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Abstract

Deep learning techniques have recently achieved impressive results and raised expecta-

tions in the domains of medical diagnosis and physiological signal processing. The widely

adopted methods include convolutional neural networks (CNNs) and recurrent neural net-

works (RNNs). However, the existing models possess static connection weights between

layers, which might limit the generalization capability and the classification performance

of the models as the weights of different layers are fixed after training. Furthermore, to

deal with a large amount of data, a neural network with a sufficiently large size is required.

This paper proposes the variable weight convolutional neural networks (VWCNNs), which

are a type of network structure employing dynamic weights instead of static weights in their

convolutional layers and fully-connected layers. VWCNNs are able to adapt to different char-

acteristics of input data and can be viewed as an infinite number of traditional, fixed-weight

CNNs. We will show that the proposed VWCNN structure outperforms the conventional

CNN in terms of the classification accuracy, generalization capability, and robustness when

the inputs are contaminated by noise. In this paper, VWCNNs are applied to the clas-

sification of three seizure phases (seizure-free, pre-seizure and seizure) based on measured
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electroencephalography (EEG) data. VWCNNs achieve 100% test accuracy and show strong

robustness in the classification of the three seizure phases, and thus show the potential to

be a useful classification tool for medical diagnosis. Furthermore, the classification of seven

types of seizures is investigated in this paper using the world’s largest open source database

of seizure recordings, TUH EEG seizure corpus. Comparisons with conventional CNNs,

RNN, MobileNet, ResNet, DenseNet and traditional machine learning methods including

random forest, decision tree, support vector machine, K-nearest neighbours, standard neural

networks, and Naïve Bayes are being conducted using realistic test data sets. The results

demonstrate that VWCNNs have advantages over other classifiers in terms of classification

accuracy and robustness.

Keywords: Variable weight convolutional neural networks, machine learning, seizure phase

classification, seizure type classification.

1. Introduction

As one of the most important and prominent models in deep learning methods, convolu-

tional neural networks (CNNs) have become highly successful in many application areas, such

as computer vision, speech recognition and computer aided diagnosis. CNNs were developed

from multilayer perception type networks —— these were firstly trained using stochastic gra-

dient descent methods instead of manual feature selection [1]. In 1988, Rumelhart, Hinton

and Williams presented a new method which later became famous, named backpropagation

learning [2]. Backpropagation learning has proved to be a very efficient learning procedure

capable of providing solutions to a wide range of tasks. One year later, LeCun et al. pro-

posed LeNet which showed an application of backpropagation networks to hand-written digit

recognition with better performance than other contemporary recognition methods [3].

Although LeNet has achieved satisfactory results, CNNs did not receive wide attention

until 2012. In the ImageNet LSVRC-2012 competition, Alex, Hinton et al. successfully

applied deep CNNs to ImageNet classification and achieved by that time the best results
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ever reported on those publically-available datasets [4]. Since the creation of AlexNet in

2012, deep CNNs have become a hot research field and have developed at a very fast rate.

x̂(t)

Tuned
CNN
w(t)

Tuning layers

y(t)

αdw(t)

Figure 1: A block diagram of VWCNN.

Although CNNs have developed rapidly and clearly shown their benefits, there are still

limitations in CNNs such as the need for a large training dataset, static weights, and high

computational costs. Existing CNNs have static weights which process all input data by

using fixed weights between layers after training. The drawback of static weights is that

it hinders the model in adapting to different characteristics of the input data and, hence,

limiting the learning and generalization capabilities of the model.

Extending from conventional CNNs, we present here a novel type of CNNs whose weights

in convolutional layers and fully-connected layers can change adaptively according to the

input data. When compared to conventional CNNs and traditional classifiers, the proposed

variable weight convolutional neural networks (VWCNNs) demonstrate better learning and

generalization capabilities as well as showing more convincing results due to the improved

robustness.

Motivated by the research in [5], the general architecture of the proposed VWCNNs is

developed (shown in Fig. 1). To generalize the variable-weight structure proposed in [5], the

VWCNN is designed in this paper by combining the original model and tuning blocks, in

an attempt to achieve better performance and make CNN more generalized and flexible to

different data types. VWNN in [5] utilizes matrix transformation, layer skipping, and multi-

connection [5] to realise variable parameters, which has limited generalisability and can only

be used in feed-forward neural networks. Furthermore, the backpropagation of VWNN was



not discussed in [5].

For the first time, this paper gives the forward and backward propagations of variable-

weight convolutional layers and fully-connected layers, which makes it possible to be applied

to any deep learning algorithms. The proposed method is more straightforward, easier to

generalise, and flexible to modify with the provided theories and code.

The proposed VWCNN consists of a tuned CNN and a tuning block containing fully-

connected layers or convolutional layers or their combinations. Assume that the input data is

x(t), x̂(t) is the input of the VWCNN obtained through data pre-processing (e.g., windowing,

feature extraction) of the raw data x(t). As shown in Fig. 1, the tuned CNN is used to

classify inputs. The tuning layers are employed to generate weights dw(t) which will be

added to the original weights, w(t). α is a learnable factor used for adjusting the impact

of the adding term dw(t). Therefore, the weights of the tuned CNN become w(t) + αdw(t).

In doing so, the model is able to adapt to different inputs and become more robust, as the

VWCNN can be viewed as an infinite number of CNNs.

In application aspect, this research aims to achieve effective and accurate predictions

of epileptic seizure phases (seizure-free, pre-seizure, and seizure). Capturing specific brain

activity related to epilepsy is difficult, and specialists were always needed for signals inter-

pretation. Since the disease is unpredictable and the collected data is real-time, powerful

tools are needed for assisting diagnosis. In recent years, more and more deep learning tech-

niques have been applied to this domain. CNNs, autoencoder and long short-term memory

(LSTM) approaches were employed in [6] for the classification of an epilepsy related EEG

dataset named CHB-MIT and achieved 99.6% prediction accuracy. Stacked CNNs with

adaptive and discriminative feature weighting fusion [7] were adopted to classify the same

dataset and reached more than 84.0% accuracy for 5 classes. In [8], Discrete wavelet trans-

form combined with CNNs was used to classify the EEG data and had 100% test accuracy.

This paper employs VWCNNs to automatically classify three seizure phases using raw
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electroencephalography (EEG) data as input, aiming to improve the accuracy of diagnosis

compared with state-of-the-art approaches. In the process of analysing EEG data for the

classification of seizure phases, we learnt that the obtained EEG data are dynamic time

series obtained from electrode measurements on the three-dimensional scalp surface ——

this dataset is very different from the static images that CNNs have been most successful on.

It is relatively small and insufficient for training in the context of deep learning. Considering

the need of standard CNNs for millions of training samples to achieve robust results, a

solution is come up with to cope with the low number of training samples. At the data

processing stage, we adopted windowing and majority voting methods to process the inputs

[9], which further improves the classification performance of the VWCNN.

The rest of the paper is organized as follows: Section 2 presents the preliminaries that

will be used in this paper. In Section 3, the backpropagation of VWCNNs is introduced,

two types of VWCNN (VWCNN-C and VWCNN-F) are proposed and training strategies

are formulated accordingly. Section 4 shows the application of VWCNNs as well as the

training strategies on epileptic seizures phase classification. Section 5 presents the results

of the proposed method on the benchmark dataset TUH EEG seizure corpus (V1.4.0) [10].

Section 6 draws the conclusion of the paper.

2. Preliminaries

In this section, the preliminaries of this paper including the mathematical foundations

and architectures of multilayer neural networks and CNNs are introduced.

2.1. Multilayer Neural Networks

Neural networks (NNs) are types of algorithms drawing inspiration from our understand-

ing of the brain [11]. Through training procedures, NNs are configured for applications like

function approximation, pattern recognition, data classification [12], etc. A three-layer feed
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Figure 2: A three-layer neural network including 4 nodes in the input layer, 5 nodes in the hidden
layer and 4 nodes in the output layer.

forward network, which has 4 nodes in the input layer, 5 nodes in the hidden layer, and 4

nodes in the output layer, is shown in Fig. 2. In this network, assume that x(1)i is the input,

z
(2)
h and z(3)j are the inputs of activation function f(·), and a(2)h and a(3)j represent the outputs

of activation function, where i ∈ {1, 2, 3, 4}, h ∈ {1, 2, 3, 4, 5}, j ∈ {1, 2, 3, 4}. δ (e.g., δ(2)h

and δ(3)j ) represents the sensitivity of each node. Denote w(1,2)
ih , w

(2,3)
hj as the weights which

map the inputs x(1)i , a
(2)
h to the output z(2)h , z

(3)
j respectively and denote θ(1,2)h , θ

(2,3)
j as the

corresponding bias.

Here, we have

z
(2)
h =

4∑
i=1

w
(1,2)
ih x

(1)
i + θ

(1,2)
h , a

(2)
h = f(z

(2)
h ),

z
(3)
j =

5∑
h=1

w
(2,3)
hj a

(2)
h + θ

(2,3)
j , a

(3)
j = f(z

(3)
j ).

(1)

The loss function (squared error function) is defined as:

E =
1

2n

∑
x

||y(x)− a(3)(x)||2, (2)

where n is the number of training samples, y(x) represents the target values of the classifi-

cation task, and a(3)(x) denotes the actual output of the network.

Backpropagation is a method used in artificial neural networks to calculate gradients
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that are needed in the calculation of the weights to be used in the network [13]. It is the

most widely used method to decrease the error between the actual output and the desired

output (i.e., the loss function in (1)) by adjusting the weights of nodes. The equations of

backpropagation are as follows [14]:



δ(3) = ∇aE � f
′
(z(3))),

δ(2) = ((w(2,3))T δ(3) � f ′
(z(2))),

∂E

∂θ
(l,l+1)
k

= δ
(l+1)
k ,

∂E

∂w
(l,l+1)
mk

= a(l)m δ
(l+1)
k ,

(3)

where ∇aE is a vector whose elements are the partial derivatives ∂E/∂a(3)k , � denotes the

Hadamard product which is a type of elementwise multiplication, δ(l)k denotes the error of

neuron k in layer l and δ(l) represents the vector of errors associated with layer l. Similarly,

z(3), z(2), w(2,3) denote the vectors of the corresponding components: z(3)j , z
(2)
h and w(2,3)

hj .

2.2. Correlation and Convolution

This Section illustrates the formulas of general correlation and convolution operations

which will be used later in deriving backpropagation equations for VWCNNs.

The correlation operation of a 2D image A and a kernel (filter) K is as follows:

K ⊗ A(p, q) =
N∑

u=−N

N∑
v=−N

K(u, v)A(p+ u, q + v), (4)

where the filter has 2N + 1 elements.

The convolution operation of a 2D image A and a kernel (filter) K can be written as:

K ∗ A(p, q) =
N∑

u=−N

N∑
v=−N

K(u, v)A(p− u, q − v), (5)
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Figure 3: An example of variable weight structure.

where the filter has 2N + 1 elements.

3. Methodology

3.1. Variable Weight Convolutional Neural Networks (VWCNNs)

In fully-connected feed-forward neural networks, a large number of hidden nodes are

necessary for the classification of image data, but this may largely increase the computa-

tional budget. CNNs overcome these difficulties through convolution operations, allowing

the network to be deeper with fewer free parameters. However, existing CNNs have static

parameters which process all input data using the same connection weights between layers.

This demonstrates a drawback as the weights of different layers are fixed after training, dras-

tically limiting the learning and generalisation capabilities of the trained network model. In

this research, we present a type of novel CNN which has dynamic weights in the convolutional

layers and fully-connected layers. In doing so, training a VWCNN is equivalent to training

two neural networks: a CNN and a tuning network, and the training is accomplished simul-

taneously. The tuning network can be a conventional NN or a CNN. Due to the existence of

the tuning structure, the weights of the VWCNN are varied according to the characteristics

of the input data. In a sense, a VWCNN consists of an infinite number of CNNs, as the
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Figure 4: The architecture of VWCNN-C which has variable weights in convolutional layers.

weights of VWCNN are dynamic and able to change adaptively to the input data.

3.1.1. General structure of VWCNN

In form, the VWCNN is comprised of a CNN and the corresponding weight tuning struc-

tures. To illustrate the proposed method, we use the network structure shown in Fig. 2 as

an example to modify it to have variable weights. As shown in Fig. 3, the original network

provides the weights w(1,2)
ih , w(2,3)

hj , and the tuning layer provides the summands dw(TL)
hj to

adjust the weights in the original network, where (TL) denotes the tuning layer. The weights

in the second layer of this block are the sum of the original weights and the output of the

tuning layer, i.e., w(2,3)
hj becomes w(2,3)

hj + αdw
(TL)
hj , where α is used for adjusting the impact

of the adding term dw(TL). This design attempts to improve the generalization capabili-

ties, classification performance and the robustness of the original CNN through giving the

dynamic weights in its layers.

3.1.2. Two types of VWCNN: VWCNN-C and VWCNN-F

In this paper, we modify the convolutional layers and the fully-connected layers of CNN

to enable variable weights. The first type of VWCNN is denoted by VWCNN-C, meaning

weights in the convolutional layers are variable. An example of VWCNN-C is shown in Fig.

4, in which three convolutional layers’ weights are modified by tuning layers.

As CNNs have a large number of parameters in fully-connected layers, in addition to

modifying the convolutional layers, we also would like to know the impact of the variable

weight structure for fully-connected layers. Fig. 5 illustrates the structure having variable



Output of
the last
pooling
layer

Input of
the fully-
connected

layers

w

+

αdw

Tuning
layer

Hiden
layer

Ouput of
the fully-
connected

layers

reshape

Figure 5: The architecture of VWCNN-F which has variable weights in the fully-connected layers.

weights in fully-connected layers, which is denoted by VWCNN-F.

The application results described in the next sections show that the proposed VWCNN

is able to improve the performance and robustness of standard CNNs. Also, the models

introduced in Section 3.8 are employed for comparative study.

3.1.3. Backpropagation for VWCNN

To give the mathematical foundation of the proposed research, we will derive the forward

propagation and the backpropagation of VWCNNs as follows. The example shown in Fig. 3

is used to illustrate the forward pass and backward pass of the VWCNN-F. Afterwards, we

will discuss the backpropagation equations for VWCNN-C.

In Fig. 3, the number of nodes of the tuning layer is determined by the number of

weights to be adjusted. In this example, w(2,3) has 20 components, which means there are

20 corresponding values to be adjusted. Hence, we have 20 nodes in the tuning layer.

In the implementation, we need to modify the original backpropagation process to make

the proposed method realizable. First, derive the forward pass of network of the example

shown in Fig. 3. From layer 1 to layer 2, the equations are given by

z
(2)
h =

4∑
i=1

w
(1,2)
ih x

(1)
i + θ

(1,2)
h , a

(2)
h = f(z

(2)
h ). (6)
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From layer 1 to the tuning layer, the forward pass is characterized by:

z(TL)m =
4∑
i=1

w
(1,TL)
im x

(1)
i + θ(1,TL)m , dw(TL)

m = f(z(TL)m ), (7)

where z(TL)m denotes the input of activation function f(·) in the tuning layer and dw(TL)
m ,m =

1, 2, . . . , 20, represents the output of activation function. Denote w(1,TL)
im as the weights which

map the inputs x(1)i to the output z(TL)m and θ(1,TL)m is the corresponding bias.

In the third layer, the outputs of the second layer and the tuning layer are used to produce

the final results a(3):

z
(3)
j =

5∑
h=1

(w
(2,3)
hj + αdw

(TL)
hj )a

(2)
h + θ

(2,3)
j , a

(3)
j = f(z

(3)
j ), (8)

as mentioned above, α is a parameter given to control the impact of dw(TL) to the original

weights w(2,3). Since dw(TL) is a vector, the conversion of index from dw
(TL)
m to dw(TL)

hj is

derived (but not limited to) as follows:

h = [
m− 1

5
] + 1, j = m− 5(h− 1), (9)

where the notation [m] for m ∈ R means the largest integer no more than m.

In backpropagation, the most important step is the calculation of error δ(TL), δ(2), δ(3).

The equation for the error in the third layer is given by

δ(3) = ∇yE � f
′
(z(3))) = (a(3) − t)� f ′

(z(3)). (10)

Due to the use of the tuning layer, δ(2) is changed according to the adding term αdw(TL).
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The components of δ(2) can be deducted as follows.

δ
(2)
h =

∂E

∂z
(2)
h

=
∑
j

∂E

∂z
(3)
j

∂z
(3)
j

∂z
(2)
h

=
∑
j

∂z
(3)
j

∂z
(2)
h

δ
(3)
j

=
∑
j

∑5
h=1(w

(2,3)
hj + αdw

(TL)
hj )f(z

(2)
h ) + θ

(2,3)
j

∂z
(2)
h

δ
(3)
j

=
∑
j

(w
(2,3)
hj + αdw

(TL)
hj )δ

(3)
j f

′
(z

(2)
h ).

(11)

Rewrite equation (11) to matrix form as

δ(2) = (w(2,3) + αdw(TL))δ(3) � f ′
(z(2)). (12)

Similarly, the equation for the error δ(TL) in the tuning layer is given by

δ(TL)m =
∂E

∂z
(TL)
m

=
∑
j

∂E

∂z
(3)
j

∂z
(3)
j

∂z
(TL)
m

=
∑
j

∂z
(3)
j

∂z
(TL)
m

δ
(3)
j

=
∑
j

∑5
h=1(w

(2,3)
hj + αf(z

(TL)
m ))a

(2)
h + θ

(2,3)
j

∂z
(TL)
m

δ
(3)
j

= α
∑
j

a
(2)
h δ

(3)
j f

′
(z

(TL)
hj ),

(13)

where z(TL)hj = z
(TL)
m . The equation (13) can be rewritten as

δ(TL) = αa(2)δ(3) � f ′
(z(TL)), (14)

In this example, δ(TL) is a matrix having the size of 5 × 4 based on equation (14), and is

flattened to a vector of the size 20× 1.

After obtaining errors in each layer, the updating of weights and bias for each layer can

be achieved through the last two functions in (3).

The deductions above show the forward pass and the backpropagation for VWCNN-F (or
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Figure 6: Forward propagation of VWCNN-C which has variable weights in convolutional layers.

normal VWNN). With the similar principles, we can obtain the equations for VWCNN-C

which has the variable-weight structure in convolutional layers.

Assume that zlj(p, q) represents an element in the j-th feature map zlj of the l-th layer.

Naturally,

zlj =
∑
i

wlij ∗ σ(zl−1i ) + θlj, (15)

where wlij is the filter related to the feature map zl−1i in layer (l− 1) and the feature map zlj

in layer l, θlj denotes the bias.

Through the convolution operation shown in equation (5), zlj(p, q) can be written as

zlj(p, q) =
∑
i

∑
u

∑
v

wlij(u, v)σ(z
l−1
i (p− u, q − v)) + θlj. (16)

For the VWCNN-C structure, we just need to derive the forward and back propagation for

tuned layers, the update rule for weights in other layers are as same as that of normal CNNs.
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As shown in Fig. 6, the forward pass for the l-th layer is

zlj =
∑
i

(wlij + αdwTLij ) ∗ σ(zl−1i ) + θlj,

zlj(p, q) =
∑
i

∑
u

∑
v

(wlij(u, v) + αdwTLij (u, v))σ(zl−1i (p− u, q − v)) + θlj,

(17)

and the tuning layer has the same forward equation as (7).

Next, we start from calculating the sensitivities (errors) of the convolutional layer having

variable weights. With the chain rule, we have

δlj(p, q) =
∂E

∂zlj(p, q)
=

∑
i

∑
p̃

∑
q̃

∂E

∂zl+1
i (p̃, q̃)

∂zl+1
i (p̃, q̃)

∂zlj(p, q)
, (18)

where zl+1
i (p̃, q̃) represents the element(s) calculated using zlj(p, q) in the forward propagation.

Then putting the equation (17) and replace the first term by the definition of sensitivity, we

have

δlj(p, q) =
∑
i

∑
p̃

∑
q̃

∂E

∂zl+1
i (p̃, q̃)

∂(
∑

j(w
l+1
ji + αdwTLji ) ∗ σ(zlj) + θli)

∂zlj(p, q)

=
∑
i

∑
p̃

∑
q̃

δl+1
i (p̃, q̃)

∂(
∑

u

∑
v(w

l+1
ji (u, v) + αdwTLji (u, v))σ(z

l
j(p̃− u, q̃ − v)))

∂zlj(p, q)

=
∑
i

∑
p̃

∑
q̃

δl+1
i (p̃, q̃)(wl+1

ji (p̃− p, q̃ − q) + αdwTLji (p̃− p, q̃ − q))σ′(zlj(p, q)).

(19)

However, it can be found that the last equation is neither the general expression of convo-

lution nor correlation operation given in Section 2.2. It can be easily converted as follows.
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Assume that p̂ = p̃− p, q̂ = q̃ − q:

δlj(p, q) =
∑
i

∑
p̃

∑
q̃

δl+1
i (p̃, q̃)(wl+1

ji (p̃− p, q̃ − q) + αdwTLji (p̃− p, q̃ − q))σ′(zlj(p, q))

=
∑
i

∑
p̂

∑
q̂

δl+1
i (p̂+ p, q̂ + q)(wl+1

ji (p̂, q̂) + αdwTLji (p̂, q̂))σ
′(zlj(p, q))

=
∑
i

(δl+1
i ⊗ (wl+1

ji + αdwTLji )(p, q))σ
′(zlj(p, q)).

(20)

Thus, for two related sensitivity maps δlj and δ
l+1
i , the backward pass of errors can be written

in matrix form as

δlj =
∑
i

(δl+1
i ⊗ (wl+1

ji + αdwTLji ))� σ′(zlj), (21)

which is equivalent to

δlj =
∑
i

(δl+1
i ∗ ROT180(wl+1

ji + αdwTLji ))� σ′(zlj), (22)

where ROT180 denotes the operation that flipping the content 180 degree in order to perform

cross-correlation instead of convolution operation. Then, the rule of updating the weights

can be easily obtained using the same method:

∂E

∂wlij
=
∂E

∂zlj

∂zlj
∂wlij

= δlj ∗ ROT180(σ(zl−1j )). (23)

For the bias θlj, noting that it is a scalar for each feature map, the updating rule should be

the summation of all elements in δlj:

∂E

∂θlj
=

∑
u

∑
v

∂E

∂zlj(u, v)

∂zlj(u, v)

∂blj
=

∑
u

∑
v

δlj(u, v). (24)
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Next, the backpropagation for the tuning layers is

δTLij =
∂E

∂(wlij + αdwTLij )

∂(wlij + αdwTLij )

∂(dwTLij )

∂(dwTLij )

∂zTLij

= δlj ∗ ROT180(σ(zl−1j ))� α(f ′(zTLij )),

(25)

After obtaining the sensitivities, the update rule of corresponding weights and bias is as

same as that of normal dense layers or convolution layers (if the tuning layer is composed of

convolution blocks). The backpropagation algorithm for VWCNN is obtained.

3.2. Time Complexity of VWCNN

The time complexity of conventional convolutional layers is as follows [15]:

T ∼ O(
D∑
l=1

N2
l · F 2

l · Cl−1 · Cl), (26)

where the number of layers is denoted by D, l represents the l-th layer, Nl is the spatial size

of the output feature map (assume that it is square) in the l-th layer, Fl is the spacial size

of filters in the l-th layer, Cl denotes the number of output channels in the l-th layer.

In a VWCNN, the tuned layers have the time complexity as follows:

T ∼ O(
D∑
l=1

N2
l · (F 2

l · Cl + αdw) · Cl−1), (27)

where dw is the output of corresponding tuning layer, and α is a constant used to adjust the

impacts of the tuning layers. The time complexity of the corresponding tuning layer is:

T ∼ O(I2l · F 2
l · Cl · Cl−1), (28)

where Il is the spatial size of the input of the l-th layer.
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3.3. Implementation of VWCNN

In the implementation stage, the VWCNN is implemented by following the backpropaga-

tion procedures given in Section 3.1.3. However, given that programming the backpropaga-

tion of VWCNN or VWNN from scratch is time-consuming, laborious and difficult to repli-

cate in practice, two VWCNN structures, VWCNN-C and VWCNN-F, can be implemented

in various frameworks such as Mxnet and PyTorch, and the derivations and backpropagation

of VWCNNs can be computed automatically within deep learning frameworks.

3.4. Data Splitting

The sampling method used in this paper is the stratified sampling which is implemented

by dividing the dataset into subgroups and selecting the samples from each group. As there

are three seizure phases, to make the inputs contain a balanced amount of samples from each

class, we randomly select training, validation and test samples from each class with the ratio

indicated in Fig. 8, and combine them to form the final datasets. Therefore, the classifier is

fed by the data consisting of an equal number of samples of each class.

3.5. Feature Extraction

Feature extraction is an important method allowing us to extract useful information

from raw data and to remove redundant information and interferences [16]. We use the

feature extraction method as one of the data processing methods for the classification of

three seizure phases. In order to successfully classify EEG data recorded during an epileptic

seizure, appropriate feature vectors should be carefully selected. The commonly used features

can be divided into three main groups: time domain, frequency domain, and time-frequency

domain which is also known as time-scale representation [16, 17]. In this paper, time domain

and frequency domain features are adopted [18].

The EEG records referred to in this paper were obtained in the Peking University People’s

Hospital from 10 patients (6 males and 4 females) who had absence epilepsy, aged from 8 to 21
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years old. More details of the dataset are provided in [5]. Following the data representation

in [5], there are 19 columns of signals corresponding to the recordings from the 19 channels

of the used Neurofile NT digital video EEG system. The data recording was done using a

standard international 10-20 electrode placement (Fp1, Fp2, F3, F4, C3, C4, P3, P4, O1, O2,

F7, F8, T3, T4, T5, T6, Fz, Cz and Pz), recording for each signal column 100 samples with

each sample being 19× 512 in size. The 16-bit analogue-to-digital converter has a sampling

frequency of 256 Hz and, further, the data is filtered through a frequency band ranging from

0.5 to 35 Hz.

The research in [5] indicated that, out of the 19 channels, the most useful channels in

EEG data were the 1st, 2nd, 3rd, 4th, 5th, 6th, 11th, 12th, 13th, 14th channels, containing

the most significant information for the EEG signal classification problem. From each of

the chosen channels, a feature vector consisting of 10 time-domain components is selected,

including the absolute sum, second order norm, third order norm, fourth order norm, infinity

norm, maximum value, minimum value, variance, mean value and root mean squared value

of the elements in each channel.

3.6. Cropped Training

Cropped training, which is also called the windowing approach, is an important pre-

processing method which aims to generate more samples and improve the performance of

classifiers. As shown in Fig. 7, it is implemented by sliding a window of the size w with in-

crement ε over the original sample, to truncate the sample before and after the window while

not modifying the contents within the window [19]. In Section 4, we use sliding windows

within the set of training samples to generate a largely increased set of training samples.

The size of the sliding window (w) is 19 and the increment ε is 1, therefore, every sample

of the size 19 × 512 is cropped into 494 new samples and each sample’s size is 19 × 19. As

a result, those cropped samples become the new training data and have the same labels as

the corresponding original sample.
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Figure 7: Cropped training with window size w and increment ε.

Figure 8: Data split for training, validation, and testing.

3.7. Majority Voting

Majority voting is used for determining the classification results after using the cropped

training strategy. As mentioned in Section 3.6, each original sample produces 494 new

(cropped) samples. After classification, the final results of the original sample are predicted

by majority voting of the corresponding 494 samples’ results. In the scenarios that data are

insufficient for training (300 training samples in this paper), the integration of the cropping

method and majority voting provides a large number of inputs and can force the CNN to

learn features from each cropped data rather than the complete sample, which has proved

to be efficient for deep learning training [20].

3.8. The Compared Models

To compare the classification accuracy across a range of classifiers: MobileNet, ResNet,

DenseNet, RNN, random forest, decision tree, SVM, KNN, neural network, Naïve Bayes

classifier are employed for the EEG signal classification.

The specifications of the above methods are as follows. In the RNN, two GRU layers

with 100 units each were adopted, which are followed by a dropout layer and 4 dense layers

(optimizer: Adam; batchsize: 500; epoch: 10; loss function: categorical cross-entropy; the

number of nodes in 4 dense layers are successively 500, 1000, 500, 3). The hyper parameters
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of VWCNN-C, VWCNN-F, and CNN are as follows: optimizer: adam, batchsize: 500, epoch:

40, loss function: categorical cross-entropy; initialization: Xavier. MobileNet, ResNet and

DenseNet in Tables 1 to 4 respectively represent MobileNetv3_small [21], ResNet18_v2 [22],

and DenseNet121 [23] of which the specifications are the same as that of VWCNN-C. For

conventional machine learning models including Random Forest, SVM, Decision Tree, KNN,

NN, and Naïve Bayes, the hyper parameters refer to the default specifications in scikit-

learn. Noting that the feature extraction and MI method inevitably change the intrinsic

characteristics of time-series data, therefore, the RNN are not adopted in these two cases.

4. VWCNN on Seizure Phase Classification

This section introduces the application of VWCNNs to the the classification of seizure

phases.

Epilepsy is a common neurology disorder - a chronic disease of the brain causing sudden

paradoxical discharge of cortical neurons, leading to significant impact on the living qual-

ity of sufferers as well as their carers [24]. The classification of seizure phases in epilepsy

(seizure-free, pre-seizure and seizure) is clinically important for the reason that it allows the

understanding and early detection of the transition towards a seizure occurrence. Specifi-

cally, seizure refers to the interval occurs during the first 2 seconds of the absence seizure;

pre-seizure stands for the interval between 0 and 2 second before the occurrence of seizure;

seizure-free is a 2-second interval before the onset of pre-seizure [25]. We refer the reader to

[25] for detailed information of the EEG database used in this application.

Accurate classifications of seizure phases could enable sufferers and their carers to take

precautions to either avoid the main seizure phase or, at least, to bring the epilepsy sufferer

into a comfortable and risk-free position. In this research, we aim to employ the proposed

approach for the classification of three seizure phases. Our approach uses the previously-

used CNN-based detection methods as a starting point. However, the proposed approach
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have parameters that are dynamic, in contrast to the static weight paradigm employed in

the CNNs.

We have focussed our study on four scenarios of inputs for the classification of seizure

phases: 1) raw EEG data, 2) data after feature extraction, 3) data processed by the permuta-

tion mutual information (MI) method, 4) data processed by the cropped training approach.

Different VWCNNs are established to deal with each case respectively. Fig. 8 shows the

EEG data allocation for training and testing: 80% of the EEG data is used for training and

the remaining 20% is used for testing. The validation dataset is used for parameter tuning

for optimizing the selected model and avoiding over-fitting problem.

The experiments in this paper were conducted using NVIDIA P100 GPUs. The versions

of softwares used in this paper are Tensorflow r2.2, Mxnet 1.6.0, python 3.7.3.

4.1. Two VWCNN Models with their Performance on the Raw EEG Data

CNN architectures are established for the classification of three seizure phases first, and

the VWCNNs are determined based on the structures of CNNs. Two representative CNN

models are shown in Fig. 9 and Fig. 10. And the main differences between the backbone

CNNs include network depths and filter sizes. The architecture of the CNN is determined

mainly through (I) referring to published literature about the successful CNN structures

on similar datasets (EEG, ECG and EMG datasets); (II) trial and error; (III) taking into

consideration the input size. In the first model shown in Fig. 9, most of the kernels in the

convolutional layers are of the size 2 × 2. Inspired by the work in [20], we also utilize the

filters having the size of 1× 15 as shown in Fig. 10.

After comparing classification accuracy, CNN architecture 2 shown in Fig. 10 is adopted

as the backbone of VWCNNs.

VWCNN-C (see Fig. 4) has the same model structure with the CNN except the adjustable

parameters. Particularly, the weights in the second, the third and the fourth convolutional
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Figure 9: CNN architecture 1.

Figure 10: CNN architecture 2.

layers are determined by the weights of the original CNN, w, and the outputs of tuning layers,

dw. The proposed variable weight structure makes it possible that parameters can change

according to the inputs, since the original weight w is adjusted by a term αdw, where dw is the

output of the tuning layer and determined by inputs. Therefore, the variable weight structure

enables better model flexibility and stronger generalization ability compared to conventional

CNNs. VWCNN-F has the same layers as the CNN except for the fully-connected layer.

The classification results of VWCNN-C, VWCNN-F, CNN and other comparative models

are listed in Table 1, in which the test accuracy is obtained using the model with the best

validation performance in the 5-fold cross validation. It can be found that VWCNN-C

markedly increases the test accuracy of the model to 91.67%. VWCNN-F and CNN have a

similar test accuracy of around 87.50%.

However, the classification performance shown in Table 1 is unsatisfactory as the best

test accuracy is 91.67%. In addition, the problem of over-fitting occurs. In the following

sections, data processing methods are employed to improve the classification performance of

models.

4.2. Feature Extraction

Feature extraction is employed to investigate the effectiveness of the selected features.

After using the feature extraction method, the size of each sample is changed to 10 × 10
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and each class has 100 samples. Considering the input size in this case, the CNN with 2× 2

filters is employed to classify the EEG data. The structure of a VWCNN is shown in Fig. 11.

Table 2 compares the classification performance of various classifiers after using the feature

extraction method to process inputs.

From Table 2, it can be seen that the average training and test accuracies of CNN,

VWCNN-C and VWCNN-F are decreased compared to the case when raw EEG data is

used as inputs. However, by comparing the results in Table 1 and Table 2, it can be found

that the feature extraction method improves the performance of random forest, decision

tree, KNN, traditional NN and Naïve Bayes classifier. These results indicate that feature

extraction is more suitable for conventional models, whereas deep learning models, especially

the convolutional structures, are capable of automatically learning the sophisticated features

from raw inputs.

To further improve the result, permutation mutual information (MI) method [26] is

adopted in data processing. Through the MI method, the size of each sample becomes

19× 19. The VWCNN shown in Fig. 11 is employed in this case.

The performance of the CNN and VWCNNs is listed in Table 3, from which it can be

seen that the VWCNNs still outperform CNN, and VWCNN-C has the best classification

performance. After using the MI method, the classification accuracy of the SVM is largely

increased, and the accuracies of KNN and NN are also improved.
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Figure 11: VWCNN-C used for data after feature extraction.

Table 1: Classification results of proposed
and comparative models for the raw EEG
data.

Models Training Accuracy Test Accuracy

VWCNN-C 99.17% 91.67%
VWCNN-F 99.48% 87.59%

CNN 98.49% 87.50%
MobileNet 90.08% 74.00%

ResNet 92.12% 80.33%
DenseNet 66.65% 64.32%

RNN 83.26% 51.67%
Random Forest 99.17% 82.23%

SVM 100.00% 71.67%
Decision Tree 100.00% 67.33%

KNN 52.50% 45.00%
NN 100.00% 57.83%

Naïve Bayes 78.33% 76.67%

Table 2: Classification results of proposed
and comparative models for the data pro-
cessed by feature extraction.

Models Training Accuracy Test Accuracy

VWCNN-C 88.70% 83.33%
VWCNN-F 87.33% 78.67%

CNN 81.22% 75.87%
MobileNet 59.20% 48.33%

ResNet 76.70% 74.00%
DenseNet 67.10% 51.00%

Random Forest 99.25% 86.67%
SVM 100.00% 41.67%

Decision Tree 100.00% 78.50%
KNN 94.58% 76.67%

Neural Network 71.54% 67.17%
Naïve Bayes 77.50% 78.33%

Table 3: Classification results of proposed
and comparative models for the data pro-
cessed by MI method.

Models Training Accuracy Test Accuracy

VWCNN-C 99.60% 86.67%
VWCNN-F 99.84% 85.83%

CNN 99.43% 83.00%
MobileNet 80.80% 69.67%

ResNet 92.50% 73.33%
DenseNet 81.70% 76.33%

Random Forest 99.54% 84.50%
SVM 82.92% 78.33%

Decision Tree 100.00% 80.33%
KNN 92.50% 80.00%

Neural Network 98.70% 85.60%
Naïve Bayes 85.83% 76.67%

Table 4: Classification results of proposed
and comparative models for the data pro-
cessed by cropped training approach.

Models Training Accuracy Test Accuracy

VWCNN-C 100.00% 100.00%
VWCNN-F 99.60% 100.00%

CNN 99.36% 98.33%
MobileNet 99.98% 98.33%

ResNet 100.00% 98.33%
DenseNet 99.60% 98.33%

RNN 99.87% 100.00%
Random Forest 99.48% 91.83%

SVM 100.00% 56.67%
Decision Tree 100.00% 95.47%

KNN 100.00% 83.33%
Neural Network 97.35% 94.83%

Naïve Bayes 72.43% 76.67%

However, the highest classification accuracy is less than 90% in this case. In the next

section, windowing method and majority voting are adopted, which aim to increase the

number of training samples and improve the classification performance and robustness of

models.
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Figure 12: VWCNN-C for data processed by cropped training and majority voting.

Table 5: Classification performance of the deep learning models in Table 4.

Performance
CNNs

VWCNN-C VWCNN-F CNN ReNet MobileNet DenseNet RNN

Weighted-F1 score (%) 100 100 98.3 98.3 98.3 98.3 100
Params (MB) 2.6 0.4 0.3 43.7 6.6 27.5 24.1

Training time (sec) 960 840 744 1,900 1,480 6,480 805

4.3. Cropped Training

Considering a large number of input samples are preferable for the training of CNNs, the

cropped training strategy introduced in Section 3.6 is employed for EEG data classification.

The cropped training strategy uses sliding input windows within the samples to increase

the number of inputs. The classification results of original samples are determined through

majority voting of the predicted results of cropped samples.

As the cropped sample has the size of 19× 19, the CNN and VWCNN-C are established

accordingly (see Fig. 12). Based on the CNN shown in Fig. 12, VWCNN-F is designed

by modifying the fully-connected layer to have dynamic weights. The structure of variable-

weight fully-connected layer is shown in Fig. 5.

Table 6: The validation and test accuracy obtained in a 5-fold cross validation. The test accuracy is
obtained using the model which achieved the best validation accuracy in the 5-fold cross validation.

Folds Cross Validation (data partition) Validation Acc. Test Acc.
Fold 1 20% 20% 20% 20% 20% 97.92%

100.00%
Fold 2 20% 20% 20% 20% 20% 93.75%
Fold 3 20% 20% 20% 20% 20% 95.83%
Fold 4 20% 20% 20% 20% 20% 89.58%
Fold 5 20% 20% 20% 20% 20% 97.92%
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As shown in Table 4, the VWCNN-C as well as the RNN achieve satisfactory classifica-

tion results. It can be found that after using windowing method, the classification accuracies

of VWCNNs and CNN are significantly improved. In particular, the test accuracies of the

VWCNN-C, VWCNN-F, and RNN reach 100%, which means that the three seizure phases

can be successfully identified using these models. Furthermore, from the comparisons of the

weighted-F1 score, the number of parameters, and training time illustrated in Table 5, it can

be concluded that VWCNN models have advantages in classification accuracy and compu-

tational efficiency over the comparative methods. The results of a 5-fold cross validation are

shown in Table 6. The increased performance also indicates that a large training dataset is

necessary for deep learning models to learn important features. In addition, the comparative

models also achieve better performance after using the windowing method.

Remark. It should be acknowledged that this research adopts record-wise classification, where

the split of the dataset is at record level and EEG records from three seizure phases are

equally and randomly allocated to five folds for cross-validation. Patient-wise classification,

where the dataset is split based on patient-ID, is not adopted in this research because of

the missing information of patient-ID in the dataset. Results in Tables 1 – 5 are used for

comparing the effectiveness of the proposed VWCNN and conventional machine learning

methods. Due to the record-wise classification adopted in this application, the results might

be influenced by the correlated samples in the training and testing datasets.

4.4. Robustness

Robustness is also a significant factor to consider when assessing the performance of

different neural network models. The robustness of classifiers having top-9 test accuracy are

investigated. Assume that a raw input sample is represented by a matrix X whose size is

(s1, s2), for the EEG data, s1 = 19, s2 = 512. After including the noise with its additive and

multiplicative forms, the input becomes:
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Table 7: The performance of classifiers under noise X ′ = n·randn(s1, s2)·X+m·randn(s1, s2), n =
0.9, 1.0, 1.5, 1.0; m = 0.1, 0.0, 1.5, 2.0.

(n,m) Test accuracy of cropped data with noise
CNN VWCNN-C VWCNN-F RF MobileNet DT ResNet RNN DenseNet

n = 0.9,m = 0.1 68.33% 73.33% 73.33% 73.33% 41.67% 70.00% 60.00% 50.00% 66.67%
n = 1.0,m = 0.0 68.33% 76.67% 75.00% 75.00% 43.33% 65.00% 61.67% 53.33% 66.67%
n = 1.5,m = 1.5 73.33% 81.67% 76.67% 73.33% 71.67% 63.33% 63.33% 51.67% 71.67%
n = 1.0,m = 2.0 68.33% 78.33% 76.67% 75.00% 45.00% 70.00% 61.67% 53.33% 68.33%

X ′ = n · randn(s1, s2) ·X +m · randn(s1, s2), (29)

where X ′ is the contaminated input, n and m represent noise levels which are positive

integers, randn() represents the function of Gaussian noise, and ‘·’ denotes the element-

wise multiplication. In the robustness test, five value combinations of n and m are used:

n = 0.5,m = 0.5; n = 0.9,m = 0.1; n = 1.0,m = 0.0; n = 1.5,m = 1.5; n = 1.0,m = 2.0.

Given that windowing method and majority voting largely improves the models’ per-

formance, windowing data are adopted in the robustness test. In particular, the model is

trained using the uncontaminated windowing data. Afterwards, data perturbations shown

in equation (29) are added to the windowing data, and models’ accuracies are computed in

response to the contaminated data.

For all value combinations of n and m listed above, the test accuracy of all classifiers

are shown in Table 7. From the comparisons between the performance of all classifiers,

VWCNN-C and VWCNN-F show to have a stronger robustness than other classifiers when

contaminated data are presented. It indicates that VWCNNs are more likely to resist un-

certainty and contaminations of the data.

5. VWCNN on TUH EEG Seizure Type Classification

To further investigate the effectiveness of the proposed method and compare it with base-

line methods, we applied the proposed method to the classification of seven seizure types
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Figure 13: The structure of variable-weight ResNet18. VWCL denotes the variable weight convo-
lutional layer which is tuned by the corresponding dense layer.

using the world’s largest publicly available dataset, the TUSZ database (v1.4.0) [10]. This

dataset includes eight different types of seizures: Focal Non-Specific Seizure (FNSZ), Gener-

alized Non-Specific Seizure (GNSZ), Simple Partial Seizure (SPSZ), Complex Partial Seizure

(CPSZ), Absence Seizure (ABSZ), Tonic Seizure (TNSZ), Tonic Clonic Seizure (TCSZ), and

Myoclonic Seizure (MYSZ) [29]. The research in [29] sets a benchmark for scalp EEG based

multi-class seizure type classification with machine learning methods, which has been widely

used in the literature for comparative purpose.

As analysed in [29], the seizure type of MYSZ is omitted in the classification since the

number of samples of MYSZ seizures is too small for statistical analysis. Thus, seven types

of seizures (FNSZ, GNSZ, CPSZ, SZ, TNSZ, TCSZ, SPSZ) are considered in this paper. To

compare the VWCNN with baseline models provided in [29], we adopt the pre-processing

features and the cross-validation scheme developed in [29] (method 1 with the window length

Wl = 1, frequency band fmax = 24, and 0.75Wl overlapping), which are also known as the

IBM features for seizure detection (IBMFT). We refer the reader to [10] for the information

about the dataset and to [29] for the data pre-processing method.

After conducting experiments with different CNN architectures, we found that the ReNet18

_v2 [22] could achieve the best classification performance when used as the backbone of the

VWCNN. The structure of the variable weight ResNet18_v2 is shown in Fig. 13. Eight con-

volutional layers in ResNet18_v2 were modified to have variable weights in this structure.

The model specification is as follows: optimizer: adam and sgd; batchsize: 250; epoch: 15
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(the first 10 epochs are with adam and the second 5 are with sgd); loss function: categorical

cross-entropy; initialization: Xavier.

The classification results of seven seizure types with the proposed variable weight ResNet18

_v2 are shown in Table 8. From Table 8, it can be seen that the proposed method improves

approximately 4% of the weighted-F1 score compared to the baseline models except for the

Plastic NMN in [30]. The main advantage of the variable-weight structure is that it can

be applied to any deep learning models and improve their generalisability, robustness and

classification performance, whereas the parameters of CNNs are fixed after training and can-

not adapt to a wider range of inputs such as inevitable data perturbations. Morover, the

comparative models in Table 8 are designed specifically for this dataset, while the proposed

method is more flexible to modify.

Figure 14: Normalised confusion ma-
trix for seizure type classification on TUSZ
database using the proposed variable-weight
ResNet18_v2.

Models Weighted-F1 score

K-NN ([29]) 0.883
SGD ([29]) 0.621

XGBoost ([29]) 0.844
CNN ([29]) 0.722

CNN ([31, 32]) 0.901
Plastic NMN ([30]) 0.945
SeizureNet ([32]) 0.900

SAE ([30]) 0.673
LSTM ([30]) 0.701
CNN ([30]) 0.716
CNN ([30]) 0.826

CNN-LSTM ([30]) 0.831
CNN ([30]) 0.901

The proposed model 0.940

Table 8: Cross-Validation performance of
seizure type classification with the bench-
mark dataset in [29].

Figure 15: Classification accuracy for per subject in testing dataset under patient-wise classifica-
tion using the TUSZ database (v1.4.0).

However, all the published results in Table 8 are obtained using record-wise rather than

patient-wise cross validation. As mentioned above, record-wise implementation could lead to
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biased results due to the highly correlated training and testing samples. Therefore, patient-

wise classification is also implemented in this application to investigate model generalisation

across patients. The benchmark dataset includes 2009 EEG records across 167 patients. In

the patient-wise classification, 10% patients (16 patients) are randomly selected for testing,

and the samples of the rest patients are used for training. The patient-wise classification

results are shown in Fig. 15. From Fig. 15, it can be seen that 100% accuracy is reached for

half patients. The average accuracy of patient-wise classification is comparatively lower than

that of record-wise classification, which indicates that patient-wise data splitting makes it

more challenging to improve classification performance.

6. Conclusion

This research presents a new type of CNNs whose weights can change adaptively to the

input data, which differs from conventional CNNs with static weights after training. The

forward pass and the back propagation of the proposed method are thoroughly discussed in

this paper. Two types of VWCNNs are presented, which were applied to two EEG databases

for seizure type classification and seizure phase classification. The main contributions of

this paper are as follows. Firstly, the proposed variable-weight structure can be applied

to any deep learning models. Secondly, different data processing methods are compared

in this paper. The cropped training method combined with majority voting shows the

effectiveness of improving most machine learning algorithms on a small dataset. Thirdly, the

proposed VWCNNs including VWCNN-C and VWCNN-F outperform conventional CNNs

and traditional classifiers in terms of classification accuracy and robustness when classifying

three seizure phases. Fourthly, the variable-weight structure is applied to the classification

of seven types of seizures using the open source database, TUH EEG seizure corpus (V1.4.0)

[10]. Record-wise and patient-wise classifications are investigated in this application.

The weakness of this research is that the variable-weight structure inevitably increases
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the number of parameters and leads to larger computational costs. To address this problem,

future work may focus on reducing the number of parameters of VWCNN. One possible

approach is to use dimension reduction methods such as principal component analysis (PCA)

or convolutional-autoencoder in tuning layers, in order to extract information from inputs

and reduce the number of parameters between adjacent layers. Also, the design of VWCNNs

can be more flexible in terms of having learnable hyperparameters such as the number of

channels in each layer, the size of filters, etc.
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