular understanding of how experimentally validated PEG-PLGA NPs self-

assemble and encapsulate their cargo is needed. This will not only contribute to

further understand the current characteristics of this delivery vehicle, but it will also

facilitate the tuning of these NPs to obtain enhanced or other desired properties.

Regarding the NP drug cargo, a type of anti-cancer therapeutic that can be en-

capsulated into NPs are antimicrobial peptides (AMP). AMPs are potentially selec-

tive cancer therapeutics. Their physicochemical characteristics (small, cationic and

amphiphilic) [184] enable them to selectively target cancer cells, mainly due to can-

cer cells having more negatively charged lipids than healthy cells [185]. AMPs have

been encapsulated in NP experimentally [186, 187]. NP encapsulation increases the

circulation time of AMPs, protects them from degradation and also delivers a large
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therapeutic concentration in localized areas, increasing its selectivity and lowering

the dose needed. There are very few peptide-NP simulations and none with realistic

drug-polymer systems. For example: Jafari et al. [93] simulated the encapsulation

of the AMP magainin with different concentration of PEG-PLGA, PEG and PLGA.

This study only simulated one peptide per simulation with very small polymer con-

centrations, which lead to very small polymer aggregates. Therefore, computational

MD studies studying the mechanisms of encapsulation of AMPs into experimentally

validated polymer-based nanoparticles are needed.

In this Chapter coarse-grained (CG) MD simulations are used to investigate

the self-assembly of a PEG-PLGA NP and the simultaneous solubilization of the

ACP named EEK. This formulation has been tested against triple negative breast

cancer cells in vivo [2]. From this simulation, the internal structure of the NP and

correspondingly the local environment of EEK within the NP can be studied. This

Chapter provides a molecular-level understanding of PEG-PLGA NP cargo loading

by finding specific polymer conformations that drive the solubilization of EEK in

different drug storage locations. This knowledge is key for the tuning of NP cargo

storage location and the in silico rational design of NP to carry specific therapeutics.

5.2 Methods

5.2.1 Simulation details

CG MD simulation of the self-assembly of the PEG-PLGA NP along with EEK

were performed using GROMACS 2020.3, [188] and the MARTINI (martini22p)

force field [189], which includes polar amino acids and polarizable water. The po-

larizable water model more accurately represents aqueous solution [135] and the

martini22p forcefield has been previously shown to accurately model PEG [190].

Also, since PEG is a non-standard MARTINI topology, an additional PEG topol-

ogy [191] was used. The atomistic structure of the antimicrobial peptide, EEK,

was converted into a CG representation using the CHARMM-GUI Martini Solution

Maker [192, 119]. Previously reported experiments [2] used a molar ratio of EEK to

PEG-PLGA (PEG average Mn = 5000, PLGA Mn = 7000) of 1:14 (weight ratio is
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1:100) [2]. As well as reproducing the experimental synthesis procedure within the

simulation protocol, the simulation had the same molecular weight polymer, poly-

mer concentration and the PEG:PLGA ratio as were used in the experiments. 200

PEG-PLGA copolymers and 15 EEK peptides were randomly placed within a box

of water with dimensions of 20×20×20 nm3 (the system consists of 600 417 CG

beads). Subsequently, this system is inserted into a larger box with size 58×58×58

nm3 so that the various components have space to assemble into the NP. Polarizable

MARTINI water is added to the system and sodium (Na+) and chlorine (Cl−) ions

are added such that the salt concentration is 0.15 M. Periodic boundary conditions

were used. The long-range electrostatic interactions were computed using the Re-

action Field algorithm [152] with the cut-off distance set to 11 Å. Lennard-Jones

interactions also have a cut-off distance of 11 Å. Two consecutive steepest descent

minimizations were performed to remove any undesirable steric artefacts. These

energy minimizations were followed by a temperature equilibration simulation in

the NVT ensemble (4 ns) at 303.15 K, using the leap-frog integrator with a 20 fs

time step. The velocity-rescale thermostat was used, [193] with separate thermo-

stat groups assigned to the EEK molecules, PEG-PLGA polymers, ions and water

molecules. The production simulation was run in the NPT ensemble at 350 K and at

a pressure of 1 atm for 935 ns using the Parrinello-Rahman barostat [194] (all other

simulation details are the same as for the NVT run).

5.2.2 Analysis methods

The analysis of the simulation was performed with Python 3.7 codes using the MD-

Analysis [153] python module. Plots were produced with Matplotlib [195] and

simulation visualizations with VMD [196]. All reported analysis was performed on

the stationary part of the simulation.

NP structural equilibration analysis. In order to determine when the NP struc-

ture had reached stationarity, the time-evolution of the fraction of PLGA monomers

found instantaneously within different regions of the NP core was calculated. This

methodology has previously been used in the study of Pluronic and Tetronic micelle

simulations. [147]. Structural equilibrium is considered reached when the fraction
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of monomers plateaus. Generally, it is important to consider the internal structure of

equilibrating micelles, rather than just their bulk size, in order to accurately quan-

tify structural equilibration in MD simulations. All analysis in this Chapter was

performed on only the stationary portion of the micelle trajectory. In this case, a

burn-in time of 0.6 µs was used, which means that only the final 300 ns of the

simulation trajectory were considered in the analysis.

Radius of gyration.The radius of gyration of the NP, Rgyr, is described by

Equation 5.1

Rgyr =

√
1
M

N

∑
i=1

mi(ri −R)2 (5.1)

where M is the total mass of the body, mi is the mass of atom i and R is

the mean position of all atoms. Both, the radius of gyration of the core of

the NP and of the whole NP were calculated with the MDAnalysis function

radius of gyration().

Spherical density calculation. The spherical density can be used to study the

distribution of components that are approximately spherical. Here, the spherical

densities of the components found within the NP were calculated as a function of

the distance to the center of mass of the NP. That is to say, the distances between

all CG beads of all molecules and the center of mass of the NP (calculated with the

MDAnalysis function center of mass()) were calculated for every time step.

Additionally, for each time step, the distances were binned intp spherical bins (bins

of 0.9nm width), and the number of distances in each bin was counted. This is

equivalent to counting how many particles there are in each spherical bin. Then the

average of the counts in each bin over all time steps was computed to obtain the

time average. This final ouuput contains the average number of particles found at

different distances (bins) from the center of mass of the NP. Then, the density is

calculated with the following equation:

ρb =
Nb

4
3π(R3 − r3)

(5.2)

Where ρb is the density of bin b, Nb is the number of particles in bin b, R is the outer
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radius of the spherical bin and r is the inner radius of the bin.

Intrinsic Core-Shell Interface (ICSI) Method. For micelles with irregular

interfacial structure, intrinsic interface techniques can be used to investigate their

internal and interfacial structure [147]. For this algorithm, you need to define which

atoms in your system form part of the core of your micelle, and which atoms form

part of the shell. First, the ICSI method performs a change of coordinates, from

Cartesian coordinates [x,y,z] to spherical polar coordinates [r,θ ,φ ]. Afterwards, the

ICSI is constructed using a n× n discrete grid centered on the center of mass of

the micelle and that covers the angular domains: cos(θ) ∈ [−1,1] and θ ∈ [−π,π].

Then, for each bin of the grid, the r-positions of the ICSI is defined as the position

of the heavy atoms in the core found furthest from the center of mass of the micelle.

If no atoms are found in a specific bin, which is possible since the micelle can have

an irregular shape, the average r-value of the 8 adjacent grid bins is used. This

process is repeated until the whole ICSI is covered. Therefore, the ICSI equation is

given by:

ρ̃(r)≡
〈

∑
i

δ [r− (ri −ξ (θ ,φ))]

S̄i(r)

〉
(5.3)

where ri is the r-position of atom i and ξ (θ ,φ) is the r-position of the ICSI, and

S̄i(r) is the average volume of the shell. This last parameter, S̄i(r), cannot be calcu-

lated analytically [147]. Therefore, Monte Carlo integration is used to calculate the

shell volumes as:

S̄i(r) =
niV̄box

N
(5.4)

where ni is the number of points found in the same shell as atom i is found over all

the frames analyzed, V̄box is the average volume of the simulation box, and N is the

total number of random coordinates used in the normalization procedure. Normally,

using a number of random points that is an order of magnitude greater than the num-

ber of water molecules in the system, mitigates uncertainty in the intrinsic density

profiles arising from the stochastic normalization procedure. Detailed information

on the working of this algorithm can be found in Ziolek et al.[147]. Specifically

in this Chapter, the MA heavy atoms were selected to form the core of the micelle,
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as they are the principal component of the core (this information could be inferred

by the contacts maps, the hydration data and the spherical density of components).

The grid selected was 21×21.

Autocorrelation function. The autocorrelation function is a statistical tool

used to measure the degree of similarity between a dataset and a time-shifted ver-

sion of itself. It quantifies how a signal or dataset correlates with itself at different

time lags, providing insights into temporal patterns, periodicities, and the persis-

tence of correlations within the data. In essence, it reveals how data points at one

time relate to data points at other times within the same dataset, helping to uncover

underlying trends and dynamics. The calculation of the autocorrelation function

was done with the MDAnalysis module MDAnalysis.lib.correlations,

which calculates the autocorrelation function of binary variables, meaning that it is

either true or false at each frame for a given atom or molecule. The formula used

to calculate the autocorrelations of a property x (such as potential energy, positions,

velocity, etc...) at time t0 to time t0 + τ is:

C(τ) = ⟨x(t0)x(t0+τ)

x(t0)x(t0)
⟩ (5.5)

Contacts calculation. Contacts are used in this Chapter to study the interac-

tions between the peptide, polymer and water. The contacts reported in Figure 5.4

are calculated by computing the distance between the peptide center of mass and

all polymer monomer positions. If this distance was below 6.5 Å, it is counted as

a contact. This is repeated for all time steps, and the final values used for the dif-

ference calculation in Figure 5.4 are the time averages. This parameter to measure

hydration-contacts between molecule and water atoms, is called water coordination

number. The coordination number of a central atom is the number of specific types

of atoms that are within a close distance from it. This value has also been used to

study hydration in Chapter 3. The cutoff distance of 6.5 Å was obtained from the

minimum which directly follows the first peak of the radial distribution functions.

Water-peptide residence time. The residence time of an interaction refers to

the duration or period for which two molecules or atoms remain in close proximity
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or are engaged in a specific interaction. This provides insight into the stability of

interactions, with longer residence times suggesting more stable interactions and

shorter residence times showing transient interactions. This is calculated by com-

puting the contacts between two molecules in each frame, and counting how many

frames a specific contact exists. In this Chapter the residence time of two different

interactions was calculated. First the residence time of the water-peptide interac-

tions of any peptide atom with any water molecule of interest. This provides infor-

mation about whether the peptide is in contact with at least one of its atom with the

water at each time step. The second residence time was of specific peptide amino

acids with the water molecules, this provides information regarding how transient

the interactions between a specific peptide residue and the water are. In both cases,

the average over the whole trajectory of the time length of the contacts is the av-

erage residence time. The average residence time is presented as the percentage of

frames the two molecules are interacting out of all analysis frames.

Contact enrichment between peptides and polymer species. Contact enrich-

ment is a quantitative measure used to assess the preferential interaction between

distinct molecular species within a given system, as revealed by molecular dynam-

ics simulations. It quantifies the extent to which one molecule exhibits a higher

tendency to interact with another molecule, relative to their respective abundances.

This metric is computed by comparing the observed interaction frequency involving

a specific molecule to the expected average interaction frequency, considering the

relative proportions of the molecules involved. The contact enrichment Nenrichment

is calculated with the following formula:

Nenrichment =
Npol species/Ntot pol

Ppol species/Ptot pol
(5.6)

where Npol species is the number of contacts between a peptide and a specific polymer

species, Ntot pol are the total contacts between a peptide and all polymers. Ppol species

are the number of monomers belonging to that specific polymer species and Ptot pol

are the total number of all polymers. A contact between the peptide and a polymer

monomer was considered if any peptide atom was within 6.5 Å of any polymer
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monomer. This was calculated at every time step and the values reported in Table

5.3 are the average over time for the two separate storage locations.

Dimensionality reduction and clustering. The distances chosen as the input

space to generate the two dimensional UMAP embedded data are topology specific.

The goal was to find the minimum number of distances that could represent the

conformational complexity adopted by the polymers. Two distances were selected,

the distance between the terminal monomers of the PLGA block and the distance

from the terminal monomers of the PEO block. These distances were computed

for all frames of the equilibrated system. These two distances were sufficient to

capture the complexity of the polymer conformations. The UMAP embedded output

was later clustered with HDBSCAN, Table 5.1 shows the UMAP and HDBSCAN

parameters chosen.

The intrinsic density of the UMAP clusters was calculated in the same way as

for the overall micelle intrinsic density using the ICSI method [147]. But instead

of using all polymers, only the ones belonging to the specific cluster density being

calculated were used.

Parameters
n neighbours 25
min cluster size 45
cluster selection epsilon 0.85

Table 5.1: UMAP and HDBSCAN parameters. UMAP (n neighbours) and HDBSCAN
(min cluster size and cluster selection epsilon) parameters.

Cargo interactions with polymer clusters. After obtaining the polymer cluster

conformations, the investigation focused on how peptides interacted with the differ-

ent clusters. To analyse this, the enrichment of the various polymer conformational

clusters near the two distinct peptide storage locations was calculated. To charac-

terise the local environment of the storage location located in the core of the NP, all

polymers that had their last PLGA monomer within a radius of 25 Å from the center

of mass of the NP were considered. For the core/corona interface storage location

environment, the focus was on polymers whose last PLGA monomer was found

between 65 Å and 90 Å from the center of mass of the micelle. Subsequently, the
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enrichment of the clusters, Cenrichment, was determined using the following formula:

Cenrichment =
Ni,local/Ntot,local

Ni/Ntotal
(5.7)

Here, Ni,local is the number of polymers from cluster i in the local environment,

Ntot,local is the total number of polymers in the local environment, Ni is the num-

ber of polymers from cluster i in the entire NP and Ntotal is the total number of

polymers in the entire NP. Figures 5.8 (a) and5.8 (b) show the values of Cenrichment,i

for the core/corona interface and core environments, respectively. These calcula-

tions provides insights into how the polymer conformation clusters changed in the

peptide storage locations compared to the average abundance throughout the whole

NP. Then, the contacts between the peptides and the polymers in these environ-

ments were calculated. A contact was considered if the center of mass of a peptide

was within 6.5 Å of any polymer bead. This was calculated at every time step.

Subsequently, the cluster labels of each polymer in contact with the peptide were

identified, and the number of contacts with each cluster was counted and averaged

over the peptides in the different environments and over time. Finally, the percent-

age of contacts with each cluster (with respect to all clusters in each location) was

calculated, and this was divided by the cluster presence percentage at each loca-

tion, to determine whether contacts between the peptides and clusters were due to

preferential interactions, or caused by the relative abundance of each polymer con-

formation.

Amino acid-wise contacts between cargo and polymer clusters. The contacts

between the peptide residues and the polymers belonging to a specific cluster (de-

picted in Figure 5.9) were calculated in a similar way to other contact calculations

in this Chapter. The center of mass of each amino acid was calculated, and if the

distance between itself and any monomer of a polymer belonging to the selected

cluster was below 6.5 Å, it was counted as a contact. This was repeated for all time

steps, and the average was computed over peptides belonging to the same storage

location and over time.

Confidence interval calculation. Error bars in the histograms of this chapter



5.3. Results and Discussion 150

represent confidence intervals calculated at a 90% confidence level. They were

calculated with the following formula:

CI = x̄± z
σ√

n
(5.8)

where x̄ is the mean of the sample, z is set to 1.645 for a 90% CI, σ is the standard

deviation and n is the sample size.

5.3 Results and Discussion

5.3.1 Structural equilibration of PEG-PLGA NP

To determine if the NP had reached equilibrium, the time evolution of the frac-

tion of PLGA monomers within different regions of the NP core was calculated,

as described in Section 5.2.2. Figure 5.1 (a) shows that these quantities become

stationary at approximately 0.6 µs, implying that at that time, the internal structure

of the NP has reached equilibrium. The time frames on which the analysis is cal-

culated throughout this Chapter is shaded in pink in Figure 5.1 (a), since these are

the stationary frames of the simulation. Figure 5.1 (b) shows the radius of of the

NP (and its core alone) over time; these values plateau earlier (after approximately

0.3 µs) than the fraction of PLGA monomers. However, as Figure 5.1 (a) suggests,

structural equilibrium is not achieved by 0.3 µs. This shows that the radius of gyra-

tion is not a sufficient parameter to determine structural equilibrium, as it stabilises

much faster. Instead, the fraction of monomers within the core is a better indicator.

This finding agrees with previous studies conducted in our group [147].

The average radius of gyration of the NP at equilibrium (9.93±0.06 nm) is in

close correspondence to the experimentally measured radius (10 nm) for this formu-

lation [2]. Since all the simulation components were the same as the experimental

ones, and the size and peptide loading capacity obtained from the simulation were

the same as in experiments, it can be assumed that this NP simulation is an accurate

computational representation of the experimental formulation.
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(a) (b)

Figure 5.1: Micelle structural equilibration analysis. (a) Fraction of PLGA monomers
in the core as a function of time. Purple is a distance of r < 30 Å, red r < 40 Å,
and orange r < 50 Å from the micelle center of mass. The area shaded in pink
denotes the time from which the NP is determined to have reached structural
equilibration. (b) Radius of gyration over time of the whole NP (blue) and core
of the NP (pink).

5.3.2 Distribution of NP components

To understand the distribution of the various monomers and peptides within the

NP, the average radial density of the NP components was calculated, as well as

the analogous intrinsic core-shell interface (ICSI) method for comparison [147].

Figure 5.2 (a) shows the average radial density of components, while Figure 5.2 (b)

illustrates the average intrinsic density. Given the NP is approximately spherical,

both methods yield very similar results. From Figure 5.2 (c), which displays the

percentage of polymer species within the core, it becomes evident that the NP core

primarily consists of LA and GA blocks.

Surprisingly, a small nucleus of water forms near the center of the NP core

during the self-assembly process in this unbiased CG MD simulation, as indicated

in Figure 5.2 (a) and (b) by a peak in the water density curve (dark blue) centered

at r ≈ −70 Å. In this same region, there are also peaks in the density of both PEG

and EEK. Therefore, there are EEK peptides encapsulated deeper into the NP core,

and they are found at the interface of the small nucleus of water, as highlighted in

the snapshot in Figure 5.4 (d). To quantify the amount of each molecule type in

the core of the NP, Figure 5.2 (c) shows the percentage of CG beads of the polymer

species, peptides and water within the core. PLGA blocks account for 70% of the

total number of beads within the hydrophobic core while PEO is only around 20%.
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(a) (b)

(c) (d)

Figure 5.2: Internal composition of the PLGA-PEG nanoformulation. (a) Spherical
and (b) intrinsic densities of various components of the polymeric NP and its
aqueous environment, where glycolic acid (GA) is shown in light pink, lactic
acid (LA) in fucsia, EO in light blue, EEK in orange and water in navy blue. (c)
Percentage of the NP core made up by each polymer block, EEK (‘peptide’) and
water. EEK peptides account for 0.5% of the beads in the core. (d) Snapshot of
the cross section of the polymeric NP loaded with EEK peptides, where PLGA
is shown in pink, PEG in light blue, peptide in orange and water in navy blue.
The two peptides located in the inner core can be clearly seen close to the centre
of the NP core, next to the water nucleus.

The water beads in the core only make up to 1.4% of the total beads and the peptides

just 0.5%, as only two peptides are encapsulated deeper into the core as is shown

later. Furthermore, the EO density peak at r ≈ 5 Å (and sudden decrease in the

density of the LA and GA monomers) denotes the boundary between the NP core

and its hydrophilic PEG-based corona. There is also a peak in the EEK density at

the core-shell interface at r ≈ 0 Å), showing that peptides are located at the core-

corona interface (as well as in the NP core).
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(a) (b)

Figure 5.3: Peptide local environment. (a) Distance from all peptides to the COM of the
nanoparticle over time. Orange lines denote each of the peptides and the black
line is the Rg of the core. It is clear that there are two storage locations, one
very close to the center, populated by two peptides, and another one at the core-
shell interface with the remaining peptides. (b) The autocorrelation functions
show the change in local environment of the peptides (average of peptides at
the core-corona interface are shown in black and the two peptides found in the
micelle core are shown in blue and orange). The peptide local environment is
defined as all polymer beads found within 7.5 Å of any bead that is part of a
specific peptide.

Additionally, to gain a deeper understanding of the encapsulation of the EEK

peptides within the NP, the next step was to study the storage locations of the pep-

tides. For this purpose, Figure 5.3 (a) shows the distance between the center of mass

(COM) of each peptide and the COM of the NP over time. This analysis clearly re-

veals that two EEK molecules are encapsulated within the core of the NP, while

the remaining EEK molecules are found at the core-shell interface. No significant

transport of EEK within the NP is observed after the NP self-assembly and struc-

tural equilibration phases are complete. Furthermore, in order to understand if the

peptides always stayed bounded to the same polymer beads, or if they moved dy-

namically, independently of the polymers, while maintaining an approximately con-

stant radial distance from the COM of the NP, the autocorrelation function (ACF)

of the peptides was calculated. This function allows the study of the time-evolution

of each peptide’s local environment (defining the instantaneous local environment

as a list of polymer beads found within a cutoff distance of the peptide). The ACF

results are presented in Figure 5.3 (b). Here, the black lines are the peptides at the
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(a) (b)

Figure 5.4: Cargo contacts and hydration difference between peptide storage loca-
tions. (a) Difference between the average water-peptide contacts (hydration)
per amino acid between the peptides within the core and at the core-corona
interface. (b) Difference between the average polymer-peptide contacts per
amino acid between the peptides within the core and at the core-corona inter-
face. A positive value corresponds to more contacts between a specific EEK
residue and either a polymer bead or water at the center of the core than at the
core-corona interface, and vice versa for a negative value.

core-shell interface and orange and green are the two peptides encapsulated into the

core. It is clear that peptides in both locations readily exchange between different

polymer beads, since the correlation rapidly decays. This indicates that the peptides

are not static within the NP. Interestingly, the local environment of the two peptides

in the core of the NP changes more slowly than those peptides at the core-corona

interface, showing they are less dynamic. This is expected, as they are in contact

with the water, limiting their movement to where the small amount of water trapped

in the core is located. Also, the peptides located in the core are in a more compact

region of the NP than the core-shell peptides, further constraining their movement.

5.3.3 Peptide polymer interactions

To determine the mechanisms of peptide encapsulation in the two different loca-

tions within the NP, the interactions of the EEK molecules with the polymer blocks

and water were investigated. To compare between the two storage locations, the

peptide-polymer and peptide-water contacts were computed for both locations. The

difference in these contact values between both storage locations was computed and

is displayed in Figure 5.4. Figure 5.4(a) shows that EEK peptides inside the core are

generally less hydrated than the peptides on the surface. This is expected since they

have less water available to interact with, as they can only interact with the small
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amount of water close to the NP core center. These EEK-water interactions occur

because the polymer blocks do not completely shield EEK from water, in agreement

with previous computational studies of peptide solubilization by polymers [93]. On

the other hand, Figure 5.4(b) shows the difference in contacts between EEK and all

polymer beads at the core center and the core-corona interface. In the core center,

most peptide residues exhibit a greater number of contacts with polymers than those

peptides at the core-shell interface. This is expected, since peptides in the core are

completely surrounded by polymers, having a greater polymer surface to interact

with. ALA and LYS residues of core residing peptides have the fewest polymer

contacts but are the most heavily hydrated. So for peptides in the core center, these

residues are most commonly found to be in contact with the small water nucleus in

the NP core.

To quantify the frequency with which peptides in the core, and more specifi-

cally certain amino acids within them, come in contact with the small water nucleus,

the residence time of interactions between water beads and both the entire peptide

and individual amino acids (LYS and ALAs) were calculated for both peptides situ-

ated in the core center. The results are displayed in Table 5.2. This table shows that

for the whole of the equilibrated simulation, both peptides located at the core have

at least one bead always in contact with the water trapped inside the core. There-

fore, these peptides are always located near the small water nucleus. Additionally,

the LYS amino acid has a higher residence time than the ALAs, meaning that the

LYS residue will be found more often in contact with the water molecules trapped

in the core.

Knowledge of the storage location allows to study the differences in the in-

teractions between the peptides and polymers in both locations. Table 5.3 displays

the time-averaged enrichment of contacts between the peptides in the two differ-

ent locations and each of the polymer species. The enrichment of contacts is used

to measure the tendency of molecules to interact with each other, taking into ac-

count the molecules abundances. From Table 5.3, it is clear that peptides have more

interactions with PEO in both locations. Interestingly, the peptides located in the
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Peptide Whole LYS ALA ALA
1 100% CI[100%, 100%] 24.63% CI[0.04%, 54.35%] 2.15% CI[1.6%, 2.67%] 2.08% CI[1.48%, 2.68%]
2 100% CI[100%, 100%] 16.12% CI[0.89%, 31.65%] 2.39% CI[1.50%, 3.27%] 2.57% CI[1.84%, 3.31%]

Table 5.2: Residence time of interactions between peptides and water encapsulated in
the core. Values reported are the average residence time over the trajectory and
its corresponding 90% CI in square brackets. Further information about this
method can be found in the Section 5.2.2. The residence times are reported as
percentages of the total time of the simulation analysis. The residence times of
the peptides are 100% which means that the peptides always have at least one
atom in contact with the water, proving that the peptides are always in contact
with the small water nucleus in the core. The amino acids selected for the res-
idence time calculation with the water are the ones that are most hydrated with
respect to the amino acids of the core-shell peptides counterparts. In this case,
the confidence intervals are larger, because these interactions normally consist
of either very long interactions or very transient interactions, which increases
the standard deviation of the data set.

Location LA GA EO
Core center 0.33 CI[0.32, 0.34] 0.37 CI[0.36, 0.39] 2.19 CI[2.17, 2.21]
Core-shell interface 0.48 CI[0.47, 0.48] 0.30 CI[0.29, 0.30] 1.59 CI[1.58, 1.59]

Table 5.3: Contact enrichment between peptides and polymer species. Contact enrich-
ment quantifies the extent to which one molecule exhibits a higher tendency
to interact with another molecule, relative to their respective abundances. This
table shows the contact enrichment between polymer species and peptides, dif-
ferentiating between the two storage location: core and core-shell interface. In
this case, the enrichment takes into account the polymer species and peptide
population in the areas of cargo encapsulation. A value greater than 1 means a
tendency to interact with that species, 1 indicates no preference in interactions,
and a value less than 1 is a tendency to not interact with that polymer species.
Values reported are the contact enrichment average over time with their corre-
sponding 90% CI in square brackets.

core exhibit a much higher tendency to interact with EO monomers than the pep-

tides located at the core-shell interface. This is attributed to the amphiphilicity of

EEK, resulting in its close proximity to the trapped water in the NP core. EO is

hydrophilic, and there is a peak in EO density surrounding the water in the core

(Figure 5.2 (a)); EO is found around the water trapped in the core, where the pep-

tides are also located. This results in a higher number of interactions between EEK

and EO within the NP core.
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5.3.4 Unsupervised learning reveals location-specific polymer

conformations

To investigate the specific conformations that the polymers adopt within the NP, a

two-step unsupervised machine learning protocol consisting of dimensionality re-

duction with UMAP and clustering in the subsequent embedding using HDBSCAN

was applied [147, 150, 151]. The goal of this protocol was to determine whether

polymers within the NP adopt conformations with common features, similar enough

for them to be clustered by UMAP, or if their conformations are very random and

distinct from each other. Since the polymers under investigation are amphiphilic

diblock polymers, their spatial conformation is defined by the end-to-end distance

of the PLGA and PEO block. Therefore, these distances per polymer and over all

equilibrated time steps were the input for UMAP. These two distances were enough

to understand how these polymers fold and to cluster the conformations, since they

capture the behavior of the hydrophobic and hydrophilic blocks of the polymers re-

spectively. Figure 5.5 (a) shows the outputted UMAP embedded space clustered by

HDBSCAN with only 0.41% of molecular conformations not clustered. There are

four distinct clusters, each grouping polymers with similar spatial conformations.

Moreover, Figure 5.5 (b) displays the prevalence of each of the cluster throughout

the equilibrated trajectory and a snapshot of a polymer belonging to each cluster.

Cluster 1 is the most common conformation polymers adopt and cluster 4 the least

common, but it still represents around 15% of the total conformations. Further-

more, Figures 5.5 (c)-(d) illustrate the average block distances of each cluster. This

also shows that the conformations are properly clustered, since all histograms (and

therefore clusters) are sufficiently distinct from each other. From these histograms,

it is clear that Cluster 1 (Figure 5.5 (c)) has a collapsed PEO block and an ex-

tended PLGA block. Conformations within cluster 2 (Figure 5.5 (d)) possess an

extended PEO block and collapsed PLGA block, while in cluster 3 (Figure 5.5 (e))

both blocks are collapsed. Finally, conformations within cluster 4 ((Figure 5.5 (f)))

has a particularly extended PEO block, as well as an extended PLGA block. Each

cluster therefore represents different polymer conformations, which can be readily
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(a) (b)

(c) (d) (e) (f)

Figure 5.5: Unsupervised learning reveals specific polymer conformations. (a) UMAP
embedded space clustered by HDBSCAN of polymers. (b) Bar chart with the
percentage of each conformational cluster within the NP. Next to each percent-
age there is a snapshot of a random polymer within each cluster. In the snap-
shots, PLGA is shown in pink and PEG in cyan. Snapshots of the polymers are
not to scale. Histograms of the average distances of each cluster: (c) cluster 1,
(d) cluster 2, (e) cluster 3 and (f) cluster 4. Note that the error bars show the
90% CI.

understood in a physical sense.

The ICS density calculation method was used to calculate the intrinsic density

of each conformational cluster, to study how these conformations were distributed

throughout the NP. Figure 5.6 (a) reveals the spatial distribution of each conforma-

tion within the NP, with respect to the core-corona interface, which is set as 0 Å in

the x axis of Figure 5.6 (a). Figure 5.6 (a) has been normalized to account for clus-

ter population, as the density values of more populated clusters are higher due to

the larger number of particles. This makes the comparison between density profiles

on the same plot harder (cluster density values would be very far apart). This nor-

malization is applicable, since the density values themselves are not of interest, but

the profile of the density, which provides information of where the polymer clus-

ter is more likely to be found within the NP. Note that cluster 1, with its extended
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(a) (b)

Figure 5.6: Polymer conformations are location specific. (a) Normalised intrinsic den-
sity profile of the various clusters within the NP. The normalization takes into
account the cluster population. Normalized per polymer cluster. (b) Snapshot
of NP with the polymers colored in correspondence to their cluster. The colors
applied in the snapshot are the same as those used for the different clusters in
(a). NP snapshot is not to scale.

PLGA block, exhibits high density in the center of the NP core. Cluster 4, which

conversely has a particularly extended PEG block is surprisingly also found at high

density in the NP core center: the small nucleus of water at the NP promotes the

unexpected location of this conformational state. The PEO block extends to cover

as much of the water surface as possible. Conformational clusters with collapsed

PLGA block (cluster 2 and 3) are more commonly located closer to the core-shell

interface. This is expected, as PLGA will be trying to minimise its contact with

the aqueous environment. Therefore, polymers take specific conformations as a re-

sult of their location within the NP, similarly to previously reported atomistic-level

studies by our group, where we have shown that block copolymers adopt location-

specific conformations within micelles of various polymer chemistries and topolo-

gies [69, 147], like in Chapter 3.

5.3.5 NP microenvironments allow for the encapsulation of EEK

in different locations

Having established this link between location and polymer conformation, the inves-

tigation focused on how EEK interacts with the different conformational states of

the polymers in both the core center and at the core-corona interface. The goal was
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to understand if polymer conformations play an important role in cargo encapsula-

tion. That is to say, whether specific polymer clusters are the ones that allow for

cargo encapsulation, or if EEK peptides interact randomly with all polymer con-

formations. For this purpose, the number of contacts between each EEK peptide

and each of the different polymer conformations were calculated, taking into ac-

count the relative abundance of polymer conformations in the two solubilization

locations. This is essential in order to determine whether any preferential interac-

tions exist between specific polymer conformations and EEK, rather than just local

enrichment of a specific conformation in certain local environments of the NP.

Therefore, the first step was to calculate the relative polymer cluster abundance

in both peptide storage locations. The theoretical details on how the cluster pres-

ence percentage in each storage locations was calculated can be found in Section

5.2.2. Figures 5.7 (a) and (c) show the abundance percentage of each cluster in the

core and core-shell interface cargo storage locations respectively. To understand

how these values change with respect to the polymer cluster abundance averaged

throughout the whole NP (showed in Figure 5.5 (b)), the cluster presence enrich-

ment of the polymer clusters at these locations was calculated with respect to the

overall cluster presence. Figures 5.7 (b) and (d) show the polymer cluster enrich-

ment at the core and core-shell interface respectively. From Figures 5.7 (a)-(b) it is

clear that cluster 1 is the most dominant cluster in the inner storage location with a

high enrichment, meaning that its abundance there is higher than its average cluster

abundance. On the other hand, Figures 5.7 (c)-(d) display that at the core-shell inter-

face location, it is actually cluster 2 and 3 which have a larger enrichment, meaning

that these clusters are present at a higher percentage in this region than their average

value throughout the NP. These results agree with the intrinsic density of the clus-

ters depicted in Figure 5.6 (a). It is interesting to note that this quantification of the

polymer clusters shows that cluster 1, the most abundant cluster in the NP, really

decreases its presence, by almost half, at the core-shell interface location. Further-

more, polymer cluster percentages are significantly different (comparing Figures

5.7 (a) and (c)) at the storage locations. Therefore, this NP clearly posses different
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polymer micro-environments (at the core and core-shell interface) that change with

respect to the distance from the center.

(a) (b)

(c) (d)

Figure 5.7: Polymer micro-environment of peptide storage locations. Cluster presence
percentage of storage location at the (a) core and (c) core-shell interface. Clus-
ter presence enrichment of polymer clusters at the (b) core and (d) core-shell
location of peptide storage with respect to overall cluster presence. A value
greater than 1 means that the cluster is enriched in that region of the NP, and a
value smaller than 1 means the cluster is underrepresented in that area.

The contacts between the peptides and the polymer clusters were computed at

both storage locations, taking into account their relative abundances, to determine

if there were preferential interactions between the peptides and the polymer clusters

at the different storage locations. For this purpose the fractional enrichment of the

contacts (εi) was calculated. The fractional enrichment of contacts between the

polymer conformations and EEK quantifies the tendency of EEK to interact with

a specific polymer cluster, taking into account the abundance of that cluster in the

region of the NP where the EEK molecule is located. εi was calculated as follows:

εi =
ni/ntotal

Ni/Nenvironment
(5.9)
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where ni is the number of contacts between the peptides and the polymers belong-

ing to conformational cluster i in its local environment; ntotal is the total number

of contacts between the peptides and all polymers in the local environment. Ni is

the number of polymers in conformational cluster i that are found in the local envi-

ronment and Nenvironment is the total number of polymers in the local environment.

Figure 5.8 shows the fractional contact enrichment for peptides located in both stor-

age locations. From Figure 5.8 (a) it is evident that EEKs at the core-shell interface

do not preferentially interact with a specific polymer conformation, as the differ-

ences among the clusters are relatively small. Conversely, Figure 5.8 (b) reveals

that peptides located inside the NP core exhibit a clear preference to interact with

a specific polymer environment within the NP hydrophobic core (cluster 4). This

mechanism of encapsulation may be relevant for other amphiphilic drugs that are

also encapsulated into the core of amphiphilic polymer-based NPs [197]. Polymer

conformations featuring a collapsed hydrophobic block and extended hydrophilic

segment that are found in the core of the NP, such as cluster 4, will facilitate the

encapsulation of drugs near water molecules trapped in the core. This is achieved

because the extended hydrophilic block maximizes its contact with the water nu-

cleus and drug, while the collapsed hydrophobic block minimises contacts with the

aqueous environment.

The next step to understand the encapsulation process was to analyse the

monomers with which the peptides tend to interact. For this purpose, Figure 5.9

shows the normalized contact maps for peptides in the core and at the core-shell

of the NP with their preferential polymer cluster, respectively. These contact maps

display the contacts per amino acid of the peptide with all polymer monomers. It

is important to note that EEK found in both locations reside at a polymer-water

interface (Figure 5.2 (a)). Figure 5.9 (a) shows that peptides within the NP core pri-

marily interact with the final monomers of the GA block and the first few monomers

of the EO block of cluster 4 polymers. While interacting with EO, EEK is also in

close proximity to the hydrophobic PLGA block (reflecting EEK’s amphiphilicity).

The polymers which make up cluster 4 are present near the trapped water inter-
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(a) (b)

Figure 5.8: Cargo interactions with polymer conformational clusters. Average enrich-
ment fraction of contacts between polymers in each of the different polymer
clusters within the NP and (a) peptides located at the core-shell interface and
(b) peptides captured inside the core. Note that all error bars show the 90% CI.
The enrichment takes into account the relative cluster population, such that an
enrichment value greater than 1 means the peptides have a tendency to interact
with that polymer conformation, an enrichment value less than 1 suggests that
there is no preferential interaction and a value of 1 means that the peptide and
the polymers from that cluster interact randomly. In (b), there is a snapshot
showing a peptide interacting with the most preferential polymer cluster, clus-
ter 4. In this snapshot, PLGA is coloured pink, PEG is light blue, the peptide
is orange and water is navy blue. Snapshot is not to scale. The error bar of
Cluster 3 in (b) is colored in gray due to poor statistics for this cluster, as there
are not many interaction between the peptides captured inside the core and this
cluster.

face: its extended EO block shields the hydrophobic PLGA polymer blocks from

the water encapsulated in the core. Conversely, EEKs at the core-corona interface

generally interacts mainly with all EO monomers without showing a clear prefer-

ence with a particular region of the hydrophilic block and have very few contacts

with the hydrophobic monomers, as shown in Figure 5.9 (b). This is probably due

to the fact that there is not a clear preferential interaction for peptides located at the

core-shell interface with a specific polymer cluster. Therefore, these peptides just

interact randomly with all EO monomers available, benefiting from interacting with

polymer clusters 1 and 3 (the clusters with the highest preference), since they have

a collapsed PEG block, increasing the available EO monomers to interact with.
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(a)

(b)

Figure 5.9: Normalized contacts between peptides and preferential polymer cluster.
Average normalized contacts over time between peptides at (a) core storage
locations and polymers belonging to cluster 4 and (b) peptides located at the
core-shell interface and cluster 3 polymers.

5.4 Conclusion

The results presented here provide molecular-scale mechanistic insights into the

formation of experimentally validated PEG-PLGA NPs and the encapsulation of

their cargo. The CG MD simulation in this Chapter, results in a NP with the same

loading capacity of EEK peptides and RG as observed in experiments [2]. The

peptides are primarily located at the interface of the NP hydrophobic core (formed

by the PLGA blocks of the polymers) and NP corona (comprised of PEG blocks).

Interestingly, two peptides were encapsulated within the core of the NP, and they are

residing at the interface of a small nucleus of water trapped during the NP formation.

This agrees with experimental studies where they have found drugs encapsulated
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into the core and at surface of PLGA based NPs [33].

Having identified peptides in two distinct locations within the NP, the confor-

mational changes that the polymers undergo at different locations within the NP

were studied. Four distinct conformational clusters were identified, with two of

them being primarily found within the core of the NP and the other two at the

interface of the NP core and its corona. Within the core of the NP, one of the

most prevalent conformations (cluster 1) has an extended PLGA block that extends

through the core of the NP such that its semi-collapsed PEG block can sit at the

core-corona interface. The other conformation (cluster 4) found primarily in the

core of the NP is generally found near the nucleus of water that has formed within

the core. This conformation has an extended PEG block that extends through the

water and a collapsed PLGA block that sits at the interface of the water and polymer.

In the other storage location, at the core-shell interface, both of the most prevalent

conformations have a collapsed PLGA block which sits at the interface of the core

and corona. Regarding the PEO block, one of the conformations has an extended

PEG block (cluster 2) and the other one (cluster 3) a collapsed PEG block. Previ-

ous studies carried out by our group investigated the dynamics of PEG blocks in

amphiphilic block polymers at the interface of polymeric NPs, as they transition

through states where the PEG block is contracted, extended and in an intermediate

[147] state. Thus the two conformations of these PEG-PLGA block copolymers

identified at the core-corona interface, which are present in almost equal measures,

are consistent with the contracted and extended states of the PEG blocks.

Finally, it was investigated if the peptides in the different locations within the

NP interact preferentially with the polymers found in those locations, or if these in-

teractions are random. Peptides located in the NP core, preferentially interact with

the polymers in cluster 4, which are predominantly found near the small water nu-

cleus. This is attributed to the amphiphilic nature of EEK; being encapsulated close

to the water nucleus allows the most hydrophilic peptide residues to remain hy-

drated. Therefore, polymers in cluster 4 are the only ones that enable EEK to be in

contact with the water, while at the same time allowing EEK non-polar amino acids
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to be in contact with the (collapsed) hydrophobic block of the polymers. Therefore,

polymer clusters with a collapsed hydrophobic region and extended hydrophilic

block found within the hydrophobic core of NPs, promote the deeper encapsula-

tion of amphiphilic drugs into the NP core. On the other hand, at the core-corona

interface, peptides interact slightly more with polymers in clusters 1 and 3. These

clusters feature a semi-extended PEG block, and thus can potentially shield some

of the hydrophobic parts of the peptide which may otherwise be hydrated by the

surrounding water. Also, the semi-extended PEG block increases the available EO

monomers for the peptides to interact with. Given the preference of the peptides to

interact with EO monomers compared to the other polymer species, semi-extended

PEG conformations play an important role for the encapsulation of peptides at the

core-shell interface. However, it is important to note, that the peptides at this loca-

tion do not have a particularly strong preferential interaction with any of the clusters.

In conclusion, this Chapter shows that the cargo loading within polymeric NPs

is dependent not only on the NP internal structure, but also on the conformations

that polymers adopt at different regions within the NP. These distinct conformations

create different chemical environments throughout the NP, affecting the ability of

drug encapsulation within these environments. These new results, combined with

the results from Chapter 3, which revealed that polymer topology affects the abil-

ity of polymers to take location-specific conformations within polymeric NPs [69],

demonstrate that controlling the local environments within polymeric NPs is a key

aspect to consider in the rational design of drug loaded NPs. Controlling these en-

vironments will enable precise adjustments to the locations of encapsulated drugs.

5.5 Future work

The methodology presented in this chapter for studying drug encapsulation by

polymeric NP holds promise for broader applications in drug-NP systems. Fu-

ture investigations could leverage the unsupervised machine learning technique

introduced here to explore whether other drugs also exhibit specific encapsulation

preferences within distinct polymer microenvironments. This research could un-
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veil trends and correlations, such as the relationship between the physicochemical

characteristics (e.g. hydrophobicity) of a drug and its propensity for encapsulation

within particular polymer microenvironments.

Furthermore, for the purpose of NP rational design, it would be of interest to

examine whether the polymer clusters identified in this specific PEG-PLGA drug-

loaded NP are dependent on the number of polymers present. Investigating whether

these polymer conformations occur consistently in NPs made of this polymer, re-

gardless of size, or if there is a minimum polymer count required to achieve these

specific polymer conformational clusters could provide valuable insights. This re-

search could be conducted in conjunction with an analysis of NP storage locations

to optimize the balance between NP size and drug loading capacity. Striking the

right balance is essential for overcoming biological barriers that require small NP

sizes while ensuring the successful delivery of an effective drug dose.



Chapter 6

PEG-PLGA active-compound loaded

nanoparticles selectively target

cancer cells due to specific

polymer-lipid interactions

Drug-loaded polyethylene glycol poly(lactic-co-glycolic) acid (PEG-PLGA)

nanoparticles (NPs) have been extensively studied as cancer therapeutics. One

of the reasons is that they have demonstrated selective targeting of cancer cells in

vitro and in animal models [2]. However, the mechanisms driving this targeting

remain unclear. Conventionally, it has been believed that NPs target cancer cells

through the Enhanced Permeation and Retention effect (EPR), which postulates

that NPs accumulate more in tumorous tissue due to easier access via enlarged tight

junctions between endothelial cells. Nevertheless, recent research suggests that the

EPR effect may not be the primary cause of NP selective targeting [35].

In this Chapter, coarse-grain (CG) molecular dynamics (MD) simulations

were employed to study the interactions between an experimentally validated

drug-loaded PEG-PLGA NP [2] and two model membranes with complex lipid

compositions, representing cancer (glioma) and healthy (oligodendroglial) mem-

branes. These simulations aimed to identify molecular behavior differences in the

NP-membrane interactions that may underlie NP selectivity. To achieve this, the
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changes in the physicochemical characteristics of the NPs and membranes induced

by the NP-membrane interactions were quantified and compared across simula-

tions. The simulations revealed that the NP interacting with the cancer membrane

undergoes more significant changes in size and shape than when it interacts with the

healthy membrane. Interestingly, these changes made the NP interacting with the

cancer membrane adopt a size and shape that favour NP transcytosis through mem-

branes. Furthermore, the NP disrupted the cancer membrane to a greater extend

than the healthy membrane, as evidenced by changes in membrane thickness. This

shows that NP selectivity can be studied in silico with membranes containing dif-

ferent lipid composition. Additionally, the primary factor contributing to the greater

changes to the NP and the membrane in the cancer simulation is the preferential

interaction of PEO polymers with a specific lipid species, which is present in higher

percentages in cancer membranes. Therefore, preferential polymer-lipid interac-

tions emerge as a key parameter in understanding NP selectivity towards cancer

cells. Furthermore, this chapter introduces parameters for in silico assessment of

NP selectivity that can be applied to the study of other NP-membrane systems.

6.1 Introduction

Drug-loaded polyethylene glycol poly(lactic-co-glycolic) acid (PEG-PLGA)

nanoparticles (NPs) show promise as cancer therapeutics [198]. These NPs possess

several key characteristics that make them potential anti-cancer drugs, including

controlled drug delivery, biodegradability of their components, enhanced drug sol-

ubility, prolonged circulation times, reduced systemic toxicity, and the ability to

precisely target cancer cells while sparing healthy cells [17, 19, 25, 26, 32, 198].

Furthermore, PEG-PLGA NPs have been shown to successfully deliver anti-cancer

drugs in vitro [2, 175] and in animal models [33, 176]. Despite these character-

istics and promising results in vitro, there is still no FDA approved PEG-PLGA

NP-based treatment for cancer (or other diseases). One of the main reasons is that

the mechanisms of action behind the cancer cell selectivity of these NPs are not
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well understood [45, 48].

For an extended period, the prevailing belief held that NPs target cancer cells

through the passive targeting strategy of the Enhanced Permeation and Retention

(EPR) effect [34], also known as the ’leaky vasculature’ of tumours. The EPR ef-

fect centers around the presence of abnormally large gaps between endothelial cells

in cancer tissue. These enlarged gaps result in an increased vascular permeability,

enabling NPs to access and accumulate within tumorous tissues more readily than in

healthy tissues [199]. Additionally, the EPR effect suggests that the increased accu-

mulation of NPs in cancer tissues stems from the faulty lympathic system within the

tumour, preventing NPs from exiting the tumorous tissue [200]. However, recent re-

search challenges the notion that the EPR effect is the primary mechanism through

which NPs effectively target cancer cells [34, 35]. For example, Sindhwani et al.

[35] demonstrated that 97% of NPs enter tumorous tissue via active targeting of

endothelial cells, such as binding of NPs to endothelial cells or transcellular trans-

port [35]. In this study, researchers are not able to pinpoint which active targeting

mechanisms are more critical, but they highlight the importance on understanding

NP-tumour endothelial cells interactions. Furthermore, Nguyen et al. [201] showed

that NPs can actually exit solid tumors, so they do not stay trapped within the tu-

mour matrix as hypothesized by the EPR effect. According to Nguyen’s study, NPs

are able to exit through the lympathics and return to the blood system, allowing

them to recirculate and interact with the cancer cells again [201]. This allows NP

to deliver the therapeutics that they may not have been able to deliver previously,

which increases the efficacy of the treatment and lowers the required therapeutic

dose. Overall, it is evident that there is an urgent need to further study the interac-

tions between cancer cells and NPs to gain a deeper understanding of why and how

NPs target cancer cells over healthy cells.

The distinction in lipid composition between cancer and healthy cells under-

scores the power of lipidomics, the quantification of lipids in cells, tissues, fluids,

or organisms, as a robust cancer biomarker [39, 202, 203, 204]. Numerous stud-

ies have focused on understanding the several mechanisms behind NP-loaded drug
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delivery to cancer cells, including the forces that drive NP-cancer membrane inter-

actions [35, 45, 49, 50, 51, 52], changes in PEG-PLGA NPs’ properties [49, 53]

affecting cancer cell specificity [37], or the mechanisms governing cargo storage

[54] and delivery into cells [55]. However, there is a notable gap in research on in-

teractions between the polymeric components of experimentally-validated NPs and

lipid species of cancer and healthy cells. These studies would be key to understand if

specific polymers have preferential interactions with lipids that are present in higher

percentages in cancer cells. Since the EPR effect may not be the main cause why

NPs target cancer cells, the NP components will influence its selectivity, and lipid-

polymer interactions may play a key role in this [205]. These interactions are hard to

study experimentally, as they are highly dynamic. Nevertheless, a deep understand-

ing of polymer-lipid interactions is possible at the molecular level with molecular

dynamics (MD) simulations [49, 50, 56]. For example, previous studies have shown

the preference for PEG to interact with certain lipid types such as 1-palmitoyl-2-

oleoyl-sn-glycero-3-phospho-(1’-rac-glycerol) (POPG) which are present in higher

percentages in some types of cancer membranes [44] than in healthy cell mem-

branes. Also, there have been MD simulation studies of anti-cancer NP and mem-

brane interactions, but most of these studies use very simple membrane models,

with only one or two lipids species [206, 207], so the effect of cancer specific lipid

composition is lost in these simulations.

In this Chapter, CG MD were employed to study the mechanisms of action

underlying the cancer selectivity of an experimentally validated PEG-PLGA NP

loaded with an anticancer peptide, named EEK [2]. This NP, introduced in Chap-

ter 5, has been experimentally confirmed to exhibit high selectivity against triple

negative breast cancer cells. In these simulations, the NP had the same polymer

number and ratio, diameter and cargo loading capacity as in experiments. Two pro-

cesses were simulated, the first one; the interactions of the NP with a model glioma

(cancer) membrane and the second one, the interactions of the NP with a model

oligodendroglia (healthy) membrane. Both membranes consist of the 7 major lipid

species of each cell line, which are of course, different between them. To the au-
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thor’s best knowledge, this is the most detailed computational study with complex

membranes of experimentally validated PEG-PLGA NPs. From these simulations,

molecular-level detail of the differences in the interaction of this NP and EEK cargo

with cancer and healthy cells were obtained. Furthermore, these MD simulations

enable the quantification of several physicochemical changes that NPs undergo

when interacting with membranes, facilitating comparison across simulations that

reveal how NPs display distinct behaviour at the molecular level depending on the

membrane with which they interact. Finally, these simulations also demonstrate that

specific polymer-lipid interactions may be a key factor in NP selectivity towards

cancer cells. It is important to note that the simulation approach proposed in this

Chapter can be used to study the same processes for different polymeric NPs and

cell lines. The molecular study of the proposed polymer-lipid interaction parameter

is key for the rational design of NPs, enabling the tuning and synthesis of NPs with

enhanced cancer specificity.

6.2 Methods

6.2.1 Simulation details

All simulations were performed using GROMACS [188] versions 2019.2 and

2020.3 (www.gromacs.org). Coarse-grained (CG) molecular dynamics (MD) simu-

lations were employed to investigate the interactions of a NP formed by block co-

polymers containing polyethylene glycol (PEG) and poly(lactic-co-glycolic acid)

(PLGA) loaded with the antimicrobial peptide named EEK with two different lipid

membranes: a model glioma lipid bilayer and a model bovine oligodendroglia lipid

bilayer.

The MARTINI CG force field [189] was used. In particular, the martini22p

forcefield, which includes: polar amino acids, Martini 2.0 lipids and polarizable

water, as this model represents more accurately the polarized nature of water [135].

This forcefield has been shown to adequately simulate polymers, especially PEG

[190]. Also, the non-standard MARTINI topology which includes PEO [191] was
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used, as this is one of the NP polymeric components.

The NP used for the simulations is the same as in Chapter 5. Therefore, the

methods describing the formation of this NP can be seen in Section 5.2.1. The NP

was simulated with two different model membranes: (i) a healthy cell membrane,

which was modelled using the lipid composition of Bovine oligodendroglia cells

[208] and (ii) a cancer cell membrane, for which the composition of a glioma cell

was used [208, 209]. All bilayers were created using CHARMM-GUI Martini Bi-

layer Maker [119, 192, 210] with the martini22p forcefield. All membranes have

approximately 5000 lipids in total. The lipid compositions of the different bilayers

are illustrated in Table 6.1.

Cancer model Healthy model
Lipid type UL LL UL LL

POPC 44% 34% 50% 40%
POPE 6% 17% 20% 25%
DPSM 39% 0% 12% 0%
POPS 0% 11% 0% 12%
POP2 0% 6% 0% 2%
POPI 0% 21% 0% 3%

CHOL 11% 11% 18% 18%

Table 6.1: Membrane lipid composition. Table showing the lipid composition in the up-
per (UL) and lower leaflets (LL) of the cancer and healthy model membranes
respectively.

In both simulations, the center of mass of the NP was initially placed approx-

imately 20 nm above the phospholipid headgroups of the upper leaflet of the mem-

brane bilayer. The solvant in every simulation was water, and Na+ and Cl− ions

were added so that the system had neutral charge and a 0.15 M salt concentration.

In order to equilibrate all systems, the first step was a steepest descent minimiza-

tion, followed by six equilibration steps. First, a 1 ns NVT equilibration with a

timestep of 2 fs with the whole system at 303.15 K. Then a 1 ns NVT simulation

with a 5 fs time step with the water and ions at 363K and the rest of the system at

303.15 K, to let the water equilibrate faster around the system. Then, three NPT

simulations of 1 ns each with timesteps of 1, 15 and 20 fs respectively. All NPT
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simulations used a velocity-rescale thermostat, with the temperature groups of the

protein, polymers, membrane (which includes all lipids forming the bilayer) and

ions and water as one group. All groups were at 303.15 K. The electrostatic inter-

actions were computed using the Reaction-Field algorithm [152] with a coulomb

cut-off of 11 Å and the van der Waals interactions had a cut-off of 10 Å. In the

minimization and equilibration steps, the NP was subject to position restraints, to

let the solvent and membrane equilibrate in the new system, as the NP had already

run for a considerably long equilibration.

For the production run, the same parameters as in the NPT equilibration were

used except for the barostat which is is Parrinello-Rahman [194] at 1 atm. These

simulations ran for 5 µs, but they were capped at 2 µs, so all analysis showed in this

Chapter is for the first 2 µs of the simulations. The simulation analysis was only

performed until 2 µs due to two reasons, which are illustrated in Figure 6.1. First,

from 2 µs, the membrane area started becoming very saturated with PEO polymer

arms, since these were crossing the PBC. This also caused the NP to interact with

itself. Figure 6.1 (a) shows the fraction of the x-y membrane area covered by the

NP over time. It is clear that from 2 µs, the values start approaching 1, meaning that

the number of PEO arms crossing the PBC and interacting with itself is significant.

This phenomenon can be visually observed in Figure 6.1 (c). This Figure shows

a top-view of the NP interacting with the cancer membrane. The PEO monomers

inside the red circles, have just crossed the PBC. The second reason is that after 2

µs, probably due to the membrane saturation, the membranes started bending very

quickly, in a non-physical way, particularly the healthy membrane. This membrane

bending led to a significant reduction in size of the simulation box in the x-y plane,

creating a non-physical situation. This is captured in Figure 6.1 (b) which shows

the 2-d simulation area over time. From here, it is clear that the area decreases

significantly, specially for the healthy membrane. Therefore, the analysis of the

simulations were capped at 2 µs, just before nonphysical bending and reduction in

simulation x-y area, and self-interactions of the NP appeared. Also, note that the

different membranes had been previously equilibrated for 500 ns.
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(a) (b) (c)

Figure 6.1: Simulations were capped at 2 µs. (a) Fraction of membrane surface covered
by the NP in the cancer (purple) and healthy (green) simulations. (b) Evolution
of simulation box x-y surface over time for the cancer (purple) and healthy
(green) simulations. (c) Top-view representation of the NP interacting with
the cancer membrane at 2.2 µs. PEO beads are colored in cyan and phosphate
groups of the membrane in dark green. The red circles encapsulate the PEO
beads that have crossed the PBC. Representation is not to scale.

6.2.2 Analysis methods

The analysis of these simulations focused on: i) the physichochemical properties

of the NP during its interaction with the different membranes, ii) membrane per-

turbation due to the NP, and iii) drug delivery efficiency. All analysis were per-

formed using Python 3.7, with the Python packages: MDAnalysis [153, 211] and

LiPyphilic [166], as well as the membrane thickness analysis software FATSLiM

[212] and GROMACS. Plots were produced with Matplotlib [195] and simulation

visualizations with VMD [196].

NP-membrane distance. The distance between the NP and the membrane

is computed to discern which membrane the NP interacts with more rapidly and

within which membrane it embeds itself more deeply, indicative of preferential

interactions. The distance from the NP center of mass (COM) to the membrane

surface was measured using MDAnalysis. The distance was taken from the z co-

ordinate of the center of mass of the NP, determined by the MDAnalysis function

center of mass(), to the membrane surface. The membrane surface was de-

fined by the average z-coordinate of the PO4 (phosphate headgroup) beads of the

upper leaflet of the lipid bilayer. As stated above, to calculate the NP-membrane

distance, the NP COM was picked instead of the center of geometry. The COM of

an object is defined as the point at which the entire mass of the object can be as-
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sumed to be concentrated. Mathematically, the COM is calculated as the weighted

average of the positions of all the individual mass elements in the system, with the

weights being the masses of those elements. On the other hand, the center of geom-

etry (COG) is the point that represents the geometrical center of an object. For the

calculation of the NP-membrane distance, the COM was picked instead of the COG

because of the conformational changes the NP undergoes throughout its interactions

with the membrane. The PEO arms of the NP expand and contract regularly, which

may change significantly the shape of the NP, resulting in the COG being quite vari-

able during the course of its interaction with the membrane. On the other hand, the

COM of the NP is more stable, since it takes longer for the mass distribution of the

NP to change, and thus is a better reference point for this analysis.

NP radius of gyration (Rgyr). The radius of gyration of the NP is a measure of

the size of the NP. The radius of gyration of the NP, Rgyr, is described by Equation

(6.1)

Rgyr =

√
1
M

N

∑
i=1

mi(ri −R)2 (6.1)

where M is the total mass of the body, mi is the mass of atom i and R is

the mean position of all atoms. Both, the radius of gyration of the core of

the NP and of the whole NP were calculated with the MDAnalysis function

radius of gyration(). The core of the NP was defined as the PLGA block

of the polymers and EEK peptides, and the whole NP was defined as the PEO-PGA

polymer and EEK peptides. This definition of NP whole and core is the same for

all other analysis.

NP eccentricity (ε). The eccentricity of the NP was used in this Chapter to

study the shape of the NP. The eccentricity computation was calculated with the

MDAnalysis function moment of inertia(). From the moment of inertia, the

eccentricity ε was calculated with the following formula:

ε = 1− Imin

Imean
(6.2)

where ε is the eccentricity value, Imin is the minimum moment of inertia across
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all axis, and Imean is the mean moment of inertia over all axis. If ε = 0, then the

structure is considered to be a perfect sphere, and as values go further way from 0,

the structure is increasingly oblong.

Radial distance of EEK peptides with respect to the NP COM. To determine if

the peptides changed their storage location within the NP throughout the simulation,

the radial distance between the peptides and the COM of the NP was calculated. At

each time step, the distance between the peptides COM and the NP COM was cal-

culated using the MDAnalysis function, mda.distances.distance array.

Fractions of EO monomers in contact. The fraction of EO monomers inter-

acting with at least one lipid was calculated by analysing how many EO monomers

had at least one contact with any lipid atom. A contact is counted if an EO monomer

is at a maximum distance of 6 Å from any lipid atom. The distance of 6 Å was ob-

tained from the second peak of the radial distribution function plot between the EO

monomers and lipids, calculated with the MDAnalysis radial distribution function

rdf calc.InterRDF. This contact calculation was computed over the course of

the trajectory. Per time step, the number of contacts was divided by the total number

of EO monomers to obtain the fraction of EO monomers in contact with a lipid out

of all EO monomers.

Contacts lipids-EO. The contacts between the lipids and the EO is used in

this Chapter to study the interactions between the polymer and the membrane. The

number of contacts per time step was calculated by counting how many lipid atoms

were at a distance smaller than 6 Å from any EO monomer. This was calculated

per lipid species and for all lipids.

Fractional enrichment of EO-lipid interactions. The fractional enrichment of

EO-lipid interactions was calculated to discern whether these interactions between

EO monomers and a specific lipid species were primarily due to the lipid’s high

presence in the membrane or indicative of a genuine preferential interaction with

PEO polymers. Therefore, contact enrichment is a quantitative measure used to as-

sess the preferential interaction between distinct molecular species within a given

system. It quantifies the extent to which one molecule exhibits a higher tendency to
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interact with another molecule, relative to their respective abundances. This metric

is computed by comparing the observed interaction frequency involving a specific

molecule to the expected average interaction frequency, considering the relative pro-

portions of the molecules involved. This contact enrichment Nenrichment is calculated

with the following formula:

Nenrichment =
Nlipid species/Ntot lipid

Plipid species/Ptot lipid
(6.3)

where Nlipid species is the number of contacts between EO monomers and a spe-

cific lipid species, Ntot lipid are the total contacts between EO monomers and all

lipids. Plipid species are the number of lipids belonging to that specific lipid species

and Ptot lipid are the total number lipids. A contact between the lipid and a EO

monomer was considered if any lipid atom was within 6 Å of any EO monomer.

The enrichment values reported in this Chapter are the time averages.

EEK distance to membrane. To study if the peptides also have selectivity

towards cancer cells, the distance in z between the peptides center of mass and the

upper leaflet of the membrane was calculated. This was computed as the norm

between the z position of the center of mass of each peptide and the average z

position of the membrane upper leaflet phosphate groups.

Probability of PEO polymer extension on membrane. To quantify the ex-

tension of the PEO polymers once in contact with the membrane, the probability

of PEO arm extension on the membrane was computed. This calculation was per-

formed at different time steps to provide a time-evolution of the PEO extension.

This was calculated by obtaining the two dimensional distance (using only the x and

y coordinates) from the COM of the NP of those EO monomers that were in contact

with at least one lipid atom. Then these distances were divided by the length of the

membrane in x (the membrane has the same size in x and y) so that the distance

value provided is a percentage of the membrane extension. This is useful to know

how much of the membrane the polymers are able to cover. Subsequently, these

distances are binned and the number of distance values in each bin were counted.

Afterwards, the number of values in each bin was divided by the number of total



6.2. Methods 179

values binned, to calculated the probability. This calculation was performed over

100 frames and averaged over those frames. The times of the analysis were 500ns, 1

µs and 2 µs to see how the probability distribution of the PEO arm extension varies

over time.

Lipid coordination number. The lipid coordination number of EO monomers

serves as a metric for assessing the number of lipid atoms in close proximity to

a specific EO monomer, essentially indicating how closely packed lipid atoms are

around it. This measure aids in determining the extent to which polymers are em-

bedded within the membrane, as deeper embedding correlates with a more densely

packed lipid environment surrounding the EO monomers. This is calculated per

time step, by counting how many lipid atoms are in contact with a specific monomer

type. Again, two atoms are defined to be in contact if the distance between them

is less than 6 Å. Then, the total number of contacts per time step is divided by the

amount of monomers of that specific type to normalize the results.

Membrane thickness calculation. Membrane thickness was used to quan-

tify the degree of NP-induced perturbation in both membranes. In order to per-

form this analysis, the membrane was centered in the box using the LiPyphilic

tool lipyphilic.transformations.center membrane [166]. After-

wards, due to high membrane curvature, the membrane thickness per time step was

calculated with FATSLim [212] and it was plotted with Lipyphilic [166]. FAT-

Slim divides the membrane into a three dimensional grid, where each cube of

the grid contains a few lipids. This allows the calculation of the thickness per

cube of the grid, obtaining the thickness of different points of the membrane.

This also allows FATSlim to easily account for membrane curvature in the thick-

ness calculation. The membrane thickness was plotted with the LiPyphilic tool,

lipyphilic.projection plot() which allows a 2-d top view representa-

tion of the membrane, displaying a heatmap of the thickness throughout the mem-

brane. Also, in these plots the 2-d representation of the NP on top of the membrane

is shown by two circles centered at the 2-d COM of the NP, where the radius of the

inner circle is the RG of the NP core and the outer circle is the RG of the whole NP.
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This representation shows the correlation between the NP position on the membrane

and the decrease in membrane thickness under that region.

Confidence interval calculation. Error intervals reported in this Chapter are

the confidence intervals calculated at a 90% confidence. They were calculated with

the following formula:

CI = x̄± z
σ√

n
(6.4)

where x̄ is the mean of the sample, z is set to 1.645 for a 90% CI, σ is the standard

deviation and n is the sample size.

6.3 Results and Discussion

6.3.1 NP approach to membrane

The first parameter studied to ascertain whether the NP displays preferential se-

lectivity with either of the membranes is the distance between the center of mass

(COM) of the NP and the upper leaflet of the membrane. This distance is depicted

for both simulations in Figure 6.2 (d). Notably, the NP approached each of the mem-

branes at different speeds, reaching the cancer membrane significantly faster than

the healthy one. Both simulations began with the NP positioned at the same initial

distance from the membrane, as depicted in Figure 6.2 (a). Figure 6.2 (d) shows that

the NP initially approached both membranes similarly until approximately 700 ns.

From this point, the NP starts advancing toward the cancer membrane much more

rapidly than the healthy membrane. It’s worth noting that the NP has a core radius

of approximately 7 nm, represented in Figure 6.2 (d) by the dashed line. Therefore,

when the distance between the NP COM and the membrane upper leaflet falls below

the NP core radius, it signifies that the NP is embedding itself within the membrane.

In the case of the cancer simulation, this occurs just before 1 µs, while in the healthy

simulation this happens towards the end of the simulation, just before 2 µs. This ob-

servation suggests preferential interactions between the polymer components of the

NP and the lipids of the cancer membrane. Specifically, interactions between the

PEO polymers and the membrane play a crucial role in pulling the NP toward the

membrane, as it can be seen in 6.2 (b). Consequently, Figure 6.2 (d) leads to the
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hypothesis that there are more interactions between the cancer lipids and the NP,

enabling them to exert a stronger and faster pull on the NP toward the membrane

compared to the healthy counterpart. Furthermore, not only the NP approached the

cancer membrane faster, but it was also able to insert deeper into the membrane.

Figure 6.2 (c) shows the NP embedded into the cancer membrane.

6.3.2 Quantification of NP physical changes during its interac-

tion with the membrane

The NP physicochemical characteristics impact its cancer selectivity and drug de-

livery capabilities. In particular, the shape of the NP can influence its ability to

insert into the membrane [51, 213]. Among the NP shapes that have shown a

greater efficacy in breaching lipid membranes are ellipsoidal or rice-shaped NPs

[214]. These elongated geometries facilitate insertion into lipid bilayers, thereby

enhancing their membrane-penetrating properties. The mechanistic underpinnings

of this phenomenon involve reduced steric hindrance and an increased contact area

between the NP surface and the lipid membrane. Furthermore, Guo et al. [215]

demonstrated using Monte Carlo simulations that NP can change their shape in

response to interactions with the membrane. In the simulations presented in this

Chapter, the NP also undergoes changes in its shape and size during interactions

with both membranes. These changes were quantified by measuring the eccentric-

ity and radius of gyration of the NP core and whole NP during the interactions with

the membranes.

Figure 6.3 shows the changes in the radius of gyration and eccentricity of the

NP in both simulations as a function of the NP proximity to the membrane. From

here, it is clear that the NP undergoes size changes during the interaction with the

membranes, as evidenced by variations in the radius of gyration and eccentricity

over the course of the simulation. These results align with the simulations finding

in Guo et al. Figures 6.3 (a) and (d) depict the changes in the RG for the cancer

and healthy simulation respectively. From these figures, it is clear that the general

trend in both simulations is that the radius of gyration of the whole NP increases

as the NP is closer the membrane. This is due to the interaction of the PEO arms
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(a) (b) (c)

(d)

(e) (f) (g)

Figure 6.2: PEG-PLGA NP approaches cancer membrane faster. (a) Snapshot of NP
and cancer membrane (a) at the start of the simulation, (b) at 500ns and (c)
cross-section view at approximately 2 µs. Snapshot of NP and healthy mem-
brane (e) at the start of the simulation, (f) at 500ns and (g) at 2 µs. In all
snapshots, PEG is in blue, PLGA in pink, EEK in orange and phosphate groups
of the membrane in green. Snapshots in (b) and (f) have the phosphate groups
colored transparently so the extension of the PEO arms on the membrane can
be appreciated. Moreover, in snapshots (c) and (g) the membrane curvature
induced by the NP is clearly visible, being more pronounced in (c) than (g).
Snapshot are not to scale. (d) Distance in the z dimension between the NP
center of mass (COM) and the average phosphate group positions in the upper
leaflet. In green, the distance obtained from the healthy simulation and purple
from the cancer one. The RG of the NP core is represented by the dotted line in
salmon. Therefore, if the distance between the membrane and NP is below the
dotted line it means the NP is embedded into the membrane.
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(a) (b) (c)

(d) (e) (f)

Figure 6.3: Differences in the shape of NP during its interactions with the membranes.
Changes in the value of the RG of the core and whole NP as a function of
a distance to the phosphate groups of the upper leaflet for (a) cancer and (d)
healthy simulation. Changes in the value of the eccentricity (ε) of the core
and whole NP as a function of a distance to the phosphate groups of the upper
leaflet for (b) cancer and (e) healthy simulation. Snapshot of the PLGA core (to
illustrate its shape) interacting with (c) cancer and (f) healthy membranes. The
PLGA core is displayed in pink and the phosphate groups of the membrane in
transparent green. Snapshots are not to scale.

with the lipids within the membrane. Throughout the simulations, the PEO arms

extend over the surface of the membranes, and they also extend into (and in some

cases across) the hydrophobic core of the membrane. These PEO arm extensions

are the responsible for the overall increase in the RG of the NP. Meanwhile, when

considering the radius of gyration of the core of the NP, it is harder to observe

a clear trend in the NP-healthy membrane simulation, as seen in Figure 6.3 (d),

where the RG of the core takes approximately constant values. In contrast, the NP-

cancer membrane simulation exhibits a pronounced trend. Figure 6.3 (a) shows that

the RG of the NP core decreases once the distance between the NP and membrane

falls below 10 Å, and continues to decrease as the NP embeds itself deeper into the

membrane. This observation implies that the NP core becomes denser and more

rigid as it inserts deeper into the membrane.
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The RG measures the size of NPs, but to quantify the shape of pseudo-spherical

NPs, the eccentricity (ε) is normally used. The eccentricity is a measure of how

spherical an object is. An ε of 0 means the body is a perfect sphere, and as val-

ues increase approaching 1, the body is increasingly oblong. Similar to the RG,

the eccentricity of the entire NP experiences an increase as the NP approaches both

membranes, as illustrated in Figures 6.3 (b) and (e) for the cancer and healthy mem-

branes, respectively. This rise in eccentricity for the entire NP is attributed to the

extension of the PEO arms, which reduces the overall sphericity of the NP. Again,

determining a distinct trend for the eccentricity of the NP core during the interac-

tion with the healthy membrane is challenging. As observed in Figure 6.3 (e), these

eccentricity values exhibit no specific pattern in relation to the distance between the

NP and the membrane, with all ε values contained within the range [0 and 0.32],

meaning that the NP core is approximately spherical during its interaction with the

healthy membrane. A snapshot of the NP core at 1.5 µs is depicted in Figure 6.3 (f).

From this snapshot, it is evident that the NP core is mostly spherical. This, coupled

with the minimal variations in the RG of the NP core during the interaction with the

healthy membrane, indicates that the NP core undergoes few physical alterations in

the healthy simulation.

Conversely, regarding the eccentricity of the NP interacting with the cancer

membrane, the trend is again very clear, the NP PLGA core adopts a more oblong

shape the more it interacts with the cancer membrane, eventually reaching ε values

of 0.6, as depicted in Figure 6.3 (b). A snapshot of the NP core interacting with

the cancer membrane at 1.2 µs is shown in Figure 6.3 (c). This snapshot clearly

showcases this transformation of the NP core as it interacts with the cancer mem-

brane, showing that the NP core has adopted a more oblong or ‘rice-like’ shape.

The reduction in the RG of the NP PLGA core, coupled with the increase in ec-

centricity, indicates that the NP core undergoes size and shape alterations during its

interaction with the cancer membrane, becoming more compact and stiff (an overall

reduction in volume) and taking on an ellipsoidal-like form. This shape results in

a larger contact area between the PLGA core and the membrane compared to the
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spherical shape. Furthermore, recent studies [213, 214] show that NPs that are more

stiff or have rice-like shape are able to transcytose faster than spherical soft NPs.

Hence, according to existing literature, the physical modifications undergone by the

NP core during the interaction with the cancer membrane promote rapid transcy-

tosis. Moreover, the reduction in size and increase in NP surface area in contact

with the membrane, also favours the delivery of the peptides and their diffusion

into the membrane, because this proximity allows the EEK peptides to approach

the membrane more closely and increase their contact area with the lipids.

These changes in size and shape of the PLGA core probably occur due to the

rapid interactions of the PEO polymers with the cancer lipids. The extension of the

PEO arms over the membrane causes the PLGA core to be less shielded from water

(since a high amount of PEO monomers are now interacting with the membrane

instead of covering the PLGA). This forces the PLGA core to collapse to minimise

its contacts with the water molecules, reducing its RG, and at the same time, to

increase its surface in contact with the membrane (reducing the surface exposed to

the water molecules), thereby elevating its eccentricity. It is also possible that the

PEO arms reaching the membrane and extending over it, may exert pressure on the

PLGA core, forcing it to adopt a more oblong-like shape.

Overall, the rapid interactions of the PEO polymers with the cancer lipids,

demonstrated by the fast approach of the NP to this membrane, induce changes in

the PLGA core of the NP. These changes not only facilitate the approach of the

peptides to the membrane, but also make the PLGA core adopt a size and shape that

favour NP transcytosis through the membrane.

6.3.3 Behaviour of nano-encapsulated EEK peptides

EEK peptides are encapsulated into this PEG-PLGA NP at two different storage

locations. The first location is deep into the PLGA core, and there are two peptides,

and the second storage location is at the core-shell interface, where the remaining 13

peptides can be found. These two storage locations should be understood as specific

ranges of radial distances from the COM of the NP, so that the peptide can move

within that radial distance and would still be considered to be in the same storage
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(a) (b)

Figure 6.4: Peptides storage location remains stable during interactions with the mem-
brane. Radial distance with respect to the NP COM of each of the peptides for
(a) cancer and (b) healthy simulation. Clearly, there are two storage locations
in the NP, one deeper into the NP core, where two peptides reside, and another
one at the core-shell interface with the remaining 13 peptides.

location. Details on both of these storage locations can be found in Chapter 5, which

discusses how EEK peptides are encapsulated into these two distinct locations. In

order to determine if the storage location of the peptides change as the NP interacts

with the membrane, the radial distance between each of the EEK peptides COM and

the NP COM was calculated per time frame. Figure 6.4 shows the distance for all

peptides throughout the simulations. In both membranes, cancer (Figure 6.4 (a)) and

healthy (Figure 6.4 (b)), peptides do not change significantly their storage location,

since they are at approximately the same distance from the NP COM throughout

the simulations. This is probably due to the fact that there are still enough PEO

polymers surrounding the NP so that it is still more preferential for peptides at

the core-shell interface to stay there than to diffuse into the membrane. The same

explanation can be applied to the peptides in the core storage location.

However, the fact that peptides do not change their radial position does not

mean that they are not moving towards the membrane, since they could be moving

towards to the membrane within their radial storage space. To quantify this, the

distances between the z coordinate of each EEK COM and the average z position of

the phosphate groups of the upper leaflet of both membranes were calculated. The

average over the last 50 frames of the simulation, so when both NP are in contact
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Simulation Distance (Å)
Cancer 29.47±2.43
Healthy 56.72±3.25

Table 6.2: Average distance EEK and membrane Average over the last 50 frames of the
distance between all EEK peptides and the average upper leaflet phosphate group
of the membrane.

with their respective membranes, is shown in Table 6.2.

Table 6.2 reveals that in the cancer simulation, EEK peptides approach the

membrane more closely compared to the healthy simulation. This means that pep-

tides in the cancer simulation, keeping their radial distance to the NP COM approx-

imately the same, move towards the lower part of the NP, which is the one closer

to the membrane. Furthermore, Figures 6.5 (a)-(f) show the z distance between

some of the peptides COM and the phosphate group of the upper leaflet lipids for

the healthy and cancer simulation. Additionally, to show that the peptides are not

static within the NP, the z distances between the COM of the NP and the mem-

branes are also plotted in Figures 6.5 (a)-(f). Since the peptide-membrane distance

and NP-membrane distance evolve differently, it is clear that the peptides move in-

dependently of the NP. Figures 6.5 (a)-(c) depict the movement of three peptides in

the cancer simulation and Figures 6.5 (d)-(f) display the same peptides but for the

healthy simulation. It is important to note that peptides have the same starting posi-

tions at the beginning of both simulations. From theses Figure, it is evident that the

EEK peptides in the cancer simulation consistently move towards the membrane, re-

gardless of the NP movement. These peptides approach the membrane more rapidly

and closely than their healthy counterparts. In contrast, peptides in the healthy sim-

ulation do not exhibit a clear trend towards the membrane. Their movement is more

aligned with the NP movement, as shown in Figures 6.5 (e)-(f). Another differ-

ence across simulations is that EEK peptides in the cancer simulation continuously

move towards the membrane, while in the healthy simulation, peptides oscillate di-

rections more, which can be particularly appreciated in Figure 6.5 (e), where the

peptide does not consistently reduce its distance from the membrane. Figure 6.5 (g)

illustrates a snapshot of the PLGA core (pink) with the peptides (orange) interacting
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(a) (b) (c)

(d) (e) (f)

(g) (h)

Figure 6.5: EEK peptides are selective towards cancer membranes. z-distance between
specific EEK peptides and membrane upper leaflet for (a), (b) and (c) cancer
simulation and (d), (e) and (f) for the healthy simulation. Snapshots of the
PLGA core (pink), peptides (orange) and phosphate groups of the membrane
lipids (dark green) in the (g) cancer simulations and (h) healthy simulations.
Snapshots are not to scale.

with the cancer membrane (green). Here, most peptides have migrated to the lower

part of the NP, which is closer to the membrane. On the other hand, Figure 6.5 (h)

depicts the same scenario but for the healthy simulation. This figure illustrates that

the peptides are more evenly distributed throughout the NP. Note that both snap-

shots, Figures 6.5 (g) and (h) were taken at approximately 1.5 µs. Consequently,

these results indicate that not only the NP exhibits selectivity towards cancer cells,

but the peptides also preferentially interact with cancer cell membranes.

6.3.4 PEO selective interactions with cancer lipids

The PEO polymers are the ones in charge of dragging the NP towards the mem-

brane, as seen in Figure 6.2 (b). Once in contact, they begin to spread over the
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(a) (b) (c)

Figure 6.6: PEO polymers have more interactions with the cancer membrane lipids
over the course of the simulation. (a) Total number of contacts between EO
monomers and any membrane lipid. Results for cancer simulation in purple
and healthy simulation in green. (b) Fraction of EO monomers interacting with
at least one lipid with respect to time for the cancer (purple) and healthy (green)
simulations. (c) Snapshot of the top-view of the NP (in blue) interacting with
the cancer membrane (phosphate groups in brown). Here, the spreading of the
PEO arms is visible. This snapshot is not to scale.

membrane. PEO polymers are widely used in cancer nanotechnology, since they

increase the biocompatibility of the drug, as well as reduce the systemic clearance,

cytotoxicity and interactions with blood components among many other advantages

[216, 217]. Furthermore, several studies show that NPs conjugated with PEO poly-

mer, increase their cancer selectivity [2, 217]. Despite the studies on the advantages

of PEO-based delivery systems, there is not a lot of literature addressing the mech-

anisms behind the cancer selectivity characteristics of PEO polymers. From the

simulations in this Chapter, it is clear that PEO plays a key role in the interaction

with the cell membrane. To gain insights into the potential selectivity characteristics

of PEO polymers, the differences between the interactions of PEO polymers with

both membranes were quantified.

First, the total number of contacts or interactions between the EO monomers

and the membrane lipids were quantified, which is depicted in Figure 6.6 (a). No-

tably, the cancer simulation exhibit a higher number of contacts compared to the

healthy simulation. At the beginning of the simulations, the values are more similar,

but just before 500 ns, the difference in the number of contacts between the healthy

and cancer simulations increases. This increased can be attributed to the prefer-

ence of PEO polymers to interact more with the cancer membrane, as evidenced by

the rapid approach of the NP to this membrane (Figure 6.2 (d)). Towards the end
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of the simulation, the difference between the healthy and cancer values decreases,

mainly due to the fact that there is a maximum number of possible contacts. As the

PEO arms expand through the membrane and begin to cross the periodic boundary

condition, there is limited space available for new PEO arms to interact with the

membrane. However, the results up to the saturation of the system show a greater

number of interactions between the PEO polymers and cancer membrane lipids that

with the healthy membrane.

Furthermore, Figure 6.6 (b) shows the fraction of EO monomers in contact with

the membrane lipids. This Figure shows that a higher percentage of EO monomers

are interacting with the lipids in the cancer cell membrane than in the healthy mem-

brane, further underscoring preferential interactions. The saturation of the system

can also be observed here, since the percentages start plateauing towards the end of

the simulation. If the system was bigger, the fraction of EO monomers interacting

would keep increasing. However, the plateauing only occurs towards the end, mean-

ing this phenomena have minimal impact on the results reported here. For visual

purposes, Figure 6.6 (c) shows the top view of the NP cancer simulation at approx-

imately 1.5 µs. As it can be seen, the PEO arms spread over the membrane as they

increase their interactions with the lipid components. Additionally, it is noticeable

that the PEO arms are on the verge of crossing the periodic boundary at this stage.

It is clear that PEO polymers exhibit more interactions with the cancer mem-

brane than with the healthy membrane. In the simulations presented in this Chapter,

the difference between the membranes is the lipid composition. Therefore, in order

to understand why PEO polymers preferentially interact with the cancer membrane,

the contacts per lipid species were analysed. Figures 6.7 (a) and (b) depict the to-

tal number of contacts between EO monomers and each lipid species within the

cancer and healthy membranes. It is clear that the highest number of contacts in

boths simulations is with POPC lipids, however the second highest is with DPSM.

Interestingly, DPSM lipids are present in higher percentages in cancer membranes

[208, 209]. In order to analyse if the interactions of EO monomers with the dif-

ferent lipid species were preferential or were merely a result of the high presence



6.3. Results and Discussion 191

(a) (b)

(c) (d)

Figure 6.7: PEO polymers preferentially interact with DPSM lipid species. (a) Fraction
of EO monomers interacting with at least one lipid with respect to time for the
cancer (purple) and healthy (green) simulations. (b) Snapshot of the top-view
of the NP (in blue) interacting with the cancer membrane (phosphate groups in
brown). This snapshot is not to scale.

of these lipid types in the membrane, the fractional enrichment of the contacts was

calculated. The fractional enrichment quantifies the tendency of an interaction be-

tween two molecules, taking into account their respective abundances. Figures 6.7

(c) and (d) show the enrichment of the interactions between the EO monomers and

the lipid types for the cancer and healthy simulation, respectively. An enrichment

of 1, means the interaction is random, values above 1 mean there is a preferential

interaction, and values below 1 mean the interaction is not favourable. Clearly, in

both systems, interactions with DPSM lipids are the most preferential (enrichment

value above 2), while interactions with POPC are slightly preferential. Interactions

with all other lipids are not favourable. Therefore, this shows that PEO polymers

have a distinct tendency to interact with DPSM lipids over other lipids studied in

these simulations. Clearly, one of the reasons for the selectivity of PEO-based NP

towards cancer cells is the preference of the polymers to interact with lipids present
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(a) (b)

Figure 6.8: Last PEO monomer has a higher tendency to interact with the membrane
lipids. Lipid coordination number of (a) last OH monomer of PEO polymers
(b) non-terminal C monomers of PEO polymers. The cancer simulation is in
purple and healthy in green.

in higher percentages in cancer membranes, such as DPSM.

The CG representation of a PEO polymer consists of two monomer types, the

terminal monomer, which is an OH group and the second monomer is the EO (ethy-

lene oxide) type, which makes up all the non-terminal PEO monomers. To under-

stand the role of these two monomer types in the interactions with the membrane

lipids, the lipid coordination number was calculated. This parameter quantifies the

number of nearest neighbor lipid beads for each monomer type. A higher coordi-

nation number, means that the monomer is surrounded by more lipids. This means,

the monomer not only has more interactions but that is probably more embedded

into the lipid environment. The normalized lipid coordination number of the OH

and EO monomers for both simulations are depicted in Figure 6.8. Here it is clear

that in both simulations, the OH monomer type (Figure 6.8 (a)) has a higher coor-

dination number than the EO monomer type (Figure 6.8 (b)). This means the OH

monomer type has a higher tendency to interact with the membrane and it is also

more deeply embedded into the lipid environment. It is likely that the last monomer

of the PEO polymers can interact more readily with the membrane due to its po-

sition at the end of the chain, providing increased flexibility and the capacity for

membrane insertion. Also, PEO OH beads are more polar than EO beads, favoring

the formation of hydrogen bonds with the membrane. It is important to note, that for

both monomer types, the monomers interacting with the cancer lipids have higher
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(a) (b) (c)

(d) (e) (f)

Figure 6.9: PEO polymers spread across the membrane. Radial probability of PEO arm
extension with respect to the membrane x-y dimensions. The data presented
is the average over 100 frames at 500ns, 1µ s and 2µ s, respectively, from left
to right. The calculations on the cancer membrane are (a)-(c), and healthy
membrane (d)-(f).

lipid coordination number than their healthy counterparts, in agreement with the

higher number of contacts in the cancer simulation. This means that monomers are

more inserted in the cancer simulation than in the healthy one. These results show

that terminal monomers in PEO polymers play an important role in the interactions

with the membrane lipids.

From the above results, it is clear that PEO polymers play a key role in the

selectivity and preferential interactions of the NP with cancer cells. Once the PEO

polymers contact the cancer membrane, they begin to spread over it, maximizing its

contacts, as depicted in Figure 6.6 (c). To quantify this phenomenon, the probability

distribution of the PEO arm extension with respect to the total membrane length

was calculated. This distribution was calculated at different time steps to show the

time evolution of the systems. The PEO extension probability distribution is shown

in Figure 6.9. This Figure shows the distribution at 500 ns, 1µs and 2 µs. Figures

6.9 (a)-(c) show the results for the cancer simulation while Figures 6.9 (d)-(f) for

the healthy simulation. For the calculations at 500 ns and 1µs the cancer simulation
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(Figures 6.9 (a)-(b)) has a wider distribution than the healthy simulation (Figures

6.9 (d)-(e)), meaning PEO polymers reach larger extensions. This is expected,

since PEO polymers interact more with the cancer membrane. For the probability

distribution at 2 µs, the distribution of PEO extensions on the cancer (Figure 6.9 (c))

and healthy (Figure 6.9 (f)) membranes are similar. The difference is that the exten-

sion distribution is more evenly distributed in the cancer simulation, with slightly

higher probabilities for the higher extension values compared to the healthy coun-

terpart. However, it is important to note that at this point the membrane is already

saturated, meaning that the PEO arms are crossing the periodic boundary, making

the membrane very crowded and limiting the space available for PEO polymers to

keep expanding over the membrane. Also, once the PEO monomers cross the peri-

odic boundary, the distances calculated do not account for the real extension. This

results in the probability distribution values of the cancer and healthy membrane

being similar at this stage. Overall, the PEO arm extension is larger for the polymer

interacting with the cancer membrane, as it was expected from the higher number

of interactions with this membrane. Also, these results show that as the number

of interactions increase, the PEO arm extension also increases, establishing a link

between these two events. Therefore, PEO interactions with the membrane result

in PEO maximising its contacts with specific lipid species by expanding over the

membrane.

6.3.5 NP disruption of lipid membrane

An advantage of conducting MD simulations of membranes is the ability to eas-

ily quantify parameters such as membrane thickness with higher molecular detail

than is achievable in experiments. Membrane thickness can be used as an indi-

cator of membrane disturbance, as prior to membrane rupture or invagination of

external particles, there is membrane thinning. From the previous results, it is clear

that PEG-PLGA NP selectively interact with the cancer model membrane over the

healthy model. To determine if this interaction also leads to greater membrane dis-

turbance, the membrane thickness at different times throughout the simulation was
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(a) (b)

(c) (d)

Figure 6.10: NP disrupts cancer membrane more than healthy membrane. 2-d visu-
alization of membrane thickness at 1µ s and 2µ s for the cancer ((a)-(b)) and
healthy ((c)-(d)) membrane respectively. Both circles are centered at the x-y
coordinates of the radius of gyration of the NP. The radius of the inner circle is
the radius of gyration of the core and the outer circle the radius of gyration of
the whole NP. Note that for the cancer membrane the average initial thickness
is approximately 4.2nm for both membranes.

measured.

Figure 6.10 presents a 2d top view representation of the NP-membrane sys-

tems. The membrane is the heatmap itself and the black circles are the NP. Both

circles are centered on the NP COM, the radius of the inner circle is the average

NP core radius, and the radius of the larger circle is the average whole NP radius

over the calculation time steps. The coloring of the heatmap represents the mem-

brane thickness. In both membranes, cancer and healthy, the NP induces membrane

thinning, as the decrease in membrane thickness is greater in the areas of the mem-

brane below or surrounding the NP. Additionally, Figures 6.10 (b)-(d) have lower
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thickness values than Figures 6.10 (a)-(c) respectively, indicating an increase in

membrane thinning over the course of the simulations. However, it is clear that

the membrane thinning is much more pronounce in the cancer membrane (Figure

6.10 (a)-(b)) compared to the healthy one (Figure 6.10 (c)-(d)). Firstly, the cancer

membrane adopts significantly thinner values than the healthy one. Secondly, the

membrane area affected by the thinning, is larger in the cancer membrane than in

the healthy one at all time steps. Consequently, the NP induces greater membrane

disturbance in the cancer membrane than in the healthy membrane. From Figures

6.10 (a)-(b) the reduction in the RG of the NP core can also be observed, since the

inner circle decreases its size from Figure 6.10 (a) to (b). The primary reason for

the increased membrane thinning in the cancer membrane is the PEO preference

to interact with lipids present in higher percentages in cancer membranes, such as

sphingomyellin (DPSM), as shown in Figure 6.7 (c). The higher number of PEO in-

teractions and greater extension of the PEO arms over the membrane do not induce

stress on the membrane on their own. As discussed earlier, these PEO interactions

with the cancer lipids force the PLGA core to collapse and maximise its contact

surface with the membrane, which likely also increases the pressure exerted on

the membrane. This would also explain why in the cancer simulation, the thinner

values are mostly found just below the NP core (inside the inner circle), while for

the healthy simulation they are more evenly distributed throughout the whole NP

extension, since the NP core does not change much its shape, it does not induce

much pressure on the healthy membrane. These results show that PEG-PLGA NP

selectively target, and therefore, disrupt cancer cells more effectively than healthy

cells. Overall, this study also demonstrates that membrane disturbance caused by

NPs can be studied in silico. In summary, the preferential interactions of PEO poly-

mers with cancer membrane lipids, cause the PEO to extend over the membrane

and also to induce changes in the PLGA core. Both of these processes increase the

pressure exerted on the membrane.
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6.4 Conclusion

The results presented in this Chapter provide insights into the specific molecular

mechanisms and physicochemical properties underpinning the cancer selectivity of

this experimentally validated PEG-PLGA NP. Furthermore, these results contribute

to the evaluation of the use of MD simulations to study NP selectivity towards

cancer cells in silico.

CG MD simulations of the same EEK-loaded PEG-PLGA NP with a glioma

(cancer) and oligodendroglia (healthy) model membrane were performed. These

simulations enabled the quantitative comparison of NP behavior with the cancer and

healthy membrane. Both models were more ‘realistic’ that other simulation studies

of NP interactions with cancer membranes, since all studies carried out previously

used membranes consisting of a maximum of three lipid species. Additionally, the

lipid species used in the model membranes were sourced from lipidomics research,

with those representing over 10% of the total lipid content in real cell membranes

being included in the model membranes. These simulations facilitated the analysis

of the targeting ability of this NP towards cancer cells by direct comparison of:

(i) changes in the physicochemical properties of the NP when interacting with the

membranes, (ii) membrane disruption and (iii) differences in the interactions of the

NP with both membranes.

First, the NP approached much faster the cancer membrane than the healthy

membrane, and it inserted deeper into the membrane as well. The rapid approach

and interactions of the PEG-PLGA NP with the cancer membrane can be attributed

to the preferential interactions of PEG polymers with lipids, such as DPSM, that

are present in higher percentages in cancer membranes. The strong tendency of

interaction of PEG polymers with cancer lipids, not only made EO monomers have

a higher number of contacts with the cancer membrane than the healthy membrane,

but it also caused the PEG polymers to expand over the membrane, reaching longer

distances than in the healthy simulation. This shows that polymer-lipid interactions
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are a key parameter to determine and tune NP cancer selectivity.

Furthermore, these simulations showed that the PEG-PLGA NP physical char-

acteristics are not fixed, but vary during the interaction with the membrane. Inter-

estingly, the NP interacting with the cancer membrane, adopted a size and shape

that favours its transcytosis through the membrane. Due to these interactions, PEO

arms rapidly expand through the membrane, leaving the PLGA hydrophpbic core

less shielded from water. This causes the PLGA core to collapse, reducing its RG,

as seen in Figure 6.3 (a), and also changing its shape into a more elliptical one, to

maximise its contacts with the membrane (instead of with the water), as observed

in Figure 6.3 (b). These physical changes of the NP PLGA core, plus the extension

of the PEO arms over the membrane, induce membrane stress. The PEO arms in-

teract with the lipids and insert into the membrane, while the PLGA core reduced

size exerts a higher amount of pressure onto the membrane. Furthermore, NP rice-

liked shapes have been shown to exhibit the highest transcytosis rates [214]. The

increased membrane stressed due to these factors can be quantified by membrane

thinning, which is the step prior to membrane disruption. Figure 6.10 (b) shows that

towards the end of the simulation, the cancer membrane is under a large amount of

stressed induced by the NP. The areas just below the core, have the greatest mem-

brane thinning, agreeing with the higher pressure exerted by the PLGA core. More-

over, the PEO also cause stress, since there is also membrane thinning around the

overall RG of the whole NP, but it gets reduced radially as a distance from the NP

core. What is particularly interesting of these results, is that they are very differ-

ent from the ones obtained from the healthy simulation. In the healthy simulations,

there are also interactions between the PEO polymers and membrane lipids, since

PEO polymers have a slight tendency to interact with POPC lipids, as shown in

Figure 6.7(d), but since this tendency is much lower, and the sphyongmyelin con-

tent in the healthy cell is lower, the number of interactions between the NP and the

polymer increase much slower than in the cancer simulation. Also, since these in-

teractions are not as preferential, PEO arms are not able to extend as much nor as

fast as in the cancer simulation, as seen in Figure 6.9. This makes the PEO poly-
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mers shield the PLGA core for longer, so the PLGA core does not change its size or

shape much over the course of the simulation. Since the PEO polymers have a lower

number of interactions with the healthy lipids, they do not expand as much or insert

as deep into the membrane as in the cancer simulation, shown by the lower lipid

coordination number in the healthy simulation (Figure 6.8). This causes the NP to

exert a much lower stress on the healthy membrane than on the cancer membrane,

as the PLGA core does not exert much pressure with its original size and spherical

shape, and the PEO arms do not insert as deeply into the membrane to disrupt the

lipids. The combination of all of these results, show that polymer-lipid interactions

are a vital parameter to understand NP differential selectivity towards cancer cells.

Moreover, these simulations also show the mechanisms of action (PEO interactions

and PLGA core changes) by which this specific PEG-PLGA NP induces stress on

membranes to further deliver its cargo.

Furthermore, the activity of the ACPs was also monitored throughout the

simulation to asses if the active compound is also selective towards cancer cells.

The peptides in the cancer simulation advance towards the membrane more inde-

pendently of the NP core movement than in the healthy membrane, and move to

distances nearer to the membrane interface than the peptides in the oligodendroglia

system. Therefore, as the peptides in the cancer membrane simulation show a

greater tendency to move towards the membrane, it can also be assumed that this

antimicrobial peptide is also selective towards glioma cells.

Overall, the work presented in this Chapter shows that it is possible to use

MD simulations to study and understand the mechanisms by which polymer-based

NP target cancer cells. These results show that NP selectivity may be related to

polymer-lipid interactions and changes in the NP physical properties that make it

exert a greater pressure on the membrane. The parameters used in this work to

determine this specific NP selectivity can be used to study the selectivity of other

NPs or other cancer and healthy membrane combinations. Therefore this work can

be used as an in silico platform to study NP selectivity against cancer cells. The
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parameters proposed in this platform to assess NP selectivity are: specific lipid-

polymer interaction, changes in physical properties of the NP, polymer extension

on membrane, membrane thinning and active-compound movement. All of these

parameters are either impossible or harder to study experimentally, so can only be

examined computationally. The work presented in this Chapter sheds light onto the

mechanisms of action by which PEG-PLGA NP are able to selectively target and

disrupt cancer cells over healthy cells, and in doing so, an in silico platform to study

NP cancer selectivity is also proposed. Unveiling these molecular mechanisms is

key for the advancement of NP-based cancer treatment, as well as to tune NP to

efficiently target only cancer cells, reducing the overall toxicity and therefore in-

creasing the patient’s quality of life. The parameters and mechanisms revealed in

this Chapter are key for the rational design of NPs for cancer treatment.

6.5 Future work

One of the limitations in this Chapter was the membrane size, since it was not large

enough for the NPs to fully extend their PEO arms, so the NPs crossed the pe-

riodic boundary and started to interact with themselves and also overcrowded the

membrane, preventing other PEO arms to interact with membrane lipids. There-

fore these simulations could not run for longer than 2 µs, since at this point the

membrane became too saturated with PEO polymers. However, simulating a larger

membrane is not possible due to the high computational cost, since the system is

already at the forefront of what is computationally possible for the supercomputers

I had access to during my PhD (these systems had more than 3000000 beads). To

account for this problem, simulations with the same membranes but with NP con-

taining a lower amount of PEG-PLGA polymers (but keeping the PEG to PLGA

ratio constant), can be simulated. In these systems, the PEG polymers would have a

greater membrane surface to interact with, since the membrane would not become

as crowded. This would allow the simulations to run for longer, providing further

insight into the physical changes of the membrane and the NP at longer timescales.

Furthermore, it would be interesting to study how NP size affects cancer selectiv-
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ity and if the same trends in the changes of the physical characteristics (decreased

size and increased eccentricity) is conserved across different NP sizes. Two smaller

NP have already been created, and will soon be put together with the cancer and

healthy membranes. Figure 6.11 shows the smaller equilibrated NP formed by only

20 PEG-PLGA polymers.

Figure 6.11: Smaller version of EEK-loaded PEG-PLGA NP PEG-PLGA NP with only
20 PEG-PLGA polymers. PEG in blue and PLGA in purple. Snapshot is not
to scale.

Other future work would include to analyse more parameters to further under-

stand the induced stress by the NP on the membranes such as lipid order parameter

or membrane curvature, as well as to run replicas of all simulations.



Chapter 7

Conclusions

The objective of this thesis was to provide new molecular insights into the mecha-

nisms by which polymer-based NPs for cancer treatment self-assemble, store their

therapeutic cargo and display selectivity for targeting cancer cells. This research

was motivated by the lack of knowledge on the cancer cell targeting mechanisms

of NPs, as well as on the rational design of NPs, since it is not well known how

to predict aspects such as cargo storage location or polymer effect on micelle

characetristics. This gap is limiting the clinical translation of NP-based cancer

therapy.

The findings presented in this thesis provide a comprehensive understanding of

these mechanisms. As a result, key parameters have been proposed to facilitate the

rational design of polymer-based NPs. Additionally, to support the advancement

of the computational polymer research community, the analysis tools developed

during this research for the study of polymer micelles have been rigorously tested

and are now publicly available in the Python-based software package PySoftK v2.0.

These tools can be applied on any soft-matter simulation at different scales, having

a broad applicability in the classical simulations community. Collectively, the work

presented in this thesis advances the field of NP-based cancer therapy and promotes

the rational design of NPs for more effective and targeted treatments.

In Chapter 3, all-atom MD simulation were used to investigate the effect of
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polymer topology on the self-assembly of micelles. Simulations of amphiphilic

block co-polymers with the same number and type of monomer components but

organised in different architectures were performed to understand how the spatial

distribution of the monomer components affects the overall physicochemical char-

acteristics of the micelles they self-assemble into. These simulations showed that

polymer topology has a large effect on the micelle properties, from size to micelle

stability. Furthermore, unsupervised machine learning techniques were applied to

understand if polymers take location specific conformations within the micelle. It

was found that polymers in all systems adopted location specific conformations,

except for the micelle without a defined core-shell structure. In this case, the con-

formations were randomly distributed throughout the micelle. Interestingly, this

micelle was the least stable one (largest amount of water in the core). These results

show that polymer topology has a large impact on the physicochemical properties

of micelles. Furthermore, this Chapter also provides parameters to quantify these

effects, so that the same analysis can be used to study other topologies. Overall, this

research shows that polymer topology is a key parameter in the rational design of

polymer NP.

The methods analysis tools developed in Chapter 3 could be used to study other

systems. Therefore, these methods, combined with new ones, were generalised

and re-introduced in Chapter 4 within the software package PySoftK v2.0. This

software is based on the original PySoftK but with a new module for the analysis of

soft-matter simulations, with a special focus on polymers. The goal of this software

is to provide an automated computational analysis workflow that allows scientist

to study complex properties of molecular aggregates with minimal user input. Key

analysis tools include a graph theory-based clustering algorithm and a ring-ring

stacking analysis tool, among others. Furthermore, this software is openly available

and it contributes to the standardization and replicability of the analysis of polymer

simulations, which will aid the development of computational polymer science.

The same unsupervised learning method applied in Chapter 3, to study if poly-

mers adopt location-specific conformations in small micelles (20 polymers), was

https://github.com/Lorenz-Lab-KCL/full_pysoftk/tree/main
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applied on a 200 polymer CG PEG-PLGA NP loaded with an anti-cancer peptide

named EEK in Chapter 5. This simulation revealed that peptides can be stored

in two different locations within the NP, which agreed with previous literature on

this type of NP [33]. Interestingly, polymers also adopted location-specific con-

formations within this NP, since it had a clear core-shell structure. Therefore, this

seems to be a pattern within polymeric NP with a hydrophobic core and hydrophilic

corona. Furthermore, it was found that these polymer conformations formed local

microenvironments within the NP that allowed the preferential EEK solubilization

in the cargo storage regions. This lead to two contained storage locations. There-

fore, Chapter 5 demonstrates that the location dependent microenvironments that

polymers form due to their conformation are key to control the drug storage loca-

tions within NP. Thus, the conformations taken by polymers are yet another key

parameter for the rational design of polymeric NP with therapeutic applications.

This parameter has not been previously proposed in the literature.

The first three chapters covered the molecular mechanisms underlying polymer

NP formation, drug encapsulation processes, and the development of quantification

methods for studying their physicochemical characteristics. In contrast, the last

Chapter in this thesis, Chapter 6, employed CG MD simulations to elucidate the

selectivity mechanisms of an experimentally validated PEG-PLGA NP [2] towards

cancer cells. For this purpose, the NP was simulated with a model cancer and

healthy membrane. These simulations, showed that the NP preferentially inter-

acted with the lipid species DPSM, which is present in higher percentages in cancer

membranes. Because of this, there were more NP-cancer cell interactions that in the

NP-healthy membrane system. These interactions caused PEG polymers to attach

and expand on the membrane, leaving the PLGA hydrophobic core more exposed

to the environment, forcing it to collapse to shield itself from the water. This lead to

drastic changes in the size and shape of the PLGA core, making it smaller and rice-

shaped. Interestingly, these are physical characteristics that favour NP penetration

into membranes. Furthermore, the peptides in the cancer simulation, moved with

a clear trend towards the membrane. Since DPSM is present in lower percentages
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in healthy membranes, the polymer-lipid interactions were not as numerous in the

healthy simulation, inducing less changes in the NP. The polymer-lipid interactions

also caused changes on the membrane. To measure membrane disturbance, the

membrane thickness was quantified. The cancer membrane reduced its thickness

significantly compared to the healthy membrane, meaning that the higher amount

of PEO-lipid interactions caused more stress on the membrane. These results reveal

that polymer-lipid interactions may be key for the selectivity of NP towards cancer

cells. Therefore, the preference of polymers for specific lipids emerges as a crucial

factor for fine-tuning NP cancer cell selectivity. Additionally, this Chapter showed

that NP selectivity can be studied in silico by examining changes in the NP and

membrane physical characteristics.

Overall, the work presented in this thesis represents a significant step forward

in the field of polymer-based NPs for cancer therapy. This thesis proposes new pa-

rameters and computational workflows that contribute to a deeper understanding of

NP rational design. In doing so, some of the underlying mechanisms governing NP

cargo encapsulation, cancer selectivity and the influence of individual polymers on

micelle characteristics have been elucidated. This was achieved by a series of AA

and CG simulations, coupled with the development of novel and complex analysis

tools grounded in graph theory and machine learning. These methods have been

integrated into the publicly accessible PySoftK v2.0 software, fostering their appli-

cation within the broader computational polymer community for studying diverse

polymer and NP systems. The parameters and workflows proposed in this work will

advance our understanding of the rational design of polymer NP, promising more

effective and targeted cancer therapies. Moreover, this research demonstrates the

feasibility of assessing various NP characteristics and processes in silico, contribut-

ing to the growing field of in silico drug design. This work bridges the gap between

theoretical and experimental insights, contributing to the development of greener,

faster, and more efficient methods for designing cancer drugs, poised to make a

substantial impact on the future of cancer treatment.
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(a) PEO (b) PMA

Figure S1: (a) Molecular structure of PEO (b) Molecular structure of PMA.

Analysis of simulations All analysis was carried out with Python 3.9.5. The Python

modules MDAnalysis,1 pySoftWhere2 and NetworkX,3 the algorithms of UMAP4 and HDB-

SCAN5 were used to develop in-house scripts for this analysis.
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(a) (b)

(d) (e)

(g) (h)

(i) (j)

Figure S2: Size and shape of micelles. Plots of the RG for the largest micelle as a function
of time for the (a) MA-terminated polymer micelle, (d) EO-terminated polymer micelle, (g)
ring polymer micelle and (i) diblock polymer micelle. Plots of the eccentricy of the largest
micelle as a function of time for the (b) MA-terminated polymer micelle, (e) EO-terminated
polymer micelle, (h) ring polymer micelle and (j) diblock polymer micelle. The time scale
over which each micelle has reached equilibrium is shaded in pink.
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(a) (b)

(d) (e)

Figure S3: Largest micelle size in 30 polymer simulation. Plots of the number of
polymers belonging to the biggest micelle over time for a) triblock ma terminated, b) triblock
eo terminated, c) cyclic and d) diblock polymer topologies, for simulations with 30 polymers
but same water to polymer ratio as for the simulations of 20 papers tated everywhere else
in the manuscript. This proves that there is no system size effect for these systems and in
fact we would expect if you had even more polymers the largest micelle would contain the
same number of polymers but there would be multiple of the same size. Except for the case
of the EO-MA diblock polymer (simulated in order to address a question raised by Reviewer
1), wherecase it seems that those polymers phase-separate instead of form micelles, and
therefore their micelle size continues to increase
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(a) (b)

(c) (d)

Figure S4: Equilibration analysis Fraction of PMA heavy atoms that are in the core with
respect to all heavy atoms of the polymers species in the core (a) MA-terminated polymer
micelle, (b) EO-terminated polymer micelle and (c)ring polymer micelle. The brown line
represents the fraction of PMA atoms at a distance within 10Å from the core, the purple
line is within a distance of 15Å and the blue line is a distance below the radius of gyration
of the core.

The RG of the micelle, is described by Equation (1)

RG =

√√√√ 1

M

N∑

i=1

mi(ri −R)2 (1)

where M is the total mass of the body, mi is the mass of atom i and R is the mean position

of all atoms. Both, the RG of the core of the NP and of the whole NP were calculated with

the MDAnalysis function radius of gyration().

In order to calculate the eccentricity (ϵ) of the whole and the core of the micelle, the

moment of inertia around the principal axis were obtained with the MDAnalysis function
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moment of intertia(). The eccentricity was obtained from Equation 2

ϵ = 1−
(
Imin

Iave

)
(2)

where Iave is the average across all moments of inertia and Imin is the moment of inertia

around the x axis.

Identifying the amount of polymers clustered in each micelle was done with the Python

module Networkx, which is able to study the structure of complex NetworkX. Each polymer

was defined by two atoms (triblock topologies) or one atom (ring topology), if polymers were

closed enough via these atoms, they were considered part of the same network, which meant

they formed part of the same micelle. The atom selection chosen in all topologies were MA

atoms, as these form the hydrophobic core.

The number of contacts was performed using MDAnalysis tools. First, to define the inter-

molecular contact distance between the main carbon backbone atom of the different monomer

species and water, we used the pair radial distribution function rdf calc.InterRDF between

the molecules that we wanted to study. The second peak in the rdf plots was used to deter-

mined the contact distance between the specific pair, which in this case was 7 Å. Afterwards,

a contact was counted if the distance between the selected monomer atoms was below the

assigned contact distance. For the hydration a similar procedure was followed, but the dis-

tances was selected to be approximately 4 Å and the water atom chosen for the contacts was

the water oxygen.

When the contact results were plotted, the values were normalized by dividing the num-

ber of contacts between a pair of atoms by the number of configurations used in the analysis.

Then, it was divided by the mean cluster size, to account for micelles being formed by differ-

ent numbers of polymer molecules. To finalize the normalization across all simulations, the

number of contacts between pairs of atoms was divided by the maximum number of contacts

found across all three topologies.
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Intrinsic Core-Shell Interface (ICSI) Method.For micelles with an irregular internal

and interfacial structures, intrinsic interface techniques can be used to investigate the inter-

facial structure of micelles.6 The intrinsic density was calculated with an intrinsic core-shell

interface (ICSI) method provided by the python package pySoftWhere.2 For this method we

selected the MA heavy atoms to form the ICSI as they are the principal component of the

core (this information could be inferred by the contacts maps, the hydration data and the

spherical density of components). The grid selected was 30 × 30. Detailed information on

the working of this algorithm can be found in (Ziolek et al).6 The ICSI equation is:

ρ̃(r) ≡
〈∑

i

δ[r − (ri − ξ(θ, ϕ))]

S̄i(r)

〉
(3)

where ri is the r-position of atom i (of the chosen group of atoms) and ξ(θ, ϕ) is the

r-position of the ICSI. The average volume of the shell in which a given atom is found when

using the intrinsic surface approach, S̄i(r), which normalizes the intrinsic density, is given

by:

S̄i(r) =
niV̄box

N
(4)

where ni is the number of points found in the shell in which atom i is found over all the

clusters analyzed, V̄box is the average volume of the simulation box, and N is the total number

of random coordinates used in the normalization procedure.

Dimensionality reduction and clustering. The distances chosen as the input space

to generate the two dimensional UMAP embedded data are topology specific. The goal was

to find the minimum number of distances that could resume the conformational complexity

adopted by the polymers. First, for the MA-terminated polymer 5 distances were selected:

distance between terminal MAs, both terminal MAs to central EO, and last EO monomers

to central EO. Similarly, for the EO-terminated polymer, 5 distances were also selected. Dis-

tance between terminal EOs, distance between terminal EOs and central MA, and distance

between the last MA monomers and the central MA. Finally, for the ring polymer only 4 were
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needed. Middle MA to middle EO, terminal MA to middle EO and the distance between

the last MA monomers. The UMAP embedded output was latter cluster with HDBSCAN,

Table S1 shows the UMAP and HDBSCAN parameters chosen for each topology.

The intrinsic density of the UMAP clusters was calculated in the same as for the overall

micelle intrinsic density. But instead of using all polymers, only the ones belonging to the

specific cluster density being calculated were used.

Table S1: UMAP (n neighbours) and HDBSCAN (min cluster size and clus-
ter selection epsilon) parameters

MA-terminated EO-terminated Ring Diblock
n neighbours 5 6 8 12
min cluster size 25 55 34 55
cluster selection epsilon 0.8 1 1.1 0.85

Table S2: Micelle equilibration time and the mean micelle size (Å).

MA-terminated EO-terminated Ring Diblock
Equilibration time (µs) 0.8 0.72 0.6 0.4
Mean micelle size 18.6± 0.6 13.7± 0.8 10.9± 0.4 20.0± 0.2

(a) EO-EO contacts (b) EO hydration

Figure S5: (a) Normalised intermolecular contact maps between the EO monomers and
(b) normalised hydration of the oxygen atoms of the EO monomers for the MA-terminated
polymer micelle.
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(a) EO-EO contacts (b) EO hydration

Figure S6: (a) Normalised intermolecular contact maps between the EO monomers and
(b) normalised hydration of the oxygen atoms of the EO monomers for the EO-terminated
polymer micelle.

(a) EO-EO contacts (b) EO hydration

Figure S7: (a) Normalised intermolecular contact maps between the EO monomers and (b)
normalised hydration of the oxygen atoms of the EO monomers for the ring polymer micelle.

(a) EO-EO contacts (b) EO hydration

Figure S8: (a) Normalised intermolecular contact maps between the EO monomers and (b)
normalised hydration of the oxygen atoms of the EO monomers for the diblock polymer
micelle.
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(a) (b)

(c) (d)

Figure S9: Intrinsic density of micelle components. Intrinsic density of the (a) MA-
terminated polymer micelle, (b) EO-terminated polymer micelle and (c)ring polymer micelle.
The intrinsic density of the MA monomers is displayed in pink, EO in blue and water in
dark green.
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

(m) (n) (o) (p)

Figure S10: UMAP embedded space and average cluster distances UMAP embedded
space clustered by HDBSCAN of (a) linear triblock MA-EO-MA polymers, (e) linear triblock
EO-MA-EO polymers, (i) ring MA-EO polymers and (m) diblock polymer. Histograms of
the average distances of each cluster. Cluster 1 for (b) linear triblock MA-EO-MA polymers,
(f) linear triblock EO-MA-EO polymers, (j) ring MA-EO polymers and (j) diblock poly-
mer. Cluster 2 for (c) linear triblock MA-EO-MA polymers, (g) linear triblock EO-MA-EO
polymers, (k) ring MA-EO polymers and (o) diblock polymer. Cluster 3 (d) linear triblock
MA-EO-MA polymers, (h) linear triblock EO-MA-EO polymers, (l) ring MA-EO polymers
and (p) diblock polymer.
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Jeffery B Klauda. Charmm36 united atom chain model for lipids and surfac-

tants. The journal of physical chemistry B, 118(2):547–556, 2014.



Bibliography 232
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Jeremy C Smith, Berk Hess, and Erik Lindahl. Gromacs: High performance



Bibliography 235

molecular simulations through multi-level parallelism from laptops to super-

computers. SoftwareX, 1:19–25, 2015.

[141] Denis J Evans and Brad Lee Holian. The nose–hoover thermostat. The Jour-

nal of chemical physics, 83(8):4069–4074, 1985.

[142] Mario Fernández-Pendás, Bruno Escribano, Tijana Radivojević, and Elena
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[154] Jiřı́ Šponer, Jerzy Leszczynski, and Pavel Hobza. Electronic properties, hy-

drogen bonding, stacking, and cation binding of dna and rna bases. Biopoly-

mers: Original Research on Biomolecules, 61(1):3–31, 2001.

[155] Greg Landrum. Rdkit documentation. Release, 1(1-79):4, 2013.

[156] Suhao Wang, Guangzheng Zuo, Jongho Kim, and Henning Sirringhaus.

Progress of conjugated polymers as emerging thermoelectric materials.

Progress in Polymer Science, 129:101548, 2022.

[157] Martin Gauthier-Jaques, Hatice Mutlu, and Patrick Theato. Cage-shaped

polymers synthesis: A comprehensive state-of-the-art. Macromolecular

Rapid Communications, 43(12):2100760, 2022.



Bibliography 237

[158] Takuya Yamamoto and Yasuyuki Tezuka. Topological polymer chemistry:

a cyclic approach toward novel polymer properties and functions. Polymer

Chemistry, 2(9):1930–1941, 2011.

[159] Josef Jancar, JF Douglas, Francis W Starr, SK Kumar, Philippe Cassagnau,

AJ Lesser, Sandy Sanford Sternstein, and MJ Buehler. Current issues in re-

search on structure–property relationships in polymer nanocomposites. Poly-

mer, 51(15):3321–3343, 2010.

[160] Robert M Ziolek, Jasmin Omar, Wenjing Hu, Lionel Porcar, Gustavo

Gonzalez-Gaitano, Cecile A Dreiss, and Christian D Lorenz. Understand-

ing the ph-directed self-assembly of a four-arm block copolymer. Macro-

molecules, 53(24):11065–11076, 2020.

[161] S Shenogin, A Bodapati, L Xue, R Ozisik, and P Keblinski. Effect of chem-

ical functionalization on thermal transport of carbon nanotube composites.

Applied Physics Letters, 85(12):2229–2231, 2004.

[162] Sezen Curgul, Krystyn J Van Vliet, and Gregory C Rutledge. Molecular

dynamics simulation of size-dependent structural and thermal properties of

polymer nanofibers. Macromolecules, 40(23):8483–8489, 2007.

[163] Suchira Sen, James D Thomin, Sanat K Kumar, and Pawel Keblinski. Molec-

ular underpinnings of the mechanical reinforcement in polymer nanocompos-

ites. Macromolecules, 40(11):4059–4067, 2007.

[164] Jinbo Zhao, Lili Wu, Chuanxing Zhan, Qian Shao, Zhanhu Guo, and Liqun

Zhang. Overview of polymer nanocomposites: Computer simulation under-

standing of physical properties. Polymer, 133:272–287, 2017.

[165] Thomas E Gartner III and Arthi Jayaraman. Modeling and simulations of

polymers: a roadmap. Macromolecules, 52(3):755–786, 2019.

[166] Paul Smith and Christian D Lorenz. Lipyphilic: A python toolkit for the

analysis of lipid membrane simulations. bioRxiv, 2021.



Bibliography 238

[167] Marina Kovacevic, Igor Balaz, Domenico Marson, Erik Laurini, and

Branislav Jovic. Mixed-monolayer functionalized gold nanoparticles for can-

cer treatment: Atomistic molecular dynamics simulations study. Biosystems,

202:104354, 2021.

[168] Marcello Sega, Sofia S Kantorovich, Pál Jedlovszky, and Miguel Jorge. The

generalized identification of truly interfacial molecules (itim) algorithm for

nonplanar interfaces. The Journal of chemical physics, 138(4), 2013.

[169] Martin B Ulmschneider, Jacques PF Doux, J Antoinette Killian, Jeremy C

Smith, and Jakob P Ulmschneider. Mechanism and kinetics of peptide parti-

tioning into membranes from all-atom simulations of thermostable peptides.

Journal of the American Chemical Society, 132(10):3452–3460, 2010.

[170] Xiaotian Sun, Zhiwei Feng, Tingjun Hou, and Youyong Li. Mechanism of

graphene oxide as an enzyme inhibitor from molecular dynamics simula-

tions. ACS applied materials & interfaces, 6(10):7153–7163, 2014.

[171] Benjamin J Schwartz. Conjugated polymers as molecular materials: How

chain conformation and film morphology influence energy transfer and in-

terchain interactions. Annual review of physical chemistry, 54(1):141–172,

2003.

[172] Robert M Ziolek, Alejandro Santana-Bonilla, Raquel Lopez-Rios de Castro,

Reimer Kuhn, Mark Green, and Christian D Lorenz. Conformational het-

erogeneity and interchain percolation revealed in an amorphous conjugated

polymer. ACS nano, 2022.

[173] Andrea Joseph, Chris W Nyambura, Danielle Bondurant, Kylie Corry,

Denise Beebout, Thomas R Wood, Jim Pfaendtner, and Elizabeth Nance.

Formulation and efficacy of catalase-loaded nanoparticles for the treatment

of neonatal hypoxic-ischemic encephalopathy. Pharmaceutics, 13(8):1131,

2021.



Bibliography 239

[174] Elizabeth M Enlow, J Christopher Luft, Mary E Napier, and Joseph M DeS-

imone. Potent engineered plga nanoparticles by virtue of exceptionally high

chemotherapeutic loadings. Nano letters, 11(2):808–813, 2011.

[175] Yunfei Wang, Peifeng Liu, Yourong Duan, Xia Yin, Qi Wang, Xiaofei Liu,

Xinran Wang, Jinhua Zhou, Wenwen Wang, Lihua Qiu, et al. Specific cell

targeting with aprpg conjugated peg–plga nanoparticles for treating ovarian

cancer. Biomaterials, 35(3):983–992, 2014.

[176] Mona Alibolandi, Fatemeh Sadeghi, Khalil Abnous, Fatemeh Atyabi, Mo-

hammad Ramezani, and Farzin Hadizadeh. The chemotherapeutic potential

of doxorubicin-loaded peg-b-plga nanopolymersomes in mouse breast cancer

model. European Journal of Pharmaceutics and Biopharmaceutics, 94:521–

531, 2015.

[177] SM Jusu, JD Obayemi, AA Salifu, CC Nwazojie, V Uzonwanne, OS Odu-

sanya, and WO Soboyejo. Drug-encapsulated blend of plga-peg micro-

spheres, 2020.

[178] Chris W Nyambura, Janani Sampath, Elizabeth Nance, and Jim Pfaendt-

ner. Exploring structure and dynamics of the polylactic-co-glycolic acid–

polyethylene glycol copolymer and its homopolymer constituents in various

solvents using all-atom molecular dynamics. Journal of Applied Polymer

Science, 139(31):e52732, 2022.

[179] Hwankyu Lee. Molecular simulations of pegylated biomolecules, liposomes,

and nanoparticles for drug delivery applications. Pharmaceutics, 12(6):533,

2020.

[180] Ya-Ping Li, Yuan-Ying Pei, Xian-Ying Zhang, Zhou-Hui Gu, Zhao-Hui

Zhou, Wei-Fang Yuan, Jian-Jun Zhou, Jian-Hua Zhu, and Xiu-Jian Gao.

Pegylated plga nanoparticles as protein carriers: synthesis, preparation and

biodistribution in rats. Journal of controlled release, 71(2):203–211, 2001.



Bibliography 240

[181] Sarbari Acharya and Sanjeeb K Sahoo. Plga nanoparticles containing various

anticancer agents and tumour delivery by epr effect. Advanced drug delivery

reviews, 63(3):170–183, 2011.

[182] Homayoun Asadzadeh and Ali Moosavi. Investigation of the interactions

between melittin and the plga and pla polymers: molecular dynamic sim-

ulation and binding free energy calculation. Materials Research Express,

6(5):055318, 2019.

[183] H Asadzadeh, A Moosavi, and JH Arghavani. The effect of chitosan and peg

polymers on stabilization of gf-17 structure: a molecular dynamics study.

Carbohydrate polymers, 237:116124, 2020.

[184] Shahin Aghamiri, Farshid Zandsalimi, Pourya Raee, Mohammad-Amin

Abdollahifar, Shing Cheng Tan, Teck Yew Low, Sajad Najafi, Milad

Ashrafizadeh, Ali Zarrabi, Hossein Ghanbarian, et al. Antimicrobial pep-

tides as potential therapeutics for breast cancer. Pharmacological research,

171:105777, 2021.

[185] Amy A Baxter, Fung T Lay, Ivan KH Poon, Marc Kvansakul, and Mark D

Hulett. Tumor cell membrane-targeting cationic antimicrobial peptides:

novel insights into mechanisms of action and therapeutic prospects. Cellular

and Molecular Life Sciences, 74(20):3809–3825, 2017.

[186] Adriano Brandelli. Nanostructures as promising tools for delivery of antimi-

crobial peptides. Mini reviews in medicinal chemistry, 12(8):731–741, 2012.

[187] Jorrit Jeroen Water, Simon Smart, Henrik Franzyk, Camilla Foged, and

Hanne Mørck Nielsen. Nanoparticle-mediated delivery of the antimicrobial

peptide plectasin against staphylococcus aureus in infected epithelial cells.

European Journal of Pharmaceutics and Biopharmaceutics, 92:65–73, 2015.

[188] Herman JC Berendsen, David van der Spoel, and Rudi van Drunen. Gromacs:

a message-passing parallel molecular dynamics implementation. Computer

physics communications, 91(1-3):43–56, 1995.



Bibliography 241

[189] Siewert J Marrink, H Jelger Risselada, Serge Yefimov, D Peter Tieleman, and

Alex H De Vries. The martini force field: coarse grained model for biomolec-

ular simulations. The journal of physical chemistry B, 111(27):7812–7824,

2007.

[190] Kevin R Hinkle. Using coarse-grained models to examine structure-property

relationships of diblock-arm star polymers. European Polymer Journal, page

110149, 2020.

[191] Fabian Grunewald, Giulia Rossi, Alex H de Vries, Siewert J Marrink, and

Luca Monticelli. Transferable martini model of poly (ethylene oxide). The

Journal of Physical Chemistry B, 122(29):7436–7449, 2018.

[192] Sunhwan Jo, Taehoon Kim, Vidyashankara G Iyer, and Wonpil Im. Charmm-

gui: a web-based graphical user interface for charmm. Journal of computa-

tional chemistry, 29(11):1859–1865, 2008.

[193] Giovanni Bussi, Davide Donadio, and Michele Parrinello. Canonical sam-

pling through velocity rescaling. The Journal of chemical physics, 126(1),

2007.

[194] Par Bjelkmar, Per Larsson, Michel A Cuendet, Berk Hess, and Erik Lin-

dahl. Implementation of the charmm force field in gromacs: analysis of

protein stability effects from correction maps, virtual interaction sites, and

water models. Journal of chemical theory and computation, 6(2):459–466,

2010.

[195] J. D. Hunter. Matplotlib: A 2d graphics environment. Computing in Science

& Engineering, 9(3):90–95, 2007.

[196] William Humphrey, Andrew Dalke, and Klaus Schulten. Vmd: visual molec-

ular dynamics. Journal of molecular graphics, 14(1):33–38, 1996.



Bibliography 242

[197] Zhiqiang Shen, Mu-Ping Nieh, and Ying Li. Decorating nanoparticle surface

for targeted drug delivery: opportunities and challenges. Polymers, 8(3):83,

2016.

[198] Xinru You, Yang Kang, Geoffrey Hollett, Xing Chen, Wei Zhao, Zhipeng Gu,

and Jun Wu. Polymeric nanoparticles for colon cancer therapy: overview and

perspectives. Journal of Materials Chemistry B, 4(48):7779–7792, 2016.

[199] Vinod Ravasaheb Shinde, Neeraja Revi, Sivasubramanian Murugappan,

Surya Prakash Singh, and Aravind Kumar Rengan. Enhanced permeability

and retention effect: A key facilitator for solid tumor targeting by nanoparti-

cles. Photodiagnosis and Photodynamic Therapy, 39:102915, 2022.

[200] Dan Peer, Jeffrey M Karp, Seungpyo Hong, Omid C Farokhzad, Rimona

Margalit, and Robert Langer. Nanocarriers as an emerging platform for can-

cer therapy. Nano-enabled medical applications, pages 61–91, 2020.

[201] Luan NM Nguyen, Zachary P Lin, Shrey Sindhwani, Presley MacMillan,

Stefan M Mladjenovic, Benjamin Stordy, Wayne Ngo, and Warren CW Chan.

The exit of nanoparticles from solid tumours. Nature Materials, pages 1–12,

2023.

[202] Francesca Perrotti, Consuelo Rosa, Ilaria Cicalini, Paolo Sacchetta, Piero

Del Boccio, Domenico Genovesi, and Damiana Pieragostino. Advances in

lipidomics for cancer biomarkers discovery. International journal of molec-

ular sciences, 17(12):1992, 2016.

[203] Linlin Zhang, Bijun Zhu, Yiming Zeng, Hui Shen, Jiaqiang Zhang, and Xi-

angdong Wang. Clinical lipidomics in understanding of lung cancer: oppor-

tunity and challenge. Cancer letters, 470:75–83, 2020.

[204] Emily G Armitage and Andrew D Southam. Monitoring cancer progno-

sis, diagnosis and treatment efficacy using metabolomics and lipidomics.

Metabolomics, 12:1–15, 2016.



Bibliography 243

[205] Chiranjeevi Peetla, Sivakumar Vijayaraghavalu, and Vinod Labhasetwar.

Biophysics of cell membrane lipids in cancer drug resistance: Implications

for drug transport and drug delivery with nanoparticles. Advanced drug de-

livery reviews, 65(13-14):1686–1698, 2013.

[206] Maria Patitsa, Konstantina Karathanou, Zoi Kanaki, Lamprini Tzioga,

Natassa Pippa, Constantinos Demetzos, Dimitris A Verganelakis, Zoe Cour-

nia, and Apostolos Klinakis. Magnetic nanoparticles coated with polyarabic

acid demonstrate enhanced drug delivery and imaging properties for cancer

theranostic applications. Scientific reports, 7(1):775, 2017.

[207] Lingxiao Li, Yuanyuan Yang, Lin Wang, Feng Xu, Yuan Li, and Xiaocong

He. The effects of serum albumin pre-adsorption of nanoparticles on protein

corona and membrane interaction: A molecular simulation study. Journal of

Molecular Biology, 435(1):167771, 2023.

[208] Shirley E Poduslo, Karen Miller, and Yong Jang. Comparison of lipids and

lipid metabolism in a human glioma cell line, its clone, and oligodendroglia.

Cancer research, 43(3):1014–1018, 1983.

[209] Helgi I Ingólfsson, Timothy S Carpenter, Harsh Bhatia, Peer-Timo Bremer,

Siewert J Marrink, and Felice C Lightstone. Computational lipidomics of the

neuronal plasma membrane. Biophysical journal, 113(10):2271–2280, 2017.

[210] Pin-Chia Hsu, Bart MH Bruininks, Damien Jefferies, Paulo Cesar Telles de

Souza, Jumin Lee, Dhilon S Patel, Siewert J Marrink, Yifei Qi, Syma Khalid,

and Wonpil Im. Charmm-gui martini maker for modeling and simulation of

complex bacterial membranes with lipopolysaccharides. Journal of compu-

tational chemistry, 38(27):2354–2363, 2017.

[211] RJ Gowers, M Linke, J Barnoud, TJE Reddy, MN Melo, SL Seyler,
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