
Space-Efficient Indexes for Uncertain Strings
Esteban Gabory1, Chang Liu2, Grigorios Loukides3, Solon P. Pissis1, and Wiktor Zuba1

1CWI, Amsterdam, The Netherlands
2Zhejiang University, Zhejiang, China
3King’s College London, London, UK

Abstract—Strings in the real world are often encoded with
some level of uncertainty, for example, due to: unreliable data
measurements; flexible sequence modeling; or noise introduced
for privacy protection. In the character-level uncertainty model, an
uncertain string X of length n on an alphabet Σ is a sequence of
n probability distributions over Σ. Given an uncertain string X
and a weight threshold 1

z
∈ (0, 1], we say that pattern P occurs

in X at position i, if the product of probabilities of the letters
of P at positions i, . . . , i+ |P | − 1 is at least 1

z
. While indexing

standard strings for online pattern searches can be performed in
linear time and space, indexing uncertain strings is much more
challenging. Specifically, the state-of-the-art index for uncertain
strings has Θ(nz) size, requires Θ(nz) time and space to be
constructed, and answers pattern matching queries in the optimal
O(m+OCC) time, where m is the length of P and OCC is the total
number of occurrences of P in X . For large n and (moderate)
z values, this index is completely impractical to construct, which
outweighs the benefit of the supported optimal pattern matching
queries. We were thus motivated to design a space-efficient index
at the expense of slower yet competitive pattern matching queries.
We show that when we have at hand a lower bound ℓ on the length
of the supported pattern queries, as is often the case in real-world
applications, we can slash the index size and the construction
space roughly by ℓ. In particular, we propose an index of O(n+
nz
ℓ
log z) expected size, which can be constructed using O(n +

nz
ℓ
log z) expected space, and supports very fast pattern matching

queries in expectation, for patterns of length m ≥ ℓ. We have
implemented and experimentally evaluated several versions of
our index. The best-performing version of our index is up to two
orders of magnitude smaller than the state of the art in terms
of both index size and construction space, while offering very
competitive query times and construction times.

I. INTRODUCTION

A large portion of the data feeding real-world database
systems, including bioinformatics systems [80], Enterprise
Resource Planning (ERP) systems [73], or Business Intelli-
gence (BI) systems [93], is textual; namely, these data are
finite sequences of letters over some alphabet (also known
as strings). This happens because strings can easily encode
data arising from different sources such as: sequences of
nucleotides read by DNA sequencers (e.g., short or long DNA
reads); natural language text generated by humans (e.g., de-
scription or comment fields); identifiers generated by software
(e.g., URLs, email addresses, or IP addresses); or discretized
measurements generated by sensors (e.g., EEG or EMG data).

Given the ever increasing size of string data, it is crucial to
represent them in a concise form but also to simultaneously
allow efficient pattern searches. This goal is formalized by the
classic text indexing problem [29]: preprocess a string T of

length n over an alphabet Σ of size σ, known as the text, into
a data structure that supports pattern matching queries; i.e.,
report the set of all OCC positions in T where an occurrence
of a string P , known as the pattern, begins.

In text indexing we are usually interested in four measures
of efficiency [16], [56]: (i) How much space does the final
index occupy for a string T of length n (the index size)?
(ii) How fast can we answer a query P of length m (the
query time)? (iii) How much working space do we need to
construct the index (the construction space)? (iv) How fast can
we construct the index (the construction time)? For example,
the classic indexing solution of suffix tree [94] has index size
O(n), optimal query time O(m + OCC), where OCC is the
size of the output, construction space O(n), and construction
time O(n) [33]. Nowadays, as the data volume grows rapidly,
a lot of works are devoted to obtaining space-query time
trade-offs [42], [34]. Such works propose data structures that
occupy O(n log σ) bits of space, instead of the Θ(n log n) bits
occupied by suffix trees in any case, at the expense of a factor
of O(logϵ n) penalty in the query time, where ϵ > 0 is an
arbitrary predefined constant.

In the real world, strings are often encoded with some level
of uncertainty; for example, due to: (i) imprecise, incomplete
or unreliable data measurements, such as sensor measure-
ments, RFID measurements or trajectory measurements [10];
(ii) deliberate flexible sequence modeling, such as the rep-
resentation of a pangenome, that is, a collection of closely-
related genomes to be analyzed together [89]; or (iii) the
existence of confidential information in a dataset which has
been distorted deliberately for privacy protection [9].

While there are many practical solutions for text index-
ing [70], [34], [40], [37], [16] and also for answering different
types of queries on various types of uncertain data (see Sec-
tion VI), practical indexing schemes for uncertain strings are
rather undeveloped. In response, our work makes an important
step towards developing such practical space-efficient indexes.

A. Our Data Model and Motivation

We use the standard character-level uncertainty model [48].
An uncertain string (or weighted string) X of length n on
an alphabet Σ is a sequence of n sets. Every X[i], for all
1 ≤ i ≤ n, is a set of |Σ| ordered pairs (α, pi(α)), where
α ∈ Σ and pi(α) is the probability of having the letter α at
position i. Table I shows an example of a weighted string X
for n = 6 and Σ = {A,B}, represented as a |Σ| × n matrix.

TABLE I: Example of a weighted string X .

1 2 3 4 5 6
A 1 1/2 3/4 4/5 1/2 1/4
B 0 1/2 1/4 1/5 1/2 3/4

The data model of [48] has been employed by many
works [12], [59], [76], [38], [65], [57]. In bioinformatics,
for example, weighted strings are known as position weight
matrices [54]. As in these works, we define the occurrence
probability of pattern P = ABA at position 3 in X of Table I
as 3/4 · 1/5 · 1/2 = 3/40 (shown in Table I in red).

The indexing problem on weighted strings can thus be
naturally defined as follows [13]: Given a weighted string X
of length n on an alphabet Σ of size σ and a weight threshold
1
z ∈ (0, 1], preprocess X into a data structure (an index) that
supports pattern matching queries; i.e., report the set of all
positions in X where P occurs with probability at least 1

z .
The indexing problem on weighted strings has attracted a

lot of attention by the theory community [46], [13], [20], [18],
[20], [17], [22], culminating in the following result:

Theorem 1 ([18], [17]). For any weighted string of length n
and any weight threshold 1

z , we can construct an index of size
Θ(nz) in O(nz) time and space supporting pattern matching
queries in O(m+ OCC) time, for any pattern of length m.1

Although Theorem 1 is very appealing from a theoretical
perspective—due to the linear dependency on z and the linear
dependency on n—from a practical perspective, Θ(nz) size
and construction space are prohibitive for large strings. Imag-
ine that we have an input weighted string of length n = 109,
that z = 100, and that the constant in Θ(nz) is something
small, like 20, which is in line with the state of the art [22].
Then we need 2TBs of RAM to store the index for an input
of 1GB! We were thus motivated to seek space-query time
trade-offs for indexing weighted strings. In particular, we seek
conditions under which we can have indexes of size smaller
than Θ(nz). Ideally, we would also like to construct these
indexes using smaller than Θ(nz) space. We show that this is
possible, both in theory and in practice, when a lower bound
ℓ on the length m of any queried pattern is known in advance,
which is arguably a reasonable assumption in applications.
For instance, in bioinformatics [47], [95], [66], the length of
sequencing reads (patterns) ranges from a few hundreds to
30,000 [66]. Even when at most k errors must be accommo-
dated for matching, at least one out of k+1 fragments must be
matched exactly. In natural language processing, the queried
patterns can also be long [92]. Examples of such patterns
are queries in question answering systems [43], description
queries in TREC datasets [19], [15], and representative phrases
in documents [71]. Similarly, a query pattern can be long when

1We can safely make the assumption that σ ≤ z. If σ > z, we construct a
new string Xz from X of total size ⌊z⌋n, because there can be no more than
⌊z⌋ letters in X[i], i ∈ [1, n], with an occurrence probability at least 1

z
. We

then index X[i] using a linked-list or a hash table for a sparse representation.

it encodes an entire document (e.g., a webpage in the context
of deduplication [44]), or machine-generated messages [49].

B. Our Techniques and Results

In [18], Barton et al. showed that for any weighted string
X of length n, and any weight threshold 1

z , one can construct
a family S of ⌊z⌋ standard strings, each of length n, so that a
pattern P occurs in X at position i with probability p only if P
occurs at position i in ⌊p ·z⌋ strings from S. The authors have
then shown that by indexing S using a modified version of
suffix trees [94], we can arrive at an index of total size Θ(nz)
supporting queries in the optimal time O(m + OCC). The
resulting index is known as the weighted suffix tree (WST). An
array-based, more space-efficient, version was also presented
in [22]; it is known as the weighted suffix array (WSA). WST
and WSA are the state of the art for indexing weighted strings.

Here, we first show how to slash the size of both WST and
WSA roughly by ℓ, while still supporting very fast queries
in expectation for any pattern P of length m ≥ ℓ, by com-
bining the minimizers sampling mechanism [79], [82], several
combinatorial and probabilistic arguments, and a geometric
data structure (2D grid) [69]. Our technique still requires us
to first construct the family S of the ⌊z⌋ strings, which in
any case gives an index with Θ(nz) construction space. To
circumvent this, we develop a highly non-trivial algorithm for
constructing the same index without generating S explicitly.
The algorithm samples an implicit representation of S using
minimizers outputting the final index directly.
Our main contributions are summarized as follows:

1) We show that for any weighted string X of length n
over an alphabet Σ, a weight threshold 1

z , and any
integer ℓ > 0, after O(nz) construction time using
Θ(nz) construction space, we can construct an index of
O(n + nz

ℓ log z) expected size to report all occurrences
of a pattern P of length m ≥ ℓ in O(m + nz

|Σ|m log nz
ℓ)

expected query time. In particular, when m ≥ logσ nz
(recall that m ≥ ℓ), we get O(m + log nz

ℓ) query time
and an index of size less than Θ(nz). The bounds we
prove are in expectation because minimizers are usually
analyzed in the average-case model [79], [82]. Similar
notions with worst-case guarantees exist [55] but, as they
are not practical [16], we resort to employing minimizers.

2) Although the above-mentioned index has very desirable
size and query time, we still need Θ(nz) space to
construct it. We were thus motivated to design a space-
efficient construction algorithm for this index. In fact, we
show that this index can be constructed in expected time
O(nz log ℓ+ nz

ℓ log nz
ℓ log z) and space O(n+ nz

ℓ log z).
This is the most technically involved result of the paper.

3) Following the different paradigms of suffix trees [94] and
suffix arrays [51] in the classic setting of standard strings,
we have implemented tree and array-based versions of
our index underlying Contributions 1 and 2. The results
show that our indexes are up to two orders of magnitude
smaller than the state of the art in terms of both index size

and construction space. They also show that our array-
based indexes outperform the tree-based ones, offering
very competitive query times and construction times to
those of the state-of-the-art indexes. For example, for
indexing a collection of 1, 432 bacterial samples, with
ℓ = 256 and z = 1024, which are reasonable in appli-
cations, our space-efficient index has size 640MBs and
needs only 772MBs of memory to be constructed, while
WSA has size 7GBs and needs 32GBs of memory to be
constructed! Furthermore, compared to WSA, our space-
efficient index takes 44% less time to be constructed and
its query time is 80 microseconds on average (over about
1.9M queries), while that for WSA is 81 microseconds.

C. Paper Organization

In Section II, we provide the necessary definitions and
notation as well as some previous results that we make use
of. In Section III, we provide the full description of our new
index. In Section IV, we present the space-efficient algorithm
for constructing our index. In Section V, we present a simple,
more practical algorithm for querying our index. In Section VI,
we discuss related work. Finally, in Section VII, we provide
an extensive experimental evaluation of our algorithms.

II. PRELIMINARIES AND PROBLEM DEFINITION

Strings. An alphabet Σ of size σ = |Σ| is a nonempty set of
elements called letters. By Σk we denote the set of all length-
k strings over Σ. By ε we denote the empty string of length
0. For a string S = S[1] · · ·S[n] over Σ, by n = |S| we
denote its length. The fragment S[i . . j] of S is an occurrence
of the underlying substring P = S[i] · · ·S[j]. We also say
that P occurs at position i in S. A prefix of S is a substring
of S of the form S[1 . . j] and a suffix of S is a substring of
S of the form S[i . . n]. Given a string S = S[1] · · ·S[n], its
reverse is the string Sr = S[n] · · ·S[1]. For any two strings S1

and S2 of the same length, we define their Hamming distance
dH(S1, S2) as their total number of mismatching positions.
Sampling. Given a fixed pair of positive integers ℓ, k s.t.
ℓ ≥ k, we call a function f : Σℓ → [1, ℓ − k + 1] that
selects the starting position of a length-k fragment, for any
string of length ℓ, an (ℓ, k)-local scheme. We call the set
Mf (S) = {i + f(S([i . . i + ℓ − 1])) − 1 | 1 ≤ i ≤
|S| − ℓ + 1}, for an (ℓ, k)-local scheme f on a string S,
the set of selected indices. The specific density of f on S is
the value |Mf (S)|/|S|, and the density of f is the expected
specific density on a sufficiently long random string (with
letters chosen independently at random). An (ℓ, k)-minimizer
scheme is an (ℓ, k)-local scheme that selects the position of
the leftmost occurrence of the smallest length-k substring,
for a fixed k and a fixed order on Σk. In that case, we
call minimizers the selected indices [79], [82]. The minimizer
scheme can be based on a lexicographic order on Σk. As
an example of this scheme, let S = ABAABB, ℓ = 4, and
k = 2. We obtain Mf (S) = {3} as S[3 . . 4] = AA is the
lexiographically smallest length-2 substring in every window

of S of length ℓ = 4. The minimizer scheme can also be
specified by a hash function, e.g. Karp-Rabin fingerprints [52].

Lemma 2 ([100]). The density of an (ℓ, k)-minimizer scheme
over an alphabet Σ with k ≥ log|Σ| ℓ + c is O(1ℓ), for some
c = O(1).

Weighted Strings. A weighted string X of length n on an
alphabet Σ is a sequence of n sets. Every X[i], for all 1 ≤
i ≤ n, is a set of |Σ| ordered pairs (α, pi(α)), where α ∈ Σ
is a letter and pi(α) is the probability of having α at position
i of X . Formally, X[i] = {(α, pi(α)) | ∀α ∈ Σ, pi(α) ∈
[0, 1], and

∑
α∈Σ pi(α) = 1}. A letter α occurs at position i

of a weighted string X if and only if the occurrence probability
of α at position i, pi(α), is greater than 0. A string U of
length m is a factor of a weighted string X if and only if it
occurs at some starting position i with occurrence probability
P(X[i . . i+m− 1] = U) = Πm

j=1pj+i−1(U [j]) > 0. Given a
weight threshold p ∈ (0, 1], factor U is valid or equivalently
U has a valid occurrence in X , if it occurs at starting position
i and if P(X[i . . i+m− 1] = U) ≥ p. For a weighted string
X , a pattern P , and a weight threshold p ∈ (0, 1], Occp(P,X)
is the set of starting positions of valid occurrences of P in X .
String U is a solid factor of X if it has a valid occurrence in
X for some p; U is maximal at position i of X if U is a solid
factor of X starting at position i and no string U ′ = Uα, for
any α ∈ Σ, is a solid factor starting at i. Given a weighted
string X , we call a heavy string HX of X a string defined
such that HX [i] is the letter having a largest probability in
X at position i (ties are broken arbitrarily). For example, let
X be the weighted string of Table I; a heavy string of X is
HX = ABAAAB (the tie at position 2 is broken for B and the
tie at position 5 is broken for A).

A property Π of a string S is a hereditary collection
of integer intervals 2 contained in [1, n]. For simplicity, we
represent every property Π with an array π[1 . . |S|] such
that the longest interval I ∈ Π starting at position i is
[i, π[i]]. Observe that π can be an arbitrary array satisfying
π[i] ∈ [i − 1, n], and π[1] ≤ π[2] ≤ · · · ≤ π[n]. For a string
P , by Occπ(P, S) we denote the set of occurrences i of P in
S such that i+ |P |− 1 ≤ π[i]. For example, let (S2, π2) from
Table II be a string-property pair. Then P = AAA occurs at
position i = 3 because i+ |P | − 1 = 3 + 3− 1 ≤ π2[3] = 5.

Let us consider an indexed family S = (Sj , πj)
k
j=1 of

strings Sj with properties πj . For a string P and an index
i, by CountS(P, i) = |{j | i ∈ Occπj

(P, Sj)}| we denote
the total number of occurrences of P at position i in the
strings S1, . . . , Sk of S that respect the properties. We say
that an indexed family S = (Sj , πj)

z
j=1 is a z-estimation of a

weighted string X of length n if and only if, for every string P
and position i ∈ [1, n], CountS(P, i) = ⌊P(X[i . . i+|P |−1] =
P) · z⌋. The following result has been shown by Barton et al.:

Theorem 3 ([17]). For any weighted string X of length n and
any weight threshold 1

z , X admits a z-estimation of total size
Θ(nz) that can be constructed in O(nz) time and space.

2A collection that contains all the subintervals of its elements.

TABLE II: A 4-estimation
of X from Table I.

i 1 2 3 4 5 6
S1 A A A A A A
π1 2 2 3 4 5 6
S2 A A A A A B
π2 4 4 5 6 6 6
S3 A B A A B B
π3 4 4 5 6 6 6
S4 A B B B B B
π4 2 2 3 3 5 6

$
GA

A$

$

GA$

GA

CAGAGA$

$

GA$

1
2

4

6

7

3

5

Fig. 1: Suffix tree of S =
CAGAGA$.

Example 1. For 1
z = 1

4 , the weighted string X in Table I
admits the 4-estimation S in Table II, given by Theorem 3.

For pattern P = AB and S3, we have that Occπ3
(P, S3) =

{1, 4} because P occurs at position 1, with 1 + |P | − 1 ≤
π3[1] = 4, and at position 4, with 4 + |P | − 1 ≤ π3[4] = 6.

For pattern P = AB and i = 1, we have that P(X[i . . i +
|P | − 1] = P) = 1 · 1/2 = 1/2 and so P occurs in
CountS(P, i) = ⌊P(X[i . . i+|P |−1] = P)·z⌋ = ⌊(1/2)·4⌋ =
2 strings of the z-estimation at position 1.

We construct the set of (lexicographic) minimizers that
respect the property, for ℓ = 3 and k = 2, for every
Sj , j ∈ [1, 4], from S. We underline the positions of the
minimizers. Note that we have selected no minimizer in S1 or
S4 as they have no solid factor of length 3.

Problem Definition. We study the following problem:

ℓ-WEIGHTED INDEXING

Input: A weighted string X of length n over an alphabet
Σ, a weight threshold 1

z ∈ (0, 1], and an integer ℓ > 0.
Query: For any string P of length m ≥ ℓ, report all
elements of Occ 1

z
(P,X).

Suffix Tree. The classic indexing solution for standard (not
weighted) strings is the suffix tree. Given a set F of strings,
the compacted trie of these strings is the trie obtained by
compressing each path of nodes of degree one in the trie of
the strings in F , which takes O(|F|) space [72]. Each edge in
the compacted trie has a label represented as a fragment of a
string in F . The suffix tree ST(S) is the compacted trie of the
suffixes of S [94]. Assuming S ends with a unique terminating
letter $, every suffix S[i . . n] is represented by a leaf decorated
by index i; see Fig. 1. The set of indices stored at the leaf
nodes in the subtree rooted at node v is the leaf-list of v, and
we denote it by LL(v). Each edge in ST(S) is labeled with a
nonempty substring of S such that the path from the root to
the leaf annotated with index i spells the suffix S[i . . n]. The
substring of S spelled by the path from the root to node v is the
path-label of v, and we denote it by L(v). Given any pattern
P [1 . .m], ST(S) allows us to report all OCC occurrences of P
in S using only O(m log σ+OCC) operations. We simply spell
P from the root of ST(S) (to access edges by the first letter of
their label, we use binary search) until we arrive (if possible)
at the first node v such that P is a prefix of L(v). Then all
OCC occurrences (starting positions) of P in S are LL(v). The

suffix tree occupies Θ(n) space and it can be constructed in
O(n) time for an integer alphabet [33]. To improve the query
time to the optimal O(m + OCC) we use randomization to
construct a perfect hash table in linear time [35] for accessing
edges by the first letter of their label in constant time.

III. THE NEW INDEX: MINIMIZER-BASED WST

In this section, we describe our new index for solving ℓ-
WEIGHTED INDEXING and the underlying data structures that
we employ to construct it. We assume read-only access to X
but we can also discard X at the end of this construction.

Main Idea. We start the index construction by building the
z-estimation of X , whose total size is Θ(nz). We then use
minimizers sampling to select O(nzℓ) positions of the z-
estimation, where ℓ is a predetermined lower bound on the
length of the supported queries. Next, we construct two trees,
called minimizer solid factor trees: (1) the compacted trie of
all suffixes of the solid factors in the z-estimation starting
at the minimizer positions, and (2) the compacted trie of all
the reversed prefixes of the solid factors in the z-estimation
ending at the minimizer positions. After that, we pair up the
leaf nodes corresponding to the same minimizer position, from
one of these trees to the other, using a 2D grid for range
reporting [21]. To reduce the index size, we discard the z-
estimation using a combinatorial observation that allows us to
store only O(log z) information per minimizer position. This
results in an index of expected total size O(n+ nz log z

ℓ).
Finally, we show how to query the index efficiently, for any

pattern of length m ≥ ℓ, by using a probabilistic argument on
the number of expected points returned by the 2D grid.

Minimizer Solid Factor Trees. Let us fix a weighted string X
of length n over an alphabet Σ and a weight threshold 1

z . We
first define a forward solid factor tree (resp. backward solid
factor tree) for X as the suffix tree for the set of maximal
solid factors (resp. the set of reversed solid factors) in X .
By Theorem 3, we know that each such solid factor appears
in a z-estimation of size O(nz), and therefore both the solid
factor trees have size O(nz) as well. This argument also gives
a method to construct the solid factor trees [17].

We adapt the solid factor trees to make them more space-
efficient for ℓ-WEIGHTED INDEXING by employing minimizer
schemes. Let us fix ℓ, k and an (ℓ, k)-minimizer scheme f
by employing Lemma 2. In particular, we assume throughout
that ℓ and k are chosen so that f has density O(1ℓ). We
then construct a z-estimation S = (Sj , πi)

⌊z⌋
j=1 of X using

Theorem 3 and compute the set MX of minimizers from
S respecting the property; namely for Sj ∈ S we compute
f(Sj [i . . i+ ℓ− 1]) if and only if i+ ℓ− 1 ≤ πj [i].

We represent each minimizer in MX by a pair (i, j), where
i is the minimizer position in the string Sj ∈ S. In the
following, we consider MX fixed with |MX | = O(nzℓ), as
by Lemma 2 there are in expectation O(nzℓ) minimizers in S.

Based on MX , we define a minimizer forward (resp.
backward) solid factor tree as a compacted trie containing
suffixes of solid factors (resp. of reversed solid factors) starting

at position i from a string Sj ∈ S with (i, j) ∈ MX . Each
leaf has a label (i, j) ∈ MX associated to the corresponding
suffix. If one same suffix corresponds to several such labels (it
occurs at several minimizers from S), we add one copy of the
leaf for each such label. Since |MX | = O(nzℓ), the minimizer
solid factor trees contain O(nzℓ) leaves, and therefore nodes.

Still the size of the z-estimation S is, by definition, always
Θ(nz), which makes the total size of the index O(nzℓ) +
Θ(nz) = Θ(nz). We avoid this by employing the following
simple yet crucial combinatorial observation [58]:

Lemma 4 ([58]). Let HX be a heavy string of X . For a weight
threshold 1

z and any solid factor U starting at position i and
ending at position j of X , dH(U,HX [i . . j]) ≤ log2 z holds.

Indeed, we directly get the following result, which allows
us to avoid storing the z-estimation S explicitly.

Corollary 5. Every solid factor of a weighted string X for
a weight threshold of 1

z can be characterized by an interval
of the heavy string HX plus the information of at most log2 z
single mismatches. The minimizer solid factor tree can be
implemented as a compacted trie whose edges store only that
information, which takes O(log z) extra space per edge.

We apply Corollary 5 to obtain Lemma 6. Based on this
lemma, we construct the minimizer solid factor trees for X .

Lemma 6. The minimizer solid factor trees can be constructed
in O(nz) time using O(nz) space. Each tree has O(nzℓ)
expected nodes and its expected total size is O(nzℓ log z). 3

Proof. We apply Theorem 3 to construct a z-estimation for X
in O(nz) time and space. The set of minimizers of any string
can be computed in linear time [67]. Thus, computing MX

for the z-estimation takes O(nz) time. The compacted trie of
any collection of substrings of a string can be constructed in
linear time in the length of the string [22], [53], and thus the
minimizer solid factor trees can be constructed in O(nz) time
using O(nz) space. The number of nodes and the total size
of the trees follow from Lemma 2 and Corollary 5.

Exploiting 2D Range Reporting. We explain how to employ
a geometric data structure to pair up the leaf nodes correspond-
ing to the same minimizer position from one of the minimizer
solid factor tree we constructed above to the other.

Let us write Tsuff (resp. Tpref) for the forward (resp. back-
ward) minimizer solid factor tree. We fix an order on the leaves
of both Tpref and Tsuff, such that for any node in one of the
trees, the set of its descendant leaves forms an interval. This
is possible, for example, by sorting the strings corresponding
to the leaves in lexicographical order. Via this ordering, we
can consider a pair of leaves from Tsuff and Tpref as a point of
a 2D data structure, which we call the grid.

We start by some definitions: (1) Given a string P , we
denote by Isuff(P) (resp. Ipref(P)) the (possibly empty) in-
terval of leaves in the subtree obtained by reading P in Tsuff

3We claim O(nz) time and space during our construction because if
log z > ℓ, we can abort the construction and resort to O(nz) size.

(resp. Tpref). (2) We denote by N the set of all those points
corresponding to pairs of leaves from Tsuff and Tpref with iden-
tical labels. Each point in N corresponds to a given minimizer
(i, j) ∈ MX , and a pair of maximal solid factors in X that can
be read from i, both right-wise and left-wise. (3) Given a pair
P1, P2 of strings, we denote by N (P1, P2) the intersection of
the set N with the rectangle Isuff(P1) × Ipref(P2). (4) Given
a string P of length m ≥ ℓ, such that f(P [1 . . ℓ]) = µ,
we denote N (P [µ . .m], (P [1 . . µ])r) by N (P). We prove the
following.

Lemma 7. For any pattern P of length m, with n ≥ m ≥ ℓ,
if P is a solid factor in X , then N (P) is nonempty. In
particular, if P has a valid occurrence in X starting at
position k then N (P) contains at least one point having label
(k − 1 + f(P [1 . . ℓ]), j) for some j ∈ [1, z].

Proof. Let P be such a pattern, which is a solid factor in X
at position k. By definition of a z-estimation, we know that P
occurs at position k in some Sj ∈ S. The minimizer computed
for position k of S is i = k − 1 + µ with µ = f(P [1 . . ℓ]),
since Sj [k . . k + ℓ − 1] = P [1 . . ℓ]. Therefore, the tree Tsuff
(resp. Tpref) contains a leaf k1 (resp. k2) corresponding to
the longest substring of Sj starting at position i respecting
the property Π, which starts with P [µ . .m] (resp. the longest
reversed substring of Sj ending at position i respecting the
property, which starts with P [1 . . µ]r). Those leaf nodes both
have a label (i, j) = (k − 1 + µ, j), hence the corresponding
point is in N (P), which proves the result.

Our index (i.e., Tsuff, Tpref, and the grid) solves ℓ-
WEIGHTED INDEXING by answering 2D range reporting
queries [21]. In the 2D range reporting problem, we are given
a set N of N points to be preprocessed, so that when one gives
an axis-aligned rectangle as a query, we report the subset K of
N such that point p ∈ K if and only if the rectangle encloses
p. We consider a special case of this problem which suffices
for our purposes. In particular, we use the following result.

Lemma 8 (Section 2 of [69]). Let N be a set of N points
coming from pairing two permutations of [1, N]. With O(N)
construction time, we can answer 2D range reporting queries
in O((1 + k) logN) time using O(N) space, where k is the
number of points from N enclosed by the query rectangle.

Note that, if each occurrence of a pattern can be detected
with 2D range reporting queries, the converse is not true: if a
pattern U has a minimizer at position µ and both U [1 . . µ] and
U [µ . . |U |] are solid factors occurring at respective positions k
and k+µ−1, then a corresponding point will be detected with
the 2D range reporting queries, even if U is not a solid factor
itself. In that case, U is by definition a substring of some
Sj ∈ S , but does not respect the property. We can simply
compute all the points by 2D range reporting, and check
naively for false positives by comparing the pattern with X
at the positions corresponding to these points. Conversely, one
can have several points corresponding to a single occurrence, if
the pattern appears in multiple strings in S at a same position,

(1, 2)

(1, 3)

(2, 2)

(4, 2)

(3, 2)

(4, 3)

(3, 3)

(2, 2) (3, 2) (1, 2) (4, 2) (3, 3) (1, 3) (4, 3)

A A A A

BA

BA

A

A

A

A

AA

B

B

B

Tsuff

Tpref

Fig. 2: Our index for the weighted string from Table I, 1
z = 1

4 ,
and the minimizers from Example 2. Tsuff is the forward
minimizer solid factor tree and Tpref is the backward one.
Edges without labels are constructed for readability and mean
that the parent and the children nodes correspond to the same
string. Each leaf node corresponds to a unique pair (i, j) such
that the string is the minimizer appearing at position i in string
Sj from the 4-estimation. The points from N are marked in
red. The blue rectangle corresponds to N (P) for the pattern
P = AAAA, the green rectangle to N (P ′) for P ′ = BAAB,
and the orange rectangle to N (P ′′) for P ′′ = BABA (the
underlined positions are the minimizer positions).

which could also increase the running time. To control the
number of such additional checks (both for false positives and
duplicate ones), we give a bound on the expected number of
occurrences of a given pattern in the z-estimation S:

Lemma 9. For any string P chosen uniformly at random from
Σm, there are O(nz/σm) points expected in N (P).

Proof. Tsuff and Tpref are constructed from a z-estimation S,
therefore each point in N (P) corresponds to an occurrence
of P in S (it might not respect property Π however). Since
S has (n−m+ 1)⌊z⌋ ≤ nz substrings of length m, we have∑

P∈Σm |N (P)| ≤ nz, and hence if P is chosen uniformly at
random we obtain no more than nz

σm points in expectation.

Main Result. We arrive at the main result of the section:

Theorem 10. Let X be a weighted string of length n, 1
z be

a weight threshold, and ℓ > 0 be an integer. With O(nz)
construction time and space, we can construct an index of
O(n + nz

ℓ log z) expected size answering ℓ-WEIGHTED IN-

DEXING queries of length m ≥ ℓ in O(m+(1+ nz
|Σ|m) log nz

ℓ)
expected time.

Proof. We first construct the minimizer solid factor trees of
X in O(nz) time and space; the trees have size O(nzℓ log z)
(Lemma 6). We preprocess the pairs of leaves for 2D range
reporting queries in O(nzℓ) time (Lemma 8). When a pattern
P of length m ≥ ℓ is given, we compute its leftmost
minimizer µ in O(ℓ) time [67], compute the sides of the
rectangle in O(m) time by spelling P [µ . .m] in Tsuff and
(P [1 . . µ])r in Tpref, and answer a 2D range reporting query
in O(log nz

ℓ (1 + |N (P)|)) time (Lemma 8). Finally, we
must check, for every output point (i, j), for a valid occur-
rence around the ith minimizer of the jth string of the z-
estimation. To do this efficiently (i.e., in O(log z) time per
point) without storing the z-estimation of X , we store only
the log2 z closest mismatching positions to the left and to
the right of every minimizer in MX (Lemma 4). The total
verification time is thus O((log z+log(nz/ℓ))(|N (P)|)+1) =
O(log nz

ℓ (|N (P)| + 1)). By Lemma 9, we know that in
expectation we have |N (P)| = nz

|Σ|m . We obtain an expected
query time of O(m + (1 + nz

|Σ|m) log nz
ℓ). The total size is

O(n+ nz
ℓ log z), to store HX plus the index.

Example 2. Let X be the weighted string from Table I and
1
z = 1

4 . The construction of our index is detailed in Figure 2,
and query rectangles N (P) (resp. N (P ′) and N (P ′′)) are
constructed for patterns P = AAAA (resp. P ′ = BAAB and
P ′′ = BABA) whose minimizer positions are underlined.
The blue rectangle N (P) contains exactly one point which
corresponds to a substring AAAA in S2. This substring corre-
sponds to an occurrence of P at position 1 with probability
1 · 1

2 · 3
4 · 4

5 = 0.3 in X . The green rectangle N (P ′) contains
one point, which corresponds to an occurrence of P ′ in S3.
However, this occurrence does not respect the property Π
(because i + |P ′| − 1 = 2 + 4 − 1 = 5 > π3[2] = 4) and
therefore is a false positive in X . Finally, the orange rectangle
N (P ′′) does not contain any point, because the pattern does
not occur in the z-estimation.

IV. SPACE-EFFICIENT CONSTRUCTION OF THE INDEX

Recall that to construct the index in Section III, we first
construct a z-estimation, which temporarily takes Θ(nz) space
during construction. In this section, we improve the space
required for the construction of the index by designing a space-
efficient algorithm for constructing a minimizer solid factor
tree with only a moderate increase in the construction time.

Main Idea. We start the construction by simulating the
construction of an extended solid factor tree. In particular,
we maintain the subtree induced by the solid factors starting
at minimizer positions but discard the nodes that we do not
need upon returning to their parents. We do this via traversing
the full tree in a depth-first search (DFS) order. Thus, even
though the full tree size is Θ(nz), we store only the current
leaf-to-root path plus the actual output. Therefore, we use only
O(n+ nz

ℓ log z) expected space at a cost of O(nz log ℓ) time.

We next reverse this tree (the solid factors are read from leaf
to root there, while in the minimizer solid factor tree those are
read from root to leaf), in O(nzℓ log nz

ℓ log z) expected time,
using O(n + nz

ℓ log z) expected space. In total, this adds up
to O(nz log ℓ + nz

ℓ log nz
ℓ log z) expected construction time

(instead of O(nz)) and O(n+ nz
ℓ log z) expected construction

space (instead of Θ(nz)).
Key Concepts. The string U ·HX [j+1 . . n] (resp. (HX [1 . . i−
1]·U)r) is called the right extension of the solid factor U (resp.
left extension of the solid factor U), if U is a solid factor of
X starting at position i and ending at position j ≥ i− 1 4.

For such a U , we define a forward extended solid factor
tree of X as a trie of all the reversals of U ·HX [j + 1 . . n],
and a backward extended solid factor tree of X as a trie of
all HX [1 . . i− 1] · U . We employ the following results.

Lemma 11 ([18]). The set of extensions of every solid factor
for a weighted string X is equal to the set of extensions of its
maximal solid factors.

Lemma 12 ([18]). The extended solid factor tree of a weighted
string X has O(nz) nodes.

Construction. We start by constructing the minimizer versions
of the extended solid factor trees – that is for the solid factors
trimmed to their parts starting (resp. ending) at the position
of their minimizer; see Algorithm 1. In particular, we show
how to construct the forward extended solid factor tree (see
Fig. 4) – the backward one can be constructed by simply doing
the same operations on the reversed string, except that the
minimizers will be computed on the reversed substrings.
Initialization. (see Algorithm 1). We construct the tree with
a DFS traversal of the full (non-minimizer) extended solid
factor tree, starting from the root, which corresponds to an
empty string. Each node corresponds to the right extension of
a solid factor U of X starting at a position i (recall that U
can be empty, in which case its right extension is HX [i . . n]).
First Visit to a Node. (see Algorithm 2). When a node u
that corresponds to a solid factor U starting at position i of X
and ending at position j is created, we keep a pair of labels (i,
Diff), where Diff is the sequence (list) of mismatches between
U and HX [i . . j]. By Lemma 4, the label of a given node has
size O(log z). Note, also, that for any ancestor of a node u its
list of mismatches will be a suffix of Diff.

A single node and equivalently such a pair of labels can
still represent multiple solid factors (for different values of j
– if the suffix of the solid factor matches the heavy string);
henceforth, by U we mean the shortest such solid factor: j is
the largest element of Diff or j = i− 1 if Diff is empty.

Additionally, for each node u, we check if the longest
represented heavy factor has length at least ℓ 5 in which case
we ask for the minimizer µ of this solid factor, and mark the
(µ−1)-th ancestor of u as a minimizer node. Such minimizer

4If j = i− 1, then U [i . . i− 1] = ε, the empty string.
5We check this in O(1) time using value p – a global variable that

denotes the probability of the current node – that is the weight of U and
the precomputed array PPH of prefix products of HX for the heavy part.

can be found in O(1) time using a heap data structure [28],
which stores information about the length-k substrings of the
length-ℓ prefix of S = U · HX [j + 1 . . n] and is updated in
O(log ℓ) time in each step of the traversal.
Stepping Down to a Child Node. (see Algorithm 3). If U is
empty, then the node u corresponds to a string HX [i . . n].
In this case, p is not updated when creating its child v
corresponding to HX [i − 1 . . n]. This way, we ensure by
induction that p = 1 at the creation of each such a node,
and only for such a node, so that this can be checked in O(1)
time. We now assume that U is nonempty (Diff is nonempty).
To create a child v of the node u, corresponding to the right
extension of the string α ·U for some letter α ∈ Σ, one needs
to check if α ·U is valid by computing its probability. This is
done using p, which we multiply by pi−1[α].

In any case, the labels of v are computed from the labels of
u by decreasing the starting position and potentially adding a
new label to Diff via Algorithm 2.
Returning to the Parent Node. (see Algorithm 4). In the
DFS we traverse the full extended solid factor tree, but we
are only interested in the strings that start in those minimizer
nodes. Thus, we remove the nodes which correspond to letters
of the solid factors that appear before the position of the
first minimizer and recursively compactify the tree during the
traversal to save computation space.

After all descendants of u are created, we keep u explicit if
it is a minimizer node or if it has more than one (not removed)
child. Otherwise, the node u is made implicit by merging it
with its parent. Finally, upon returning to the parent of u we
update p by dividing it by pi[U [1]] (if p < 1) and the list of
differences by removing position i if i ∈ Diff.
Complexity Analysis. By Lemma 6 the final tree has O(nzℓ)
nodes in expectation. As for the construction space, observe
that while a node u is being processed, only the path between
u and the root is uncompacted, and contains at most n nodes.
All the other global variables also have size O(n), therefore
the total expected work space needed is O(nzℓ log z + n).

As for the construction time, note that the set of created
nodes is exactly the set of nodes from the original extended
solid factor tree (namely, without minimizers), which has size
O(nz) by Lemma 12. During the construction, all the opera-
tions cost O(1) with the exception of updating the minimizer
heap which takes O(log ℓ) time and storing a copy of the
list of differences for each minimizer node in O(log z) time.
Note that the last type of the operation does not influence the
worst case running time as we can abandon the computation
upon learning that the total size of those lists reaches nz – in
which case the classic (non-minimizer) data structure is more
efficient. We have thus proved the following lemma.

Lemma 13. For any weighted string of length n, any weight
threshold 1

z , and any integer ℓ > 0, we can construct a
representation of the minimizer extended solid factor trees in
O(nz log ℓ) time using O(n+ nz log z

ℓ) expected space.

Main result. By Lemma 13, we show below that the mini-
mizer solid factor trees can be constructed in expected time

Algorithm 1 Construct-T (X)

1: Global variables: Weighted string X , heavy string HX , j =
n, p = 1.0, string S = ε, set Diff = ∅, set Minimizers = ∅.

2: create a node root
3: run Augment-T (n+ 1, root)
4: return root ▷ The minimizer extended solid factor tree

Algorithm 2 DOWN(i, u, α)

1: S ← αS
2: if α ̸= HX [i] then add (i, α) to Diff
3: if |S| ≥ ℓ and p · PPH [i− 1 + ℓ]/PPH [j] ≥ 1

z
then ▷

S[1 . . ℓ] is solid
4: Minimizers← Minimizers ∪ {i+ f(S[1 . . ℓ])− 1}
5: add a node v as a child of u
6: run Augment-T (i, v)

Algorithm 3 Augment-T (i, u)

1: for α ∈ Σ do
2: if p = 1 and α = HX [i− 1] then ▷ If U is empty
3: j ← j − 1
4: run DOWN(i− 1, u, α)
5: j ← j + 1
6: else if p · pi−1[α] ≥ 1

z
then

7: p← p · pi−1[α]
8: run DOWN(i− 1, u, α)

9: if i < n+ 1 then run UP(i, u)

Algorithm 4 UP(i, u):

1: if i ∈ Minimizers then
2: remove i from Minimizers
3: set label of u to (i,Diff)
4: else if u has at most one child then merge u with PARENT(u)

5: p← min(1, p · pi[S[1]]−1)
6: if (i, S[1]) ∈ Diff then remove (i, S[1]) from Diff
7: remove the first letter from S

Fig. 3: The space-efficient algorithm for constructing the minimizer extended solid factor tree of a weighted string X .

A

A

B

A

B

A

AA

A

B
A

B

A

(a)

A

AB
B

AA

A
AB

A
A

(b)

AAAAAB

AAAAB

AAAB

AAB

AABB

ABAAAB

ABB

(c)

A

A B

A B

AB B

A

B

BAAAB

B

(d)

Fig. 4: (a) The forward extended solid factor tree with X
from Table I. The blue edges correspond to the heavy string
HX = ABAAAB (reversed). The minimizer positions are
underlined. (b) The minimizer extended solid factor tree. The
edges without any minimizer descendant nodes are pruned
and the non-minimizer nodes are made implicit. (c) The
lexicographically sorted strings corresponding to each path
from a minimizer node to a root. (d) The minimizer solid
factor tree constructed by Theorem 14. It contains the forward
(top) tree from Figure 2 as a red subtree. The edge with
no label is added in the figure to stress that AAB also has
a corresponding leaf. In the algorithm, we simply make the
corresponding internal node explicit and treat it as a leaf node.

O(nz log ℓ+ nz
ℓ log nz

ℓ log z) and space O(n+ nz
ℓ log z):

Theorem 14. For any weighted string X of length n, any
weight threshold 1

z , and any integer ℓ > 0, we can construct
the minimizer solid factor tree from the minimizer extended
solid factor tree in O(n+ nz

ℓ log nz
ℓ log z) expected time and

O(n+ nz
ℓ log z) expected space.

Proof. We need to reverse the tree: create the trie of all the
strings from the minimizer extended solid factor tree read from
leaf to root (corresponding to strings U ·HX [j+1 . . n]). Note
that for two such strings we can find their longest common
prefix (LCP), and hence also compare them in O(log z) time

with a use of an LCP data structure for HX [62] (comparison
of O(log z) intervals of HX and O(log z) differences).

We first sort those strings in lexicographic order. Since there
are in expectation O(nzℓ) of them, and a single comparison
takes O(log z) time, this takes O(nzℓ log nz

ℓ log z) time in total
using any optimal comparison-based sorting algorithm [28].
Now we construct the compacted trie of those strings node by
node in the order of a DFS. Each edge will be labeled with
an interval of HX and a list of at most log2 z differences.

We start from creating a single edge from root to a leaf
representing the first string. Now we iterate over all remaining
strings in lexicographic order – we first compute the length of
the LCP of this string, and the previous one, next starting
from the leaf representing the previous string we move up the
tree node by node to find its ancestor at depth equal to the
length of this LCP. If this node turns out to be an implicit one,
then we make it explicit by dividing the edge (and hence also
the interval of HX and the list of differences). We finish by
creating a new child of the reached node – this child becomes
the leaf representing the new string.

Unlike the construction from [18] we do not need to trim the
HX parts after constructing the tree, as in our query algorithm
we must verify the weight for each match anyway.

V. PRACTICALLY FAST QUERYING WITHOUT A GRID

In this section, we describe a simple and fast querying algo-
rithm that does not require the grid to be constructed on top of
the trees. While this querying algorithm has worse guarantees
than Theorem 10, it performs much better in practice, due to
its simplicity, as we show later in the experimental evaluation.

Like in the previous construction let µ = f(P [1 . . ℓ]).
Without loss of generality we assume that µ ≤ m

2 (otherwise
we swap the roles of the parts of P and of trees Tsuff and
Tpref). Let u be the node reached by reading P [µ . .m] in

Tsuff. We can separately check each leaf in the subtree of
u as a potential candidate in O(m) time: we can do this
assuming we have random access to X . This time we cannot
use the nz

|Σ|m bound on the expected number of candidates from
Lemma 9. However, P [µ . .m] has length at least m/2, and
hence the expected number of candidates can still be bounded
by

∑m
k=⌈m/2⌉

nz
|Σ|k ≤ 2 nz

|Σ|m/2 using a similar argument. Thus
we can answer a query in O(m · (1+ nz

|Σ|m/2)) expected time.

VI. RELATED WORK

As mentioned in Introduction, there are no practical in-
dexing schemes for uncertain strings due to their prohibitive
space requirements (we refer to [17] for a survey of theoretical
solutions). However, there is substantial work on practical
indexing schemes for probabilistic/uncertain data. There have
been proposed indexes for various types of queries, including
range queries [87], [23], [88], [26], [8], top-k queries [98],
[45], [99], [78], nearest neighbor queries [7], [25], [24], sql-
like queries [77], inference queries [50], and probabilistic
equality threshold queries [84]. These indexes were developed
for different uncertainty data models, such as tuple uncer-
tainty and attribute uncertainty [85]. Under tuple uncertainty,
the presence of a tuple in a relation is probabilistic, while
under attribute uncertainty a tuple is certainly present in a
database but one or more of its attributes are not known with
certainty. Several indexes are built on R-trees or inverted in-
dexes (e.g., [84], [30]), while others are built on R∗-trees [87].
There are also specialized indexes, e.g., for probabilistic XML
queries [39] or uncertain graphs [97], [86]. Our work differs
substantially from these indexes in the type of supported data
(uncertain string) and query type (pattern matching query).

Many topics beyond indexing have also been studied
on probabilistic, uncertain, incomplete, and/or fuzzy data;
see [64], [63], [11], [68], [81] for surveys. These topics range
from the theoretical development of data models (e.g., [36],
[61], [41], [83], [75]) to query languages (e.g., [14], [60], [31])
and to systems (e.g., [96], [74], [91]).

VII. EXPERIMENTAL EVALUATION

A. Data and Setup

Data. We used three real weighted strings which model vari-
ations found in the DNA (σ = 4) of different samples of the
same species. The chromosomal or genomic location of a gene
or any other genetic element is called a locus and alternative
DNA sequences at a locus are called alleles. Allele frequency,
or gene frequency, is the relative frequency of an allele at
a particular locus in a population, expressed as a fraction
or percentage. Thus, alleles have a natural representation as
weighted strings. In particular, we model the probability pi(α)
in these strings as the relative frequency of letter α at position
i among the different samples.

We next describe the datasets we used (see also Table III):
• SARS: The full genome of SARS-CoV-2 (isolate Wuhan-

Hu-1) [1] combined with a set of single nucleotide poly-
morphisms (SNPs) [2] taken from 1, 181 samples [90].

TABLE III: Characteristics of the real datasets we used.

Dataset # of Length ∆ Size of z-estimation
samples n as percentage of n for the default z (MBs)

SARS 1, 181 29, 903 3.6% 31
EFM 1, 432 2, 955, 294 6% 378

HUMAN 2, 504 35, 194, 566 3.2% 282

• EFM: The full chromosome of Enterococcus faecium
Aus0004 strain (CP003351) [3] combined with a set of
SNPs [4] taken from 1, 432 samples [27].

• HUMAN: The full chromosome 22 of the Homo sapiens
genome (v. GRCh37) [5] combined with a set of SNPs [6]
taken from the final phase of the 1000 Genomes Project
(phase 3) representing 2, 504 samples on GRCh37 [32].

The percentage of positions where more than one letter has
a probability of occurrence larger than 0 is denoted by ∆.

We also used a synthetic weighted string of length n =
10, 000 over an alphabet of size σ = 20. For this dataset,
∆ = 5.37%. The results were analogous to those for the real
datasets (omitted for space). Indeed, note from our theoretical
results (e.g., Theorem 10) that increasing σ does not negatively
affect our index in any measure of efficiency.
Parameters. For every weighted string of length n, every
pattern length m ∈ {64, 128, 256, 512, 1024}, and every z we
used, we selected ⌊nz/200⌋ patterns, occurring with probabil-
ity at least 1

z , uniformly at random from the weighted string,
to account for the different n and z values in our datasets. For
example, for HUMAN, which is of length n = 35, 194, 566,
and for z = 32, we have selected 5, 631, 130 valid patterns
uniformly at random. The default z for SARS, EFM, and
HUMAN was 1024, 128, and 8, respectively, and led to z-
estimations with sizes of several MBs; see Table III. The
parameter ℓ was set to m, and the default m value was 256.
Implementations. We used the implementations of the state-
of-the-art indexes WST and WSA from [17] and [22], re-
spectively. We implemented: (1) MWST-G, the algorithm
underlying our Theorem 10. (2) MWST, a simplified version
of MWST-G that drops the 2D grid and performs pattern
matching as described in Section V. (3) MWSA and MWSA-
G, the array-based versions of MWST and MWST-G, re-
spectively. A standard in-order DFS traversal of MWST gives
MWSA. (4) MWST-SE, the space-efficient construction of
MWST underlying Theorem 14. In all implementations, we
used Karp-Rabin fingerprints [52] to compute the minimizers.
Measures. We used all four relevant measures of efficiency
(see Introduction): index size; query time; construction space;
and construction time. To measure the query and construction
time, we used the chrono C++ library. To measure the index
size, we used the malloc2 C++ function. To measure the
construction space, we recorded the maximum resident set size
using the /usr/bin/time -v command.
Environment. All experiments ran using a single AMD EPYC
7282 CPU at 2.8GHz with 252GB RAM under GNU/Linux.
All methods were implemented in C++ and compiled with
g++ (v. 12.2.1) at optimization level -O3.

1

10

100

1000

10000

64 12
8

25
6

51
2

10
24

ℓ

In
d
ex

 S
iz

e
 (

M
B

)
lo

g
 s

ca
le

WST MWST MWST-G

(a) SARS

1

10

100

1000

64 12
8

25
6

51
2

10
24

ℓ

In
d
ex

 S
iz

e
 (

M
B

)
lo

g
 s

ca
le

WSA MWSA MWSA-G

(b) SARS

1

10

100

1000

10000

100000

64 12
8

25
6

51
2

10
24

ℓ

In
d
ex

 S
iz

e
 (

M
B

)
lo

g
 s

ca
le

WST MWST MWST-G

(c) EFM

1

10

100

1000

10000

64 12
8

25
6

51
2

10
24

ℓ

In
d
ex

 S
iz

e
 (

M
B

)
lo

g
 s

ca
le

WSA MWSA MWSA-G

(d) EFM

1

10

100

1000

10000

100000

64 12
8

25
6

51
2

10
24

ℓ

In
d
ex

 S
iz

e
 (

M
B

)
lo

g
 s

ca
le

WST MWST MWST-G

(e) HUMAN

1

10

100

1000

10000

64 12
8

25
6

51
2

10
24

ℓ

In
d
ex

 S
iz

e
 (

M
B

)
lo

g
 s

ca
le

WSA MWSA MWSA-G

(f) HUMAN

Fig. 5: Index size (log scale, MB) vs. ℓ.

1

10

100

1000

10000

64 12
8

25
6

51
2

10
24

z

In
d
ex

 S
iz

e
 (

M
B

)
lo

g
 s

ca
le

WST MWST MWST-G

(a) SARS

1

10

100

1000

64 12
8

25
6

51
2

10
24

z

In
d
ex

 S
iz

e
 (

M
B

)
lo

g
 s

ca
le

WSA MWSA MWSA-G

(b) SARS

1

10

100

1000

10000

100000

8 16 32 64 12
8

z

In
d
ex

 S
iz

e
 (

M
B

)
lo

g
 s

ca
le

WST MWST MWST-G

(c) EFM

1

10

100

1000

10000

8 16 32 64 12
8

z

In
d
ex

 S
iz

e
 (

M
B

)
lo

g
 s

ca
le

WSA MWSA MWSA-G

(d) EFM

1

10

100

1000

10000

100000

2 4 8 16 32

z

In
d
ex

 S
iz

e
 (

M
B

)
lo

g
 s

ca
le

WST MWST MWST-G

(e) HUMAN

1

10

100

1000

10000
30000

2 4 8 16 32

z

In
d
ex

 S
iz

e
 (

M
B

)
lo

g
 s

ca
le

WSA MWSA MWSA-G

(f) HUMAN

Fig. 6: Index size (log scale, MB) vs. z. The tree-based indexes
for HUMAN (Fig. 6e) needed > 252GB of space when z ≥
16 and hence could not be constructed.

0

5000

10000

15000

20000

64 12
8

25
6

51
2

10
24

ℓ

C
o
n
st

ru
ct

io
n
 S

p
a
c
e
 (

M
B

) WST MWST MWST-G

(a) SARS

0

1000

2000

3000

64 12
8

25
6

51
2

10
24

ℓ

C
o
n
st

ru
ct

io
n
 S

p
a
c
e
 (

M
B

) WSA MWSA MWSA-G

(b) SARS

0

61250

122500

183750

245000

64 12
8

25
6

51
2

10
24

ℓ

C
o

n
s
tr

u
ct

io
n

 S
p
a

ce
 (

M
B

) WST MWST MWST-G

(c) EFM

0

10000

20000

30000

40000

64 12
8

25
6

51
2

10
24

ℓ

C
o
n
st

ru
ct

io
n
 S

p
a
c
e
 (

M
B

) WSA MWSA MWSA-G

(d) EFM

0

60000

120000

180000

64 12
8

25
6

51
2

10
24

ℓ

C
o
n
st

ru
ct

io
n
 S

p
a
ce

 (
M

B
) WST MWST MWST-G

(e) HUMAN

0

10000

20000

30000

64 12
8

25
6

51
2

10
24

ℓ

C
o
n
st

ru
ct

io
n
 S

p
a
ce

 (
M

B
) WSA MWSA MWSA-G

(f) HUMAN

Fig. 7: Construction space (MB) vs. ℓ.

0

5000

10000

15000

20000

64 12
8

25
6

51
2

10
24

z

C
o
n
s
tr

u
c
tio

n
 S

p
a
c
e
 (

M
B

) WST MWST MWST-G

(a) SARS

0

625

1250

1875

2500

64 12
8

25
6

51
2

10
24

z

C
o

n
s
tr

u
ct

io
n

 S
p
a

ce
 (

M
B

) WSA MWSA MWSA-G

(b) SARS

0

61250

122500

183750

245000

8 16 32 64 12
8

z

C
o
n
st

ru
ct

io
n
 S

p
a
ce

 (
M

B
) WST MWST MWST-G

(c) EFM

0

7000

14000

21000

28000

35000

8 16 32 64 12
8

z

C
o

n
s
tr

u
c
tio

n
 S

p
a

ce
 (

M
B

)

WSA MWSA MWSA-G

(d) EFM

0

60000

120000

180000

2 4 8 16 32

z

C
o
n
st

ru
ct

io
n
 S

p
a
ce

 (
M

B
) WST MWST MWST-G

(e) HUMAN

0

25000

50000

75000

100000

2 4 8 16 32

z

C
o

n
s
tr

u
c
tio

n
 S

p
a

ce
 (

M
B

)

WSA MWSA MWSA-G

(f) HUMAN

Fig. 8: Construction space (MB) vs. z. The tree-based indexes
for HUMAN (Fig. 8e) needed > 252GB when z ≥ 16 and
hence could not be constructed.

1

10

100

1000

10000

64 12
8

25
6

51
2

10
24

ℓ

A
vg

.
Q

u
e
ry

 t
im

e
 (
μ

s
)

lo
g
 s

ca
le

WST MWST MWST-G

(a) SARS

1

10

100

1000

10000

64 12
8

25
6

51
2

10
24

ℓ

A
vg

.
Q

u
e
ry

 t
im

e
 (
μ

s
)

lo
g
 s

ca
le

WSA MWSA MWSA-G

(b) SARS

1

10

100

1000

64 12
8

25
6

51
2

10
24

ℓ

A
vg

.
Q

u
e
ry

 t
im

e
 (
μ

s
)

lo
g
 s

ca
le

WST MWST MWST-G

(c) EFM

1

10

100

1000

64 12
8

25
6

51
2

10
24

ℓ

A
vg

.
Q

u
e
ry

 t
im

e
 (
μ

s
)

lo
g
 s

ca
le

WSA MWSA MWSA-G

(d) EFM

1

10

100

1000

64 12
8

25
6

51
2

10
24

ℓ

A
vg

.
Q

u
e
ry

 t
im

e
 (
μ

s
)

lo
g
 s

ca
le

WST MWST MWST-G

(e) HUMAN

1

10

100

1000

64 12
8

25
6

51
2

10
24

ℓ

A
vg

.
Q

u
e
ry

 t
im

e
 (
μ

s
)

lo
g
 s

ca
le

WSA MWSA MWSA-G

(f) HUMAN

Fig. 9: Average query time (log scale, µs) vs. ℓ.

1

10

100

1000

10000

64 12
8

25
6

51
2

10
24

z

A
vg

.
Q

u
e
ry

 t
im

e
 (
μ

s)

lo
g
 s

ca
le

WST MWST MWST-G

(a) SARS

1

10

100

1000

10000

64 12
8

25
6

51
2

10
24

z

A
vg

.
Q

u
e
ry

 t
im

e
 (
μ

s)

lo
g
 s

ca
le

WSA MWSA MWSA-G

(b) SARS

1

10

100

1000

8 16 32 64 12
8

z

A
vg

.
Q

u
e
ry

 t
im

e
 (
μ

s)

lo
g
 s

ca
le

WST MWST MWST-G

(c) EFM

1

10

100

1000

8 16 32 64 12
8

z

A
vg

.
Q

u
e
ry

 t
im

e
 (
μ

s)

lo
g
 s

ca
le

WSA MWSA MWSA-G

(d) EFM

1

10

100

1000

2 4 8 16 32

z

A
vg

.
Q

u
e
ry

 t
im

e
 (
μ

s)

lo
g
 s

ca
le

WST MWST MWST-G

(e) HUMAN

1

10

100

1000

2 4 8 16 32

z

A
v
g
.
Q

u
e
ry

 t
im

e
 (
μ

s
)

lo
g
 s

ca
le

WSA MWSA MWSA-G

(f) HUMAN

Fig. 10: Average query time (log scale, µs) vs. z. The tree-
based indexes for HUMAN (Fig. 10e) needed > 252GB when
z ≥ 16 and hence could not be constructed.

0

1500

3000

4500

64 12
8

25
6

51
2

10
24

ℓ

C
o
n
s
tr

u
c
tio

n
 T

im
e
 (

s
)

WST MWST MWST-G

(a) EFM

0

250

500

750

1000

64 12
8

25
6

51
2

10
24

ℓ

C
o
n
s
tr

u
c
tio

n
 T

im
e
 (

s
)

WSA MWSA MWSA-G

(b) EFM

0

1000

2000

3000

8 16 32 64 12
8

z

C
o
n
st

ru
ct

io
n
 T

im
e
 (

s)

WST MWST MWST-G

(c) EFM

0

80

160

240

320

400

8 16 32 64 12
8

z

C
o
n
st

ru
ct

io
n
 T

im
e
 (

s)

WST MWST MWST-G

(d) EFM

Fig. 11: (a, b) Construction time (s) vs. ℓ for EFM. (c, d)
Construction time (s) vs. z for EFM. The results for SARS
and HUMAN were analogous (omitted for space).

Code and Datasets. The code and all datasets are available
at https://github.com/solonas13/ius under GNU GPL v3.0.

B. Evaluating our Minimizer-based Indexes

This section shows that: (1) our indexes are up to two orders
of magnitude smaller than the state-of-the-art indexes and can
be constructed in much less space; (2) our indexes have query
and construction times that are competitive to that of the state
of the art; and (3) our simplified indexes allow faster queries
than the grid-based ones despite having weaker guarantees.
Index Size. Figs. 5 and 6 show that our tree-based (resp.
array-based) indexes occupy up to two orders of magnitude
less space than WST (resp. WSA). The size of our indexes
decreases with ℓ and increases with z (see Theorem 10).
Furthermore, the array-based indexes occupy several times less
space than the tree-based ones, as it is widely known [51]. For
example, note from Figs. 5c and 5d that for ℓ = 1024, WST
occupied 126GB of space, whereas our MWST 900MB and
MWSA only 204MB! As expected, our grid-based indexes
MWST-G and MWSA-G occupy a slight amount of extra
space compared to MWST and MWSA, respectively.
Construction Space. Figs. 7 and 8 show that our tree-based
(resp. array-based) indexes outperform WST (resp. WSA)
by 27% (resp. 61%) on average. Although our construction
algorithm (see Theorem 10) takes Θ(nz) space in any case,
it carries lower constant factors than that of WST. That is,
in practice, the index construction space for our tree-based
indexes decreases as ℓ increases and increases with z – see
Lemmas 6 and 8, which show a clear dependency on the
number O(nzℓ) of sampled minimizers. The same explanation
holds for WSA and our array-based indexes. Again, as it is
widely known [51], the array-based indexes outperform the
tree-based ones in terms of space; and, as expected, MWST-
G and MWSA-G need a very slightly larger construction space
than MWST and MWSA, respectively.

https://github.com/solonas13/ius

100

10000

100000

1000000

64 12
8

25
6

51
2

10
24

ℓ

C
o
n
s
tr

u
ct

io
n
 S

p
a
ce

 (
M

B
)

lo
g
 s

ca
le WST MWST WSA MWSA MWST-SE

(a) EFM

1000

10000

100000

64 12
8

25
6

51
2

10
24

ℓ

C
o
n
s
tr

u
c
tio

n
 S

p
a
c
e
 (

M
B

)
lo

g
 s

c
a
le WST MWST WSA MWSA MWST-SE

(b) HUMAN

100

10000

200000

8 16 32 64 12
8

z

C
o

n
s
tr

u
ct

io
n

 S
p
a

ce
 (

M
B

)
lo

g
 s

c
a

le WST MWST WSA MWSA MWST-SE

(c) EFM

1000

10000

200000

2 4 8 16 32

z

C
o

n
st

ru
c
tio

n
 S

p
a

ce
 (

M
B

)
lo

g
 s

ca
le WST MWST WSA MWSA MWST-SE

(d) HUMAN

Fig. 12: Construction space (log scale, MB) vs: (a, b) ℓ. (c,
d) z. WST and MWST for HUMAN (Fig. 12d) needed >
252GB when z ≥ 16 and hence could not be constructed. The
results for SARS were analogous (omitted for space).

100

1000

10000

64 12
8

25
6

51
2

10
24

ℓ

C
o

n
st

ru
ct

io
n

 T
im

e
 (

s)
 (

lo
g

 s
ca

le
) WST MWST WSA MWSA MWST-SE

(a) EFM

100

1000

10000

64 12
8

25
6

51
2

10
24

ℓ

C
o

n
st

ru
ct

io
n

 T
im

e
 (

s)
 (

lo
g

 s
ca

le
) WST MWST WSA MWSA MWST-SE

(b) HUMAN

10

100

1000

8 16 32 64 12
8

z

C
o
n
st

ru
ct

io
n
 T

im
e
 (

s)
 (

lo
g
 s

ca
le

) WST MWST WSA MWSA MWST-SE

(c) EFM

10

100

1000

2 4 8 16 32

z

C
o
n
st

ru
ct

io
n
 T

im
e
 (

s)
 (

lo
g
 s

ca
le

) WST MWST WSA MWSA MWST-SE

(d) HUMAN

Fig. 13: Construction time (log scale, s) vs: (a, b) ℓ. (c, d) z.
WST and MWST for HUMAN (Fig. 13d) needed > 252GB
when z ≥ 16 and hence could not be constructed. The results
for SARS were analogous (omitted for space).

Query Time. Figs. 9 and 10 show that MWST is generally
slower than WST because its search operation is more costly
than that of WST (see Theorem 10). However, MWSA is com-
petitive to WSA since, due to the smaller size of the former,
the binary search operation used in query answering (pattern
matching) [70] becomes faster. This is very encouraging given
its substantially smaller index size and index construction
space across all z and ℓ values. Furthermore, MWST and
MWSA outperform MWST-G and MWSA-G, respectively.
This is in line with the findings of [16], [67], which show
that simple verification schemes like the one developed by
us in Section V, are faster than grid approaches, even if the
theoretical guarantees provided by the former are weaker. The
query time of the grid-based indexes is not negatively affected

by increasing ℓ, unlike MWST and MWSA, which highlights
the benefit of Theorem 10. The query time of all indexes
increases with z, as expected by their time complexities. The
query time of WST and WSA does not depend on ℓ, as
expected by their time complexities.
Construction Time. Fig. 11 shows that WST and WSA can
be constructed in less time than our tree-based and array-based
indexes, respectively. This is expected as our construction
is much more complex than that of WST and WSA [17],
[22]. In particular, although our construction algorithm (see
Theorem 10) takes Θ(nz) time in any case, it carries higher
constant factors than those of WST and WSA. This is expected
as, in some sense, our construction largely follows the one
of WST and WSA but it does additional work implied by
the sampling mechanism. In practice, the construction time
decreases as ℓ increases and increases with z – see Lemmas 6
and 8, which show a clear dependency on the number O(nzℓ)
of sampled minimizers. On average, MWST requires 70%
(resp. MWSA requires 41%) more time to be constructed
than WST (resp. WSA). MWST-G and MWSA-G has similar
construction time to MWST and MWSA, respectively.

C. Evaluating our Space-efficient Index Construction

Construction space. Fig. 12 shows that the construction space
of MWST-SE is one order of magnitude smaller than that of
WSA and 52 times smaller than that of MWST on average.
The construction space of MWST-SE decreases with ℓ and
increases with z, as expected by Theorem 14. For example,
in Fig. 12a MWST-SE needs only 772MB of memory to be
constructed when ℓ = 1024, while WSA and MWST need
over 32GBs and 183GBs, respectively. Even for ℓ = 64, the
construction space of MWST-SE is 4 times smaller than that
of WSA and more than 25 times smaller than that of MWST.
Construction Time. Fig. 13 shows that the construction
time of MWST-SE is on average 13% smaller than that of
WSA, the next fastest index. This is very encouraging, as
MWST-SE is quite complex. The construction time of MWST-
SE decreases with ℓ and increases with z, as expected by
Theorem 14. For example, for ℓ = 1024 and z = 128 in
Fig. 13a, the construction time of MWST-SE is smaller by
44% (resp. 16 times smaller) compared to that of WSA (resp.
MWST). This faster construction is a consequence of WST
being always of Θ(nz) size (producing copies of solid factors),
while in the extended solid factor trees each solid factor is
considered only once. The O(log ℓ) cost for heap operations
is very optimized and in practice comparable with the large
constants of the other constructions for reasonable ℓ values.

D. Conclusion of our Experimental Evaluation

To conclude, the most practical solution to ℓ-WEIGHTED
INDEXING is to use the MWST-SE algorithm to construct
MWST, which requires the smallest construction space and
time (see Figs. 12 and 13), and then infer MWSA, the array-
based version of MWST via a standard in-order DFS traversal
on MWST [70], as MWSA has the smallest index size and a
competitive query time to WSA (see Figs. 5, 6, 9, and 10).

REFERENCES

[1] https://www.ncbi.nlm.nih.gov/nuccore/MN908947.3.
[2] https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8363274/bin/

elife-66857-supp2.txt.
[3] https://www.ncbi.nlm.nih.gov/nuccore/CP003351.
[4] https://github.com/francesccoll/powerbacgwas/blob/main/data/efm

clade all.vcf.gz.
[5] https://www.ncbi.nlm.nih.gov/datasets/genome/GCF 000001405.13/.
[6] https://ftp.1000genomes.ebi.ac.uk/vol1/ftp/release/20130502/ALL.

chr22.phase3 shapeit2 mvncall integrated v5b.20130502.genotypes.
vcf.gz.

[7] Pankaj K. Agarwal, Boris Aronov, Sariel Har-Peled, Jeff M. Phillips,
Ke Yi, and Wuzhou Zhang. Nearest-neighbor searching under uncer-
tainty II. ACM Trans. Algorithms, 13(1):3:1–3:25, 2016.

[8] Pankaj K. Agarwal, Siu-Wing Cheng, Yufei Tao, and Ke Yi. Indexing
uncertain data. In Jan Paredaens and Jianwen Su, editors, Proceedings
of the Twenty-Eigth ACM SIGMOD-SIGACT-SIGART Symposium on
Principles of Database Systems, PODS 2009, June 19 - July 1, 2009,
Providence, Rhode Island, USA, pages 137–146. ACM, 2009.

[9] Charu C. Aggarwal. On unifying privacy and uncertain data models. In
Proceedings of the 24th International Conference on Data Engineering
(ICDE), pages 386–395. IEEE Computer Society, 2008.

[10] Charu C. Aggarwal. Managing and Mining Uncertain Data, volume 35
of Advances in Database Systems. Kluwer, 2009.

[11] Charu C. Aggarwal and Philip S. Yu. A survey of uncertain data al-
gorithms and applications. IEEE Trans. Knowl. Data Eng., 21(5):609–
623, 2009.

[12] Amihood Amir, Eran Chencinski, Costas S. Iliopoulos, Tsvi
Kopelowitz, and Hui Zhang. Property matching and weighted match-
ing. In Moshe Lewenstein and Gabriel Valiente, editors, Combinatorial
Pattern Matching, 17th Annual Symposium, CPM 2006, Barcelona,
Spain, July 5-7, 2006, Proceedings, volume 4009 of Lecture Notes
in Computer Science, pages 188–199. Springer, 2006.

[13] Amihood Amir, Eran Chencinski, Costas S. Iliopoulos, Tsvi
Kopelowitz, and Hui Zhang. Property matching and weighted match-
ing. Theor. Comput. Sci., 395(2-3):298–310, 2008.

[14] Lyublena Antova, Christoph Koch, and Dan Olteanu. Query language
support for incomplete information in the maybms system. In Christoph
Koch, Johannes Gehrke, Minos N. Garofalakis, Divesh Srivastava,
Karl Aberer, Anand Deshpande, Daniela Florescu, Chee Yong Chan,
Venkatesh Ganti, Carl-Christian Kanne, Wolfgang Klas, and Erich J.
Neuhold, editors, Proceedings of the 33rd International Conference
on Very Large Data Bases, University of Vienna, Austria, September
23-27, 2007, pages 1422–1425. ACM, 2007.

[15] Mozhdeh Ariannezhad, Ali Montazeralghaem, Hamed Zamani, and
Azadeh Shakery. Improving retrieval performance for verbose queries
via axiomatic analysis of term discrimination heuristic. In Noriko
Kando, Tetsuya Sakai, Hideo Joho, Hang Li, Arjen P. de Vries,
and Ryen W. White, editors, Proceedings of the 40th International
ACM SIGIR Conference on Research and Development in Information
Retrieval, Shinjuku, Tokyo, Japan, August 7-11, 2017, pages 1201–
1204. ACM, 2017.

[16] Lorraine A. K. Ayad, Grigorios Loukides, and Solon P. Pissis. Text
indexing for long patterns: Anchors are all you need. Proc. VLDB
Endow., 16(9):2117–2131, 2023.

[17] Carl Barton, Tomasz Kociumaka, Chang Liu, Solon P. Pissis, and Jakub
Radoszewski. Indexing weighted sequences: Neat and efficient. Inf.
Comput., 270, 2020.

[18] Carl Barton, Tomasz Kociumaka, Solon P. Pissis, and Jakub Ra-
doszewski. Efficient index for weighted sequences. In Roberto
Grossi and Moshe Lewenstein, editors, 27th Annual Symposium on
Combinatorial Pattern Matching, CPM 2016, June 27-29, 2016, Tel
Aviv, Israel, volume 54 of LIPIcs, pages 4:1–4:13. Schloss Dagstuhl -
Leibniz-Zentrum für Informatik, 2016.

[19] Michael Bendersky and W. Bruce Croft. Discovering key concepts in
verbose queries. In Sung-Hyon Myaeng, Douglas W. Oard, Fabrizio
Sebastiani, Tat-Seng Chua, and Mun-Kew Leong, editors, Proceedings
of the 31st Annual International ACM SIGIR Conference on Research
and Development in Information Retrieval, SIGIR 2008, Singapore,
July 20-24, 2008, pages 491–498. ACM, 2008.

[20] Sudip Biswas, Manish Patil, Sharma V. Thankachan, and Rahul Shah.
Probabilistic threshold indexing for uncertain strings. In Evaggelia
Pitoura, Sofian Maabout, Georgia Koutrika, Amélie Marian, Letizia

Tanca, Ioana Manolescu, and Kostas Stefanidis, editors, Proceedings of
the 19th International Conference on Extending Database Technology,
EDBT 2016, Bordeaux, France, March 15-16, 2016, Bordeaux, France,
March 15-16, 2016, pages 401–412. OpenProceedings.org, 2016.

[21] Timothy M. Chan, Kasper Green Larsen, and Mihai Puatracscu. Or-
thogonal range searching on the RAM, revisited. In Ferran Hurtado and
Marc J. van Kreveld, editors, Proceedings of the 27th ACM Symposium
on Computational Geometry, Paris, France, June 13-15, 2011, pages
1–10. ACM, 2011.

[22] Panagiotis Charalampopoulos, Costas S. Iliopoulos, Chang Liu, and
Solon P. Pissis. Property suffix array with applications in indexing
weighted sequences. ACM J. Exp. Algorithmics, 25:1–16, 2020.

[23] Lu Chen, Yunjun Gao, Aoxiao Zhong, Christian S. Jensen, Gang Chen,
and Baihua Zheng. Indexing metric uncertain data for range queries
and range joins. VLDB J., 26(4):585–610, 2017.

[24] Reynold Cheng, Lei Chen, Jinchuan Chen, and Xike Xie. Evaluating
probability threshold k-nearest-neighbor queries over uncertain data.
In Martin L. Kersten, Boris Novikov, Jens Teubner, Vladimir Polutin,
and Stefan Manegold, editors, EDBT 2009, 12th International Con-
ference on Extending Database Technology, Saint Petersburg, Russia,
March 24-26, 2009, Proceedings, volume 360 of ACM International
Conference Proceeding Series, pages 672–683. ACM, 2009.

[25] Reynold Cheng, Dmitri V. Kalashnikov, and Sunil Prabhakar. Querying
imprecise data in moving object environments. IEEE Trans. Knowl.
Data Eng., 16(9):1112–1127, 2004.

[26] Reynold Cheng, Yuni Xia, Sunil Prabhakar, Rahul Shah, and Jef-
frey Scott Vitter. Efficient indexing methods for probabilistic threshold
queries over uncertain data. In Mario A. Nascimento, M. Tamer Özsu,
Donald Kossmann, Renée J. Miller, José A. Blakeley, and K. Bernhard
Schiefer, editors, (e)Proceedings of the Thirtieth International Confer-
ence on Very Large Data Bases, VLDB 2004, Toronto, Canada, August
31 - September 3 2004, pages 876–887. Morgan Kaufmann, 2004.

[27] Francesc Coll, Theodore Gouliouris, Sebastian Bruchmann, Jody Phe-
lan, Kathy E. Raven, Taane G. Clark, Julian Parkhill, and Sharon J.
Peacock. PowerBacGWAS: a computational pipeline to perform power
calculations for bacterial genome-wide association studies. Communi-
cations Biology, 5(266), 2022.

[28] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and
Clifford Stein. Introduction to Algorithms, 3rd Edition. MIT Press,
2009.

[29] Maxime Crochemore, Christophe Hancart, and Thierry Lecroq. Algo-
rithms on strings. Cambridge University Press, 2007.

[30] Xiangyuan Dai, Man Lung Yiu, Nikos Mamoulis, Yufei Tao, and
Michail Vaitis. Probabilistic spatial queries on existentially uncertain
data. In Claudia Bauzer Medeiros, Max J. Egenhofer, and Elisa Bertino,
editors, Advances in Spatial and Temporal Databases, 9th International
Symposium, SSTD 2005, Angra dos Reis, Brazil, August 22-24, 2005,
Proceedings, volume 3633 of Lecture Notes in Computer Science,
pages 400–417. Springer, 2005.

[31] Nilesh N. Dalvi and Dan Suciu. Efficient query evaluation on proba-
bilistic databases. In Mario A. Nascimento, M. Tamer Özsu, Donald
Kossmann, Renée J. Miller, José A. Blakeley, and K. Bernhard Schiefer,
editors, (e)Proceedings of the Thirtieth International Conference on
Very Large Data Bases, VLDB 2004, Toronto, Canada, August 31 -
September 3 2004, pages 864–875. Morgan Kaufmann, 2004.

[32] Susan Fairley, Ernesto Lowy-Gallego, Emily Perry, and Paul Flicek.
The International Genome Sample Resource (IGSR) collection of
open human genomic variation resources. Nucleic Acids Research,
48(D1):D941–D947, 10 2019.

[33] Martin Farach. Optimal suffix tree construction with large alphabets. In
38th Annual Symposium on Foundations of Computer Science, FOCS
’97, Miami Beach, Florida, USA, October 19-22, 1997, pages 137–143,
1997.

[34] Paolo Ferragina and Giovanni Manzini. Indexing compressed text. J.
ACM, 52(4):552–581, 2005.

[35] Michael L. Fredman, János Komlós, and Endre Szemerédi. Storing a
sparse table with 0(1) worst case access time. J. ACM, 31(3):538–544,
1984.

[36] Norbert Fuhr and Thomas Rölleke. A probabilistic relational algebra
for the integration of information retrieval and database systems. ACM
Trans. Inf. Syst., 15(1):32–66, 1997.

[37] Travis Gagie, Gonzalo Navarro, and Nicola Prezza. Fully functional
suffix trees and optimal text searching in BWT-runs bounded space. J.
ACM, 67(1):2:1–2:54, 2020.

https://www.ncbi.nlm.nih.gov/nuccore/MN908947.3
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8363274/bin/elife-66857-supp2.txt
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8363274/bin/elife-66857-supp2.txt
https://www.ncbi.nlm.nih.gov/nuccore/CP003351
https://github.com/francesccoll/powerbacgwas/blob/main/data/efm_clade_all.vcf.gz
https://github.com/francesccoll/powerbacgwas/blob/main/data/efm_clade_all.vcf.gz
https://www.ncbi.nlm.nih.gov/datasets/genome/GCF_000001405.13/
https://ftp.1000genomes.ebi.ac.uk/vol1/ftp/release/20130502/ALL.chr22.phase3_shapeit2_mvncall_integrated_v5b.20130502.genotypes.vcf.gz
https://ftp.1000genomes.ebi.ac.uk/vol1/ftp/release/20130502/ALL.chr22.phase3_shapeit2_mvncall_integrated_v5b.20130502.genotypes.vcf.gz
https://ftp.1000genomes.ebi.ac.uk/vol1/ftp/release/20130502/ALL.chr22.phase3_shapeit2_mvncall_integrated_v5b.20130502.genotypes.vcf.gz

[38] Tingjian Ge and Zheng Li. Approximate substring matching over
uncertain strings. Proc. VLDB Endow., 4(11):772–782, 2011.

[39] Jian Gong, Reynold Cheng, and David W. Cheung. Efficient manage-
ment of uncertainty in XML schema matching. VLDB J., 21(3):385–
409, 2012.

[40] Szymon Grabowski and Marcin Raniszewski. Sampled suffix array
with minimizers. Softw. Pract. Exp., 47(11):1755–1771, 2017.

[41] Todd J. Green and Val Tannen. Models for incomplete and probabilistic
information. IEEE Data Eng. Bull., 29(1):17–24, 2006.

[42] Roberto Grossi and Jeffrey Scott Vitter. Compressed suffix arrays and
suffix trees with applications to text indexing and string matching.
SIAM J. Comput., 35(2):378–407, 2005.

[43] Manish Gupta and Michael Bendersky. Information retrieval with
verbose queries. In Ricardo Baeza-Yates, Mounia Lalmas, Alistair
Moffat, and Berthier A. Ribeiro-Neto, editors, Proceedings of the 38th
International ACM SIGIR Conference on Research and Development
in Information Retrieval, Santiago, Chile, August 9-13, 2015, pages
1121–1124. ACM, 2015.

[44] Monika Rauch Henzinger. Finding near-duplicate web pages: a large-
scale evaluation of algorithms. In Efthimis N. Efthimiadis, Susan T.
Dumais, David Hawking, and Kalervo Järvelin, editors, SIGIR 2006:
Proceedings of the 29th Annual International ACM SIGIR Conference
on Research and Development in Information Retrieval, Seattle, Wash-
ington, USA, August 6-11, 2006, pages 284–291. ACM, 2006.

[45] Ming Hua, Jian Pei, and Xuemin Lin. Ranking queries on uncertain
data. VLDB J., 20(1):129–153, 2011.

[46] Costas S. Iliopoulos, Christos Makris, Yannis Panagis, Katerina
Perdikuri, Evangelos Theodoridis, and Athanasios K. Tsakalidis. The
weighted suffix tree: An efficient data structure for handling molecular
weighted sequences and its applications. Fundam. Informaticae, 71(2-
3):259–277, 2006.

[47] Chirag Jain, Arang Rhie, Nancy Hansen, Sergey Koren, and Adam M.
Phillippy. Long-read mapping to repetitive reference sequences using
winnowmap2. Nat Methods, 19:705–710, 2022.

[48] Jeffrey Jestes, Feifei Li, Zhepeng Yan, and Ke Yi. Probabilistic string
similarity joins. In Ahmed K. Elmagarmid and Divyakant Agrawal,
editors, Proceedings of the ACM SIGMOD International Conference
on Management of Data, SIGMOD 2010, Indianapolis, Indiana, USA,
June 6-10, 2010, pages 327–338. ACM, 2010.

[49] Jiaojiao Jiang, Steve Versteeg, Jun Han, Md. Arafat Hossain, Jean-Guy
Schneider, Christopher Leckie, and Zeinab Farahmandpour. P-gram:
Positional n-gram for the clustering of machine-generated messages.
IEEE Access, 7:88504–88516, 2019.

[50] Bhargav Kanagal and Amol Deshpande. Indexing correlated proba-
bilistic databases. In Ugur Çetintemel, Stanley B. Zdonik, Donald
Kossmann, and Nesime Tatbul, editors, Proceedings of the ACM
SIGMOD International Conference on Management of Data, SIGMOD
2009, Providence, Rhode Island, USA, June 29 - July 2, 2009, pages
455–468. ACM, 2009.

[51] Juha Kärkkäinen, Peter Sanders, and Stefan Burkhardt. Linear work
suffix array construction. J. ACM, 53(6):918–936, 2006.

[52] Richard M. Karp and Michael O. Rabin. Efficient randomized pattern-
matching algorithms. IBM J. Res. Dev., 31(2):249–260, 1987.

[53] Toru Kasai, Gunho Lee, Hiroki Arimura, Setsuo Arikawa, and Kunsoo
Park. Linear-time longest-common-prefix computation in suffix arrays
and its applications. In Combinatorial Pattern Matching, 12th Annual
Symposium, CPM 2001 Jerusalem, Israel, July 1-4, 2001 Proceedings,
pages 181–192, 2001.

[54] A.E. Kel, E. Gössling, I. Reuter, E. Cheremushkin, O.V. Kel-Margoulis,
and E. Wingender. MATCHTM: a tool for searching transcription factor
binding sites in DNA sequences. Nucleic Acids Research, 31(13):3576–
3579, 07 2003.

[55] Dominik Kempa and Tomasz Kociumaka. String synchronizing sets:
sublinear-time BWT construction and optimal LCE data structure. In
Moses Charikar and Edith Cohen, editors, Proceedings of the 51st
Annual ACM SIGACT Symposium on Theory of Computing, STOC
2019, Phoenix, AZ, USA, June 23-26, 2019, pages 756–767. ACM,
2019.

[56] Dominik Kempa and Tomasz Kociumaka. Breaking the o(n)-barrier
in the construction of compressed suffix arrays and suffix trees. In
Nikhil Bansal and Viswanath Nagarajan, editors, Proceedings of the
2023 ACM-SIAM Symposium on Discrete Algorithms, SODA 2023,
Florence, Italy, January 22-25, 2023, pages 5122–5202. SIAM, 2023.

[57] Tomasz Kociumaka, Solon P. Pissis, and Jakub Radoszewski. Pattern
matching and consensus problems on weighted sequences and profiles.
In Seok-Hee Hong, editor, 27th International Symposium on Algorithms
and Computation, ISAAC 2016, December 12-14, 2016, Sydney, Aus-
tralia, volume 64 of LIPIcs, pages 46:1–46:12. Schloss Dagstuhl -
Leibniz-Zentrum für Informatik, 2016.

[58] Tomasz Kociumaka, Solon P. Pissis, and Jakub Radoszewski. Pattern
matching and consensus problems on weighted sequences and profiles.
Theory Comput. Syst., 63(3):506–542, 2019.

[59] Janne H. Korhonen, Petri Martinmäki, Cinzia Pizzi, Pasi Rastas, and
Esko Ukkonen. MOODS: fast search for position weight matrix
matches in DNA sequences. Bioinform., 25(23):3181–3182, 2009.

[60] Bart Kuijpers and Walied Othman. Trajectory databases: Data models,
uncertainty and complete query languages. J. Comput. Syst. Sci.,
76(7):538–560, 2010.

[61] Laks V. S. Lakshmanan, Nicola Leone, Robert B. Ross, and V. S.
Subrahmanian. Probview: A flexible probabilistic database system.
ACM Trans. Database Syst., 22(3):419–469, 1997.

[62] Gad M. Landau and Uzi Vishkin. Efficient string matching with k
mismatches. Theor. Comput. Sci., 43:239–249, 1986.

[63] Lingli Li, Hongzhi Wang, Jianzhong Li, and Hong Gao. A survey of
uncertain data management. Frontiers Comput. Sci., 14(1):162–190,
2020.

[64] Yiping Li, Jianwen Chen, and Ling Feng. Dealing with uncertainty:
A survey of theories and practices. IEEE Trans. Knowl. Data Eng.,
25(11):2463–2482, 2013.

[65] Yuxuan Li, James Bailey, Lars Kulik, and Jian Pei. Efficient matching
of substrings in uncertain sequences. In Mohammed Javeed Zaki, Zoran
Obradovic, Pang-Ning Tan, Arindam Banerjee, Chandrika Kamath,
and Srinivasan Parthasarathy, editors, Proceedings of the 2014 SIAM
International Conference on Data Mining, Philadelphia, Pennsylvania,
USA, April 24-26, 2014, pages 767–775. SIAM, 2014.

[66] Glennis A. Logsdon, Mitchell R. Vollger, and Evan E. Eichler. Long-
read human genome sequencing and its applications. Nat. Rev. Genet.,
21(10):597–614, 2020.

[67] Grigorios Loukides and Solon P. Pissis. Bidirectional string anchors:
A new string sampling mechanism. In Petra Mutzel, Rasmus Pagh,
and Grzegorz Herman, editors, 29th Annual European Symposium
on Algorithms, ESA 2021, September 6-8, 2021, Lisbon, Portugal
(Virtual Conference), volume 204 of LIPIcs, pages 64:1–64:21. Schloss
Dagstuhl - Leibniz-Zentrum für Informatik, 2021.

[68] Zong Min Ma and Li Yan. A literature overview of fuzzy database
models. J. Inf. Sci. Eng., 24(1):189–202, 2008.

[69] Veli Mäkinen and Gonzalo Navarro. Position-restricted substring
searching. In José R. Correa, Alejandro Hevia, and Marcos A. Kiwi,
editors, LATIN 2006: Theoretical Informatics, 7th Latin American
Symposium, Valdivia, Chile, March 20-24, 2006, Proceedings, volume
3887 of Lecture Notes in Computer Science, pages 703–714. Springer,
2006.

[70] Udi Manber and Eugene W. Myers. Suffix arrays: A new method for
on-line string searches. SIAM J. Comput., 22(5):935–948, 1993.

[71] Olena Medelyan and Ian H. Witten. Thesaurus based automatic
keyphrase indexing. In Gary Marchionini, Michael L. Nelson, and
Catherine C. Marshall, editors, ACM/IEEE Joint Conference on Digital
Libraries, JCDL 2006, Chapel Hill, NC, USA, June 11-15, 2006,
Proceedings, pages 296–297. ACM, 2006.

[72] Donald R. Morrison. PATRICIA - practical algorithm to retrieve
information coded in alphanumeric. J. ACM, 15(4):514–534, 1968.

[73] Ingo Müller, Cornelius Ratsch, and Franz Färber. Adaptive string
dictionary compression in in-memory column-store database systems.
In Sihem Amer-Yahia, Vassilis Christophides, Anastasios Kementsi-
etsidis, Minos N. Garofalakis, Stratos Idreos, and Vincent Leroy,
editors, Proceedings of the 17th International Conference on Extending
Database Technology, EDBT 2014, Athens, Greece, March 24-28, 2014,
pages 283–294. OpenProceedings.org, 2014.

[74] Dan Olteanu, Jiewen Huang, and Christoph Koch. SPROUT: lazy
vs. eager query plans for tuple-independent probabilistic databases.
In Yannis E. Ioannidis, Dik Lun Lee, and Raymond T. Ng, editors,
Proceedings of the 25th International Conference on Data Engineering,
ICDE 2009, March 29 2009 - April 2 2009, Shanghai, China, pages
640–651. IEEE Computer Society, 2009.

[75] Olivier Pivert and Henri Prade. A certainty-based model for uncertain
databases. IEEE Trans. Fuzzy Syst., 23(4):1181–1196, 2015.

[76] Cinzia Pizzi, Pasi Rastas, and Esko Ukkonen. Finding significant
matches of position weight matrices in linear time. IEEE ACM Trans.
Comput. Biol. Bioinform., 8(1):69–79, 2011.

[77] Yinian Qi, Rohit Jain, Sarvjeet Singh, and Sunil Prabhakar. Threshold
query optimization for uncertain data. In Ahmed K. Elmagarmid
and Divyakant Agrawal, editors, Proceedings of the ACM SIGMOD
International Conference on Management of Data, SIGMOD 2010,
Indianapolis, Indiana, USA, June 6-10, 2010, pages 315–326. ACM,
2010.

[78] Niranjan Rai and Xiang Lian. Distributed probabilistic top-k dominat-
ing queries over uncertain databases. Knowl. Inf. Syst., 65(11):4939–
4965, 2023.

[79] Michael Roberts, Wayne Hayes, Brian R. Hunt, Stephen M. Mount,
and James A. Yorke. Reducing storage requirements for biological
sequence comparison. Bioinform., 20(18):3363–3369, 2004.

[80] Patricia Rodriguez-Tomé, Peter Stoehr, Graham Cameron, and Tomas P.
Flores. The european bioinformatics institute (EBI) databases. Nucleic
Acids Res., 24(1):6–12, 1996.

[81] Anish Das Sarma, Omar Benjelloun, Alon Y. Halevy, Shubha U. Nabar,
and Jennifer Widom. Representing uncertain data: models, properties,
and algorithms. VLDB J., 18(5):989–1019, 2009.

[82] Saul Schleimer, Daniel Shawcross Wilkerson, and Alexander Aiken.
Winnowing: Local algorithms for document fingerprinting. In Alon Y.
Halevy, Zachary G. Ives, and AnHai Doan, editors, Proceedings of
the 2003 ACM SIGMOD International Conference on Management
of Data, San Diego, California, USA, June 9-12, 2003, pages 76–85.
ACM, 2003.

[83] Prithviraj Sen, Amol Deshpande, and Lise Getoor. Prdb: managing
and exploiting rich correlations in probabilistic databases. VLDB J.,
18(5):1065–1090, 2009.

[84] Sarvjeet Singh, Chris Mayfield, Sunil Prabhakar, Rahul Shah, and
Susanne E. Hambrusch. Indexing uncertain categorical data. In
Rada Chirkova, Asuman Dogac, M. Tamer Özsu, and Timos K. Sellis,
editors, Proceedings of the 23rd International Conference on Data
Engineering, ICDE 2007, The Marmara Hotel, Istanbul, Turkey, April
15-20, 2007, pages 616–625. IEEE Computer Society, 2007.

[85] Sarvjeet Singh, Chris Mayfield, Rahul Shah, Sunil Prabhakar, Su-
sanne E. Hambrusch, Jennifer Neville, and Reynold Cheng. Database
support for probabilistic attributes and tuples. In Gustavo Alonso,
José A. Blakeley, and Arbee L. P. Chen, editors, Proceedings of the 24th
International Conference on Data Engineering, ICDE 2008, April 7-
12, 2008, Cancún, Mexico, pages 1053–1061. IEEE Computer Society,
2008.

[86] Zitan Sun, Xin Huang, Jianliang Xu, and Francesco Bonchi. Efficient
probabilistic truss indexing on uncertain graphs. In Jure Leskovec,
Marko Grobelnik, Marc Najork, Jie Tang, and Leila Zia, editors, WWW
’21: The Web Conference 2021, Virtual Event / Ljubljana, Slovenia,
April 19-23, 2021, pages 354–366. ACM / IW3C2, 2021.

[87] Yufei Tao, Reynold Cheng, Xiaokui Xiao, Wang Kay Ngai, Ben
Kao, and Sunil Prabhakar. Indexing multi-dimensional uncertain
data with arbitrary probability density functions. In Klemens Böhm,
Christian S. Jensen, Laura M. Haas, Martin L. Kersten, Per-Åke Larson,
and Beng Chin Ooi, editors, Proceedings of the 31st International
Conference on Very Large Data Bases, Trondheim, Norway, August
30 - September 2, 2005, pages 922–933. ACM, 2005.

[88] Yufei Tao, Xiaokui Xiao, and Reynold Cheng. Range search on
multidimensional uncertain data. ACM Trans. Database Syst., 32(3):15,
2007.

[89] The Computational Pan-Genomics Consortium. Computational pan-
genomics: status, promises and challenges. Briefings in Bioinformatics,
19(1):118–135, 2018.

[90] Gerry Tonkin-Hill, Inigo Martincorena, Roberto Amato, Andrew RJ
Lawson, Moritz Gerstung, Ian Johnston, David K Jackson, Naomi Park,
Stefanie V Lensing, Michael A Quail, Sónia Gonçalves, Cristina Ariani,
Michael Spencer Chapman, William L Hamilton, Luke W Meredith,
Grant Hall, Aminu S Jahun, Yasmin Chaudhry, Myra Hosmillo, Malte L
Pinckert, Iliana Georgana, Anna Yakovleva, Laura G Caller, Sarah L
Caddy, Theresa Feltwell, Fahad A Khokhar, Charlotte J Houldcroft,
Martin D Curran, Surendra Parmar, The COVID-19 Genomics UK
(COG-UK) Consortium, Alex Alderton, Rachel Nelson, Ewan M
Harrison, John Sillitoe, Stephen D Bentley, Jeffrey C Barrett, M Estee
Torok, Ian G Goodfellow, Cordelia Langford, Dominic Kwiatkowski,
and Wellcome Sanger Institute COVID-19 Surveillance Team. Patterns

of within-host genetic diversity in SARS-CoV-2. eLife, 10:e66857, aug
2021.

[91] Thanh T. L. Tran, Liping Peng, Yanlei Diao, Andrew McGregor, and
Anna Liu. CLARO: modeling and processing uncertain data streams.
VLDB J., 21(5):651–676, 2012.

[92] Kazutoshi Umemoto, Ruihua Song, Jian-Yun Nie, Xing Xie, Katsumi
Tanaka, and Yong Rui. Search by screenshots for universal article
clipping in mobile apps. ACM Trans. Inf. Syst., 35(4):34:1–34:29, 2017.

[93] Adrian Vogelsgesang, Michael Haubenschild, Jan Finis, Alfons Kem-
per, Viktor Leis, Tobias Mühlbauer, Thomas Neumann, and Manuel
Then. Get real: How benchmarks fail to represent the real world. In
Alexander Böhm and Tilmann Rabl, editors, Proceedings of the 7th In-
ternational Workshop on Testing Database Systems, DBTest@SIGMOD
2018, Houston, TX, USA, June 15, 2018, pages 1:1–1:6. ACM, 2018.

[94] Peter Weiner. Linear pattern matching algorithms. In 14th Annual
Symposium on Switching and Automata Theory, Iowa City, Iowa, USA,
October 15-17, 1973, pages 1–11, 1973.

[95] Aaron M. Wenger et al. Accurate circular consensus long-read sequenc-
ing improves variant detection and assembly of a human genome. Nat.
Biotechnol., 37:1155–1162, 2019.

[96] Jennifer Widom. Trio: A system for integrated management of data,
accuracy, and lineage. In Second Biennial Conference on Innovative
Data Systems Research, CIDR 2005, Asilomar, CA, USA, January 4-7,
2005, Online Proceedings, pages 262–276. www.cidrdb.org, 2005.

[97] Bohua Yang, Dong Wen, Lu Qin, Ying Zhang, Lijun Chang, and Rong-
Hua Li. Index-based optimal algorithm for computing k-cores in large
uncertain graphs. In 35th IEEE International Conference on Data
Engineering, ICDE 2019, Macao, China, April 8-11, 2019, pages 64–
75. IEEE, 2019.

[98] Ke Yi, Feifei Li, George Kollios, and Divesh Srivastava. Efficient
processing of top-k queries in uncertain databases with x-relations.
IEEE Trans. Knowl. Data Eng., 20(12):1669–1682, 2008.

[99] Liming Zhan, Ying Zhang, Wenjie Zhang, and Xuemin Lin. Identifying
top k dominating objects over uncertain data. In Sourav S. Bhowmick,
Curtis E. Dyreson, Christian S. Jensen, Mong-Li Lee, Agus Muliantara,
and Bernhard Thalheim, editors, Database Systems for Advanced
Applications - 19th International Conference, DASFAA 2014, Bali,
Indonesia, April 21-24, 2014. Proceedings, Part I, volume 8421 of
Lecture Notes in Computer Science, pages 388–405. Springer, 2014.

[100] Hongyu Zheng, Carl Kingsford, and Guillaume Marçais. Improved
design and analysis of practical minimizers. Bioinformatics, 36(Sup-
plement 1):i119–i127, 07 2020.

	Introduction
	Our Data Model and Motivation
	Our Techniques and Results
	Paper Organization

	Preliminaries and Problem Definition
	The New Index: Minimizer-based WST
	Space-efficient Construction of the Index
	Practically Fast Querying Without a Grid
	Related Work
	Experimental Evaluation
	Data and Setup
	Evaluating our Minimizer-based Indexes
	Evaluating our Space-efficient Index Construction
	Conclusion of our Experimental Evaluation

	References

