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The substantial deformation exhibited by hyperelastic cylindrical
shells under pressurization makes them an ideal platform for pro-
grammable inflatable structures. If we instead apply negative pres-
sure, the cylindrical shell will buckle, leading to a sequence of rich
deformation modes, all of which are fully recoverable due to the hy-
perelastic material choice. While the initial buckling event under vac-
uum is well understood, here, we explore the post-buckling regime
and identify a region in the design space in which a coupled twisting-
contraction deformation mode occurs; by carefully controlling the
geometry of our homogeneous shells, we can control the propor-
tion of contraction vs. twist. Additionally, we can unlock bending
as a post-buckling deformation mode by varying the thickness of our
shells across the circumference. Since these soft shells can fully re-
cover from the substantial deformations caused by buckling, we then
harness these instability-driven deformations to build soft machines
capable of a programmable sequence of movements with a single
actuation input.

Cylindrical shells | Programmable instabilities | Vacuum | Soft struc-
tures

Inflatable structures are more than just party balloons; they
offer a versatile platform for designing a wide range of

lightweight and functional systems, such as temporary shel-
ters (1–4), airbags (5, 6), soft robots (7, 8), and medical
devices (9, 10). While load-bearing inflatables are usually
made from quasi-inextensible materials, it has been recently
shown that the flexibility of stretchable membranes provides
new opportunities to realize complex deformations upon infla-
tion (11–14). However, achieving complex deformations often
requires intricate initial geometries that pose challenges to
fabrication.

Inflatable structures formed from stretchable membranes
typically experience tensile stresses. However, it is widely rec-
ognized that compressive forces in shells – thin and naturally
curved structural components (15, 16) – can trigger mechan-
ical instabilities (17–19). While such instabilities have tra-
ditionally been regarded as catastrophic events, one recent
trend is that they can be harnessed to design flexible sys-
tems with novel functionality (20, 21). This is because in
hyper-elastic shells instabilities trigger reversible and repeat-
able deformations that largely alter the initial geometry and
occur over a narrow range of applied load. As such, they have
been exploited to realize tunable optical (22) and adhesive
(23) properties, encapsulations systems (24), morphable sur-
faces for aerodynamic drag control (25) and simple machines
that can swim (26) or even jump (27).

Here, we demonstrate the potential of exploiting elastic in-
stabilities in thin hyperelastic cylindrical shells to induce com-
plex deformation modes and ultimately build soft machines
capable of a programmable sequence of movements using a
single input. We first focus on cylindrical shells with ho-

mogeneous thickness, which are well-known to buckle upon
depressurization. By combining experiments and numerical
simulations we reveal a novel insight. Specifically, for shells
with a high buckling wave number, we demonstrate that a
secondary instability is triggered during the post-buckling
regime, suddenly activating a coupled twisting-folding defor-
mation mode. Subsequently, we explore the behavior of cylin-
drical shells with nonuniform thickness that undergo bending
upon depressurization. Much like homogeneous shells, our
findings indicate that the deformation of these shells is also
instability-driven. Finally, we demonstrate the potential of
leveraging the highly nonlinear behavior of elastomeric cylin-
drical shells to design instability-driven robotic systems ca-
pable of executing tasks with minimal actuation input. This
is exemplified through the development of a soft manipulator
capable of harvesting a cherry tomato with a single input, as
well as, grasping an underwater seashell by harnessing the hy-
drostatic pressure of the environment without the need for an
additional external power supply.

Results

Deflation of elastomeric cylindrical shells. We first consider
thin-walled cylindrical shells, with inner radius R, thickness t,
and height H, that are slowly deflated (Fig. 1A). The critical
buckling pressure of these shells, pcr, has been investigated in
the context of the failure of cylindrical vessels and analytically
determined as (28, 29)

pcr

E
= [(πR/H)2 + n2]2(t/R)3

12(1 − ν2)n2 + (πR/H)4(t/R)
n2[(πR/H)2 + n2]2 , [1]

where E and ν denote the Young’s modulus and Poisson’s ra-
tio of the material, respectively, and n represents the buckling
wave number. From Eq. 1, we impose n ∈ {2, 3, . . .} and solve
for pcr/E. We then report in Figs. 1B-C the evolution of the
lowest pcr/E and its corresponding n for an incompressible
material with ν = 0.5. As expected from Eq. 1 and classical
works on the stability of shells (30, 31), we find pcr/E in-
creases over several orders of magnitude as t/H increases and
R/H decreases, while n increases with R/H and marginally
decreases with t/H.

Guided by these results, we consider three cylindrical
shells: Shell A with (t/H, R/H) = (0.027, 0.20); Shell B
with (t/H, R/H) = (0.021, 0.37); Shell C with (t/H, R/H) =
(0.031, 0.56). Note that these three shells are predicted to
buckle at pcr/E = 1.61 × 10−3, 3.39 × 10−4, and 5.32 × 10−4

with n = 2, 3, and 4, respectively. We fabricate these
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three shells by coating rigid cylindrical molds with an elas-
tomer (Zhermack Elite Double 32 with Young’s modulus
E = 1.2 MPa—see Section S1 of the Supplementary Mate-
rials for details). In our experiments, we slowly deflate the
shells with water using a syringe pump, while monitoring the
pressure with a sensor and capturing the deformation via dig-
ital cameras (see Section S2 of the Supplementary Materials
for details).

Simultaneously, we simulate the nonlinear behavior of the
cylindrical shells during deflation by conducting Finite Ele-
ment (FE) analyses within the commercial package ABAQUS
2019/Standard. We discretize their geometry with 4-node lin-
ear shell elements and introduce a geometric imperfection in
the form of the first buckling mode. We use an incompressible
Neo-Hookean material model with shear modulus µ = E/3 to
capture the response of the elastomeric material and simulate
the deflation process by running a combination of nonlinear
static and implicit dynamic simulations where we slowly de-
crease the volume of the internal cavity (see Section S3 of the
Supplementary Materials for details).

In Figs. 1D-F, we show experimental and FE snapshots
of the three shells during deflation. We find good qualita-

tive agreement between experiments and simulations, with
all three shells that buckle at first into the theoretically pre-
dicted mode. For Shell A, this mode becomes more accentu-
ated upon further deflation, leading to a radial closure. Dif-
ferently, for Shell B and Shell C the ridges that are formed
upon buckling eventually collapse and start twisting leading
to pronounced folding. This collapse of the ridges can be
attributed to the high axial stresses in these two shells with
large R/H (31) (see Section S3E of the Supplementary Ma-
terials for details). Note that the coupled twisting/folding
deformation mode induced by the collapse of the ridges is
reminiscent of that of the Kresling origami module (32), but
here is realized in homogeneous shells subjected to deflation
by exploiting their nonlinear response.

Next, to better characterize the response of our shells, in
Fig. 2A, we report the evolution of their internal pressure p,
as a function of the subtracted volume ∆V (normalized by
the initial volume of their cavity, V0), as measured during the
tests. Further, in Figs. 2B and 2C, we show the evolution
of the axial contraction ∆H/H, and twist angle ϕ, as a func-
tion of ∆V/V0. Note that both ∆H/H and ϕ are experimen-
tally measured by tracking the position of markers located on
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Fig. 1. Vacuum-driven instabilities in thin-walled cylindrical shells. (A) Schematics of the system. (B)-(C) Critical pressure, pcr , and wave number of the first buckling
mode, n, as a function of the geometric parameters, t/H and R/H. The markers highlight three cylindrical shell designs: Shell A (diamond) with (t/H, R/H) =
(0.027, 0.20); Shell B (triangle) with (t/H, R/H) = (0.021, 0.37); Shell C (square) with (t/H, R/H) = (0.031, 0.56). (D)-(F) Experimental and Finite Element
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Fig. 2. Post-buckling deformation of cylindrical shells. (A)-(D) Evolution of (A)
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∆Vcr/V0, and (F) the rate of increase in the twisting deformation after the sec-
ondary instability, dϕ/d(∆V/V0), as a function of R/H and t/H.

the base of the shells (see insets in Figs. 2B and 2C). Three
key features emerge from Figs. 2A-C. First, there is quantita-
tive agreement between experimental and numerical results,
confirming the validity of our FE simulations. Second, all
pressure-volume curves are characterized by an initial linear
regime and a sudden departure from linearity caused by shell
buckling. Third, for Shell B and Shell C, an additional sud-
den change in slope in the pressure-volume curves is found at
∆V/V0 ≈ 0.28 and 0.2, respectively. Remarkably at these val-
ues of ∆V/V0, both ∆H/H and ϕ suddenly start increasing
for Shells B and C, suggesting that an instability is responsi-
ble for initiating the prominent twisting/folding deformation
mode.

To validate the occurrence of a secondary instability, we
conduct additional FE simulations and compute the eigen-
value associated to the twisting/folding mode, λtwist, while
gradually reducing the volume within the internal cavity (see
Section S3 of the Supplementary Materials for additional de-
tails). The results reported in Fig. 2D reveal that for Shell B
and Shell C, λtwist attains a local minimum close to zero at
∆V/V0 = 0.285 and 0.204, respectively. These results confirm
that a secondary instability is indeed the governing mecha-
nism behind the twisting/folding deformation mode.

Motivated by these findings, we proceed by simulating
the response of shells with 0.02 ≤ t/H ≤ 0.04 and 0.2 ≤
R/H ≤ 0.5 to identify the region in the design space where
the twisting/folding mode is triggered upon deflation. In
Figs. 2E and 2F, we report the evolution as a function of the
geometry of the subtracted volume of fluid at the secondary
instability, ∆Vcr/V0, and the rate of increase in the twisting
deformation after the secondary instability, dϕ/d(∆V/V0), re-
spectively. We find that shells for which the first buckling
mode is characterized by n = 2 do not undergo a secondary
instability and simply close radially (the white region in the
lower right corner of Figs. 2E and 2F). However, shells with
n = 3 and 4 all exhibit a secondary instability. Within this do-
main, ∆Vcr/V0 decreases with R/H and increases with t/H,
i.e., more volume needs to be subtracted in thick-walled, slen-
der cylindrical shells to trigger twisting. While ∆Vcr/V0 is
highly dependent on both t/H and R/H, the geometric ef-
fect on dϕ/d(∆V/V0) is dominated by R/H—in general, for
shells with low R/H values, we find higher rates of increase
in the twisting deformation. Additionally, for high values of
R/H and t/H (i.e., thick and stocky shells), the secondary
instability triggers a shearing-dominated mode rather than
a twisting/folding mode (see gray region in Figs. 2E-F and
Fig. S16)

Deflation of cylindrical shells with nonuniform thickness.
While in Figs. 1 and 2 our focus has been on homogeneous
cylindrical shells, we now shift our attention to explore the
effects of deflation on shells with nonuniform thickness. Such
shells are created by starting with a homogeneous one and
reducing the thickness from t to tr over an angular sector
defined by the angle θ (see Fig. 3A and Section S1B of the
Supplementary Materials for additional details). In Fig. 3, we
consider a shell characterized by R = 10 mm, H = 18 mm,
t = 0.92 mm, tr = 0.23 mm and θ = 90◦. Due to the difference
in stiffness between the two regions with different thicknesses,
this inhomogeneous shell bends towards the thinner side upon
deflation (see Fig. 3B). Similarly to the homogeneous shells,
we see multiple inflection points in the pressure-volume curve
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(Fig 3C), suggesting that its deformation is once again driven
by instabilities. However, in this case, the bending angle β,
which is measured between the normal to the free cap and the
z-axis, increases smoothly—without a clear onset—with vol-
ume removed, reaching approximately 25◦ for ∆V/V0 = 0.5
(Fig 3D). Looking closer at the pressure-volume curve, we see
two abrupt changes in slope at ∆V/V0 ≈ 0.04 and 0.15. The
first change at ∆V/V0 = 0.04 aligns with the instability pre-
dicted by a linear buckling analysis and is associated with
the formation of a single inward-pointing ridge in the thinner
part of the shell (Fig. 3B). The second abrupt change in slope
occurs at ∆V/V0 ≈ 0.15, where the outward pointing ridge in
the thin portion of the shell buckles to one side and merges
with the ridges formed at the thick-thin boundary (Fig. 3B).

Remarkably, our FE analyses reveal the vanishing of an eigen-
value during this event, indicating it as a secondary instability
(see Fig. 3E).

Programming sequences in soft systems via instabilities. In
general, multimodal deformation in soft elastic systems is
achieved either through sophisticated structure designs (33–
35), multi-stimuli-responsive polymers (36), stochastic inter-
action (37), or by introducing multiple actuation inputs (38).
Remarkably, the rich post-buckling behavior of cylindrical
shells can be exploited to realize sequencing in soft systems
actuated by a single pressure input. We illustrate this concept
by emulating a human hand grasping a fresh cherry tomato
(Solanum lycopersicum) on the vine. The robotic system repli-
cates the human harvesting process, made of two distinct
steps: (1) the fingers bend to grasp the fruit, and (2) the
wrist twists and contracts to disconnect it from the stem (see
Fig. 4A).

To realize this bending-twisting-pulling motion, we con-
struct a soft manipulator consisting of three fingers and a
wrist (Fig. 4B). Each finger is composed of two bending
units—the same geometry as in Fig. 3. These two cylindrical
shells are connected in series to amplify the bending angle β
induced under vacuum. The wrist is made of a homogeneous
cylindrical shell with (t/H, R/H) = (0.033, 0.33). This ge-
ometry is selected from the design map of Fig. 2E to ensure
twisting/folding upon depressurization while minimizing the
slenderness of the shell (i.e., small height and large thickness)
to resist the weight of the cherry tomato. For the successful
grasping of a cherry tomato, it is essential for the finger to
bend first, followed by the wrist twisting. As illustrated in
Fig. 4C, if both the fingers and the wrist are made from the
same elastomer, twisting begins before the fingers are fully
bent. Therefore, to create a sequence between the deforma-
tion of the fingers and the wrist, we fabricate the fingers out
of PVS (Zhermack Elite Double 32) with E = 1.2 MPa (green
dashed line in Fig.4C) and the wrist out of a stiffer silicone
elastomer (Smooth-sil 960) with E = 2.2 MPa (cyan solid
line in Fig. 4C). This design results in a fully soft manipu-
lator capable of replicating the bending-twisting-pulling mo-
tion of a human hand. Upon deflation, our gripper gener-
ates a maximum torque and pulling force of T gripper

max = 2.92
mN·m±1.24 mN·m and F gripper

max = 0.67 N ± 0.04 N, which is
sufficient to successfully unhook the cherry tomato after one
to six attempts (see Supplementary Materials, Section S4D
for details). Despite our gripper’s pressure range and grasp-
ing forces being relatively low compared to those reported
in the literature (see Supplementary Materials, Table S1), it
excels in versatility. Our gripper can execute bending, con-
traction, and twisting motions when actuated with a single
pneumatic input. In addition, Tmax and Fmax can easily be
improved by increasing friction between the fingers and the
tomato (see Section S4D of the Supplementary Materials for
details).

Discussion and Outlook

In summary, this study focused on the highly nonlinear re-
sponse of elastomeric cylindrical shells during depressuriza-
tion. We discovered that in shells with uniform thickness, sec-
ondary instabilities initiate complex twisting-folding deforma-
tions, which are entirely dictated by their geometry. For shells
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with nonuniform thickness, the deformation is still driven by
instabilities, but the uneven flexibility around the circumfer-
ence leads to pronounced bending. Importantly, when con-
necting multiple shells in series, we can construct soft sys-
tems capable of sequential deformation when actuated with a
single input. This was exemplified by the design of a soft ma-
nipulator capable of a bending-twisting-pulling motion when
actuated by a single pressure source. Integrating these soft
machines with innovative control (39) and sensing (40) strate-
gies may lead to the development of soft robots capable of
utilizing both fluid and solid mechanics to navigate, sense,
and respond to their environment.

While the majority of inflatable actuators typically rely on

pressurization for operation, our approach introduces vacuum
as the driving force behind shell deformation. One advantage
of utilizing vacuum rather than pressure lies in inherent safety,
as it mitigates the risk of catastrophic failure due to over-
pressurization. Moreover, given that hydrostatic pressure in
water imposes loading conditions similar to vacuuming in air,
our actuators could operate without an external stationary
power source in aquatic environments (see Fig. S18).

Materials and Methods

Details of the design, materials, and fabrication methods are sum-
marized in Supplementary Materials, Section S1. The experimen-
tal procedure of the inflation with water to measure the pressure-
volume curve is described in Supplementary Materials, Section S2.
Details on the numerical model can be found in Section S3 of the
Supplementary Materials, and additional results are provided in
Supplementary Materials, Section S4.
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