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Abstract

This Thesis is devoted to the presentation of recent results of the theory arising
from the combination of Generalised Hydrodynamics and Large deviation theory.
This theory is termed Ballistic Fluctuation Theory and has been firstly developed in
[1, 2]. We will presents more recent developments and applications mainly based
on papers [3–5] which were part of the works that I have accomplished during
the years spent in my Ph.D. at King’s College London under the supervision of
Prof. Benjamin Doyon and are those dedicated to this subject. In particular, we
present applications to the correlation functions in spin chains and quantum field
theories. In this context we analyse Full counting statistics and cumulants of
transported U(1) like quantities. Correlation functions of certain types of fields
related to internal symmetries appear also in the context of the calculation of
certain measures of entanglement. In this respect we will present the development
of a new technique for the application of such theory to the Renyi entropies.
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Introduction

Hydrodynamics is a universal theory: it is a condensed description of a physical
system capturing large scale properties. Ordinary matter is composed of a virtually
infinite number of atoms so that looking at a small piece of it, which is still large
enough to contain a macroscopic fraction of elementary constituents, it is possible
to describe its behavior in terms of coordinates referring to such small pieces: these
pieces are called "fluid cells". This simple concept, the reduction of the degrees
of freedom associated with the recognition that at large scales not all degrees of
freedom are relevant , is at the heart of every hydrodynamic theory. I say every
because in the past years it has been recognised that not all hydrodynamic theories
have the same form. The topic of this thesis is a very special type of hydrodynam-
ics, which has similarities and dissimilarities with the conventional one, invented
for ordinary matter: this theory is called Generalised Hydrodynamics (GHD).

Conventional hydrodynamics (CHD) (likewise GHD for particle sytems) is based
on Newton’s equations and Einstein’s equations (depending on the ratios between
typical velocities and the speed of light) and although it has been in the deck of
physicists and scientists for two centuries, our complete understanding of it is
everything but complete. For instance, turbulence keeps resisting a quantitative
description and there are no visible signs at the horizon indicating that the prob-
lem is close to a solution. On the mathematical side, existence and uniqueness of
Navier-Stokes equations (with appropriate boundary conditions) are listed in the
Millennium Prize Problems. This is a short story of course, but it gives meaning to
the question: why another hydrodynamic theory?

In the past two decades, nano-technology has made huge advances in most of its
sub-fields and we see a clear impact on our everyday lives, no need to give exam-
ples. One important recent experimental breakthrough has been the possibility to
explore fundamental questions in physics via the realisation of cold atom systems,
very close to the quantum regime. One such fundamental question was: how

xiii



List of tables

is it possible that a closed macroscopic quantum system can ever reach thermal
equilibrium, quantum mechanics being unitary?

This question is fundamental, in the sense that poses serious threats to the very ba-
sic principles of a fundamental theory because at first glance it seems to contradict
the evident fact that systems do go to thermal equilibrium at some temperature
determined by external conditions. It took some time to realise that globally
quantum systems do not relax: they do at the level of subsystems. Indeed, when
a subsystem is macroscopic, the rest of the system, still macroscopic, acts as an
external heat bath. This allows relaxation, and if the dynamics is sufficiently
mixing, the system will thermalise at some temperature determined by the total
energy. These are the kinds of questions that I will refer to as fundamental.

At the theoretical level, thermalisation, or any equilibration of some sort, has
its explanation in the Second Principle of Thermodynamics. This a fundamental
principle permeating any branch of physics - and in a sense giving a rule to our
lives: time goes forward. As we know, this is equivalent to say that spontaneous
processes are irreversible, which said in another way means entropy increases.
The equilibrium state is found by maximasing the entropy, subject to constraints
coming from the microscopic dynamics. In an isolated system, energy is conserved
and the distribution maximising the Shannon entropy is the Gibbs distribution of
statistical mechanics.

In a breakthrough experiment Kinoshita and collaborators noticed an impor-
tant difference in the relaxation behavior between a system of bosons in one and
two or more dimensions. What they do is a quantum realisation of the famous
Newton’s cradle, a mechanism which, due to conservation of momentum, is a
very good approximation of a perpetual machine, one indeed violating the Sec-
ond law of thermodynamics. Using a laser they split an initial distribution of
bosonic particles into two separate clouds and then leave the system under its
own unitary evolution. What was observed was that the one dimensional system
was not relaxing to thermal equilibrium in the sense that the Gibbs distribution
was not describing the system at long times. This was originally attributed to
an approximate form of integrability of the one dimensional system. There is a
universal model describing bosonic scalar particles in one dimension: this is the
Lieb-Liniger model. Such model at the quantum level is integrable, meaning that,
in analogy with classical mechanics, it possess an extensive number of conserved
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quantities commuting with each other: signatures of integrability. For the time
being suffices to say that integrability will be synonymous with the presence of
an extensive number of conservation laws and/or exact understanding of certain
micro and macroscopic quantities such as eigenstates, spectrum and other simple
thermodynamic quantities.

It was natural then to apply the same entropy maximisation principle to an in-
tegrable system: the positive result was that subsystems relax to the so-called
Generalised Gibbs Ensemble (GGE). By definition, these are the states that are sta-
tionary, homogeneous, and clustering at large distances. I will write its form now
as it will be relevant for the rest of the thesis. The density matrix of a subsystem of
an integrable system at large times reads

ρ =
1
Z

e−∑i βiQi , (1)

where Z is a normalisation constant (generalised partition function) depending on
all the "generalised inverse temperatures" βi. For each conserved quantity Qi a
lagrange multiplier βi is introduced in the process of entropy maximisation. These
are fixed by the initial expectation values of the conserved quantities, as they
cannot change during the evolution. GGEs can explain relatively well situations
where systems are isolated and homogeneous.

In a real experiment, all can go wrong, and to any possible extent the system
is never really homogeneous. Inhomogeneities can be present in many places,
from initial states to the Hamiltonian itself. They can be impurities of the atom
system or imperfections of the experimental apparatus or can be purposedly in-
troduced. Indeed, we now have another fundamental question: what happens
to all such theoretical machinery when we allow a relatively small degree of in-
homogeneity? By small here it is meant that variations happen on scales that are
small compared to the observation scale but generally they do not have to be
small in magnitude. This is the fundamental question that the theory of GHD
tries to answer. It is the universal large scale theory of integrable models. While
one might think that integrable models are rather special and in practice any real
system is not exactly integrable, there is now a large set of experiments pointing in
the opposite direction. Systems can be engineered to be integrable and exploiting
the rich mathematical structure underpinning such models it is possible to make
striking predictions on the behavior of many-body systems under complicated
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circumstances. GHD is the hydrodynamic theory for all such conserved quantities:
local entropy maximisation leads to an infinite set of transport equations for the
particles distributions, encapsulating at once all the relevant degrees of freedom
needed to describe the system at low energy.

Despite the theory being relatively young, in recent years it has produced a huge
amount of results both on the theoretical and on the experimental side. It has been
refined to account for diffusion and more recently for dispersive corrections and it
has been experimentally verified. In principle one could even consider an infinite
order hydrodynamics, something that has been achieved only for free systems.
With this last statement we mean that in the gradient expansion, of which the
first two terms give standard hydrodynamics as we know it, one is not bound
to stop at lowest orders but could in principle resolve arbitrarily small scales.
On a practical level, often one is able to relate observable quantities to some sort
of correlation function. This thesis is devoted to report recent advances in this
direction, which is the result of the combination of GHD with a well estabilished
mathematical theory which goes under the name of Large Deviation Theory. The
result is Ballistic Fluctuation Theory, a framework capable of capturing relevant
fluctuations at the Eulerian scale of the underlying hydroydynamic theory.

Organization of the Thesis

The work can be divided into four main parts. The first part is a gentle and heuristic
introduction to the main ideas of the hydrodynamic approach to correlation
functions. To do this we introduce the theory of GHD, large deviations, Ballistic
Fluctuation Theory (BFT) which consitute the technical tools on which all the
results are based. The second part is based on [3] and presents the calculation of
correlation function in quantum spin chains, in particular XX spin chain. The third
part is of higher complexity and deals with correlation functions in a quantum
field theory, the Sine-Gordon model. It is based on [5]. The fourth part, drawing
from [4], presents the result that the evolution of the entanglement entropy, and so
quantum fluctuations spreading, has a classical hydrodynamic nature.
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Chapter 1

Hydrodynamic approach to
correlation functions

Goal of the chapter

In this chapter we review the basic hydrodynamic approaches to the calculation
of correlation functions, focusing more on the case of two point functions. There
are, at present, two main techniques: hydrodynamic projections, whose main idea
is to project the late dynamics onto the space spanned by conserved quantities
and expand any observable in such a basis. This predicts t−1 ballistic decay of
correlations in integrable models every time the observable couples to a conserved
field. When this does not happen, the decay is faster, generally exponential,
and it is a combination of hydrodynamics and large deviation theory that gives
the correct description. This theory is termed ballistic fluctuation theory . Here
we review the basics of hydrodynamic projections, generalised hydrodynamics
and large deviation theory, all of them together forming the basic language and
theoretical machinery of all this thesis.

1.1 Integrable models

For experts integrable models are reasonably realistic physical models with excep-
tionally wonderful mathematical properties. In a sense, while generic interacting
many-body systems are difficult to tackle analytically, an integrable model, al-
though very hard, might still be reasonably doable. In this context, reasonably
doable means that some non-trivial information can be computed in a very precise
way. The kind of information one is interested in depends usually on the domain

1



Hydrodynamic approach to correlation functions

of application. It is often the case that the adjective "exactly solvable" is used
in place of "integrable". This is not very precise because not everything can be
computed in an exact fashion. For non-experts integrable models might seem
weird and unusual creatures.

The feeling acquired talking to theorists not working with these models is that
most of the people have quite an old perception about them. Indeed, while it
is true that in the 70’-80’ it might have been very challenging to realise physical
systems well described by a certain integrable model in a lab, this is no longer
the case: cold atoms experiments offer the perfect playground and the techniques
have now become standard in many laboratories.

Here we give an overview of the main topics that comprise what is known as
the integrability field to give a taste of the vastness of the subject. We start with
classical integrability and after we discuss basics of Bethe Ansatz introducing only
the relevant equations needed to introduce Generalised Hydrodynamics.

1.1.1 Prototypes of integrable models

Before introducing the theory of Generalised Hydrodynamics and all the machin-
ery for computing correlation functions derived from it, it is necessary to give
some context and motivation to the reason why it was actually born. We have
mentioned that this is the large scale hydrodynamical theory of models of a special
type: integrable models. In classical mechanics the notion of integrabily is bound
to that of exact solvability, at least for systems with a finite number of degrees
of freedom [8]. In quantum mechanics, while the notion and the signatures of
integrability are pretty clear, a mathematical definition is still hard to give. In this
thesis, an integrable model will be a model that exhibits an infinite number of
conservation laws that we will generically indicate by Qi, i = 1, 2 . . . .

The first example of integrable model can be found in elementary graduate courses
when discussing an assembly of N free particles not interacting with one another
the Hamiltonian of which is

H =
N

∑
i=1

p2
i

2m
. (1.1)

This is a typical model of a dilute quantum or classical gas in solid state physics
and it is usually not mentioned that this system’s thermodynamics is rather special.

2



1.1 Integrable models

The equations of motion are 



ẋi = pi

ṗi = 0
. (1.2)

The quantities

Qn =
N

∑
i=1

(pi)
n (1.3)

are conserved for any n and are local1. There is an infinite set of conservation laws.
The conserved fields are

qn(x) =
N

∑
i=1

(pi)
nδ(x − xi) (1.4)

jn(x) =
N

∑
i=1

(pi)
n ẋiδ(x − xi) =

N

∑
i=1

(pi)
n+1δ(x − xi) = qn+1(x) (1.5)

satisfying the continuity equations

∂tqn + ∂x jn = 0 . (1.6)

The usual assumption of statistical mechanics is the ergodic theorem [12]. It is the
statement that time averages can be replaced by ensemble averages. The ensemble
distribution that predicts equilibrium quantities is usually assumed to be the Gibbs
distribution

P(x1, . . . , xN, p1, . . . , pN) =
1
Z

e−βH(x1,...,xN ,p1,...,pN) (1.7)

and the argument is usually the one (valid for generic non-integrable systems)
starting from the exact Liouville equations for the multi-particle distribution

∂t f + { f , H}P = 0 (1.8)

where f (x1, . . . , xn, p1, . . . , pn)dΓ is the probability to find the system, i.e. the point
(x1, . . . , xn, p1, . . . , pn), in the phase space volume dΓ. The stationary equilibrium
distribution does not depend on time and so it must have zero Poisson bracket
with the Hamiltonian. A reasonable choice is that it must be a function of it and
the Gibbs distribution (1.7) follows after imposing entropy maximisation. The
problem is that all the conservation laws must be taken into account because the

1Actually, ultra-local see [9–11] and references therein for discussions about locality.
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dynamics has infinite memory of these. The information is not lost as time goes.
The information theoretic principle of maximal entropy "á la de Jaynes" [13, 14]
provides an elegant way to find the stationary distribution: it is the distribution
the maximises the Shannon entropy defined as

S[ f ] = −
∫

dΓ f log f . (1.9)

Here S[ f ] is a functional over the space of probability distributions on the phase
space. The maximisation procedure constrained by all the conserved quantities Qi

gives the so-called Generalised Gibbs Ensemble already introduced in (1). This
way one sees that it is not true that the non-interacting gas thermalises, rather it
can sustain non-equilibrium stationary states because GGEs need not be parity
invariant and currents might be non-zero.

This discussion can easily be generalised to field theories and quantum many-body
situations. The second quantised form of the non-relativistic free particles above is

H =
∫

dx
h̄2

2m
∂xψ†∂xψ (1.10)

where ψ is now a bosonic field satisfying appropriate commutation relations
(Poisson brackets in the classical case). The local conserved quantities map to

Qn = (−ih̄)n
∫

dxψ†∂n
xψ (1.11)

the normalisation of course being arbitrary. The currents and the charges are
immediate. The same construction can be done in the Klein-Gordon field theory
which is relativistic. The Hamiltonian is

H =
1
2

∫
dx
[
π2 + (∂xϕ)2 + m2ϕ2

]
(1.12)

where the bosonic field ϕ , as before, satisfies an appropriate algebra depending
on whether the model is quantised or not. In this case the construction of the local
charges is less straightforward [15]. Changing variables to τ± = x ± t and taking
derivatives ∂± ≡ ∂τ± we obtain

∂+∂n
−ϕ = −m2

4
∂n−1
− ϕ , ∂−∂n

+ϕ = −m2

4
∂n−1
+ ϕ (1.13)
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1.1 Integrable models

so that we can compute

∂+[∂
n
−ϕ]2 = 2∂n

−ϕ[∂+∂n
−ϕ]2 = −m2

2
∂n
−ϕ[∂n−1

− ϕ] = −m2

4
∂−[∂n−1

− ϕ]2 (1.14)

that going back to the original variables gives conservation laws of the form

∂tq−n + ∂x j−n = 0 (1.15)

with

q−n = [∂n
−ϕ]2 − m2

4
[∂n−1

− ϕ]2 , j−n = [∂n
−ϕ]2 +

m2

4
[∂n−1

− ϕ]2 . (1.16)

In the same way one gets another set of the form

q+n = [∂n
+ϕ]2 − m2

4
[∂n−1

+ ϕ]2 , j+n = [∂n
+ϕ]2 +

m2

4
[∂n−1

+ ϕ]2 . (1.17)

Linear combination of these charges give rise to the Hamiltonian and the mo-
mentum for example. In quantum mechanics upon second quantisation one has
to construct an Hilbert space. In a free theory this is done simply using field
operators. In terms of the modes

ψ(x) =
∫ dk√

2π
eikxψ(k) (1.18)

the whole Fock space that is composed by a collection of independent particles
labelled by the momentum

|k1, . . . , kn⟩ =
N

∏
i=1

ψ†(ki) |0⟩ (1.19)

where |0⟩ is the vacuum state annihilated by ψ(k) for all k. In this basis the
Hamiltonian is diagonal and reads

H =
∫

dkE(k)|ψ(k)|2 (1.20)

with E(k) = h̄2

2m k2 being the energy of a single particle. This writing of the Hamil-
tonian has an action-angle variables form typical of integrable systems with few
degrees of freefom [8]. It is clear that the total energy is the sum of the single-
particle energies. In the same way local charges can be all written in momentum
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Hydrodynamic approach to correlation functions

space and they read

Qn = h̄n
∫

dk|ψ(k)|2hn(k) , hn(k) = kn (1.21)

where the function hn(k) is called one-particle eigenvalue and will be important
later. We have

Qn |k1, . . . , kn⟩ =
N

∑
i=1

hn(ki) |k1, . . . , kn⟩ ∀n (1.22)

Not only the total momentum P = Q1 is conserved but each indidual particle-
momentum is. The scattering between particles is purely elastic. This is of course
a triviality in free models but the presence of infinitely many charges makes it
happen in integrable models as well. Now we add interactions in such a way
the conservation laws are not broken and conserved quantities and currents are,
correspondingly, only deformed.

1.1.2 Classical integrability

KAM theory

The first fundamental result is the celebrated Kolmogorov-Arnold-Moser (KAM)
theory culminating with the eponymous KAM theorem [16–18]. A good review on
this mathematical topic is [19] while a physical and practical approach is followed
in [20]. Basically here the question is whether a small non-linear perturbation to
an integrable Hamiltonian system can lead to a sustained quasi-periodic orbit in
phase space like a system of N harmonic oscillators with different frequencies
do. The latter system can indeed be solved using action angle-variables [8]. The
theory gives conditions under which quasi-periodic solutions to a perturbed
Hamiltonian system persist. These conditions include a non-resonance condition
on the frequencies of the quasi-periodic motion and a smallness condition on the
size of the perturbation.

In the thermodynamic limit, i.e., when the number of degrees of freedom tends
to infinity, both of these conditions become problematic.

1. Non-resonance Condition: The non-resonance condition requires that the
frequencies of the quasi-periodic motion are not rationally related. However,
as the number of degrees of freedom increases, the chances of finding a
resonance (i.e., a rational relationship between frequencies) also increase. In
the thermodynamic limit, the space becomes densely filled with resonances,
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1.1 Integrable models

making the non-resonance condition almost impossible to meet. This is
a manifestation of the so-called "small divisor problem", a challenge in
mathematical physics concerning the perturbation theory of Hamiltonian
systems [21].

2. Smallness Condition: The smallness condition requires that the perturbation
to the Hamiltonian system is sufficiently small. In a system with a finite
number of degrees of freedom, it’s possible to adjust the size of the perturba-
tion to satisfy this condition. However, in the thermodynamic limit, even if
each individual interaction is weak, the collective effect of an infinite number
of such interactions may not be small. Therefore, it becomes increasingly
difficult, if not impossible, to ensure the smallness of the perturbation.

These two issues represent significant obstacles to the application of KAM theory
in the thermodynamic limit.

Fermi-Pasta-Ulam-Tsingou (FPUT) experiment

The Fermi-Pasta-Ulam-Tsingou (FPUT) problem is a key challenge in the field of
nonlinear dynamics and chaos theory, which traces its roots back to a numerical
experiment conducted in the 1950s. The original paper is [22] while excellent
accounts can be found in [23–25]. This experiment involved a chain of particles
connected by nonlinear springs, and it was designed to examine the thermalisation
process in this simple system, i.e., whether the energy initially concentrated in one
mode would eventually spread out evenly among all modes, which is a prediction
of statistical mechanics. In particular they studied the following dynamical system

d2xi

dt2 = (xi+1 − 2xi + xi−1) + β(xi+1 − xi)
n − βn(xi − xi−1)

n , (1.23)

for n = 2, 3. Here, βn is the nonlinear coupling constant. In the original paper
[22] β1 ≡ α and β2 ≡ β. The first term on the right-hand side of each equation
corresponds to the standard linear (Hooke’s law) interaction between the particles,
while the other terms describe the nonlinear interactions.

The surprising discovery was that, instead of reaching a state of thermal equilib-
rium, with energy distributed equally among all the modes, the system exhibited
a quasi-periodic behavior, with the energy oscillating between a few modes, even-
tually returning near to its initial state. This finding led to a number of significant
advances in the understanding of nonlinear dynamics, including soliton theory
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and chaos theory. The underlying reasons for this behavior, particularly why the
FPUT system doesn’t thermalize as expected were unclear. An answer to that
inexplicable behavior was given by Norman J. Zabusky and Martin D. Kruskal
in 1965 [26], where they related the behavior of the Fermi-Pasta-Ulam-Tsingou
(FPUT) system to the Korteweg-de Vries (KdV) equation.

In this work, Zabusky and Kruskal discovered that the FPUT system could pro-
duce stable, solitary wave packets, which they named "solitons". This was a
groundbreaking discovery because, until that time, it was generally believed that
nonlinear interactions would inevitably lead to the breakdown of any waveform
into simpler waves or result in a chaotic state.

The KdV equation is a third-order partial differential equation that describes
the propagation of waves in a one-dimensional shallow water wave channel.
It’s one of the simplest nonlinear wave equations that permits soliton solutions.
What’s particularly interesting is that the KdV equation is an integrable system,
it has a sufficient number of conserved quantities to allow it to be solved exactly.
The equation reads

∂tu + 6u∂xu + ∂3
xu = 0 (1.24)

where u is related to the velocity field dxi
dt in an appropriate continuum limit, see

[25] for details. By numerically studying the long time evolution of the FPUT
system and showing it can be approximated by the KdV equation in the small
amplitude limit, they connected the surprising non-thermalizing behavior of the
FPUT system to the integrability of the KdV equation. This provided a strong im-
petus for the development of the Inverse Scattering Transform method, a technique
used to solve certain integrable models, including the KdV equation.

Inverse Scattering Method (IST)

The Inverse Scattering Transform (IST) is a mathematical method used to solve
certain nonlinear differential equations. The method was developed in the con-
text of soliton theory as a powerful tool for solving integrable partial differential
equations. The idea of the IST is to transform the original nonlinear problem into
a simpler linear problem through a spectral analysis, solve the simpler problem,
and then invert the transformation to obtain the solution to the original problem.
See Refs. [27–30] for extensive discussion and Ref. [31] for a modern perspective
and application to contemporary issues.
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1.1 Integrable models

In particular, the IST has been applied to solve equations like the Korteweg-
de Vries (KdV) equation and the nonlinear Schrödinger equation, both of which
model various physical phenomena and have solutions that describe solitons. The
IST consists of three main steps:

1. Direct Scattering Transform: The initial condition of the differential equation
is analyzed to find its scattering data. This step involves solving a related
linear differential equation known as the scattering problem.

2. Time Evolution of the Scattering Data: Using the integrability of the differen-
tial equation, the time evolution of the scattering data is determined.

3. Inverse Scattering Transform: The evolved scattering data is used to recon-
struct the solution to the original differential equation at later times.

Solitons

There are many different types of solitons like localised solitons, topological
solitons, breathers, magnetic and optical solitons and many others. An account can
be found in [32]. The common feature is their scattering properties. The scattering
is completely elastic and factorises into two-body processes. This was indeed
one of the main finding of Zabusky and Kruskal [26]. They noticed that coherent
structures, the solitons, overlapped for a certain time and then re-emerged not
having lost their "identity". The only difference is a shift in their relative positions:
the emerging solitons are just displaced by a number that, importantly, depends
on their velocities. This is a property that is fundamental in quantum mechanical
integrable models as well and it is this scattering behavior that allows, to a certain
extent, to discuss thermodynamic properties of quantum and classical integrable
models on the same footing. Solitons represent the stable excitations out of the
vacuum, bumps of energy with well defined dispersion relation: emerging quasi-
particles.

1.1.3 Bethe Ansatz

An overview

Bethe Ansatz is basically a method for finding the spectrum of interacting quantum
many body systems. It bears the name of its inventor Hans Bethe who actually
did not realise that the method would have produced a huge amount of success in
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later generations of physicists and mathematicians. Bethe used an Ansatz [33] for
the wave function of the ferromagnetic XXX spin chain whose Hamiltonian reads

H = −J
N

∑
i=1

S⃗ · S⃗ (1.25)

where J > 0 is a ferromagnetic coupling and S⃗ = (s1, s2, s3) is a vector of spin
matrices si =

h̄
2 σi with σi the Pauli matrices.

Although the model was conceived as a spin chain, all integrable theories can be
put under the same hood via the Algebraic Bethe Ansatz construction [34]. Spin
chains give rise to continuum quantum field theories in appropriate continuum
limits [35]. A full discussion of the method would require an entire chapter and
there exist a fairly big amount of reviews and lecture notes on the topic [36–39]:
these are rather complete and systematic, something which we are not trying to be
here for what concerns this particular topic.

The main point behind integrable models is that the spectrum can be organ-
ised in terms of stable quasi-particles. In condensed matter physics, especially
after the success of Fermi liquid theory [40, 41], the concept of quasi-particle and
particle-hole excitations was so important and pervasive that cannot in anyway be
underestimated. Landau [42] realised that even though the Coulomb long range
interaction is not small compared to the kinetic part of the Hamiltonian, when
an electron is excited just above the Fermi surface the phase space available for
scattering is very little and suppressed at low energy. The net effect is a renor-
malisation or "dressing" of single, free, particle states. Doing perturbation theory
in the interaction one sees that the energy is shifted due to a superposition of
electron-hole pairs. If we stay close to the Fermi surface the typical energy scale
will be ∆E = E − ϵF → 0 and the life time of excitations diverges. In models
solvable by Bethe Ansatz the life time is truly infinite and quasi-particles do not
decay. They have sharp energy-momentum dispersion relation and scattering is
elastic and factorised. All these properties are in one-to-one correspondence with
the behavior of solitons, as we mentioned in the previous section.

Scattering with additional charges

The Bethe Ansatz can be heuristically justified via the concept of scattering states
using the assumption that there are infinitely many conserved quantities. To
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be precise, in a relativistic theory with Lorentz invariance, only two charges are
needed to show factorisability and elasticity of scattering, as long as space-time has
dimensions (1+ 1) [43] because otherwise the S-matrix would be trivial (Coleman-
Mandula theorem [44]). We instead consider a non-relativistic quantum theory
(see [45, 46] for classical particle systems), and we consider then an additional
charge Q commuting with the Hamiltonian, the momentum and eventually the
number operator. We show that the S-matrix necessarily factorises in a sequence
of two-body scatterings. In the same way as the Hamiltonian (which is present
in the set of conserved quantities) generates the time evolution, also the other
charge generates some flow of some "generalised time" parameter. The unitary
transformation is

U(s) = eisQ (1.26)

and since it is a symmetry if commutes with the S matrix

[S, U(s)] = 0 (1.27)

which in turn implies that the scattering amplitudes satisfy

⟨k′1, . . . , k′N|S|k1, . . . , kN⟩ = ⟨k′1, . . . , k′N|U†(s)SU(s)|k1, . . . , kN⟩ (1.28)

Particles are labelled in order of increasing momentum from left to right so that
ki < k j if i < j. This is always possible in one spatial dimension.

The parameter s is associated to the symmetry Q is the generator of, like the
momentum generates translation and the generalised time is space. In a typical
scattering experiment ,particles in the distant past are well separated. Single
particle states are taken centered in (xi, ki) in phase space

⟨q|ki⟩ =
(

1
2πσ2

i

)1/4

exp ( f (q; ki, xi, σi)) (1.29)

where

f (q; ki, xi, σ) = − (q − ki)
2

4σ2
i

− iqxi (1.30)

The multi-particle state in the asymptotic past t = −t0 → −∞ is simply a product
state (we consider bosons for definiteness)

⟨q1, . . . , qN|k1, . . . , kN⟩ =
N

∏
i=1

(
1

2πσ2
i

)1/4

exp( f (qi; ki, xi, σi)) . (1.31)
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The state is set in motion according the Hamiltonian

H = ∑
i

k2
i

2
+ λ(t)V (1.32)

where V is the interaction and λ(t) is chosen as to switch on the interaction
adiabatically in such a way that eigenstates evolve adiabatically as well [42, 47]. A

common choice is λ(t) = e−
|t|
ϵ with ϵ → 0+. As long as2 |t| ≳ 2ϵ3/2 the interaction

is negligible and the time evolution is that of the free Hamiltonian. Its effect is

f (q; ki, xi, σi) →− (q − ki)
2

4σ2
i

− iqxi − i
q2

2
(t − t0) . (1.33)

The average position of a single particle is

⟨xi⟩ (t) = xi + ki(t − t0) (1.34)

while the velocity stays constant of course. Since the charge Q commutes with
H (the interacting Hamiltonian) and with the momentum operator and thanks to
adiabaticity we have that

Q |k⟩ = h(k) |k⟩ (1.35)

where h(p) is the single-particle eigenvalue specific of the charge Q, analogous
to (1.21) in the free theory. The combined effect of the time evolution and the
symmetry U is simply

f (q; ki, xi, σi) → − (q − ki)
2

4σ2
i

− iqxi − i
q2

2
(t − t0) + ish(q) (1.36)

and the average position is now

⟨xi⟩ (t) = xi + ki(t − t0)− s∆i (1.37)

where

∆i =

(
1

2πσ2
i

)1/2 ∫
dq exp

(
− (q − ki)

2

2σ2
i

)
h′(q) . (1.38)

We see that we can shift the wave packet center arbitrarily. This is much like a
gauge freedom we have for the positions of the particles. Note that if Q is the

2The time interval over which the interaction is effective is
√∫ +∞

−∞ dt e−|t|/ϵt2 = 2ϵ3/2.
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momentum operator, h(k) = k. we obtain a shift in position by s while if Q is the
number operator, h(k) = 1, no shift occurs, as expected. Assuming Q local3, we
can extend this result to the multi-particle scattering states. Indeed, by locality

Q |k1, . . . , kN⟩ =
N

∑
i=1

h(ki) |k1, . . . , kN⟩ . (1.39)

We consider now the 2-particle scattering process. In a non-relativistic theory the
number of particles, the energy and the momentum are conserved

⟨k′1, k′2|S|k1, k2⟩ = δ(k1 + k2 − k′1 − k′2)δ
(

1
2
(k2

1 + k2
2 − (k′1)

2 − (k′2)
2)

)
Sk′1 k′2,k1 k2

(1.40)
which of course sets ki = k′i and the scattering is elastic4. What happens for 3-body
collision? Say we have k1 < k2 < k3. After scattering, in the future at time T, we
have k′1 < k′2 < k′3 and x1(T) < x2(T) < x3(T).

First of all in presence of an additional charge implies that we have an addi-
tional constraint

⟨k′1, k′2, k′3|S|k1, k2, k3⟩ = δ

(
∑

i
ki − ∑

i
k′i

)
δ

(
1
2 ∑

i
k2

i − ∑
i
(k′i)

2)

)

× δ

(
1
2 ∑

i
h(ki)− ∑

i
h(k′i))

)
Sk′1 k′2 k′3,k1 k2 k3

(1.41)

The scattering with the potential has the effect that xi(T) = xi(t0) + δi. A solution
to the constraints imposed by the δ functions is that ki = k′i so the scattering is
elastic. If one is not convinced, the case of really integrable model displaying an in-
finte set of conservation laws Qi implies that we have to satisfy an infinite number
of constraints leading immediately to the elasticity property as the only possible
outcome. Next we address the factorisability. Making use of the symmetry U
we can shift the final positions xi(T) by an amount −s∆i such that going back in
time along straight line trajectories for the wave packet centers for one of these
particles (always |t| ≳ 2ϵ3/2) and such that we exactly compensate the shift, say δ3

of the fastest particle. So one would conclude particle 3 did not scatter at all5! But

3In second quantisation, Q local means it is the integral of a local density q(x). Acting on a
state it only has effect at x. In a first quantisation language it means it is the sum of single particle
operators Q = ∑i qi.

4Recall the labelling of the particles: in an elastic collision 2 particles just exchange their
velocities so in the final state the labels are also exchanged.

5This assumes T finite so the trajectories are bounded.
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this is an artificial result coming only from the redudancy we have because of the
symmetry Q.

Since particles have to scatter anyways we have to conclude that the collision is
independent of the order6. Particle 3 has to come out shifted by δ3 only after colli-
sions with both particles 1 and 2. In this way we have proved that the scattering is
factorised. This argument has as a by-product the celebrated Yang-Baxter relations
[48, 37]

Sk1,k2Sk1,k3Sk2,k3 = Sk2,k3Sk1,k3Sk1,k2 (1.42)

encapsulating elasticity and factorisability of scattering in (1 + 1) dimensions.
Adding analiticity and unitarity assumptions of the S-matrix it is possible to try a
classification of such integrable S-matrices via the so-called bootstrap program but
we will not delve into such matters and refer the interested reader to the relevant
literature [49–52] and in particular Chapters 17-18 of Ref. [37].

Bethe Equations

It is clear that the shifts accumulated are additive and we can write

δ(ki) = ∑
j ̸=i

δ(ki, k j) (1.43)

where we have used the fact that the only thing they can depend on are the
momenta of the incoming particles. By unitarity of the S-matrix we can write its
elements as

Sk′1,...,k′N ,k1,...,kN
= ∏

(i,j)
exp

(
iΘ(ki, k j)

)
δk′i,ki

δk′j,kj
(1.44)

where the sum runs over the N(N − 1)/2 particle pairs and Θ(k, q) is called phase
shift: it is a characteristic of the potential. Confining the system in the a box of
length L and imposing periodic boundary momenta conditions of the particles
will be quantised. If we bring a particle with momentum ki around the circle it will
scatter with all the other N − 1 particles and the wave function will pick up the
phase Θ(ki, k j) for every collision. Taking into account the total kinematic phase
accumulated making a round we end up with the consistency equations known as

6This heuristically clarifies the statement of the Coleman-Mandula theorem: in higher dimen-
sions higher charges can be used to make the particles not to scatter at all so their S-matrix has to
be trivial.
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Fig. 1.1 Scattering between quasi-particles on a ring causes an additive shift in
their wave functions.

Bethe equations see Fig. 1.1

∏
i ̸=j

eiΘ(ki,kj) = eiki L (1.45)

which taking the logarithm becomes

Lki + ∑
ki ̸=kj

Θ(ki, k j) = 2π Ii (1.46)

where Ii is an integer (for every i). For each set of integers Ii there is a state
characterised by ki’s solutions of the above system. The equations (1.46) are highly
non-linear coupled for the quasi-momenta of the particles. Note that the quasi-
momenta are not eigenvalues of the momentum operator. Only their sum is the
eigenalue of the total momentum. We will call such numbers (Bethe) roots or
rapidities (this is what they are in a relativistic theory). Depending on the model
at hand, the only thing to be determined under the suspect of integrability is the
scattering shift Θ studying two particle scattering. Once this is done the wave
function of the system is determined.

There are models, like the Sine-Gordon model that we will introduce in more
detail later, with a richer spectrum: there is not only one type of particle and
these can scatter non-trivially between them. In this case the treatement becomes
significantly more complicated and one has to resort to an Algebraic version of
Bethe Ansatz [34, 53] resulting in what is called nested Bethe Ansatz. In physical
terms this happens because the S-matrix is not diagonal in the space of particle
types and one has to diagonalise it. In depth discussion can be found in the books
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cited at the beginning of the chapter and an application to the Sine-Gordon model
in [54, 55]. By our assumption of adiabaticity, the state is an eigenstate of the
interacting Hamiltonian and the spectrum is completely determined once the the
Bethe equations are known. The momentum and the energy of the state are the
same as (1.39) with charge eigenvalues hH(k) = k2/2 and hP(k) = k. Of course
this is a simplified derivation of the elasticity and factorisation of scattering and
the subsequent derivation of the Bethe equations is only an argument. Explicit
and rigorous derivations are possible depending on the specific model and have
now become standard textbook material, see Refs. [36, 34, 39, 56] and references
therein.

1.1.4 Thermodynamic Bethe Ansatz

This subsection serves to the introduction of the relevant ingredients needed for
a thermodynamic description of integrable models. These are the total density
of "available" Bethe roots ρt, the density of "occupied" Bethe roots ρ (commonly
known as root density) and the density of "holes" ρh. Related quantities are the
filling function, which is the fraction of occupied states ϑ, related to the statistic of
the particles in the model, the dressing kernel(s) and the dressing operation. These
quantities are fundamental for the application of generalised hydrodynamics.

Solving directly the algebraic system of equations (1.46) is a challanging task
already for few particles. There exist numerical studies [57–63] and efficient
algorithms [64] but our focus is on macroscopic systems. Standard books on the
subject are [34, 65, 37, 48] and the original papers of Lieb and Liniger on the exact
solution of the Bose gas [66, 67] and for the Thirring model [68] (related to the Sine-
Gordon field theory). In this brief part we discuss write down the thermodynamic
limit of the Bethe equations both when the S-matrix is diagonal and non-diagonal.

Ingredients of Thermodynamic Bethe Ansatz

Looking at the Bethe equations (1.46) one sees that ki+1 − ki = O(L−1) and in the
thermodynamic limit N, L → ∞ with N/L fixed the equations give a finite limit.
In this limit the density of particles is finite and so should be the number of roots
per unit length. In this limit the roots cover densely the real axis and are described
by a distribution function ρ(k) giving the number of roots per unit length (see
Fig. 1.2). When there is more than one particle type, in non-diagonal theories, we
simply attach an additional index to the root densities specifying the particle type

16
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Fig. 1.2 Root density distribution in the thermodynamic limit. It measures the
density of occupied states.

so we write
∫

dk ρn(k)dkL = number of occupied roots for particle of species n . (1.47)

In an excited state not all the roots are occupied and the unoccupied, still available
states form another distribution, the density of "holes" ρh

n(k) such the the total
density of possible states is

ρt
n = ρn + ρh

n . (1.48)

The ratio
ϑn =

ρn

ρt
n

(1.49)

defines the fraction of occupied states. Note that the spectral space is the doublet
(k, n) where k is the quasi-momentum and n the particle type. This description
entails the fundamental particle-hole excitation spectrum of integrable models.
The pseudo-energies satisfies the non-linear system of Fredholm integral equations
of the second kind [69, 70]

εn(k) = wn(k) + ∑
m

∫
dk′ Tnm(k − k′)Fm(ε(k′)) (1.50)

where Fm(x) are the free energy functions and depend on the statistics of the
quasi-particles. One has

Fm(x) =





−e−x classical particles

log(x) classical radiation

− log(1 + e−x) quantum fermion

log(1 − e−x) quantum boson

. (1.51)
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In the TBA equations (1.50) the scattering kernel is the fundamental object en-
coding interactions. It is related to the scattering shifts in (1.44) and the S-matrix
via

Tnm(k) =
1

2π
φnm(k) (1.52)

with
φnm(k) = −i∂k log Snm(k) = ∂kΘnm(k) (1.53)

where now Θnm is the scattering shift in the wave function when particle of type
n collides with particle of type m and Snm the matrix element for such scattering
process. The function kernel φ is often calle differential scattering phase. Note the
here we are assuming the kernels depend only on the difference of the spectral
parameters. In general this might not be true but in most of the models solvable
by Bethe Ansatz it is possible to find a transformation to put them in this form.

The free energy function is related to the filling function via

ϑ = ∂εF(ε) . (1.54)

The driving term w(k) in (1.50) defines the thermodynamic state. On a homo-
geneous GGE of the form (1) specified by lagrange parameters βi associated to
charges Qi one has

wn(k) = ∑
i

βihi,n(k) (1.55)

where hi,n(k) is the one-particle eigenvalue specific of the charge as introduced in
(1.39) in Section 1.1.3 and associated to particle of type n. In principle the functions
wn(k) are arbitrary. Conventionally h0 is often associated to the conservation of
some internal charge: in the Lieb-Liniger model there is conservation of parti-
cles associated to U(1) symmetry; in the Sine-Gordon model there is is an O(2)
symmetry inherited by the massive fermion of the Thirring model and it is thus a
topological charge. h1 usually refers to the momentum and h2 to the energy: quite
generally p(k) = h1(k) = M sinh(k), E(k) = h2(k) = M cosh(k) and h1(k) = Mk,
h2(k) = M k2

2 in relativistic and non-relativistic models respectively where M is a
mass scale and k is interpreted as rapidity or quasi-momentum.
The total densities of state ρt

n satisfy analogous non-linear integral equations to
the pseudo-energy. Quite generically we could write

ρt
n(k) = hn(k) + ∑

m

∫
dk′ Tnm(k − k′)ρm(k′) (1.56)

18



1.1 Integrable models

where the driving terms hnm depend on the specific model but are often related to
the one-particle eigenvalues in a simple way, see [71].

Thermodynamic potentials and dressing operation

To get thermodynamic observables one needs thermodynamic potentials. The free
energy functions are related to the thermodynamic free energy (density)

f = − lim
L→∞

1
L

log Z = ∑
k

∫
dk Fm(εm(k)) (1.57)

where Z is the partition function, for example the normalisation factor in (1), from
which we can obtain various response functions in the state of interest by differen-
tiation. Note the similarity with free systems. The whole effect of interactions is
encoded in the scattering kernel (1.53) otherwise the form of thermodynamic func-
tions simple. The expectation values of conserved charges of the thermodynamic
state specified by the driving terms wm(k) have simple expressions in terms of the
root densities

⟨Qi⟩ = ∑
m

∫
dk hi,m(k)ρm(K) (1.58)

from which using the standard thermodynamic relation F = U − TS where
U = Q2 is the total energy and S is the entropy one derives the thermodynamic
entropy. The entropy can also be expressed in terms of purely macrovariables. For
example for fermionic systems this is the Yang-Yang (specific) entropy [72]

s = ∑
m

∫
dk ρt

m(k) [ϑm(k) log(ϑm(k) + (1 − ϑm(k)) log(1 − ϑm(k))] . (1.59)

A recurrent operation recurring in sudying thermodynamics of integrable models
is that of dressing. It a linear operations mapping the space of functions of the
spectral variable k and particle type n into itself. It is defined as

hdr
n (k) = hn(k) + ∑

m

∫
dk′ Tnm(k − k′)hdr

m (k′) . (1.60)

With this definition it is very easy to see that expectation values can be rewritten
as

⟨Qi⟩ = ∑
m

∫ dk
2π

hdr
i,m(k)ϑm(k) (1.61)
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Fig. 1.3 Caricature of different scales involved in the dynamics of a many-body
system. hydrodynamics is expected to emerge at large scales no matter the precise
microscopic details.

and we see that a completely equivalent way to characterise the state is via the
occupation functions ϑn. We will see more of this later discussing Generalised
Hydrodynamics.

1.1.5 Euler Hydrodynamics

Generalised Hydrodynamics describes quantum and classical integrable models
at large scale and it has been developed in the seminal works [71, 73]. The precise
meaning of scale is dependent upon the microscopic details of a model in the
sense that what might be the relevant scale in a model does not need to be in
another. Despite the dependence of the overall scale on the microscopic details, the
hydrodynamic equations are universal and apply equally to any system because
of the phenomenon of separation of scaels illustrate in Fig. 1.3. Systems that will be
considered in this thesis have a special structure: they admit an infinite number
of conservation laws. One might wonder how this can be possible. There are
two anwers: a not satisfactory one is that mathematically this is what comes out;
the good answer is that experimentally, it turns out that systems can be exhibit
more than one conservation law with a very good degree of approximation on the
relevant time scales one is interested in [74].

Let us start simple and consider a generic system having a certain number M of
conservations laws Q̇i = 0 (with the dot being the time derivative). For continuous
symmetries, Noether theorem [47] tells us that we have M transport equations of
the form

∂tqi(x, t) + ∂x ji(x, t) = 0 i = 1, . . . M (1.62)
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where qi(x, t) are local charge densities and ji(x, t) are local current densities and
the total charge is just

Qi =
∫

dxqi(x, t) (1.63)

with the integral extending over the available space. Notice that we ar not specify-
ing at all whether the system be quantum or classical. For the most part of this
chapter it won’t matter and we will explicitly say when it does. It is important
to realise that (1.62) refers to microscopic degrees of freedom: in a quantum field
theory the qi’s will be functionals of the field operators while in a spin 1/2 chain
they will be combinations of Pauli matrices. Suppose now we want to describe the
system at a large scale and call it λ. If Aλ = [λx1, λx2]× [λt1, λt2] is a space-time
fluid cell with volume |Aλ| ∝ λ, it will contain a lot of microscopic degrees of
freedom as λ → ∞. Integrating (1.62) over a fluid cell we have

∫ λx2

λx1

dx [qi(x, λt2)− qi(x, λt1)]+
∫ λt2

λt1

dt [ji(λx2, t)− ji(λx1, t)] = 0 i = 1, . . . M .

(1.64)
Both in quantum and in classical mechanics there are fluctuations at the micro-
scopic level: in a quantum theory this is true even at zero temperature T = 0
because the state of the system |ψ⟩ induces fluctuations in observables. Without
loss of generality we indicate with ⟨•⟩ the average over the state irrespectively
of the theory being quantum or classical. It is important to stress that such state
can contain inhomogeneities: for example in a spin chain, the state |↑↑↓ . . . ↓⟩ is
clearly not translation invariant. In classical mechanics we might have a space
dependent inverse temperature β(x) breaking homogeneity. If we now assume
that the microscopic space-time variations of qi and ji are small, meaning that
their space-time gradients happen on scales λ in the large λ limit we can average
further (1.64) and we obtain a transport equation for the macroscopic densities7

qi = ⟨qi⟩ ji = ⟨ji⟩ . (1.65)

The space-time dependence of these macroscopic quantities comes either from the
initial state or from the integration over a fluid cell. Indeed, as we will shortly dis-
cuss, hydrodynamics is capable of making predictions about homogeous scenarios.
We have found

∂tqi + ∂xji = 0 i = 1, . . . , M (1.66)

7Whenever one argument is suppressed we mean it is evaluated at zero. For example q(x)
stands for q(x, t = 0). If we suppress both arguments, it means q(x, t) and when there is translation
invariance this is equivelent to q(0, 0).
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which are the sought hydrodynamic equations valid for macroscopic variables
at macroscopic space-time scale set by λ. As mentioned in the introduction, λ

depends on the system but the equations are completely universal. To close the
equations one has to specify the functional

ji = ji (⃗q) (1.67)

which goes under the name of "equation of state". Performing a gradient expansion
of the equation of state we see that higher order derivatives appear: these will
be Navier-Stokes diffusive corrections, dispersive corrections and so on. For the
moment we do not specify the equation of state. An important quantity is the flux
jacobian defined as

Ai
j =

∂ji

∂qj
(1.68)

as it appears in the convective form of the hydrodynamic equations

∂tqi +Ai
j∂xqj = 0 (1.69)

where the sum over repeated up and down indices is implied. The flux jacobian
is one of the hydrodynamic matrices that we are going to introduce and that will
enter expressions for correlation functions at hydrodynamic scale. Generalised
Hydrodynamics (GHD) makes use of the integrability structure of a given model
to rewrite this coupled system of equations as single equation parametrised by a
single spectral parameter that we will call rapidity and we will indicate by θ or k
both ∈ A × T ⊂ R × N where T is a discrete set of quasi-particle types. The flux
Jacobian can be shown to be diagonalisable and to have a real spectrum [45]. As it
is clear from (1.69) the eigenvalues of the A are the velocities of the sound waves,
the ballistically propagating modes.

1.1.6 GHD: Generalised Hydrodynamics

Euler GHD

We have all the ingredients to introduce Generalised Hydrodynamics equations.
We have seen in the 1.1.4 that the thermodynamics of integrable models is com-
pletely specified once we know the scattering kernel (1.53) and the free energy
encoding the statistics of the particles (1.51). In the spirit of the previous dis-
cussion and in the Local Density Approximation [75–77] one divides space-time
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Fig. 1.4 Local density approximation of the root density in pictures. This corre-
sponds to (1.72).

in independent fluid cells and write an equation for the macroscopic densities
and currents (1.62). We have seen that in TBA solvable models an expression for
the expectation values of the charge is known and given by (1.58) and (1.61) in
terms of the root density or in terms of the filling. Let us simplify the writing and
consider a model with a single quasi-particle type. Examples are the Lieb-Liniger
model and the Sinh-Gordon model. The only bit missing is the equation of state
which gives the current expectation value. This was found in the original papers
[71, 73] and reads

⟨ji⟩ =
∫

dk veff(k)hi(k)ρ(k)

=
∫ dk

2π
E′(k)hdr

i (k)ϑ(k) (1.70)

where the function veff is a non-trivial functional of the state (i.e. depending on ρ

and E(k) is the bare energy of the excitation. Invoking local entropy maximisation
[78] one writes at once the infinite set of continuity equations parametrised by the
spectral parameters

∂tρ + ∂x(veff[ρ]ρ) = 0 (1.71)

which are the celebrated GHD equations. The notation v[ρ] is the functional
notation, meaning that the v depends of ρ via some operator (linear or not).
Basically one has promoted the state to a weakly space-time dependent one

ρ(k) → ρx,t(k) . (1.72)

We will often suppress the space-time dependence when it is clear form the
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context. Such replacement corresponds to the Fig. 1.4. GHD are highly non-linear
equations due to the presence of veff[ρ], the effective velocity. This last quantity can
be shown to satisfy the integral equation

veff(k) = E′(k) +
∫

dk′ φ(k − k′)ρ(k′)
[
veff(k′)− veff(k)

]
(1.73)

where E(k) = h2(k) is the one-particle eigenvalue associated to the energy (bare
energy). The effective velocity has a suggestive semi-classical interpretation: it can
be seen as the resulting dressed velocity of a quasi-particle due to scattering with
all the others. It should be said the GHD equations (1.71) appeared for the first time
in a paper of solitons gases [79] and was proven rigorously for the hard rods gas
in an old paper [80]. This was stressed in the paper [81] where the similarity to the
Boltzmann equation [82] was underlined. The GHD equations (1.71) are transport
equations analogous the equations for the density in conventional hydrodynamics
(CHD)

∂tρ + ∂x(v ρ) = 0 (1.74)

where ρ is the fluid density. As they are written they are in a conservation law
form. To write explicitely the equation in a form that resembles a quasi-linear form
one can use the filling function for which it is possible to show that

∂tϑ + veff[ϑ]∂xϑ = 0 . (1.75)

This non-linear equation in quasi-linear form was solved in [83] by "the method of
characteristics" which provided an efficient algorithm to its numerical solution as
well [84]. Note that by virtue of the relationship between the filling and the root
density (1.49), the effective velocity is can be see as a functional of ϑ also. GHD
is a cornerstone in the modern undestanding of large-scale behavior of quantum
many-body systems. CHD has been widely used to study such models in these
regimes over the years but it was finally shown that it is not valid on arbitrary
long time scales [85]: it eventually breaks down where it predicts the appearance
of shocks which cannot exist in GHD due to the presence of a continuum of modes
[45].

It has to be stressed that Euler GHD is a classical theory where no h̄ appears
explicitely [86] and quantumness is only present in the initial conditions provided
by a local densiy approximation [75–77, 87] and one wonders what happens
accounting for further derivative corrections [88]. The fluctuations on top of the
sound waves sustained by Euler GHD have been recently quantiesed [89] and a
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number of succesful applications that account for correct reconstruction of the
quantum fluctuations have been obtained [90–92].

An easy example: free field

As an elementary example of emerging hydrodynamics where it can be "derived"
rigorously and that illustrates the ideas we consider a free field theory defined by
the Hamiltonian

H =
h̄2

2m

∫
dx∂xψ†(x)∂xψ(x) (1.76)

where it does not actually matter whether the field is fermionic or bosonic, quan-
tum or classical. The equations of motion are simple, they are the Schrödinger
equation

i∂tψ = − h̄2

2m
∂2

xψ (1.77)

Consider the Wigner-Weyl transform [93, 94] of the two-point correlation function
(see also Section 1.2)

ϑx,t(p) =
1
h̄

∫ dy
2π

e−i p
h̄ y ⟨ψ†(x + y/2)ψ(x − y/2)⟩ . (1.78)

We can compute easily

∂tϑx,t(p) =
ih̄
2m

∫ dy
2π

e−i p
h̄ y
[
∂x−y/2 ⟨ψ†(x + y/2)ψ(x − y/2)⟩

− ∂x+y/2 ⟨ψ†(x + y/2)ψ(x − y/2)⟩
]

= − p
m

ϑx,t(p) . (1.79)

This is the simplest instance of Generalised Hydrodynamics. ϑx,t(p) is this context
is just the Wigner function and it follows an Euler equation: Euler hydrodynamics
is exact in this case. The solution of the initial value problem is extremely simple

ϑx,t(p) = ϑ0
x− p

m t,0 (1.80)

where ϑ0
x(p) is the initial condition, saying that the initial information is just

transported along straight lines (the characteristics [95]) without dissipation. The
Wigner function has been extensively used in the context of cold atoms and
(quantum) GHD, see [89, 90, 96–99]. A complete hydrodynamic expansion valid
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to all orders in the gradients for the Wigner function has been written in Ref. [100]
and later corrected by the same author in Ref. [86].

1.2 Probability toolbox

1.2.1 Fluctuations

The birth of statistical mechanics and consequently all its children, condensed
matter, solid state and now even high energy physics [101] is rooted in the acknowl-
edgment that a key role in the weird and different [102] behavior of assemblies
of a large amount of elementary constituents is played by fluctuations. This is a
concept that is so often named and so central in modern science that any chapter
dedicated to it will be a total reduction. What is a fluctuation after all and why
does it happen? Cambridge dictionary says [103]

...a change, or the process of changing, especially continuously between
one level or thing and another.

When we observe a graph of some measured quantity from real life we do not
get a smooth curve, rather only a particular realisation: with this we mean that
if we perform the experiment in a different moment, the conditions might have
slightly changed and we would collect slightly different data. If these changes are
quite big, we need to manipulate such data in some way in order to extract some
meaningful and predictable information. One of the usual things is to perform an
average. But what is the average saying? There is not a single notion of average.

1.2.2 Basic probabilistic concepts

If we measure a quantity X, the empirical average of the measured values {xi}N
i=1

assigns to this set another number in the following way

⟨X⟩ = 1
N

N

∑
i=1

xi →
∫

A
dxρ(x)x n → ∞ (1.81)

where we are assuming that the number of measurements N is large and the
empirical measure concentrates, something typical in statistical physics. A is the
region over which we measure the data. The function ρ(x) is the measure taking
into account that the data is not uniformly distributed but there is more in some
places and less in others: it is the probability density distribution. Such probability
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density defines the dataset itself and viceversa8. In general, it is non-negative and
sums to 1. A second quantity, and this is the important one, associated to a dataset
is the variance

σ2
X = Var(X) = ⟨(X − ⟨X⟩)2⟩ (1.82)

which measures how much on average the data points deviate from the average.
The square root of variance, the standard deviation, is a measure of the fluctuations.
It tells how spread the data points are.

One also defines the moments as

mn = ⟨Xn⟩ (1.83)

Associated to a probability distribution, or to the given random variable X (which
is equivalent) there are two useful quantities, which basically contain equivalent
information. These are the moment generating (characteristic) function

ϕX(λ) = ⟨eλX⟩ (1.84)

and the cumulant generating function

ψX(λ) = log ϕX(λ) . (1.85)

The first has the property that the moments can be obtained as

∂n
λϕX(λ)|λ=0 = mn . (1.86)

Taking the derivatives of ψ generates the cumulants (which will be important later)

∂n
λψX(λ)|λ=0 = cn (1.87)

and knowing one of these functions gives access to all the information contained
in the probability distribution ρ. When we have more that one random variable
the situation becomes more interesting. This is because there might be some sort
of dependence between them.

An easy example is when one is a function of the other, say Y = g(X). In this

8We will follow this empirical point of view but for an interesting discussions about a change of
perspective see Ref. [104]
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case, it is a textbook exercise to derive the probability distribution of Y. In other
cases, there is no explicit functional dependence between the variables and all the
information is encoded in a joint distribution ρX,Y(x, y). To know how much one
influences the other one computes the correlation as

Cov(XY) = ⟨XY⟩ − ⟨X⟩ ⟨Y⟩ (1.88)

where the average is now taken integrating with respect ot the density ρX,Y sum-
ming over all possible values. The covariance tells about the linear relationship
between the variables. It grows positive whenever both ∆X = X − ⟨X⟩ and
∆Y = Y − ⟨Y⟩ are positive while it receives negative contributions whenever
the variables are going in opposite directions. One interprets this thinking the
variables influence each other although it must be remarked that correlation does not
imply causation. This is important. Independence means probability of events mul-
tiply and don’t affect each other, resulting in a factorisation of the joint distribution.
For N variables this means

ρX⃗(x1, . . . , xN) =
N

∏
i=1

ρXi(xi) . (1.89)

This implies the vanishing of all covariances while the opposite is easily seen not
to be true. Indeed just take Y = g(X) with g an odd function and ρX(x) defined on
a compact symmetric interval and even. This will give straight away Cov(XY) = 0
and although the variables are dependent the correlation function is unable to
probe such dependence. More general correlation functions between arbitrary
functions of an arbitrary number of variables can be defined.

A note on Stochastic Processes and Random Fields

What we have said before is generalised to stochastic processes. We will not give
precise mathematical definitions of what a stochastic process is for reasons of space
and because it is not in the spirit of this thesis much like in Ref. [105]. We will stick
to an intuitive definition and this will be enough for our purposes. A stochastic
process is just a random function. If coordinates are space and time such a function
ϕ(x, t) is commonly called random field. This simply means that the value of the
field at each point of space-time is random and determined by some probability
distribution over the space of fields, often some Banach or Hilber space, see [106]
for rigorous definitions. Equivalently, for each x⃗ = (x, t) the field is a random
variable specified by the space-time dependent probability distribution P(ϕ; x, t)
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which can be empirically defined as

P(ϕ = ϕ̃; x, t) = lim
N→∞

1
N

N

∑
i=1

δ(ϕ(xi, ti)− ϕ̃) (1.90)

where δ is the Dirac delta function and N is the number of empirical observations.
One is interested in computing N-point correlation functions defined as

G(x⃗1, . . . , x⃗N) = ⟨ϕ(x⃗1), . . . , ϕ(x⃗N)⟩ (1.91)

and naturally extends the definitions of characteristic function to functionals of
random fields. In statistical theories of fields like in quantum field theory and
statistical mechanics this is the correct point of view.

1.2.3 Correlations in free fermionic systems

The Gibbs distribution over the phase space (1.7) is the probability distribution
that describes classical particles at thermal equilibrium with temperature T and it
is a distribution in a very high dimensional space depending on all the variables.
The dynamical variables are fluctuating in the statistical mechanics description.
In quantum mechanics probability distributions are replaced by density matrices
and the notion of probability on the phase space looses meaning although Wigner
functions and Weyl transforms can be employed to give an alternative formulation
in terms of quasi-probabilities (they can be negative) [107, 93]. Neverthless, nature
being quantum mechanical, we cannot escape a probabilistic description of reality9

and probability is built in even at T = 0. Take a quantum many-body system of N
spinless non interacting fermions described by the Hamiltonian

H =
N

∑
i=1

p2
i

2m
+ V(xi) , (1.92)

confined on the line by the potential V(x). The Pauli principle acts as a repulsive
force not allowing the particles to be in the same state (for example same position)
and although the particles are only confined and not interacting they exhibit
strong correlations. The eigenfunctions of the Schrödinger equation ϕkj(xi) are
normalisable if the potential is sufficiently confining and the many-body wave

9There are famous objections [108, 109]
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function is the normalised Slater determinant

Φ(x1, . . . , xN) =
1√
N!

det
[
ϕkj(xi)

]N

i,j,=1
(1.93)

which ensures anti-symmetry. One sees that already this simple system exhibits
correlations due to quantum statistics. In second quantised form this simple
system is described by the following Hamiltonian

H =
∫

dx

[
h̄2

2m
∂xψ†(x)∂xψ(x) + (V(x)− µ)ψ†(x)ψ(x)

]
(1.94)

where
{

ψ(x), ψ†(y)
}
= δ(x − y) are standard fermionic field operators and where

we are allowing the number of particles to fluctuate introducing a chemical poten-
tial µ fixed by the average number of particles

N̄ = ⟨N⟩ =
∫

dx ⟨ψ†(x)ψ(x)⟩ (1.95)

with the expectation value, for concreteness an arbitrary GGE. The non-relativistic
Hamiltonian (1.94) describes not only free fermions but also hard core bosons as
the spectrum of the two systems is completely equivalent [110]. Due to the U(1)
symmetry there is a basic conservation law of the form (1.62) with charge density

ρ(x, t) = ψ†(x, t)ψ(x, t) (1.96)

and associated current 10 (via Noether’s theorem [47])

j(x, t) =
h̄

2m

(
ψ†(x, t)∂xψ(x, t)− ∂xψ†(x, t)ψ(x, t)

)
. (1.97)

By definition, a gaussian state is a state (or a probability distribution) in which all
correlation functions are characterised by the basic two-point function (propaga-
tor)

G(x, t; x′, t′) = ⟨ψ†(x, t)ψ(x′, t′)⟩ (1.98)

which is nothing but the elementary Wick contraction. Gaussian states are states
for which Wick’s theorem holds. Ground states and GGEs of quadratic Hamilto-
nians fall within this category [112]. In particular this is true even in presence of

10Note that in the quantum field theory the current operator is quadratic in the fields and one
has to give a prescription of ordering. The way we have written the current is normally ordered
[111, 47].
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1.2 Probability toolbox

a confining potential withouth two-body interactions because the Hamiltonian
remains quadratic. The propagator can be interpreted in two ways. In a quantum
field theoretic perspective, it characterises a certain "scattering" process in that it
gives the probability amplitute for a particle to be destroyed at (x′, t′) and later
created at (x, t). On the other hand, a probabilistic interpretation is that it tells
how the field at two different space-time points correlates with itself meaning that
what happens at some location will "feel" what happened at another location.

Invoking locality we can argue that the basic connected11 two-point function has to
go to zero when points are sufficiently far away from each other

lim
||(x,t)−(x′,t′)||→∞

⟨ψ†(x, t)ψ(x′, t′)⟩c → 0 . (1.99)

This property, the factorisation of correlation functions is known as clustering. Let
us do an example. Let us take a homogeneous thermal state for the free fermion
Hamiltonian (1.94) with V(x) = 0

ρ =
1
Z

e−β
∫

dkE(k)ψ†(k)ψ(k) (1.100)

where E(k) = h̄2k2

2m − µ is the dispersion relation obtained writing the field in
Fourier space12

ψ(x) =
1√
2π

∫
dk eikxψ(k) . (1.101)

The basic two point function is easy to compute13

⟨ψ†(x, t)ψ(x′, t)⟩c
=
∫ dk

2π

e−ik(x−x′)+iE(k)(t−t′)

eβE(k) + 1
(1.102)

where we used that the equilibrium occupation function is

⟨ψ†(k)ψ(k′)⟩ = 1
eβE(k) + 1

δ(k − k′) ≡ δ(k − k′)ϑ(k) . (1.103)

It is easy to see that the Fourier transform of an analytic function decays faster
than any polynomial so that clustering is exponential in space (t = t′). Setting

11Notice that ⟨AB⟩c = Cov(AB) in probabilistic notation.
12With standard abuse of notation we distinguish the Fourier transform of the field by the field

by its argument only.
13Note here ⟨ψ⟩ = 0.
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x = x′ we apply the saddle point method that gives

⟨ψ†(x, t)ψ(x, t)⟩c
= O(t−

1
2 ) (1.104)

and clustering in time holds but it is not exponential rather algebraic. Above, O
is the standard "Big-O" symbol. At the Euler scale, the behavior of the two point
function can be complicated depending on the specific analytic structure of the
dispersion relation. If we fix

ξ = x/t (1.105)

it is easy to see that in the limit x, t → ∞ the asymptotic behavior is determined
by the solutions to the equation

v(k) = ξ (1.106)

with v(k) = E′(k) being the velocity of excitations. The existence of non trivial
solutions to this equation tells whether we transition from exponential to algebraic
decay. In lattice models the dispersion relation is bounded meaning there is a
maximal velocity [113] and so that there is a ray ξ∗ that marks the transition. This
is the edge of the lightcone. In the case at hand the model is continuous and
there is no maximal velocity and there is always a solution to the saddle point
equation and the decay is always algebraic. Consider the density operator in (1.96).
Its correlation functions on the same thermal state can be obtained from Wick’s
theorem, for instance,

⟨ρ(x, t)ρ(x′, t′)⟩c
= ⟨ψ†(x, t)ψ(x′, t′)⟩ ⟨ψ(x, t)ψ†(x′, t′)⟩ . (1.107)

Using the simple results above we see that at equal times there is exponential
clustering while in any other region of space-time only algebraic clustering with a
power t−1. We will see later that this exponent is not specific of this system but
it is a rather generic feature of correlation functions at Euler scale in integrable
models for operators that couple to conserved densities.

1.2.4 Large Deviation Theory

Typical and rare events

Large deviation theory (LDT) is now a well estabilished and fascinating piece of
mathematics, see Ref. [114] for an almost exhaustive account of the literature with

32



1.2 Probability toolbox

emphasis on statistical mechanics applications. It is a powerful theory and we
think it is fair to say that, to be descriptive, it is nothing but the generalisation of
the central limit theorem.

There are many specific forms of the central limit theorem: a classical CLT [115],
Lindeberg–Lévy CLT [116], Lyapunov CLT [117], Martingale CLT [118] and Ibrag-
imov–Linnik CLT [119] but the main idea behind remains the same. If we have
a collection of weakly correlated random variables such that the first two mo-
ments are finite, say they are µ and σ2, then their sum is distributed as a gaussian
variable14

lim
N→∞

P

(
∑N

i=1 Xi − µ√
Nσ

< x

)
=
∫ x

−∞
exp

[
−x2

2

]
. (1.108)

The above statement characterises the limit distribution of a sum of random vari-
ables under relatively mild assumptions in the sense that it describes the typical
values and the fluctuations around the mean. The most common formulation is
that of Lindberg-Levy and assumes independent and identically distributed (i.i.d.)
random variables with finite mean and variance [116].

Indeed, we might want to know what happens away from the mean, when a
so-called large deviation occurs. How rare is really this rare event? To ansnwer this
question one wants to give an estimate of the probability of such large fluctuations
and in turn, to do this, one has to know about the tails of the ditribution. Consider
for instance a set of random variables Xn and consider a function of them of the
form Jn = J(X1, . . . , Xn). Informally, we say that Jn satisfies a large deviation
principle (LDP) with linear velocity15 if

Definition 1.2.1 (Large deviation principle, informal).

P(Jn = nj) ∝ exp (−nI(j)) n → ∞ (1.109)

where the function I(j) is the rate function or large deviation function and char-
acterises the tails of the distribution and the rate of decay to zero. Note that it is
independent of n. In physics jargon, this means that the observable is extensive in
n. Most rate functions have the important properties

• I(j) ≥ 0 for all j

14This is called convegence in distribution.
15In principle one can consider other scalings with n: any increasing function of n, say vn is good.

In the context of LDT vn is called velocity.
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Hydrodynamic approach to correlation functions

• I(⟨X1⟩) = 0

• I′′(j) > 0.

Knowing this asymptotic form of the distribution we have a way to estimate large
deviations. An easy example is from statistics, where we have the sample mean
Sn = 1

n ∑n
i=1 Xi. We know that under mild assumptions of weak independence

and finiteness of moments, this variable is gaussian but we might want to know
its large deviations from the mean. To do so we must compute the rate function.

Let us take a sequence of random bits bi taking values in a binary alphabet {0, 1}.
These are of the form b⃗n = (b1, . . . , bn). If the bits are independent and happen
with the same uniform probability 1/2 the probability of a given sequence of
length n is just P(⃗bn) = 2−n and we have

P(Sn = s) = ⟨δ(Sn − s)⟩ = ∑
b⃗:Sn=s

P(⃗b) =
1
2n

n!
(n − sn)!(sn)!

(1.110)

that applying the Stirling approximation [120], gives

P(Sn = s) ∝ exp (−nI(s)) (1.111)

with
I(s) = log(2) + s log(s) + (1 − s) log(1 − s) (1.112)

which we recognise to be the binary Shannon entropy [121] from classical informa-
tion theory. Also, compare this expression with (1.59) for the entropy of fermionic
Bethe Ansatz integrable model. We can see from the picture it has all the properties
stated above. Before turning to the discussion of the practical way to compute rate
functions and to a more formal statement of the large deviation principle we give
an example from physics which will be relevant in the rest of the thesis. Consider
a model, a field theory for example, with a U(1) symmetry. Let us think of the
U(1) conserved field as number of particles. In the free non-relativistic theory
example in (1.94) this is the density operator ρ(x) = ψ†(x)ψ(x). One might want
to know the distribution of the number of particles within a given interval. If that
interval grows, then one might look for a LDP analysis.
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1.2 Probability toolbox

Garthner-Ellis and Varadhan’s theorems

In probability theory and statistical physics [114, 122], large deviation theory pro-
vides a framework for understanding the rare fluctuations in stochastic systems.
The Gartner-Ellis Theorem is a cornerstone of this theory, giving conditions under
which the logarithm of the moment generating function of a random process
exhibits a particular variational structure, which in turn characterizes the large
deviation rate function. We will only give a statistical physics argument for its
plausibility and refer to specialised mathematical literature for a full proof and
precise statement. Varadhan’s theorem is the generalisation to functions of the
random variable satisfying a large deviation principle [114, 123].

The problem is to calculate the large deviation function I(x) in (1.109). The basic
quantity to compute is the so-called scaled cumulant generating function (SCGF)

f (λ) = lim
n→∞

1
n

log ⟨eλnSn⟩ (1.113)

where note that this can be interpreted as a non-equilibrium generalisation of the
specific free energy of equilibrium statistical mechanics (see (1.57)). Consider a
sequence of random variables Xi and an obervable of them which has a finite limit
as n → ∞, call it Sn. We have16

⟨enλSn⟩ =
∫

dsP(Sn = s)enλs ≍
∫

dsen(λs−I(s)) ≍ esups(λs−I(s)) (1.114)

where in we have used the assumption that Sn satisfies a large deviation principle
(1.109) and a saddle point approximation. We thus obtain an argument for which

f (λ) = sup
s
(λs − I(s)) (1.115)

which we recognise to be the Legendre-Fenchel transform of the rate function.
Whenever the function I(s) is everywhere differentiable in the given domain of
definition of s the Legendre-Fenchel transform is involutive [124, 125] and we
have

I(s) = sup
λ

(λs − f (λ)) . (1.116)

16 f ≍ g means limn→∞ log f / log g = 1.
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Let us do the simple example of a sequence of i.i.d. random variables and their
sample mean

Sn =
1
n

n

∑
i=1

Xi (1.117)

The result for its asymptotic behavior as n → ∞ is known as Cramer’s theorem
[126] and we obtain

f (λ) = log ⟨eλX1⟩ . (1.118)

Since the characteristic function, whenever it exists, is real analytic [127], it is
differentiable and the Legendre-Fenchel transform can be inverted giving access
to a full range of large deviation functions. We can check that when Xi are binary
random variables we recover the result (1.112). Here the probability distribution is

P(Xi = x) =
1
2
(δ(x) + δ(x − 1)) (1.119)

and according to Cramer’s theorem the SCGF

f (λ) = log
[

1
2

(
1 + eλ

)]
(1.120)

from which, using the fact that ∂λ(λs − f (λ)) = 0 has solution λ∗ = log
( s

1−s
)

I(s) = λ∗s − f (λ∗) = log(2) + s log(s) + (1 − s) log(1 − s) (1.121)

in agreement with (1.112). The important message is : the Gartner-Ellis theorem
provides a powerful tool to derive the large deviation rate function of random
variables under quite general conditions. The rate function, I(x), gives insight
into the exponential rate at which the probability of a rare event decays as the
system size increases. In essence, this theorem is central to understanding the tail
behavior of probability distributions.

So as long as variables are uncorrelated, Cramers theorem gives he full answer.
The most interesting situation occurs in presence of long range correlations where
also the central limit theorem breaks down.

Varadhan’s theorem [123] is the generalisation obtained substituting λSn in
(1.113) with a function of g(Sn) so that the SCGF becomes a non-linear functional
of g. In this case

f [g] = lim
n→∞

1
n
⟨en g(Sn)⟩ = sup

s
(g(s)− I(s)) (1.122)
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1.3 Hydrodynamical correlation functions

and we have a generalisation to stochastic processes.

Breaking gaussianity

An illuminating discussion about possible ways to break the CLT is given in [128]
and it is a somewhat intuitive way of explaining the ideas behind the Ibragimov-
Linnik CLT [119] (also known as functional central limit theorem): either we break
the not too broad distribution condition, that means that random variables might
not have finite variance or mean, or we relax independence condition. The latter
means having to deal with a correlated stochastic process either in time or in space
to allow for such correlations between the variables. These are the ways to avoid
CLT and break gaussianity. We can interpret the fact that so many distributions
"flow" - in a renormalisation group language - to the gaussian distribution saying
that they form a basin of attraction towards the gaussian fixed point. That is
we can interpret this behavior of distributions in the large N limit as a critical
phenomenon [128].

1.3 Hydrodynamical correlation functions

Correlation functions represent the fundamental quantities that one might want to
compute in any physical theory. There are of course others, but it is often the case
that correlations are what we can actually probe. Indeed, given a system described
by a Hamiltonian H, a simple calculation shows that the specific heat is related to
the energy fluctuations by the following formula

cV =
∂ ⟨H⟩

∂T
=

⟨H2⟩ − ⟨H⟩2

T2 =
var H

T2 (1.123)

where the expectation value is taken with respect to the canonical Gibbs distribu-
tion ρ ∝ exp(−H/T). Measuring the fluctuations of the energy gives an estimate
of the specific heat of the system and vice-versa. The same is easily proven for the
fluctuations of the number of particles. Estimating such deviations will give an
estimate of the chemical potential of the system i.e. the energy needed to change
the number of particles by a unit. This simple observations are generalised to
the point that in field theories measurable quantities are synonyms of correlation
functions. For example, in the case of elementary particles, the S-matrix elements
involved in a scattering process are related to the connected multi-point correlation
functions of the field operators by the celebrated LSZ reduction formula [129].
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Having this simple observations in mind, our point of view will be at points rather
abstract, focusing at all times on the computation of fundamental correlators in a
given theory.

1.3.1 Hydrodynamic projections

Sound waves

Consider the following situation: a stationary fluid background has constant
macroscopic densities q0

i and we are interested in understanding how correlations
among different densities are propagated after an initial perturbation, a spike for
example. It is like when one touches the flat surface of a pool and waves start
to travel from the point of contact with the finger. If δqi(x, t) = qi(x, t)− q0

i is
the variation of a density at a macroscopic scale, we are interested in how the
spreading of microscopic correlations look at large scales. Clearly

∂tδqi + ∂x

[
Ai

j (⃗q)δqj

]
= 0 (1.124)

where A is the flux jacobian defined in (1.68). Assuming the background to be
stationary and homogeneous, we can linearise around q0

i and write

∂tδqi +Ai
j (⃗q0)∂xδqj = 0 . (1.125)

Onsager regression hypothesis [130, 131] tells us that fluctuations relaxation will
follow the same rule as the macroscopic variables. Noticing that17 ⟨δqi(x, t)δqi⟩ =
⟨qi(x, t)qi⟩c

∂t ⟨qi(x, t)qj⟩c +Ai
k (⃗q0)∂x ⟨qk(x, t)qj⟩c = 0 . (1.126)

This equation is valid at large scales and this remark is very important. In particular,
this regime is called Euler scale, or ballistic scale. This name has its roots in the
analogy with a particle moving according to Newton’s equations without the
action of an external force whose position grows linearly with time, x(t) = vt, the
proportionality constant being the velocity. In particular the ballistic scaling limit
is one in which both space and time go to infinity with a fixed ratio

lim
x,t→∞

x/t = ζ < ∞ . (1.127)

17⟨AB⟩c = ⟨AB⟩ − ⟨A⟩ ⟨B⟩.
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1.3 Hydrodynamical correlation functions

The solution to (1.126) is easy in Fourier space, possible due to the homogeneous
background q⃗0. If

Sij(k, t) =
∫

dxeikx ⟨qi(x, t)qj⟩c (1.128)

then in matrix form
S(k, t) = eiAtS(k) (1.129)

and inverting18

⟨qi(x, t)qj⟩c = (δ(x −At)C)ij (1.130)

where we have introduced another hydrodynamic matrix, the static correlation
matrix

Cij = (qi, qj) ≡
∫

dx ⟨qi(x, 0)qj⟩c (1.131)

where we have introduced the inner product between two obervables

(O1, O2) =
∫

dx ⟨O1(x, 0)O2⟩c (1.132)

The picture behind equation (1.130) is very neat and appealing: a disturbance
at time t = 0 propagates ballistically only along certain directions where the δ

function is non-zero. This happens when the flux jacobian has an eigenvalue.
The spectrum of the flux jacobian is made of the linear wave propagation ve-
locities (sound velocities) with which correlations travel over a stationary fluid
background. In ordinary fluids [132], there are few conservation laws and the
typical correlation spreading will look like We can see there are only three rays
along which the correlations can travel and the central peak is called heat peak.
In integrable models, that are our main concern, there infinitely many conserved
quantities, causing correlations spread inside a light cone instead on discrete rays
and we will see later that this has remarkable consequences for the decay of corre-
lation functions.

The use of the Onsager hypothesis is not limited to correlation functions of con-
served densities but it is general, see Fig. 1.5.

This is the modern perspective on Euler scale correlation functions and it is
realised through a very practical technical tool going under the name of Hydrody-
namic Projections [78]. This is a precise mathematical statement on the relaxation
of correlation functions at Euler scale rooted in a very simple physical picture.

18The delta function of a matrix is iterpreted in terms of its eigenvalues: δ(A)v = δ(λ)v with
Av = λv.
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Fig. 1.5 Correlations and information of conserved densities are transported by
Euler sound waves. This is a Onsager-like hypothesis.

Indeed, at large time, the relevant part of the dynamics is expected to happen in
a subspace of observables spanned by the conserved quantities. This is pretty
reasonable as long as any observable can be written as a combination of conserved
quantities, so they are "complete". What is the precise meaning of "subspace" and
"complete" here is not important and we refer to Ref. [133] for proper mathemati-
cal treatment but a good intuition is that of completness of operators in quantum
mechanics. Our focus wants to be more on the physical understanding and on
explaining why equations look what they look on concrete grounds.

If, for any two observables O1, O2, we define

SO1,O2(k, t) =
∫

dxeikx ⟨O1(x, t)O2⟩c (1.133)

we can formalise the idea just explained. The hydrodynamic projection principle
states that [45]

lim
k→0,t→∞

SO1,O2(k, t) = SPO1,PO2(k, t) kt < ∞ (1.134)

where P is the operator projecting an observable on the subspace of conserved
charges acting in the following way

SPO1,PO2(k, t) = ∑
ij,mn

(O1, qi)C ijSjm(k, t)Cmn(qn, O2) (1.135)
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where Cij and C ij its inverse (Einstein convention) is the static covariance matrix
defined in (1.131) playing the role of normalisation factor and Sij is the Fourier
transform of the two point function of conserved densities defined in (1.128). The
projection is explicitly given as [134]

PO = ∑
ij

qiC ij(O, qj) (1.136)

As we can see, the evolution of the Fourier transformed two-point function be-
tween two generic observables is expanded in terms of that between conserved
densities for which we know the solution in (1.130). It follows that introducing
a short-hand notation for the overlap between a local observable O and a local
conserved density qi as

VO
i = (O, qi) (1.137)

we can write the hydrodynamic projection formula in a general matrix form

lim
x,t→∞
x/t=ζ

⟨O1(x, t)O2⟩ = VO1C−1δ(x −At)VO2 (1.138)

We read an important lesson applicable to integrable models from this: whenever
the observable couples to a local density, the two-point function, due to the
δ function in (1.130) and the fact that the summation becomes infinite, decays
ballistically as t−1. This is not true if there are finitely many conservation laws. If
coupling between the observable and the conserved density does not occur, the
decay is faster, typically exponential. Thus, at this level, hydrodynamics seems
unable to predict exponential decays of correlation functions. Let us now discuss
more formally hydrodynamic projections.

Fluid cell averaging and macroscopic observables: Euler scale

We admit that in the paragraph above we have not been very precise. For example,
in using the Onsager hypothesis we have replaced the microscopic position x with
the macroscopic position of the fluid cell and we called it x as well! How can we
compare microscopic theories and hydrodynamic predictions? This is a fundamen-
tal question, especially in an era where theoretical physics has at disposal huge
computational resources that allow simulation of microscopic dynamics. In order
to answer this question, we must not forget the fundamental coarse-graining pro-
cedure behind hydrodynamics equations, also called fluid-cell averaging [3, 135].
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This is a simple concept but it must be born in mind if one wants to be suc-
cessful in making comparisons at Euler scale. In particular, there are many average
procedures that can be defined. For example, if we call a subset of the space-time
Ω we can divide it in rectangles centered at positions and times x̄, t̄ respectively,
the fluid-cells, of the type Fx̄,t̄ = [x̄ − δ/2, x̄ + δ/2]× [t̄ − τ/2, t̄ + τ/2] in such a
way that Ω = ∪x̄,t̄Fx̄,t̄. These cells have volume |Fx̄,t̄| = δ · τ. With this we can
define the fluid-cell average of a single point observable as

Ā(x̄, t̄) = A(x, t) =
1

|Fx̄,t̄|
∫

Fx̄,t̄

dxdt A(x, t) (1.139)

If ℓ is a typical scale, say of lengths, and we want to probe the physics at that scale
we can average out microscopic degrees of freedom at scales smaller than ℓ. To do
this we can choose the fluid cell size mononically increasing with ℓ, that is

δ = δ(ℓ) , τ = τ(ℓ) (1.140)

with
δ(ℓ1) ≤ δ(ℓ2) , τ(ℓ1) ≤ τ(ℓ2) , ℓ1 ≤ ℓ2 (1.141)

but at the same time

δ(ℓ)

ℓ
→ 0 ,

τ(ℓ)

ℓ
→ 0 , ℓ → ∞ . (1.142)

Different space-time regions are correlated in different ways meaning correlations
have a different behavior. Thus, we must specify how x and t scale with respect to
one another in order to describe specific space-time regions. One choses x = fx(ℓ)x̄
and t = ft(ℓ)t̄. In this way, the result of a fluid cell averaging is parametrically
dependent on the observation scale ℓ. In hydrodynamics we have two common
scales. The following

x ∼ t ∼ ℓ (1.143)

is called Eluer scaling while
x ∼

√
t ∼ ℓ (1.144)

is called diffusive or Navier-Stokes scaling. The fluid average described in (1.139)
is the most generic one but depending on the system at hand it might be possible
to simplify the average prescription [134]. For example, the Euler scale averaged
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observable O would be

ĀEul(x̄, t̄) = lim
ℓ→∞

1
|Fℓx̄,ℓt̄|

∫

Fℓx̄,ℓt̄

dxdt A(x, t)

= lim
ℓ→∞

1
δ(ℓ)τ(ℓ)

∫ δ(ℓ)/2

−δ(ℓ)/2
dx′

∫ τ(ℓ)/2

−τ(ℓ)/2
dt′ A(ℓx̄ + x′, ℓt̄ + t′) . (1.145)

We see immediately that this definition makes sense only if we specify what an
observable is. It is very important at this point to make a distinction between
deterministic systems and and non-deterministic ones. In real systems there is
always some sort of fluctuation present: in classical systems there is uncertainty in
the initial conditions, resulting in the description of the stationary state in terms of
some probability measure. This probability measure can be largely independent
on the initial conditions (generic systems) like themral Gibbs states or memory
conserving of all conserved quantities (integrable systems) like (1); in quantum
systems at zero temperature T = 0 fluctuations are encoded in the initial state of
the system and in quantum statistical mechanics the state generically contains both
quantum and classical fluctuations. Let us take as an example a non-relativistic
free field theory with a complex scalar field ψ(x, t) where the density of particles
is an operator

ρ̂(x, t) = ψ̂†(x, t)ψ̂(x, t) . (1.146)

This would be called a microscopic observable but in the presence of fluctuations
one must be careful. It has to be remembered that in all experimentally relevant
situations, we never measure exactly a microscopic observable, but rather its mean,
or if we want, just a single eigenvalue. This is a question of nomenclature of course
and overall what matters is the value that we read out from a meter or any other
experimental tool. What we want to emphasize is that a definition like (1.139)
must be applied after average over fluctuations has been already performed and
that the two kinds of averages do not commute in general. In a more general
scenario, more appropriately, a macroscopic observable is a multi-point correlation
function averaged over a fluid cell. For example, what we measure is the average
microscopic density

ρ(x, t) = ⟨ψ̂†(x, t)ψ̂(x, t)⟩ (1.147)

and the macroscopic fluid density at Euler scale will be

ρEul(x̄, t̄) = lim
ℓ→∞

1
δ(ℓ)τ(ℓ)

∫ δ(ℓ)/2

−δ(ℓ)/2
dx′

∫ τ(ℓ)/2

−τ(ℓ)/2
dt′ ρ(ℓx̄ + x′, ℓt̄ + t′) (1.148)
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where the x dependence of the integrand can come also from inhomogeneities in
the state. A two-point function, averaged over fluid cells, will be

⟨O1(x1, t1)O2(x2, t2)⟩ =
∫

Fx̄1,t̄1

dx1dt1

|Fx̄1,t̄1
|
∫

Fx̄2,t̄2

dx2dt2

|Fx̄2,t̄2
| ⟨O1(x1, t1)O2(x2, t2)⟩ (1.149)

and it is clear how to generalise this to multi-point correlation functions. At Euler
scale, in inhomogeneous states, no modifications are needed with respect to (1.148)

⟨O1(x̄, t̄)O2⟩Eul
Hom ≡ lim

ℓ→∞

1
δ(ℓ)τ(ℓ)

∫ δ(ℓ)/2

−δ(ℓ)/2
dx′

∫ τ(ℓ)/2

−τ(ℓ)/2
dt′ ⟨O1(ℓx̄ + x′, ℓt̄ + t′)O2⟩

(1.150)
and this will serve to our purposes when we will compute two-point function of
the magnetisation in spin chains. It is not difficult to take into account inhomo-
geneities in the initial state as done in [136] and numerically in [137] but we will
not delve into this scenarios in the present manuscript. With Euler scale two-point
functions defined the correct statement of hydrodynamic projections is

⟨O1(x, t)O2⟩Eul
Hom = VO1C−1δ(x −At)VO2 ,

x
t
= ζ < ∞ (1.151)

meaning that the prediction is for fluid-cell averaged two point correlation func-
tions. Generalisation to multi-point functions can be found in [138]. Expression
(1.151) is a hydrodynamic projection formula, where VO1 and VO2 represent the
projection of O1 and O2 onto conserved quantities, and C−1δ(x̄ −At̄) represents
the propagation of hydrodynamic modes. The limit in (2.25) is a generalised func-
tion of the scaled space-time coordinates x̄, t̄, concentrated on the space-time rays
of velocities equal to the eigenvalues veff

i of A. These eigenvalues are therefore
interpreted as the velocities of propagation of linear disturbances on top of the
fluid, which give rise to the leading (Euler-scale) correlations.

1.3.2 Ballistic fluctuation theory

General setup

We now explain the basics of the ballistic fluctuation theory [139]. This framework
generalizes the ideas originally introduced in the context of large deviations in
conformal field theory [140]. Whenever an observable does not couple to at least
one of the conserved charges, the hydrodynamic projection principle (1.151) is not
predictive as it gives simply zero, meaning that the correlation function decays
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faster the t−1, usually exponentially. Examples are correlation functions of vertex
operators in the Sine-Gordon field theory and of the order parameter in spin
chains, as we will see in detail later.

Consider the general hydrodynamic setup of section 1.1.5. Let us focus on a par-
ticular charge Qi∗ ≡ Q with its associated density and current qi∗ ≡ q and ji∗ ≡ j
respectively and for simplicity let us assume that the charge corresponds to a con-
tinuous symmetry. Let us agree that space-time points are labeled as l⃗ = (x, t) ∈ R2,
in this order. In a relativistic notation, we can define a 2-component current in the
following way

j⃗ = (j, q) (1.152)

so that the conservation law can be written as

∂µ jµ = ∂tq + ∂x j = 0 (1.153)

where it is understood that ∂0 = ∂x and ∂1 = ∂t. A generalised current in space-
time can then be defined as

dω(x, t) = j⃗(x, t)× d⃗l = j(x, t)dt − q(x, t)dx . (1.154)

The remarkable fact about such current is that it is an exact differential [141] thanks
to the conservation law (1.153) (just take the mixed derivatives). This implies that
its line integral in space-time only depends on the end points, see Fig. 1.6. In this
way, given a space-time path γ(s) = (x(s), t(s)) with γ(s∗) = (x, t) for some s∗

(which is not important) we can define a function of the end point19

Ω(x, t) =
∫

γ
dω =

∫ (x,t)
j(x, t)dt − q(x, t)dx (1.155)

since the lower integration extremum only contributes a constant. This is a po-
tential coming from a conservative force ω directed along the axis exiting the
paper according to the standard right hand rule. The BFT is concerned with the
evaluation of the average

gλ(ℓ; x̄, t̄) = ⟨exp
(
λΩ(ℓx̄, ℓt̄)

)
⟩ (1.156)

19Here we are using a continuous space notation. In later sections the space will be also discrete
and it will be enough to replace integrals with discrete sums.
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for λ ∈ C. In particular we can define

Tλ(x, t) = exp (λΩ(x, t)) (1.157)

which is an example of what is known as twist fields20. The state is taken to be some
maximal entropy state of the Gibbs form (1), with Lagrange parameters βi. Then,
gλ(ℓ; x̄, t̄) is recognised to be the characteristic function for the random process
Ω(x, t) according to (1.84).

:= =

Z �
dt ji ��x qi

�
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Fig. 1.6 Picture taken from [3]. The integral of the two-current on a discrete space.
It is defined by integrating over times and summing over positions (discrete space
here). The result is independent of the path chosen. In the middle, the case shown
is an integral from (0, 0) to (4, t) with t0 = 0, t1 = t2 = t3 > 0, t = t5 > t4 > t3,
see (1.155).

We are interested in the asymptotic regime (2.22), and in particular in the
exponential behaviour (renaming x̄, t̄ → x, t)

gλ(ℓ; x, t) ≍ eℓ fλ;x,t[β] (ℓ → ∞). (1.158)

The function in the exponent may be complex, and thus this includes oscillatory
terms. On the right-hand side, we explicitly write the dependence on the state
specified by the Lagrange parameters β. The precise limit to be evaluated is

fλ;x,t[β] = lim
ℓ→∞

ℓ−1 log g(λ, ℓ; x, t). (1.159)

which is the SCGF in accordance with (1.113).

A typical physical scenario where BFT is most naturally formulated is the so-

20See Section 4.2
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called partitioning protocol21. Basically one divides the system into two halves
with different constant value of one (or more) of the conserved densities. Then
one quenches the system connecting the two pieces and observing the evolution.
In integrable models for example, at large times, a sustained current appears
breaking time reversal symmetry and making the state out-of-equilibrium. Such
current fluctuates (the theory being classical or quantum does not matter) and
the goal is to characterise such fluctuations. The total charge passed through the
junction in time t

∆Q(t) =
∫ t

0
j(0, t)dt (1.160)

it extensive in t and falls within observables amenable of large deviation analysis
as explained in 1.2.4 (compare with (1.117)).

Prediction and flow equation

The BFT predicts that

fλ;x,t[β] =
∫ λ

0
dλ′(t ji(λ

′; ξ)− x qi(λ
′; ξ)

)
(1.161)

where j(λ; ξ) and q(λ; ξ) are (G)GE averages of the current and density evaluated
in a λ-dependent state described by βj(λ; ξ), which depends on the ray ξ = x/t
and obey the BFT flow equation

∂λβj(λ; ξ) = sgn
(
x 1 − tA(λ; ξ)

) j
i∗

, βj(0; ξ) = βj, ξ = x/t (1.162)

where i∗ is the index associated of the chosen conserved charge (cf. the beginning
of this subsection). The sign of the matrix is understood by diagonalisation as
usual, and makes sense as A, the flux jacobian (1.68), has real spectrum. The last
two equations represent the central objects and the constitutive equations of BFT.
The flow equation is derived under certain assumptions; it is expected to hold if
the spectrum of A does not contain x/t, and also for (a large class of) integrable
models, which possess a continuous spectrum.

The function fλ;x,t[β] has an interpretation in terms of large-deviation theory.
In the classical context, for instance at x = 0 (where it is sufficient to consider
t = 1), it encodes the large deviations of the total current J(ℓ) =

∫ ℓ
0 ds j(0, s) in the

time interval [0, ℓ]: it is the “full counting statistics", or scaled cumulant generat-

21also known in hydrodynamics as Riemann problem.
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ing function, for the total amount of charge Q that has crossed the point x = 0,
between times 0 and ℓ and it is a random process. By large-deviation principle
(1.109), the probability that J(ℓ) takes the large value ℓj is generically exponentially
decaying with ℓ as

P(J(ℓ) = ℓj) ≍ e−ℓI(j) (1.163)

for some large-deviation function I(j) (with I(j) = 0 and I(j) > 0 if j ̸= j,
where j = ⟨j⟩). The function fλ;0,1[β], as a function of λ, is the Legendre-Fenchel
transform of I(j). The BFT gives a nontrivial prediction for this Legendre-Fenchel
transform.

Likewise, at x = 1 and t = 0, a similar analysis applies where ∆Qi∗(t) is
replaced by the random variable Ω(ℓ, 0) = Qi∗ |ℓ0 =

∫ ℓ
s=0 dxqi∗(x, 0), the total

charge on the spatial interval [0, ℓ]. In this case, the BFT formulae above imply that
fλ;1,0[β] is the difference of specific free energies f[β] defined in (1.57) at different
states as follows:

fλ;1,0[β] = lim
ℓ→∞

ℓ−1 log ⟨exp−λ
∫ ℓ

0
ds qi∗(s, 0)

)
⟩ = f[β + λδi∗ ]− f[β] (1.164)

where (δj)
i = δi

j. As a consequence, the corresponding large-deviation function
I(q) is simply related to the thermodynamic entropy density as a function of the
charge q.

The BFT thus gives predictions for the full counting statistics of total trans-
ported charges at large times, and total charges on large intervals, purely in terms
of hydrodynamic and thermodynamic quantities, in any maximal entropy state22

as we will see later.

General expression in integrable models

In integrable models, using GHD, the above has been translated into an expression
in terms of the thermodynamic Bethe ansatz when considering current fluctuations
only in Ref. [1]. To write a generalisation valid along arbitrary rays it is more
convenient to parametrise

(x, t) = ℓ(sin α, cos α) , (1.165)

22The BFT is based on an assumed fast enough decay of correlation functions at large distances,
and thus it applies in finite-entropy states; ground states may need further analysis.
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with
ℓ =

√
t2 + x2 , x/t = ξ = tan α . (1.166)

In this way the expression for the scaled cumulant generating function is

fλ,α = ∑
j

∫ dθ

2π

{
− (∂θ pj(θ) sin α − ∂θEj(θ) cos α) sign(sin α − cos αveff

j (θ, λ))

× (F(ϑj(θ, λ))− F(ϑj(θ, 0))

+ 2 ∑
κ∈{±}

∑
veff

j (θ,λ̄)=tan α

κ(F(ϑj(θ, λ̄))− F(ϑj(θ, 0))
}

(1.167)

where κ is the sign of ∂λveff(θ, λ)|λ=λ̄ and where the inner sum of the last term is
over λ̄ belonging to the set

{
λ ∈ R : veff

j (θ, λ) = tan α
}

(1.168)

Although the derivation of this formula is very simple and follows the same
argument of Ref. [2] used to derive the current fluctuations it was never written
before and it is new. The latter case is recovered for α = 0. Note the factor of 2
which corrects a typo in the same Ref. [2] (eq. (25) in that paper).

The function F is the free energy function (1.51) and ϑj the filling functions
(1.54). Recall that in fermionic models they have explicit expression

ϑj(θ) =
1

1 + eε j(θ)
(1.169)

in terms of the pseudo-energies satisfying the TBA equations (1.50). The flow
equations for the pseudo-energies are simple to derive and are

∂λε j(θ; α) = sign(sin α − veff
j (θ; α) cos α)hdr

j (θ; α) (1.170)

or equivalently in terms of the filling

∂λϑj(θ; α) = sign(cos αveff
j (θ; α)− sin α)hdr

j (θ; α)ϑj(θ; α)gj(θj; α) . (1.171)

where here gj is a statistical factor. It is related to the filling function as

g = −∂ε log ϑ(ε) . (1.172)
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Free theories

In a free theory, where the Bethe Ansatz structure is trivial, this simplifies because
ε = w i.e. the pseudo-energy equals the driving term in the TBA equations. With
the GHD description as given in section 2.2.1, and further using the free-energy
function F(k) = − log(1 + e−w(k)), the results of the BFT specialise as follows. The
GGE along the flow is described by the function

w(λ; ξ; k) = w(k) + λ sgn
(
x − v(k)t

)
hi∗(k) (1.173)

where v(k) = E′(k) is the group velocity with E(k) the dispersion relation (see
(2.32) for the XX spin chain), and the scaled cumulant generating function is

fλ;x,t[w] =
∫ π

−π

dk
2π

|x − t v(k)| log
(1 + e−w(λ;ξ;k)

1 + e−w(k)

)
(1.174)

where we use w instead of the Lagrange parameters β to specify the state 23. In
a generic interacting theory, it is not possible to solve the flow equation (1.162)
and one must either solve it numerically or resort to some approximation. We will
pursue both approaches in the next chapters.

Long range correlations

It is very important for the subsequent discussions to say a little bit more about the
large deviation principle validity and in paritcular to discuss its possible breakings.
We have already mentioned that the large deviation principle represents an exten-
sion of the central limit theorem. It gives access to the large deviations compared to
the mean. Small fluctuations are gaussian in this context. When this does not hold,
the large deviation principle breaks down. In this case the fluctuation spectrum
changes. For example, when the SCGF diverges the fluctuations are power law
and long ranged. This happens when

log ⟨eλΩ(x,t)⟩ ̸= O(t) t → ∞ . (1.175)

23In a free theory a GGE has the form ρ ∝ exp−∑k Wknk where nk are the occupation numbers
and Wk is function (and w(k) is its continuous interpolation) since we use continuum notation
here), see also sections below.
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Consider for the moment the current fluctuations. Expanding in powers the
exponential implies that

∫ t

0
dt1· · ·

∫ t

0
dtn ⟨j(t1) . . . j(tn)⟩c ̸= O(t) (1.176)

that is time-integrated multi-point generating functions do not have the correct
scaling. Of course, in the case all cumulants scale with the same power tα, this
can be remedied dividing by tα with an appropriate exponent, but generically it
will happen that they all scale with a different power. In this case there is no large
deviation principle as cumulants do not scale correctly and the series defining the
SCGF cannot be resummed.

1.4 Outlook

In this first introductory part we have mainly reviewed known things with the
hope to set up a good notation for actually implementations and to give the reader
a general idea of the concepts and the tools used to approach complex questions
such as those related to the out-of-equilibrium dynamics of many-body systems,
especially quantum ones. It should have emerged a certain degree of "classicality"
: Euler equations are classical equations are the result of coherent, ballistic, dis-
sipationless motion of the elementary excitations of the system. Now we are in
a position to start the actual journey into the application of these hydrodynamic
concepts to correlation functions in many-body systems, the building blocks being
the hydrodynamic projections and ballistic fluctuation theory.
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Chapter 2

Space-time correlation functions

2.1 Getting started: XX spin chain

Goal of the chapter

In this chapter we present results of the application of ballistic fluctuation theory
(BFT) to dynamical spin-spin correlation functions in the XX spin chain. We
show that hydrodynamic projections reproduce known asymptotic coming from
exact Wick’s theorem in the case of the magnetisation correlation function. The
longitudinal correlator has a long history and the first asymptotic expressions were
given in [142] in the gapped regime. The full asymptotic behavior was settled in [3]
providing expressions valid for any value of the magnetic field and all regions of
space-time. We start simple with the XX spin-chain, introducing its main features
and the correlators of interest. Only at the end we move to the more complicated
Ising model in transverse field. We benchmark our analytical predictions against
exact numerical calculations.

Generalities of the problem

Understanding the dynamic behaviors of many-body systems on large spatial
and temporal scales presents a significant challenge in the field of many-body
physics. According to the fundamental principles of hydrodynamics, in stationary
and homogeneous states, such as thermal or generalized Gibbs ensembles (GGE),
the propagation of "linear waves" provides straightforward predictions for the
algebraic decay of dynamic two-point connected correlation functions [143–145].
Linear waves correspond to small perturbations of the GGE in space-time, de-
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scribed effectively by linear response theory. They propagate following the laws
of Euler hydrodynamics and mathematically reside in the tangent space of the
state manifold, which represents the space of extensive conserved quantities asso-
ciated with that state. Consequently, dynamic correlation functions are expected
to exhibit exponential decay in space-time, except at certain hydrodynamic ve-
locities known as elements of the flux Jacobian spectrum, where algebraic decay
is observed. This phenomenon arises from the projection of observables onto
the conserved quantities carried by the linear waves, a principle known as the
Boltzmann-Gibbs principle [78, 146].

We have already seen that hydrodynamic algebraic decay occurs whenever observ-
ables "couple" to at least one linear wave, meaning that their expectation values
vary along the state manifold, resulting in nonzero susceptibilities. However,
certain observables do not exhibit variation along any direction on the manifold
and therefore do not couple to linear waves. These observables may display expo-
nential decay throughout space-time, and the Boltzmann-Gibbs principle is not
applicable in these cases. This situation often occurs for order parameters or twist
fields (both highest-weight and descendants under the local observable algebra) in
thermal states and other GGEs, as order is typically destroyed at nonzero entropy.
We refer to these fields collectively as order parameters, and they possess zero ex-
pectation values (at least in the vicinity of the GGE) and hence zero susceptibility.

2.1.1 Model and correlation functions

XX spin chain

Here we employ the XX quantum spin chain as an example, described by the
Hamiltonian :

H = − ∑
x∈Λ

[
σ1

x σ1
x+1 + σ2

x σ2
x+1 − hσ3

x

]
(2.1)

where σ1,2,3
x represent the Pauli matrices at site x ∈ Z. We present results for

infinite volumes, with Λ = Z. Hydrodynamic linear response theory is applied
to correlation functions involving σ3

x (referred to as "longitudinal"), while the
new theory is applied to correlation functions of order parameters, which can
be chosen as σ1

x or σ2
x (referred to as "transverse"). This model offers a balance

between simplicity, as it possesses a free-fermionic description, and complexity,
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as it highlights crucial aspects of the problem. Both the hydrodynamic principles
and the proposed theory can be extended to truly interacting models, regardless
of whether they are integrable.

The XX spin chain (2.1) is one the simplest examples of exactly solvable one-
dimensional models, a special case of the more general XY spin model intro-
duced and solved in [147]. We consider the system on a finite periodic lattice
Λ = {0, 1, . . . , N − 1}. The Hamiltonian is diagonalisable by means of the Jordan-
Wigner transformation and Fourier transform. The relevant spin matrices are
written as

σ+
x =

1
2
(σ1

x + iσ2
x) = exp

(
iπ

x−1

∑
y=0

a†
yay

)
a†

x (2.2)

σ−
x = (σ+

x )† (2.3)

σ3
x = 2a†

xax − 1 (2.4)

in terms of canonical complex fermions ax, with {a†
x, ay} = δx,y, {ax, ay} = 0. This

trasnformation preserves the su(2) algebra in the sense of commutation relations
and structure of its spin-1/2 representation. The Hamiltonian is made quadratic,
taking a different form on the sectors with even and odd fermion numbers,

H = P+H+ + P−H−, P± =
1
2

(
1 ± (−1)Ω

)
(2.5)

where the projectors are expressed in terms of the fermion number Ω = ∑N−1
x=0 a†

xax.
The even and odd Hamiltonians are

H± = −2
N−1

∑
x=0

[
a†

xax+1 + a†
x+1ax + ha†

xax

]
+ hN (2.6)

where, implicitly, the boundary condition is anti-periodic (even sector, +) or
periodic (odd sector, −), ax+N = (−1)Ω+1ax. The difference between H+ and H−
is a boundary term

H− − H+ = −4(a†
N−1a0 + a†

0aN−1) (2.7)

which on average decays exponentially and thermodynamic quantities are not
affected by the choice of the boundary condition. A Fourier transform diagonalises
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the Hamiltonian,

ax =
1√
N

∑
k∈Γ±

eikxηk, {η†
k , ηl} = δk,l, {ηk, ηl} = 0 (2.8)

where the momentum sets are such that the (anti-)periodicity condition is satisfied,
Γ+ = {j∆k : j = ⌊−N/2⌋, . . . , ⌊N/2⌋ − 1} and Γ− = {j∆k : j = ⌊−N/2⌋ +
1/2, . . . , ⌊N/2⌋ − 1/2} for ∆k = 2π

N (with |Γ±| = N). This gives the dispersion
relation E(k):

H± = ∑
k∈Γ±

E(k)η†
k ηk, E(k) = 2(h − 2 cos(k)). (2.9)

In each sector, the Fourier modes evolve simply as

ηk(t) ≡ eiH±tηke−iH±t = e−iEktηk (2.10a)

η†
k (t) ≡ eiH±tη†

k e−iH±t = eiEktη†
k (k ∈ Γ±) . (2.10b)

The states of interest are the generalised Gibbs ensembles (1) for which in free
theories, with the density matrix fully fixed by a function W : Γ± ∋ k → Wk ∈ R,

ρ =
1
Z

(
P+e−∑k∈Γ+ Wkη†

k ηk + P−e−∑k∈Γ− Wkη†
k ηk
)

(2.11)

where Z is such that Tr ρ = 1. The case

Wk = βE(k) (2.12)

is the thermal state at temperature β−1.
We are interested in the infinite-length limit N → ∞, where we have, in both

sectors,

ax =
∫ π

−π

dk√
2π

eikxη(k) (2.13)

with usual anti-commutation relations

{η†(k), η(l)} = δ(k − l), {η(k), η(l)} = 0, x ∈ Z . (2.14)
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2.1 Getting started: XX spin chain

Assuming that there is a function w(k) that is continuous or continuous by part,
and such that w(k) = Wk ∀ k ∈ Γ±, ∀ N, this simplifies the density matrix to

ρ =
1
Z

exp
[
−
∫ π

−π
dk wkη†(k)η(k)

]
. (2.15)

Correlation functions

Correlation functions in many-body quantum and classical systems can be anal-
ysed at the Euler scale using the hydrodynamic description of the system. The
Euler scale is that in which space and time are taken to be large, simultaneously.
The hydrodynamic theory gives predictions for correlation functions of local (or
quasi-local) observables at the Euler scale in stationary, homogeneous, clustering
states like those described in (2.15) for free theories. The latter are states which are
invariant under time and space translations, and in which averages of observables
factorise in the limit where they are placed at large spatial separation. Here we
assume that clustering is fast enough, but we will not give a detailed description
of the requirements on the state, see for instance [148] for a rigorous treatment of
Euler-scale correlation functions, [136] for extension to inhomogeneous settings
and [143] for a review of the theory of correlation functions in GHD, of which the
discussion below is a special case.

The prediction from hydrodynamics is based on the available conservation
laws admitted by the system. Consider a quantum chain on Z admitting N
conservation laws

∂tqi(x, t) + ji(x + 1, t)− ji(x, t) = 0, (2.16)

where qi and ji are the conserved densities and currents, respectively. We assume
for simplicity that the state is invariant under the action of all total charges Qi =

∑x∈Z qi(x), that is ⟨[Qi, · · · ]⟩ = 0, although this is not a necessary condition for
the hydrodynamic theory to apply. Consider the following covariance matrices:

Cij = ∑
x∈Z

⟨qi(x)qj(0)⟩c , Bij = ∑
x∈Z

⟨ji(x)qj(0)⟩c . (2.17)

Both matrices are symmetric; this is evident for C, less so for B but a proof can be
found in [133, 45] for instance. Consider also the flux Jacobian

A j
i = ∑

k
BikCkj (2.18)
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Space-time correlation functions

where we denote the inverse matrix with upper indices, ∑k C ikCkj = δi
j as in 1.138.

For any local observable O recall the overlap with a conserved charge (1.137)
which in this case reads

VO
i = ∑

x∈Z

⟨qi(x)O(0)⟩c . (2.19)

In particular, for conserved densities and currents we have V qi
k = Cik and V ji

k = Bik.

The correlation functions whose asymptotics we are looking to evaluate are

(longitudinal) ⟨σ3
x(t)σ

3
0 (0)⟩

c
= Tr

(
ρ σ3

x(t)σ
3
0 (0)

)
−
(

Tr
(
ρ σ3

0
))2

(2.20)

(transverse) ⟨σ+
x (t)σ−

0 (0)⟩ = Tr
(
ρ σ+

x (t)σ−
0 (0)

)
(2.21)

where the nomenclature refers to the direction of the spin component with respect
to the magnetic field (σ± are linear combinations of σ1,2). We are looking for the
asymptotic regime

x = ⌊ℓx̄⌋, t = ℓt̄, ℓ → ∞. (2.22)

Below, for simplicity we assume that w(k) is a continuous and periodic function on
the interval k ∈ [−π, π] – that is, continuous on the interval seen as a topological
circle.

2.2 Longitudinal correlators from hydrodynamic pro-
jections

The leading asymptotics of the longitudinal correlation function ⟨σ3
x(t)σ3

0 (0)⟩
c in

space-time can be predicted by the standard hydrodynamic linear response theory.
In this section we explain how this is done, and we compare with the result of
the elementary computation using Wick’s theorem, confirming the hydrodynamic
theory of projections after suitable averages.

2.2.1 Fluid-cell averages and hydrodynamic projections

The hydrodynamic prediction is for the correlation function of fluid-cell means
O1,2(x, t) of local observables O1(x, t) and O2(x, t). For our purpose, consider a
family of closed time intervals Ix ⊂ R (which may be single points), one for each
position x ∈ Z on the chain. Then a fluid cell is a set Υ = ∪ℓ2

x=−ℓ1
(x, Ix) ⊂ Z × R

in space-time, with ℓ1, ℓ2 ≥ 0, and the fluid-cell mean is the average over the fluid
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2.2 Longitudinal correlators from hydrodynamic projections

cell Υ + (x, t):

O(x, t) =
1

ℓ2 + ℓ1 + 1

ℓ2

∑
y=−ℓ1

1
|Iy|

∫

Iy
ds O(x + y, t + s). (2.23)

The fluid cell is taken to be mesoscopic. Here in the notations of 1.3.1 we are taking

δ(ℓ) = ℓ1 + ℓ2 + 1 , τ(ℓ) = |Iy| (2.24)

That is, the parameters ℓ1, ℓ2 and Ix are taken to be dependent on an “observation
scale" ℓ, such that the linear extent ℓ0 of the fluid cell, say ℓ0 = max{ℓ1, ℓ2, |t| : t ∈
∪x∈[−ℓ1,ℓ2] Ix}, is monotonically increasing with ℓ but much smaller, limℓ→∞ ℓ0/ℓ =
0. The hydrodynamic prediction is that for ℓ1, ℓ2 and the intervals Ix growing
fast enough with ℓ (typically ℓ0 → +∞ fast enough, but within the mesoscopic
constraint), the correlation function of fluid-cell means, times the scale ℓ of the
space-time positions, has a limit expressible solely in terms of the hydrodynamic
matrices C, A and the vectors VO1 , VO2 , as follows:

SO1O2(x̄, t̄) := lim
ℓ→∞

ℓ ⟨O1(ℓx̄, ℓt̄)O2(0, 0)⟩c
= VO1 · C−1δ(x̄ −At̄)VO2 . (2.25)

Note that it is sufficient, by space-time translation invariance, to average over the
positions of a single observable. The application of these general principles to
GHD was done in [144], see the review [143] and references therein. In particular
we consider two types of averages:

Definition 2.2.1 (Time mean).

σ3
ℓx̄(ℓt̄) =

1
2ℓ0

∫ ℓ0

−ℓ0

σ3
ℓt̄(ℓt̄ + s) , (2.26)

Definition 2.2.2 (Ray mean).

σ3
ℓx̄(ℓt̄) =

1
2ℓ0

ℓ0

∑
y=−ℓ0+1

σ3
ℓx̄+y(ℓt̄ + y/ξ) (2.27)

and show that they reproduce exact calculation from Wick’s theorem reported
below. The fluid-cell mean (2.26) is a specialisation of the general form (2.23), with
ℓ1 = ℓ2 = 0 and I0 = [−ℓ0, ℓ0]. The value of ℓ0 (for both averages) does not have
to be taken “large enough", and any 0 ≪ ℓ0 ≪ ℓ will work. For ξ ∈ Ξ (see below
for the defintion of Ξ), the ray mean (2.28) does not give the hydrodynamic prediction,
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Space-time correlation functions

but with an additional minimal averaging over rays

1
2ϵ

∫ ξ∗+ϵ

ξ∗−ϵ
dξ (2.28)

the prediction is reproduced (again this can be recast into a specialisation of the
general fluid-cell mean (2.23)). The case (2.27) is a specialisation to the choice ℓ1 =

−ℓ0 + 1, ℓ2 = ℓ0 and the minimal choice of one-point time intervals Ix = {x/ξ}.
Both averages are therefore minimal expressions of the fluid-cell mean, in some
way with a fluid cell that is the “least extended possible". However, we will see
that the average (2.28) is a valid mean for all rays in a certain set, ξ ∈ (−4, 4) \ Ξ
with

Ξ = {0} ∪ {ξ∗ ∈ (−4, 4) \ {0} : 2 arcsin(ξ∗/4) + 2
√

16ξ−2∗ − 1 ∈ 2πZ + π}
(2.29)

(where arcsin(ξ∗/4) ∈ (−π/2, π/2)). This is the interval (−4, 4), but excluding a
countable set, of measure zero.

Hydrodynamic projection

As the XX model has a free fermion structure, GHD simplifies drastically, see [100].
The state (2.15) is stationary and homogeneous, and one can show that it is clus-
tering as long as w(k) has appropriate analytic properties; in particular, if w(k) is
analytic on the real line, then the two-point functions of fermions are exponentially
decaying. The states (2.15) are in fact the generalised Gibbs ensembles, and on
these states one may apply the hydrodynamic theory of correlation functions.

Given the state (2.15), one may construct the occupation function

ϑ(k) =
1

1 + ew(k)
. (2.30)

All local conserved quantities, such as the Hamiltonian, have the form

Qi =
∫ π

−π
dk hi(k)c†(k)c(k) (2.31)

where the function hi(k) is the one-particle eigenvalue of Qi introduced in 1.1.4.
The index i indexes any chosen (discrete, say) basis of the set of conserved quan-
tities. The average densities may be evaluated by going back to a finite system,
with discrete values of k, density matrix (2.15) and Qi = ∑k∈Γ+∪Γ− hi(k)η†

k ηk, and
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2.2 Longitudinal correlators from hydrodynamic projections

by evaluating limN→∞ ⟨Qi⟩ /N. The currents also take the universal form of
(1.70)[100, 86]. The result is the standard one of GHD (see e.g. [73, 149] as well
as [150–154] for other derivations), and are (1.61) for the charge and (1.70) for the
current. The group velocity is

v(k) = E′(k) = 4 sin(k). (2.32)

The covariance matrices are evaluated by standard statistical mechanics methods,
for instance

Cij =
∫ π

−π

dk
2π

ϑ(k)(1 − ϑ(k))hi(k)hj(k). (2.33)

The flux Jacobian is diagonalised by passing to the continuous basis of the Fourier
modes, and one has

∑
j
A j

i hj(k) = v(k)hi(k). (2.34)

Thus the spectrum of A is the interval [−4, 4]. Using the continuous diagonal
basis, one can simplify the expression (2.25) into a single integral:

Sqi,qj(x, t) =
∫ π

−π

dk
2π

δ(x − v(k)t)ϑ(k)(1 − ϑ(k))hi(k)hj(k) (2.35)

=





1
2π

√
16t2 − x2 ∑

sin(k±)=ξ/4
k±∈[−π,π)

ϑ(k±)(1 − ϑ(k±))hi(k±)hj(k±) (|x/t| ≤ 4)

0 (|x/t| > 4).

(2.36)

For |x/t| < 4, as the result is a finite ordinary function, and not a generalised
function, the hydrodynamic prediction is therefore that the mean-observable
correlation function decays as 1/ℓ,

⟨qi(ℓx̄, ℓt̄)qj(0, 0)⟩ ∼ ℓ−1Sqi,qj(x̄, t̄) (ℓ → ∞, |x/t| < 4). (2.37)

For |x/t| > 4, the result for Sqi,qj(x, t) vanishes, meaning that the decay is faster
than ℓ−1. For |x/t| = 4, the result diverges, meaning that the decay is slower than
ℓ−1.

61



Space-time correlation functions

2.2.2 Wick-theorem from Hydrodynamics and saddle-point

As the total spin shifted by a constant is twice the total number of fermions,

Q0 :=
1
2

N−1

∑
x=0

(σ3
x + 1) = Ω, q0(x) ≡ q(x) =

1
2
(σ3

x + 1) = a†
xax (2.38)

and thus a conserved quantity, we may use the above theory in order to predict
the asymptotics of the correlation function of its density ⟨q(x, t)q(0, 0)⟩ at the
Euler scale. The constant shift does not affect connected correlation functions,
which then boils down to 1

4 ⟨σ3
x(t)σ3

0 (0)⟩
c. In the general result (2.36), the required

ingredients, besides the occupation function, is the one-particle eigenvalue h0(k) ≡
h(k) corresponding to this conserved quantity.

The longitudinal correlation function, as given in (2.20), can also be evaluated
by a direct microscopic calculation using Wick’s theorem. The last formula in (2.4)
and space-time translation invariance give the connected longitudinal correlation
function

⟨σ3
x(t)σ

3
0 (0)⟩

c
= 4 ⟨a†

x(t)ax(t)a†
0(0)a0(0)⟩ − 4 ⟨a†

0(0)a0(0)⟩
2

(2.39)

which gives by Wick’s theorem

⟨σ3
x(t)σ

3
0 (0)⟩

c
= 4 ⟨a†

x(t)a0(0)⟩ ⟨ax(t)a†
0(0)⟩ . (2.40)

We work directly in the thermodynamic limit as prescribed in Eq. (2.13). Using
⟨c†(k)c(l)⟩ = δ(k − l)ϑ(k) and ⟨c(k)c†(l)⟩ = δ(k − l)(1 − ϑ(k)), we obtain

⟨σ3
x(t)σ

3
0 (0)⟩

c
= 4

∫ π

−π

∫ π

−π

dkdl
(2π)2 e−i(k−l)x+i(E(k)−E(l))tϑ(k)(1 − ϑ(l)). (2.41)

We consider t > 0 for simplicity.
Inside the light-cone, that is when ξ = x̄/t̄ ∈ (−4, 4), the asymptotic regime

(2.22) is obtained by a stationary phase analysis taking x and t both of order ℓ ≫ 1.

The result, derived below, is a power law decay with power −1, in agreement
with (1.151) and (2.25). Away from the light-cone, |ξ| > 4, as the stationary phases
do not lie on the integration region, the vanishing is faster, thus the second line
of (2.36) holds. Its precise form depends on the analytic structure of ϑ(k). For
instance, if ϑ(k) is analytic on [−π, π], the asymptotic is obtained by contour
deformation and the vanishing is at least exponential; this is because everywhere
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2.2 Longitudinal correlators from hydrodynamic projections

on [−π, π], the phase derivative is either positive or negative (since it is never
zero), and hence there is a purely imaginary direction in which an infinitesimal
displacement gives a real decaying exponential. We omit the general analysis of
the case |ξ| > 4 here for simplicity. At |ξ| = 4, the stationary phase analysis must
be modified, leading to a slower decay, as we explain below.

Case |ξ| < 4

In the asymptotic regime (2.22), no matter the specific fluid-cell mean, we may
perform a saddle point analysis. The exponential in (2.41) admits, for both the
k and l integration, a set of two stationary points k± = k±(ξ) on the integration
intervals, given by k+(ξ) = arcsin(ξ/4) ∈ (−π/2, π/2) and k− = sgn(k+)π − k+,
which solve the saddle-point equation E′(k±) = ξ. Using the fact that E′′(k±) =
±
√

16 − ξ2 and E(k+)− E(k−) = −2
√

16 − ξ2, the result may be written, with
x = ξt, as

⟨σ3
x(t + s)σ3

0 (0)⟩
c
=

2
π
√

16t2 − x2

× ∑
a=±

na

(
1 − ϑa + ai (1 − ϑ−a)(−1)x (2.42)

× e−2ai(k+x+(t+s)
√

16−ξ2) + O
(

t−1
) )

where ϑ± = ϑ(k±).
Below we show that after fluid-cell averaging this reproduces (2.36).

Time average

In (2.42) we separate the ℓ-scaling variables x = ξt = ℓx̄, which stay on the ray ξ,
from the ℓ0-scaling variable s, the addition to the time variable, which goes away
from it, and use ℓ as the large parameter for the stationary point analysis. We
choose a ray ξ ∈ (−4, 4) and set x = ℓx̄, t = ℓt̄, and perform the average over s.
The non-oscillating term is independent of s and gives

2
π
√

16t2 − x2 ∑
a=±

ϑa(1 − ϑa) + O(ℓ−1). (2.43)
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Space-time correlation functions

In order to evaluate the oscillating term, we perform the fluid cell averaging,
which gives the vanishing

lim
ℓ0→∞

1
2ℓ0

∫ ℓ0

−ℓ0

ds exp
(
− ai(2k+x + 2(t + s)

√
16 − ξ2)

)
= 0 (2.44)

uniformly on x, t, using the fact that |ξ| < 4. This correctly reproduces (2.36) in
accordance with the hydrodynamic prediction.

Ray average

Everywhere within the fluid cell, both x and t are large and stay on the ray ξ, with
x = ξt = ℓx̄(1 +O(ℓ0/ℓ)). In this case, we may do the stationary phase analysis
uniformly everywhere within the cell, the scale O(ℓ) = O(x) = O(t) being the
large parameter. We choose a ray ξ ∈ (−4, 4) \ {0}, set x = ℓx̄ + y, t = ℓt̄ + y/ξ,
and consider the fluid-cell averaging (2.27) with ℓ0 ≪ ℓ. In this limit, the non-
oscillating terms in (2.42) may be evaluated by using

1
2ℓ0

ℓ0

∑
y=−ℓ0+1

1
ℓt̄ + y/ξ

1√
16 − ξ2

=
1
ℓ

1√
16t̄2 − x̄2

(1 + O(ℓ0/ℓ)) .

This immediately reproduces (2.36), and we must show that the fluid-cell averag-
ing vanishes on the oscillating terms. In order to do so, consider

(−1)ℓx̄+y exp
(
− ai(2k+ + 2

√
16ξ−2 − 1)(ℓx̄ + y)

)
. (2.45)

The fluid-cell sum over y vanishes if, and only if,

ξ ̸∈ Ξ (2.46)

where Ξ is given in (2.29): if ξ ∈ Ξ, the terms are in fact not oscillating for y ∈ Z,
and add up to a finite contribution. There are infinitely many rays ξ ∈ (−4, 0), and
ξ ∈ (0, 4), which break the condition. For instance, as ξ increases from −4 to 0, k+
increases from −π/2 to 0, while

√
16ξ−2 − 1 increases from 0 to ∞; therefore, all

values 2πn + π for n = 1, 2, . . . will be crossed. However, as this is a set of isolated
values ξ∗ of ξ, of measure zero, under additional averaging (2.28) the oscillatory
terms contribution vanishes. As the sum over y can be uniformly bounded for all
rays, it can be evaluated on the integrand in (2.28) by the dominated convergence
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2.3 Transverse correlators from ballistic fluctuations

theorem, giving a result that is zero except for a set of measure zero (which is the
single-point set {ξ∗} as ϵ → 0).

Case |ξ| = 4

In this case the precise asymptotics is not predicted by Euler hydrodynamics
(it should be by higher order hydrodynamics [86]), but the Wick-theorem result
allows us to evaluate it. We look for the leading asymptotics in the region x =

ℓx̄, t = ℓt̄, ℓ → ∞. In this case E′′(k±) = 0 and therefore in the exponent in (2.41)
we must expand to 3rd order. Using k± = k+ = sgn(ξ)π/2 (there is a single
stationary point), E′′′(k+) = −4 sgn(ξ) and x = 4 sgn(ξ)t, we evaluate

∫ π

−π

dk
2π

e−ikx+iE(k)t f (k) ∼ e−2iπt+iE(π/2)t
∫ π

−π

dk
2π

e−4i sgn(ξ) tk3/3! f (k+ + k)

∼ t−1/3e−2iπt+iE(π/2)t
∫ ∞

0

dk
2π

e−k3(
1/u + 1/u∗) f (k+)

∼ t−1/3e−2iπt+iE(π/2)t Γ(4/3)
2π

2 Re(1/u) f (k+) (2.47)

where u = (4i sgn(ξ)/3!)1/3, and the integral contour has been deformed into a
wedge in the complex plane around k = 0 in order to have a sum of two convergent
real integrals. The result is therefore

⟨σ3
x(t)σ

3
0 (0)⟩

c ∼ t−2/3
(Γ(4/3)

π
35/62−4/3

)2
ϑ+(1 − ϑ+) (x = ±4t). (2.48)

This agrees with the hydrodynamic prediction (2.37): the decay t−2/3 is slower
than t−1.

2.3 Transverse correlators from ballistic fluctuations

The prediction from the hydrodynamic linear response theory for the transverse
correlation function ⟨σ+

x (t)σ−
0 (0)⟩, see section 2.2.1, is a vanishing Euler-scale

asymptotics. Indeed, according to formula (2.25), the correlation function is pro-
portional to the integrated correlator Vσ±

i = ∑x∈Z ⟨qi(x)σ±
0 ⟩c, Eq. (2.19), involving

the operator σ±
0 at position 0, and the conserved densities qi(x). But all conserved

charges (2.31) preserve the total 3-component of the spin, as does the GGE (2.15),
and thus Vσ±

i = 0; formula (2.25) gives zero. This means that the decay of the
fluid-cell average of the correlator must be faster than 1/t.
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In fact, it is known [142, 155] that the decay is exponential along any ray in
space-time. Such exponential decays are not predicted by current hydrodynamic
theories. However, recently [139] it was proposed that the leading exponent for
the decay of correlation functions of certain types of observables, referred to as
twist fields, may be predicted by Euler hydrodynamics, via the ballistic fluctuation
theory (BFT).

2.3.1 Transverse correlators and spin fluctuations

Fermion number and current fluctuations

The basis for the hydrodynamic theory of the correlation function ⟨σ+
x (t)σ−

0 (0)⟩ is
the realisation that it is related to large deviations of the fermion number 2-current
along the ray (0, 0) → (x, t).

The first step is the extension of the usual Jordan-Wigner (JW) strings to “space-
time JW strings". By the JW transformation (2.4),

⟨σ+
x (0)σ−

0 (0)⟩ = ⟨a†
xeiπΩ0(x,0) a0⟩ (2.49)

as per the definition in (1.156). Here we identify the total fermion number with
the i = 0 charge (2.38), and use

x−1

∑
y=0

a†
yay = −Ω0(x, 0) (2.50)

(the sign is unimportant in the exponential in (2.49), as the fermion number is an
integer). It turns out that a similar formula holds for the large-scale exponential
decay of the time-dependent correlator,

⟨σ+
x (t)σ−

0 (0)⟩ ≍ ⟨a†
x(t)e

iπΩ0(x,t) a0(0)⟩ (x = ⌊ℓx̄⌋, t = ℓt̄, ℓ → ∞), (2.51)

where, on the right-hand side, Ω0(x, t) is defined in (1.155), and the time evolution
in a†

x(t) is under the sector-specific free-fermion Hamiltonian, as per (2.10); as
the limit of infinite chain length has been taken, the choice of sector does not
matter. Formula (2.51) is derived below. We also establish that exact, instead of
asymptotic, equality holds in (2.51) not only at t = 0, but also at x = 0. In fact, the
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2.3 Transverse correlators from ballistic fluctuations

following expression is exact for all x, t’s (see Appendix A):

σ+
x (t)σ0(0) = a†

x(t) exp

(
iπ

x−1

∑
y=0

q(y, t)

)
exp

(
iπ
∫ t

0
ds j(0, s)

)
a0(0) (2.52)

where we recall that q(x, t) is the fermion density (2.38), and j(x, t) = j0(x, t) is
its associated current. An heuristic argument about what controls the asymptotic
behavior in the Euler scaling limit x/t = ξ = const. of transverse correlation
function (2.21) is based on the conservation law (2.16): denoting Q|z0 = ∑z−1

x=0 q(x)
we have

Q|z0(t)− Q|z0 +
∫ t

0
ds [j(z, s)− j(0, s)] = 0 (2.53)

and so if we are interested in the Euler scaling limit we want to "move" along a
ray x = ξt. Starting at point (0, 0) we move diagoanlly along such ray up to the
point (ξt, t). This is done summing contributions along the ray as in (1.155). Using
(2.53) we have

σ+
x (t)σ0(0) = a†

x(t) exp

(
iπ

x−1

∑
y=0

q(y, t)

)
a0(0)

= a†
x(t) exp

(
iπ

x−1

∑
y=0

q(y, 0)−
∫ t

0
dsj(x, s) +

∫ t

0
dsj(0, s)

)
a0(0) (2.54)

and we have that

∫ t

0
dsj(0, s) =

∫ ξ/x

0
dsj(0, s) → 0 , x, t → ∞ , ξ = x/t (2.55)

while the other two contributions stay finite in the scaling limit. In particular
by the Lieb-Robinson bound [113] the operator j(x, s) is supported in a region
growing lineraly with time [x − vt, x + vt] and this is the reason why

∫ t

0
dsj(x, s) < ∞ (2.56)

in the scaling limit. The integration path in (2.54) corresponds to (0, 0) → (x, 0)
horizontally and (x, 0) → (x, t) vertically but by contour deformation this path
can be arbitrarily deformed.

We see in (2.51) that the transverse correlation function is related to the two-
point function of fermion operators, modified by a counting function for the
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integrated fermion number 2-current in (1.154): the number of fermions lying,
and the current flowing, between them. This counting function, the space-time
JW string eiπΩ0(x,t), gives a factor −1 for every fermion counted or flowing by. As
the fermion number is the number of spins in the direction up, the transverse
correlator is a modification of a local fermion correlator by the fluctuation of the
total spin and its current between them.

We note that a formula similar to (2.51) is well-known for the classical, two-
dimensional Ising model, a statistical model simply related to this XX quantum
chain but in Euclidean time [156, 157].

Asymptotic behavior and exact factorisation

In the work [3] we have proposed the asymptotic factorisation property

⟨a†
x(t)e

λΩ0(x,t) a0(0)⟩ ≍ ⟨a†
x(t)a0(0)⟩λ;ξ ⟨eλΩ0(x,t)⟩ (2.57)

where ⟨· · ·⟩λ;ξ is the state characterised by βj(λ; ξ) as determined by (1.162). In
the same work it was argued that such property is valid asymptotically. In reality
such factorisation should be exact. First, recall that ξ = x/t, and that for the
free-fermionic model we are considering, one uses the function w(k) instead of the
Lagrange parameters βj, and on the flow this has the explicit solution w(λ; ξ; k)
given by (1.173) with hi∗(k) = h0(k) = 1. The factorisation is exact, after we have
taken the scaling limit as in (2.55) and can be viewed as a simple consequence of a
redefinition of the state

⟨a†
x(t)e

λΩ0(x,t) a0(0)⟩ =
⟨a†

x(t)eλΩ0(x,t) a0(0)⟩
⟨eλΩ0(x,t)⟩ ⟨eλΩ0(x,t)⟩

= ⟨a†
x(t)a0(0)⟩λ;ξ ⟨eλΩ0(x,t)⟩ . (2.58)

Since the algebra of quadratic fermionc operators is closed under commuators [158,
159] the expectation value in the λ-modified state is still a gaussian state coming
from some quadratic Hamiltonian. Second, the asymptotic (2.57) is supported
by an exact factorisation of the correlation function found in the literature. In the
XX model case considered here the transverse correlation function is expressed
exactly as a product [142]

⟨σ+
x (t)σ−

0 (0)⟩ = e−2ihtb++(x, t)eσ(x,t) . (2.59)
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2.3 Transverse correlators from ballistic fluctuations

Let us explain the various terms here. Let λ and µ be complex spectral parameters
on the unit circle |λ| = |µ| = 1. Then, σ(x, t) is the logarithm of a Fredholm
determinant associated with the integrable operator having the following kernel

V(λ, µ) =
e+(λ)e−(µ)− e−(λ)e+(µ)

λ − µ
(2.60)

and it is explicitely written as follows

σ(x, t) = log det
(
1̂ + V̂

)
. (2.61)

The functions e± depend on space-time x, t, on (inverse) temperature β, magnetic
field h and the spectral parameter λ via the filling ϑ and have the following simple
form

e−(λ) =
√

ϑ(λ) λx/2e−ith(λ+1/λ) (2.62a)

e+(λ) = e−(λ)E(x, t, λ) (2.62b)

with (P.V. is the Cauchy principal value)

E(x, t, λ) = P.V.
∫ dµ

π

e2ith(µ+1/µ)µx

µ − λ
. (2.63)

Above, ϑ(λ) is the occupation function appearing in all Thermodynamic Bethe
Ansatz solvable models that we introduced in (1.49) and (2.30). The difference
here is only in the parametrisation of the spectral parameter, here being λ(k) = eik,
and in the choice of a thermal state corresponding to w(k) = βE(k), proportional
to the dispersion relation as in (2.12). The “potential" b++(x, t) can be shown to
satisfy the discretised non-linear Schrödinger equation [160]. In turn, space-time
derivatives of σ(x, t) can be written in terms of the b++(x, t). After, rewriting
the integrable PDEs system mentioned above as a Riemann-Hilbert matrix fac-
torisation problem one can extract the asymptotic in relevant regimes. It might
well be that BFT formalism can have connections with non-linear steepest descent
method [161]. A possible one-to-one correspondence of the terms involved is
tempting. The physical idea behind it is that the leading exponential behaviour of
the correlator on the left-hand side of (2.57) is controlled by two effects. The first
is the (eventual) exponential decay due to the interaction between the fermions
a†

x(t) and a0(0), which occurs in the region “deep" between (0, 0) and (x, t) and is
thus in a state modified by the presence of the space-time JW string; the second is
the exponential decay due to the change of “free energy" induced by the space-
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time JW string representing the spin fluctuations, as given by the BFT, a classical
hydrodynamical effect. This is in agreement with Sachdev’s semiclassical theory
that we will discuss in more detail later[162, 163]. See Fig. 2.1.
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Fig. 2.1 The leading exponential decay of the two-point function (2.51) is controlled
by two effects, as expressed in (2.57): The fermionic JW string eventually modifies
the exponential decay, depending on the analytic struture of the dispersion relation
and on the phase of the model. Picture from [3].

2.3.2 Exponential behaviour of transverse correlation function

We now analyse the leading exponential behaviour as obtained from (2.57). In
principle, our methods, including the BFT, provide also certain oscillations on
top of the decay. Although this is an interesting subject, we still don’t have a full
understanding, and thus we focus on the exponentially decaying envelope.

The first contribution to (2.57) comes from the two-point function of fermions.
This is obtained by Wick’s theorem, and using (1.173) we get

⟨a†
x(t)a0(0)⟩λ;ξ =

∫ π

−π

dk
2π

eiE(k)t−ikx

1 + ew(k)+λ sgn(x−v(k)t)
. (2.64)

Let us extract the exponential asymptotic behavior of this quantity.

Time-like region

In the time-like region |ξ| < 4 the phase has a stationary point on the integration
contour, and the behaviour is algebraic for all values of λ and by a straighforward
saddle-point application we get

⟨a†
x(t)a0(0)⟩λ;ξ = O(t−

1
2 ) (|ξ| < 4). (2.65)

The same conclusion holds for |ξ| = 4 (althought the algebraic decay is slower,
like in the case of the longitudinal correlator).
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2.3 Transverse correlators from ballistic fluctuations

Space-like region

In the space-like region no stationary point exist on the integration contour, and
the exponential behaviour is obtained by an application of contour deformations
and the steepest descent method. The formula simplifies as in this region, sgn(x −
v(k)t) = sgn(x). For evaluating (2.51), we need λ = iπ, and thus

⟨a†
x(t)a0(0)⟩iπ;ξ =

∫ π

−π

dk
2π

eiE(k)t−ikx

1 − ew(k)
(|ξ| > 4). (2.66)

Saddle point analysis gives (see Appendix of [3]):

⟨a†
x(t)a0(0)⟩iπ;ξ ≍ exp

(
− cosh−1(ξ/4) |x|+

√
x2 − 16t2 − iπ|x|/2 + 2ih t

)
+ Λ

= exp
(
− Mξ |x| − iπ|x|/2 + 2ih t

)
+ Λ (|ξ| > 4) (2.67)

where

Mξ = cosh−1(ξ/4)−
√

1 − 16
|ξ|2 (2.68)

and Λ is the contribution coming from residues of the integrand due to the poles
in the denominator. In (2.67), the most slowly decaying exponential amongst the
terms on the right-hand side is to be taken.

Deep analysis has been done for the thermal state, for which w(k) = βE(k). In
the space-like region |ξ| > 4, the quantity Λ is obtained from solving w(z) = 0.
The solution depends on the value of |h|.

• If |h| ≤ 2, the gapless regime, then a zero exists at z = 0 and we find Λ = 1
and therefore

⟨a†
x(t)a0(0)⟩iπ;ξ ≍ 1. (2.69)

In the gapless regime, the two-point function of fermions does not give
additional exponential decay in (2.51), and the exponential behaviour of the
transverse correlator is fully determined by spin fluctuations.

• If |h| > 2, there is a nontrivial solution with ẑ = k̂ + iq̂ with k̂ = 0 (k̂ = π) for
h > 0 (h < 0), and with q̂ = cosh−1(h/2). It is found that this contributes to
Λ if and only if 2|h| < |ξ|, in which case it is the leading contribution to Λ
and otherwise Λ = 1, thus

Λ = exp
(
− cosh−1(h/2) |x|

)
×
{

(−1)x (h < 0)
1 (h > 0).

(2.70)
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Space-time correlation functions

Hence

⟨a†
x(t)a0(0)⟩iπ;ξ ≍ eiΦ exp

(
− min

(
cosh−1(h/2), Mξ

)
|x|
)

(2.71)

with

Φ =





πx (first argument, h < 0)
0 (first argument, h > 0)
−π|x|/2 + 2ht (second argument)

(2.72)

where “argument" refers to that taken by the min function in (2.71). Thus
when there is a gap between the energy of the ground state and that of
the lowest excited state, an extra contribution to the exponential decay of
the transverse correlator arises from the fermion correlations. It may be
surprising that the gap affects the correlation function in a finite-density
GGE, far from the ground state; the important point here is that the state is
modified by the presence of the JW string. This transforms the distribution
into that of bosons instead of fermions, which is strongly affected by the
presence or not of a gap.

The second contribution in (2.57) comes from the spin fluctuations and may
be evaluated using the BFT results (1.158) with (1.174) and (1.173). This gives
precisely the formula (1.174) with the state defined by (1.173). Eq. (1.174) is
evaluated at λ = ±iπ but the sign here does not affect any of the calculations,
however the direction in which the analytic continuation of the explicit asymptotic
formula is taken affects the result. We believe that this is because the analytic
continuation to ±iπ does not commute with the evaluation of the asymptotics.
However this only gives additional oscillations, which we do not address here
and that can be washed out either taking the absolute value or perform a suitable
fluid-average. We take the former route for simplicity here. We obtain

∣∣∣⟨eiπΩ0(x,t)⟩
∣∣∣ ≍ e fx,t[w] . (2.73)

where we use the notation fx,t[w] = fiπ,x,t[w] from (1.174), giving

log | ⟨σ+
x (t)σ−⟩ | =





fx,t[βE] (|ξ| ≤ 4)

|x| f1,0[βE] (|ξ| > 4, |h| ≤ 2)

−|x|min
(

cosh−1(h/2), Mξ

)
+ |x| f1,0[βE] (|ξ| > 4, |h| > 2

(2.74)
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where Λ is defined in (2.70) and Mξ in (2.68). The numerical results are shown in
the pictures below and the techniques used to compute such correlation functions
are based on Pfaffian techniques reported in Appendix B.

Fig. 2.2 Exponential decay of the JW string for different values of the magnetic
field and different temperatures for fixed large x and t = 0. The numerics is
done according to the Pfaffian representation derived with the aid of results in
Appendix B. The theory is eq. (2.74).

2.4 Outlook

In this chapter we have presented a full Euler hydrodynamic theory of dynamical
correlation functions in the XX spin chain, the easiest possible model to test our
physical ideas. The underlying physical principle underlying the calculations and
the results presented above is relatively straightforward: the exponential decay
of the correlation function ⟨σ+

x (t)σ−
0 (0)⟩ is influenced, in part, by the number of

domain walls crossing between the two observables and their fluctuations, as
initially proposed for the Ising model [162–164]. The large-deviation theory is
applied to this extensive, fluctuating variable (the number of domain walls). Due
to the free-fermion structure inherent to the XX chain and its Euler hydrodynamics,
which is a special case of generalized hydrodynamics, the large-deviation theory
takes a simple form. Moreover, the specific form of the observables σ±

x allows
them to act as both domain wall counters and sources/sinks of domain walls.
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Space-time correlation functions

Fig. 2.3 Exponential decay of the two-point function for different rays parametrised
by tan φ = x/t. The theory is eq. (2.74).

Through the Jordan-Wigner transformation, they can be identified as fermionic
descendants of the U(1) twist field of the XX model. We have explained the
correct treatment of these observables and demonstrated that they provide an
additional contribution to the exponential decay under certain parameter values
benchmarking our predictions against accurate numerical simulations.

More correlation functions

Recent studies have also examined the asymptotic behavior of dynamical correla-
tion functions in spin chains. For example, in the transverse field Ising model, a
partial resummation of the form factor expansion yields the asymptotic behavior
of the order parameter in the low-density regime [165]. Notably, Fredholm deter-
minant techniques continue to yield non-trivial results regarding the large-time
behavior [166–168] of correlation functions in spin chains. This provides a con-
nection between hydrodynamic-based techniques and the asymptotic behavior of
a specific class of Fredholm determinants, which could be valuable beyond the
current scope of applications. Further analysis and explicit connections will be
explored in future studies.

Two-point function of 1d impenetrable Bosons

It is known that in the continuum limit the XX spin chain gives the Tonks gas
of hard core bosons [110, 35, 169]. Formula (2.74) is equally applicable to the
correlation function of Bose fields in the large coupling limit upon fermionisation
using a continuum version of the Jordan-Wigner string. The only difference is in
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Fig. 2.4 Comparison of the generic expression of the SCGF (1.174) controlling the
leading exponential decay of the operator exp λΩ(x, t) against exact numerical
simulations.

the dispersion relation, in the integration extrema in momentum space and the fact
that the fermionic correlator does not contribute to the exponential decay because
the saddle-point equation always has a solution.

Full counting statistics

We have seen that the expectation value of λ-dependent the Jordan-Wigner string
is nothing but the characteristic functional of fluctuating process

Ω0(x) =
1
x

x−1

∑
z=0

q(z) (2.75)

which counts the average number of fermions in the interval [0, x − 1]. It is
interesting to note that such quantities are not known in explicit form in the
literature and there have been several attempts in a number of ways [170–172].
Importantly, the full counting statistics has been proposed as a tool to classify
phases of matter [173]. This is a really interesting line of research and we plan to
give full exposition in a future publication.
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Chapter 3

Sine-Gordon Field Theory

Goal of the chapter

In this third chapter we present results for what concerns correlation functions
in the Sine-Gordon field theory and we draw heavily on the paper [5]. The step
from a discrete and non-interacting spin-chain to a continuous field theory is
motivated by two facts: on one hand, we want to take into account effects of
interactions; technically, this is a notoriously difficult problem, and there exist very
few methods that are able to exactly account for that when computing dynamical
correlation functions, especially in non-equilibrium settings. On the other hand,
we want to describe current state-of-art experiments. We will realise these two
goals presenting exact results for dynamical correlations functions at finite tem-
perature at Euler scale and we will compare the prediction against parameters of a
real experiment of tunnel-coupled quasicondensates [174–178], in particular Fig.
3.7. We are going to provide exact analytic expressions for correlation functions of
certain observables of special interest in the Sine-Gordon model: these are called
vertex operators and are defined as follows

Vλ(x, t) = eiλϕ(x,t) . (3.1)

The expectation value of the vertex operator is nothing but the characteristic
functional of the field (1.84). Correlation functions of vertex operators will be

Gλ(x, t) = ⟨Vλ(x, t)Vλ(0, 0)⟩ = ⟨eiλ(ϕ(x,t)−ϕ(0,0))⟩ (3.2)

where the average is taken over some arbitrary homogeneous GGE of the type (1)
or thermal state thereof.

77



Sine-Gordon Field Theory

We show that the probability distribution of the phase differences obeys a large
deviation principle

P
[

∆ϕ(t, x)
2π

= δ

]
≍ e−ℓIα(δ) (3.3)

where ℓ =
√

x2 + t2 and the large-deviation function (LDF) Iα is fully deter-
mined by hydrodynamic modes and depends only on the “ray" x/t = tan α. As a
consequence, cumulants (connected correlators) scale linearly with ℓ and vertex
operator correlations decay exponentially. In formulae

Cn =

〈(
∆ϕ

2π

)n〉c

∼ ℓcn , ℓ → ∞ (3.4)

We achieve such goals deriving exact expressions for the SCGF in the classical
Sine-Gordon field theory, solve it numerically and compare with microscopic
numerical simulations of the field equations. We also discuss Sachdev-Damle
semiclassical picture to approach correlation functions at low temperature [162,
163], and compare its prediction with BFT. We want to give credit to Dr. Alvise
Bastianello for performing the microscopic Montecarlo simulations of the classical
Sine-Gordon equation.

3.1 Sine-Gordon field theory

This is an intriguing model, that offers a solvable and mathematically elegant de-
scription of a scalar field in (1+1)-dimensional space-time. It exhibits a remarkable
spectrum of particles, including solitons known as kinks and anti-kinks, which
possess unique properties.

To quantize the sine-Gordon field, we introduce creation and annihilation op-
erators and formulate the theory in terms of these operators and their commu-
tation relations. The process of quantization enables us to explore the quantum
fluctuations of the scalar field, revealing a vast array of intriguing phenomena.
The quantised field operators pave the way for studying correlation functions,
scattering amplitudes, and other observables of the theory.

A defining feature of the Sine-Gordon field theory is the existence of solitons,
specifically kinks and antikinks. These solitons represent topological defects that
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3.1 Sine-Gordon field theory

possess localized energy and intriguing non-trivial topological properties. Kinks
and antikinks are stable solutions of the field equations and exhibit unique dy-
namics and interaction patterns. The scattering behavior of these solitons provides
valuable insights into the underlying theory and its broader implications.

The Sine-Gordon field theory possesses a remarkable attribute—exact solvability.
Several powerful solution techniques have been developed to precisely solve this
model. These include the bootstrap approach, the quantum inverse scattering
method, and the form factor approach. These methodologies allow for the calcula-
tion of various physical quantities, such as correlation functions and scattering
amplitudes, enabling a detailed understanding of the theory’s behavior.

Beyond its intrinsic theoretical appeal, the quantum sine-Gordon field theory
finds applications and connections to diverse branches of physics. It emerges in
condensed matter physics, statistical mechanics, and integrable systems, offering
insights into one-dimensional quantum systems, superconductivity, and quantum
impurities. Its connections to these areas enrich our understanding of physical
phenomena and pave the way for further exploration.

3.1.1 Classical Sine-Gordon

The Sine-Gordon field theory, despite its apparent simplicity, entails a certain
degree of universality. It appears in the most varied contexts, from cold atoms
experiments, of main interest to us, to fiber optics physics and geometry. Consider
a real scalar field ϕ(x, t) in (1 + 1) dimensions. The Sine-Gordon Hamiltonian is

H =
∫

dx
{

1
2

π2 +
1
2
(∂xϕ)2 − m2

g2 cos(gϕ)

}
. (3.5)

Here g is an interaction parameter and m is a mass scale, the bare mass. The
identification of these parameters is easily seen expanding the cosine term

H =
∫

dx
{

1
2

π2 +
1
2
(∂xϕ)2 +

m2

2
ϕ2 +

m2g4

4!
ϕ4 + . . .

}
+ const. (3.6)

This theory can be seen as a "deformation" of the more traditional Klein-Gordon
scalar field theory corresponding to the quadratic approximation of the potential.
The very special type of the interaction term, makes this theory special, hard, and
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Sine-Gordon Field Theory

rich at the same time. The field classical equations are

∂tπ = {π, H} = ∂2
xϕ − m2

g
sin(gϕ) (3.7)

that using π = ∂tϕ becomes

∂2
t ϕ − ∂2

xϕ +
m2

g
sin(gϕ) = 0 . (3.8)

The nice feauture of this model, which comes from its integrable structure, is that
it admits explicit solitons solutions. A soliton is just a wave packet that has elastic
scattering properties, it is stable and not dissipative.

Field excitations

First of all, one should specify what kind of field ϕ is, besides the space-time
dimensionality it is living in. In the Sine-Gordon model (3.5) the potential is
periodic and there are infintely many vacua at ϕn(x) = 2πn

g with n ∈ Z. This
degeneracy makes it possible to have topological excitations interpolating between
each vacua, that is solitons that are not localised but extended in space. This is not
so for example in the Sinh-Gordon model [179]. The spatial profile of a soliton at
rest is easily obtained looking for a stationary solution of (3.8), multiplying by ∂xϕ

and integrating
1
2
(∂xϕ)2 = −m2

g2 cos(gϕ) + c1 . (3.9)

If we want a solution interpolating between vacua we ask

ϕ(+∞, t)− ϕ(−∞, t) =
2π

g
(3.10)

and we get c1 = m2/g2 and the equation can be integrated to give the kink solution

ϕK(x) =
4
g

arctan(e−mx) +
2π

g
(3.11)

The soliton configuration can be translated and set in motion by using relativis-
tic invariance and boosting the spatial coordinate ϕK(x) → ϕK,θ(x − x0, t) =

ϕK(cosh θ(x − x0)− sinh θt), where θ is the rapidity and x0 the soliton position
at t = 0. The antikink configuration is simply the reflected profile ϕK̄,θ(x, t) =

−ϕK,θ(x, t). Backlünd transformations [180] allow for the construction of multi-
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3.1 Sine-Gordon field theory

soliton solutions, that is bound states of single solitons. The profile of a bound
state is

ϕK,K̄(t, x) = −4
g

arctan
(

sinh(mt sinh θ)

tanh θ cosh(mx cosh θ)

)
(3.12)

ans it can be easily see that as t → ∞ the solution factors into two travelling
solitons with their position shifted [37]: the shift is quantified by the phase shift,
the same phenomenology of free single particles scattering. The scattering between
these classical solitonic waves in the Sine-Gordon model is only transmissive not
reflective. This means that solitons can only pass through each other and will not
bounce back. We will see this is a crucial difference with the quantised version of
the model. We can write the scattering matrix for the 2-body scattering process in
block diagonal form

S =




S0 0 0 0
0 ST 0 0
0 0 ST 0
0 0 0 S0


 (3.13)

where the elements on the scattering matrix are functions of the difference of the
rapidity variable and will be introduced in 3.2. The matrix above is written in
basis where the state |a1, a2⟩ with ai = ± represent solitons + and anti-solitons −.
Note that ai is a topological index and specifies the nature of the soliton because
the topological charge is a constant of motion.

3.1.2 Quantum Sine-Gordon

The Sine-Gordon field theory can be quantised posing

[
ϕ(x, t), π(x′, t)

]
= iδ(x − x′) . (3.14)

Integrability is kept at the quantum level in the sense that the full, infinite, set of
conservation laws (available in [28]) is not destroyed, just deformed, although in a
complicated way [181, 182] due to UV singularities coming from multiplication of
field operators. This means that there exist an infinite number of independent con-
servation laws. This is, as we have already mentioned, at the heart of integrability,
both classical and quantum. Quantisation comes with a price: with an elegant
variational calculation Coleman [183] shows that the theory has a stable ground
state only if

g ∈ [0,
√

8π] . (3.15)
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The nature of interactions determines the spectrum of elementary excitations on
top of the vacuum. There are solitons (kink and anti-kinks) and bound states, the
breathers. The spectrum is described conveniently by the parameter

ξ =
g2

8π

(
1 − g2

8π

)−1

∈ [0,+∞] (3.16)

according to the mass law

mn = 2M sin(πnξ/2) , 1 ≤ n < ⌈ξ−1⌉ . (3.17)

This is only possible if 0 ≤ ξ ≤ 1 and it is the attractive phase. Conversely, kink
and antikink persist uniformly in the spectrum, each possessing a bare mass (at
rest)

M = 8m/(g2) (3.18)

which is then renormalized upon quantization [184]. Together, kinks, antikinks,
and breathers constitute the model’s particle content, analogously to the classical
model.

A sidde: Sine-gordon and Thirring model

This short subsection can be skipped because it is not relevant to the main dis-
cussion and it is included only for curiosity and completeness. Nevertheless, we
think it could be of value in understanding the Sine-Gordon model as quantum
field theory in general. The Sine-Gordon fiel theory has intriguing connections
with many models of quantum field theory and statistical physics: this is due to
its universality. The Thirring model [185] for instance, is a quantum field theory

made of a single Dirac fermion in (1 + 1) dimensions Ψ =

(
Ψ1

Ψ2

)
. The lagrangian

is the Dirac lagrangian [34]

LTh =
∫

dx
[
iΨγµ∂µΨ − mThΨΨ − gTh

2
: (ΨγµΨ)(ΨγµΨ) :

]
(3.19)

where the γ-matrices in this case are γ0 = σ1 and γ1 = iσ2, Th is a coupling
constant and mTh a bare mass parameter. The Hamiltonian can be derived by
standard methods

HTh =
∫

dx
[
iΨ†σ3∂xΨ + mThΨ†σ1Ψ + 2gThΨ†

1Ψ†
2(x)Ψ2(x)Ψ1(x)

]
. (3.20)
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3.1 Sine-Gordon field theory

There is U(1) symmetry Ψ → eiαΨ. The Dirac current

jµ = ΨγµΨ (3.21)

is conserved
∂µ jµ = 0 (3.22)

and the associated charge is

Q =
∫

dxΨ†(x)Ψ(x) . (3.23)

The Thirring model in the zero charge sector is equivalent to the Sine-Gordon
model via bosonisation as showed by Coleman [183]. In bosonisation the density
waves are the bosonic collective excitations. Following Coleman (which is actually
standard bosonisation [182]) we put

Ψ†
1Ψ2 =

1
2

eigϕ , mTh =
m2

g2 (3.24)

and we see that the mass term becomes

mThΨ†σ1Ψ =
m2

g2 cos(gϕ) . (3.25)

Further we see that if we put jµ ∝ −ϵµν∂νϕ this current is going to be conserved
no matter the choice of the coefficient 1. Coleman identification is

jµ = − g
2π

ϵµν∂νϕ ,
1

1 + gTh/π
=

g2

4π
(3.26)

and this corresponds to the Hamiltonians (3.5) and (3.20) . The relation between
Sine-Gordon and Thirring bare parameters is universal and independento on the
renormalisation scheme. The choice of the fields is quite arbitrary. The constraint
(3.15) translates into

gTh ≥ −π/2 (3.27)

which is interesting since it can be shown that in the massless Thirring model
(m = 0) stability only requires g ≥ −π: no matter how small the mass is, it kills a
whole region of the spectrum.

1This reflects the fact that the kinetic field gets renormalised multiplicatively and the coefficient
in from of the kinetic term has not intrinsic meaning, it depends on the renormalisation procedure
[183].
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3.2 Thermodynamics

3.2.1 Quantum Sine-Gordon

The precise thermodynamics of the sine-Gordon field theory hinges on an under-
standing of the exact spectrum and scattering matrix, elaborated in Ref. [49]. In
this section, we revisit the fundamental concepts of the Thermodynamic Bethe
Ansatz and its application to BFT. Given the relativistic nature of the theory, the
bare (one-particle eigenvalues) energy and momentum of a soliton with mass M
are

E(θ) = M cosh θ (3.28)

p(θ) = M sinh θ . (3.29)

For the rest of the discussion we normalise the Sine-Gordon topological charge as

Q =
∫

dx ∂xϕ(x) = ϕ(∞)− ϕ(−∞) (3.30)

so that the field jumps by 2π
g each time we change topological sector although in

the semiclassical model we will set g = 1 to simplify the calculations. Breathers
do not carry topological charge and the one-particle eigenvalue of it for the (anti-
)kinks is

hK(θ) =
2π

g
. (3.31)

Scattering data

The scattering data do not depend on the values of interaction one considers.
During scattering, breathers undergo transmissive scattering characterized by a
scattering matrix [37, 6]:

Sn,m(θ) =
sinh(θ) + i sin((n + m)πξ/2)
sinh(θ)− i sin((n + m)πξ/2)

sinh(θ) + i sin(|n − m|πξ/2)
sinh(θ)− i sin(|n − m|πξ/2)

×
min(n,m)−1

∏
k=1

sin2((|n − m|+ 2k)πξ/4 − iθ/2) cos2((n + m − 2k)πξ/4 + iθ/2)
sin2((|n − m|+ 2k)πξ/4 + iθ/2) cos2((n + m − 2k)πξ/4 − iθ/2)

(3.32)

where θ signifies the difference in rapidities between the scattering particles.
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Similarly, (anti-)kinks are transmitted upon scattering with breathers, following
a scattering matrix pattern:

Sn(θ) =
sinh(θ) + i cos(nπξ/2)
sinh(θ)− i cos(nπξ/2)

n−1

∏
k=1

sin2((n − 2k)πξ/4 − π/4 + iθ/2)
sin2((n − 2k)πξ/4 − π/4 − iθ/2)

. (3.33)

The scattering kernels entering the TBA equations are derived by differentiation as
in (1.53). However, when it comes to the scattering of topological excitations, the
scenario is much more intricate, with both transmission and reflection pathways in
play. In this context, the scattering matrix takes on the form of an actual 4 matrix,
featuring entries as follows:

S(θ) =




S0(θ) 0 0 0
0 ST(θ) SR(θ) 0
0 SR(θ) ST(θ) 0
0 0 0 S0(θ)


 (3.34)

where the (anti-)kink transmission and reflection amplitude are

ST(θ) =
sinh(ξ−1θ)

sinh((iπ − θ)ξ−1)
S0(θ (3.35)

SR(θ) = i
sin(πξ−1)

sinh((iπ − θ)ξ−1)
S0(θ) (3.36)

and they weight the transmission and reflection channel respectively, where

S0(θ) = − exp
[
−i
∫ ∞

0

dt
t

sinh(πt(1 − ξ)/2)
sinh(πξt/2) cosh(πt/2)

sin(θt)
]

. (3.37)

The matrix structure is again consinstent with the choice of the basis |a1, a2⟩ with
ai = ± for kink and anti-kink respectively. For general interaction values of ξ,
the thermodynamic solution requires employing the Nested Bethe Ansatz. Here,
for simplicity, we focus on specific regimes where simplifications arise, while
acknowledging that BFT’s predictions extend more broadly.

Reflectionless points

When considering specific interaction values

ξ = 1/(N + 1) , N ∈ N (3.38)
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Fig. 3.1 For the breathers theoretical
value of eϵn as β → ∞ is εn = n(n + 2).
Parameters as in Table 3.1.
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Fig. 3.2 For the breathers theoretical
value of eϵK as β → ∞ is εK = n + 1.
Parameters as in Table 3.1.

the reflection channel for kink-antikink scattering vanishes for any rapidity, lead-
ing to SR(θ) = 0, rendering scattering purely transmissive. In this scenario,
thermodynamics is derived via the standard machinery of the Thermodynamic
Bethe Ansatz [65]. To facilitate this, the root density describing particle density
of kink, antikink, and breathers for any rapidity is supplemented by introducing
the filling fraction ϑ to quantify relative mode occupancy. Conveniently, the filling
functions can be parametrized through effective energy as ϑ(θ) = 1

1+eε(θ) . Kinks,
antikinks, and breathers are each characterized by their own effective energy,
determined as the solution to the following integral equations:

εK(θ) = βEK(θ) +
∫ dθ′

2π
φ(θ − θ′)

(
log(1 + e−εK(θ

′)) + log(1 + e−εK̄(θ
′))
)

(3.39)

+
N

∑
n=1

∫ dθ′

2π
φn(θ − θ′) log(1 + e−εn(θ′))

εn(θ) = βEn(θ) +
∫ dθ′

2π
φn(θ − θ′)

(
log(1 + e−εK(θ

′)) + log(1 + e−εK̄(θ
′))
)

+
N

∑
n′=1

∫ dθ′

2π
φn,n′(θ − θ′) log(1 + e−εn(θ′)) (3.40)

where EK and En are relativistic bare energies for (anti-)kink and breathers with
masses M and mn respectively.
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Numerics Theory
Lkink(0) 0.0953101 0.0953102

L1(0) 0.287682 0.287682
L2(0) 0.117783 0.117783
L3(0) 0.0645385 0.0645385
L4(0) 0.040822 0.040822
L5(0) 0.0281709 0.0281709
L6(0) 0.0206193 0.0206193
L7(0) 0.0157483 0.0157484
L8(0) 0.0124225 0.0124225
L9(0) 0.0100503 0.0100503

Table 3.1 In the high temperature limit the fillings are constant. The values are
exactly known to be εn = n(n + 2) and here we display the values for the so-
called L-functions defined as Ln(θ) = log(1 + exp(−εn(θ)). See [7] and references
therein. The soliton mass is M = 1, the inverse temperature β = 0.001 and the
number of breaters is set to N = 9. The integral equations are transformed into
matrix equations and solved via Newton method. We used 50 points in rapidity
space with an error tolerance of 10−10.

-10 -5 5 10

0.05

0.10

0.15

0.20

0.25

Fig. 3.3 Filling functions from the numerical solution of the TBA equations (3.39)
and (3.40). Same parameters as Table 3.1.

Attractive regime and repulsive regimes

In the repulsive regime the TBA equations describing the thermodynamics of the
Sine-Gordon model were derived in [186].
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Atractive regime

In the attractive regime the TBA description is very recent and has been derived in
[187]. We will not report the full expressions as we have not explored this regime,
except at the reflectionless points where the TBA structure is diagonal.

3.2.2 Classical Sine-Gordon

The regime where semiclassical approximations apply is of significant importance,
both for numerical validations and potential experimental uses, as we delve deeper
into in the primary text. The precise thermodynamics associated with the classical
sine-Gordon model was only recently formulated, as seen in Ref. [6]. We direct
readers to this reference for an exhaustive discussion and merely present the core
formulas and concepts here.

The semiclassical regime can be seen as a proper limiting case of the quantum
model, more specifically one introduces an effective Planck constant h̄ → 0 and
simultaneously rescale the interaction g2

q = h̄g2 and temperature βq = h̄β, while
keeping the fixed the product βqMq = βM. In this limit, one defines the continuum
classical spectral parameter σ ∈ [0, 1] through the correspondence σ ↔ nh̄/smax

with
smax =

8π

cg2 . (3.41)

In the semiclassical limit, the number of breathers diverges and one replaces the
discrete phase space of bound states with a continuum variable σ ≃ hn.

Then, one needs to scale the root densitites and kink mass as




ρK = limh̄→0 ρ
q
K(θ)

ρs = limh̄→0 h−1ρ
q
n=s/h̄(θ)

,





ρt
K = limh̄→0 hρ

q;t
K (θ)

ρt
s = limh̄→0 hρ

q
n=s/h̄(θ)

, M = lim
h̄→0

h̄Mq

(3.42)
This ensures the correct scaling of the TBA. Notice that, in terms of the filling
functions, the scaling is

ϑK,q(θ) ≃ h̄ϑK(θ) ϑn,q(θ) ≃ h̄2ϑs(θ) (3.43)

This scaling makes the limit of the statistical factors fairly simple. We define
the classical energy of kinks as ϵK(θ) = M cosh θ and analogously the energy of
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antikinks, then the breather energy is ϵσ(θ) = 2M sin
(

π
2

σ
smax

)
, where one defines

M =
8m
g2 . (3.44)

In the subsequent discussions, we will confine our attention to classical quantities.
Therefore, the tags "classical" and "quantum" are rendered redundant, implying a
consistent reference to classical parameters.

In the shift to a semiclassical perspective, the reflective aspect of the kink-
antikink scattering matrix diminishes, SR → 0 leading to purely transmissive
scattering. This closely mirrors the equations touched upon in the previous seg-
ment. Nevertheless, distinctive differences emerge: the immediate semiclassical
extension of the filling fractions becomes singular for diminishing σ. However,
this anomaly is offset by the dressed momentum derivative, culminating in finite
root densities giving rise to finite measurable observables in the semiclassical
limit. To sidestep these deceptive singularities, it’s prudent to redefine effective
energies, dressings, and fillings appropriately. The dictionary follows closely Ref.
[6]. For convenience, we present the results here, adapting the notations to fit our
discussion. Utilizing a tilde, we introduce a nonsingular parametrization. The
association of filling functions with effective energies manifests as:

ϑK(θ) = e−εK(θ) (3.45)

ϑK̄(θ) = e−εK̄(θ) (3.46)

ϑσ(θ) = e−εσ(θ) . (3.47)

The subsequent nonsingular fillings and conventional effective energies are intro-
duced, manifesting as:

ϑ̃K(θ) = e−ε̃K(θ) = ϑK(θ) (3.48)

ϑ̃K̄(θ) = e−ε̃K̄(θ) = ϑK̄(θ) (3.49)

ϑ̃σ = e−σ2 ε̃σ(θ) = (smaxσ)2ϑσ(θ) . (3.50)

The integral equations determining the effective energy on thermal states best are
expressed in the new parametrization as
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σε̃σ(θ) = −2 + βc2 mσ

σ
cosh θ +

1
σ

∫ dθ′

2π
φσ(θ − θ′)(e−ε̃K + e−ε̃K̄)

+
1
σ

∫ dθ′

2π

∫ 1

0
dσ′ φσ,σ′(θ − θ′)

e−(σ′)2 ε̃σ′ (θ
′) − 1

smax(σ′)2 (3.51)

ε̃K(θ) = log smax − 1 + βMc2 cosh θ +
∫ dθ′

2π
φ(θ − θ′)(e−ε̃K + e−ε̃K̄)

+
∫ dθ′

2π

∫ 1

0
dσφσ(θ − θ′)

e−σ2 ε̃σ(θ′) − 1
smaxσ2 . (3.52)

Above, the classical breather-breather scattering shift is

φσ,σ′(θ) =
16
cg2 log

(
[cosh(θ)− cos((σ + σ′)π/2)][cosh(θ) + cos((σ − σ′)π/2)]
[cosh(θ)− cos((σ − σ′)π/2)][cosh(θ) + cos((σ + σ′)π/2)]

)
.

(3.53)
The remaining scattering shifts can be recovered as limσ′→1 φσ,σ′(θ) = 2φσ(θ) and
limσ→1 φσ(θ) = 2φ(θ), where φσ(θ) is the breather-kink scattering shift. Consis-
tently, also dressing equations should be conveniently redefined to remove the
spurious singularities. To this end, we define a new dressing operation using bold
labels {τK, τK̄, τσ} → {τdr

K , τdr
K̄ , τdr

σ } such that

στdr
σ (θ) =

τσ(θ)

σ
− 1

σ

∫ dθ′

2π
φσ(θ − θ′)[ϑ̃K(θ

′)τdr
K (θ′) + ϑ̃K̄(θ

′)τdr
K̄ (θ′)]

− 1
σ

∫ 1

0

dσ′

smax

∫ dθ′

2π
φσ,σ′(θ − θ′)ϑ̃σ′(θ′)τdr

σ′ (θ′) , (3.54)

τdr
K (θ) = τK(θ)−

∫ dθ′

2π
φ(θ − θ′)[ϑ̃K(θ

′)τdr
K (θ′) + ϑ̃K̄(θ

′)τdr
K̄ (θ′)]

−
∫ 1

0

dσ

smax

∫ dθ′

2π
φσ(θ − θ′)ϑ̃σ′(θ)τdr

σ (θ′) . (3.55)

For the anti-kink the equation is identical. Passing from the standard dressing
to the new parametrization, the following identities hold [6]: τdr

K (θ) = τdr
K (θ),

τdr
K̄ (θ) = τdr

K̄ (θ), and τdr
σ (θ) = σ2τdr

σ (θ).
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3.2.3 Low and high temperature quantum thermodynamics

In the low and high temperature regimes TBA equations can be simplified. This
is done in view of comparing predictions of BFT with known approaches. In the
high temperatur limit the Sine-Gordon field theory is described by a CFT and the
fluctuations for the topological charge transport should take a universal form [140].
On the other hand, the low temperature limit allows comparison with Sachdev
and Damle semiclassical theory to be introduced below.

3.3 Sachdev-Damle semi-classical theory

Drawing inspiration from earlier studies by Sachdev and Young [188, 189], Damle
and Sachdev introduced a heuristic approach to compute phase fluctuations in
sine-Gordon. Here, we outline their method and juxtapose it with our integrability-
based exact results. While we summarize the essence of their derivation and
results, the detailed computations can be referred to in the original paper. They
base their method on several physical conjectures:

1. At reduced temperatures, the system behaves much like a sparse assembly
of kinks and antikinks, that is the density is low. These are interpreted as
a gas of classical solitons with Maxwell-Boltzmann statistics of the form
∼ e−βϵK(θ) where ϵK(θ) = M cosh θ. In the low-temperature regime, the
relativistic dispersion is substituted with its low momentum counterpart,
adopting a Galilean nature. For thermodynamic calculations, breather effects
and excitation interactions are sidelined. Therefore, (anti-)kinks spread
independently, and their count in an interval of size L follows Poisson
statistics. Similarly, the velocities of these entities equate to the inherent
velocity of relativistic particles given by vK = tanh θ. Such insights establish
the foundational conditions at t = 0 for this soliton "gas".

2. Only (anti-)kinks contribute to phase changes, causing shifts in multiples
of 2π. Therefore, determining the phase disparity across a spatial segment
[0, x] is tantamount to counting the enclosed kinks and anti-kinks, expressed
as ϕ(x)− ϕ(0) = 2π(NK − NK̄)

3. For the computation of unequal time correlations, the initial field configura-
tion must evolve over time. Individual (anti)kinks advance as free entities
with a velocity tanh θ. However, upon encounter, their scattering exhibits
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complexities. Damle and Sachdev analyzed two potential scattering situ-
ations: initially, inspired by the typical low-energy scattering phenomena,
they postulated an exclusively reflective mechanism. Subsequently, guided
by the "reflectionless points" in quantum sine-Gordon, they proposed an
entirely transmissive mechanism. It’s plausible to extend this method to
incorporate probabilistic outcomes during scattering events based on reflec-
tion and transmission magnitudes. Yet, this approach doesn’t account for
positional shifts due to interactions, which are often addressed in the context
of soliton gases in several models. A thorough consideration of these spa-
tial displacements, combined with the coherence emerging from scattering
diagonalization, culminates in GHD.

Leveraging these hypotheses, Damle and Sachdev deduced the correlation
function for the vertex operator Vλ = ⟨eiϕ(x,t)−ϕ(0,0)⟩. Their findings are:

Vλ(t, x)
∣∣
transmissive = C exp

[
−2 sin2(πλ)(qr + ql)

]
(3.56)

Vλ(t, x)
∣∣
reflective = Ce−qr−ql

[
U0(2iqrΘ, 2i

√
qlqr) + U0(2iqlΘ, 2i

√
qlqr) (3.57)

− iU1(2iqrΘ, 2i
√

qlqr)− iU1(2iqlΘ, 2i
√

qlqr)− I0(2
√

qlqr
]

(3.58)

Where I0 denotes the modified Bessel function, U0,1 represents the Lommel func-
tions, and the (relatively inconsequential) constant C is related to the expectation
value of ⟨eiλϕ(x,t)⟩ on the state. We further defined Θ = cos(2πλ) and

ql = 2
∫

tanh θ>x/t

dθ

2π
M cosh θe−βε(θ)(t tanh θ − x) , (3.59)

qr = 2
∫

tanh θ<x/t

dθ

2π
M cosh θe−βε(θ)(x − t tanh θ) , (3.60)

The large-time behaviors of these correlation functions vary considerably across
the two conditions. In a purely transmissive scenario, kinks disperse uniformly
without any disturbances from other excitations. This behavior is distinctly cap-
tured in the equation:

Vλ(t, x)
∣∣
transmissive = C exp

[
−2 sin2(πλ)

∫ dθ

2π
M cosh θ 2e−βε(θ)|x − t tanh θ|

]
.

(3.61)
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For spacings obeying |x/t| > 1, the t-dependent part nullifies since it repre-
sents an odd function. This leads to the following representation:

Vλ(t, x) = Ce−2 sin2(πλ)n|x| |x/t| > 1 (3.62)

where n is the overall kink density.
There is a light-cone phenomenon: outside this cone, the nature of collisions

becomes irrelevant.
However, for time-like regions, the narrative is different. In the reflective

case, kinks that move ballistically halt abruptly upon encountering an antikink.
Essentially, in this perspective, at macro levels, (anti)kinks don’t navigate uni-
formly but spread diffusively. In more complex scenarios, with both reflective and
transmissive channels operational, one could speculate a combined evaluation
wherein (anti)kinks are sporadically reflected or transmitted based on exact mag-
nitudes derived from the precise two-body scattering matrices [49]. Adopting a
rudimentary semiclassical view, it’s tempting to perceive these scattering events as
uncorrelated. In this view, diffusion becomes the overriding factor in the long run.
Yet, our exact result, inspired by Ballistic Fluctuation Theory, always showcases a
predominant ballistic element (with considerable effective velocity modifications)
even in the presence of possible reflective scatterings. This behavior is attributed
to the model’s integrability ensuring ballistic transport and the recognition that
scatterings aren’t independent but display significant coherence.

3.4 Cumulants and Full Counting Statistics

Here we want to apply BFT to the calculation of the cumulants and the prob-
ability distribution of the phase differences in the classical Sine-Gordon model
and compare it with microscopic numerical simulations. We also compute the
cumulants in the quantum model at the reflectionless points and show that they go
to their semiclassical limit in the proper scaling limit [6]. Of course, full analytical
calculation is impossible due to the dressing equations. To evaluate the quantities
numerically the starting point is (1.167) but the form of its last term is not very
convenient and we have to manipulate it.
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3.4.1 Expression for the SCGF: FCS and correlation functions

Let us consider for simplicity the case x = ℓ sin(0) = 0 (the extension to generic
rays is trivial) and let us write

fλ,α=0 = fdyn(λ) (3.63)

that is we factor out the dynamical part of the SCGF. We will do something similar
in Chapter 4 when computing entanglement evolution after a quench. We can
manipulate the last term of (1.167) as

∑
j

∫ dθ

2π ∑
κ∈{±}

∑
veff

j (θ,λ̄)=0

κ(F(ϑj(θ, λ̄))− F(ϑj(θ, 0)) =

∑
j

∫ dθ

2π ∑
veff

j (θ,λ̄)=0

∂λveff
j (θ, λ̄)

|∂λveff
j (θ, λ̄)| (F(ϑj(θ, λ̄))− F(ϑj(θ, 0)) =

∫
dλ ∑

j

∫ dθ

2π
δ(veff

j (θ, λ))∂λveff
j (θ, λ)(F(ϑj(θ, λ))− F(ϑj(θ, 0)) (3.64)

where the sum over j in to account for the possibility of many particle spieces.
In the Sine-Gordon case, in fact, there are bound states in addition to kinks and
anti-kinks. We now wish to use the Dirac δ to integrate over the space of the
rapidities. In this way, we will have a λ-dependent function that can be integrated
on the fly while evolving the flux using (1.170) for the pseudo-energy or (1.171)
for the filling.

First, we further simplify the delta. We recall that veff = (∂θE)dr/(∂θ p)dr. The
effective velocity is zero only if (∂θE)dr = 0, hence

δ(veff) = δ[(∂θE)dr]|(∂θ p)dr| (3.65)

On the other hand, we can also notice that ∂λveff = ∂λ(∂θ E)dr

(∂θ p)dr − veff ∂λ(∂θ p)dr

(∂θ p)dr , but this

must be evaluated on those points with veff = 0. Hence, in the end one gets (we
assume (∂θ p)dr > 0, which is always the case)

δ(veff)∂λveff = δ[(∂θE)dr]∂λ[(∂θE)dr] (3.66)
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Fig. 3.4 Equal-time probability & cumulants.— We compare analytic predictions
(BFT) [black line] in the classical regime of Sine-Gordon model with predictions
from the SY picture [red line] and numerical results from Transfer Matrix [blue
line and symbols]. The bare mass m is tuned while keeping β = g = c = 1.
(a) The probability of phase differences is reported for a typical mass scale and
distance, showing the convergence to the scaling behavior. (b-c) The convergence
of cumulants upon increasing the relative distance is shown. (d-f) We scan different
values of the bare mass: the vertex operator (d) helps to identify the strongly-
interacting regimes away from the massless limit ⟨cos ϕ⟩ ≃ 1 and the large-mass
non-interacting regime 1− ⟨cos ϕ⟩ ≃ (4m)−1 [6]. (e-f) The large-distance scaling of
the 2nd and 4th cumulants is shown, clearly non-Gaussian and in perfect agreement
with numerics.

Hence we now reach the expression

∫
dλ ∑

j

∫ dθ

2π
δ[(∂θE)dr]∂λ[(∂θE)dr](F(ϑj(θ, λ))− F(ϑj(θ, 0)) (3.67)

Finally, we use the δ to integrate in the space of rapidities

∫
dλ ∑

j

1
2π

{
∂λ[(∂θE)dr]

|∂θ(∂θE)dr)| (F(ϑj(θ, λ))− F(ϑj(θ, 0))
}

(∂θ E)dr=0
(3.68)

This is easier to handle than the original form, at least numerically. The quantity
∂θ(∂θE)dr can be easily computed by interpolations, while ∂λ[(∂θE)dr] can be
made explicit by using that we know how the filling changes thanks to the flow
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equations (1.171). In order to compare with microscopic simulation of the classical
Sine-Gordon equation we have to perform the semi-calssical limit of the SCGF
(1.167). Using the diagonal structure of the classical TBA we obtain

fdyn(λ) =
∫ dθ

2π

{
∂θEK

[
sign(veff

K (θ))(ϑK(θ, λ)− ϑK(θ, 0)
]}

+
∫ dθ

2π

{
∂θEK̄

[
sign(veff

K̄ (θ))(ϑK̄(θ, λ)− ϑK̄(θ, 0)
]}

+
∫ smax

0
ds
∫ dθ

2π

{
∂θEs(θ)

[
sign(veff

s (θ))(ϑs(θ, λ)− ϑs(θ, 0)
]}

−
∫

dλ
1

2π

{
∂θEK(θ)

∂λ[(∂θEK)
dr]

|∂θ(∂θEK)dr)| (ϑK(θ, λ)− ϑK(θ, 0)
}

(∂θ E)dr=0

−
∫

dλ
1

2π

{
∂θEK̄(θ)

∂λ[(∂θEK̄)
dr]

|∂θ(∂θEK̄)
dr)| (ϑK̄(θ, λ)− ϑK̄(θ, 0)

}

(∂θ EK̄)
dr=0

−
∫ smax

0
ds
∫

dλ
1

2π

{
∂θEs(θ)

∂λ[(∂θEs)dr]

|∂θ(∂θEs)dr)| (ϑs(θ, λ)− ϑs(θ, 0)
}

(∂θ Es)dr=0
(3.69)

A similar analysis can be put forward for the static part of the SCGF

fλ,α=π/2 = fstat(λ) . (3.70)

Such quantity is easily obtained from the dynamic part with the substitutions

sign(veff) → 1 (3.71)

E → p (3.72)

something similar to crossing symmetry in relativistic field theories. This static
part is what is used to plot the probability distribution in 3.4. One computes
fstat(λ) and then performs a Legendre-Fenchel transform numerically.

The full SCGF can be manipulated in the same way starting from (1.167).

3.4.2 Cumulants

Since the SCGF is the generating function of (scaled) cumulants their exact expres-
sion in terms of TBA quantities can be obtained via differentiation. The derivations
are tedious but straighforward. In the original paper [1, 2] the authors present
the cumulants for the current fluctuations up to the fourth. Here we present the
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cumulants for the random process

Ω(x, t) =
∫ (x,t)

j(x, t)dt − q(x, t)dx (3.73)

already introduced in (1.155) generalising in a natural way the result [1, 2]. The
scaled even cumulants read (we consider only parity invariant states)

c2 =
∫

dθρ(θ)| sin α − cos αveff|[hdr(θ)]2 (3.74)

c4 =
∫

dθ| sin α − cos αveff|gρ(θ)
{
(hdr)4 ĝg̃ + 3[[(s f (hdr)2]dr]2

+ 4hdr[gg̃(hdr)3]dr + 6sg̃(hdr)2[s f (hdr)2]dr

+ 12hdr[s f hdr(s f (hdr)2)dr]dr
}

(3.75)

where ρ is the root density. We recall that this has to be extracted from the TBA
structure of the integrable model of interest, in this case the Sine-Gordon model.
To compute it, one has to solve first (1.56) for ρt and then use its relation to the
filling factor ϑ eq. (1.49). Moreover we have the definitions

ĝ = − d
dϵ

log(gg̃)− 3g , g̃ = − d
dϵ

log(g)− 2g (3.76)

that are statistical factors depending on g(ϑ) defined in (1.172) and

s = sign(sin α − cos αveff) (3.77)

is a sign factor. All the quantities depend on the rapidity θ, the ray angle (different
parametrisations are possible) α and the flow parameter λ. The calculation of
the cumulants does not require the solution of the λ-flow once they are explicitly
written in terms of TBA quantities. The first two even cumulants on generic space-
time rays are written in (3.74) and (3.75). Besides standard TBA quantities they
depend on various statistical factors. They are defined in (1.172) and (3.76). In the
quantum sine-Gordon it is readily seen that as functions of the filling they are

g(ϑ) =





1 − ϑ quantum

1 classical
(3.78)
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g̃(ϑ) =





ϑ − 2 quantum

−2 classical
(3.79)

ĝ(ϑ) =





6ϑ−6−ϑ2

2−ϑ quantum

−3 classical
(3.80)

from which the calculation of the cumulants becomes just a matter of matrix
multiplication when discretising the rapidity integrals. In Fig. 3.4 (b)-(c) one can
see the linear scaling with the size of the interval x of cumulants along the purely
space direction while in (e)-(f) confirms the non-gaussianity of the distribution as
funtion of the bare mass while all the other parameters are fixed. More interesting
for the cumulants is Fig. 3.5 where we show two important things. In (a.1)-(b.1), the
numerically computed cumulants from microscopic and montecarlo simulations
of the classical Sine-Gordon equation are compared with cumulants obtained by
solving the TBA equations (3.52) and (3.51) for the classical thermodynamics. The
details of the montecarlo simulations can be found in [5] and in [6] but are now
standard techniques in the context of out-of-equilibirum classical field theories.
We have considered varying bare masses (this is equivalent to change the soliton
mass) and the agreement with BFT is excellent. Secondly, in (a.2)-(b.2), it is shown
that the cumulants of the quantum model at the reflectionless points approach the
corresponding cumulants of the classical model in the appropriate scaling limit.
The limit is done numerically in the following way. Below we reintroduce for
a moment the notation for which the subscript q indicates a quantum quantity
while no subscript means a classical quantity. We recall that gq = h̄g and that the
interaction is set as in (3.38). The number of breathers is N so that taking into
account the scaling of the coupling with h̄ we have

(1 + N)−1 =
h̄g2

8π

(
1 − h̄g2

8π

)−1

(3.81)

from which one sees that N ≫ 1 corresponds to h̄ ≪ 1. Recalling the soliton mass
scaling Mq = h̄−1M and the temperature scaling βq = h̄β and further fixing g = 1
(always possible in a classical theory) and β = 1 for convenience we then tune
N (number of breathers). We can see that even for a modest number of breathers
N = 10 the quantum theory is not that far from the classical one. This is not
trivial and such a semi-classical scaling was never analysed in such detail before.
What we did in practice is to numerically solve the classical and quantum TBA
equations (3.51)-(3.52) for the classical Sine-Gordon model. This is done in the
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Fig. 3.5 Cumulants with space-time separation.— Scaling behavior of the second
(a.1) and fourth (b.1) cumulant as function of the ray x/t = tan α for representative
choices of the mass scale m (β = g = 1) in the classical regime. Numerical values
obtained with Monte Carlo (symbols) closely follow the analytic BFT prediction
(solid lines). In Figure (a.2) and (b.2) we show the approach of the quantum
prediction (dashed lines) to the classical limit (solid line) for the c2 and c4, respec-
tively. We take m = 0.25 and increase the number of breathers N, while tuning the
quantum soliton mass according to the semiclassical limit [6].

usual way discretising integral operators and performing matrix operations. In
Fig. 3.6 we show another comparison between spatial cumulants computed in the
framwork of BFT compared to numerical simulations. In panel (a), to emphasize
the role of finite volume and periodic boundary conditions, we show the second
cumulant C2(x) at equal times for two different volume realizations compared to
(3.74). As an example, we choose g = β = 1 and m = 0.25. The second cumulant
cannot grow forever and reaches a maximum peak in the center of the system: the
linear growth predicted by BFT is realized at large distances compared with the
microscopic correlation lengths, but much smaller than the system’s size L. To
reduce finite size effects within a fixed window [0, ℓmax] with ℓmax the maximum
separation between the two points, we extract the scaling factors cn = Cn(x)/x by
taking three system sizes of L = 1024, L = 2048 and L = 4096 respectively (the
latter not shown in (a)) and estrapolate to infinite volume assuming corrections
scale as 1/L. The fourth cumulant is always much more challenging due to finite
size effects. In (b)-(c) we show a typical example of the second and fourth cumu-
lants for space-time separation, plotted as a function of time for different rays
tan α = x/t and already extrapolated to infinite size. As an example, we choose
g = β = 1 and m = 0.25. The second cumulant (b) shows a clear linear growth
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Fig. 3.6 Further details on Monte Carlo data.— (a) Role of periodic boundaries.
(b)-(c) linear growth of cumulants along different rays.

with no appreciable corrections. The fourth cumulant C4 (c) shows finite time
corrections in the form of oscillations. C4 is also more sensitive to finite-size cor-
rections, as it is evident from the curve tanh α = 1.1: after an initial linear growth,
suddenly bends downward with increased uncertainity: there, the extrapolation
to infinite size fails and one can trust the curve tanh α = 1.1 up to t ≃ 100 at most.
This issue could be solved by exploring even larger sizes, but the computational
time needed for the Monte Carlo to reach convergence becomes prohibitively long.

We have gone a bit further than just this. We have also computed the second
cumulant utilising experimentally realistic parameters. We have already men-
tioned that the Sine-Gordon model appears in the description of tunnel coupled
quasi-condensates. Here we briefly explain the idea of how this experimental
setup is realised. For a visual idea look at Fig. 3.7 (a). First, one realises quasi
one dimensional condensates via laser confinement and then couples two of these
tubes via a barrier which can be finely tuned thanks to atom chip technology. Such
barrier induces weakly attractive interactions between the condensates and in the
low energy sector, via bosonisation, in can be shown that the interference between
the phases is described by the Sine-Gordon Hamiltonian.

Phase reconstruction measurement

In order to explain a bit how the experimental setup works we follow the SM of [5].
In the experimental setup, the phase is extracted from matter-wave interferometry
measurements [176]. The two elongated condensates are suddenly released from
the external three-dimensional trap keeping them in place, allowing the gas to
expand. Because of the initial close confinement in the transverse direction, the

100



3.4 Cumulants and Full Counting Statistics

particle momentum following trap release is quite high. In order to reconstruct
the position-dependent phase profile, one can proceed on the assumption that
expansion occurs only in the transverse direction and that longitudinal evolution
is frozen. The three-dimensional density profile is described by [190]

n3D(x, r⃗, t) = | f (⃗r, t)|2[ψ†
1(x)ψ1(x) + ψ†

2(x)ψ2(x)

+ ψ†
1(x)ψ2(x)e−id⃗·⃗rm/(h̄t) + ψ†

2(x)ψ1(x)eid⃗·⃗rm/(h̄t)] ≃
| f (⃗r, t)|22n(x)

[
1 + cos(ϕ(x)− d⃗ · r⃗m/(h̄t))

]
, (3.82)

where ψi(x) are two complex fields describing the coupled condensates. In the
last line one uses the density-phase approximation representation of the complex
field. Above, x refers to the longitudinal spatial coordinate while r⃗ is the radial
direction (perpendicular to the direction of the tubes), d⃗ is the relative distance
of the two tubes. Finally, f is a Gaussian envelope coming from the expansion in
plane waves of the transverse oscillator ground state function, the specific form is
not needed for our purposes (see however Ref. [178], also for corrections beyond
the weakly-interacting regime).

The three dimensional density is then projected in the plane containing the
condensate by integrating in the orthogonal direction. Then the resulting two-
dimensional pattern is sliced along the longitudinal direction x and the oscillating
pattern in the remaining orthogonal direction is fitted with the oscillating function,
extracting the phase shift ϕ(x). This procedure is equivalent to measure indepen-
dently n(x) cos(ϕ(x)) and n(x) sin(ϕ(x)), as it is clearly seen by expanding the co-
sine (3.82) with the help of trigonometric identities n(x) cos(ϕ(x)− d⃗ · r⃗m/(h̄t)) =
n(x) cos(ϕ(x)) cos(d⃗ · r⃗m/(h̄t)) + n(x) sin(ϕ(x)) sin(d⃗ · r⃗m/(h̄t))

In theory, by combining these two numbers, the phase profile might be re-
trieved precisely; but, due to experimental constraints, such as the camera’s finite
resolution, it is not possible to resolve arbitrary tiny distances without causing
coarse graining. Pixels in the longitudinal directions are equispaced on a grid
{xi}N

i=1, with approximately 2µm spacing. The center of each pixel collects signals
from its surrounding: in a good approximation, this imperfection can be mimicked
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Fig. 3.7 (a) Experimental setup. (b-c) Phase-reconstruction protocol from the
outcome of a single projective measurement for different pixel resolutions σ (see
main text). (d) Statistics built on 100 samples already shows the scaling behavior
of the equal-time second cumulant stemming from the center of the trap. The
effect of a low resolution σ is to “miss" kinks (see also (c)) and underestimate phase
fluctuations. A good quality measurement is already obtained with σ = 1µm. See
main text for discussion of parameters, and the SM of [5] for further details and
data. Credits to Dr. Alvise Bastianello for realising this picture.

by a convolution with a Gaussian with standard deviation σ [190]

[n(xi) sin(ϕ(xi))]σ ≡
∫

dy
e−

1
2σ2 (xi−y)2

σ
√

2π
n(y) sin(ϕ(y)) (3.83)

[n(xi) cos(ϕ(xi))]σ ≡
∫

dy
e−

1
2σ2 (xi−y)2

σ
√

2π
n(y) cos(ϕ(y)) . (3.84)

We have simulated the projective measurement process on the phase allowing for
a certain degree of error which is roughly speaking measured by σ and result are
plotted in Fig. 3.7.

102



3.5 Comparison between semiclassics and BFT at low temperature

3.5 Comparison between semiclassics and BFT at low
temperature

3.5.1 Semi-classical theory

In the spirit of the Sachdev and Damle semiclassical approach and based on what
we said about the simplifications occurring in the low T limit, we can suppose
there is a small density of kinks in the steady state. Since the density is small, kinks
and anti-kinks are independently distributed according to a Poisson distribution
of parameter µ. The distribution of the difference of independent Poisson variables
is calculated in Appendix C.1.

Static fluctuations

Let us start simple and consider the case of purely spatial interval [0, x]. Let the
average density of kinks and anti-kinks be µ = xd where d is the number of kinks
per unit length. We have the charge

Qx/(2π) =
∫ x

0
dy ∂yϕ(y, 0) = ϕ(x, 0)− ϕ(0, 0) = (NK − NK̄) (3.85)

where NK and NK̄ are the number of kinks and anti-kinks in the interval. The
probability distribution of the charge is a Skellam distribution

P(Qx/(2π) = xδ) = e−2xd Ixδ(2xd) (3.86)

where In(z) is the Bessel function of order k. For large x follows a large deviation
principle (see (C.24))

P(Qx/(2π) = xδ) ≍ e−xR(δ,d) (3.87)

with R(δ, d) is calculated in Appendix C.2 and reads

R(δ, d) = 2d + δ sinh−1
(

δ

2d

)
−
√
(2d)2 + δ2 . (3.88)

Space-time fluctuations

Let us consider the time evolution. In this case we have the difference of the fields
at different times ϕ(0, 0)− ϕ(x, t) and we want to know its distribution. As time
goes solitons travel at speed v(θ) and if one soliton with rapidity θ was at x = 0 at
time t = 0, it will be at x′ = v(θ)t at time t > 0. This is true for every θ ∈ R and
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solitons with different rapidities are independent so their probability distribution
factorises. This allows to work at fixed θ. The problem is simple because the
field still jumps by ±2π. Due to the free dynamics of the solitons we will have
ϕ(x, t) = ϕ(x − v(θ)t, 0)

Qθ
x(t) = ϕ(xθ, t)− ϕ(0, 0) = ϕ(x − v(θ)t, 0)− ϕ(0, 0) , (3.89)

and this means

Qx(t) =
∫

dθQθ
x(t) = 2π

∫
dθ(NK(θ)− NK̄(θ)) =

∫
dθQx−v(θ)t (3.90)

where now, NK(θ) and NK̄(θ) are two Poisson variables with parameter

µ(θ) =
1

2π
(x − v(θ)t)ϑ(θ) (3.91)

where ϑ(θ) is the fraction of solitons with rapidity θ. The full distribution is
obtained as

P(Qx(t)/(2π) = ∆) =
∫ (

∏
θ

dkθ

)
δ

(∫
dθQθ

x(t)/(2π)− ∆
)

∏
θ

P(Qx−v(θ)t/(2π) = kθ)

=
∫ (

∏
θ

dkθ

) ∫ ds
2π ∏

θ

eιs(kθ−∆) ∏
θ

P(Qx−v(θ)t/(2π) = kθ)

=
∫ ds

2π
e−ιs∆ ∏

θ

∫
dkθeιskθ P(Qx−v(θ)t/(2π) = kθ)

=
∫ ds

2π
e−ιs∆ ∏

θ

∫
dkθeιskθ e−2µ(θ) Ikθ

(2µ(θ)) . (3.92)

The Fourier transform of the Bessel function with respect to its order is reported in
Appendix C.3. Plugging eq. C.28 in the above formula, we obtain

P(Qx(t)/(2π) = ∆) =
∫ π

0

ds
2π

e−ιs∆ ∏
θ

[
2µ(θ) cos(s)e−2µ(θ)

]

=
∫ π

0

ds
2π

e−ιs∆ exp
{∫

dθ log
(

2µ(θ) cos(s)e−2µ(θ)
)}

=
∫ π

0

ds
2π

e−ιs∆ exp
{∫

dθ log (2µ(θ) cos(s))− 2
∫

dθµ(θ)

}
.

(3.93)
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Now we use saddle-point method. To do this, we scale ∆ 7→ ℓδ, x = ℓ sin α and
t = ℓ cos α. In this way

µ(θ) 7→ ℓµα(θ) =
ℓ

2π
(sin α − v(θ) cos α)ϑ(θ) (3.94)

and take ℓ → +∞. This is the Euler scale limit. Noting that for ℓ → +∞

log(2 cosh(ℓµα(θ) cos(s))) ∼ 2ℓµα(θ) cos(s) (3.95)

and defining momentarily

dα ≡
∫

dθµα(θ) , (3.96)

in this limit we are left with

P(Qx(t)/(2π) = ℓδ) = e−2dℓ
∫ π

0

ds
2π

eℓ f (s) , (3.97)

with
f (s) = −ιδs + 2d cos(s) . (3.98)

which has to be evaluated by the saddle point method. In the Appendix C.4 we
obtain

P(Qx(t)/(2π) = ℓδ) ≍ e−ℓR(δ,dα) (3.99)

where again R(δ, d) is defined in (3.88). We take ℓ =
√

t2 + x2.

3.5.2 BFT

Here we want to take the limit β → +∞ of the classical TBA equations (3.52)
and (3.51), solve the flow equations to compute the SCGF, perform the Legendre-
Fenchel transform and compare with Sachdev-Damle theory.

Low temperature classical TBA

In this limit the pseudo-energy of the kinks and anti-kinks in (3.45) is of order
O(−βM) so that the filling ϑK = O(e−βM) is small. Like-wise, the breathers
filling is small, but in contrast, since their mass mσ can be arbitrarily small, it can
still be relevant with respect to the one of the kinks. In this regime the dressing
equations for the topological charge density simplify. Indeed, the topological charge
is Q̃ = Q/(2π) = ±1 (recall we look at the rescaled charge, see (3.87)-(3.99) and
Fig. 3.4) respectively for kinks and anti-kinks, while it’s zero for breathers. Eq.
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(3.54) gives zero to first order in the fillings for the breathers dressed topological
charge density with hK(θ)/(2π) = h̃K = 1 (we consider the kink for the moment).
In turn, eq. (3.55) gives the bare one

hdr
K (θ) = hK(θ) (3.100)

always in this regime of approximation, since kinks fillings are negligible and the
contribution of the breathers is zero. Also, the pseudo-energy of breathers does
not flow

∂λεσ = 0 (3.101)

and so do the breathers filling. Let us turn to the effective velocity of the kinks.
Again, we neglect contributions to the dressing coming from the kinks fillings
but this time we cannot neglect that from the background breathers because their
dressed energy and momentum are not zero. For an illustration of this effect see
Fig. 3.8. We have

(∂θEK)
dr(θ) = ∂θEK(θ)−

∫ 1

0

dσ

smax

∫ dθ′

2π
φσ(θ − θ′)ϑ(θ′, σ)(∂θEσ)

dr(θ′) ,

(3.102a)

σ2(∂θEσ)
dr(θ) = −

∫ 1

0

dσ

smax

∫ dθ′

2π
φσ,σ′(θ − θ′)ϑ(θ′, σ′)(∂θEσ′)dr(θ′) , (3.102b)

and for the momentum

(∂θ pK)
dr(θ) = ∂θ pK(θ)−

∫ 1

0

dσ

smax

∫ dθ

2π
φσ(θ − θ′)ϑ(θ′, σ)(∂θ pσ)

dr(θ′) ,

(3.103a)

σ2(∂θ pσ)
dr(θ) = −

∫ 1

0

dσ′

smax

∫ dθ′

2π
φσ,σ′(θ − θ′)ϑ(θ′, σ′)(∂θ pσ′)dr(θ′) . (3.103b)

By virtue of (3.101), these equations give a non-zero effective velocity which
is nevertheless independent of the flow parameter and the same for kinks and
anti-kinks

veff
K = veff

K̄ ≡ veff . (3.104)

SCGF and Full counting statistics

We can immediately integrate the flow equation for the kinks and anti-kinks (with
charge Q/(2π)

ϵK(θ, λ) = sign(sin α − veff
K (θ) cos α)h̃Kλ + ϵK(θ, 0) , (3.105a)
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Fig. 3.8 Caricature of the low temperature breathers cloud (pink) renormalising
the kink (blue bump) velocity (arrow). Of course the physics is one dimensional
and both kinks and breathers lie on the same line but the analogy with the electron
in a solid being renormalised by a photon cloud is powerful.

ϵK̄(θ, λ) = sign(sin α − veff
K̄ (θ) cos α)h̃K̄λ + ϵK̄(θ, 0) (3.105b)

with h̃K = 1 = −h̃K̄. Taking into account the simplification of the TBA in the low
temperature limit discussed above, from GHD we have

⟨j(0, 0)⟩λ′ = ∑
a=K,K̄

∫ dθ

2π
∂θEa(θ)veff

a (θ)ϑa(θ, λ) ,

⟨q(0, 0)⟩λ′ = ∑
a=K,K̄

∫ dθ

2π
∂θPa(θ)ϑa(θ, λ) , (3.106)

with ϑa = (1 + eϵa)−1 as usual for fermionic particles. By virtue of the solutions of
the flow-equation above

ϑK,K̄(θ, λ) = ϑ(θ, 0)e±λ . (3.107)

Putting these results together we obtain

fλ,α = 2(cosh(λ)− 1)
∫ dθ

2π
| sin α − veff(θ) cos α|ϑ(θ)

= 2(cosh(λ)− 1)deff
α (3.108)

where in the last line we defined

deff
α =

∫ dθ

2π
| sin α − veff(θ) cos α|ϑ(θ) (3.109)
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which is the α-dependent integral above. The Legendre-Fenchel transform is easily
done

∂λ fλ,α = 2deff
α sinh(λ) = δ =⇒ λ = sinh−1

(
δ

2deff
α

)
(3.110)

and so the rate function is

I(δ, deff
α ) = λ(δ)δ − fλ(δ),α

= δ sinh−1
(

δ

2deff
α

)
− 2deff

α



√

1 +
(

δ

2deff
α

)2

− 1


 = R(δ, deff

α ) .

(3.111)

with R(δ, d) defined in (3.88).

3.5.3 Comment

We can compare the rate functions calculated from BFT (3.111) and that computed
within the Sachdev-Damle semiclassical picture (3.88) for the classical Sine-Gordon
model. While the shape of the rate function is unchanged, the difference lies in the
parameter dα. The semi-classical theory completely neglects the presence of the
breathers which renormalise the effective velocity of the kinks non-trivially. Since
the semi-classical picture is expected to apply in the low density limit only this is
not a contraddiction. It is a genuine prediction of BFT extending beyond the low
density regime as it is basically able to account for the coherent superposition of
excitations coming from the TBA structure. The low density limit can be viewed
as a non-relativistic limit and in this case replacing relativistic bare energy and
momentum with non-relativistic ones, the BFT prediction exactly recovers the
semi-classical theory which is consistent with the findings of Ref. [71]. The
difference between BFT and Sachdev and Damle semiclassical picture can be
appreciated in Fig. 3.9.

3.6 Outlook

In this third chapter we have introduced and analysed some Euler scale physics of
the Sine-Gordon model, especially in its classical regime. This was motivated by
experimental applications on one side and on theoretical grounds on the other. In
recent experiments on tunnel-coupled quasi-condensates, especially those realised
by the Vienna group, they are in a parameters regime where the conditions for
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Fig. 3.9 Difference between Sachdev and Damle semiclassical picture accounting
either for trasmission or reflection of quasi-particles and Ballistic Fluctuation
Theory accounting for both at the same time.

the semi-classical limit of large number of breathers are reached. The classical
Sine-Gordon model emerges. On this side, we were able to confirm with numerical
experiments for this model our calculations are no difficult to perform and are
comparable with realistic (in lab) experiments. On the other hand, we were
motivated by comparisons with the more phenomenological approach of Sachdev
and Damle. We have seen that in the low density limit the BFT predictions agree
with that of Sachdev but otherwise the latter misses some coherent structure due
to the stability of the quasi-particles. Since real experiments always have to deal
with certain degree of inhomogeneity, it is important in the future to incorporate
such effects in our description. Besides, high temperature (conformal) limits and
more accurate analysis of the quantum regime are needed. This is especially true,
as the quantum TBA for the attractive regime has now become available.
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Chapter 4

Renyis and entanglement entropies
from hydrodynamic

Goal of the chapter

This is the last chapter and it is dedicated to the important the application of
BFT to the calculation of quantum information theoretical quantities: the Renyi
entanglement entropies. It is based on the results of Ref. [4]. Such quantities
characterise purely zero temperature quantum fluctuations. The phenomenology
of the entanglement dynamics after a quantum quench is quickly reviewed and it is
shown that the famous quasi-particle picture commonly utilised for the derivation
of the entanglement growth can be derived from purely hydrodynamic principles.
This constitutes the first ab-initio derivation of the quasi-particle picture as far as
we are aware of.

4.1 Model and main results

4.1.1 Overview

The understanding of entanglement in quantum many-body systems received a
considerable boost in the last decades, with the introduction and characterization
of many different quantities which “measure” the amount of entanglement in
a given quantum state [191–194]. An important set of such measures are the
so-called entanglement Rényi entropies. Given a quantum system described by
a density matrix ρ and a subsystem A of the total system, with Ā denoting its
complement, consider the associated reduced density matrix ρA = trĀρ. Then, for
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any α ∈ R+, the α-Rényi entropy is defined as

Sα =
1

1 − α
log trρα

A. (4.1)

They are good entanglement measures for all pure quantum states, i.e. states
of the form ρ = |Ψ⟩⟨Ψ|. They fully characterise the entanglement spectrum,
and an important property is that in the limit α → 1 they reduce to the famous
entanglement Von Neumann entropy

S = −tr (ρA log ρA) . (4.2)

In the context of one-dimensional systems, several exact results are available for
such quantities. For example, at equilibrium, Rényi and entanglement entropies
or their asymptotic behaviours can be obtained in the ground state states of
critical [195], gapped [196] and more general integrable [197] field theories, as well
as beyond integrability [198] (note that for free theories results were first obtained
in [199]). In the case of critical systems described by a conformal field theory
(CFT), such results are easily generalized to finite temperature states (i.e., Gibbs
ensembles) [195], and also results for generic thermodynamic macrostates (i.e.,
generalized Gibbs ensembles [200]) have been obtained [201–203] in the context of
integrable models relying on (thermodynamic) Bethe ansatz methods [204].

When moving to out-of-equilibrium scenarios, the situation is more compli-
cated and available results are mainly qualitative or in the form of conjecture (an
exception, however, is the exact result in [205]). For example, an imaginary time
path-integral formulation, together with conformal invariance, has been used for
a qualitative understanding of the ubiquitous linear growth of entanglement [206]
observed after quantum quenches [207, 208]. Moreover, the dynamics of the en-
tanglement entropy (4.2) for a generic integrable system was understood in terms
of a semiclassical “quasiparticle picture” (whose original version was proposed
in [206]), complemented with the Bethe ansatz knowledge of the stationary state
attained at late times, as conjectured in [209] (see also [210]). These results have
been extensively verified numerically (see, e.g., [210]). An important point to stress
is that the quasi-particle picture does not admit a generalization for describing,
for generic α, the growth of Rényi entropies [211, 212] (with the exception of free
systems [201]).
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4.1.2 Model and quench protocol

The model

The model considered here is a free fermion Hamiltonian on continuous space.
Since we will be interested in a quench problem we introduce the pre-quench
Hamiltonian

H0 =
∫

dθE0(θ)a†(θ)a(θ) (4.3)

and the post-quench one

H =
∫

dθ E(θ)ψ†(θ)ψ(θ) . (4.4)

We will always be interested in the time evolution of observables written in
terms of the post-quench operators ψ(x, t) which we take to be a complex field
ψ(x, t). Its Fourier modes are denoted ψ(θ, t) (with slight abuse of notation) and
anti-commutation relation are {ψ(θ)†, ψ(θ′)} = δ(θ − θ′). Here θ represents the
momentum, which we assume takes values in R for simplicity (for quantum
chains, this would be a bounded subset instead, but the general ideas are not
affected). The same is valid for a(x) and a(θ). We also denote the dispersion
relation as E(θ) (and E0(θ) of course), which we assume is strictly convex and
symmetric E(θ) = E(−θ). The field is written as

ψ(x, t) =
1√
2π

∫
dθ eiθx−iE(θ)tψ(θ). (4.5)

As it is integrable, the model possesses an infinite number of conserved quantities
as dissussed in 1.1.1 and in particular it is U(1) invariant. We recall that strictly
speaking, the conserved charges Q(θ)’s are not linearly extensive, but (for generic
dispersion relation) any extensive conserved quantity can be obtained by a suitable
“linear combination", or basis decomposition, Qi =

∫
dθ hi(θ)Q(θ). Here, hi(θ) is

again the one-particle eigenvalue of the extensive charge Qi used multiple times
in this thesis.

We then consider a spatial interval A = [0, ℓx] and want to compute the Rényi
entropies of ρA as in (4.1) after a quantum quench after time ℓt when ℓ → ∞. Both
the evolution time and the length of the interval grow ballistically.
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Quench protocol

A quantum quench is an initial value problem for the many-body system where
the initial state is the ground state of a different Hamiltonian than that used for
the time evolution. Typically, one imagines a sudden change of parameter. In
integrable models, certain quenches are known to be of “integrable" type [213–215].
In these cases, the initial state can be written explicitly in terms of the scattering
states (or Bethe ansatz states) of the post-quench, evolution Hamiltonian, as a
so-called “squeezed state":

|Ψ⟩ = 1
N exp

(
1
2

∫
dθ Kθ,−θψ†(θ)ψ†(−θ)

)
|0⟩ (4.6)

for some (θ-dependent) factor Kθ,−θ, with N denoting a normalization constant,
and |0⟩ being the ground state of the post-quench Hamiltonian. The squeezed
state is generically a finite-density state, where the energy (of the post-quench
Hamiltonian) is extensive with the system size. We will use later the fact that there
is a Bogolioubov transformation of the fermionic mode operators

ψ(x, t) ↔ a(x, t) (Bogolioubov) (4.7)

defined as such that the squeezed state satisfies (is defined by)

a(x, t)|Ψ⟩ = 0. (4.8)

This corresponds to changing the whole dispersion relation (not only a parameter
as in typical quenches in the literature), see e.g. [112, 216]. The transformation is
explicitly written as

(
a(θ)

a†(−θ)

)
=

(
f (θ) g(θ)

g∗(−θ) f ∗(−θ)

)(
ψ(θ)

ψ†(−θ)

)
. (4.9)

where the functions f and g are analytic functions of their arguments and depend
on the particular dispersion relation. It is always possible to choose f and g real
with f even and g odd. The schematic representation of the quench protocol is
given in Fig. 4.1.

After a long time in a quench problem, the state locally approaches a GGE for what
concerns local observables [217] (this is rigorous for spin chains with a maximal
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Fig. 4.1 Schematic picture of the scenario studied in this chapter. The initial
state contains pairs of quasi-particles with opposite momenta that spread in
opposite directions. At large time they reach different parts of the system. This
quasi-particle picture phenomenological formula is derived from hydrodynamic
principles in (4.15).

propagation velocity). In integrable quenches, there is a well-known relation
between the squeezed-state representation of the initial state, and the long-time
GGE (see e.g. [112]). The statement of convergence to a GGE pertains only to local
operators, or operators supported on finite intervals (that do not grow with time):

⟨Ψ(t)|O(x)|Ψ(t)⟩ → ⟨O(x)⟩ρw , t → ∞ . (4.10)

where ρw is a GGE of the type (1) described by a function (1.55) as already used
in Chapter 2 and O(x) a local operator. The limit in (4.10) is expected to be valid
everywhere in space. The relation between initial state and long-time GGE in free
fermions can be worked out explicitly

e−w(θ) = |Kθ,−θ|2 . (4.11)

Namely, we see that the map from squeezed states to GGEs is in fact one-to-one.

4.1.3 Main result

Here we present the main results and discuss them, giving major emphasis on the
physical principles underlying the derivations. We have obtained an exact relation
between the growth of the Rényi entanglement entropies after a so-called inte-
grable [213–215], pair-production quench, and static and dynamic “full counting
statistics" in the final GGE. Define N<,> :=

∫
|v(θ)|<,> ξ/2 dθ ψ†(θ)ψ(θ) the con-

served quantity giving the total number of “slow" and “fast" fermionic modes
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ψ(θ), with speeds |v(θ)| < ξ/2 and |v(θ)| > ξ/2, respectively, where ξ = x/t is a
space-time ray as usual and v(θ) = E′(θ) is the group velocity of quasi-particles.
In the notation of Chapter 2.1 this would be N< = Q|2v(θ)t

−∞ and N> = Q|∞v(θ)t
where Q is the fermion number. In turn the SCGF will be written as

f (λ; α) = −
∫ dθ

2π
|v(θ) cos α − sin α| [F(wλ(θ; α))− F(w(θ))] (4.12)

where tan α = x/t = ξ parametrised the ray direction in space-time as in previous
chapters. Recall also that F is the free energy function in (1.51). Also, with slight
change of notation compared to Chapter 2.1, we denote

f<,ξ
dyn(λ) = lim

t→∞
t−1 log ⟨eλJN< (t)⟩ (4.13)

the SCGF for the total current JN<(t) of slow modes passing through a point in the
time interval [0, t] in the final GGE; and

f>,ξ
stat (λ) = f = lim

x→∞
x−1 log ⟨eλN>(x)⟩ (4.14)

the SCGF for the total number N>(x) of fast modes lying on the spatial interval
[0, x] in the final GGE. Consider for simplicity α to be even. Then, as x, t → ∞ with
x/t = ξ fixed, the Rényi entanglement entropy on the interval [0, x], at time t after
the quench, has asymptotic form:

Sα(x, t) ∼ 1
1 − α

[
2t

α/2

∑
q=−α/2+1

f<,ξ
dyn(ih2q−1) + x

α/2

∑
q=−α/2+1

f>,ξ
stat (ih2q−1)

]
, hp =

πp
α

.

(4.15)
This extends earlier observations of the connection between entanglement entropy
and full counting statistics [218–220] to non-equilibrium quenches. This result
directly provides a link between hydrodynamics, large deviation theory and en-
tanglement growth which has not been noticed before.

The derivation is different and independent from the other exact result for the Ising
model in [205], which was based instead on Toeplitz matrix representation. The
presented method and ideas highlight how the structure of long-range correlations
induced by particle pairs in integrable quenches allows one to describe both the
growth and saturation of entanglement in a simple and universal way in terms of
the long-time GGE, as this structure allows the separation of the contributions of
fast and slow modes as per (4.15). The emphasis on the structure of long-range
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correlations also gives a clear understanding as to why for quenches starting
from more complicated states, for instance producing correlated groups of more
than two particles, more information about the initial state is needed to describe
the entanglement growth; in these case no simple formula exists (as showed for
example in [221, 135]).

4.2 Twist Fields and replicas

Kadanoff-Cheva approach

Here we introduce a particular type of field operators encountered in many in-
stances and that will be used thougout the chapter: twist fields. We have already
mentioned and used twist fields in previous chapters: the Jordan-Wigner string
(2.4). Twist fields, although they were not called this way, were introduced for the
first time in the works [222, 223] and are reviewed in Ref. [224]. At the time, people
were just about to discover the application of powerful methods of conformal field
theory (CFT) [225]. Twist fields are also known as disorder operators as we will
see in a moment. The easiest way to understand what these fields are is to think
exactly like Kadanoff did: take the 2D Ising model,

H = − ∑
⟨r r′⟩

J(r, r′)σ(r)σ(r′) . (4.16)

The spin variables take values in the binary alphabet {−1, 1} and are placed
on the vertices of a square lattice Z2. Now one considers the dual lattice, that is the
lattice whose vertices are placed at the center of each elementary plaquette of the
original lattice. A plaquette in the square lattice is made by four spins connected
by four links comprising a square. It is easy to see the the dual lattice of a square
lattice is again a square lattice. We introduce a series of defects along a path Γ
connecting two points in the dual lattice r and r′ in the following way: for each
link in the original lattice that is crossed by the path Γ we make the replacement
J → −J in the Hamiltonian. Call Z[K′] the partition function obtained in the
presence of the defects and Z[K] the partition function without them where K
denotes the whole set of couplings −βJ(r, r′). The twist fields correlation function
is defined by,

⟨T (r)T (r′)⟩ = Z[K′]
Z[K]

= exp (−∆F[Γ]) , (4.17)
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where ∆F[Γ] is the free energy energy difference due to the presence of the defects
line. It is easy to see that this definition does not depend on the path Γ but only on
the end points. At infinite temperature T = ∞ we have K = K′ = 0 so that,

lim
|r−r′|→∞

⟨T (r)T (r′)⟩ = ⟨T 2⟩ = 1 , T > Tc. (4.18)

At T < Tc instead, the free energy cost of the dislocation is proportional to the
length of the path (the proportionality being the surface tension t) so that,

lim
|r−r′|→∞

⟨T (r)T (r′)⟩ = exp
(
−t|r − r′|

)
, T < Tc. (4.19)

The twist field is called also disorder operator because it has a finite expectation
value in the disordered phase while its two point function decays at large distances
in the ordered phase. The field T (r) is thus dual to the order parameter (local
magnetization) σ(r). Now, note that nothing prevents us from considering the
product of the disorder operator and the order operator, a composite field. Nev-
ertheless, this definition is ambiguous because for each point in the dual lattice,
there are two possible points r± in the the original lattice, those at the extrema
of the adjacent bonds (on the left for definiteness). If now one considers what
happens when one composite field is transported around the other on a closed
loop and soon realize that the correlator acquires a − sign and so the field,

ψ±(r±) ∝ σ(r)T (r±) (4.20)

is a fermion. It turns out that this is the Majorana fermion discovered by Onsager
in its exact solution of model [226]. An important example that we have already
met is the U(1) twist field in (1.157) for λ → iλ. This is a twist field introducing
a U(1) shift acting as a multiplyication by a phase λ reducing to Z2 in the case
λ → iπλ, which is exactly the Jordan-Wigner string. Let us now see how to define
twist fields in general1. Let Λ be a square lattice and Λ̃ its dual. Let Γ be a closed
path on in the dual lattice and g ∈ G with G a group. Also we denote with R(g) a
representation of g. Whenever Γ crosses an edge l in the original lattice we orient
it calling l+ its end point out of the loop and l− that inside. Twist fields associated

1The author learnt this from professor Denis Bernard during "Clean and Disordered Systems
Out-of-Equilibrium", a summer school held at Institut d’Études Scientifique de Cargèse, Cargèse
(9/2020).
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to the group element g are defined by their correlation function as

⟨Tg(x)Tg(y)⟩ = exp


 ∑

l∈Γ(x,y)
H(σl− , σl+)− H(σl− , R(g) σl+)


 (4.21)

where Γ(x, y) is the path connecting the points x and y on the dual lattice. Impor-
tantly, note how the twist field depends on the space points and on the symmetry
group element g but not on Γ if the symmetry group G is an internal symmetry
of the Hamiltonian. This is easily seen in the example of the Z2 symmetry of the
Ising model: everytime we cross two horizontal or two vertical bonds from the left
and from the right the net contribution to the free energy difference is zero. It is
the clear that the definition given above is a generalization of the definition given
by Kadanoff as it is just the exponential of (minus) the energy difference between
the configuration before the group element acts and after. Another maybe simpler
interpretation is to view the twist field as introducing a line of defects along the
path Γ. In the end, twist fields are special fields associated to a given symmetry of
the theory; they exist, in a many-body system, for every symmetry transformation.

Symmetries and exchange relations

Twist fields are very generic types of fields: they exist whenever there is an interanl
symmetry in the theory. Consider a unitary representation of a symmetry acting
on a single point x

Px = eiλQx (4.22)

where Qx is some Hermitian operator supported at x (it is ultra-local). Then we
can define

T (x, 0) = ∏
y≥x

Py (4.23)

and T̄ α(x, 0) =
(
T α(x, 0)

)†. If O(x) is an obervable of the theory under examina-
tion we have

PxO(y)P−1
x =





σO(y) y = x

O(y) y ̸= x
(4.24)

where σ is some representation of the symmetry on the space of observables. One
can of T as giving rise to a line of defects from x to ∞ such that if O is made going
round x, the point where the field is, it gets transformed by the symmetry. The
field is multivalued because of the presence of the cut introduced by the twist field.
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The following equal-time exchange relations hold

T (x, t)ψ(y, t) =





σψ(y, t)T (x, t) y ≥ x

T (x, t)ψ(y, t) y < x
(4.25)

and

T̄ (x, t)ψ(y, t) =





σ−1ψ(y, t)T̄ (x, t) y ≥ x

T̄ (x, t)ψ(y, t) y < x .
(4.26)

Twist fields and other concepts

Lastly, we mention that twist fields and their semilocality have been discussed ex-
tensively in various contexts, including: phase transitions in classical and quantum
statistical models [223, 227, 47] (see the review [228]); vertex operators, Yangians,
parafermions and orbifolds in conformal and integrable quantum field theory
[229–233]; tau-functions and Painlevé equations [234–241]; and entanglement en-
tropy in quantum field theory and in quantum spin chains [197, 242–244]. Twist
fields have also been considered in higher dimensions [245]. In most works, the
focus is on ultra-local “internal" symmetries, that strictly factorise in space, usually
part of a symmetry group such as Zn, U(1), SU(n) like permutations.

4.2.1 Replica approach and branch point twist fields

Replicas

A common starting point for (most of) the results concerning the calculation of
the entanglement entropy is the so-called replica approach extensively used in the
context of disordered systems [246]. The trick is basically the following

− lim
α→1+

d
dα

ρα
A = − lim

α→1+

d
dα

ρAe(α−1) log ρA

= − lim
α→1+

e(α−1) log ρA ρA log ρA = −ρA log ρA , (4.27)

so that taking the expectation value and assuming it’s possible to commute the
limit with it one obtains (4.2). It is also simple to see that in the same limit the
Rényi entropies (4.1) give the same result. All boils down to computing the trace
of the α power of the reduced density matrix [196]. It is important to stress that
in principle α is an integers and the entanglement entropy can be recovered via
analytic continuation which is not always difficult to perform.
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In particular, within this approach, powerful tools are the so-called branch point
twist fields, T α and its hermitian conjugate T̄ α. The branch point twist fields are
special kind of twist fields introduced above: as the replicated theory is invariant
under permutations of the copies, T α, T̄ α are the twist fields associated to the
generator of cyclic permutations i 7→ i + 1 mod α and its inverse, respectively. The
quantities Tr ρα

A can be related to correlation functions of such twist fields, as first
pointed out in quantum field theory in [197] clarifying ideas from [196], and as
shown in quantum chains in [242]. We give here another way to see that these are
the natural objects, based on the generalisation of Kadanoff idea presented above.
The relevant quantity is

Tr ρα
A = Tr ρA · · · · · ρA︸ ︷︷ ︸

α times

. (4.28)

Now, each factor ρA is contracted with the next and the final trace simply contracts
the last index of the last factor with the first index of the first factor: this is like
going round a periodic structure and it is exactly like computing a partition
function. The catch is that each factor is the reduced density matrix of the total one
ρ so the indices corresponding to the subsystem A (the degrees of freedom) are not
summed over and this is exactly like having a "defect". There is one such defect for
each factor. In the case of a single interval the defect is a single line in space time
along t = 0. Since these degrees of freedom are not summed over, the manifold
over which the system whose (4.28) is the partition function of is continuous when
we cross the defect. In the 2D Ising example, when we crossed the defect the bonds
changed sign and the manifold was two dimensional space. Equivalently, the spin
adjacent to the bond, either on the left or on the right depending on the chosen
orientation, flips. In this case what happens when we cross the defect is that we
"change" factor ρA in the α-fold product. In the summation over a complete set
of states this means we jump from the index i to the index i + 1. The overall
trace makes this periodic. It is then clear that the trace can be written as a ratio of
partition functions

Tr ρα
A =

Zα(A)

Zα(A)
(4.29)

and this provides a defintion of twist fields. Zα(A) is the α power of the system
withouth defects, with density matrix ρ while Zα(A) is the partition function
in the α-fold tensor product space. These arguments can be made even more
explicit using permutation operators as in [242]. We can summarise as follows
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: within the replica method, in order to compute entanglement entropies (cf.
Eqs. (4.1)-(4.2)) in a given theory, one re-writes the quantity trρα

A in terms of an
appropriate expectation value in the replica model. This is the model composed
of α independent, commuting copies of the original model (α ∈ N). For a one-
dimensional system in a state with density matrix ρ, and with the subsystem A
being a single interval, e.g., A = [x1, x2], it is a simple matter to show [197, 242]
that trρα

A is exactly identified with the two-point function of branch-point twist
fields,

Tr ρα
A = ⟨T α(x1, 0)T̄ α(x2, 0)⟩ρ⊗α . (4.30)

The expectation value on the r.h.s. is computed with the density matrix ρ⊗α =

⊗α
i=1ρi, where ρi is the original density matrix, on copy i.

Branch point twist fields

Branch-point twist fields in the replica theory are twist fields associated to the sym-
metry under replica cyclic permutations of order α (which generate the group Zα).
They take the product form involving on-site copy–cyclic-permutation operators2

[242]:
T α(x, 0) = ∏

y≥x
Py . (4.31)

Here, denoting by ψi(x) observables lying on (that is, acting nontrivially only
on) copy i ∈ {1, 2, . . . , α} and position x, and identifying ψα+1(x) ≡ ψ1(x) the
equal-time exchange relations are

T α(x, t)ψi(y, t) =





ψi+1(y, t)T α(x, t) y ≥ x

T α(x, t)ψi(y, t) y < x
(4.32)

and an analogous one for T̄ α. From Eq. (4.30), Rényi entanglement entropies can
be simply obtained via Eqs. (4.1)-(4.2).

Equations (4.32), (4.26) were first introduced in the context of quantum field
theories in Ref. [197], as a way of evaluating partition functions on branched
surfaces, taking inspiration from [196].

We note that the action of branch-point twist fields can be diagonalized by
going to the Fourier basis in the replica index (we choose anti-periodic boundary

2Here we omit any regularisation issue that may arise in models on a continuous space which
do not affect exponential asymptotic behaviours.
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conditions in replica space),

ψp(x, t) = Fj→p[ψj(x, t)] :=
1√
α

α−1

∑
j=0

eijπp/αψj(x, t) p odd (4.33)

which gives a diagonalised action

T α(x, t)ψp(y, t) =





e−iπp/αψp(y, t)T α(x, t) y ≥ x

ψp(y, t)T α(x, t) y < x
(4.34)

and similarly for T̄ α(x, t).

The most general object we need to consider is the two-point correlation functions

⟨T α(x1, t1)T̄ α(x2, t2)⟩ρ⊗α (4.35)

at different spacetime points.

4.3 Application to Rényi entropies

4.3.1 Entropy of a single interval

A factorisation formula

Because of the quadratic nature of free fermion Hamiltonians, the Zα symmetry of
the replicated theory turns out to be embedded into the larger symmetry group
U(α), which accounts for not only permutation of replicas, but also rotations
amongst them. Indeed, say we have a lattice with N points and say the system
Hamiltonian is H = ψ⃗† Aψ⃗ where ψ⃗ is the vector containing the field at each point
and A a N × N hermitian matrix. Then the replicated theory has Hamiltonian
H = ∑α

β=1 ψ⃗†
β Aβψ⃗β and it can also be written as

H = Ψ⃗†DAΨ⃗ (4.36)

where now

Ψ⃗ =




ψ⃗1
...

ψ⃗α


 , DA = diag(A1, . . . , Aα) (4.37)
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and this is manifestly invariant under complex rotations U(N) 3. Thus, the branch-
point twist field is a twist field associated to a particular symmetry transformation,
part of a continuous symmetry group. The exchange relations translate simply
to cyclic permutation matrices that can be diagonalised via Fourier transform.
Imposing anti-periodic boundary conditions has the effect of fermionising the
replica theory. Specifically, it is found [197]

T α = ∏
p∈Iα

τα
p =

α/2

∏
q=−α/2+1

τα
2q−1 (4.38)

with τα
p being a U(1) twist field acting non-trivially only on ψp (as a phase),

τα
p (x, t)ψq(y, t) =





e−iπp/αψq(y, t)τα
p (x, t) y ≥ x and p = q

ψq(y, t)τα
p (x, t) y < x or p ̸= q

(4.39)

(cf. (4.34)).
The decomposition (4.38) allows us to factorise the branch-point twist field

two-point functions into products of U(1) twist field two-point functions. This
however only holds if the state can be likewise factorised. This is nontrivial: while
factorisation in copy space is always true, a Fourier transform is likely to mix the
components. Whenever the state is gaussian, that is it satisfies Wick’s theorem, it
is a simple matter to verify that ρ⊗α also factorises as a tensor product of states ρ

in Fourier-copy space; this is because such states are completely determined by
fermion two-point functions, which stay diagonal in Fourier-copy space. Therefore,
we have, in Wick-theorem states ρ,

⟨T α(0, 0)T̄ α(x, t)⟩ρ⊗α =
α/2

∏
q=−α/2+1

⟨τα
2q−1(0, 0)τ̄α

2q−1(x, t)⟩ρ . (4.40)

Note how on the right-hand side, each factor is evaluated in the state ρ for the
fermion ψ2q−1.

To each of these correlation functions we can apply BFT. To do this we have
to know the charge, the current and the one-particle eigenvalue. For any given p,

3Notice that this would not be true for models whose fermionic representations contain su-
perconducting terms like in Ising model. In such cases one need the so-called doubling trick
[199, 197]
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4.3 Application to Rényi entropies

τα
p (x, t) the charge is U(1)

Qp =
πp
α

∫
dx ψ†

p(x)ψp(x) =
πp
α

∫
dθ ψp(θ)

†ψp(θ) , (4.41)

The explicit expressions as exponential of half-space integrals of charge densities
is

τα
p (x, t) = exp

[
i
∫ ∞

x
dx′ qp(x′, t)

]
, qp(x, t) =

πp
α

ψ†
p(x, t)ψp(x, t) . (4.42)

Qp acts on the single-particle basis as

Qp|θ, q⟩ = hpδp,q|θ, q⟩, with hp =
πp
α

(4.43)

(note that ψp(x) has Qp-charge −hp, in agreement with (4.39)). With Q = Qp,
the twist field τα

p is identified with τα
p = T−i in the notation of (1.157) (that is,

with λ = −i), acting on the sector p. Recall that the action of the charge on the
single-particle basis is all we need to know in order to apply the BFT .

Equilibrium Rényi entropy

We start by considering the α−Rényi entropy of a finite interval A = [0, x] within
a generic GGE ρw uniquely defined by the function w(θ). The relevant correlation
function is

⟨Tα(0, 0)T̄α(x, 0)⟩ρ⊗α
w

. (4.44)

From the BFT perspective, this is obtained by focusing on the purely spatial direction,
namely, we consider an “horizontal path” by setting α = π/2 in (4.12) (and we
take h(θ) = hp). Each two-point function of U(1) twist fields in (4.40) reads

⟨τα
p (0, 0)τ̄α

p (x, 0)⟩ρw ≍ exp {x f (−i; p)} , f (−i; p) =
∫ dθ

2π
log

(
1 + eihp−w(θ)

1 + e−w(θ)

)
.

(4.45)
Then we consider the product in Eq. (4.40), which turns into a sum in the exponent,
i.e.,

⟨Tα(0, 0)T̄α(x, 0)⟩ρ⊗α
w

≍ exp {x f (−i; α)} , with f (−i; α) =
α/2

∑
q=−α/2+1

f (−i; 2q− 1) .

(4.46)
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Renyis and entanglement entropies from hydrodynamic

We may further evaluate those sums, by considering separately the part which
depends and the part which does not depend on p (equivalently q, q′, Eq. (4.38)).
The latter is trivial and simply gives a contribution to f α(−i) which is −

∫
dθ/(2π)

of

2
α/2

∑
q=1

log
(

1 + e−w(θ)
)
= α log

(
1 + e−w(θ)

)
. (4.47)

For the remaining part, let us start by focusing on half of the sum, the terms from
q = 1 to α/2, in (4.46). By defining z = 2πi

α , s = w + πi
α , we get

α/2

∑
q=1

log(1 + ezq−s) =
∞

∑
r=1

(−1)r+1

r
e−r(s−z)

(
1 − erzα/2

1 − erz

)
(4.48)

where we used the Taylor expansion log(1 + x) = ∑∞
r=1(−1)r+1xr/r (which con-

verges for w > 0), and we performed the sum over q. Next, we want to perform
the sum in r in the r.h.s. of (4.48). To do that, we substitute the values of z and w
first:

∞

∑
r=1

(−1)r+1

r
e−r(w−πi

α )

(
1 − erπi

1 − er 2πi
α

)
(4.49)

where now we should consider separately three cases:

1. r = αm for integer m: in this case r is even (as α is even), and we have

∞

∑
m=1

(−1)αm+1

αm
e−αmw+mπi

(
rπi

2πir/α

)
=

∞

∑
m=1

(−1)m+1

2m
e−αmw (4.50)

=
1
2

log
(
1 + e−αw) . (4.51)

2. r even but r ̸= αm for any integer m: in this case each term of the sum (4.49)
is zero due to the vanishing of the numerator, i.e., (1 − erπi) = 0.

3. r odd: this gives

∑
r odd

2
r

e−rw

(
er πi

α

1 − er 2πi
α

)
= ∑

r odd

i
r

e−rw

sin πr
α

. (4.52)
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4.4 Time dependence and long-range correlations

The sum of the terms for q = −α/2 + 1 to 0 in (4.46) give exactly the complex
conjugate of this result. Thus we get

α/2

∑
q=−α/2+1

log(1 + ezq−s) = log(1 + e−αw) . (4.53)

Putting everything together, f α(−i) in (4.46) can be written as

f (−i; α) =
∫ dθ

2π

[
log
(

1 + e−αw(θ)
)
− α log

(
1 + e−w(θ)

)]
. (4.54)

Finally, it is a matter of simple algebra to show that, in terms of the occupation
function ϑ(θ), we get

F(−i; α) =
∫ dθ

2π
Hα(θ) (4.55)

where we defined

Hα(θ) =
1

1 − α
log [ϑ(θ)α + (1 − ϑ(θ))α] . (4.56)

The α−Rényi entropy is finally given by

Sα(x) =
1

1 − α
log⟨Tα(x, 0)T̄α(0, 0)⟩ρ⊗α

w
∼ x

∫ dθ

2π
Hα(θ) , (4.57)

which coincides with the results obtained in [201, 203] (there in the more general
context of interacting integrable models).

4.4 Time dependence and long-range correlations

4.4.1 Long range correlations and GGE

Before embarking in the calculation of the entanglement growth, it is important
to recall the discussion at the end of Sec. 1.3.2 about long range correlations and
the breaking of the large deviation principle behind BFT. This happens when
cumulants do not have the correct scaling with the ballistic scale. We know that
dynamic correlations of local observables at large times after quantum quenches
is described quite generically by the same late-time GGE that describes static
correlations as demonstrated in [217]. The proof of the authors assumes absence
of long range interactions in the post-quench hamiltonian. What happens for the
entanglement entropy?
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Renyis and entanglement entropies from hydrodynamic

This quantity is related to correlation functions of twist fields which are non-
local with respect to the Hamiltonian as they depend on a semi-infinite part of the
system. This should give an argument on why long range correlations can still be
relevant in the context of entanglement and we will explicitly see this below. In
particular, instead of having to analyse correlation functions of local observables,
when dealing with twist fields we have to analyse integrated correlation functions.
Such integrations are basically responsible for accumulating correlations. Let
us see that is the case that large correlations develop after a quench of the type
considered here.

Behavior of GGE correlations

Here we study in more detail the long range correlations of integrated densities
and currents. Recall the definition of the generalised current as a line integral
(1.155)

Ω(x, t) =
∫ (x,t)

(j(x, t)dt − q(x, t)dx) , (4.58)

where j(x, t) and q(x, t) are the current and the density associated to the U(1)
conserved charge. It is not difficult to show that the associated current takes the
form45

j(x, t) =
1

2π

∫
dθdk eix(k−θ)

(
E(k)− E(θ)

k − θ

)
ψ†(θ, t)ψ(k, t) . (4.59)

We now show that in a GGE, the connected correlation functions of densities
decay fast enough in space, and the correlation functions of currents decay fast
enough in time, in such a way that scaled cumulants are finite, thus making the
BFT applicable. The former in fact is valid for all local observables, while the latter
only hold for the currents. We focus on two-point functions for simplicity, higher
order functions can be handled similarly via Wick theorem and multi-dimensional
stationary phase methods.

4There is an x-independent integration constant that here is chosen in such a way that the result
is a local observable. This in fact fixes the result up to an overall term proportional to the identity
operator 1; indeed there are no x-independent homogeneous local operators, whose space-time
translations are generated by the momentum and Hamiltonian, other than 1.

5Restricting the integration over momenta in [−π, π] and taking E(k) = cos(k) one reproduces
also the current on the lattice; but here we keep θ, k ∈ R for simplicity.
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4.4 Time dependence and long-range correlations

Let ⟨·⟩ be a GGE. Let us assume that the occupation function ϑ(θ) characterising
the GGE is analytic in a neighbourhod of R. From the basic fact

⟨ψ†(θ)ψ(θ′)⟩ = δ(θ − θ′)ϑ(θ) (4.60)

we have, on the one hand,

⟨ψ†(x)ψ(0)⟩ =
∫ dθ

2π
e−ixθϑ(θ) . (4.61)

For x > 0 (resp. x < 0), contour deformation can be performed as θ 7→ θ − iγ
(resp. θ 7→ θ + iγ) for γ > 0 small enough, and we see that the resulting integral
decays exponentially as |x| → ∞. This implies exponential decay of all two-
point connected correlation functions of local observables formed out of sums of
products of ψ(x), ψ†(x) and their derivatives, including U(1) densities. It also
implies linear scaling of cumulants; for instance this would mean

∫ X

0
dx
∫ X

0
dx′ ⟨ψ†(x)ψ(x′)⟩

=
∫ X

0
dx
∫ X

0
dx′

∫ dθ

2π
e−i(x−x′)θϑ(θ)

∼
∫ X

0
dx
∫ X

0
dx′e−γ|x−x′| ∼ X (4.62)

where in the last line we have shifted θ 7→ θ − i sign(x − x′)γ and used sign(x)x =

|x|. This is the correct ballistic growth of the cumulant.
On the other hand, we find

⟨ψ†(0, t)ψ(0, 0)⟩ =
∫ dθ

2π
eitE(θ)ϑ(θ). (4.63)

This has a stationary phase at θ∗ such that E′(θ∗) = 0; this point is unique by our
assumption of strict convexity (and θ∗ = 0 by symmetry, although we don’t make
use of this fact in this calculation), so a saddle point analysis gives

⟨ψ†(0, t)ψ(0, 0)⟩ ∼
√

i eitE(θ∗) ϑ(θ∗)√
2πt

. (4.64)
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Renyis and entanglement entropies from hydrodynamic

Therefore, correlation functions of generic local observables O1(x, t), O2(x, t)
formed out of bilinears of creation and annihilation operators have algebraic decay

⟨O1(0, t)O2(0, 0)⟩c = O
(1

t

)
(t → ∞). (4.65)

For such decay, cumulants of total time integrals do not grow linearly,

⟨
∫ T

0
dt O1(0, t)

∫ T

0
dt′ O2(0, t′)⟩

c

≫ T (T → ∞) (4.66)

thus breaking the large-deviation principle at the basis of the BFT. However, an
important remark is that this generic behaviour of fermion bilinears does not hold
in the case of currents, O1(x, t) = O2(x, t) = j(x, t). Indeed, using (4.59) with x = 0,
we see that we must set θ = k = θ∗ for the long-time limit of the current two-point
function. From

E(k)− E(θ)
k − θ

= E′(k) +O(k − θ) (4.67)

we realise that E(k)−E(θ)
k−θ

∣∣
k=θ=θ∗

= 0. Therefore, the current two-point function
decays faster than 1/t; in fact it decays as

⟨j(0, t)j(0, 0)⟩c = O
( 1

t3

)
(t → ∞). (4.68)

This guarantees the correct scaling of cumulants

⟨
∫ T

0
dt j(0, t)

∫ T

0
dt′ j(0, t′)⟩c = O(T) (T → ∞) (4.69)

and thus the validity of the BFT. A similar argument shows can be done for the
full Ω(x, t).

Approach to the GGE

We have seen that the behavior of integrated correlation functions on GGE states
generically does not respect the large deviation principle assumptions but for the
currents and the densities we are safe, at least in the fermionic theory. Here we
want to discuss the approach to the GGE. This is relevant for the calculation of the
entanglement growth after a quantum quench. Intuitively the presence of ballis-
tically propagating quasi-particles in the initial state emitted with rapidities ±θ

causes correlations along space-time regions, depending where their trajectories
lie with respect to the integration path in Ω(x, t). In order to apply the BFT we
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4.4 Time dependence and long-range correlations

just repeat the usual arguments for the correlation function of U(1) twist fields,
this time, the one with one-particle eigenvalue (4.43). Here we analyse a bit more
in detail how the GGE is approached in time to see whether we can arbitrarily
choose this path exploiting the deformation invariance of the definition of twist
fields.

Let |Ψ⟩ be the initial state (4.6). We have

Gψ†ψ
θθ′ (t, s) = ⟨Ψ|ψ†(θ)ψ(θ′) |Ψ⟩ = ⟨ψ†(θ)ψ(θ′)⟩ρw

= δ(θ − θ′)ϑ(θ). (4.70)

Since |Ψ⟩ is gaussian, by Wick’s theorem, the only difference between averages in
|Ψ⟩ and in ⟨·⟩ρw

come from the contraction

⟨Ψ|ψ(θ)ψ(θ′) |Ψ⟩ (4.71)

and its complex conjugate. Thus we evaluate ⟨Ψ|ψ(x, t)ψ(x′, t′) |Ψ⟩ in three main
situations that are important for our analysis: t = t′, x ̸= x′ (for the cumulants
of space-integrated conserved densities), and x = x′, t ̸= t′ (for the cumulants of
time-integrated currents) and x ̸= x′, t ̸= t′ (for analysing the correlation between
the spatially separated time-integrated currents).

In the first case, we have, using the bogolioubov transformation (4.7)

Gψψ
xx′(t, t) = −

∫ dθ

2π
ei(x−x′)θ−2itE(θ) f ∗−θg−θ. (4.72)

Consider t → ∞ with x, x′ fixed. Then there is a stationary phase at θ∗ : E′(θ∗) = 0,
with a resulting integral ∝ 1√

t
. Thus, this decays as t → ∞: for every two-point

functions on intervals that stay finite, the GGE is approached. We notice that
as g−θ∗ = 0 (recall that it can be chosen odd), for fermion two-point functions,
the approach is proportional to 1/t3/2 instead of 1/

√
t; and for multilinears of

fermions, the approach is faster.
But we are interested in the scaling x, x′, t ∝ ℓ → ∞, (x − x′)/t = ξ, for

which the exponential has a stationary phase at θ∗ = θ∗(ξ) : E′(θ∗) = ξ/2, with
a resulting integral ∝ 1/

√
ℓ. In charge-neutral fermion bilinears, such as those

involved in densities and currents, two such contractions will be multiplied with
each other. Thus we have, for instance,

⟨Ψ| q(x, t)q(x′, t) |Ψ⟩c = ⟨q(x, t)q(x′, t)⟩c
ρw

+ C(ξ) (tℓ)−1 +O(ℓ−2), (4.73)
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Renyis and entanglement entropies from hydrodynamic

thus the correction is O(1/ℓ). Then, for the cumulant we have

⟨Ψ|
∫ ℓX

0
dx q(x, ℓt)

∫ ℓX

0
dx′ q(x′, ℓt) |Ψ⟩c = ℓ2 ⟨Ψ|

∫ X

0
dx q(ℓx, ℓt)

∫ X

0
dx′ q(ℓx′, ℓt) |Ψ⟩c

∼ ⟨
∫ ℓX

0
dx q(x, ℓt)

∫ ℓX

0
dx′ q(x′, ℓt)⟩c

ρw +O(ℓ)

where the correction O(ℓ) is ℓ
∫ X/t
−X/t dξ (X − 2ξt)C(ξ). Therefore, the correction

due to the quench changes the linearly scaling part of the cumulant, hence modifies
the scaled cumulant from its GGE value (recall that the scaled cumulant is obtained
by dividing by ℓX, and taking the large ℓ limit). Here it would be possible to
evaluate explicitly this modification, however it is not necessary for our calculation.
The modification due to the quench comes from pair productions – this will be
made much clearer when we study the single-mode densities and currents below.

In fact, there is one limit where it is useful to evaluate this correction term: the
limit X/t → 0 of ℓX-scaled spatially-integrated densities as above. The result for
the correction is explicitly

lim
X/t→0

t
X

∫ X/t

−X/t
dξ
(X

t
− 2ξ

)
C(ξ) = 0 (4.74)

as C(ξ) is bounded. Thus, in this limit we recover the GGE result. This is in
agrement with taking first the long-time limit of the finite-interval cumulant, then
the limit of the scaled cumulant on a long interval (this means that the limit
X/t → 0 is in fact uniform in t).

In the second case, where we can set x = x′ = 0, we find, with E′(θ∗) = 0 and
a saddle point analysis

Gψψ
00 (t, t′) = −

∫ dθ

2π
ei(t+t′)E(θ) f ∗(−θ)g(−θ) ∼

√
i ei(t+t′)E(θ∗) f (−θ∗)∗g(−θ∗)√

2π(t + t′)
.

(4.75)
As E(θ) is symmetric, this is θ∗ = 0, and then since g(θ∗) = 0 the whole result
vanishes. Therefore,

Gψψ
00 (t, t′) = O

( 1
(t + t′)3/2

)
. (4.76)

Hence, the corrections to cumulants of charge-neutral bilinears involve

∫ T

1
dt
∫ T

1
dt′

1
(t + t′)2 = O

(
1

T3

)
≪ T (T → ∞) (4.77)
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4.4 Time dependence and long-range correlations

(where the lower boundary does not matter for the large-T analysis). This correc-
tion is sublinear, therefore the quench does not affect cumulants of equal-position
time-integrated quantities: for these, the GGE is reached quickly enough. The
lack of modification due to the quench comes from the lack of pairs of particles
produced at equal (zero) momenta, due to the fermionic statistics.

We remark that if there were particles created at zero momentum (for instance,
for bosonic systems), then, still by a calculation similar to that of Eqs. (4.67)-(4.69),
the correction due to the quench would vanish for cumulants of total currents, which
are in any case the objects of interest. Therefore, the fact that pairs of particles of
zero momentum are not produced, is not an essential aspects of our calculation.

Finally, we may also analyse time-integrated currents at two different points in
a similar way as above, finding:

⟨Ψ|
∫ ℓT

0
dt j(ℓx, t)

∫ ℓT

0
dt′ j(ℓx′, t′) |Ψ⟩c ∼ ⟨

∫ ℓT

0
dt j(ℓx, t)

∫ ℓT

0
dt′ j(ℓx′, t′)⟩c

ρw +O(ℓ) .

This is important for the calculation of the Rényi entropy after the quench. With
ξ = (x − x′)/(t + t′), the saddle point leading to the O(ℓ) correction is at θ∗ :
E′(θ∗) = ξ. Thus, the correction due to the quench again changes the linearly
scaling part of the two-point cumulant. Here, the limit ξ → ∞ is interesting, and
easy to evaluate: as ξ → ∞, the saddle point will be at θ∗ → ∞, and we only
have to use the fact that gθ → 0 as |θ| → ∞. Therefore, the correction vanishes
as ξ → ∞, and we may use the GGE result, where scaled cumulants of time-
integrated currents become sums of cumulants at x and at x′ in the GGE (which
take the same values by translation invariance).

4.4.2 Time evolution of half-system entropy

In this case the relevant correlation function is

⟨Ψα|Tα(0, t)|Ψα⟩ (4.78)

and it is schematically depicted in 4.2 on the left. The twist field is inserted at
(0, t) and the cut goes from (0, t) → (∞, t) along an horizontal path according to
the definition (4.42). Along such path we have shown in (4.78) there long range
correlations of time integrated currents modify the scaling of the cumulant and
thus BFT breaks down. Nevertheless, using path independence of twist fields
correlation functions, we can deform the path, between its initial and final points,
in a way to avoid such correlations. Specifically, we choose the piece-wise linear
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path joining the points (0, t) → (0, 0) → (∞, 0). We note that as the final point is
at spatial infinity, it can be displaced to time 0 – this in fact implements the correct
physics of the entanglement entropy due to the single boundary at x = 0. Then,
we may represent the one-point function as

⟨Ψα|Tα(0, t)|Ψα⟩ ≍ ⟨Ψα|Tα(0, t)T̄α(0, 0)Tα(0+, 0)|Ψα⟩ (4.79)

where the factors Tα(0, t)T̄α(0, 0) represent the segment of path (0, t) → (0, 0),
and the factor Tα(0+, 0), the segment (0, 0) → (∞, 0). This is valid as an asymp-
totic relation for large t, where the UV singularity due to the proximity of the
fields T̄α(0, 0) and Tα(0+, 0) (which occurs because of renormalisation effects) is
neglected.

To simplify this we note that the segment of path (0, 0) → (∞, 0) does not provide
any contribution to the result. This is because we may re-write the branch-point
twist field Tα(0+, 0) as is done in Section 4.2, but in the basis of the before-quench
canonical free fermions of the replica theory ai(x, 0). Once this is done, using the fact
the a(x, t) kills the initial state (according to (4.8)) we see it gives no contribution.
We can now repeat the steps already done for the equilibrium entropy: using the
factorisation formula (4.40) and setting α = 0 in (4.12) and performing the sum
one obtains the expected result

Sα(t) =
1

1 − α
log⟨Tα(0, t)T̄α(0, 0)⟩ρ⊗α

w
∼ t

∫ dθ

2π
|v(θ)|Hα(θ) . (4.80)

obtained in the literature both from exact calculation in [205] and within the
quasi-particle picture in [209, 210].

4.5 The case of ballistically growing interval

We have seen that long range correlations generically develop along paths in
space-time. The trick to apply the BFT even in presence of the correlations has its
roots in path independence of the twist fields. These can be deformed as in the
case of the entropy of the half system in order to avoid dangerous correlations.
One of the main results of [4] is the definition of new types of twist fields: they are
a refined version of twist fields and are dubbed single-mode and pair-mode twist
fields. They can be used to take into account the fact that if one wants to compute
the entropy evolution of an interval at ballistic scales, the location in space-time
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KING’S COLLEGE LONDONPAOL A RUGGIERO

•  :  (for time-dependence) 

• Correlations and breaking of LDT : further info  

• BFT  (“vertical” path) :  

• Rényi entropy of semi-infinite system after a quench: 

        

A = [0, ∞] ⟨Tα(0,t)⟩ ≃ ⟨Tα(0,t)T̄α(0,0)⟩
Ψin⟩ = ∏

θ>0

1
Zθ

eWθψ†
θ ψ†−θ ∅⟩

⟨Tα(0,t)T̄α(0,0)⟩ ≍ exp {t Fα(1)}

Sα(t) = t∫ dθ
2π

|v(θ) |Hα(θ)

 : HALF SYSTEM AFTER A QUANTUM QUENCHSα(t)

t

x

Tα(0,t)

0

t

x

Tα(0,t)

0 T̄α(0,0)
−vθ vθ −vθ vθ

[Alba,Calabrese,2017]

Fig. 4.2 Evolution of Rényi entropies of half system A = [0, ∞] within BFT. Left:
Initial integration path. Because of initially entangled pairs, points along this path
at time t will be correlated, which prevents us from applying BFT directly. Right:
Deformed integration path. Along this new path points are not correlated anymore.
Moreover the only term contributing to the growth in time of entanglement is the
vertical path from (0, t) to (0, 0).

where long range correlations develop generically depend both on the velocity of
the quasi-particles and on the particular ray we are looking at. This is because of
the saddle point equations governing the approach to a GGE of basic correlators
are (see (4.72) and Fig. 4.3)

2v(θ) = ξ . (4.81)

The relevant correlation function in this case is

⟨Ψα|Tα(0, t)T̄α(x, t)|Ψα⟩, x = ξt, t → +∞. (4.82)

Looking at Fig. 4.3 it is easy to be convinced that the limits ξ → ∞ and ξ → 0 are
relatively easy. In each of these cases it is enough to choose the path along which
no correlations develop. This is the broken path on the left at short times (x ≫ t)
and that on the right at large times x ≪ t. In this case the correlation function
factors giving the preditions (4.57) and (4.80) in the two asymptotic limits

Sα(x, t) =
1

1 − α
log⟨Tα(0, t)T̄α(x, t)⟩ ∼





2t
∫ dθ

2π
|v(θ)|Hα(θ) t ≪ x

x
∫ dθ

2π
Hα(θ) t ≫ x.

(4.83)

Since we want a result that is valid all over space-time we next introduce the new
type of twist fields.
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4.5.1 Single-mode and pair-mode twist fields

Here we summarise the main construction of single-mode and pair-mode twist
fields. These refined versions of twist fields allow to take into account the corre-
lations along path. The basic idea is to write the conserved charge as a sum of
charges in small rapidity shells such that the twist field factors T ∼ ∏θ Tθ. The
BFT could be applied to every Tθ and for ech θ a smart choice of the path in made.
This can be done because it’s like one is working at fixed θ.

To construct the new conserved charges we note that a valid conserved charge Q is
usually considered to be extensive, that is scale linearly with the volume (typically
one requires ⟨Q2⟩c ∝ L [247, 248]). Earlier we discussed the replica model with α

copies, and the U(1) charges Qp, which are just the integration Qp = hp
∫

dθ Qθ,p

(with hp = πp
α ) over all momenta θ of the continuous basis Qθ,p = ψ†

θ,pψθ,p in the
Fourier-copy p. There, we have also discussed the twist fields τα

p associated to
these charges, which we could use in the computation of the Rényi entanglement
entropies. A natural extension of these constructions is the twist fields associated
to each conserved quantity Qθ,p. These charges Qθ are not extensive. However, as
they form a continuous basis, integrals on small θ-intervals are extensive; thus it is
better to define, for ϵ > 0 as small as desired the single mode charges

Qθ =
∫ θ+ϵ/2

θ−ϵ/2
dθ′ ψ(θ′)†ψ(θ′) . (4.84)

These act as
Qθ |θ′⟩ = Θ(ϵ/2 − |θ′ − θ|) |θ′⟩ (4.85)

hence have one-particle eigenvalues

hθ(θ
′) = Θ(ϵ/2 − |θ′ − θ|) , (4.86)

where Θ(x) is the Heaviside theta function. Clearly each “regularised" (by ϵ)
single-mode charge Qθ is conserved, [Qθ, H] = 0 and in a GGE in a finite volume
L, we have ⟨Q2

θ⟩
c ∝ L:

⟨Q2
θ⟩

c
=
∫ θ+ϵ/2

θ−ϵ/2
dθ′dθ′′ δ(θ′− θ′′)2n(θ′)(1−n(θ′)) =

L
2π

∫ θ+ϵ/2

θ−ϵ/2
dθ′n(θ′)(1−n(θ′)) .

(4.87)
As mentioned, if we want to write a density in real space for each b†(θ)b(θ),

we will get something non local. However, Qθ’s have quasi-local densities. We
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seek a function fθ(x, y) such that

∫
dxdy b†(x)b(y) fθ(x − y) = Qθ. (4.88)

Going to Fourier space, one can show that

fθ(z) =
sin( ϵz

2 )

πz
eiθz. (4.89)

The corresponding regularised single-mode density, parametrised by the momen-
tum, and one choice of the density (the only hermitian and PT symmetric one), is
given by

qθ(x, t) =
∫

dz b†(x + z/2, t)b(x − z/2, t) fθ(z). (4.90)

In terms of Fourier modes, this takes the form

qθ(x, t) =
∫ dkdk′

2π
eix(k′−k)Θ

(
ϵ

2
−
∣∣∣k + k′

2
− θ
∣∣∣
)

b†
k(t)bk′(t). (4.91)

As [Qθ, H] = 0, the density qθ(x, t) has an associated current satisfying a continuity
equation and by a calculation analogous to (4.59) one finds

jθ(x, t) =
∫ dkdk′

2π
eix(k′−k)

(
E(k′)− E(k)

k′ − k

)
Θ
(

ϵ

2
−
∣∣∣k + k′

2
− θ
∣∣∣
)

b†
k(t)bk′(t) .

(4.92)
Explicitly their associated densities and currents qθ(x, t) and jθ(x, t),

Qθ =
∫

dx qθ(x, t), ∂tqθ(x, t) + ∂x jθ(x, t) = 0 . (4.93)

From this, one can immediately construct the associated single mode twist field

τθ(x, t) = exp
[
i
∫ +∞

x
dx′ qθ(x′, t)

]
(4.94)

and, for its correlation functions, apply the corresponding BFT based on the
one-particle eigenvalue (4.86). It is more useful the pair mode twist field

τ|θ|(x, t) = exp
[
i
∫ +∞

x
dx′ q|θ|(x′, t)

]
(4.95)
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constructed from the pair-mode charges Q|θ| = Qθ + Q−θ and the associated densi-
ties

q|θ|(x, t) = qθ(x, t) + q−θ(x, t) . (4.96)

Turning the attention to the squeezed state (4.6), it is clear that this state factorises
into momentum intervals as follows:

|Ψ⟩ = ∏
θ∈(N+ 1

2 )ϵ

|Ψ|θ|⟩ (4.97)

where

|Ψ|θ|⟩ =
1

N|θ|
exp

(∫ θ+ϵ/2

θ−ϵ/2
dθ′ Kθ,−θψ†(θ)ψ†(−θ)

)
|0|θ|⟩ (4.98)

and we write the ground state in a naturally factorised way as |0⟩ = ∏θ∈(N+ 1
2 )ϵ

|0|θ|⟩.
Here |0|θ|⟩ is the vacuum state of the operators ψ|θ| = ψθ + ψ−θ. Both act trivially
(as zero) on |Ψ|θ′|⟩ if θ′ ̸= θ (θ, θ′ ∈ (N + 1

2)ϵ). The pair-mode twist field acts
trivially (as the identity) on |Ψ|θ′|⟩ if θ′ ̸= θ.

Pair-mode and single-mode twist fields are still U(1) twist fields, for the sub-
U(1) symmetry acting on the tensor factor of modes within [θ − ϵ/2, θ + ϵ/2].
Note in particular that the global U(1) twist field τ(x, t) associated to the total
charge Q =

∫
dθ ψ†

θ ψθ =
∫

dx ψ†(x)ψ(x) can be factorised as

τ(x, t) = ∏
θ∈(N+ 1

2 )ϵ

τ|θ|(x, t) (4.99)

and that, by factorisation of its action on the state, we have

⟨Ψ| τ(x, t)τ(x′, t′) |Ψ⟩ = ∏
θ∈(N+ 1

2 )ϵ

⟨Ψ|θ|| τ|θ|(x, t)τ|θ|(x′, t′) |Ψ|θ|⟩ . (4.100)

Clearly, as the pair-mode twist fields act trivially on other tensor factors in the
state, we may also write, more simply,

⟨Ψ| τ(x, t)τ(x′, t′) |Ψ⟩ = ∏
θ∈(N+ 1

2 )ϵ

⟨Ψ| τ|θ|(x, t)τ|θ|(x′, t′) |Ψ⟩ . (4.101)

4.5.2 Hydrodynamic derivation of quasi-particle picture

Armed with single-mode and pair-mode twist fields (4.101), we re-write the cor-
relation (4.82) factoring over replicas and over rapidity shells in the following
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KING’S COLLEGE LONDONPAOL A RUGGIERO

•  :   

• Asymptotic regimes : “small” and “large” time (  ) 

     

• Rényi entropies of finite interval after a quench :  

A = [0, x] ⟨Tα(0,t)T̄α(x, t)⟩
x /t → ∞, 0

⇒ ⟨Tα(0,t)T̄α(x, t)⟩ = { |⟨Tα(0,t)T̄α(0,0)⟩ |2 t ≪ x
⟨Tα(0,t)T̄α(x, t)⟩ t ≫ x

Sα(x, t) = 2t ∫ dθ
2π |v(θ) |Hα(θ) t ≪ x

x ∫ dθ
2π Hα(θ) t ≫ x

 : FINITE INTERVAL AFTER A QUANTUM QUENCHSα(x, t)

t

x

Tα(0,t)

0

T̄α(x, t)

−vθ vθ

t

x

Tα(0,t)

0

T̄α(x, t)

vθ−vθ

Fig. 4.3 Evolution of Rényi entropies of finite subsystem A = [0, x] within BFT.
The integration path that we need to chose (continuous dark-gray line) in order for
BFT to apply is different at short (left) and long (right) times. The choice depends
on which points in spacetime get correlated because of initially entangled pairs
produced by the initial state.

way

⟨Ψα|Tα(0, t)T̄α(x, t)|Ψα⟩ = ∏
θ∈(N+ 1

2 )ϵ

α/2

∏
q=−α/2+1

⟨Ψ2q−1|τα
|θ|,2q−1(0, t)τ̄α

|θ|,2q−1(x, t)|Ψ2q−1⟩ .

(4.102)
Having made this re-writing, the analysis now follows that of the ξ → ∞ and

ξ → 0 limits made above: there is an exact parallel for each individual two-point
function

⟨Ψp|τα
|θ|,p(0, 0)τ̄α

|θ|,p(x, t)|Ψp⟩ (p = 2q − 1),

with the only difference that it is not necessary to take the asymptotic limit in ξ. For
each θ (and each p), the factor |Ψ|θ|,p⟩ of the full state |Ψp⟩, on which τα

|θ|,q act
non-trivially, correlates points (x, t), (x′, t′) only for

|x − x′|
|t + t′| ∈ [v(θ − ϵ/2), v(θ + ϵ/2)]

(recall that θ ∈ (N + 1
2)ϵ). It is possible microscopically confirm this condition

performing an analysis of cumulants for single-mode and pair-mode densities and
currents, see [4] for details of the calculation.

Therefore, for ξ > 2v(θ + ϵ/2) correlations occur on the horizontal path
(0, t) → (x, t), but no correlations occur on (0, t) → (0, 0) → (x, 0) → (x, t)
(note that, again, the segment of path (0, 0) → (x, 0) does not contribute). Thus we
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must choose the latter path (Fig. 4.3 (left)). On the contrary, ξ < 2v(θ − ϵ/2), cor-
relation occur between the segment of paths (0, t) → (0, 0) and (x, 0) → (x, t), but
not on the horizontal path (0, t) → (x, t). Thus we must choose the latter (Fig. 4.3
(right)). In making these right choices, the correlation functions of pair-mode twist
fields tend to their values in the long-time GGE,

⟨Ψp|τα
|θ|,p(0, 0)τ̄α

|θ|,p(x, t)|Ψp⟩

≍




⟨τα

|θ|,p(0, t)τ̄α
|θ|,p(0, 0)τα

|θ|,p(x, 0)τ̄α
|θ|,p(x, t)⟩ρw ξ > 2v(θ + ϵ/2)

⟨τα
|θ|,p(0, 0)τ̄α

|θ|,p(x, 0)⟩ρw ξ < 2v(θ − ϵ/2)

≍





∣∣∣⟨τα
|θ|,p(0, t)τ̄α

|θ|,p(0, 0)⟩ρw

∣∣∣
2

ξ > 2v(θ + ϵ/2)

⟨τα
|θ|,p(0, 0)τ̄α

|θ|,p(x, 0)⟩ρw ξ < 2v(θ − ϵ/2)
. (4.103)

At this point one uses the results already derived for the equilibrium entropy
and for the time evolution after the quench for the half system in the two regions
of space-time dictated by the velocity constraint. The only difference is that θ

integrals are now restricted to a shell

θ ∈ Iθ′,ϵ := [θ′ − ϵ/2, θ′ + ϵ/2] ∪ [−θ′ − ϵ/2,−θ′ + ϵ/2] (4.104)

because of the restrictions imposed by the single-particle eigenvalue of the single-
mode (actually of the pair-mode) twist field (4.86). The result is (taking the limit
ϵ → 0)

Sα(x, t) =
1

1 − α
log⟨Tα(0, t)T̄α(x, t)⟩ ∼

∫ dθ

2π
min(x, 2t|v(θ)|) Hα(θ) . (4.105)

This is in full agreement with the quasiparticle picture [209, 210]. This is the
promised hydrodynamic origin of the entanglement growth and it is based on
purely classical concepts. The fluctuations are encoded in the initial state and
transported via the Euler equations: that is all we needed.

4.6 Outlook

In this last chapter we have discussed the application of BFT formalism to the
calculation of the entanglement Renyi entropies. We hase seen extensively how
the presence of long range correlations might hinder the direct application of BFT
to quench problems and presented a way to handle this complication. This is done
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via the introduction of new types of fields, single-mode (and their pair relatives)
twist fields. They are are refined version of twist fields. The research on long range
correlations in the dynamics of many-body system is not well estabilished and
such concepts have not been appreciated too much in the recent literature, see
[249] for an example. We would like to mention though that recently a space-time
duality appraoch [212] has been proposed for the calculation of full counting
statistics in many-body systems. This is consistent with our findings of course but
they are able to deal with truly interacting systems. At present we have to further
develop our theory to attach this situation. A comment is that a space-time duality
is natural in a sense, at least from the point of view of transport equations. Indeed,
in principle there space and time play the same role . Also, we have been able
to give a fully hydrodynamic ab-initio derivation of the quasi-particle picture for
Reny entropies. The next natural step, is of course to understand how to generalise
our construction in the presence of interactions. This is non-trivial as in that case
the scattering matrix in replica space is not constant anymore. We will investigate
these details in future works.

141



142



Conclusions

We have reached the end of this Thesis and at this point we hope that the reader
enoyed the journey and eventually learnt something new about the interplay
between hydrodynamic principles and fluctuations in many-body systems. We
hope to have been able to convey this central idea, which was the main conduc-
tion wire between all the chapters. We have started simply introducing the main
ideas of integrability and hydrodynamics and later we moved to large deviations
and probabilities in many-body quantum and classical systems. The Onsager
fundamental idea that correlations and so fluctuations follow the same relaxation
laws of macroscopic observables directly leads to the hydroydnamic theory of
dynamical correlation functions. Hydrodynamic projections form the basis and
the main tool to use in situations where the observables of interest have overlaps
with conserved densities. When this fails, the decays of correlation functions,
that means decorrelation and information loss, is faster than algebraic, typically
exponential. Large deviations rule such exponential decays, probabilities that
are extremely small. Such behavior can still be accessed knowing Euler scale
hydrodynamics and equilibrium quantities via the Ballistic Fluctuation Theory.
The by-product is that we have a powerful tool to compute a wide range of things:
decay rates of correlations, counting statistics of certain internal charges to dy-
namics of certain measures of entanglement. At this point, it is worth mentioning
a number of possible future possibilities and directions. First of all, the explicit
calculation of counting statistics in spin models (even free) and bosonic systems
has not been discussed in detail. In the literature there are a number of studies
on this. The characterisation of generic oscillations [250] in correlation functions
(or even one-point functions) is interesting and BFT potentially provides some of
them toghether with saddle-point methods. Inhomogeneous scenarios like those
of [251, 252] have remained excluded from our study but there exist already a
large body of works, especially [136] allowing the repetition of what we have done
for trapped systems. In interacting models, it is known that diffusion appears,
especially in relation to thermalisation [253] and it is natural to ask what is the
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fate of large deviations when looking at the finer diffusive scale. Recently third
order dispersive hydrodynamics appeared [254] and the question of the analysis
of dispersive structure in hydrodynamics is compelling. In soliton gas theories
such phenomena have been known since the beginning [255] but the Witham
theory does not offer a full solution [256]. Also, what is the fate of fluctuations
at T = 0? Do hydrodynamic projections still occur when higher derivatives are
included in the gradient expansion? Another more mathematical aspect related
to this Thesis is the study of the asymptotic of Fredholm determinants [34]. All
the present approaches to exactly calculable full counting statistics and dynamical
correlation in spin chains make use of these tools. Is it possible to map back the
operator of the determinant to some local hamiltonian and use hydrodynamic
principles? All these questions pave the way for interesting future research and
leave room for fundamental advances in understanding such a complicated topic
as that of many-body systems out-of-equilibrium. There is one last thing that we
would like to claim and that should appear relatively reasonable: equations de-
scribing large scale physics in the bulk of the system are classical. Indeed, besides
finer and finer scales captured by higher orders in a derivative expansion of the
response of the system with respect to the drives, the main contributions come
from Euler and diffusive hydrodynamics (Navier-Stokes) which are two predom-
inantly classical phenomena. The diffusion equation is not even relativistically
invariant and depends on the reference frame. Of course the Planck’s constant
appears in the TBA equations via the scattering kernels related to the scattering
matrix and so in the dressing equations and in the effective velocity so directly
into the Euler equation already. Ref. [86] argues that, at least in free theories, high
order corrections describe effects negligible far from the middle of the light-cone,
only visible at the edges of the light-cone. In particular the third order spatial
derivatives are proportional to h̄2 and become subleading. It looks like that as far
as dynamics of the bulk is concerned the mechanisms responsible for the dynamics
are the same as those of classical physics. Quantising the fluctuations around the
classical theory [90] allows to reconstruct quantum fluctuations in the initial state:
this is probably all that is needed, if one is interested in large scales only. Noise
and dephasing make sure that classical physics emerges in the same way as com-
monly experienced electromagnetic fields are described by Maxwell’s equations
although the energy of a photon is quantised in units of h̄. We have seen that even
quantities that are believed to be purely characteristics of quantum systems, like
the entanglement entropy, at large scales are captured by hydrodynnamics. All
that was needed was to take into account correctly the initial states. Although
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there might be engineered protocols where signatures of quantum mechanics are
visible macroscopically [257], in isolated systems with local interactions these
mechanisms are non-generic and, at large scale, physics should be largely classical.
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Appendix A

Jordan-Wigner strings

We consider the correlator ⟨σ+
x (t)σ−

0 (0)⟩ and wish to establish formula (2.51). For
simplicity, we concentrate on the expectation being taken in the odd-fermion
sector, projected onto by P−; the argument is similar in the other sector. Then,
according to the JW transformation (2.4), in ⟨σ+

x (t)σ−
0 (0)⟩ we may set σ−

0 (0) = a0

and

σ+
x (t) = eiH−ta†

x exp

(
iπ

x−1

∑
y=0

a†
yay

)
e−iH+t = a†

x(t) exp

(
iπ

x−1

∑
y=0

q(y, t)

)
eiH−te−iH+t

(A.1)
where we use q(x) = a†

xax, and where the fermion time-evolution is with respect
to H− (see (2.10)).

We now show that, in the limit of an infinite chain N → ∞, we have

eiH−te−iH+t = exp
(

iπ
∫ t

0
ds j(0, s)

)
. (A.2)

For this purpose, let us denote by H±|zy the fermionic hamiltonians H± where in
(2.6) the sum is for x from y to z − 1. Then, one can check that for every y ∈ N

and z ≫ y,

e−iH+|y−yt = eiπQ|z0e−iH−|y−yte−iπQ|z0 . (A.3)

Therefore,
eiH−|y−yte−iH+|y−yt = eiπQ|z0(t)e−iπQ|z0 (A.4)

where Q|z0(t) is evolved with respect to H−|y−y. Note that q(x) is still a conserved
density for time evolution by H−|y−y. Its associated current is the operator

j(x) = 2i(a†
xax−1 − a†

x−1ax) (A.5)

147



Jordan-Wigner strings

for time evolution by H− for all |x| ≪ y, but it is identically 0 for all |x| ≫ y,
because at these positions the evolution by H−|y−y is trivial. Therefore, using the
conservation law (2.16) (for H−|y−y), we have

Q|z0(t) = Q|z0 +
∫ t

0
ds j(0, s). (A.6)

The limit y → ∞ on the left-hand side of (A.4) exists, as H−|y−y − H+|y−y is sup-
ported on the sites −1, 0, and thus by the Baker-Campbell-Hausdorff formula, the
left-hand side becomes an operator supported with exponential accuracy around
the position 0. Similarly, the limit z ≫ y → ∞ on the right-hand side of (A.4)
also exists, using (A.6) and the fact that, by the Lieb-Robinson bound [258], the
time-evolved current is supported on a finite number of site (at most proportional
to t) with exponential accuracy. In this limit, j(0, s) is now evolved with respect to
H−. We obtain

eiH−te−iH+t = exp
(

iπ
∫ t

0
ds j(0, s) + iπQ+

)
exp

(
−iπQ+

)
. (A.7)

By contour deformation, we may rewrite

∫ t

0
ds j(0, s) =

∫ t

0
ds j(z, s) + Q|z0(t)− Q|z0 (A.8)

where Q+ = limz→∞ Q|z0 . By the Lieb-Robinson bound, the operator I =∫ t
0 ds j(z, s) is supported, with exponential accuracy, on [z − vt, z + vt], where

v is the Lieb-Robinson velocity. Therefore, the projection of I on negative posi-
tions is exponentially small as z is made large. As both H− and j(z) preserve
fermion number, the operator I is also fermion-number-preserving. Therefore, for
z large enough, all operators on the right-hand side of (A.8) are fermion-number-
preserving and supported on non-negative positions. Hence they commute with
Q+ (with exponential accuracy). The Baker-Campbell-Hausdorff formula applied
to (A.7) then gives (A.2), which is exact as the result is independent of z. Using
(A.2) in expression (A.1), and similar arguments on the even-fermion sector (pro-
jector P+) we obtain (2.52). We emphasise that this is an exact formula, and we
expect that it be possible to make it rigorous with currently known theorems in
the context of the algebraic formulation of quantum chains.

We now argue that the correct leading asymptotic behaviour at large x is (2.51).
The argument is based on the idea that the commutator of local observables at
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large distances in space-time tends to zero. This follows from the Lieb-Robinson
bound if we understand local observables as those supported on finite number of
sites, and if we take large space-like distances (again as determined by the Lieb-
Robinson velocity). However, for our argument, we need to extend the concept
of locality to “semi-local" observables, end-points of appropriate infinite strings
(such as in the Jordan-Wigner transformation, or more generally twist fields), and
to assume that vanishing also holds uniformly enough in time-like regions as well.
We note that in time-like regions, the weaker statement of “almost-everywhere
ergodicity" has been shown rigorously in thermal states for all quantum spin
chains with short-range interactions [134, 259], based on exponential decay of
correlations in space [260].

The observables

Q+(x) :=
∞

∑
y=x

q(y) (A.9)

are fermion-number-preserving, and commute with any fermion-number-preserving
local operator supported at positions z far enough from x (this fact we have already
used in our derivation above). Therefore, Q+(x) may be adjoined to the space
of fermion-number-preserving local operators1. This space also includes j(x).
Commutators of operators within this space vanish at large space-like separations.
Assuming that vanishing also holds in time-like directions2, it is then a simple
matter to see that, by the Baker-Campbell-Hausdorff formula,

exp

(
iπ

x−1

∑
y=0

q(y, t)

)
exp

(
iπ
∫ t

0
ds j(0, s)

)

= exp
(
iπQ+(x, t)− iπQ+(0, t)

)
exp

(
iπ
∫ t

0
ds j(0, s)

)

≍ exp
(

iπQ+(x, t)− iπQ+(0, t) + iπ
∫ t

0
ds j(0, s)

)
; (A.10)

that is, the neglected commutators do not contribute to the leading long-time
terms in the exponential. This gives (2.51).

1It is shown in [261] that such observables are elements of the Gelfand-Naimark-Segal Hilbert
space, and that they have good locality properties; this gives a partial justification of the present
loose argument.

2The weaker statement of vanishing of correlations under long-time averaging, valid almost
everywhere in space-time including time-like directions, is shown in [262], which serves to partially
justify our present hypothesis.
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Appendix B

Free fermionic techniques

B.1 Diagonalisation of quadratic fermionic Hamilto-
nians

There is a general receipe to diagonalise a generic quadratic fermionic Hamiltonian
and it is discussed in [147] . The procedure is very simple and it is important in
order to study correltion functions as well, expecially for numerical approaches.
Consider the generic quadratic Hamiltonian

H = ∑
xy

a†
x Mxyay +

1
2 ∑

xy

[
a†

xBxya†
y + h.c.

]
(B.1)

where h.c. stands for the hermitian conjugate. The matrix M is symmetric while
the matrix B can always be chosen to be anti-symmetric and real. We want to find
a canonical transformation to put the Hamiltonian in the form

H = ∑
k

Λkη†
k ηk + C (B.2)

where C is a constant and ηk are normalised Majorana fermions satisfying ordinary
anti-commutation relations. If this is possible then

[H, ηk] = −Λkηk (B.3)

by defintion. One defines the new fermions in the following way

ηk = ∑
x

gkxax + hkxa†
x (B.4a)
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η†
k = ∑

x
g∗kxa†

x + h∗kxax (B.4b)

and substitutes in (B.3). One derives the following conditions

Λkgkx = ∑
y

[
gkyMyx − hkyByx

]
(B.5a)

Λkhkx = ∑
y

[
gkyByx − MkyByx

]
(B.5b)

and introducing the linear combinations

ϕkx = gkx + hkx (B.6a)

ψkx = gkx − hkx (B.6b)

one arrives at (in matrix notation)

ϕk(M − B) = Λkψk (B.7a)

ψk(M + B) = Λkϕk (B.7b)

which can easily be seen to give

ϕk(M − B)(M + B) = Λ2
kϕk (B.8a)

ψk(M + B)(M − B) = Λ2
kψk . (B.8b)

Above ϕk and ψk are the columns of the matrices ϕ and ψ. These two equa-
tions determine both the energy spectrum and the transformation to new non-
interacting canonical fermions. Since M = MT and BT = −B we also have
(M ± B)T = M ∓ B and so both matrices (M ± B)(M ∓ B) are symmetric and
semi-positive definite. The eigenvalues Λk are real and the eigenvectors ϕk and ψk
are orthogonal and can be chosen to be real. This implies ϕϕT = 1 and ψψT = 1

which in turn means that the matrices g and h are real and they satisfy the relations

ggT + hhT = 1 (B.9a)

ghT + hgT = 0 . (B.9b)

This is proven by direct calculation from (B.6)

ϕϕT = ggT + hhT + ghT + hgT (B.10a)
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ψψT = ggT + hhT − ghT − hgT (B.10b)

which after summing and subtracting gives (B.9). In the same way one proves that
the η’s are canonical fermions. In matrix form we can write

(
η

η†

)
=

(
g h
h g

)(
a
a†

)
(B.11)

and by inspection one finds

(
a
a†

)
=

(
gT hT

hT gT

)(
η

η†

)
. (B.12)

These relations will prove very useful when computing correlation functions. It
only remains to compute the constant C in the transformed Hamiltonian. This
is done using the fact that the trace is invariant under canonical transformations.
The proof of this fact is easier using a matrix notation. so that In a chain with N
sites, on one side

Tr H = 2N−1 Tr A (B.13)

while on the other side

Tr H = 2N−1 Tr Λ + 2NC . (B.14)

The factors 1/2 come from the fact that Tr a†
xax = 1/2 because if the site at x is

unoccupied that state does not contribute to the sum. This happens exactly ones
in a fermionic trace. Overall we have found

H = ∑
k

Λkη†
k ηk +

1
2
(Tr A − Tr Λ) . (B.15)

The results of this appendix are fundamental both for the analytical and the
numerical study of correlation functions of spin chains that can be mapped to free
fermionic theories.
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B.2 Fermionic correlation functions

B.2.1 Determinants and Pfaffians

In this Appendix we provide details and proofs for some little known but useful
results for Pfaffians and determinants.

Definition B.2.1 (Pfaffian). Given an anti-symmetric 2N × 2N matrix A with
complex coefficients, its pfaffian is defined as

Pf A =
1

2N N! ∑
σ∈S2N

ϵσ

2N−1

∏
i=1

Aσ(i),σ(i+1) . (B.16)

There are many redundant terms in this sum. The first redudancy comes from
the fact that one can freely permute the the factors Aσ(i),σ(i+1) in the the product.
For instance, the permutation acting as σ(1) = 2N − 1, σ(2) = 2N, σ(2N − 1) = 1,
σ(2N) = 2 and the identity permutation give the same contribution as only the
order of the factors has changed. The number of ways to permute the factors is
of course N!. The other redudancy comes from the anti-symmetry of A. Every
time two permutations differ only by a swap of two labels, their signs differ by −1
which is compensated by the −1 coming from the anti-symmetry of the matrix. If
they differ by more than one swap the same thing happens. Given a string of N
pairs of indices, we can build a permutation differing by k swaps in (N

k ) different
ways. Summing over we obtain ∑N

k=1 (
N
k ) = 2N. In this way we can write

Pf A = ∑
i1<···<iN
j1<···<jN

Ai1,j1 . . . AiN ,jN . (B.17)

There is one important theorem relating Pfaffians and determinants.

Theorem B.2.1. For a 2N × 2N anti-symmetric matrix A we have

det A = (Pf A)2 . (B.18)

An elementary proof using only properties of triangular matrices can be found
in Ref. [263]. Pfaffians can be computed recursively. This can be seen as follows
[264]: consider a fermion whose anti-commutation relations give a c-number

{
ax, ay

}
= 2(x, y) (B.19)
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where the symbol (xy) just means any c-number function of x and y, it is just
notation. Consider also the following fermionic correlation function

1
4

Tr a1 . . . a2N ≡ (1, . . . , 2N) . (B.20)

This is a typical fermionic trace one would like to compute. Using the anti-
commutation 2N times and rearranging we find

Tr a1 . . . a2N = ∑
k
(−1)k(1, k)(2, . . . , k − 1, k + 1, . . . , 2N) (B.21)

and iterating again we obtain

(1, . . . , 2N) = ∑
i1<···<i2N

(i1, i2) . . . (i2N−1, i2N) . (B.22)

This is holds at zero temperature T = 0. Comparing to (B.17) we can formulate
the theorem

Theorem B.2.2. Given fermionic operators satisfying
{

ax, ay
}
= 2(x, y)1 the trace

of the product of 2N of them is given by

Tr a1 . . . a2N = 4 Pf C (B.23)

with the matrix C having elements

Cxy = (x, y) x < y x, y = 1, . . . , 2N (B.24a)

Cxy = −Cyx . (B.24b)

It is possible to extend this result to finite temperature gaussian states following
the method of Ref. [265]. A gaussian state is nothing but a state described by a
density matrix of the form

ρ =
1
Z

e−βH (B.25)

where the Hamiltonian H is quadratic. It is customary to call state also the
expectation value with respect to ρ: ⟨•⟩ρ = Z−1 Tr ρ•. This means that Wick’s
theorem [] holds. The generalisation of the above theorem reads

1Note that these fermions are real, also called Majorana fermions.
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Theorem B.2.3. Given a gaussian state ρ and fermionic operators satisfying{
ax, ay

}
= 2δxy, the following holds

⟨a1 . . . a2N⟩ρ = 4 Pf C (B.26)

with the matrix C having elements

Cxy = ⟨axay⟩ρ
x < y x, y = 1, . . . , 2N (B.27a)

Cxy = −Cyx . (B.27b)

These are powerful results reducing the complexity of a multi-point correlation
function to the calculation of Pfaffian. There are efficient algorithms for doing that
and we will discuss them in the appropriate Appendix.

B.2.2 Correlation functions of quadratic Hamiltonians

Using the results of the the previous sections it is possible to write in a compact
way a generic fermionic correlation function in a gaussian state. For simplicity we
will take the state to be a GGE of the form

ρ =
1
Z

e−∑k Wkη†
k ηk (B.28)

where ηk’s are canonical complex fermions. The density matrix is diagonal in the
occupation number basis. This is true for quadratic theories [] and the function Wk

completely characterised the state. With reference to the quadratic Hamiltonian
(B.1) we introduce two independent sets of real Majorana fermions

Ax = a†
x + ax (B.29a)

Bx = i(a†
x − ax) (B.29b)

satisfying equal time anti-commuation relations

{
Ax, Ay

}
=
{

Bx, By
}
= 2δxy (B.30a)

{
Ax, By

}
= 0 . (B.30b)
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The state (B.28) remains quadratic under the transformation to Majorana fermions
and Wick’s theorem keeps holding true. In particular Theorem (B.2.3) is still valid.
In particular, due to independence

⟨∏
x

Ax ∏
y

Bx⟩ = ⟨∏
x

Ax⟩ ⟨∏
y

By⟩ (B.31)

The time evolution spoils such property because
{

Ax(t), By
}
̸= 0. We can com-

pute this quantity in general using the transformation (B.12). In matrix form the
commutation relations for the complex fermions can be written as

{
a, a†

}
= a(a†)T + a†aT = 1 (B.32a)

{a, a} =
{

a†, a†
}
= 0 . (B.32b)

First of all we can compute the time evolution of the complex fermions a

a(t) = eiHt(gTη+ hTη†)e−iHt

= gTe−iΛtη+ hTeiΛtη† (B.33)

and taking the hermitian conjugate

a†(t) = gTeiΛtη† + hTe−iΛtη . (B.34)

With this result we get

A(t) = a†(t) + a(t)

= ϕT(eiΛtη† + e−iΛtη) (B.35)

and in the same way

B(t) = i(a†(t)− a(t))

= iψT(eiΛtη† − e−iΛtη) (B.36)

Now we can compute the anti-commutator, which is simple but tedious.Taking
into account the anti-commuation relations we have

{A(t), B} = 2ϕT sin(Λt)ψT (B.37)
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This is consistent with the fact that at t = 0 the Majorana fermions are independent.
In the same way one computes all the other anti-commutators and verifies they
are simple matrices so that Wick’s theorem will continue to hold as well as the
trace formula (B.2.3). The two point function correlation matrix on a GGE (B.28) is

ΓA(t)B = ⟨A(t)BT⟩

= ⟨ϕT
(

eiΛtη† + e−iΛtη
)

i
[
ψT
(

η† − η
)]T

⟩

= iϕT
(
−eiΛt ⟨η†ηT⟩+ e−iΛt ⟨η(η†)T⟩

)
ψ . (B.38)

Using
⟨η†ηT⟩ = (eW + 1)−1 (B.39)

where W is the diagonal matrix associated to Wk defining the state in (B.28), it a
simple matter to estabilish

ΓA(t)B = iϕT sinh(W/2 − iΛt)
cosh(W/2)

ψ . (B.40)

By the cyclicity of the trace

ΓAB(t) = ΓA(−t)B . (B.41)

The very same calculation, with minor modifications gives

ΓB(t)A = −ψT sinh(W/2 − iΛt)
cosh(W/2)

ϕ . (B.42)

ΓA(t)A = ϕT cosh(W/2 − iΛt)
cosh(W/2)

ϕ . (B.43)

ΓB(t)B = ψT cosh(W/2 − iΛt)
cosh(W/2)

ψ (B.44)

These are the elementary contractions needed to compute any correlation function
using the trace formula (B.2.3). We notice that such formulae can used to study
correlation functions not only of homogeneous fermionic Hamiltonian but are
valid also in presence of disorder []. It is convenient to introduce the vector of
fermions such that

U =

(
A
B

)
(B.45)
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with correlation matrix

Γ = ⟨UUT⟩ =
(

ΓAA ΓAB

ΓBA ΓBA

)
(B.46)

such that a generic fermionic correlation function between operators Ax and Bx

is obtained as a Pfaffian of a particular sub-matrix of (B.46) . In general, given a
matrix P such that Z = PU we have

⟨ZZT⟩ = Pf(PΓPT) = det P Pf Γ . (B.47)

B.2.3 Application to XY spin chains

Consider the following correlation function

4 ⟨s1
y(t)s

2
x+y⟩ = ⟨A1(t)B1(t) . . . Ay−1(t)By−1(t)Ay(t)A1B1 . . . Ay+x−1By+x−1Ay+x⟩

(B.48)
and it is of course a Pfaffian. The relevant matrix has dimension 2(y + x − 1)×
2(y + x − 1) and its elements read for i < j

C2i−1,2j−1 =





⟨AiBj⟩ 1 ≤ j ≤ y − 1

⟨Ai Ay⟩ j = y

⟨Ai(t)Aj⟩ y + 1 ≤ j ≤ y + x − 2

⟨Ai Ay⟩ j = y + x

(B.49a)

C2i−1,2j =




⟨Ai Aj⟩ 1 ≤ j ≤ y − 1

⟨Ai(t)Bj⟩ y + 1 ≤ j ≤ y + x − 1
(B.49b)

C2i,2j−1 =





⟨AiBj⟩ 1 ≤ j ≤ y − 1

⟨Ai Ay⟩ j = y

⟨Ai(t)Aj⟩ y + 1 ≤ j ≤ y + x − 2

⟨Ai Ay⟩ j = y + x

(B.50)

C2i,2j =





⟨Bi Aj⟩ 1 ≤ j ≤ y − 1

⟨Ai Ay⟩ j = y

⟨Ai(t)Aj⟩ y + 1 ≤ j ≤ y + x − 2

⟨Ai Ay⟩ j = y + x

(B.51a)
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C2i−1,2j =




⟨Ai Aj⟩ 1 ≤ j ≤ y − 1

⟨Ai(t)Bj⟩ y + 1 ≤ j ≤ y + x − 1
(B.51b)

C2i,2j−1 =





⟨AiBj⟩ 1 ≤ j ≤ y − 1

⟨Ai Ay⟩ j = y

⟨Ai(t)Aj⟩ y + 1 ≤ j ≤ y + x − 2

⟨Ai Ay⟩ j = y + x

(B.52)

It is a simple matter to show that analogous formulae hold for all the other
correlation functions between spin operators. For more details we refer to the
Appendix of [3].
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Appendix C

Asymptotic results

C.1 Skellam distribution

The Skellam distribution describes the difference of two Poissonian random vari-
ables. It can be derived in two ways, both easy. We use brute force here for the
method using the generating function see the original paper [266]. Take now
two independent Poisson variables with parameter µ1 and µ2 and distributions
Q(n; µ1) and Q(n; µ1) respectively. The distribution P(∆) of the difference is

P(∆; µ1, µ2) =
+∞

∑
n=−∞

+∞

∑
k=−∞

Q(n; µ1)Q(k; µ2)δn−k,∆ =
+∞

∑
n=−∞

Q(n + ∆; µ1)Q(n; µ2)

= e−(µ1+µ2)
+∞

∑
n=−∞

µ∆+n
1

(n + ∆)!
µn

2
n!

= e−(µ1+µ2)
+∞

∑
n=max(0,−∆)

µ∆+n
1

(n + ∆)!
µn

2
n!

(C.1)

where in the last line we used the fact the the factorial is divergent for negative
values of the argument. If 0 > −∆ we get

+∞

∑
n=0

µ∆+n
1

(n + ∆)!
µn

2
n!

=

(
µ1

µ2

) ∆
2 +∞

∑
n=0

1
(n + ∆)!n!

(
2
√

µ1µ2

2

)2n+∆

=

(
µ1

µ2

) ∆
2

I∆(2
√

µ1µ2)

(C.2)

where In is the modified Bessel function of order n. On the other hand when
0 < −∆

+∞

∑
n=−∆

µ∆+n
1

(n + ∆)!
µn

2
n!

=
+∞

∑
n=0

µn
1

(n − ∆)!
µn−∆

2
n!

(C.3)
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which is the same formula as before with µ1 ↔ µ2 and ∆ 7→ −∆. Putting all
together

P(∆; µ1, µ2) = e−(µ1+µ2)

(
µ1

µ2

) ∆
2

I|∆|(2
√

µ1µ2) . (C.4)

In the special case µ1 = µ2 = µ we get

P(∆; µ) = e−2µ I|∆|(2µ) . (C.5)

C.2 Asymptotic of modified Bessel function of infinite
order

Since we will have µ = xd and ∆ = xδ where d is the solitons density with
x → +∞, in order to highlight a large deviation form of the distribution, we will
have to analyze the asymptotic behavior of large order modified Bessel functions.
This can be done exploiting integral representations and in combination with
saddle point method but here we follow a WKB analysis. Consider a Schödinger
equation for a particle of mass m = 1/2 in a potential V(z)

ψ′′(z) =
1
h̄2 (V(z)− E)ψ(z) (C.6)

and assume a solution of the form

ψ(z) = eιS(z) . (C.7)

Substituting we obtain

S′′(z) + (S′(z))2 =
1
h̄2 (E − V(z)) (C.8)

and assuming S′′(z) ≪ (S′(z))2 we obtain

S0(z) =
±1
h̄

∫
dzp(z) , p(z) =

√
E − V(z) . (C.9)

where p(z) is the classical local momentum. This is consistent as long as h̄ → 0
because

S′′
0 (z)

(S′
0(z))2 ∼ h̄ . (C.10)
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To proceed further one uses this solution as a 0-th order approximation to compute

S′
1(z) =

±1
h̄

√
(E − V(z))− h̄2S′′

0 (z) (C.11)

and recalling that h̄2S′′
0 (z) ∼ h̄, in the limit we can expand and get

S′
1(z) =

±1
h̄

p(z)∓ h̄
2p(z)

S′′
0 (z) + O(h̄2) . (C.12)

Since S′′
0 (z) =

±1
h̄ p′(z) we can integrate and obtain

S1(z) =
±1
h̄

∫
dzp(z)− log

√
|p(z)|+ O(h̄2) (C.13)

and we obtain the well known semi-classical approximation of the wave function

ψ(z) =
1√
|p(z)|

(
Ae

ι
h̄
∫

dzp(z) + Be
−ι
h̄
∫

dzp(z)
)

. (C.14)

Now consider the modified Bessel equation of order ν ∈ R and for z ∈ R as well

z2ψ′′(z) + zψ′(z) + (z2 + ν2)ψ(z) = 0 (C.15)

and let us rescale z 7→ Nz and ν = Nδ with δ ∈ R.

z2ψ′′(z) + zψ(z) + N2(z2 + δ2)ψ(z) = 0 . (C.16)

To study the limit N → +∞ we assume the in this limit the term zψ′(z) ≪ z2ψ′′(z)
(we check the consistency later) so that the equation becomes

ψ′′(z) = −N2 z2 + δ2

z2 ψ(z) (C.17)

and comparing to (C.6) we see that the role of h̄ is played by 1/N and the we have
bound state problem instead of a scattering one because E = 0 < V(z) = z2+δ2

z2 ≥ 0.
The wave function will be

ψ(z) =
1√
|p(z)|

(
AeN

∫
dzq(z) + Be−N

∫
dzq(z)

)
q(z) =

√
V(z) . (C.18)

Note that z2ψ′′(z)/zψ′(z) ∼ N so as long as N → +∞ our approximation is good.
We can directly extract the asymptotic behavior of large order modified Bessel
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functions computing the rate function

J(δ, z) =
∫

dz
√

V(z) =
√

z2 + δ2 − δ tanh−1

(√
z2 + δ2

δ

)
(C.19)

so that
INδ(Nz) ≍ eNJ(z,δ) . (C.20)

Note that
√

δ2 + z2 ≥ δ for all z and tanh−1 develops an imaginary part but
the exponential decay what matters is only the real part. In particular using
tanh−1(x) = 1

2 log
(

1+x
1−x

)
one notes that the real parts of tanh−1(1/x) and of

tanh−1(x) coincide. Further using the identity

sinh(tanh−1(x)) =
x√

1 − x2
(C.21)

we can write

J(δ, d) = −δ sinh−1
(

δ

2d

)
+
√
(2d)2 + δ2 (C.22)

and the sought asymptotic of the Skellam distribution eq. (C.5) with µ = 2xd and
∆ = xδ for x → +∞. We have

P(∆; µ) ≍ e−xR(δ,d) x → ∞ (C.23)

with rate function

R(δ, d) = 2d − J(δ, d) = 2d + δ sinh−1
(

δ

2d

)
−
√
(2d)2 + δ2 . (C.24)

C.3 Fourier transform of Bessel function with respect
to its order

We need to perform the Fourier transform of the Bessel function with respect to its
order. This achieved with the help of the following integral representation [267]

Iν(z) =
1
π

∫ π

0
dθez cos θ cos(νθ)− sin(νπ)

π

∫ +∞

0
dθe−z cosh(θ)−νθ . (C.25)
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We have

F [Iν(z)](k) =
∫ dν√

2π
e−ινk Iν(z)

=
1
π

∫ π

0
dθez cos θF [cos(νθ)] (k)− 1

π

∫ +∞

0
dθe−z cosh(θ)F

[
e−νθ sin(νπ)

]
(k)

(C.26)

and using the results

F [cos νθ](k) =
√

π

2
(δ(θ − k) + δ(θ + k)) (C.27a)

F [e−νθ sin νπ](k) = ι

√
π

2
(δ(k + π − ιθ) + δ(ιθ + π − k)) (C.27b)

we obtain
F [Iν(z)](k) =

2√
2π

cosh(z cos k)H(k)H(π − k) (C.28)

where H(x) = 1 for x > 0 and 0 otherwise.

C.4 Saddle point analysis of (3.97)

Let us write the integral as

I =
∫ π

0

ds
2π

eξ f (s) (C.29)

with
f (s) = −ιδs + 2d cos(s) (C.30)

and since f (s) is complex we have competition between the oscillatory phase and
the increasing or decreasing modulus. The saddle point is

s∗ = −ι sinh−1
(

δ

2d

)
(C.31)

that is purely imaginary. Also

f ′′(s∗) = −
√

4d2 + δ2 (C.32)

Defining f ′′(s∗) = aeιϕ and s − s∗ = r2eιθ we expand

f (s)− f (s∗) =
1
2

ar2eι(φ+2θ) + O((s − s∗)3) (C.33)
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so the steepest directions across the saddle point are

θs =
nπ

2
− φ±

2
n = 0, 1 (C.34)

and the steepest descent directions are

θd =
(2n + 1)π

2
− φ±

2
n = 0, 1 . (C.35)

These directions will be needed soon. We now use Cauchy theorem to deform the
contour such that we only follow steepest descent contours. Let us write s = u+ ιv
and

f (s) = ϕ(u, v) + ιψ(u, v) (C.36)

with
ϕ(u, v) = vδ + 2d cos u cosh v (C.37a)

ψ(u, v) = −uδ − 2d sin u sinh v . (C.37b)

The steepest descent directions across the saddles points s∗ are

θ =
π

2
,

3π

2
(C.37c)

We deform the contour from 0 to π to the one going up +ι∞ passing through
s∗ and then going down from +ι∞ to π/2 along the curve determined by the
equation ψ(u, v) = −π

2 δ. The main contribution is given by the saddle point so
we conclude that

I ≍ eξ f (s+) (C.38)

with

f (s∗) = δ sinh−1
(

δ

2d

)
−
√

δ2 + 4d2 ≡ −J(δ, d) . (C.39)
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