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Abstract

In this work, we quantify the irregularity of a given cylindrical Lévy process L in L2(Rd)
by determining the range of weighted Besov spaces B in which L has a regularised version Y ,
that is a stochastic process Y in the classical sense with values in B. Our approach is based on
characterising Lévy measures on Besov spaces. As a by-product, we determine those Besov
spaces B for which the embedding of L2(Rd) into B is 0-Radonifying and p-Radonifying for
p > 1.

AMS 2010 Subject Classification: 60G20, 47B10, 60H25, 60G51, 60E07.
Keywords and Phrases: cylindrical processes; generalised processes; Radonifying operators;
regularisation; Besov spaces.

1 Introduction

Cylindrical Lévy processes are a natural generalisation of cylindrical Brownian motions or equiv-
alently of Gaussian space-time white noises. Being cylindrical processes, they generally do not
attain values in the underlying space. This fact may cause some surprising phenomena such as
highly irregular paths of solutions for linear evolution equations driven by a cylindrical Lévy pro-
cess L, which is observed for example by Brzeźniak and co-authors in [6] or Priola and Zabczyk
in [24], and which is related to the cylindrical distribution of L by Kumar and one of us in [22].

In this work, we initiate a new type of research question by quantifying the irregularity of
cylindrical Lévy processes in terms of its cylindrical distribution. For this purpose, we determine
the range of Besov spaces B in which a given cylindrical Lévy process L in the Hilbert space
L2(Rd) of square integrable functions becomes a Lévy process Y in the classical sense, i.e. a
stochastic process attaining values in the Besov space B. In this case, the classical Lévy process
Y is called the regularised version of L in B, a notion introduced by Itô and Nawata in the
work [19]. This approach is motivated by the following observation: by embedding the Hilbert
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space L2(Rd) into the space S∗(Rd) of tempered distributions, each cylindrical Lévy process in
L2(Rd) becomes a classical Lévy process in S∗(Rd) due to Minlos’ theorem; see Fonseca-Mora
[14]. Besov spaces lie between L2(Rd) and S∗(Rd), and thus offer a natural and sufficiently fine
scale to quantify the irregularity of a cylindrical Lévy process L by determining those Besov
spaces in which L becomes a classical Lévy process if they exist.

Besov spaces are a natural extension of Hölder-Zygmund and fractional Sobolev spaces, see
Chapter 1 of the monograph [31] by Triebel for a comprehensive introduction, and have been
extensively applied to measure smoothness of functions, e.g. of solutions of partial differential
equations. In the probabilistic setting, they have been used to analyse regularity of sample paths
for finite- and infinite dimensional stochastic processes, starting with the publications [17] by
Herren and [29] by Schilling. However, our investigation is fundamentally different as we apply
Besov spaces as a scale of spaces between L2(Rd) and S∗(Rd) in which a cylindrical random
variable in L2(Rd) may become a classical random variable.

The line of research closest to ours originates from the consideration of image processing and
appears in the publications [3, 8, 12, 13] by Dalang, Unser, Fageot and co-authors, in which the
authors investigate different aspects of a Lévy-type model in S∗(Rd). In order to characterise
local smoothness and the asymptotic growth in [3], they determine the Besov spaces in which the
Lévy-type model attains values almost surely. Although this result is related to our investigation,
it only applies to the subclass of cylindrical Lévy processes in L2(Rd) which corresponds to the
considered Lévy-type model in S∗(R); this subclass is shown to be very special in our previous
work [16], requiring the corresponding cylindrical Lévy processes to be stationary in time and
in space.

In order to derive results on the regularisation of cylindrical Lévy processes in Besov spaces,
our first task is to characterise the Lévy measures in Besov spaces. In most Banach spaces apart
from Hilbert spaces, an explicit characterisation of Lévy measures is not known. One of the
exceptions are Lévy measures on the sequence spaces ℓp due to a result by Yurinskii in [34].
Using the wavelet characterisation of Besov spaces, the result by Yurinskii will enable us to
derive the characterisation of Lévy measures on Besov spaces.

Having characterised the Lévy measures on Besov spaces, we turn our attention to the
regularisation question. Given a (non-Gaussian) cylindrical Lévy process L in L2(Rd), we give
sharp results for when L becomes a classical Lévy process in a fixed Besov space B. Our
technique is to study when the cylindrical Lévy measure of L may be extended to a σ-additive
measure on the Borel σ-algebra in B which is a Lévy measure on B; in this case, we are then
able to show the existence of a regularised version of L in B; see Definition 4.2 for the precise
notion of the latter.

The result on the existence of a regularised version in a Besov space B of a cylindrical Lévy
process in L2(Rd) is closely related to the so-called 0-Radonifying property of the embedding ι of
L2(Rd) into B. Here, ι is called 0-Radonifying if the image of each cylindrical random variable
in L2(Rd) under ι becomes a classical random variable in B. If this is the case, it is an easy
conclusion, that each cylindrical Lévy process in L2(Rd) has a regularised version in B. The
result on the regularisation of cylindrical Lévy process and its application to specific examples
enable us to exactly characterise those Besov spaces for which the embedding ι is 0-Radonifying
or p-Radonifying; the latter is a specialisation of 0-Radonifying under some moment conditions.

Our definition of and the fundamental results we shall need regarding Besov spaces are
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presented in Section 2. In Section 3, we characterise the Lévy measures on Besov spaces. In
Section 4 we give a general characterisation of when there exists a regularised version in a specific
Besov space for a cylindrical Lévy processes in L2(Rd). We finish the presentation in this section
by characterising Radonifying embeddings of L2 into Besov spaces. Finally, in Section 5, we
study in depth two important examples of cylindrical Lévy process: the canonical symmetric-α-
stable process, and the cylindrical Lévy process representable as an infinite sum of independent
one-dimensional Lévy processes, which we call the hedgehog process. In both cases we present a
full characterisation of the parameter set where the cylindrical Lévy process has and has not a
regularised version in a specific Besov space.

Notation

We take N = {1, 2, . . .} and Z+ = N∪{0} and R+ = {x ∈ R : x ⩾ 0}. All vector spaces are over
R. We shall assume throughout the text that we are working in Rd for a fixed dimension d, and
we fix a probability space (Ω,A, P ). Sequences are referred to by (xi)i∈I ; stochastic processes
are denoted (f(i) : i ∈ I).

Given a normed space (U, ∥·∥U ), we use the notation BU := {f ∈ U : ∥f∥U ⩽ 1} for the
closed unit ball in U . For a topological vector space (T, τ), we denote the Borel σ-algebra
generated by the open subsets of T by B(T ) and we denote the continuous (topological) dual
space by T ∗, referred to henceforth simply as the dual. The dual pairing is denoted ⟨t, t∗⟩T for
t ∈ T, t∗ ∈ T ∗. For topological vector spaces T and S we denote the continuous linear operators
from T to S by L(T, S) and L(T ) := L(T, T ).

Given a measure space (S,A, µ), the space of µ-equivalence classes of measurable functions
f : S → R is denoted by L0(S, µ), and of p-th integrable functions by Lp(S, µ) for p > 0. For a
Borel measure µ on S we define the reflected measure µ− by µ−(A) := µ(−A) for each A ∈ B(S).
The Lebesgue measure on B(Rd) is denoted by leb. For the case Lp(Rd, leb) we shall just write
Lp(Rd). We equip L0(S, µ) with the topology of convergence in measure, and we equip the
spaces Lp(S, µ) for p > 0 with their standard metrics and (quasi-)norms, denoted ∥·∥Lp(S,µ) or,

where there is no risk of confusion, ∥·∥Lp . For p > 1 we define p′ = p
p−1 to be the conjugate of

p with the usual modification for p ∈ {1,∞}.
For a ∈ Z+∪{∞} and an open set B ⊆ Rd we denote by Ca(B) the set of real-valued bounded

uniformly continuous functions on B with bounded uniformly continuous a-th derivative, where
C(B) = C0(B) denotes the bounded uniformly continuous functions without reference to differ-
entiability, and a = ∞ denotes the functions with bounded uniformly continuous derivatives of
all orders. Furthermore, Ca

c (B) denotes the subset of Ca(B) with compact support within B.
We shall write a ≲ b to mean that there exists a positive constant C such that a ⩽ Cb. If

the constant C depends on the parameters p1, . . . , pn, we shall also write C = C(p1, . . . , pn) and
≲p1,...pn . The expression a ≂ b is equivalent to a ≲ b ≲ a.

2 Weighted Besov Spaces

The weighted Besov spaces Bp
s,w(R

d) with 0 < p ⩽ ∞ and s, w ∈ R have many equivalent
definitions, see [31, 32] for a comprehensive treatment. We shall use a definition based upon
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wavelets. As we are focused on separable reflexive Banach spaces in this work, we shall use the
scale 1 < p < ∞.

Let S(Rd) denote the Schwartz space of rapidly decreasing functions on Rd, that is

S(Rd) :=
{
f ∈ C∞(Rd) : ∥f∥Sr

< ∞ for all r ∈ Z+

}
,

where the seminorms ∥·∥Sr
, r ∈ Z+, are defined by

∥f∥Sr
:= max

|s|⩽r
sup
x∈Rd

(1 + |x|2)r |∂sf(x)| , (2.1)

with s = (s1, . . . , sd) ∈ Zd
+ and ∂s := ∂|s|/(∂xs11 · · · ∂xsdd ). With the topology generated by

the family of seminorms (∥·∥Sr
)r∈Z+ , the space S(Rd) is metrisable, and fn → f in S(Rd)

means ∥fn − f∥Sr
→ 0 for each r ∈ Z+. The dual space of S(Rd) is the space S∗(Rd) of

tempered distributions, which we shall equip with the strong topology; that is the topology
generated by the family of seminorms {ηB}, where for each bounded B ⊆ S(Rd) we define
ηB(f) := supφ∈B |⟨φ, f⟩| for f ∈ S∗(Rd). With this topology, S(Rd) is reflexive and separable

and densely embedded in S∗(Rd); see [25, Th. V.14 Cor. 1]. The duality in S(Rd) is denoted
by [f, g] for f ∈ S(Rd) and g ∈ S∗(Rd).

The spaces Lp(Rd) for 1 ⩽ p ⩽ ∞ may be interpreted as subspaces of S∗(Rd) in the following
manner: for each g ∈ Lp(Rd) the map

f 7→
∫
R

d
f(x)g(x) dx, f ∈ S(Rd),

i.e. the duality in Lp′(Rd), is finite for all f ∈ S(Rd) by Hölder’s inequality. In this manner
we identify each g ∈ Lp(Rd) with a functional in S∗(Rd), which we shall also refer to as g.
Furthermore we extend this identification to the dual B∗ of any Banach space B in which S(Rd)
is densely embedded, and we identify ⟨f, g⟩B ≡ [f, g] for each f ∈ S(Rd) and g ∈ B∗. Finally, we
shall extend the definition of [f, g] as follows: if there exists a Banach space B in which S(Rd)
is dense and f ∈ B and g ∈ B∗ then we define [f, g] := ⟨f, g⟩B, otherwise we take [f, g] := ∞.
However, this interpretation means that we do not identify Hilbert spaces with their duals,
except in the case of L2(Rd).

We shall define the weighted Besov spacesBp
s,w(R

d) for p > 1 and s, w ∈ R in terms of wavelet
bases of L2(Rd), for which we follow [32, Sec. 1.2.3]. We define subsets Gj ⊆ {0, 1}d, j ∈ Z+ by

Gj :=

{
{0, 1}d, if j = 0,

{G = (G1, . . . , Gd) : Gi = 1 for at least one i}, if j ⩾ 1.

Suppose we are given
(
ΨG

0

)
G∈G0 ⊆ Cc(R

d) which form an orthonormal set in L2(Rd), which we

shall call the parent wavelets. Then, for each j ∈ Z+, G ∈ Gj and m ∈ Zd, we define

Ψj,G
m (x) := 2jd/2ΨG

m(2jx) := 2jd/2ΨG
0 (2

jx−m), x ∈ Rd .

It is known that for any r ∈ N, there exist such parent wavelets
(
ΨG

0

)
G∈G0 ⊆ Cr

c (R
d) such that

Ψ := {Ψj,G
m : j ∈ Z+, G ∈ Gj ,m ∈ Zd} forms an orthonormal basis in L2(Rd); see [31, Th. 1.61];
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one example is the Daubechies wavelets [9]. In this case, Ψ is called a wavelet basis of L2(Rd).
Henceforth, we shall refer to the wavelet index set

W
d :=

{
(j,G,m) : j ∈ Z+, G ∈ Gj ,m ∈ Zd

}
. (2.2)

Since Wd is countable, we may consider in the usual manner the space ℓp(Wd) of p-summable
sequences with index setWd. For the purposes of defining the weighted Besov space Bp

s,w(R
d),

we shall require a minimum smoothness of the wavelet basis depending on the dimension d and
the parameters p and s.

Definition 2.1. Let p > 1 and s, w ∈ R. A wavelet basis Ψ = {Ψj,G
m : (j,G,m) ∈ Wd} of

L2(Rd) is called an admissible basis of Bp
s,w(R

d) if Ψ ⊆ Cr
c (R

d) for some integer r > |s|.

We begin with defining the weighted Besov sequence space bps,w for p > 1 and s, w ∈ R, for
which we introduce the weight constants:

ωj
m = ωj

m(p, s, w) := 2
j(s− d

p
+ d

2
)
(1 + 2−2j |m|2)

w
2 , (2.3)

for each m ∈ Zd and j ∈ Z+. We define bps,w as the vector space of real-valued sequences

(λj,G
m )(j,G,m)∈Wd such that

∥λ∥bps,w :=

( ∑
j∈Z+

∑
G∈Gj

∑
m∈Zd

∣∣∣2− jd
2 ωj

mλj,G
m

∣∣∣p)1/p

< ∞.

The space (bps,w, ∥·∥bps,w) forms a Banach space if p > 1 and is a Hilbert space for p = 2.

Let Ψ be an admissible basis of Bp
s,w(R

d) for some p > 1 and s, w ∈ R. The weighted Besov
space Bp

s,w(R
d) is defined to be

Bp
s,w(R

d) :=

f ∈ S∗(Rd) : f =
∑
j∈Z+

∑
G∈Gj

∑
m∈Zd

λj,G
m 2−

jd
2 Ψj,G

m , λ ∈ bps,w

 , (2.4)

where the sum is unconditionally convergent in S∗(Rd). When this holds, the associated se-

quence λ is unique and we have λj,G
m = 2

jd
2 [Ψj,G

m , f ]. A consequence of Ψ being an admissible
basis of Bp

s,w(R
d) is that the wavelets are of sufficient smoothness to guarantee that they are

in
(
Bp

s,w(R
d)
)∗
, and so the dual pairing makes sense. As the sums over j,G and m are uncon-

ditional in the definitions of both the weighted Besov spaces and the weighted Besov sequence
spaces, we will henceforth use the simpler notation

∑
j,G,m to mean

∑
j∈Z+

∑
G∈Gj

∑
m∈Zd . We

may norm Bp
s,w(R

d) by taking ∥f∥Bp
s,w

:= ∥λ∥bps,w , giving

∥f∥Bp
s,w

=

( ∑
j,G,m

(ωj
m)p

∣∣[Ψj,G
m , f ]

∣∣p)1/p

. (2.5)

It follows that Bp
s,w(R

d) is a Banach space for p > 1 and a Hilbert space for p = 2. We
immediately see from this definition that B2

0,0(R
d) = L2(Rd), consistently with the relation

described in the introduction.
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Remark 2.2. The Besov space scale typically has an auxiliary parameter q. However, we
shall not be using the q parameter in this work; this is due to the fact that the embedding
theorems available in weighted Besov spaces (see Proposition 3 in [12]) show the continuous
embedding of Bp,q

s,w(R
d) into Bp,p

s−ε,w(R
d) for any q ∈ R and ε > 0. The results presented in this

work are generally expressed as strict inequalities on the Besov space parameters, and as such
are unaffected by the arbitrarily small change in the s parameter needed to incorporate any q
parameter.

The dual spaces for the classical unweighted Besov spaces are well-known:
(
Bp

s,0(R
d)
)∗

=

Bp′

−s,0(R
d) for p > 1 and s ∈ R; see e.g. [30, p. 179]. We may easily generalise to the weighted

case to state the following result:

Theorem 2.3. Let p > 1 and s, w ∈ R. The dual space
(
Bp

s,w(R
d)
)∗

may be identified with

Bp′

−s,−w(R
d) with p′ := p

p−1 , and the duality given by

⟨f, g⟩Bp
s,w

= [f, g] =
∑
j,G,m

[Ψj,G
m , f ][Ψj,G

m , g], (2.6)

where Ψ is any admissible basis for Bp
s,w(R

d) (and thus is an admissible basis for Bp′

−s,−w(R
d)).

Weighted Besov spaces form various scales according to the parameters p, s and w; we present
a general result for their continuous embeddings. The positive results, for when a certain Besov
space is continuously embedded in another given Besov space, are well-known; however, we are
unaware of any converse results so we develop such converses here.

Proposition 2.4. Let s0, s1, w0, w1 ∈ R and p0, p1 > 1.

(1) Suppose p0 > p1. Then Bp0
s0,w0(R

d) ↪→ Bp1
s1,w1(R

d) continuously if and only if

s0 > s1 and w0 − w1 > d

(
1

p1
− 1

p0

)
.

(2) Suppose p0 ⩽ p1. Then Bp0
s0,w0(R

d) ↪→ Bp1
s1,w1(R

d) continuously if and only if

s0 − s1 ⩾ d

(
1

p0
− 1

p1

)
and w0 ⩾ w1.

In order to prove this Proposition, we shall first prove an intermediary result about the
isomorphism between weighted Besov sequence spaces as defined above and ℓp spaces.

Lemma 2.5. For each p > 1 and s, w ∈ R the operator Υp
s,w : bps,w → ℓp(Wd) defined by(

Υp
s,wλ

)j,G
m

:= 2−
jd
2 ωj

mλj,G
m (2.7)

forms an isometric isomorphism, where the constants ωj
m = ωj

m(p, s, w) are defined in (2.3).

Proof. Since ∥λ∥bps,w = ∥Υp
s,wλ∥ℓp(Wd) by the very definition, the proof is elementary.
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Proof of Proposition 2.4. The continuous embedding in both cases is given by Proposition 3 in
[12]. To prove non-inclusion we first note that for any q > 0, if y = (yj,Gm )(j,G,m)∈Wd is such that

y /∈ ℓq(Wd)∗ then there exists x ∈ ℓq(Wd) with
∑

j,G,m xj,Gm yj,Gm = ∞.

(1): suppose that p0 > p1 and w1 − w0 ⩾ −d
(

1
p1

− 1
p0

)
. Taking α = p0

p0−p1
and thus α′ = p0

p1
,

we have αp1(w1 − w0) ⩾ −d. Since for any j ⩾ 0 we have∑
m∈Zd

(
1 + 2−2j |m|2

)αp1(w1−w0)
2 = ∞,

according to the proof of [12, Th. 3], we conclude∑
j,G,m

2
jαp1(s1−s0− d

p1
+ d

p0
)(
1 + 2−2j |m|2

)αp1(w1−w0)
2 = ∞.

Since the last expression means for the weights defined in(2.3) that((
ωj
m(p1, s1, w1)

ωj
m(p0, s0, w0)

)p1)
(j,G,m)∈Wd

/∈ ℓα(Wd),

it follows that there exists a non-negative y ∈ ℓ
p0
p1 (Wd) satisfying

∑
j,G,m

(
ωj
m(p1, s1, w1)

ωj
m(p0, s0, w0)

)p1

yj,Gm = ∞.

The isometry between ℓp0(Wd) and bp0s0,w0 established in Lemma 2.5 guarantees that λj,G
m =

2
jd
2

(
ωj
m(p0, s0, w0)

)−1
(yj,Gm )

1
p1 defines a sequence λ := (λj,G

m ) in bp0s0,w0 . Since

∥λ∥p1
b
p1
s1,w1

=
∑
j,G,m

(
2−

jd
2 ωj

m(p1, s1, w1)λ
j,G
m

)p1 =
∑
j,G,m

(
ωj
m(p1, s1, w1)

ωj
m(p0, s0, w0)

)p1

yj,Gm = ∞,

it follows λ /∈ bp1s1,w1 , which shows that bp0s0,w0 ⊈ bp1s1,w1 which in turn shows Bp0
s0,w0(R

d) ⊈
Bp1

s1,w1(R
d) by the isometry between the weighted Besov spaces and the weighted Besov sequence

spaces; see [31, Th. 6.15].
Now suppose p0 > p1 and s0 ⩽ s1, and define for (j,G,m) ∈Wd

xj,Gm :=

(
ωj
m(p1, s1, w1)

ωj
m(p0, s0, w0)

)p1

.

We can assume Sj :=
∑

m∈Zd

(
1+2−2j |m|2

)αp1(w1−w0)
2 < ∞ for each j ∈ Z+, as otherwise there

would be nothing to prove. Since Sj is asymptotically O(2jd) as j → ∞ according to [12, Th. 3],
we obtain ∑

j,G,m

∣∣xj,Gm ∣∣α =
∑
j,G

2
αjp1(s1−s0− d

p1
+ d

p0
)
Sj = ∞,
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as αp1
(
s1 − s0 − d

p1
+ d

p0

)
⩾ −d. It follows

(
xj,Gm

)
(j,G,m)∈Wd /∈ ℓα(Wd), and the proof of non-

inclusion proceeds as above.

(2): let p0 ⩽ p1 and s1 − s0 > d( 1
p1

− 1
p0
), so we have 2

jp1(s1−s0− d
p1

+ d
p0

)
is unbounded as

j → ∞. For (j,G,m) ∈Wd we define

xj,Gm :=

(
ωj
m(p1, s1, w1)

ωj
m(p0, s0, w0)

)p1

.

Since
(
xj,Gm

)
(j,G,m)∈Wd /∈ ℓ∞(Wd) there exists y ∈ ℓ

p0
p1 (Wd) such that

∑
j,G,m

(
ωj
m(p1, s1, w1)

ωj
m(p0, s0, w0)

)p1

yj,Gm = ∞,

where we recall the dual of ℓp for p ⩽ 1 is ℓ∞. The proof of the non-inclusion follows as above.
In the remaining case p0 > p1 and w0 < w1, we again obtain

(
xj,Gm

)
(j,G,m)∈Wd /∈ ℓ∞(Wd),

and the non-inclusion result follows.

We may now identify the set of weighted Besov spaces containing L2(Rd).

Proposition 2.6. Let p > 1 and define

Ep :=


(−∞, 0)× (−∞,−d

p + d
2), if p ∈ (1, 2),

(−∞, 0]× (−∞, 0], if p = 2,

(−∞,−d
2 + d

p)× (−∞, 0], if p ∈ (2,∞).

(2.8)

Then L2(Rd) ⊆ Bp
s,w(R

d) if and only if (s, w) ∈ Ep; in this case, the embedding is continuous.

Proof. We recall that L2(Rd) = B2
0,0(R

d). The result then follows by applying Proposition 2.4
for the case p0 = 2, p1 = p, s0 = 0, s1 = s, w0 = 0 and w1 = w.

3 Lévy measures and Lévy processes in Besov spaces

Let U be a separable Banach space with dual U∗. We define Lévy processes in U in the usual
manner, that is, a U -valued process L = (L(t) : t ⩾ 0) such that L(0) = 0, L has independent
and stationary increments, and the map from t to the law of L(t) is continuous at 0 in the
topology of weak convergence of probability measures.

For an arbitrary finite measure µ on B(U) define the exponential measure e(µ) by

e(µ) := e−µ(U)
∞∑

m=0

1

m!
µ∗m. (3.9)

The exponential measure e(µ) is a compound Poisson distribution with characteristic function

φµ : U
∗ → C, φµ(u

∗) = exp

(∫
U

(
ei⟨u,u

∗⟩U − 1
)
µ(du)

)
.
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Whereas in the finite dimensional case, and in Hilbert spaces, the integrability of |·|2∧ 1 charac-
terises Lévy measures, there are no equivalent conditions known in arbitrary Banach spaces for
when the same function φµ but for a σ-finite measure µ still forms the characteristic function
of a probability measure. Thus, Lévy measures are defined implicitly in the following way, see
[23]:

Definition 3.1. A σ-finite measure µ on B(U) is a Lévy measure if µ({0}) = 0 and

φµ : U
∗ → C, φµ(u

∗) = exp

(∫
U

(
ei⟨u,u

∗⟩U − 1− i⟨u, u∗⟩U 1BU
(u)
)
µ(du)

)
is the characteristic function of a probability measure on B(U), which we shall call eS(µ).

Theorem 5.4.8 in [23] guarantees that a σ-finite measure µ on B(U) is a Lévy measure if and
only if its symmetrisation µ+ µ− is a Lévy measure.

Lévy measures in sequence spaces ℓp are characterised in Yurinskii [34]. Using the wavelet
definition of weighted Besov spaces enables us to derive a corresponding result for the Lévy
measures on these spaces.

Theorem 3.2. A σ-finite measure µ on B(Bp
s,w(R

d)) with µ({0}) = 0 is a Lévy measure on
Bp

s,w(R
d) for some p ∈ (1,∞) and s, w ∈ R if and only if

(1) for p ⩾ 2, ∫
Bp

s,w

(
∥f∥p

Bp
s,w

∧ 1
)
µ(df) < ∞, (3.10)

∑
j,G,m

(ωj
m)p

∫
∥f∥

B
p
s,w

⩽1
[Ψj,G

m , f ]2 µ(df)

p/2

< ∞; (3.11)

(2) and for p ∈ (1, 2),∫
Bp

s,w

(
∥f∥2Bp

s,w
∧ 1
)
µ(df) < ∞, (3.12)

∑
j,G,m

(ωj
m)p

∫ ∞

0

(
1− e

∫
∥f∥

B
p
s,w

⩽1

(
cos τ [Ψj,G

m ,f ]−1
)
µ(df)

)
dτ

τ1+p
< ∞. (3.13)

In the expressions above, ωj
m = ωj

m(p, s, w) are the weight constants defined in (2.3), and
{Ψj,G

m : j ∈ Z+, G ∈ Gj ,m ∈ Zd} is an admissible basis of Bp
s,w(R

d).

Proof. We begin by showing sufficiency. Because of [23, Th. 5.4.8], we can assume that µ is
symmetric. Given 0 ⩽ α ⩽ β ⩽ ∞ we define

µα,β(A) := µ
(
A ∩ {f ∈ Bp

s,w(R
d) : α ⩽ ∥f∥Bp

s,w
< β}

)
, A ∈ B(Bp

s,w(R
d)).
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Let ε ∈ [0, 1) and note that Conditions (3.10) and (3.12) each imply that µε,1(B
p
s,w(R

d)) is finite.
Thus, the exponential measure e(µε,1) defined in (3.9) coincides with eS(µε,1) and we obtain∫

Bp
s,w

∥f∥p
Bp

s,w
eS(µε,1)(df) =

∑
j,G,m

(ωj
m)p

∫
Bp

s,w

∣∣[Ψj,G
m , f ]

∣∣p eS(µε,1)(df)

=
∑
j,G,m

(ωj
m)p

∫
R

|β|p
(
eS(µε,1) ◦ [Ψj,G

m , ·]−1
)
(dβ)

=
∑
j,G,m

(ωj
m)pE

∣∣ξj,Gm

∣∣p , (3.14)

where ξj,Gm is a random variable with distribution eS(µε,1) ◦ [Ψj,G
m , ·]−1 = eS(µε,1 ◦ [Ψj,G

m , ·]−1) for
each j ∈ Z+, G ∈ Gj and m ∈ Zd.

For p ⩾ 2, Theorem 1.1 in [11] guarantees

E
∣∣ξj,Gm

∣∣p ≂p

∫
R

|β|p (µε,1 ◦ [Ψj,G
m , ·]−1)(dβ) +

(∫
R

|β|2 (µε,1 ◦ [Ψj,G
m , ·]−1)(dβ)

)p/2

.

It follows that, for p ⩾ 2,∫
Bp

s,w

∥f∥p
Bp

s,w
eS(µε,1)(df)

≂p

∑
j,G,m

(ωj
m)p

(∫
R

|β|p (µε,1 ◦ [Ψj,G
m , ·]−1)(dβ) +

(∫
R

|β|2 (µε,1 ◦ [Ψj,G
m , ·]−1)(dβ)

)p/2
)

=
∑
j,G,m

(ωj
m)p

∫
Bp

s,w

∣∣[Ψj,G
m , f ]

∣∣p µε,1(df) +

(∫
Bp

s,w

∣∣[Ψj,G
m , f ]

∣∣2 µε,1(df)

)p/2


=

∫
Bp

s,w

∥f∥p
Bp

s,w
µε,1(df) +

∑
j,G,m

(ωj
m)p

(∫
Bp

s,w

∣∣[Ψj,G
m , f ]

∣∣2 µε,1(df)

)p/2

. (3.15)

Conditions (3.10) and (3.11) imply

sup
ε∈(0,1)

∫
Bp

s,w

∥f∥p
Bp

s,w
e(µε,1)(df) < ∞. (3.16)

By applying Hölder’s inequality twice, Theorem 2.3 shows for g ∈
(
Bp

s,w(R
d)
)∗

that∫
∥f∥

B
p
s,w

⩽1
⟨f, g⟩2Bp

s,w
µ(df)

=
∑
j,G,m

∑
k,H,n

[Ψj,G
m , g][Ψk,H

n , g]

∫
∥f∥

B
p
s,w

⩽1
[Ψj,G

m , f ][Ψk,H
n , f ]µ(df)

⩽

∑
j,G,m

[Ψj,G
m , g]

∫
∥f∥

B
p
s,w

⩽1
[Ψj,G

m , f ]2 µ(df)

1/2


2
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=

∑
j,G,m

(ωj
m)−1[Ψj,G

m , g]

(ωj
m)2

∫
∥f∥

B
p
s,w

⩽1
[Ψj,G

m , f ]2 µ(df)

1/2


2

⩽

∑
j,G,m

(ωj
m)−p′

∣∣[Ψj,G
m , g]

∣∣p′2/p′
∑

j,G,m

(ωj
m)p

∫
∥f∥

B
p
s,w

⩽1
[Ψj,G

m , f ]2 µ(df)

p/2


2/p

.

Since
∑

j,G,m(ωj
m)−p′

∣∣∣[Ψj,G
m , g]

∣∣∣p′ = ∥g∥p
′

Bp′
−s,−w

, Condition (3.11) guarantees

∫
∥f∥

B
p
s,w

⩽1
⟨f, g⟩2Bp

s,w
µ(df) ≲ ∥g∥2

Bp′
−s,−w

.

Together with (3.16) we see that the conditions of Theorem 1.B in [34] are satisfied and hence
µ is a Lévy measure on Bp

s,w(R
d).

Next we consider the case p ∈ (1, 2); in this case, we use the following relation for a real-
valued symmetric random variable X with characteristic function φX and q ∈ (0, 2):

E |X|q = cq

∫ ∞

0

1− Re(φX(τ))

τ q+1
dτ, (3.17)

where cq is a constant depending only on q; see for example [20, Th. 11.4.3].

Applying Equality (3.17) to a random variable with distribution e(µε,1) ◦ [Ψj,G
m , ·]−1 shows,

for each ε ∈ (0, 1),∫
Bp

s,w

∥f∥p
Bp

s,w
e(µε,1)(df)

= cp
∑
j,G,m

(ωj
m)p

∫ ∞

0

(
1− e

∫
B
p
s,w

(
cos τ [Ψj,G

m ,f ]−1
)
µε,1(df)

)
dτ

τ1+p

⩽ cp
∑
j,G,m

(ωj
m)p

∫ ∞

0

(
1− e

∫
∥f∥

B
p
s,w⩽1

(
cos τ [Ψj,G

m ,f ]−1
)
µ(df)

)
dτ

τ1+p
.

Condition (3.13) guarantees

sup
ε∈(0,1)

∫
Bp

s,w

∥f∥p
Bp

s,w
e(µε,1)(df) < ∞. (3.18)

Condition (3.12) implies for g ∈ Bp′

−s,−w(R
d) that∫

∥f∥
B
p
s,w

⩽1
⟨f, g⟩2Bp

s,w
µ(df) ⩽

∫
∥f∥

B
p
s,w

⩽1
∥f∥2Bp

s,w
∥g∥2

Bp′
−s,−w

µ(df) ≲ ∥g∥2
Bp′

−s,−w

.

Together with (3.18), it follows that the conditions of Theorem 1.B in [34] are satisfied and
hence µ is a Lévy measure on Bp

s,w(R
d).
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To establish necessity of the conditions suppose that µ is a Lévy measure on Bp
s,w(R

d); as
before we can assume µ is symmetric. Proposition 5.4.1 in [23] implies that we have µ

(
Bc

Bp
s,w

)
<

∞. Since µ0,1 is a symmetric Lévy measure on Bp
s,w(R

d), the probability measure eS(µ0,1) exists
according to [23, Cor. 5.4.4]. Corollary 3.3 in [10] shows, for all q > 0, that∫

Bp
s,w

∥f∥q
Bp

s,w
eS(µ0,1)(df) < ∞. (3.19)

We first consider the case p ⩾ 2. Since eS(µ0,1) exists we obtain as in (3.15) that∫
Bp

s,w

∥f∥p
Bp

s,w
µ0,1(df) +

∑
j,G,m

(ωj
m)p
(∫

Bp
s,w

[Ψj,G
m , f ]2 µ0,1(df)

)p/2

≂p

∫
Bp

s,w

∥f∥p
Bp

s,w
eS(µ0,1)(df),

which verifies the necessity of Conditions (3.10) and (3.11) because of (3.19).
For the case p ∈ (1, 2), we apply Equality (3.17) to a random variable with distribution

eS(µ0,1) ◦ [Ψj,G
m , ·]−1 to obtain

∑
j,G,m

(ωj
m)p

∫ ∞

0

(
1− e

∫
∥f∥

B
p
s,w

⩽1

(
cos τ [Ψj,G

m ,f ]−1
)
µ(df)

)
dτ

τ1+p
= c−1

p

∫
Bp

s,w

∥f∥p
Bp

s,w
eS(µ0,1)(df),

which shows the necessity of Condition (3.13) because of (3.19). Furthermore, since Bp
s,w(R

d)
is isomorphic to ℓp(Wd) and the latter is of cotype 2 for p ∈ (1, 2), Theorem 2.2 in [2] directly
shows the necessity of condition (3.12).

Remark 3.3. Since Bp
s,w(R

d) is of type p for p ∈ [1, 2] by the isometry with ℓp(Wd), Theorem 2.3
in [2] guarantees that µ is Lévy measure on Bp

s,w(R
d) if∫

Bp
s,w

(
∥f∥p

Bp
s,w

∧ 1
)
µ(df) < ∞.

4 Regularisation in Besov spaces

Cylindrical Lévy processes in a Banach space U (as defined for example in [1, 26, 27]) natu-
rally generalise the notation of cylindrical Brownian motion, based on the theory of cylindrical
measures and cylindrical random variables. For some n ∈ N and u1, . . . , un ∈ U∗ we define the
projection πu∗

1,...,u
∗
n
: U → Rn by

πu∗
1,...,u

∗
n
(u) :=

(
⟨u, u∗1⟩U , . . . , ⟨u, u∗n⟩U

)
.

Henceforth, we shall assume U is reflexive and separable, and let Γ ⊆ U∗. Sets of the form

Z(u∗1, . . . , u
∗
n;A) := π−1

u∗
1,...,u

∗
n
(A) =

{
u ∈ U :

(
⟨u, u∗1⟩U , . . . , ⟨u, u∗n⟩U

)
∈ A

}
for A ∈ B(Rn) are called cylinder sets with respect to (U,Γ), and the set of all cylinder sets
with respect to (U,Γ) is denoted by Z(U,Γ); we also denote Z(U,U∗) =: Z(U). It follows that
Z(U,Γ) is an algebra. A cylindrical random variable Z in U is a linear and continuous mapping
Z : U∗ → L0(Ω, P ). The characteristic function of Z is defined by φZ(u

∗) = E[exp(iZu∗)] for
all u∗ ∈ U∗; see e.g. [33].
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Definition 4.1. A family (L(t) : t ⩾ 0) of cylindrical random variables L(t) : U∗ → L0(Ω, P )
is called a cylindrical Lévy process if for all u∗1, ..., u

∗
n ∈ U∗ and n ∈ N, the stochastic process

((L(t)u∗1, ..., L(t)u
∗
n) : t ⩾ 0) is a Lévy process in Rn.

In order to present the Lévy-Khintchine formula for a cylindrical Lévy process, we must first
give a definition of the cylindrical version of the Lévy measure. For cylindrical Lévy measures,
we must specifically exclude sets containing the origin to avoid consistency issues with finite-
dimensional projections. We define the π-system Z∗(U,Γ) ⊆ Z(U,Γ) for some Γ ⊆ U∗ as

Z∗(U,Γ) := {Z(u∗1, . . . , u
∗
n;A) : u∗1, . . . , u

∗
n ∈ Γ, n ∈ N, A ∈ B(Rn), 0 /∈ A}.

If Γ = U∗ we write Z∗(U) := Z∗(U,U
∗). A set function µ : Z∗(U) → [0,∞] is called a cylindrical

Lévy measure if for all u∗1, . . . , u
∗
n ∈ U∗ and n ∈ N the map

µu∗
1,...,u

∗
n
: B(Rn) → [0,∞], µu∗

1,...,u
∗
n
(A) = µ ◦ π−1

u∗
1,...,u

∗
n
(A\{0})

defines a Lévy measure on Rn. The characteristic function of a cylindrical Lévy process (L(t) :
t ⩾ 0) is given by

φL(t) : U
∗ → C, φL(t)(u

∗) = exp
(
tϑL(u

∗)
)
,

for all t ⩾ 0. Here, ϑL : U
∗ → C is called the (cylindrical) symbol of L, and is of the form

ϑL(u
∗) = ia(u∗)− 1

2⟨u
∗, Qu∗⟩U∗ +

∫
U

(
ei⟨u,u

∗⟩U − 1− i⟨u, u∗⟩U 1BR
(
⟨u, u∗⟩U

))
µ(du),

where a : U∗ → R is a continuous mapping with a(0) = 0, the mapping Q : U∗ → U∗∗ is a
positive, symmetric operator and µ is a cylindrical Lévy measure; see [26].

We shall analyse cylindrical Lévy processes in L2(Rd) to determine when they arise from a
Lévy process in a larger Besov space. This is based on the following concept:

Definition 4.2. Let H be a Hilbert space continuously and densely embedded in a Banach space
U . A cylindrical Lévy process L in H is said to be induced by a Lévy process Y in U if

L(t)u∗ = ⟨Y (t), u∗⟩U P -a.s. for all u∗ ∈ U∗ and t ⩾ 0.

We shall examine conditions on the cylindrical Lévy measure of L such that L is induced
by a genuine Lévy process Y in Bp

s,w(R
d) for some fixed p > 1 and s, w ∈ R. With reference

to Definition 4.2, we shall only consider Besov spaces which contain L2(Rd). This will allow
us to develop the mathematical theory without the complication arising in the case that the
cylindrical Lévy process L may have a non-trivial kernel and thus may be induced by a process
in a Besov space which does not contain the whole of L2(Rd).

4.1 Cylindrical Brownian motions

The literature in dealing with the Besov localisation of Gaussian processes is primarily concerned
with the path properties of finite-dimensional Brownian motions, or analogously with Gaussian
white noise, conceived as a distribution-valued (generalised) random variable which represents
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the weak derivative in space and time of a finite-dimensional Brownian motion. In this work,
we generalise from a distribution-valued random variable to a distribution-valued process.

Let W be a standard cylindrical Brownian motion in L2(Rd). Applying results from our
previous work [16], we can identify W with a distribution-valued white noise as considered in
[3]. Proposition 3.4 in [3] implies that, given p > 1 and s, w ∈ R, the standard cylindrical
Brownian motion W is induced by a Brownian motion in Bp

s,w(R
d) if and only if s < −d

2 and

w < −d
p .

For a general cylindrical Brownian motion W in L2(Rd) with covariance operator Q and
reproducing kernel Hilbert space HQ we obtain the following: suppose p > 1 and w, s ∈ R are
such that L2(Rd) is continuously embeeded into Bp

s,w(R
d), then W is induced by a Brownian

motion in Bp
s,w(R

d) if and only if the injection HQ ↪→ Bp
s,w(R

d) is γ-Radonifying in the sense of
Chapter 9 in [18].

4.2 Non-Gaussian cylindrical Lévy processes

The cylindrical Lévy process L = (L(t) : t ⩾ 0) on L2(Rd) defines by L′(t)(b∗) := L(t)(ι∗b∗)
for each b∗ ∈

(
Bp

s,w(R
d)
)∗

a cylindrical Lévy process L′ = (L′(t) : t ⩾ 0) on Bp
s,w(R

d) where

ι : L2(Rd) → Bp
s,w(R

d) is the canonical embedding for some p > 1 and (s, w) ∈ Ep.
Letting µ be the cylindrical Lévy measure of L on Z∗(L

2(Rd)), then µ̃ := µ ◦ ι−1 is the
cylindrical Lévy measure of L′ on Z∗(B

p
s,w(R

d)); see [26, Th. 3.4]. We shall study the case when
µ̃ extends to a σ-finite measure on B(Bp

s,w(R
d)). In this case, we will mildly abuse notation and

simply refer to this σ-finite and σ-additive extension as µ where the context allows no confusion.
The starting point for our analysis shall be to examine this extension using the results previously
developed.

The following result demonstrates that, in the non-Gaussian case, regularisation of the cylin-
drical Lévy process results from the extension of the cylindrical Lévy measure, and furthermore
allows us to concentrate in the sequel on symmetric cylindrical Lévy processes.

Theorem 4.3. Let L be a cylindrical Lévy process in L2(Rd) with no Guassian component and
fix p > 1 and (s, w) ∈ Ep. Let LS := L − Lc be the symmetrisation of L, where Lc is an
independent copy of L. Then L is induced by a Lévy process in Bp

s,w(R
d) if and only if the

cylindrical Lévy measure of LS has an extension to a σ-finite measure on B(Bp
s,w(R

d)) which is
a Lévy measure on Bp

s,w(R
d).

Proof. The ‘only if’ implication is clear. To establish the converse, denoting the cylindrical Lévy
measure of L by µ, we have that LS has cylindrical Lévy measure µ + µ−. Let µ̃S denote the
σ-additive extension of µ + µ− on B(Bp

s,w(R
d)); by assumption µ̃S is a Lévy measure. As we

have µ ⩽ µ̃S on each cylinder set in Z∗(B
p
s,w(R

d)), Theorem 3.4 in [27] implies that µ has a
σ-additive extension on B(Bp

s,w(R
d)) which is a Lévy measure.

We fix t > 0 and apply Theorem 5.6 in [27] to the function f : [0, t] → L(L2(Rd), Bp
s,w(R

d))
given by f(u) = ι for all u ∈ [0, t]. We conclude that f is stochastically integrable with
respect to L as defined in [27] since µ extends to a Lévy measure. (This Theorem actually
requires that the function a : L2(Rd) → R as defined in Equation 3.1 of [27] is weak*-weakly
sequentially continuous, however a careful analysis of the proof indicates that in a reflexive
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Banach space such as Bp
s,w(R

d), this requirement is not necessary.) It follows that the process( ∫
[0,t] f(u) dL(u) : t ⩾ 0

)
forms a Lévy process in Bp

s,w(R
d) which induces L.

In the sequel, we shall make use of the following technique. As the sums defining membership
of a given Besov space in (2.4) are required to be unconditionally convergent, we may take any
convenient ordering of the terms. For any enumeration of the countable set of indices j,G and
m, we denote a sum over the first n terms in this enumeration by

∑n
j,G,m. We define for each

n ∈ N the projection Pn ∈ L(Bp
s,w(R

d)) onto the subspace spanned by the first n elements in
the enumeration of Ψ, that is

Pnf :=

n∑
j,G,m

[Ψj,G
m , f ]Ψj,G

m , f ∈ Bp
s,w(R

d). (4.20)

Theorem 4.4. Let µ be a cylindrical Lévy measure on Z∗(B
p
s,w(R

d)) for some p > 1 and
(s, w) ∈ Ep. Then µ extends to a σ-finite measure on B(Bp

s,w(R
d)) if

lim
R→∞

lim
n→∞

µ
({

f : ∥Pnf∥Bp
s,w

> R
})

= 0.

Proof. We shall apply the theorem on [15, p.327], which gives conditions for when a cylindrical
probability measure extends to a probability measure on a Banach space with a separable dual.
In order to apply this theorem in our setting, a careful study of the proof indicates that in
addition to our assumptions we need to work with finite cylindrical measures satisfying the
continuity condition

lim
k→∞

µ
(
{f : [f, f∗

1,k] < a1, . . . , [f, f
∗
m,k] < am}

)
= µ

(
{f : [f, f∗

1 ] < a1, . . . , [f, f
∗
m] < am}

)
(4.21)

for Lebesgue-almost all a1, . . . , am ∈ R whenever f∗
i,k → f∗

i in
(
Bp

s,w(R
d)
)∗

for each i = 1, . . . ,m.

Let {ek}k∈N be an (unconditional) Schauder basis of Bp
s,w(R

d) with coordinate functionals
{e∗k}k∈N such that ∥e∗k∥Bp′

−s,−w(Rd)
= 1 for each k ∈ N. We consider the cylindrical measure µ1,1

defined by

µ1,1(C) = µ (C ∩ {f : |[f, e∗1]| > 1}) for C ∈ Z(Bp
s,w(R

d), {e∗k}k∈N).

By the properties of cylindrical Lévy measures, the set function µ1,1 is a finite cylindrical measure
on Z(Bp

s,w(R
d), {e∗k}k∈N). As µ satisfies limk→∞(|β|2 ∧ 1)(µ ◦ π−1

e∗1,f
∗
1,k...,f

∗
m,k

)(dβ) = (|β|2 ∧ 1)(µ ◦
π−1
e∗1,f

∗
1 ,...,f

∗
m
)(dβ) weakly for every f∗

i,k → f∗
i in

(
Bp

s,w(R
d)
)∗

for each i = 1, . . . ,m. due to Lemma

4.4 in [26], we see that (4.21) is satisfied for µ1,1 as each finite-dimensional projection only takes
weight on |β| > 1. Since

µ1,1

({
f : ∥Pnf∥Bp

s,w
> R

})
⩽ µ

({
f : ∥Pnf∥Bp

s,w
> R

})
for all n ∈ N, R > 0,

we may apply the result in [15, p.327] and extend µ1,1 to a finite measure µ̃1,1 on B(Bp
s,w(R

d)).
The measure µ̃1,1 is supported on {f : |[f, e∗1]| > 1}, and satisfies µ̃1,1(C) = µ(C ∩{f : |[f, e∗1]| >
1}) for each cylinder set C ∈ Z(Bp

s,w(R
d), {e∗k}k∈N).
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Next, for each n ∈ N we construct cylindrical measures µ1,n+1 by

µ1,n+1(C) = µ

(
C ∩

{
f :

1

n+ 1
< |[f, e∗1]| ⩽

1

n

})
, C ∈ Z(Bp

s,w(R
d), {e∗k}k∈N).

Applying the same argument as above (using an easy rescaling), we obtain a sequence of finite
measures {µ̃1,n}n∈N with pairwise disjoint support. We define the measure µ̃1 by

µ̃1(A) =
∞∑
n=1

µ̃1,n(A), A ∈ B(Bp
s,w(R

d)).

By this construction, µ̃1 forms a σ-finite measure on B(Bp
s,w(R

d)) with support in B1 :=
{f : |[f, e∗1]| ≠ 0}.

We repeat the procedure on the subspace {f : |[f, e∗1]| = 0}. We start by defining, for
C ∈ Z(Bp

s,w(R
d), {e∗k}k∈N),

µ2,1(C) = µ (C ∩ {f : |[f, e∗1]| = 0, |[f, e∗2]| > 1}) ,

and, for n ∈ N,

µ2,n+1(C) = µ

(
C ∩

{
f : |[f, e∗1]| = 0,

1

n+ 1
< |[f, e∗2]| ⩽

1

n

})
.

We in this manner obtain a σ-finite measure µ̃2 on B(Bp
s,w(R

d)) with support in the set B2 :=
{f : |[f, e∗1]| = 0, |[f, e∗2]| ≠ 0}. We then continue this procedure to create the set of measures
{µ̃k}k∈N, where for each k ∈ N, µ̃k has support in Bk := {f : |[f, e∗1]| = 0, . . . ,

∣∣[f, e∗k−1]
∣∣ =

0, |[f, e∗k]| ̸= 0}. We observe that the sets {Bk}k∈N are pairwise disjoint, and Bp
s,w(R

d) =
{0} ∪

⋃∞
k=1Bk. We now finally define the measure µ̃ on B(Bp

s,w(R
d)) by setting µ̃({0}) = 0 and

µ̃(A) =
∞∑
k=1

µ̃k(A), A ∈ B(Bp
s,w(R

d)).

As µ̃ is a sum of σ-finite measures with pairwise disjoint support, it follows that µ̃ is σ-
finite. Let C = C(e∗1, . . . , e

∗
n;B) for some B ∈ B(Rn) with 0 /∈ B be an arbitrary set in

Z∗(B
p
s,w(R

d), {e∗k}k∈N). Since

µ̃(C) =

n∑
k=1

µ̃k(C) =

n∑
k=1

µ(C ∩Bk) = µ(C),

we conclude that µ̃ forms an extension of the restriction of µ to Z∗(B
p
s,w(R

d), {e∗k}k∈N).
First assuming that µ is finite, continuity of its characteristic functions shows that µ is

uniquely determined by its values on Z∗(B
p
s,w(R

d), {e∗k}k∈N). It follows that µ̃ forms an extension
of µ. The general case follows from the construction of µ̃.

We now present a Corollary to Theorem 3.2 which characterises when a cylindrical Lévy
process in L2(Rd) is induced by a genuine Lévy process in some given weighted Besov space.
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Corollary 4.5. Let L be a cylindrical Lévy process in L2(Rd) with no Gaussian component and
with cylindrical Lévy measure µ. Then L is induced by a Lévy process in Bp

s,w(R
d) for some

p > 1 and (s, w) ∈ Ep if and only if µ extends to a σ-finite measure on B(Bp
s,w(R

d)) and

(1) for p ⩾ 2,

lim
n→∞

∫
Bp

s,w

(
∥Pnf∥pBp

s,w
∧ 1
)
µ(df) < ∞, (4.22)

lim
n→∞

n∑
j,G,m

(ωj
m)p

(∫
Bp

s,w

1BR

(
∥Pnf∥Bp

s,w

) ∣∣[Ψj,G
m , f ]

∣∣2 µ(df)

)p/2

< ∞;

(2) for p ∈ (1, 2),

lim
n→∞

∫
Bp

s,w

(
∥Pnf∥2Bp

s,w
∧ 1
)
µ(df) < ∞, (4.23)

lim
n→∞

n∑
j,G,m

(ωj
m)p

∫ ∞

0

(
1− e

∫
B
p
s,w
1BR

(
∥Pnf∥Bp

s,w

)(
cos τ [Ψj,G

m ,f ]−1
)
µ(df)

)
dτ

τ1+p
< ∞.

In the expressions above, ωj
m = ωj

m(p, s, w) are the weight constants defined in (2.3), and
{Ψj,G

m : j ∈ Z+, G ∈ Gj ,m ∈ Zd} is any admissible basis of Bp
s,w(R

d).

Proof. By Theorem 4.3 we may assume that L and µ are symmetric. Then necessity and
sufficiency of the conditions follows from Theorem 3.2.

4.3 Radonifying Embeddings

Assume that U and V are some Banach spaces. Let Z : U∗ → L0(Ω, P ) be a cylindrical random
variable and T : U → V a linear and continuous operator. The image of Z under T is the
cylindrical random variable TZ : V ∗ → L0(Ω, P ) on V defined by (TZ)v∗ := Z(T ∗v∗) for all
v∗ ∈ V ∗. The cylindrical random variable TZ is induced by a random variable X : Ω → V if
(TZ)v∗ = ⟨X, v∗⟩V P -a.s. for all v∗ ∈ V ∗.

Definition 4.6. Let U, V be separable Banach spaces. A continuous linear operator T : U → V
is called

(1) 0-Radonifying if for each cylindrical random variable Z in U , the cylindrical random vari-
able TZ is induced by a random variable in V ;

(2) p-Radonifying for some p > 0 if for each cylindrical random variable Z in U satisfying
E |Zu∗|p < ∞ for each u∗ ∈ U∗, the cylindrical random variable TZ is induced by a
random variable in V .

The word Radonifying originates from the fact, that the probability distribution of the
inducing random variable in the definition above is a Radon measure on B(V ). Since we only
consider separable Banach spaces, this is redundant in our setting.
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Definition 4.7. Let U, V be Banach spaces and p > 0. A continuous linear operator T : U → V
is called p-summing if there exists C > 0 such that for every finite collection (ui)

n
i=1 ⊆ U we

have

n∑
i=1

∥Tui∥pV ⩽ Cp sup
∥u∗∥U∗⩽1

n∑
i=1

|⟨ui, u∗⟩U |p .

Every p-Radonifying operator for p > 0 is p-summing, and every 0-Radonifying operator is
p-summing for every p > 0. The classes of p-summing and p-Radonifying operators coincide for
p > 1; see [33, Th. VI.5.4]. If U and V are Hilbert spaces, 0-Radonifying operators coincide
with Hilbert-Schmidt operators [33, Th. VI.5.2], and thus the class of p-summing operators for
all p > 0 coincides with the class of Hilbert-Schmidt operators.

The cylindrical Lévy process L′, introduced in Section 4.2, is the image of L under the
embedding ι : L2(Rd) → Bp

s,w(R
d). If ι is 0-radonifying, it follows that L′ is automatically

induced by a genuine Lévy process on Bp
s,w(R

d), which motivates us to investigate this property
in detail in the following

Theorem 4.8. The embedding ι : L2(Rd) → Bp
s,w(R

d) for some p > 1 is p-Radonifying if and
only if

(s, w) ∈ R(p)
p := (−∞,−d

2)× (−∞,−d
p). (4.24)

Proof. The continuous embedding follows asR
(p)
p ⊆ Ep. Let Ψ be an admissible basis ofBp

s,w(R
d)

and ωj
m = ωj

m(p, s, w) be the weight constants defined in (2.3). Note, that∑
j,G,m

(ωj
m)p =

∑
j,G,m

2jp(s−d/p+d/2)(1 + 2−2j |m|2)pw/2 < ∞ ⇔ (s, w) ∈ R(p)
p . (4.25)

This follows from the fact, that the sum over m converges if and only if w < −d
p , and in this

case is asymptotically O(2jd) as j → ∞; see e.g. the proof of [12, Th. 3].
For any p > 1, we obtain for f1, . . . , fn ∈ L2(Rd) that

n∑
i=1

∥fi∥pBp
s,w

=
∑
j,G,m

(ωj
m)p

n∑
i=1

∣∣⟨fi,Ψj,G
m ⟩L2

∣∣p ⩽ ∑
j,G,m

(ωj
m)p sup

∥y∥L2⩽1

n∑
i=1

|⟨fi, y⟩L2 |p .

Thus, the embedding L2(Rd) ↪→ Bp
s,w(R

d) is p-summing if (s, w) ∈ R
(p)
p .

To establish necessity, we first consider p ⩾ 2. Choose fi = Ψji,Gi
mi ∈ Ψ, i = 1, . . . , n to be

distinct wavelet basis vectors, i.e. fi ̸= fj for i ̸= j. It follows that

sup
∥y∥L2⩽1

n∑
i=1

|⟨fi, y⟩L2 |p ⩽ sup
∥y∥L2⩽1

∑
j,G,m

∣∣⟨Ψj,G
m , y⟩L2

∣∣p ⩽ sup
∥y∥L2⩽1

∑
j,G,m

∣∣⟨Ψj,G
m , y⟩L2

∣∣2 = 1.

On the other side, since
∑n

i=1 ∥fi∥
p
Bp

s,w
=
∑n

i=1(ωi)
p where ωi = ωj

m when fi = Ψj,G
m for some

(j,G,m) ∈Wd, it follows from (4.25) that the embedding ι is not p-summable if (s, w) /∈ R
(p)
p .

An application of [33, Th. VI.5.4] completes the proof of the case p ⩾ 2.
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Necessity of (s, w) ∈ R
(p)
p for p ∈ (1, 2) follows from Theorem 5.1, which gives a counterex-

ample of a cylindrical Lévy process in L2(Rd) with p-th weak moments that is not induced by a

process in Bp
s,w(R

d) for any (s, w) /∈ R
(p)
p . This result, though later in the text, does not rely upon

the result that the embedding L2(Rd) ↪→ Bp
s,w(R

d) is not p-Radonifying for (s, w) /∈ R
(p)
p .

Due to the range of continuous embeddings between the weighted Besov spaces, it is in many
cases possible to factorise the embeddings via a Hilbert space which allows for a 0-Radonification
result.

Theorem 4.9. The embedding ι : L2(Rd) → Bp
s,w(R

d) for some p > 1 is 0-Radonifying if and
only if

(s, w) ∈ Rp :=

{
(−∞,−d

2)× (−∞,−d
p), when p ∈ (1, 2],

(−∞,−d+ d
p)× (−∞,−d

2), when p ∈ (2,∞).
(4.26)

Proof. We show sufficiency by factorising the embedding ι : L2(Rd) → Bp
s,w(R

d) as follows:

L2(Rd)
ι1
↪→ B2

s1,w1
(Rd)

ι2
↪→ Bp

s,w(R
d),

for some s1 < −d
2 and w1 < −d

2 . In this case, Theorem 4.8 guarantees that the embedding
ι1 is 2-Radonifying, and thus it is 0-radonifying, since 2-summing operators coincide with 0-
Radonifying operators in Hilbert spaces according to [33, Th. VI.5.2]. It remains to show that
w1 and s1 can always be chosen, such that B2

s1,w1
(Rd) is continuously embedded into Bp

s,w(R
d),

whenever s and w are in the stated ranges.
(i) Let p ∈ (1, 2]. By applying Proposition 2.4 we see that ι2 is a continuous embedding for

w < w1 − d
(
1
p − 1

2

)
and s < s1. Thus, by defining ε := −w− d

p > 0, we may take w1 = − ε
2 −

d
2

which satisfies both required inequalities. A similar argument may be used for s and s1.
(ii) Let p > 2. By Proposition 2.4 we see that ι2 is a continuous embedding for w < w1 and

s < s1 − d
(
1
2 − 1

p

)
. We proceed by similar arguments as above.

The necessity for p = 2 follows from Theorem 4.8 since 0-Radonifying and p-Radonifying
operators between Hilbert spaces coincide. To show the necessity for p ̸= 2, we shall refer to
Theorem 5.1 and Proposition 5.12, which provide counterexamples of cylindrical Lévy processes
in L2(Rd) that are not induced by a process in Bp

s,w(R
d) for any (s, w) /∈ Rp. Although these

negative results referred to are later in the text, they are not based upon this Theorem.

Remark 4.10. Comparing the results in Theorem 4.8 and Theorem 4.9, we have Rp = R
(p)
p for

p ∈ (1, 2] and otherwise Rp ⊊ R
(p)
p .

We summarise the Radonification regions in Figures 4.1 and 4.2 plotting s and w against 1
p ,

which follows naturally from the ranges specified. We refer to diagrams plotting s and w against
1
p as Triebel diagrams1.

1Plots of s and w against 1
p
were described in [3] as ‘Triebel diagrams’ and used to illustrate various properties

of the scales of Besov spaces.
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Figure 2: Triebel diagrams for p-Radonification

5 Examples

In this section, we apply our previous results to investigate the regularity of some typical exam-
ples of cylindrical Lévy processes as they often appear in the literature; see e.g. [7, 24]

5.1 Canonical cylindrical α-stable processes

A cylindrical Lévy process L = (L(t) : t ⩾ 0) in L2(Rd) is called canonical α-stable for some
α ∈ (0, 2) if its characteristic function is of the form

φL(t)(u) = exp(−t ∥u∥αL2), u ∈ L2(Rd).

The existence of a cylindrical distribution with this characteristic function is guaranteed by
Bochner’s theorem for cylindrical measures; see [33, Prop. IV.4.2]; two possible explicit con-
structions can be found in [28].

Theorem 5.1. Let L be a canonical α-stable cylindrical process in L2(Rd) for some α ∈ (0, 2).
Then L is induced by a Lévy process in Bp

s,w(R
d) for some p > 1 and (s, w) ∈ Ep if and only if

s < −d
2 and w < −d

p .
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Proof. Let Ψ be an admissible basis of Bp
s,w(R

d). We recall that for an arbitrary enumeration
of the indices (j,G,m) ∈ Wd, we denote a sum over the first n terms in this enumeration
by
∑n

j,G,m; furthermore let Ψk be the wavelet Ψjk,Gk
mk corresponding to the k-th term in this

enumeration. Letting µ be the cylindrical Lévy measure of L, Lemma 2.4 in [28] shows that the
Lévy measure νn := µ ◦ π−1

Ψ1,...,Ψn
of any n-dimensional projection is given by

νn(B) =
α

cα

∫
Sn

λn(dξ)

∫ ∞

0
1B(rξ)r

−1−α dr for all B ∈ B(Rn),

where λn is uniformly distributed on the sphere Sn = {ξ ∈ Rn : |ξ| = 1} with

λn(S
n) = rn :=

Γ(12)Γ(
n+α
2 )

Γ(n2 )Γ(
1+α
2 )

and cα =

{
−α cos(απ2 )Γ(−α), if α ̸= 1,
απ
2 , if α = 1.

First we show sufficiency of the conditions. For p ∈ (1, 2] this follows directly from the fact that
the embedding of L2(Rd) ↪→ Bp

s,w(R
d) is 0-Radonifying according to Theorem 4.9. For p > 2,

we will establish the Borel extension of µ by the result in Theorem 4.4 and then apply Corollary
4.5. We choose an enumeration of the indices j,G and m and observe that the projection Pn

onto the subspace spanned by the first n elements in the enumeration of Ψ, defined in (4.20),
satisfies

∥Pnf∥pBp
s,w

=
n∑

j,G,m

(ωj
m)p

∣∣[Ψj,G
m , f ]

∣∣p , f ∈ Bp
s,w(R

d).

We obtain for each n ∈ N that

Σn :=

∫
Bp

s,w

(
∥Pnf∥pBp

s,w
∧ 1
)
µ(df)

=

∫
R

n

 n∑
j,G,m

(ωj
m)p

∣∣βj,G
m

∣∣p ∧ 1

 (µ ◦ π−1
Ψ1,...,Ψn

)(dβ)

=
α

cα

∫
Sn

∫ ∞

0

 n∑
j,G,m

(ωj
m)p

∣∣rξj,Gm

∣∣p ∧ 1

 r−1−α dr λn(dξ)

=
p

cα(p− α)

∫
Sn

 n∑
j,G,m

(ωj
m)p

∣∣ξj,Gm

∣∣pα/p

λn(dξ). (5.27)

Letting λ1
n := 1

rn
λn, Jensen’s inequality implies

Σn =
prn

cα(p− α)

∫
Sn

 n∑
j,G,m

(ωj
m)p

∣∣ξj,Gm

∣∣pα/p

λ1
n(dξ)

⩽
prn

cα(p− α)

∫
Sn

n∑
j,G,m

(ωj
m)p

∣∣ξj,Gm

∣∣p λ1
n(dξ)

α/p

.
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By Lemma A.2 in [28] we have
∫
Sn

∣∣∣ξj,Gm

∣∣∣p λ1
n(dξ) =

Γ(n
2
)Γ( 1+p

2
)

Γ( 1
2
)Γ(n+p

2
)
and thus

Σn ⩽
prn

cα(p− α)

 n∑
j,G,m

(ωj
m)p

Γ(n2 )Γ(
1+p
2 )

Γ(12)Γ(
n+p
2 )

α/p

=
p

cα(p− α)

Γ(12)Γ(
n+α
2 )

Γ(n2 )Γ(
1+α
2 )

(
Γ(n2 )Γ(

1+p
2 )

Γ(12)Γ(
n+p
2 )

)α/p
 n∑

j,G,m

(ωj
m)p

α/p

.

Since Γ(x+α)
Γ(x) = xα

(
1 +O(x−1)) as x → ∞ [4, Prop. 2.1.3], we conclude that Σn converges to a

finite limit Σ∞ as n → ∞ since
∑

j,G,m(ωj
m)p < ∞ given s < −d

2 and w < −d
p (see the proof of

[12, Th. 3]). Next we derive

Υn :=
n∑

j,G,m

(ωj
m)p

(∫
Bp

s,w

1BR

(
∥Pnf∥Bp

s,w

) ∣∣[Ψj,G
m , f ]

∣∣2 µ(df)

)p/2

=
n∑

j,G,m

(ωj
m)p

∫
R

n
1BR

 n∑
i,H,l

(ωi
l)

p
∣∣∣βi,H

l

∣∣∣p
∣∣βj,G

m

∣∣2 (µ ◦ π−1
Ψ1,...,Ψn

)(dβ)

p/2

=
n∑

j,G,m

(ωj
m)p

 α

cα

∫
Sn

∫ ∞

0
1BR

 n∑
i,H,l

(ωi
l)

p
∣∣∣rξi,Hl ∣∣∣p

∣∣rξj,Gm

∣∣2 r−1−α dr λn(dξ)

p/2

=

(
α

cα(2− α)

)p/2 n∑
j,G,m

(ωj
m)p

∫
Sn

∣∣ξj,Gm

∣∣2 n∑
i,H,l

(ωi
l)

p
∣∣∣ξi,Hl ∣∣∣p

(α−2)/p

λn(dξ)


p/2

.

Applying first Jensen’s inequality and then Hölder’s inequality, we obtain

Υn ⩽

(
α

cα(2− α)

)p/2

rp/2n

n∑
j,G,m

(ωj
m)p

∫
Sn

∣∣ξj,Gm

∣∣p n∑
i,H,l

(ωi
l)

p
∣∣∣ξi,Hl ∣∣∣p

(α−2)/2

λ1
n(dξ)

=

(
α

cα(2− α)

)p/2

rp/2n

∫
Sn

 n∑
j,G,m

(ωj
m)p

∣∣ξj,Gm

∣∣pα/2

λ1
n(dξ)

⩽

(
α

cα(2− α)

)p/2

rp/2n

∫
Sn

n∑
j,G,m

(ωj
m)p

∣∣ξj,Gm

∣∣p λ1
n(dξ)

α/2

=

(
α

cα(2− α)

)p/2

rp/2n

 n∑
j,G,m

(ωj
m)p

α/2(
Γ(n2 )Γ(

1+p
2 )

Γ(12)Γ(
n+p
2 )

)α/2

.
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Since by properties of the Gamma function we have

rp/2n

(
Γ(n2 )Γ(

1+p
2 )

Γ(12)Γ(
n+p
2 )

)α/2

=

(
Γ(12)Γ(

n+α
2 )

Γ(n2 )Γ(
1+α
2 )

)p/2(
Γ(n2 )Γ(

1+p
2 )

Γ(12)Γ(
n+p
2 )

)α/2

= O(1) as n → ∞,

it follows that Υn has a finite limit as n → ∞ as
∑n

j,G,m(ωj
m)p does.

To verify the condition in Theorem 4.4, we fix R > 0 and conclude

µ
({

f : ∥Pnf∥pBp
s,w

> Rp
})

=

∫
R

n
1{∑n

j,G,m(ωj
m)p|βj,G

m |p>Rp

}(β) (µ ◦ π−1
Ψ1,...,Ψn

)(dβ)

=
α

cα

∫
Sn

∫ ∞

∑n
j,G,m(ωj

m)p|rξj,Gm |p>Rp

r−1−α dr λn(dξ)

= R−αc−1
α

∫
Sn

 n∑
j,G,m

(ωj
m)p

∣∣ξj,Gm

∣∣pα/p

λn(dξ)

= R−α p− α

p
Σn.

As Σn → Σ∞ < ∞ as n → ∞, we obtain limR→∞ limn→∞ µ
(
{f : ∥Pnf∥Bp

s,w
> R}

)
= 0.

Theorem 4.4 implies that µ can be extended to a σ-finite measure on Bp
s,w(R

d). As we have
shown limn→∞Σn < ∞ and limn→∞Υn < ∞, applying Corollary 4.5 completes the proof for
sufficiency.

We now show the necessity of the conditions in the hypothesis. First we consider the case
p ⩾ 2. We define An :=

∑n
j,G,m(ωj

m)p and, applying Jensen’s inequality to the concave function

x 7→ xα/p, we obtain from (5.27), using again [28, Lem. A.2],

Σn =
pA

α/p
n

cα(p− α)

∫
Sn

 n∑
j,G,m

A−1
n (ωj

m)p
∣∣ξj,Gm

∣∣pα/p

λn(dξ)

⩾
pA

α/p
n

cα(p− α)

∫
Sn

n∑
j,G,m

A−1
n (ωj

m)p
∣∣ξj,Gm

∣∣α λn(dξ) =
pA

α/p
n

cα(p− α)
.

For s ⩾ −d
2 or w ⩾ −d

p we have An → ∞ as n → ∞ (see the proof of [12, Th. 3]). It follows
Σn → ∞ as n → ∞, showing that Condition (4.22) is not verified.

For p ∈ (1, 2) we calculate as above for Σn that

Λn :=

∫
Bp

s,w

(
∥Pnf∥2Bp

s,w
∧ 1
)
µ(df) =

2

cα(2− α)

∫
Sn

 n∑
j,G,m

(ωj
m)p

∣∣ξj,Gm

∣∣pα/p

λn(dξ).

For p ⩾ α, we can conclude as above for Σn that Λn → ∞ as n → ∞ for s ⩾ −d
2 or w ⩾ −d

p . It
follows that Condition (4.23) is not met for these values of s and w, which shows the necessity.
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For p < α, applying Jensen’s inequality to the convex function x 7→ xα/p gives us

Λn =
2rn

cα(2− α)

∫
Sn

( n∑
j,G,m

(ωj
m)p

∣∣ξj,Gm

∣∣p)α/p

λ1
n(dξ)

⩾
2rn

cα(2− α)

(∫
Sn

n∑
j,G,m

(ωj
m)p

∣∣ξj,Gm

∣∣p λ1
n(dξ)

)α/p

=
2rn

cα(2− α)

( n∑
j,G,m

(ωj
m)p

Γ(n2 )Γ(
1+p
2 )

Γ(12)Γ(
n+p
2 )

)α/p

.

Since Γ(x+α)
Γ(x) = xα

(
1+O(x−1)) as x → ∞, see [4, Prop. 2.1.3], and

∑
j,G,m(ωj

m)p = ∞, it follows

Λn → ∞ as n → ∞, showing that Condition (4.23) in Corollary 4.5 is not met.

Recall that Rp denotes the (s, w)-plane where the embeddings L2(Rd) ↪→ Bp
s,w(R

d) are 0-
Radonifying. For p ⩽ 2, Theorem 5.1 states that L is induced by a Lévy process in Bp

s,w(R
d)

if and only if (s, w) ∈ Rp. However, for p > 2 the Theorem gives a stronger result, in that the
region of the (s, w)-plane where L is induced by a Lévy process in Bp

s,w(R
d) is a proper superset

of Rp.

5.2 Hedgehog cylindrical Lévy process

In this section let L be a cylindrical Lévy process in L2(Rd) of the form

L(t)f =
∞∑
k=1

[f, ek]akℓk for all f ∈ L2(Rd), t ⩾ 0, (5.28)

where (ek)k∈N is an orthonormal basis of L2(Rd) and (ℓk)k∈N are identically distributed and
independent symmetric real-valued Lévy processes with characteristics (0, 0, ρ) for a Lévy mea-
sure ρ ̸= 0 in R. By Theorem 4.3 it is sufficient for our analysis to focus on the symmetric case.
The sequence (ak)k∈N is real-valued and satisfies

∞∑
k=1

∫
R

(
|akckβ|2 ∧ 1

)
ρ(dβ) < ∞ (5.29)

for each (ck)k∈N ∈ ℓ2(R). This condition guarantees that the sum in (5.28) converges P -a.s. in
R; see [27, Lem. 4.2].

The support of the cylindrical Lévy measure µ of L is in
⋃

k∈N{βek : β ∈ R}, as (ℓk)k∈N are
independent, that is to say the measure only has weight on the axes. For this reason, we refer
to this process as a hedgehog cylindrical process.

We first present further corollaries to Theorem 3.2 and Remark 3.3 tailored to this setting.

Corollary 5.2. Let L be a cylindrical Lévy process of the form as in (5.28), where {ek}k∈N ⊆
Bp′

−s,−w(R
d) for some p > 1 and (s, w) ∈ Ep. Then L is induced by a Lévy process in Bp

s,w(R
d)

if and only if
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(1) for p ⩾ 2,

∞∑
k=1

∫
R

(
∥akek∥pBp

s,w
|β|p ∧ 1

)
ρ(dβ) < ∞, (5.30)

∑
j,G,m

(ωj
m)p

( ∞∑
k=1

∣∣[Ψj,G
m , akek]

∣∣2 ∫
|β|⩽∥akek∥−1

B
p
s,w

β2 ρ(dβ)

)p/2

< ∞; (5.31)

(2) for p ∈ (1, 2),

∞∑
k=1

∫
R

(
∥akek∥2Bp

s,w
|β|2 ∧ 1

)
ρ(dβ) < ∞, (5.32)

∑
j,G,m

(ωj
m)p

∫ ∞

0

1− e

∑∞
k=1

∫
β⩽∥akek∥−1

B
p
s,w

(cos τ [Ψj,G
m ,akek]β−1) ρ(dβ)

 dτ

τ1+p
< ∞. (5.33)

Proof. Let Ψ be an admissible basis for Bp
s,w(R

d). Lemma 4.2 in [27] and Lemma 3.10 in [21]
show that the cylindrical Lévy measure µ of L extends to a Borel measure on L2(Rd) with
projection on the n-th partial sum given by

(µ ◦ π−1
e1,...,en)(dβ1 · · · dβn) =

n∑
k=1

(ρ ◦mak)(dβk), (5.34)

where mak : R→ R is defined by mak(β) = akβ. As {ek}k∈N ⊆ Bp′

−s,−w(R
d), the same relation-

ship holds when we consider the pushforward of µ to Bp
s,w(R

d). Because of Theorem 4.3 it is
sufficient to show that the claimed conditions are equivalent to the conditions in Theorem 3.2.

For p > 1 we define q := p ∨ 2 and calculate for each n ∈ N, applying (5.34),

∫
Bp

s,w


∑

j,G,m

∣∣∣∣∣ωj
m

n∑
k=1

[Ψj,G
m , ek][ek, f ]

∣∣∣∣∣
p
q/p

∧ 1

 µ(df)

=

∫
R

n


∑

j,G,m

∣∣∣∣∣ωj
m

n∑
k=1

[Ψj,G
m , ek]βk

∣∣∣∣∣
p
q/p

∧ 1

 (µ ◦ π−1
e1,...,en)(dβ1 · · · dβn)

=
n∑

k=1

∫
R


∑

j,G,m

∣∣ωj
m[Ψj,G

m , ek]akβ
∣∣pq/p

∧ 1

 ρ(dβ)

=

n∑
k=1

∫
R

(
∥akek∥qBp

s,w
|β|q ∧ 1

)
ρ(dβ).
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By taking the limit as n → ∞ we obtain∫
Bp

s,w

(
∥f∥q

Bp
s,w

∧ 1
)
µ(df) =

∞∑
k=1

∫
R

(
∥akek∥qBp

s,w
|β|q ∧ 1

)
ρ(dβ),

which shows the equivalence between the Conditions (5.30) and (5.32) and Conditions (3.10)
and (3.12).

For p ⩾ 2 we calculate, for (i,H, l) ∈Wd and n ∈ N, that∫
R

n
1BR

∑
j,G,m

(ωj
m)p

∣∣∣∣∣
n∑

k=1

[Ψj,G
m , ek]βk

∣∣∣∣∣
p
∣∣∣∣∣

n∑
k=1

[Ψi,H
l , ek]βk

∣∣∣∣∣
2

(µ ◦ π−1
e1,...,en)(dβ1 · · · dβn)

=

n∑
k=1

∫
R

1BR

∑
j,G,m

(ωj
m)p

∣∣[Ψj,G
m , ek]akβ

∣∣p∣∣∣[Ψi,H
l , ek]akβ

∣∣∣2 ρ(dβ)

=
n∑

k=1

∣∣∣[Ψi,H
l , akek]

∣∣∣2 ∫
|β|⩽∥akek∥−1

B
p
s,w

β2 ρ(dβ).

Since the theorem on monotone convergence shows

∑
j,G,m

(ωj
m)p

∫
∥f∥

B
p
s,w

⩽1
[Ψj,G

m , f ]2 µ(df)

p/2

=
∑
j,G,m

(ωj
m)p

( ∞∑
k=1

∣∣[Ψj,G
m , akek]

∣∣2 ∫
|β|⩽∥akek∥−1

B
p
s,w

β2 ρ(dβ)

)p/2

,

we obtain the equivalence between Conditions (5.31) and (3.11). A similar calculations shows
the equivalence between Conditions (5.33) and (3.13).

Corollary 5.3. Let p ∈ [1, 2] and (s, w) ∈ Ep. A cylindrical Lévy process L of the form (5.28)

with {ek}k∈N ⊆ Bp′

−s,−w(R
d) is induced by a Lévy process in Bp

s,w(R
d) if

∞∑
k=1

∫
R

(
∥akek∥pBp

s,w
|β|p ∧ 1

)
ρ(dβ) < ∞.

Proof. By Remark 3.3 it suffices to show
∫
Bp

s,w(Rd)

(
∥f∥p

Bp
s,w

∧1
)
µ(df) < ∞, which follows using

the same calculation as in the proof of Corollary 5.2.

To characterise the Besov membership of a hedgehog process L we introduce some indices
in terms of the Lévy measure of the real-valued Lévy processes ℓk in the representation (5.28).
For this purpose, let ρ be a Lévy measure in R and define for q ∈ R+:

τ (q) := inf
τ⩾0

{
lim sup

ξ↓0
ξ−τ

∫
Bc
R

(
ξq |β|q ∧ 1

)
ρ(dβ) = ∞

}
, (5.35)
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τ (q) := inf
τ⩾0

{
lim inf

ξ↓0
ξ−τ

∫
Bc
R

(
ξq |β|q ∧ 1

)
ρ(dβ) = ∞

}
. (5.36)

In all definitions above we apply the convention sup ∅ = −∞ and inf ∅ = ∞. It is easy to see
that τ (q) ⩽ τ (q) ⩽ q when ρ ̸= 0. The examples following Theorem 5.5 show calculations of these
indices in a number of standard situations.

The following proposition establishes a simple interpretation of τ (q). We recall that a Lévy
process with Lévy measure ρ has finite p-th moments if and only if

∫
Bc
R

|β|p ρ(dβ) < ∞.

Proposition 5.4. For a Lévy measure ρ ̸= 0 on B(R) define

pmax := sup

{
p > 0:

∫
Bc
R

|β|p ρ(dβ) < ∞

}
.

If pmax > 0 then τ (q) = pmax ∧ q and thus (pmax ∧ q) ⩽ τ (q) ⩽ q for all q ⩾ 0.

Proof. To demonstrate this, we shall consider the following indices:

τ
(q)
1 := sup

{
τ ⩾ 0: lim sup

ξ↓0
ξ−τ

∫
1<|β|⩽ξ−1

ξq |β|q ρ(dβ) < ∞

}
for q ∈ R+,

τ2 := sup

{
τ > 0: lim sup

ξ↓0
ξ−τ

∫
|x|>ξ−1

ρ(dβ) < ∞

}
.

We define a finite measure ρ := ρ
∣∣
Bc
R

; clearly we may replace ρ with ρ in the definitions of τ
(q)
1

and τ2. By Markov’s inequality we have, for ξ < 1 and p < pmax,

ρ
(
{|β| > ξ−1}

)
⩽ ξp

∫
R

|β|p ρ(dβ) = ξp
∫
Bc
R

|β|p ρ(dβ),

thus showing τ2 ⩾ pmax. On the other side, for τ < τ2 there exists a constant C > 0 such that

ρ
(
{|β| > t}

)
⩽ Ct−τ for all t ⩾ 1.

The tail formula for the integral shows for 0 < p < τ that∫
Bc
R

|β|p ρ(dβ) =

∫
R

|β|p ρ(dβ) =

∫ ∞

0
ρ
(
{|β|p > t}

)
dt ⩽ ρ(R) + C

∫ ∞

1
t
− τ

p dt < ∞,

which enables us to conclude pmax ⩾ τ2, and hence τ2 = pmax.
Next choose some τ < τ2 ∧ q. Fubini’s theorem implies for ξ ∈ (0, 1) that∫

1<|β|⩽ξ−1

|β|q ρ(dβ) =

∫ ∞

0
ρ
(
{|β|q 1{1<|β|⩽ξ−1} > t}

)
dt

=

∫ 1

0
ρ
(
{1 < |β| ⩽ ξ−1}

)
dt+

∫ ξ−q

1
ρ
(
{t

1
q < |β| ⩽ ξ−1}

)
dt
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⩽ ρ
(
{1 < |β| ⩽ ξ−1}

)
+

∫ ξ−q

1
ρ
(
{t

1
q < |β|}

)
dt

⩽ ρ(R) + C

∫ −ξq

1
t
− τ

q dt ≲ 1 + ξτ−q.

It follows ξq−τ
∫
1<|β|⩽ξ−1 |β|q ρ(dβ) < ∞ for all ξ < 1, implying τ ⩽ τ

(q)
1 . As τ < τ2 ∧ q is

arbitrary we have shown that τ
(q)
1 ⩾ τ2 ∧ q. As τ (q) = τ

(q)
1 ∧ τ2 and τ2 = pmax, we conclude

τ (q) = pmax ∧ q.

The following result gives conditions such that a hedgehog process is induced by a Lévy
process in a certain Besov space. The critical value will be the parameters τ (min{p,2}) and
τ (max{p,2}).

Theorem 5.5. Let L be defined by (5.28) and let p > 1 and (s, w) ∈ Ep. Define

qmin := inf

{
q > 0:

∞∑
k=1

∥akek∥qBp
s,w

< ∞

}
.

Then,

(1) L is induced by a Lévy process in Bp
s,w(R

d) if one of the following is satisfied:

(i) (s, w) ∈ Rp;

(ii) (s, w) ∈ Rc
p and qmin < τ (min{p,2}).

(2) L is not induced by a process in Bp
s,w(R

d) if:

(s, w) ∈ Rc
p and qmin > τ (max{p,2}).

Proof. Part (1): the first alternative condition follows from the 0-Radonification in Theorem
4.9. To show the second alternative, we note that Bp

s,w(R
d) is of type min{p, 2} by the isometry

with ℓp(Wd) defined in (2.7). By Proposition 7.1.16 in [18], if q ⩽ min{p, 2} is such that
E |ℓ1|q < ∞ then

(
∥akek∥Bp

s,w

)
k∈N ∈ ℓq(R) implies that

∑
k∈N akekℓk(1) converges in Bp

s,w(R
d)

in q-th mean. This limit is a Lévy procss in Bp
s,w(R

d) which induces L. Finally we note that,
by Proposition 5.4, ℓ1 has moments of any order smaller than τ (q) for any q ⩽ 2.

Part (2): by Corollary 5.2, L is not induced by a Lévy process in Bp
s,w(R

d) if

∞∑
k=1

∫
R

(
∥akek∥

max{2,p}
Bp

s,w
|β|max{2,p} ∧ 1

)
ρ(dβ) = ∞. (5.37)

Due to the hypothesis, we can choose q > τ (max{2,p}) such that
(
∥akek∥Bp

s,w

)
k∈N /∈ ℓq(R). The

very definition of τ (max{2,p}) guarantees that there exists a constantK such that, for large enough
k, we have ∫

Bc
R

(
∥akek∥

max{2,p}
Bp

s,w
|β|max{2,p} ∧ 1

)
ρ(dβ) ⩾ K ∥akek∥qBp

s,w
,

which establishes (5.37).
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Remark 5.6. We may conclude that (s, w) ∈ Rp implies qmin ⩽ τ (max{2,p}), as otherwise Part
(1) and (2) of Theorem 5.5 would contradict. This equality can also be proven analytically.

The first two examples we present show that, in the case each ℓk has moments of all orders,
the critical summability is of a particularly simple form.

Example 5.7. Let L be a cylindrical Lévy process of the form (5.28) with ρ = δ1; thus each of the
ℓk is a Poisson process with unit intensity and Condition (5.29) is satisfied for (ak)k∈N ∈ ℓ∞(N).
As ρ has moments of all orders, Proposition 5.4 implies τ (q) = τ (q) = q for each q ∈ R+. Thus,
the critical summability needs to satisfy qmin < p∧2 for inclusion and qmin > p∨2 for exclusion.

Example 5.8. Let ρ(dβ) = 1{β ̸=0} |β|−ζ e−|β| dβ for some ζ ∈ (0, 3), this gives rise to tempered

stable processes. For ζ = 1 this gives the symmetric Gamma process and for ζ = 3
2 this gives

the symmetric inverse Gaussian process. For q > ζ − 1 we have∫
R

|β|q−ζ e−|β| dβ = 2Γ(q − ζ + 1) < ∞;

we conclude that ρ has moments of all orders and thus again we have τ (q) = τ (q) = q for each
q ∈ R+. Thus, the critical summability again needs to satisfy qmin < p ∧ 2 for inclusion and
qmin > p ∨ 2 for exclusion.

Next we examine the symmetric-α-stable case, where the limits on moments comes into play.

Example 5.9. Let ρ(dβ) = 1{β ̸=0} |β|−1−α dβ for some α ∈ (0, 2). Condition 5.29 is satisfied if

and only if (ak)k∈N ∈ ℓ2α/(2−α)(R); see Example 4.5 in [27]. It follows by direct computation
that τ (q) = τ (q) = q ∧ α for each q ∈ R+.

Let p > 1 and (s, w) ∈ Ep. In this case, we obtain the following dichotomy in the critical
regime (s, w) ∈ Rc

p ∩ Ep:

(a) L is induced by a Lévy process Y in Bp
s,w(R

d) if qmin < p ∧ α;

(b) L is not induced by a process in Bp
s,w(R

d) if qmin > α.

The following example gives a construction whereby τ (q) ̸= τ (q).

Example 5.10. Let α1 ∈ (1, 2) and α2 ∈ (α1, 2). Let ρ be given by

ρ(dβ) =

∞∑
k=0

(
1{(2k,2k+1]}(β) |β|−1−α1 dβ + 1{(2k+1,2k+2]}(β) |β|−1−α2 dβ

)
.

Then direct calculations show that τ (q) = q ∧ α1 for each q ∈ R+ and τ (q) = α2 for each q ⩾ 2.
Let p > 1 and s, w ∈ Ep. In this case, we obtain for (s, w) ∈ Rc

p ∩ Ep:

(a) L is induced by a Lévy process Y in Bp
s,w(R

d) if qmin < p ∧ α1;

(b) L is not induced by a process in Bp
s,w(R

d) if qmin > α2.
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Example 5.11. Let α ∈ (0, 2) and let ρ be given by

ρ(dβ) = 1{β ̸=0} |β|−1−α v(|β|)dβ,

where v is a slowly varying function; see e.g. Definition 1.2.1 in [5]. An application of Proposition
1.5.10 in [5] shows that τ (q) = q ∧ α for each q ⩽ 2. However, it is known, see [5, p.16], that
there exist slowly varying functions v such that lim infβ→∞ v(β) = 0 and lim supβ→∞ v(β) = ∞.

Thus, we cannot in general improve on the bound q ∧ α ⩽ τ (q) ⩽ q for this class of processes,
which form a subclass of subexponential Lévy processes.

5.2.1 Hedgehog process defined on wavelet basis

We may further analyse the symmetric α-stable case by selecting an admissible wavelet basis
of Bp

s,w(R
d) as the orthonormal basis of L2(Rd) in the representation (5.28) of the hedgehog

cylindrical Lévy process. This will allow us to construct counterexamples required to complete
the proof of Theorem 4.9.

Let Ψ = {Ψj,G
m : (j,G,m) ∈ Wd} be an admissible basis for Bp

s,w(R
d) for some p > 1 and

(s, w) ∈ Ep and let (ℓj,Gm )(j,G,m)∈Wd be a family of independent identically distributed canonical

α-stable processes for some α ∈ (0, 2), i.e. ρ(dx) = 1{x ̸=0} |x|−1−α dx. We consider a cylindrical
Lévy process L of the form

L(t)f =
∑
j,G,m

[f,Ψj,G
m ]aj,Gm ℓj,Gm for all f ∈ L2(Rd), t ⩾ 0. (5.38)

As in Example 5.9, Condition (5.29) is satisfied if
(
aj,Gm

)
j,G,m

∈ ℓ
2α
2−α (Wd).

The following Proposition allows us to determine sharp boundaries for each p > 1 of the 0-
Radonification region Rp of the (s, w) plane in the parameter space defining the weighted Besov
spaces.

Proposition 5.12. Let p > 2 and (s, w) ∈ Ep \Rp. Then for any α ∈ (0, 2) there exists

a sequence
(
aj,Gm

)
j,G,m

∈ ℓ
2α
2−α (Wd) such that L as constructed in (5.38) is not induced by a

process in Bp
s,w(R

d).

We first state an intermediate result on the summability of the Besov space weights.

Lemma 5.13. Let ωj
m = ωj

m(p, s, w) be the wavelet weight constants for Bp
s,w(R

d) for some
p > 0, s < d

p − d
2 and w < 0. Then

(
ωj
m

)
j,G,m

∈ ℓk(Wd) for some k > 0 if and only if

k > max

{
− d

w
,

2dp

2d− dp− 2ps

}
.

Proof. We must assess the convergence of∑
j⩾0

2
jk(s− d

p
+ d

2
)
∑
G∈Gj

∑
m∈Zd

(1 + 2−2j |m|2)
kw
2 .
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We first consider Sj :=
∑

m∈Zd(1 + 2−2j |m|2)
kw
2 . We have Sj < ∞ for each j if and only if

kw < −d (see the proof of [12, Th. 3]) which gives the first term in the maximum above, recalling
that w < 0. If Sj < ∞ for each j, then Sj is asymptotically O(2jd) as j → ∞ according to [12,
Th. 3], and thus ∑

j⩾0

2
jk(s− d

p
+ d

2
)
∑
G∈Gj

Sj = 2dS0 + (2d − 1)
∑
j⩾1

2
jk(s− d

p
+ d

2
)
Sj ,

which is finite if and only if k(s − d
p + d

2) < −d. As k > 0 and s − d
p + d

2 < 0 this condition is

equivalent to k > −d
s− d

p
+ d

2

, which completes the proof.

Proof of Proposition 5.12. We note that
∥∥∥Ψj,G

m

∥∥∥
Bp

s,w

= ωj
m, where ωj

m = ωj
m(p, s, w) are the

weight constants for Bp
s,w(R

d), and we have
(
ωj
m

)
j,G,m

∈ ℓ∞(Wd) as (s, w) ∈ Ep.

For 0 < q < 2α
2−α , the sum∑

j,G,m

∥∥aj,Gm Ψj,G
m

∥∥q
Bp

s,w(Rd)
=
∑
j,G,m

∣∣aj,Gm ωj
m

∣∣q
is finite for every

(
aj,Gm

)
j,G,m

∈ ℓ
2α
2−α (Wd) if and only if( ∣∣ωj

m

∣∣q )
j,G,m

∈
(
ℓ

2α
q(2−α) (Wd)

)∗
= ℓ

2α
2α+αq−2q (Wd). (5.39)

Since p > 2, the assumption (s, w) ∈ Ep implies s < d
p−

d
2 and w ⩽ 0 according to Proposition 2.6.

For the case w = 0, we note that
∑

j,G,m(ωj
m)k = ∞ for any k > 0, and thus there exists(

aj,Gm
)
j,G,m

∈ ℓ
2α
2−α (Wd) such that

∑
j,G,m

∣∣∣aj,Gm ωj
m

∣∣∣α = ∞. We continue to consider the case

w < 0. By applying Lemma 5.13, we see that (5.39) is satisfied if and only if

2αq

2α+ αq − 2q
> max

{
− d

w
,

2dp

2d− dp− 2ps

}
.

As q < 2α
2−α , we have 2α+ αq + 2q > 0, and thus we have

2αq

2α+ αq − 2q
> − d

w
⇔ q >

2αd

2d− αd− 2αw
, (5.40)

where we note that 2d−αd− 2αw > 0 as α < 2 and w < 0. Furthermore, as s < d
p −

d
2 we have

2d− dp− 2ps > 0 and so

2αq

2α+ αq − 2q
>

2dp

2d− dp− 2ps
⇔ q >

αdp

αd− αdp− αps+ dp
(5.41)

where we have αd − αdp − αps + dp > dp(1 − α
2 ) > 0. Taking q = α, we see that there exists(

aj,Gm
)
j,G,m

∈ ℓ
2α
2−α (Wd) such that

∑
j,G,m

∣∣∣aj,Gm ωj
m

∣∣∣α = ∞ when either w ⩾ −d
2 by (5.40), or

s ⩾ −d+ d
p by (5.41).
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By referring to the conditions shown in Example 5.9, it follows that if L in (5.38) is con-

structed using such a sequence
(
aj,Gm

)
j,G,m

with
∑

j,G,m

∣∣∣aj,Gm ωj
m

∣∣∣α = ∞, the summability in-

dex qmin as defined in Theorem 5.5 has qmin > α, and so L is not induced by a process in
Bp

s,w(R
d).
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[11] S. Dirksen. Itô isomorphisms for Lp-valued Poisson stochastic integrals. Ann. Prob.,
42(6):2595–2643, 2014.

[12] J. Fageot, A. Fallah, and M. Unser. Multidimensional Lévy white noise in weighted Besov
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Analysis, 42(4):809–838, 2015.

[28] M. Riedle. Stable cylindrical Lévy processes and the stochastic Cauchy problem. Electronic
Communications in Probability, 2017.

[29] R. Schilling. On Feller Processes with Sample Paths in Besov Spaces. Mathematische
Annalen, 309:663–675, 1997.

[30] H. Triebel. Theory of Function Spaces. Birkhäuser Verlag, Basel, 1983.
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