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Abstract

POSIX is the most widely used disambiguation strategy for regular expression match-
ing. There are some difficulties associated with the POSIX strategy and according to
tests conducted by Kulkewitz, many regular expression matchers implementing this
strategy produce incorrect results. This thesis is concerned with an POSIX regular
expression matching algorithm introduced by Sulzmann and Lu. This algorithm
uses bitcoded regular expressions and is based on the idea of Brzozowski deriva-
tives. The algorithm generates POSIX values which encode the information of how
a regular expression matches a string - that is, which part of the string is matched
by which part of the regular expression. This information is needed in the context of
lexing in order to extract and to classify tokens.

While a formalised correctness proof for Sulzmann and Lu’s algorithm already
exists, this proof does not include any of the crucial simplification rules. These sim-
plification rules are however necessary in order to have an acceptable runtime for
this algorithm. Our version of the simplification rules includes a number of fixes
and improvements: one problem we fix has to do with their use of the nub function
that does not remove non-trivial duplicates. We improve the simplification rules
by formulating them as simple recursive function and also by simplifying more in-
stances of regular expressions. As a result we can establish a bound on the size of
derivatives. Our proofs are formalised in Isabelle/HOL.
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Chapter 1

Introduction

Regular expressions, since their inception in the 1950s [48], have been subject to ex-
tensive study and implementation. Their primary application lies in text processing–
finding matches and identifying patterns in a string. For example, a simple regular
expression that tries to recognise email addresses is

[a-z0-9._]+@[a-z0-9.-]+\.[a-z]{2,6}

This expression assumes all letters in the email have been converted into lower-case.
The local-part is recognised by the first bracketed expression [a− z0− 9._]+ where
the operator “+” (should be viewed as a superscript) means that it must be some
non-empty string made of alpha-numeric characters. After the “@” sign is the sub-
expression that recognises the domain of that email, where [a − z]{2,6} specifically
matches the top-level domain, such as “org”, “com”, “uk” and etc. The counters
in the superscript such as 2 and 6 specify that all top-level domains should have
between two to six characters. This regular expression does not represent all pos-
sible email addresses (e.g. those involving “-” cannot be recognised), but patterns
of similar shape and using roughly the same set of syntax are used everywhere in
our daily life, for example in compilers [55], networking [72], software engineering
(IDEs) [12] and operating systems [40], where the correctness of matching can be
crucially important.

Implementations of regular expression matching out in the wild, however, are
surprisingly unreliable. An example is the regular expresion (a∗)∗b and the string
aa . . . a. The expectation is that any regex engine should be able to solve this (return
a no match) in no time. However, if this is tried out in an regex engine like that
of Java 8, the runtime would quickly grow beyond 100 seconds with just dozens
of characters Such behaviour can result in Denial-of-Service (ReDoS) attacks with
minimal resources–just the pair of “evil” regular expression and string. The outage
of the web service provider Cloudflare [1] in 2019 [2] is a recent example where such
issues caused serious negative impact.

The reason why these regex matching engines get so slow is because they use
backtracking or a depth-first-search (DFS) on the search space of possible matches.
They employ backtracking algorithms to support back-references, a mechanism al-
lowing expressing languages which repeating an arbitrary long string such as {ww|w ∈
Σ∗}. Such a constructs makes matching NP-complete, for which no known non-
backtracking algorithms exist. More modern programming languages’ regex en-
gines such as Rust and GO’s do promise linear-time behaviours with respect to input
string, but they do not support back-references, and often impose ad-hoc restrictions
on the input patterns. More importantly, these promises are purely empirical, mak-
ing them prone to future ReDoS attacks and other types of errors.



2 Chapter 1. Introduction

The other unreliability of industry regex engines is that they do not produce the
desired output. Kuklewicz have found out during his testing of practical regex en-
gines that almost all of them are incorrect with respect to the POSIX standard, a
disambiguation strategy adopted most widely in computer science. Roughly speak-
ing POSIX lexing means to always go for the longest initial submatch possible, for
instance a single iteration aa is preferred over two iterations a, a when matching
(a|aa)∗ with the string aa. The POSIX strategy as summarised by Kuklewicz goes as
follows:

• regular expressions (REs) take the leftmost starting match, and the
longest match starting there earlier subpatterns have leftmost-longest
priority over later subpatterns

• higher-level subpatterns have leftmost-longest priority over their
component subpatterns

• . . .

The author noted that various lexers that come with POSIX operating systems are
rarely correct according to this standard. A test case that exposes the bugs is the reg-
ular expression (aba|ab|a)∗ and string ababa. A correct match would split the string
into ab, aba, involving two repetitions of the Kleene star (aba|ab|a)∗. Most regex
engines would instead return two (partial) matches aba and a 1. There are numer-
ous occasions where programmers realised the subtlety and difficulty to implement
POSIX correctly, one such quote from Go’s regexp library author: 2

“ The POSIX rule is computationally prohibitive and not even well-defined. ”

These all point towards a formal treatment of POSIX lexing to clear up inaccuracies
and errors in understanding and implementation of regex. The work presented in
this thesis uses formal proofs to ensure the correctness and runtime properties of
POSIX regular expression lexing.

Formal proofs or mechanised proofs are computer checked programs that certify
the correctness of facts with respect to a set of axioms and definitions. They provide
an unprecendented level of asssurance that an algorithm will perform as expected
under all inputs. We believe such proofs can help eliminate catastrophic backtrack-
ing once and for all. The software systems that help people interactively build and
check formal proofs are called proof assitants or interactive theorem provers. Is-
abelle/HOL [64] is a widely-used proof assistant with a simple type theory and pow-
erful automated proof generators like sledgehammer. We chose to use Isabelle/HOL
for its powerful automation and ease and simplicity in expressing regular expres-
sions and regular languages.

The algorithm we work on is based on Brzozowski derivatives. Brzozowski in-
vented the notion of “derivatives” on regular expressions [23], and the idea is that
we can reason about what regular expressions can match by taking derivatives of
them. A derivative operation takes a regular expression r and a character c, and
returns a new regular expression r\c. The derivative is taken with respect to c: it
transforms r in such a way that the resulting derivative r\c contains all strings in the
language of r that starts with c, but now with the head character c thrown away. For

1Try it out here: https://regex101.com/r/c5hga5/1, last accessed 22-Aug-2023
2https://pkg.go.dev/regexp#pkg-overview, last accessed 22-Aug-2023

https://regex101.com/r/c5hga5/1
https://pkg.go.dev/regexp#pkg-overview
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example, for r equal to (aba|ab|a)∗ as discussed earlier, its derivative with respect to
character a is

r\a = (ba|b|1)(aba|ab|a)∗.

Brzozowski derivatives are purely algebraic operations that can be implemented as
recursive functions which do pattern matches on the structure of the regular expres-
sion. For example, the derivatives of character regular expressions, Kleene star and
bounded repetitions can be described by the following code equations:

d\c def
= if c = d then 1 else 0

(r∗)\c def
= (r\c) · r∗

r{n}\c def
= r\c · r{n−1}(when n > 0)

Taking derivatives repeatedly with respect to the sequence of characters in the string
s, one obtain a regular expression r\s containing the information of how r matched

s, and this can be defined recursively as well: r\(cs) def
= (r\c)\s. One can prove

with straightforward induction on s that a matcher based on derivatives correctly
calculates whether s ∈ L r by judging whether the empty string is in L (r\s). In
other words,

s ∈ L r if and only if [] ∈ r\s.

Thanks to such theorem prover friendly definitions, there have been a sizable num-
ber of formalisations of derivatives and regular expressions matching in different
theorem provers (e.g. [66] [62] and [27]) in the formal reasoning community.

The variant of the problem we are looking at is using derivatives to calculate lex-
ical values. We build on the work of Sulzmann and Lu [77]. The idea is that from the
final derivative r\s more information can be computed than just a YES/NO answer.
One can extract a value for how r\s matched the empty string and then incremen-
tally build on that value by a reverse operation of derivatives called injection. After
all characters have been injected back, the lexing tree is also built for how r matched
s. For instance, a∗\a = 1 · a∗ can be turned into a value Seq Empty (Stars Nil), and
this value can be injected into the character a to form Stars [a]. The value Stars [a]
tells us how a∗ matched the single-character string a. This procedure can be further
simplified by eliminating the injecting back characters phase, and constructing lex-
ing information incrementally while derivatives are taken. The lexing information is
attached to regular expressions as bitcodes. On the same example again it would be
a∗\a =1 1 · a∗. Using the attached bitcode 1 one knows it should be a single iteration
of a∗, and therefore the value Stars [a]. Ausaf et al. [13] [14] have formalised the
definition of a POSIX value and proved that the algorithms we just described pro-
duced POSIX values. However, it is not clear that an even further optimised version
of lexing algorithm with bitcodes described in [77] is correct. The authors believed
that their optimised bitcoded lexer is able to compute a lexical tree in linear time
with respect to the input string length. As they put it,

“Hence, we can argue that the above mentioned functions/operations
have constant time complexity which implies that we can incrementally
compute bitcoded parse trees in linear time in the size of the input.”

We show in this thesis with examples that their assumption “operations have con-
stant time complexity” is untrue. Each derivative operation might take more time
than its previous step as the internal data structure grows unbounded, and the algo-
rithm has an exponential worst-case complexity. We then present an improved op-
timised bitcoded algorithm while we were seeking to remove their complexity bug.
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We call our improved procedure blexer_simp. We prove the correctness of blexer_simp
by showing it produces the same output as the un-optimised lexer blexer that Ausaf
et al. [14] proved correct. This allows us to utilise the correctness results they already
have. The proof of blexer_simp itself is entirely different from blexer, as the simplifi-
cations destroy the structure of the regular expressions, upon which the structural
induction used in the correctness proof of blexer depends.

The central idea of the correctness of blexer_simp is that the intermediate regular
expressions calculated by blexer_simp contains strictly less information than those of
blexer’s, but still enough to produce a POSIX value. To capture this relation with
blexer and blexer_simp, we defined a term-rewriting relation between unsimplified
and simplified regular expressions. We prove that one can always rewrite in finitely
many steps from an intermediate regular expression in blexer to the intermediate
regular expression in blexer_simp, if the same string input has been provided. We
then prove that for any two regular expressions that can be rewritten to one anther,
it is always possible to extract the same bitcodes containing the POSIX values.

We then use the idea of our rewriting relation in a different setting: we show
that our blexer_simp algorithm fulfills Sulzmann and Lu’s claim for their original
optimised algorithm, that the size of the regular expressions in each derivative oper-
ation stays below a constant. We prove this by showing that derivatives with simpli-
fications are equal to a “closed form” of regular expressions. The rewriting relation
serves as bridges between the intermediate regular expressions of blexer_simp and
their closed forms. This space complexity result implies that the improved lexer we
have actually enjoys linear complexity, though filling the last gap is future work.

To summarise, we expect modern regex matching and lexing engines to be re-
liabe, fast and correct, and support rich syntax constructs like bounded repetitions
and back references. Backtracking regex engines have exhibited exponential worst-
case behaviours (catastrophic backtracking) for employing a depth-first-search on
the search tree of possible matches. To ensure the correctness and predictable be-
haviour of lexical analysis, we propose to build a formally verified lexer that satisfy
correctness and non-backtracking requirements in a bottom-up manner using Brzo-
zowski derivatives. Derivatives on regular expressions are popular in the theorem
proving community because their algebraic features are amenable to formal reason-
ing. a derivative-based matching algorithm avoids backtracking, by explicitly rep-
resenting possible matches on the same level of a search tree as regular expression
terms in a breadth-first manner. Efficiency of such algorithms rely on limiting the
size of the derivatives during the computation, for example by eliminating redun-
dant terms that lead to identical matches. We build on the line of work by Ausaf et
al. and Sulzmann and Lu. The end result is a formally verified lexer that comes with
additional formal guarantees on space complexity of derivatives.

1.1 Contribution and Related Work

We have made mainly two contributions in this thesis: proving the lexer blexer_simp
is both i) correctness and ii)fast. It is correct w.r.t a formalisation of POSIX lexing by
Ausaf et al.[14]. It is fast compared with the optimised implementations of Sulzmann
and Lu’s orignal paper. In their work, Sulzmann and Lu thought that their algorithm
is linear and each operation takes constant time. We show that this is not true by
giving a counterexample, in which the data structure size is ever-increasing. We
then formally prove that we fix their complexity bug in our algorithm, which indeed
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achieves their constant-time operation claim. We present a brief survey of the related
work here, providing necessary context for where our contribution lies.

1.1.1 Regular Expressions, Derivatives and POSIX Lexing

Regular expressions were introduced by Kleene in the 1950s [49]. Since then they
have become a fundamental concept in formal languages and automata theory [73].
Brzozowski defined derivatives on regular expressions in his PhD thesis in 1964 [23],
in which he proved the finiteness of the numbers of regular expression derivatives
modulo the ACI-axioms. It is worth pointing out that this result does not directly
translate to our finiteness proof, and our proof does not depend on it. The key ob-
servation is that our version of the Sulzmann and Lu’s algorithm [77] represents
derivative terms in a way that allows efficient de-duplication, and we do not make
use of an equivalence checker that exploits the ACI-equivalent terms.

Central to this thesis is the work by Sulzmann and Lu [77]. They first introduced
the elegant and simple idea of injection-based lexing. The second algorithm in this
paper is about bit-coded lexing, which used an idea from Nielsen and Henglein
[54]. In a follow-up work [78], Sulzmann and Steenhoven incorporated these ideas
into a tool called dreml. The pencil-and-paper proofs in [77] based on the ideas by
Frisch and Cardelli [39] were later found to have unfillable gaps by Ausaf et al. [14],
who came up with an alternative proof inspired by Vansummeren [84]. Sulzmann
and Thiemann extended the Brzozowski derivatives to shuffling regular expressions
[79], which are a very succinct way of describing regular expressions.

Regular expressions and lexers have been a popular topic among the theorem
proving and functional programming community. In the next section we give a list
of lexers and matchers that come with a machine-checked correctness proof.

1.1.2 Matchers and Lexers with Mechanised Proofs

We are aware of a mechanised correctness proof of Brzozowski’s derivative-based
matcher in HOL4 by Owens and Slind [66]. Another one in Isabelle/HOL is part
of the work by Krauss and Nipkow [50]. Another one in Coq is given by Coquand
and Siles [27]. Also Ribeiro and Du Bois gave one in Agda [71]. The most recent
works on verified lexers to our best knowledge are the Verbatim [32] and Verbatim++
[33] lexers by Egolf et al. Verbatim is based on derivatives but does not simplify
them. Therefore it can be very slow on evil regular expressions. The Verbatim++
lexer adds many correctness-preserving optimisations to the Verbatim lexer, and is
therefore quite fast on many inputs. The problem is that Egolf et al. chose to use
traditional DFAs to speed up lexing, but then dealing with bounded repetitions is a
real bottleneck.

This thesis builds on the formal specifications of POSIX rules and formal proofs
by Ausaf et al. [14]. The bounded repetitions presented here is a continuation of
the work by Ausaf [13]. Proving blexer_simp requires a different proof strategy com-
pared to that by Ausaf [13]. We invent a rewriting relation as an inductive predicate
which captures a strong enough invariance that ensures correctness, which com-
mutes with the derivative operation. This predicate allows a simple induction on
the input string to go through. This method is general and extensible, and we show
how it helps already with the proof on the space complexity.

Automata formalisations are in general harder and more cumbersome to deal
with for theorem provers [63]. To represent them, one way is to use graphs, but
graphs are not inductive datatypes. Having to set the inductive principle on the
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number of nodes in a graph makes formal reasoning non-intuitive and convoluted,
resulting in large formalisations [80]. When combining two graphs, one also needs
to make sure that the nodes in both graphs are distinct. If they are not distinct,
then renaming of the nodes is needed. There are some more clever representations,
for example one by Paulson using hereditarily finite sets [67]. There the problem
with combining graphs can be solved better. The FinType datatype from ssreflect can
potentially make things slightly easier, as testified by [47].

Another representation for automata are matrices. But the induction for them
is not as straightforward either. Both approaches have been used in the past and
resulted in huge formalisations.

Because of these problems with automata, we prefer regular expressions and
derivatives which can be implemented in theorem provers and functional program-
ming languages with ease.

1.1.3 Different Definitions of POSIX Rules

There are different ways to formalise values and POSIX matching. In this thesis we
choose to work on the formal definitions given by Ausaf et al.[14].

Cardelli and Frisch [39] have developed a notion of non-problematic values which
is a slight variation of the values in this thesis.They then defined an ordering be-
tween values, and showed that the maximal element of those values correspond to
the output of their GREEDY lexing algorithm.

Okui and Suzuki [65] allow iterations of values to flatten to an empty string.
They refer to the more restrictive version as used in this thesis (which was defined
by Ausaf et al. [14]) as canonical values. The very interesting link between the work by
Ausaf et al. and Okui and Suzuki is that they have distinct formalisations of POSIX
values, and yet they define the same notion. See [14] for details of the alternative
definitions given by Okui and Suzuki and the formalisation described in this thesis.

Sulzmann and Lu themselves have come up with a POSIX definition [77]. In
their paper they defined an ordering between values with respect to regular expres-
sions, and tried to establish that their algorithm outputs the minimal element by a
pencil-and-paper proof. But having the ordering relation taking regular expression
as parameters causes the transitivity of their ordering to not go through.

1.1.4 Static Analysis of Evil Regex Patterns

When faced with catastrophic backtracking, sometimes programmers have to rewrite
their regexes in an ad hoc fashion. Knowing which patterns should be avoided can
be helpful. Animated tools to "debug" regular expressions such as [17] [35] are also
popular. Weideman [85] came up with non-linear polynomial worst-time estimates
for regexes and “attack string” that exploit the worst-time scenario, and introduced
"attack automaton" that generates attack strings.

Static analysis tools can detect “evil” patterns before they were executed. For
instance, Minamide et al. [58] have used tree transducers to analyse the complex-
ity of “evil” regular expressions, and such analysis is sound and complete. The
drawback is that such procedures can be exponential in the worst case. We are also
aware of a similar line of research on this [69]. Sometimes these static analyzers
over-approximate evil regular expression patterns, and there can be many false pos-
itives [29]. In general the static analysis of regular expressions is hard and worst-case
exponential.
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1.1.5 Optimisations

Perhaps the biggest problem that prevents derivative-based lexing from being more
widely adopted is that they tend to be not very fast in practice, unable to reach
throughputs like gigabytes per second, which is the application we have in mind
when we started looking at the topic. Commercial regular expression matchers such
as Snort [72] and Bro [68] are capable of inspecting payloads at line rates (which
means up to a few gigabits per second) against thousands of regex rules [76]. For
our algorithm to be more attractive for practical use, we need more correctness-
preserving optimisations.

FPGA-based implementations such as [75] have the advantages of being recon-
figurable and parallel, but suffer from lower clock frequency and scalability. Tradi-
tional automaton approaches that use DFAs instead of NFAs benefit from the fact
that only a single transition is needed for each input character [18]. Lower mem-
ory bandwidth leads to faster performance. However, they suffer from exponential
memory requirements on bounded repetitions. Compression techniques are used,
such as those in [53] and [19]. Variations of pure NFAs or DFAs like counting-set
automata [82] have been proposed to better deal with bounded repetitions. But they
usually do not contain any formalised proofs.

Another direction of optimisation for derivative-based approaches is defining
string derivatives directly, without recursively decomposing them into character-
by-character derivatives. For example, instead of replacing (r1 + r2)\(c :: cs) by
((r1 + r2)\c)\cs, we rather calculate (r1\(c :: cs) + r2\(c :: cs)). This has the poten-
tial to speed up matching because input is processed at a larger granularity. One
interesting point is to explore whether this can be done to inj as well, so that we can
generate a lexical value rather than simply get a matcher. It is also not yet clear how
this idea can be extended to sequences and stars.

1.1.6 Derivatives and Zippers

Zippers are a data structure designed to focus on and navigate between local parts
of a tree. The idea is that often operations on large trees only deal with local regions
each time. Therefore it would be a waste to traverse the entire tree if the operation
only involves a small fraction of it. Zippers were first formally described by Huet
[44]. Typical applications of zippers involve text editor buffers and proof system
databases. In our setting, the idea is to compactify the representation of derivatives
with zippers, thereby making our algorithm faster. Below we describe several works
on parsing, derivatives and zippers.

Edelmann et al. developed a formalised parser for LL(1) grammars using deriva-
tives [31]. They adopted zippers to improve the speed, and argued that the runtime
complexity of their algorithm was linear with respect to the input string. They did
not provide a formal proof for this.

The idea of using Brzozowski derivatives on general context-free parsing was
first implemented by Might et al. [57]. They used memoization and fixpoint con-
structions to eliminate infinite recursion, which is a major problem for using deriva-
tives with context-free grammars. Their initial version was quite slow—-exponential
on the size of the input. Adams et al. [6] improved the speed and argued that their
version was cubic with respect to the input. Darragh and Adams [28] further im-
proved the performance by using zippers in an innovative way–their zippers had
multiple focuses instead of just one in a traditional zipper to handle ambiguity. Their
algorithm was not formalised though.
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1.1.7 Back-References

Bakc-references syntax in a regex engine allows html-style paired tags to be repre-
sented. We adopt the common practice of calling them rewbrs (Regular Expressions
With Back References) for brevity. It has been shown by Aho [7] that the k-vertex
cover problem can be reduced to the problem of rewbrs matching, and therefore
matching with rewbrs is NP-complete. Another reduction from 3-SAT problem to
rewbrs can be found in [45]. Given the depth of the problem, the progress made at
the full generality of arbitrary rewbrs matching has been slow with theoretical work
on them being fairly recent.

Campaneu et al. studied rewbrs in the context of formal languages theory in
[24]. They devised a pumping lemma for Perl-like regexes, proving that the langu-
gages denoted by them is properly contained in context-sensitive languages. More
interesting questions such as whether the languages denoted by Perl-like regexes
can express palindromes ({w | w = wR}) are discussed in [25] and [26]. Freyden-
berger [37] investigated the expressive power of back-references. He showed several
undecidability and decriptional complexity results for back-references, concluding
that they add great power to certain programming tasks but are difficult to com-
prehend. An interesting question would then be whether we can add restrictions
to them, so that they become expressive enough for practical use, such as match-
ing html files, but not too powerful. Freydenberger and Schmid [38] introduced the
notion of deterministic regular expressions with back-references to achieve a better
balance between expressiveness and tractability.

Fernau and Schmid [34] and Schmid [74] investigated the time complexity of
different variants of back-references. We are not aware of any work that uses deriva-
tives with back-references.

The recently published work on formally verified lexer [60] by Moseley et al.
moves a big step forward in practical performance–their lexer can compete with un-
verified commercial regex engines like those in Java, Python and etc. and supports
lookaheads. To reach their speed on larger datasets like [3], one has to incorpo-
rate many fine-tunings and one of the first modifications needed would be to drop
whole-string lexing but only extract the submatch needed by the user. The only
drawback of the work seems that the underlying formal proofs is still under devel-
opment.

1.1.8 Complexity Results

Our formalisation of space complexity is unique among similar works in the sense
that to our knowledge there are not other certified lexing/parsing algorithms with
similar data structure size bound theorems. Common practices involve making em-
pirical analysis of the complexity of the algorithm in question ([32], [33]), or relying
on prior (unformalised) complexity analysis of well-known algorithms ([83]), mak-
ing them prone to complexity bugs.

Whilst formalised complexity theorems have not yet appeared in other certified
lexers/parsers, they do find themselves in the broader theorem-proving literature:
time credits have been formalised for separation logic in Coq [11] to characterise the
runtime complexity of union-find. The idea is that the total number of instructions
executed is equal to the time credits consumed during the execution of an algorithm.
Armaël et al. [42] have extended the framework to allow expressing time credits us-
ing big-O notations, so one can prove both the functional correctness and asymptotic
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complexity of higher-order imperative algorithms. A number of formal proofs also
exist for some other algorithms in Coq [21].

The big-O notation have also been formalised in Isabelle [16] . Our work focuses
on the space complexity of the algorithm under our notion of the size of a regular
expression. Despite not being a direct asymptotic time complexity proof, our result
is an important stepping stone towards one.

Brzozowski showed that there are finitely many similar deriviatives, where sim-
ilarity is defined in terms of ACI equations. This allows him to use derivatives as a
basis for DFAs where each state is labelled with a derivative. However, Brzozowski
did not show anything about the size of the derivatives. Antimirov showed that
there can only be finitely many partial derivatives for a regular expression and any
set of strings. He showed that the number is actually the “alphabetical width” plus 1.
From this result one can relatively easily establish that the size of the partial deriva-
tives is no bigger than (size r)3 for every string. Unfortunately this result does not
seem to carry over to our setting because partial derivatives have the simplification

(r1 + r2) · r3 → (r1 · r3) + (r2 · r3) (1.1)

built in. We cannot have this because otherwise we would lose the POSIX property.
For instance, the lexing result of regular expression

(a + ab) · (bc + c)

with respect to string abc using our lexer with the simplification rule 1.1 would be

Left(Seq (Char a), Seq(Char b) (Char c))

instead of the correct POSIX value

Seq (Right (Seq (Char a) (Char b))) (Char )

Our result about the finite bound also does not say anything about the number of
derivatives. In fact there are infinitely many derivatives in general because in the
annotated regular expression for STAR we record the number of iterations. What
our result shows that the size of the derivatives is bounded, not the number.

In particular, the main problem we solved on top of previous work was com-
ing up with a formally verified algorithm called blexer_simp based on Brzozowski
derivatives. It calculates a POSIX lexical value from a string and a regular expres-
sion. This algorithm was originally by Sulzmann and Lu [77], but we made the
key observation that its nub function does not really simplify intermediate results
where it needs to and improved the algorithm accordingly. We have proven our
blexer_simp’s internal data structure does not grow beyond a constant Nr depend-
ing on the input regular expression r, thanks to the aggressive simplifications of
blexer_simp:

|blexer_simp r s| ≤ Nr

The simplifications applied in each step of blexer_simp

blexer_simp

keeps the derivatives small, but presents a challenge
establishing a correctness theorem of the below form:
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If the POSIX lexical value of matching regular expression r with string s is v, then
blexer_simp r s = Some v. Otherwise blexer_simp r s = None.

The result is

• an improved version of Sulzmann and Lu’s bit-coded algorithm using deriva-
tives with simplifications, accompanied by a proven correctness theorem ac-
cording to POSIX specification given by Ausaf et al. [14],

• a complexity-related property for that algorithm saying that the internal data
structure will remain below a finite bound,

• and an extension to the bounded repetition constructs with the correctness and
finiteness property maintained.

With a formal finiteness bound in place, we can greatly reduce the attack surface of
servers in terms of ReDoS attacks. The Isabelle/HOL code for our formalisation can
be found at

https://github.com/hellotommmy/posix

Further improvements to the algorithm with an even stronger version of simplifica-
tion can be made. We conjecture that the resulting size of derivatives can be bounded
by a cubic bound w.r.t. the size of the regular expression. We are working to improve
the formalisation, and therefore this is not yet on the AFP. We will give relevant code
in Scala, but do not give a formal proof for that in Isabelle/HOL. This is still future
work.

1.2 Structure of the thesis

Before talking about the formal proof of blexer_simp’s correctness, which is the main
contribution of this thesis, we need to introduce two formal proofs which belong to
Ausafe et al. In chapter 3 we will introduce the concepts and notations we use for de-
scribing regular expressions and derivatives, and the first version of Sulzmann and
Lu’s lexing algorithm without bitcodes (including its correctness proof). We will
give their second lexing algorithm with bitcodes in 4 together with the correctness
proof by Ausaf and Urban. Then we illustrate in chapter 5 how Sulzmann and Lu’s
simplifications fail to simplify correctly. We therefore introduce our own version of
the algorithm with correct simplifications and their correctness proof. In chapter 6
we give the second guarantee of our bitcoded algorithm, that is a finite bound on the
size of any regular expression’s derivatives. We also show how one can extend the
algorithm to include bounded repetitions. In chapter 7 we discuss stronger simplifi-
cation rules which improve the finite bound to a cubic bound. Chapter 8 concludes
and mentions avenues of future research.

https://github.com/hellotommmy/posix
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Chapter 2

Technical Overview

We start with a technical overview of the catastrophic backtracking problem, mo-
tivating rigorous approaches to regular expression matching and lexing. In doing
so we also briefly introduce common terminology such as bounded repetitions and
back-references.

2.1 Motivating Examples

Consider for example the regular expression (a∗)∗ b and strings of the form aa..a.
These strings cannot be matched by this regular expression: obviously the expected
b in the last position is missing. One would assume that modern regular expression
matching engines can find this out very quickly. Surprisingly, if one tries this exam-
ple in JavaScript, Python or Java 8, even with small strings, say of lenght of around
30 a’s, the decision takes large amounts of time to finish. This is inproportional to
the simplicity of the input (see graphs in figure 2.1). The algorithms clearly show
exponential behaviour, and as can be seen is triggered by some relatively simple
regular expressions. Java 9 and newer versions mitigates this behaviour by several
magnitudes, but are still slow compared with the approach we are going to use in
this thesis.

This superlinear blowup in regular expression engines has caused grief in “real
life” where it is given the name “catastrophic backtracking” or “evil” regular expres-
sions. A less serious example is a bug in the Atom editor: a user found out when
writing the following code:

vVar.Type().Name() == "" && vVar.Kind() == reflect.Ptr
&& vVar.Type().Elem().Name() == "" && vVar.Type().Elem().Kind() ==

reflect.Slice

it took the editor half a hour to finish computing. This was subsequently fixed by
Galbraith [4], and the issue was due to the regex engine of Atom. But evil regular
expressions can be more than a nuisance in a text editor: on 20 July 2016 one evil reg-
ular expression brought the webpage Stack Exchange to its knees.1 In this instance,
a regular expression intended to just trim white spaces from the beginning and the
end of a line actually consumed massive amounts of CPU resources—causing the
web servers to grind to a halt. In this example, the time needed to process the string
was O(n2) with respect to the string length n. This quadratic overhead was enough
for the homepage of Stack Exchange to respond so slowly that the load balancer
assumed a DoS attack and therefore stopped the servers from responding to any
requests. This made the whole site become unavailable.

1https://stackstatus.net/post/147710624694/outage-postmortem-july-20-2016(Last
accessed in 2019)

http://stackexchange.com
https://stackstatus.net/post/147710624694/outage-postmortem-july-20-2016
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FIGURE 2.1: Graphs showing runtime for matching (a∗)∗ b with
strings of the form aa..a︸︷︷︸

n

in various existing regular expression li-

braries. The reason for their fast growth is that they do a depth-first-
search using NFAs. If the string does not match, the regular expres-
sion matching engine starts to explore all possibilities. The last two
graphs are for our implementation in Scala, one manual and one ex-
tracted from the verified lexer in Isabelle by codegen. Our lexer per-
forms better in this case, and is formally verified. Despite being al-
most identical, the codegen-generated lexer is slower than the man-
ually written version since the code synthesised by codegen does not

use native integer or string types of the target language.
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A more recent example is a global outage of all Cloudflare servers on 2 July 2019.
The traffic Cloudflare services each day is more than Twitter, Amazon, Instagram,
Apple, Bing and Wikipedia combined, yet it became completely unavailable for half
an hour because of a poorly-written regular expression roughly of the form ∗.∗ = .∗

exhausted CPU resources that serve HTTP traffic. Although the outage had several
causes, at the heart was a regular expression that was used to monitor network traf-
fic.2 These problems with regular expressions are not isolated events that happen
very rarely, but they occur actually often enough that they have a name: Regular-
Expression-Denial-Of-Service (ReDoS) attacks. Davis et al. [29] detected more than
1000 evil regular expressions in Node.js, Python core libraries, npm and pypi. They
therefore concluded that evil regular expressions are a real problem rather than just
"a parlour trick".

The work in this thesis aims to address this issue with the help of formal proofs.
We describe a lexing algorithm based on Brzozowski derivatives with verified cor-
rectness and a finiteness property for the size of derivatives (which are all done in Is-
abelle/HOL). Such properties are an important step in preventing catastrophic back-
tracking once and for all. We will give more details in the next sections on (i) why the
slow cases in graph 2.1 can occur in traditional regular expression engines and (ii)
why we choose our approach based on Brzozowski derivatives and formal proofs.

2.2 Preliminaries

Regular expressions and regular expression matchers have been studied for many
years. Theoretical results in automata theory state that basic regular expression
matching should be linear w.r.t the input. This assumes that the regular expression
r was pre-processed and turned into a deterministic finite automaton (DFA) before
matching [73]. By basic we mean textbook definitions such as the one below, in-
volving only regular expressions for characters, alternatives, sequences, and Kleene
stars:

r ::= c|r1 + r2|r1 · r2|r∗

Modern regular expression matchers used by programmers, however, support much
richer constructs, such as bounded repetitions, negations, and back-references. To
differentiate, we use the word regex to refer to those expressions with richer con-
structs while reserving the term regular expression for the more traditional meaning
in formal languages theory. We follow this convention in this thesis. In the future,
we aim to support all the popular features of regexes, but for this work we mainly
look at basic regular expressions and bounded repetitions.

Regexes come with a number of constructs that make it more convenient for
programmers to write regular expressions. Depending on the types of constructs
the task of matching and lexing with them will have different levels of complexity.
Some of those constructs are syntactic sugars that are simply short hand notations
that save the programmers a few keystrokes. These will not cause problems for regex
libraries. For example the non-binary alternative involving three or more choices just
means:

(a|b|c) means
= ((a + b) + c)

2https://blog.cloudflare.com/details-of-the-cloudflare-outage-on-july-2-2019/(Last
accessed in 2022)

https://blog.cloudflare.com/details-of-the-cloudflare-outage-on-july-2-2019/
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Similarly, the range operator is just a concise way of expressing an alternative of
consecutive characters:

[0 − 9] means
= (0|1| . . . |9)

for an alternative. The wildcard character ’.’ is used to refer to any single character,

. means
= [0− 9a− zA− Z +−() ∗& . . .]

except the newline.

2.2.1 Bounded Repetitions

More interesting are bounded repetitions, which can make the regular expressions
much more compact. Normally there are four kinds of bounded repetitions: r{n},
r{...m}, r{n...} and r{n...m} (where n and m are constant natural numbers). Like the star
regular expressions, the set of strings or language a bounded regular expression can
match is defined using the power operation on sets:

L r{n} def
= (L r)n

L r{...m} def
=

⋃
0≤i≤m .(L r)i

L r{n...} def
=

⋃
n≤i .(L r)i

L r{n...m} def
=

⋃
n≤i≤m .(L r)i

The attraction of bounded repetitions is that they can be used to avoid a size blow
up: for example r{n} is a shorthand for the much longer regular expression:

r . . . r︸ ︷︷ ︸
n copies of r

.

The problem with matching such bounded repetitions is that tools based on the
classic notion of automata need to expand r{n} into n connected copies of the au-
tomaton for r. This leads to very inefficient matching algorithms or algorithms that
consume large amounts of memory. Implementations using DFAs will in such situ-
ations either become very slow (for example Verbatim++ [33]) or run out of mem-
ory (for example LEX and JFLEX3) for large counters. A classic example for this
phenomenon is the regular expression (a + b)∗a(a + b)n where the minimal DFA re-
quires at least 2n+1 states. For example, when n is equal to 2, the corresponding NFA
looks like:

q0start q1 q2 q3
a

a,b

a,b a,b

3LEX and JFLEX are lexer generators in C and JAVA that generate DFA-based lexers. The user
provides a set of regular expressions and configurations, and then gets an output program encoding a
minimized DFA that can be compiled and run. When given the above countdown regular expression,
a small n (say 20) would result in a program representing a DFA with millions of states.
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and when turned into a DFA by the subset construction requires at least 23 states.4

Bounded repetitions are important because they tend to occur frequently in prac-
tical use, for example in the regex library RegExLib, in the rules library of Snort [72]5,
as well as in XML Schema definitions (XSDs). According to Björklund et al [22], more
than half of the XSDs they found on the Maven.org central repository have bounded
regular expressions in them. Often the counters are quite large, with the largest be-
ing close to ten million. A smaller sample XSD they gave is:
<sequence minOccurs="0" maxOccurs="65535">

<element name="TimeIncr" type="mpeg7:MediaIncrDurationType"/>
<element name="MotionParams" type="float" minOccurs="2" maxOccurs="12"/>

</sequence>

This can be seen as the regex (ab2...12)0...65535, where a and b are themselves regular
expressions satisfying certain constraints (such as satisfying the floating point num-
ber format). It is therefore quite unsatisfying that some regular expressions match-
ing libraries impose adhoc limits for bounded regular expressions: For example, in
the regular expression matching library in the Go language the regular expression
a1001 is not permitted, because no counter can be above 1000, and in the built-in
Rust regular expression library expressions such as a{1000}{100}{5} give an error mes-
sage for being too big 6. As Becchi and Crawley [18] have pointed out, the reason
for these restrictions is that they simulate a non-deterministic finite automata (NFA)
with a breadth-first search. This way the number of active states could be equal to
the counter number. When the counters are large, the memory requirement could
become infeasible, and a regex engine like in Go will reject this pattern straight away.

0start 1 . . . n n + 1 n + 2 n + 3

a

a . . . b c

FIGURE 2.2: The example given by Becchi and Crawley that NFA sim-
ulation can consume large amounts of memory: .∗a.{n}bc matching
strings of the form aaa . . . aaaabc. When traversing in a breadth-first

manner, all states from 0 till n + 1 will become active.

These problems can of course be solved in matching algorithms where automata
go beyond the classic notion and for instance include explicit counters [81]. These

4The red states are "countdown states" which count down the number of characters needed in ad-
dition to the current string to make a successful match. For example, state q1 indicates a match that
has gone past the (a|b)∗ part of (a|b)∗a(a|b){2}, and just consumed the "delimiter" a in the middle, and
needs to match 2 more iterations of (a|b) to complete. State q2 on the other hand, can be viewed as a
state after q1 has consumed 1 character, and just waits for 1 more character to complete. The state q3 is
the last (accepting) state, requiring 0 more characters. Depending on the suffix of the input string up
to the current read location, the states q1 and q2, q3 may or may not be active. A DFA for such an NFA
would contain at least 23 non-equivalent states that cannot be merged, because the subset construction
during determinisation will generate all the elements in the power set Pow{q1, q2, q3}. Generalizing
this to regular expressions with larger bounded repetitions number, we have that regexes shaped like
r∗ar{n} when converted to DFAs would require at least 2n+1 states, if r itself contains more than 1
string. This is to represent all different scenarios in which "countdown" states are active.

5 Snort is a network intrusion detection (NID) tool for monitoring network traffic. The network
security community curates a list of malicious patterns written as regexes, which is used by Snort’s
detection engine to match against network traffic for any hostile activities such as buffer overflow
attacks.

6Try it out here: https://rustexp.lpil.uk
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solutions can be quite efficient, with the ability to process gigabits of strings input
per second even with large counters [18]. These practical solutions do not come with
formal guarantees, and as pointed out by Kuklewicz [52], can be error-prone.

In the work reported in [ITP2023] and here, we add better support using deriva-
tives for bounded regular expression r{n}. Our results extend straightforwardly to
repetitions with intervals such as r{n...m}. The merit of Brzozowski derivatives (more
on this later) on this problem is that it can be naturally extended to support bounded
repetitions. Moreover these extensions are still made up of only small inductive
datatypes and recursive functions, making it handy to deal with them in theorem
provers. Finally, bounded regular expressions do not destroy our finite bounded-
ness property, which we shall prove later on.

2.2.2 Back-References

The other way to simulate an NFA for matching is choosing a single transition each
time, keeping all the other options in a queue or stack, and backtracking if that choice
eventually fails. This method, often called a "depth-first-search", is efficient in many
cases, but could end up with exponential run time. The backtracking method is em-
ployed in regex libraries that support back-references, for example in Java and Python.

Consider the following regular expression where the sequence operator is omit-
ted for brevity:

r1r2r3r4

In this example, one could label sub-expressions of interest by parenthesizing them
and giving them a number in the order in which their opening parentheses appear.
One possible way of parenthesizing and labelling is:

(
1
r1(

2
r2(

3
r3)(

4
r4)))

The sub-expressions r1r2r3r4, r1r2r3, r3 and r4 are labelled by 1 to 4, and can be “re-
ferred back” by their respective numbers. To do so, one uses the syntax \i to denote
that we want the sub-string of the input matched by the i-th sub-expression to ap-
pear again, exactly the same as it first appeared:

. . . (
i-th lparen

ri) . . . \i
si which just matched ri

. . .

Once the sub-string si for the sub-expression ri has been fixed, there is no variability
on what the back-reference label \i can be—it is tied to si. The overall string will
look like . . . si . . . si . . . A concrete example for back-references is

(.∗)\1,

which matches strings that can be split into two identical halves, for example foofoo,
ww and so on. Note that this is different from repeating the sub-expression verbatim
like

(.∗)(.∗),

which does not impose any restrictions on what strings the second sub-expression .∗

might match. Another example for back-references is

(.)(.)\2\1
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which matches four-character palindromes like abba, x??x and so on.
Back-references are a regex construct that programmers find quite useful. Ac-

cording to Becchi and Crawley [18], 6% of Snort rules (up until 2008) use them. The
most common use of back-references is to express well-formed html files, where
back-references are convenient for matching opening and closing tags like

〈html〉 . . . 〈/html〉

A regex describing such a format is

〈(.+)〉 . . . 〈/\1〉

Despite being useful, the expressive power of regexes go beyond regular languages
once back-references are included. In fact, they allow the regex construct to express
languages that cannot be contained in context-free languages either. For example,
the back-reference (a∗)b\1b\1 expresses the language {anbanban | n ∈ N}, which
cannot be expressed by context-free grammars [24]. Such a language is contained
in the context-sensitive hierarchy of formal languages. Also solving the matching
problem involving back-references is known to be NP-complete [8]. Regex libraries
supporting back-references such as PCRE [43] therefore have to revert to a depth-
first search algorithm including backtracking. What is unexpected is that even in
the cases not involving back-references, there is still a (non-negligible) chance they
might backtrack super-linearly, as shown in the graphs in figure 2.1.

Summing up, we can categorise existing practical regex libraries into two kinds:
(i) The ones with linear time guarantees like Go and Rust. The downside with
them is that they impose restrictions on the regular expressions (not allowing back-
references, bounded repetitions cannot exceed an ad hoc limit etc.). And (ii) those
that allow large bounded regular expressions and back-references at the expense of
using backtracking algorithms. They can potentially “grind to a halt” on some very
simple cases, resulting ReDoS attacks if exposed to the internet.

The problems with both approaches are the motivation for us to look again at the
regular expression matching problem. Another motivation is that regular expression
matching algorithms that follow the POSIX standard often contain errors and bugs
as we shall explain next.

2.3 Error-prone POSIX Implementations

Very often there are multiple ways of matching a string with a regular expression. In
such cases the regular expressions matcher needs to disambiguate. The more widely
used strategy is called POSIX, which roughly speaking always chooses the longest
initial match. The POSIX strategy is widely adopted in many regular expression
matchers because it is a natural strategy for lexers. However, many implementations
(including the C libraries used by Linux and OS X distributions) contain bugs or do
not meet the specification they claim to adhere to. Kuklewicz maintains a unit test
repository which lists some problems with existing regular expression engines [52].
In some cases, they either fail to generate a result when there exists a match, or give
results that are inconsistent with the POSIX standard. A concrete example is the
regex:

(aba + ab + a)∗and the string ababa

The correct POSIX match for the above involves the entire string ababa, split into two
Kleene star iterations, namely [ab], [aba] at positions [0, 2), [2, 5) respectively. But
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feeding this example to the different engines listed at regex101 7 [35]. yields only
two incomplete matches: [aba] at [0, 3) and a at [4, 5). Fowler [36] and Kuklewicz
[52] commented that most regex libraries are not correctly implementing the central
POSIX rule, called the maximum munch rule. Grathwohl [41] wrote:

“The POSIX strategy is more complicated than the greedy because of the depen-
dence on information about the length of matched strings in the various subex-
pressions.”

People have recognised that the implementation complexity of POSIX rules also
come from the specification being not very precise. The developers of the regexp
package of Go 8 commented that

“ The POSIX rule is computationally prohibitive and not even well-defined. “

There are many informal summaries of this disambiguation strategy, which are often
quite long and delicate. For example Kuklewicz [52] described the POSIX rule as
(section 1, last paragraph):

• regular expressions (REs) take the leftmost starting match, and the
longest match starting there earlier subpatterns have leftmost-longest
priority over later subpatterns

• higher-level subpatterns have leftmost-longest priority over their
component subpatterns

• REs have right associative concatenation which can be changed with
parenthesis

• parenthesized subexpressions return the match from their last usage

• text of component subexpressions must be contained in the text of
the higher-level subexpressions

• if "p" and "q" can never match the same text then "p|q" and "q|p"
are equivalent, up to trivial renumbering of captured subexpres-
sions

• if "p" in "p*" is used to capture non-empty text then additional rep-
etitions of "p" will not capture an empty string

7 regex101 is an online regular expression matcher which provides API for trying out regular ex-
pression engines of multiple popular programming languages like Java, Python, Go, etc.

8https://pkg.go.dev/regexp#pkg-overview

https://pkg.go.dev/regexp#pkg-overview
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Chapter 3

Regular Expressions and POSIX
Lexing-Preliminaries

This is a preliminary chapter which describes the results of Sulzmann and Lu [77]
and Ausaf et al. [14].This chapter introduces the definitions and proofs related to
lexer, one of the three lexing algorithms we are going to introduce. These basic def-
initions come partly from the AFP entry by Nipkow et al. [51] and partly from the
AFP entry by Ausaf et al. [15]. Functions like inj formalisation results are not part
of this PhD work, but the details are included to provide necessary context for our
work on the correctness proof of blexer_simp, as we show in chapter 5 how the proofs
break down when simplifications are applied.

In the coming section, the definitions of basic notions for regular languages and
regular expressions are given. This is essentially a description in “English” the
functions and datatypes used by Ausaf et al. [14] [13] in their formalisation in Is-
abelle/HOL. We include them as we build on their formalisation, and therefore in-
herently use these definitions.

As a general convention in this thesis, when we mention formally proven results
from previous work, we call them properties instead of lemmas and omit their proofs
unless they are key results. In that case, we call the key property a theorem and
supply a high-level proof. These proofs are available from existing AFP entries by
Ausaf et al. [15] or from their papers [14] [13], however we provide our perspective
into how these proofs work intuitively. More importantly we show why they are no
longer applicable for our correctness proof of blexer_simp.

3.1 Formal Specification of POSIX Matching and Brzozowski
Derivatives

Brzozowski [23] first introduced the concept of a derivative of regular expression in
1964. The derivative of a regular expression r with respect to a character c, is written
as r\c. This operation tells us what r transforms into if we “chop” off a particular
character c from all strings in the language of r (defined later as L r). Derivatives
have the property that s ∈ L (r\c) if and only if c :: s ∈ L r where :: stands for
list prepending. With this property, derivatives can give a simple solution to the
problem of matching a string s with a regular expression r: if the derivative of r
w.r.t. (in succession) all the characters of the string matches the empty string, then
r matches s (and vice versa). There are several mechanised proofs of this property
in various theorem provers, for example one by Owens and Slind [66] in HOL4,
another one by Krauss and Nipkow [62] in Isabelle/HOL, and yet another in Coq by
Coquand and Siles [27].
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In addition, one can extend derivatives to bounded repetitions relatively straight-
forwardly. For example, the derivative for this can be defined as:

r{n}\c def
= r\c · r{n−1}(whenn > 0)

Experimental results suggest that unlike DFA-based solutions for bounded regular
expressions, derivatives can cope large counters quite well.

There have also been extensions of derivatives to other regex constructs. For ex-
ample, Owens et al include the derivatives for the NOT regular expression, which is
able to concisely express C-style comments of the form / ∗ . . . ∗ / (see [66]). Another
extension for derivatives is regular expressions with look-aheads, done by Miyazaki
and Minamide [59].

Given the above definitions and properties of Brzozowski derivatives, one quickly
realises their potential in generating a formally verified algorithm for lexing: the
clauses and property can be easily expressed in a functional programming language
or converted to theorem prover code, with great ease. Perhaps this is the reason why
derivatives have sparked quite a bit of interest in the functional programming and
theorem prover communities in the last fifteen or so years ( [9], [56], [20], [87] and
[27] to name a few), despite being buried in the “sands of time” [66] after they were
first published by Brzozowski.

However, there are two difficulties with derivative-based matchers: First, Brzo-
zowski’s original matcher only generates a yes/no answer for whether a regular ex-
pression matches a string or not. This is too little information in the context of lexing
where separate tokens must be identified and also classified (for example as key-
words or identifiers). Second, derivative-based matchers need to be more efficient
in terms of the sizes of derivatives. Elegant and beautiful as many implementations
are, they can be still quite slow. For example, Sulzmann and Lu claim a linear run-
ning time of their proposed algorithm, but that was falsified by our experiments.
The running time is actually Ω(2n) in the worst case. A similar claim about a theo-
retical runtime of O(n2) is made for the Verbatim [32] lexer, which calculates POSIX
matches and is based on derivatives. They formalized the correctness of the lexer,
but not their complexity result. In the performance evaluation section, they analyzed
the run time of matching a with the string

a . . . a︸ ︷︷ ︸
n a’s

.

They concluded that the algorithm is quadratic in terms of the length of the input
string. When we tried out their extracted OCaml code with the example (a + aa)∗,
the time it took to match a string of 40 a’s was approximately 5 minutes.

3.1.1 Sulzmann and Lu’s Algorithm

Sulzmann and Lu [77] overcame the first problem with the yes/no answer by clev-
erly extending Brzozowski’s matching algorithm. Their extended version generates
additional information on how a regular expression matches a string following the
POSIX rules for regular expression matching. They achieve this by adding a second
“phase” to Brzozowski’s algorithm involving an injection function. This injection
function in a sense undoes the “damage” of the derivatives chopping off characters.
In earlier work, Ausaf et al provided the formal specification of what POSIX match-
ing means and proved in Isabelle/HOL the correctness of this extended algorithm
accordingly [14].
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The version of the algorithm proven correct suffers however heavily from a sec-
ond difficulty, where derivatives can grow to arbitrarily big sizes. For example if we
start with the regular expression (a + aa)∗ and take successive derivatives according
to the character a, we end up with a sequence of ever-growing derivatives like

(a + aa)∗
_\a−→ (1 + 1a) · (a + aa)∗
_\a−→ (0 + 0a + 1) · (a + aa)∗ + (1 + 1a) · (a + aa)∗
_\a−→ (0 + 0a + 0) · (a + aa)∗ + (1 + 1a) · (a + aa)∗ +

(0 + 0a + 1) · (a + aa)∗ + (1 + 1a) · (a + aa)∗
_\a−→ . . . (regular expressions of sizes 98, 169, 283, 468, 767, . . . )

where after around 35 steps we usually run out of memory on a typical computer.
Clearly, the notation involving 0s and 1s already suggests simplification rules that
can be applied to regular regular expressions, for example 0 r ⇒ 0, 1 r ⇒ r, 0+ r ⇒ r
and r + r ⇒ r. While such simple-minded simplifications have been proved in the
work by Ausaf et al. to preserve the correctness of Sulzmann and Lu’s algorithm
[14], they unfortunately do not help with limiting the growth of the derivatives
shown above: the growth is slowed, but the derivatives can still grow rather quickly
beyond any finite bound.

Therefore we want to look in this thesis at a second algorithm by Sulzmann and
Lu where they overcame this “growth problem” [77]. In this version, POSIX val-
ues are represented as bit sequences and such sequences are incrementally gener-
ated when derivatives are calculated. The compact representation of bit sequences
and regular expressions allows them to define a more “aggressive” simplification
method that keeps the size of the derivatives finite no matter what the length of
the string is. They make some informal claims about the correctness and linear be-
haviour of this version, but do not provide any supporting proof arguments, not
even “pencil-and-paper” arguments. They write about their bit-coded incremental
parsing method (that is the algorithm to be formalised in this dissertation)

“Correctness Claim: We further claim that the incremental parsing method [..]
in combination with the simplification steps [..] yields POSIX parse trees. We
have tested this claim extensively [..] but yet have to work out all proof details.”
[77, Page 14]

Ausaf and Urban made some initial progress towards the full correctness proof but
still had to leave out the optimisation Sulzmann and Lu proposed. Ausaf wrote [13],

“The next step would be to implement a more aggressive simplification procedure
on annotated regular expressions and then prove the corresponding algorithm
generates the same values as blexer. Alas due to time constraints we are unable
to do so here.”

This thesis implements the aggressive simplifications envisioned by Ausaf and Ur-
ban, together with a formal proof of the correctness of those simplifications.

One of the most recent work in the context of lexing is the Verbatim lexer by
Egolf, Lasser and Fisher [32]. This is relevant work for us and we will compare it
later with our derivative-based matcher we are going to present. There is also some
newer work called Verbatim++ [33], which does not use derivatives, but determin-
istic finite automaton instead. We will also study this work in a later section.
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3.2 Basic Concepts

Formal language theory usually starts with an alphabet denoting a set of characters.
Here we use the datatype of characters from Isabelle, which roughly corresponds
to the ASCII characters. In what follows, we shall leave the information about the
alphabet implicit. Strings are defined as a list characters, and we use the Scala no-
tation for list Cons operation: appending a character to the front of a list is written
as c :: s. For brevity, a singleton list is sometimes written as [c]. Strings can be con-
catenated to form longer strings in the same way we concatenate two lists, which
we shall write as s1@s2. We omit the precise recursive definition here. We overload
the @ operator for language concatenation as well, for example A@B where A and
B are two sets. The power of a language is defined recursively, using the language
concatenation operator @:

A0 def
= {[]}

An+1 def
= A@An

The union of all powers of a language can be used to define the Kleene star operator:

A∗ def
=

⋃
i≥0 Ai

However, to obtain a more convenient induction principle in Isabelle/HOL, we
reuse the definitions by the AFP entry [15] where they define the Kleene star as an in-
ductive set, we are aware of another AFP entry on Kleene algebra, but for convenice
we do not refactor the Isabelle code base by Ausaf et al.

[] ∈ A∗
s1 ∈ A s2 ∈ A∗

s1@s2 ∈ A∗

We also define an operation of "chopping off" a character from a language, which we
call Der, meaning Derivative (for a language):

Der c A def
= {s | c :: s ∈ A}

This can be generalised to “chopping off” a string from all strings within a set A,
namely:

Ders s A def
= {s′ | s@s′ ∈ A}

which is essentially the left quotient A\L of A against the singleton language with
L = {s}. However, for our purposes here, the Ders definition with a single string is
sufficient.

The reason for defining derivatives is that they provide another approach to test
membership of a string in a set of strings. For example, to test whether the string bar
is contained in the set { f oo, bar, brak}, one can take derivative of the set with respect
to the string bar:

S = { f oo, bar, brak} Der b→ {ar, rak}
Der a→ {r}
Der r→ {[]}
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and in the end, test whether the set contains the empty string.1 This idea originally
came up already in the paper by Brzozowski [23], and there is an AFP entry for-
malising this [UrbanAFP]. Usually language derivatives are defined and formalised
alongside the definition of regular expression derivatives to indicate that the seman-
tics of regular expression derivatives are well-defined, namely L (r\c) = Der c (L r).
We are going to introduce this property in more detail later.

In general, if we have a language S, then we can test whether s is in S by testing
whether [] ∈ S\s. In the previous S = { f oo, bar, brak} example, we can tell that bar is
in S because the empty string is in Ders bar S. We list some notable properties about
language derivatives as they are conducive of the definition of regular expression
derivatives:

• Der c (A@B) =

{
((Der c A)@ B) ∪ (Der c B), if [] ∈ A
(Der c A)@ B, otherwise

• Der c (A∗) = (Der cA)@(A∗)

We omit the proofs, as they can be found in the AFP entry by Ausaf et al. [13]. Some
examples for language derivatives:

Der a {ab}∗ = (Der a {ab})@{ab}∗
= {b}@({ab}∗)
= {b, bab, babab . . .}

Der a ({ab, a, []}@{b, a}) = (Der a {ab, a, []})@{b, a} ∪ (Der a {b, a})
= {b, []}@{b, a} ∪ {[]}
= {bb, ba, b, a, []}

The clever idea of Brzozowski was to find the counterpart of Der for regular expres-
sions. To introduce them, we need to first give definitions for regular expressions,
which we shall do next.

3.2.1 Regular Expressions and Derivatives

The basic regular expressions are defined inductively by the following grammar:added
types for regex, but looks slightly weird

r :: rexp
r ::= 0 | 1 | c | r1 · r2 | r1 + r2 | r∗

We call them basic because we will introduce additional constructors in later chap-
ters, such as negation and bounded repetitions. We use 0 for the regular expression
that matches no string, and 1 for the regular expression that matches only the empty
string.2 The sequence regular expression is written r1 · r2 and sometimes we omit the
dot if it is clear which regular expression is meant; the alternative is written r1 + r2.
The language or meaning of a regular expression is defined recursively as a set of
strings:

1We use the infix notation A\c instead of Der c A for brevity, as it will always be clear from the
context that we are operating on languages rather than regular expressions.

2 Some authors also use φ and ε for 0 and 1 but we prefer this notation.
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L :: rexp⇒ string set

L 0 def
= ∅

L 1 def
= {[]}

L c def
= {[c]}

L (r1 + r2)
def
= L r1 ∪ L r2

L (r1 · r2)
def
= L r1@L r2

L (r∗) def
= (L r)∗

Brzozowski noticed that Der can be “mirrored” on regular expressions which he
calls the derivative of a regular expression r with respect to a character c, written
r\c. This infix operator takes regular expression r as input and a character as a right
operand. Here is its recursive definition:

0\c def
= 0

1\c def
= 0

d\c def
= if c = d then 1 else 0

(r1 + r2)\c
def
= r1\c + r2\c

(r1 · r2)\c
def
= if [] ∈ L(r1)

then (r1\c) · r2 + r2\c
else (r1\c) · r2

(r∗)\c def
= (r\c) · r∗

Regular expression derivatives are defined such that the language of the derivative
result coincides with the language of the original regular expression being taken
derivative with respect to the same characters. For example, the two previous exam-
ples have their corresponding calculations on regular expressions:

Der a {ab}∗ = (Der a {ab})@{ab}∗
= {b}@({ab}∗)
= {b, bab, babab . . .}

(ab)∗\a = (ab)\a · (ab)∗

= (1b) · (ab)∗

Der a ({ab, a, []}@{b, a}) = (Der a {ab, a, []})@{b, a} ∪ (Der a {b, a})
= {b, []}@{b, a} ∪ {[]}
= {bb, ba, b, a, []}

(ab + a + []) · (b + a)\a = (1b + 1 + 0) · (b + a) + (0 + 1)

The reader might notice that unlike Der, we did not simplify alongside the calcula-
tions. A matcher does allow simplifications, but the lexer we are going to introduce
in this chapter. We will show how to enable simplifications whilst maintaining the
lexical value in chapter 5.

The most involved cases are the sequence case and the star case. The sequence
case says that if the first regular expression contains an empty string, then the second
component of the sequence needs to be considered, as its derivative will contribute
to the result of this derivative. This is isomorphic to Der on language concatenations.
Similarly, the derivative of the star regular expression r∗ unwraps one iteration of r,
turns it into r\c, and attaches the original r∗ after r\c, so that we can further unfold it
as many times as needed: Again, the structure is the same as the language derivative
of the Kleene star. In the above definition of (r1 · r2)\c, the if clause’s boolean con-
dition [] ∈ L(r1) needs to be recursively computed. This function is usually called
nullable:
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nullable :: rexp => bool

nullable(0) def
= false

nullable(1) def
= true

nullable(c) def
= false

nullable(r1 + r2)
def
= nullable(r1) ∨ nullable(r2)

nullable(r1 · r2)
def
= nullable(r1) ∧ nullable(r2)

nullable(r∗) def
= true

The 0 regular expression does not contain any string and therefore is not nullable.
1 is nullable by definition. The character regular expression c corresponds to the
singleton set {c}, and therefore does not contain the empty string. The alternative
regular expression is nullable if at least one of its children is nullable. The sequence
regular expression would require both children to have the empty string to compose
an empty string, and the Kleene star is always nullable because it naturally contains
the empty string.

One can overload the derivative to strings and build a matcher on top of string
derivatives:

r\(c :: s) def
= (r\c)\s

r\[ ] def
= r

match r s :: ”rexp⇒ string⇒ bool” def
= nullable(r\s)

This matcher has already been described by Brzozowski [23]. Here are some well-
known but important properties about regular expression derivatives and matching:

• Der c L(r) = L(r\c)

• c :: s ∈ L(r) iff s ∈ L(r\c).

• match s r = true iff s ∈ L(r)

These are the correctness theorems of derivative-based matchers, and variants of
them have been described in various work on regular expressions and formal proofs
(e.g. [66], [50], [27], [71]. and [33]).
Assuming the string is given as a sequence of characters, say c0c1 . . . cn, this algo-
rithm, presented graphically, is as follows:

r0 r1 r2 rn true/false
\c0 \c1 nullable?

Here are some example computations for the matcher:

• (a∗)\a = 1 · a∗ is nullable → true

• (ab + c)\ab = (1 · b + 0)\b = (0 · b + 1) + 0 is nullable→ true

• (a+ ab) · (b+ 1) \ab = ((1+ 1b) · (b+ 1))\b = (0+ (0b+ 1)) · (b+ 1) + (1+ 0)
is nullable→ true

• (cc) ∗ \c = (1c) · (cc)∗ is not nullable→ f alse, this means that c /∈ L (cc)∗
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FIGURE 3.1: Matching the regular expression (a∗)∗b against strings
of the form aa . . . a︸ ︷︷ ︸

n as

using Brzozowski’s original algorithm

• ((aba + ab) + a)∗\aba = (((1ba + 1b) + 1) · ((aba + ab) + a)∗)\ba = ((((1a +
0ba)+ (0b+ 1))+ 0) · ((aba+ ab)+ a)∗+((0ba+ 0b)+ 0) · ((aba+ ab)+ a)∗)\a =
(((((0a + 1) + 0ba) + (0b + 0)) + 0) · ((aba + ab) + a)∗ + (((1ba + 1b) + 1) ·
((aba + ab) + a)∗)) + (((1a + 0ba) + (0b + 1)) + 0) · ((aba + ab) + a)∗ is nul-
lable→ true

As can be seen from the last example, the size of the derivatives can grow expo-
nentially quickly. If one implements a matcher using the above recursive functions
naively without any changes, the program can be as slow as backtracking matchers,
as shown in 3.1. Note that both axes are in logarithmic scale. Around two dozen
characters this algorithm already “explodes” with the regular expression (a∗)∗b. To
improve this situation, we need to introduce simplification rules for the intermediate
results, such as r + r → r or 1 · r → r, and make sure those rules do not change the
language of the regular expression. One simplification function that achieves these
requirements is given below (see Ausaf et al. [14]):

simp :: rexp⇒ rexp

simp r1 · r2
def
= (simp r1, simp r2) match

case (0, _)⇒ 0
case (_, 0)⇒ 0
case (1, r′2)⇒ r′2
case (r′1, 1)⇒ r′1
case (r′1, r′2)⇒ r′1 · r′2

simp r1 + r2
def
= (simp r1, simp r2)match

case (0, r′2)⇒ r′2
case (r′1, 0)⇒ r′1
case (r′1, r′2)⇒ r′1 + r′2

simp r def
= r (otherwise)

If we repeatedly apply this simplification function during the matching algorithm,
we have a matcher with simplification:
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FIGURE 3.2: (a∗)∗b against aa . . . a︸ ︷︷ ︸
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Using matchersimp

ders_simp [] r def
= r

ders_simp c :: cs r def
= ders_simp cs (simp (r\c))

matchersimp s r def
= nullable (ders_simp s r)

The running time of ders_simp on the same example of Figure 3.1 is now “tame” in
terms of the length of inputs, as shown in Figure 3.2.

So far, the story is use Brzozowski derivatives and simplify as much as possible,
and at the end test whether the empty string is recognised by the final derivative.
But what if we want to do lexing instead of just getting a true/false answer? Sulz-
mann and Lu [77] first came up with a nice and elegant (arguably as beautiful as
the definition of the Brzozowski derivative) solution for this. For the same rea-
son described at the beginning of this chapter, we introduce the formal semantics
of POSIX lexing by Ausaf et al.[14], followed by the first lexing algorithm by Sulz-
manna and Lu [77] that produces the output conforming to the POSIX standard. In
what follows we choose to use the Isabelle-style notation for function and datatype
constructor applications, where the parameters of a function are not enclosed inside
a pair of parentheses (e.g. f x y instead of f (x, y)). This is mainly to make the text
visually more concise.

3.3 Values and the Lexing Algorithm by Sulzmann and Lu

In this section, we present a two-phase regular expression lexing algorithm by Sulz-
mann and Lu [79]. We refer to it as lexer. The first phase of lexer takes successive
derivatives with respect to the input string, and the second phase does the reverse,
injecting back characters, in the meantime constructing a lexing result. We will in-
troduce the injection phase in detail slightly later, but as a preliminary we have to
first define the datatype for lexing results, called value or sometimes also lexical value.
Note that these definitions can be found in the AFP entry by Ausaf et al. [15], and
we introduce them because we directly build on these formalisations. Values and
regular expressions correspond to each other as illustrated in the following table:
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Regular Expressions

r ::= 0
| 1
| c
| r1 · r2
| r1 + r2

| r∗

Values

v ::=
Empty

| Char c
| Seq v1 v2
| Left v
| Right v
| Stars [v1, . . . vn]

A value has an underlying string, which can be calculated by the “flatten" function
|_|:

|Empty| def
= []

|Char c| def
= [c]

|Seq v1, v2|
def
= |v1|@|v2|

|Left v| def
= |v|

|Right v| def
= |v|

|Stars []| def
= []

|Stars v :: vs| def
= |v|@|Stars(vs)|

Sulzmann and Lu used a binary predicate, written ` v : r, to indicate that a value
v could be generated from a lexing algorithm with input r. They call it the value
inhabitation relation, defined by the rules.

` Char c : c ` Empty : 1
` v1 : r1 ` v2 : r2

` Seq v1, v2 : (r1 · r2)

` v1 : r1

` Left v1 : r1 + r2

` v2 : r2

` Right v2 : r1 + r2

∀v ∈ vs. ` v : r ∧ |v| 6= []

` Stars vs : r∗

The condition |v| 6= [] in the premise of star’s rule is to make sure that for a given
pair of regular expression r and string s, the number of values satisfying |v| = s
and ` v : r is finite. This additional condition was imposed by Ausaf and Urban
to make their proofs easier. Given a string and a regular expression, there can be
multiple values for it. For example, both ` Seq(Left ab)(Right c) : (ab + a)(bc + c)
and ` Seq(Right a)(Left bc) : (ab + a)(bc + c) hold and the values both flatten to
abc. Lexers therefore have to disambiguate and choose only one of the values to be
generated. POSIX is one of the disambiguation strategies that is widely adopted.

Ausaf et al. [14] formalised the property as a ternary relation. The POSIX value
v for a regular expression r and string s, denoted as (s, r) → v, can be specified in
the following rules3:

The above POSIX rules follow the intuition described below:

• (Left Priority)
Match the leftmost regular expression when multiple options for matching are
available. See P+L and P+R where in P+R s cannot be in the language of L r1.

• (Maximum munch)
Always match a subpart as much as possible before proceeding to the next part

3The names of the rules are used as they were originally given in [14].
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P1

([], 1)→ Empty

PC

([c], c)→ Char c

P+L
(s, r1)→ v1

(s, r1 + r2)→ Left v1

P+R
(s, r2)→ v2 s /∈ L r1

(s, r1 + r2)→ Right v2

PS
(s1, v1)→ r1

(s2, v2)→ r2 @s3 s4.s3 6= [] ∧ s3@s4 = s2 ∧ s1@s3 ∈ L r1 ∧ s4 ∈ L r2

(s1@s2, r1 · r2)→ Seq v1 v2

P[]

([], r∗)→ Stars([])

P*
(s1, v)→ v (s2, r∗)→ Stars vs

|v| 6= [] @s3 s4.s3 6= [] ∧ s3@s4 = s2 ∧ s1@s3 ∈ L r ∧ s4 ∈ L r∗

(s1@s2, r∗)→ Stars (v :: vs)

FIGURE 3.3: The inductive POSIX rules given by Ausaf et al. [14].
This ternary relation, written (s, r) → v, formalises the POSIX con-

straints on the value v given a string s and regular expression r.



30 Chapter 3. Regular Expressions and POSIX Lexing-Preliminaries

of the string. For example, when the string s matches rpart1 · rpart2, and we have
two ways s can be split: Then the split that matches a longer string for the first
part rpart1 is preferred by this maximum munch rule. The side-condition

@s3 s4.s3 6= [] ∧ s3@s4 = s2 ∧ s1@s3 ∈ L r1 ∧ s4 ∈ L r2

in PS causes this.

These disambiguation strategies can be quite practical. For instance, when lexing a
code snippet

iffoo = 3

using a regular expression for keywords and identifiers:

rkeyword + ridenti f ier.

If we want iffoo to be recognized as an identifier where identifiers are defined as
usual (letters followed by letters, numbers or underscores), then a match with a key-
word (if) followed by an identifier (foo) would be incorrect. POSIX lexing generates
what is included by lexing.

Here are some important properties about POSIX values, they have been proven
by Ausaf et al. [14]:

• A POSIX value for regular expression r is inhabited by r. (r, s)→ v =⇒ ` v : r

• Given the same regular expression r and string s, one can always uniquely
determine the POSIX value for it: if (s, r)→ v1 ∧ (s, r)→ v2 then v1 = v2

We omit the proofs here (as they can be found in the corresponding AFP entry [15]),
but provide some examples. For the first property, we have:

• (((aba + ab) + a)∗, aba) → Stars[Left Left aba] implies ` Stars[Left Left aba] :
((aba + ab) + a)∗ (aba is not fully expanded into sequence value contructors to
avoid redundancy, same for below).

• Also we have (((aba+ ab) + a)∗, ababa)→ Stars[Left Right ab, Left Left aba] and
` Stars[Left Right ab, Left Left aba] : (((aba + ab) + a)∗, ababa) holds.

For the second property, the examples of some POSIX values:

• For (aa + a)∗, we have ((aa + a)∗, aaa) → Stars[Left aa, Righta], and ((aa +
a∗, aaaa), aaaa)→ Stars[Left aa, Left aa] holds.

• ((ab + a) · (b + 1), ab) → Seq (Left ab) holds. ` Seq (Right a) (Left b) : (ab +
a) · (b + 1) holds, but Seq (Right a) (Left b) is not a POSIX value.

We have now given the definition of what a POSIX value is and provided formally
proven results that it is unique. The problem is to generate such a value in a lexing
algorithm using derivatives.

3.3.1 Sulzmann and Lu’s Injection-based Lexing Algorithm

Sulzmann and Lu extended Brzozowski’s derivative-based matching to a lexing al-
gorithm by a second phase after the initial phase of successive derivatives of r with
respect to s. This second phase generates a POSIX value if the regular expression
matches the string. The algorithm uses two functions called inj and mkeps. The
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value produced by mkeps tells us how the empty string is matched by r\s. Then inj
is called to incrementally build on this value to get finally how r matched s. The
definition of mkeps ([77]) is

mkeps 1 def
= Empty

mkeps (r1 + r2)
def
= if (nullable r1) then Left (mkeps r1)

else Right (mkeps r2)

mkeps (r1 · r2)
def
= Seq (mkeps r1) (mkeps r2)

mkeps r∗ def
= Stars []

The function prefers the left child r1 of r1 + r2 to match an empty string if there is a
choice. When there is a star to match the empty string, we give the Stars constructor
an empty list, meaning no iteration is taken. The following property holds:

Property 1.

• The result of mkeps on a nullable r is a POSIX value for r and the empty string:
nullable r =⇒ (r, [])→ (mkeps r)

The property has been proven by Ausaf et al., see [15] for details. Here are some
examples of how mkeps picks up the POSIX value, note how the left alternative is
preferred over the right when nullable:

• (0 + 1, [])→ Right Empty

• ((0+(0b+ 1)) · (b+ 1)+ (1+ 0), [])→ Left (Seq (Right (Right Empty)) (Right Empty))

• (1 · a∗, [])→ Seq Empty (Stars [])

After the mkeps-call, Sulzmann and Lu inject back the characters one by one in re-
verse order as they were chopped off in the derivative phase. The function for this
is called inj. The definition of inj is as follows (Ausaf et al. called this injval in their
AFP entry [15]):

inj (c) c Empty def
= Char c

inj (r1 + r2) c (Left v) def
= Left (inj r1 c v)

inj (r1 + r2) c (Right v) def
= Right (inj r2 c v)

inj (r1 · r2) c (Seq v1 v2)
def
= Seq (inj r1 c v1) v2

inj (r1 · r2) c (Left (Seq v1 v2))
def
= Seq (inj r1 c v1) v2

inj (r1 · r2) c (Right v) def
= Seq (mkeps r1) (inj r2 c v)

inj (r∗) c (Seq v (Stars vs)) def
= Stars ((inj r c v) :: vs)

Attentive readers will notice that the pattern matching is not exhaustive, and the
output is set to undefined when inj is called on malformed input. Fortunately lexer
will never use inj in such a way that it gives the undefined result. This can be proven
in theorem 1. The function inj operates on values, unlike \which operates on regular
expressions. If one just reverses a derivative like r\c, then only the original regular
expression r is returned. But we do not want r, what we want is how r matched
the string cs, where s matched r\c. Therefore the “injection” operations needs to be
defined on values instead. Also, injecting characters into values poses a question:
how does one know where to inject the character into? Take the last example above,
let



32 Chapter 3. Regular Expressions and POSIX Lexing-Preliminaries

r\c = 1 · a∗, s = [], and c = a.

In the absence of the original regular expression r it is not clear which place in

Seq Empty (Stars [])

should one inject a into. This requires some additional information, namely what the
regular expression was before the derivative took place. In this example, we know
that the original regular expression was a∗, and the derivative is of form (a\a) · a∗,
and therefore the place to “invert” the derivative is the front part of the sequence
value which is Empty. This corresponds to the Star clause in inj’s definition. Here
are a few more examples which cover some of the clauses of inj:

• ((a + b)\b = (0 + 1), [])→ Right Empty =⇒
((a + b), b)→ inj (a + b) b (Right Empty) = Right b (Right clause of alternative
used)

• (1 · a∗, [])→ Seq Empty Stars []
(a∗, a) → inj a∗ a (Seq Empty (Stars []))Stars [inj a a Empty] = Stars [a] (Star
clause used)

• (((0 + 1) · 1) + 0, [])→ Left (Seq (Right a) Empty)
((1 + a) · 1, a)→ Seq (Right a) Empty (Left clause of sequence used)

Given r, c, s and the POSIX value v such that (r\c, s) → v, one can always construct
a value inj r c v which preserves POSIXness. This can be proven by a case analysis
on r and r\c, where each case corresponds to a clause of inj. We omit the proof and
refer the curious readers to the AFP entry [15] or the paper [14] for higher-level proof
content.

Property 2.

If (r\c, s)→ v, then (r, c :: s)→ inj r c v.

Putting \, mkeps and inj together, Sulzmann and Lu obtained the following lexing
algorithm:

lexer r [] = if (nullable r) then Some(mkeps r) else None
lexer r c :: s = case (lexer (r\c) s) of

None⇒ None
| Some v⇒ Some (inj r c v)

Pictorially, this can be represented as follows:

r0 ri ri+1 rn

v0 vi vi+1 vn

\ci

mkeps

injri ci

In the diagram above, vi stands for the (POSIX) value for how the regular expression
ri matches the string si consisting of the last n− i characters of s (i.e. si = ci . . . cn−1)
from the previous lexical value vi+1. After injecting back s’s characters, we get the
lexical value for how r0 matches s. Here are a few concrete examples for lexer:
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r0 = (aa)∗ r1 = (1a) · (aa)∗ r2 = (0a + 1) · (aa)∗

v0 = Stars [aa] v1 = Seq (Seq Empty a) (Stars []) v2 = Seq (Right Empty) (Stars [])

\c1=a

mkeps

injr1 c1

r0 = (a + b)∗ r1 = (0 + 1) · (a + b)∗

v0 = Stars[Right b] v1 = Seq (Right Empty) (Stars [])

\c0=b

mkeps

injr0 c0

Again, values such as aa are not in their fully-expanded form (Seq (Char a) (Char a))
for space reasons.

3.3.2 Examples on How Injection and Lexer Works

We will provide a few examples on how inj and lexer works by showing their values
in each recursive call on some concrete examples. We start with the call lexer (a +
aa)∗ · c aac on the lexer, note that the value’s character constructor Char c is abbrevi-
ated as c for readability. Similarly the last derivative’s sub-expression is abbreviated
as r=0

4 whose language interpretation is equivalent to that of 0 and therefore not
crucial to be displayed fully expanded, as they will not be injected into.

(a + aa)∗ · c \a→ ((1 + 1a) · (a + aa)∗) · c + 0
\a→ (((0 + (0a + 1)) · (a + aa)∗ + (1 + 1a) · (a + aa)∗) · c + 0) + 0
\c→ ((r=0 · c + 1) + 0) + 0

mkeps→ Left(Left (Right Empty))
inj c→ Left (Left (Seq (Left (Seq (Right (Right Empty)) Stars [])) c))
inj a→ Left (Seq (Seq (Right (Seq Empty a)) Stars []) c)
inj a→ Seq (Stars [Right (Seq a a)]) c

We have assigned different colours for each character, as well as their corresponding
locations in values and regular expressions. The most recently injected character is
marked with a bold font. To show the details of how inj works, we zoom in to the
second injection above, illustrating the recursive calls involved. We have marked
the local part of the expression and value that was “injected into” with blue colour
so it is easier to see what happened.

4which is equal to ((0 + (0a + 0)) · (a + aa)∗ + (0 + 0a) · (a + aa)∗) + ((0 + 0a) · (a + aa)∗ + (0 +
0a) · (a + aa)∗),.
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inj ((1 + 1a) · (a + aa)∗) · c + 0 a
Left (Left (Seq (Left (Seq (Right (Right Empty)) Stars [])) c))

=
Left (inj ((1 + 1a) · (a + aa)∗) · c a (Left (Seq (Left (Seq (Right (Right Empty)) Stars [])) c)) )
=
Left (Seq (inj (1 + 1a) · (a + aa)∗ a (Left (Seq (Right (Right Empty))))) c)
=
Left (Seq (Seq (inj (1 + 1a) a Right (Right Empty)) Stars []) c)
=
Left (Seq (Seq (Right (inj 1a a (Right Empty)))) Stars [])
=
Left (Seq (Seq (Right (Seq (mkeps 1) (inj a a Empty)))) Stars [])
=
Left (Seq (Seq (Right (Seq Empty a))) Stars [])

We will now introduce the properties related to inj and lexer. The proofs to them
have originally been found by Ausaf et al. in their 2016 work [14]. Some properties
have also appeared in Ausaf’s thesis [13] as lemmas and theorems. We introduce
these properties, but leave out the proofs.
The central property of the lexer is that it gives the correct result according to POSIX
rules. We present the theorem as formalised in Ausaf et al.’s AFP entry [15]:

Theorem 1.

• s ∈ L r if and only if there exists some value v, such that lexer r s = Some v and
(s, r)→ v.

• The lexer based on derivatives and injections is correct:

lexer r s = Some v ⇐⇒ (r, s)→ v
lexer r s = None ⇐⇒ ¬(∃v.(r, s)→ v)

Proof. We prove the first part by an induction on s. For s = [], lexer r s = Some v
means that r is nullable, and the if branch is taken in the first clause of lexer. This
means v is equal to mkeps r. Therefore |v| = [] ∈ L r. For the other direction,
[] ∈ L r means that r is nullable, and therefore lexer r [] = Some (mkeps r). Let
v = mkeps r and the RHS holds. For the inductive case we assume for any r, s and v
s ∈ L r ⇐⇒ lexer r s = Some v ∧ (r, s) → v holds. For the =⇒ direction, c :: s ∈ L r
means s ∈ L r\c. Therefore we have v′′ such that lexer (r\c) s = Some v′′ and
(r\c, s) → v′′. Now lexer r (c :: s) is equal to Some v′, and v′ = (inj r c v′′) by the
definition of lexer. By property 2, (r, c :: s) → v′. This concludes the proof. The
second part is a corollary of the first proposition.

As we did earlier in this chapter with the matcher, one can introduce simplification
on the regular expression in each derivative step. However, due to lexing, one needs
to do a backward phase (w.r.t the forward derivative phase) and ensure that the
values align with the regular expression at each step. Therefore one has to be careful
not to break the correctness, as the injection function heavily relies on the structure of
the regular expressions and values being aligned. This can be achieved by recording
some extra rectification functions during the derivatives step and applying these
rectifications in each run during the injection phase. With extra care one can show
that POSIXness will not be affected by the simplifications listed here [14].
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simp r1 · r2
def
= (simp r1, simp r2) match

case (0, _)⇒ 0
case (_, 0)⇒ 0
case (1, r′2)⇒ r′2
case (r′1, 1)⇒ r′1
case (r′1, r′2)⇒ r′1 · r′2

simp r1 + r2
def
= (simp r1, simp r2)match

case (0, r′2)⇒ r′2
case (r′1, 0)⇒ r′1
case (r′1, r′2)⇒ r′1 + r′2

simp r def
= r (otherwise)

However, one can still end up with exploding derivatives, even with the simple-
minded simplification rules allowed in an injection-based lexer.

3.4 A Case Requiring More Aggressive Simplifications

In this section we present a case of “evil” regular expressions that trigger exponen-
tial behaviours even in the presence of simplifications introduced in the previous
section. This naturally suggests more aggressive simplifications such as removing
duplicates at different levels and flattening nested alternatives. To make sure the lex-
ing information can still be correctly retrieved, bitcodes can be used to represent the
lexical information. This idea have been explored in Sulzmann and Lu’s 2014 paper
[77], but they implemented the simplification incorrectly such that their procedure
cannot achieve the simplifications desired. We provide more intuition for why this
is doable and how bitcodes can help.

If we start with the regular expression (a∗ · a∗)∗ and building just over a dozen
successive derivatives w.r.t. the character a, one obtains a derivative regular expres-
sion with millions of nodes (when viewed as a tree) even with the mentioned sim-
plifications.
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FIGURE 3.4: Size of (a∗ · a∗)∗ against aa . . . a︸ ︷︷ ︸
n as
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That is because Sulzmann and Lu’s injection-based lexing algorithm keeps a lot
of "useless" values that will not be used. These different ways of matching will grow
exponentially with the string length. Consider the case

r = (a∗ · a∗)∗ and s = aa . . . a︸ ︷︷ ︸
n as

as an example. This is a highly ambiguous regular expression, with many ways to
split up the string into multiple segments for different star iterations, and for each
segment multiple ways of splitting between the two a∗ sub-expressions. When n is
equal to 1, there are two lexical values for the match:

Stars [Seq (Stars [Char a]) (Stars [])] (v1)

and
Stars [Seq (Stars []) (Stars [Char a])] (v2)

The derivative of ders_simp s r is

(a∗a∗ + a∗) · (a∗a∗)∗.

The a∗a∗ and a∗ in the first child of the above sequence correspond to value 1 and
value 2, respectively. When n = 2, the number goes up to 7:

Stars [Seq (Stars [Char a, Char a]) (Stars [])]

Stars [Seq (Stars [Char a]) (Stars [Char a])]

Stars [Seq (Stars []) (Stars [Char a, Char a])]

Stars [Seq (Stars [Char a]) (Stars []), Seq (Stars [Char a]) (Stars [])]

Stars [Seq (Stars [Char a]) (Stars []), Seq (Stars []) (Stars [Char a])]

Stars [Seq (Stars []) (Stars [Char a]), Seq (Stars []) (Stars [Char a])]

and
Stars [Seq (Stars []) (Stars [Char a]), Seq (Stars [Char a]) (Stars [])]

And ders_simp aa (a∗a∗)∗ is

((a∗a∗ + a∗) + a∗) · (a∗a∗)∗ + (a∗a∗ + a∗) · (a∗a∗)∗.

which removes two out of the seven terms corresponding to the seven distinct lexical
values.

Even with the simplifications in ders_simp the derivatives still grow exponentially
quickly. A lexer without a good enough strategy to deduplicate will naturally have
an exponential runtime on highly ambiguous regular expressions because there are
exponentially many matches. For this particular example, it seems that the number
of distinct matches growth speed is proportional to (2n)!/(n!(n + 1)!) (n being the
input length).
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On the other hand, the POSIX value for r = (a∗ · a∗)∗ and s = aa . . . a︸ ︷︷ ︸
n as

is

Stars [Seq (Stars [Char(a), . . . , Char(a)︸ ︷︷ ︸
n iterations

]), Stars []].

At any moment, the subterms in a regular expression that will potentially result in
a POSIX value is only a minority among the many other terms, and one can remove
the ones that are not possible to be POSIX. In the above example,

((a∗a∗ + a∗︸︷︷︸
A

) + a∗︸︷︷︸
duplicate of A

) · (a∗a∗)∗ + (a∗a∗ + a∗) · (a∗a∗)∗︸ ︷︷ ︸
further simp removes this

. (3.1)

can be further simplified by removing the underlined term first, which would open
up possibilities of further simplification that removes the underbraced part. The
result would be

( a∗a∗︸︷︷︸
term 1

+ a∗︸︷︷︸
term 2

) · (a∗a∗)∗.

with corresponding values

Stars [Seq (Stars [Char a, Char a]) (Stars [])] (term 1)
Stars [Seq (Stars [Char a]) (Stars [Char a])] (term 2)

Other terms with an underlying value, such as

Stars [Seq (Stars []) (Stars [Char a, Char a])]

do not to contribute a POSIX lexical value, and therefore can be thrown away.
Ausaf et al. [14] have come up with some simplification steps, and incorporated

the simplification into lexer. They call this lexer lexersimp and proved that

lexer r s = lexersimp r s

The function lexersimp involves some fiddly manipulation of value rectification, which
we omit here. however those steps are not yet sufficiently strong, to achieve the
above effects. And even with these relatively mild simplifications, the proof is al-
ready quite a bit more complicated than the theorem 1. One would need to prove
something like this:

If (snd (simp r\c), s)→ v then (r, c :: s)→ inj r c ((fst (simp r\c)) v).

instead of the simple lemma 2, where now simp not only has to return a simplified
regular expression, but also what specific simplifications have been done as a func-
tion on values showing how one can transform the value underlying the simplified
regular expression to the unsimplified one.

We therefore choose a slightly different approach also described by Sulzmann
and Lu to get better simplifications, which uses some augmented data structures
compared to plain regular expressions. We call them annotated regular expressions.
With annotated regular expressions, we can avoid creating the intermediate values
v1, . . . vn and a second phase altogether. We introduce this new datatype and the
corresponding algorithm in the next chapter.
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Chapter 4

Bit-coded Algorithm of Sulzmann
and Lu

In this chapter, we are going to describe the bit-coded lexing algorithm called blexer,
introduced by Sulzmann and Lu [77] and their correctness proof. Just like in chapter
3, the algorithms and proofs have been included for self-containedness reasons, even
though they have been originally found and described by Sulzmann and Lu ([77])
and Ausaf et al. in 2016 ([14] and [13]). The earliest work on using bitcodes for
lexing we are aware of dates back to 2011 from Nielsen and Henglein [54]. There is
another formalisation of bitcoded regular expressions and lexing by Ribeiro and Du
Bois using Agda [71]. The work looked at variants of the problem such as submatch
extraction and prefix and suffix finders. The blexer’s proof sketches in this chapter
also follows more closely the actual Isabelle formalisation. For example, lemma 3
and 6 are not included in the publications by Ausaf et al., despite them being some
of the key properties leading to the correctness result. Our hope is that the reader
will be able to construct an Isabelle proof on their own by just reading this chapter.

We will first motivate the bit-coded algorithm in section 4.1, and then introduce
their formal definitions in section 4.2, followed by a description of the correctness
proof of blexer in section 4.3. We call blexer’s induction strategy reverse induction, by
which we mean setting the inductive case to be s@[c] instead of c :: s.

4.1 The Motivation Behind Using Bitcodes

Let us give again the definition of lexer from Chapter 3:

lexer r [] = if (nullable r) then Some(mkeps r) else None
lexer r c :: s = case (lexer (r\c) s) of

None =⇒ None
| Some(v) =⇒ Some(inj r c v)

This algorithm works nicely as a functional program that utilizes Brzozowski deriva-
tives: each derivative character is remembered and stacked up, and injected back in
reverse order as they have been taken derivative of. The derivative operation \ and
its reverse operation inj is of similar shape and compexity, and work in lockstep with
each other. However if we take a closer look into the example run of lexer we have
shown in chapter 3, many inefficiencies exist:
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(a + aa)∗ · c \a→ ((1 + 1a) · (a + aa)∗) · c + 0
\a→ (((0 + (0a + 1)) · (a + aa)∗ + (1 + 1a) · (a + aa)∗) · c + 0) + 0
\c→ ((r=0 · c + 1) + 0) + 0

mkeps→ Left(Left (Right Empty))
inj c→ Left (Left (Seq (Left (Seq (Right (Right Empty)) Stars [])) c))
inj a→ Left (Seq (Seq (Right (Seq Empty a)) Stars []) c)
inj a→ Seq (Stars [Right (Seq a a)]) c

For the un

inj ((1 + 1a) · (a + aa)∗) ·+0 a
Left (Left (Seq (Left (Seq (Right (Right Empty)) Stars [])) c))

=
Left (inj ((1 + 1a) · (a + aa)∗) · c a (Left (Seq (Left (Seq (Right (Right Empty)) Stars [])) c)) )
=
Left (Seq (inj (1 + 1a) · (a + aa)∗ a (Left (Seq (Right (Right Empty))))) c)
=
Left (Seq (Seq (inj (1 + 1a) a Right (Right Empty)) Stars []) c)
=
Left (Seq (Seq (Right (inj 1a a (Right Empty)))) Stars [])
=
Left (Seq (Seq (Right (Seq (mkeps 1) (inj a a Empty)))) Stars [])
=
Left (Seq (Seq (Right (Seq Empty a))) Stars [])

After all derivatives have been taken, the stack grows to a maximum size and the
pair of regular expressions and characters ri, ci+1 are then popped out and used in
the injection phase.

Storing all intermediate information on a stack allows the algorithm to work
in an elegant way, at the expense of verbosity. The stack seems to grow at least
quadratically with respect to the input (not taking into account the size bloat of ri),
which can be inefficient and prone to stack overflows.

4.2 Bitcoded Algorithm

To address this, Sulzmann and Lu defined a new datatype called annotated regular
expression, which condenses all the partial lexing information into bitcodes. Each
derivative step is accompanied by an incremental change to the bitcodes reflect a
character has been matched. It becomes unnecessary to remember all the intermedi-
ate expressions, but only the most recent one with this bit-carrying regular expres-
sion. Bits and bitcodes (lists of bits) are defined as:

bit ::= S | Z bits :: ”bit list”

We use S and Z rather than 1 and 0 is to avoid confusion with the regular expres-
sions 0 and 1. One could use any single-character symbol for this, and S and Z are
employed simply because they were originally used by Sulzmann and Lu in their
paper when they first came up with the algorithm.
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Annotated regular expressions are defined as the following datatype construc-
tors:1

a ::= 0
| bs1
| bsc
| bs ∑ as
| bsa1 · a2
| bsa∗

where subscripts bs stands for bit-codes, a for annotated regular expressions and
as for lists of annotated regular expressions. For example the annotated version of
a regular expression a + b would be [](Za +S b), and the Z stands for “left”, and
S stands for “right”. These bits are just annotations, that’s why they are not writ-
ten with the same font as the actual subexpressions a and b. as stands for a list
of annotated regular expressions. So an alternative regular expression that was
(aba + (ab + a)) will now represented like [] ∑ [aba, ab, a]. Flattening nested alter-
natives can be useful as that makes de-duplication more straightforward, and the
nested alternative structure usually does not add any information.

The idea is to use the bitcodes to remember what happened during each deriva-
tive step. The bitcodes are thrown away if a mismatch happens, and stored and col-
lected if partial matches are completed. For example, if we start with the annotated
regular expression (Za +S b), and after a derivative we get Z1 + 0, then the Z bit can
be used to infer that the derivative was with respect to a, as the right alternative’s
bitcode is thrown away.

4.2.1 A Bird’s Eye View of the Bit-coded Lexer

We start with a teaser run of a sample computation of lexing using bitcodes and
derivatives, before we give the precise details of the functions and definitions related
to Sulzmann and Lu’s blexer (b-itcoded lexer). Suppose we want to lex aa against
the regular expression a∗. The picture shows how normal regular expressions are
annotated with bitcodes, and how these bitcodes change. Finally it illustrates how
these bitcodes are decoded into lexical values.

a∗

[]a∗

+bits

\a
Za∗

\a
ZZa∗ ZZZZa∗. . .

Stars[a, a, a, a]

bmkeps
decode

The plain regular expressions are first “lifted” to an annotated regular expression by
attaching bits to it. Then the annotated regular expression []a∗ will go through suc-
cessive derivatives with respect to the input characters, in this example consecutive
as. Each derivative adds a Z bit, which marks another iteration of the Kleene star.

1 We use subscript notation to indicate that the bitcodes are auxiliary information that does not
interfere with the structure of the regular expressions
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Finally, the bitcodes are collected and decoded by bmkeps and decode, which results
in the value Stars [a, a, a, a] that inhabits a∗.

The most notable improvements of blexer over lexer are

• the absence of the second injection phase.

• intermediate derivatives no longer stored on a stack as lexer does. This saves
space.

• One can optimise blexer without breaking lexing.

Despite blexer’s advantages, we need to reuse lexer’s correctness proof as a founda-
tion for blexer (and blexer_simp)’s correctness. That is why lexer was still introduced
in chapter 3. In the next section we introduce in detail all the functions used in
blexer. All these functions can be found originally in Sulzmann and Lu’s paper [77],
(we do not repeat this fact when presenting each function) and we introduce them
for self-containedness reasons.

4.2.2 Operations in Blexer

The first operation we define is how we prepend bitcodes to the front of existing
bitcodes of an annotated regular expression. This operation is called fuse:

fuse :: bits→ arexp→ arexp

fuse bs (0) def
= 0

fuse bs (bs′)1
def
= bs@bs′1

fuse bs (bs′c)
def
= bs@bs′c

fuse bs (bs′∑ as) def
= bs@bs′ ∑ as

fuse bs (bs′a1 · a2)
def
= bs@bs′a1 · a2

fuse bs (bs′a∗)
def
= bs@bs′a∗

For example, fuse [Z, Z, S] Za∗ returns ZZSZa∗. With fuse we are able to define
the internalise function, written (_)↑, that annotates a plain regular expression to a
bitcoded regular expression. This function will be applied before we start taking
derivatives. Intuitively one simply looks for all alternative regular expressions, and
turn that into a 2-element list, marking the first element with Z, and the second
element with S. The rest of the constructors are just marked with an empty list.

(0)↑ def
= 0

(1)↑ def
= []1

(c)↑ def
= []c

(r1 + r2)↑
def
= [] ∑[fuse [Z] r↑1 , fuse [S] r↑2 ]

(r1 · r2)↑
def
= []r

↑
1 · r

↑
2

(r∗)↑ def
= [](r↑)∗

Here are some reasons for why such annotations are useful. For example with r1 + r2
one annotates the children with Z and S: Zr1 +S r2 so that one can use the bit col-
lected to determine whether r1 or r2 was matched. If the bit corresponding to the
sub-expression r1 + r2 is Z, then we know r1 matched, and vice versa. The anno-
tated regular expressions would look overwhelming if we explicitly indicate all the
locations where bitcodes are attached. For example, (aa)∗ · (b + c) would look like
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[]([]([]a ·[] a)∗ ·[] ([]b+[] c)) after internalise. Therefore for readability we omit bitcodes
if they are empty. This applies to all annotated regular expressions in this thesis.

The opposite of internalise is erase, where all bit-codes are removed, and the alter-
native ∑ as’s list of expressions as is converted back to nested binary sums.

0↓
def
= 0

(bs1)↓
def
= 1

(bsc)↓
def
= c

(bsa1 · a2)↓
def
= (a1)↓ · (a2)↓

(bs[])↓
def
= 0

(bs[a])↓
def
= a↓

(bs∑[a1, a2])↓
def
= (a1)↓ + (a2)↓

(bs∑(a :: as))↓
def
= a↓ + ([]∑ as)↓

(bsa∗)↓
def
= (a↓)∗

Where we abbreviate the erase a operation as (a)↓, for conciseness. Internalise and
erase are inverses of each other, and one can find a proof for that (r↑↓) in the AFP
entry by Ausaf et al. [15].

The functions bnullable and bmkeps are routine extensions to nullable and mkeps.
The only complication is that instead of returning a value, bmkeps returns a bitcode
that encodes the value.

bnullable :: ”arexp⇒ bool”

bnullable a def
= nullable (a↓)

bmkeps :: ”arexp⇒ bits”

bmkeps (bs1)
def
= bs

bmkeps (bs∑ a :: as) def
= if bnullable a

then bs @ bmkeps a
else bs @ bmkeps ([]∑ as)

bmkeps (bsa1 · a2)
def
= bs @ bmkeps a1 @ bmkeps a2

bmkeps (bsa∗) def
= bs @ [S]

The only time when bmkeps creates new bitcodes is when it completes a star’s itera-
tions by attaching a S to the end of the bitcode list it returns.

The bitcodes extracted by bmkeps need to be decoded (with the guidance of a plain
regular expression):
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decode′ bs (1) def
= (Empty, bs)

decode′ bs (c) def
= (Char c, bs)

decode′ (Z :: bs) (r1 + r2)
def
= let (v, bs1) = decode′ bs r1 in (Left v, bs1)

decode′ (S :: bs) (r1 + r2)
def
= let (v, bs1) = decode′ bs r2 in (Right v, bs1)

decode′ bs (r1 · r2)
def
= let (v1, bs1) = decode′ bs r1 in

let (v2, bs2) = decode′ bs1 r2
in (Seq v1 v2, bs2)

decode′ (S :: bs) (r∗) def
= (Stars [], bs)

decode′ (Z :: bs) (r∗) def
= let (v, bs1) = decode′ bs r in

let (Stars vs, bs2) = decode′ bs1 r∗

in (Stars v :: vs, bs2)

decode bs r def
= let (v, bs′) = decode′ bs r in

if bs′ = [] then Some v else None

The function decode′ returns a pair consisting of a partially decoded value and some
leftover bit-list. The wrapper function decode succeeds if the left-over bit-sequence
returned by decode′ is empty. The result type of decode is wrapped with an Option
monad. To indicate a failed decode, None is returned. A few examples of decode′ and
decode:

•
decode′ ZZSZZZS ((aba+ ab)+ a)∗ = (Stars [Left (Right ab), Left (Left aba)], []).

In the bitcode argument of the above call, the first three bits ZZS corresponds
to the first iteration, and second three bits ZZZ are for the second, finally ended
by an S bit. The suffix ZS in ZZS points to the middle subexpression (ab) in
the internalised expression (Z(Zaba +S ab) +S a)∗, and the Z bit indicates an
iteration. Similarly for ZZZ the first bit marks a new iteration and ZZ refers to
to aba.

decode ZZSZZZS ((aba+ ab)+ a)∗ = Some Stars [Left (Right ab), Left (Left aba)]

because it decode′ used up all the bitcodes.

•
decode′ ZZSZZZSZZ ((aba+ ab)+ a)∗ = (Stars [Left (Right ab), Left (Left aba)], ZZ)

decode ZZSZZZSZZ ((aba + ab) + a)∗ = None

because the bitcodes returned by decode′ is not empty.

•
decode′ a + b ZZ = (Left a, Z)

decode a + b ZZ = None

ZZ cannot not “fit into” the shape of a + b. decode is saying here “you have not
correctly given me matching regular expression and bitcodes”
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One might argue that the pattern matching in decode′ is not exhaustive (e.g. decode′ [] (r1 +
r2) is not defined) and therefore should be extended with a catch-all clause like

decode′ _ _ = (Empty, S),

which would cause decode to return None. This is not included in the original work
by Sulzmann and Lu and nor did it cause issues for Ausaf et al.’s formalisation [14].
Therefore we leave it unchanged in our formalisation of blexer_simp.

The inverse operation of decode is code.

code(Empty) def
= []

code(Char c) def
= []

code(Left v) def
= Z :: code(v)

code(Right v) def
= S :: code(v)

code(Seq v1 v2)
def
= code(v1)@ code(v2)

code(Stars []) def
= [S]

code(Stars (v :: vs)) def
= Z :: code(v) @ code(Stars vs)

This function encodes a value into a bitcode by converting Left into Z, Right into S,
and marks the start of any non-empty star iteration by S. Z marks the border where
a star iteration terminates. This coding is lossy, as it throws away the information
about characters, and does not encode the “boundary” between two sequence val-
ues. Moreover, with only the bitcode we cannot even tell whether the Ss and Zs are
for Left/Right or Stars, but this will not be necessary for our correctness proof. Here
are a few examples:

• code Stars [a, a; a] = ZZZS

• code (Right Empty) = S

Ausaf et al. had formally proven that given a value v and regular expression r with
` v : r, then we have the property that decode and code are are inverse operations of
one another:

I f ` v : r then decode (code v) r = Some(v)

We leave out the proof whose details can be found in [15]. Now we present the
definition of the central part of Sulzmann and Lu’s second lexing algorithm, the bder
function (which stands for bitcoded-derivative):

(0) \c def
= 0

(bs1) \c
def
= 0

(bsd) \c
def
= if c = d then bs1 else 0

(bs∑ as) \c def
= bs ∑ (map (_\c) as)

(bs a1 · a2) \c
def
= if bnullable a1

then bs ∑ [([] (a1 \c) · a2),
(fuse (bmkeps a1) (a2 \c))]

else bs (a1 \c) · a2

(bsa∗) \c def
= bs(fuse [Z] r \c) · ([]r∗)



46 Chapter 4. Bit-coded Algorithm of Sulzmann and Lu

For bder c a, we use the infix notation a\c for readability. The bder function tells us
how regular expressions can be recursively traversed, where the bitcodes are aug-
mented and carried around when a derivative is taken. We give the intuition behind
some of the more involved cases in bder.

For example, in the star case, a derivative of bsa∗ means that one more star iter-
ation needs to be taken. We therefore need to unfold it into a sequence, and attach
an additional bit Z to the front of a\c as a record to indicate one new star iteration is
unfolded.

(bsa∗) \c def
= bs( fuse [Z] a \c︸ ︷︷ ︸

One more iteration

) · ([]a∗))

This information will be recovered later by the decode function.
Another place where the bder function differs from derivatives on regular expres-
sions is the sequence case:

(bs a1 · a2) \c
def
= if bnullable a1

then bs ∑ [([] (a1 \c) · a2),
(fuse (bmkeps a1) (a2 \c))]

else bs (a1 \c) · a2

The difference mainly lies in the if branch (when a1 is bnullable): we use bmkeps to
store the lexing information in a1 before collapsing it (as it has been fully matched by
string prior to c), and attach the collected bit-codes to the front of a2 before throwing
away a1. In the injection-based lexer, r1 is immediately thrown away in the if branch,
the information r1 stores is therefore lost:

(r1 · r2)\c
def
= if [] ∈ L(r1)

then (r1\c) · r2 + r2\c
else . . .

The rest of the clauses of bder is rather similar to der.
Generalising the derivative operation with bitcodes to strings, we have

a\s[]
def
= a

a\(c :: s) def
= (a\c)\ss

As we did earlier, we omit the s subscript at \s when there is no danger of confusion.

4.2.3 Putting Things Together

Putting these operations altogether, we obtain a lexer with bit-coded regular expres-
sions as its internal data structures, which we call blexer:

blexer r s def
= let a = (r↑)\s in

if bnullable(a)
then decode (bmkeps a) r
else None

This function first attaches bitcodes to a plain regular expression r, and then builds
successive derivatives with respect to the input string s, and then test whether the
result is (b)nullable. If yes, then extract the bitcodes from the nullable expression,
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and decodes the bitcodes into a lexical value. If there does not exist a match between
r and s, the lexer outputs None indicating a mismatch. An example blexer run:

rZ : (aba + ab + a)∗ +bits−−→ a0 : (Z( Zaba + Sab ) +S a)∗

\a→ a1 :Z (Z( Z1ba + S1b ) +S 1) · a0
\b→

Z(Z( Z1a + S1 ) + 0) · a0 +0 (0(00ba +1 0b) + 0) · a0
\a→

(Z( Z1 + 0 ) + 0) · a0 + ZZS (Z(Z( Z1ba +S 1b) +S 1) · a0) + . . .

↓ \b

(Z(0 + 0) + 0) · a0 + ZZS (Z(Z( Z1a +S 1) + 0) · a0) + . . .

\a→ . . . + ZZS (Z(Z( Z1 +S 0) +S 0)) · a0 + . . . extract→

ZZS ZZZZ decode−−−−−−−→
(aba+ab+a)∗

Stars [ Seq a b , Seq a b a ]

Ausaf and Urban [15] formally proved the correctness of the blexer, namely

blexer r s = lexer r s.

This was claimed but not formalised in Sulzmann and Lu’s work. We introduce the
proof later, after we give all the needed auxiliary functions and definitions. This is
to show how such proofs break down once simplifications are applied.

4.2.4 An Example blexer Run

Before introducing the proof we shall first introduce the auxiliary definitions which
help establish the inductive strategy. Intuitively, they form the scaffolding of blexer,
linking each step with that of lexer’s. They help pin down the intuition that blexer’s
bitcodes at every step are correct, and one can extract the bitcodes under the guid-
ance of a value which tells which path to take to find those bitcodes. The “finding
bitcodes guided by a value” function as devised by Sulzmann and Lu has the fol-
lowing definition:

retrieve bs1 Empty def
= bs

retrieve bsc (Char c) def
= bs

retrieve bsa1 · a2 (Seq v1 v2)
def
= bs @ (retrieve a1 v1) @ (retrieve a2 v2)

retrieve bsΣ(a :: as) (Left v) def
= bs @ (retrieve a v)

retrieve bsΣ(a :: as) (Right v) def
= bs @ (retrieve ([]Σas) v)

retrieve bsa∗ (Stars (v :: vs)) def
= bs @ [Z] @ (retrieve a v) @ (retrieve ([]a∗) (Stars vs))

retrieve bsa∗ (Stars []) def
= bs @ [S]

retrieve was described by Sulzmann and Lu, but it was never used in their pencil-
and-paper proof. Ausaf and Urban [13] later discovered its usage and applied retrieve
to blexer’s correctness.

The other auxiliary function called flex was invented by Ausaf et al. [14] to make
reverse induction compatible with lexer:

flex r f [] v = f v
flex r f (c :: s) v = flex r (λv. f (inj r c v)) s v
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flex accumulates the characters that need to be injected back, and does the injection
in a stack-like manner (the last character being chopped off in the derivatives phase
is first injected). The inductive cases of lexer’s correctness proof were [] and c :: s,
but blexer’s correctness proof requires [] and s@[c] because blexer naturally works in
a forward way. flex is composable w.r.t such splitting:

Property 3. flex r f (s@[c]) v = flex r f s (inj (r\s) c v)

flex makes the value v and function f that manipulates the value explicit pa-
rameters, so that v and f can be acted on and composed with other functions. The
function flex can calculate what lexer calculates, given the input regular expression r,
the identity function id, the input string s and the value vn = mkeps (r\s):

Property 4. flex r id s (mkeps (r\s)) = lexer r s

For both properties see [13] for a proof.
flex and retrieve are all the necessary preliminaries to connect lexer and blexer.

We first walk through a concrete example of our blexer calculating the right lexical
information, and present the “hidden” values in this process using retrieve and flex.

Consider the regular expression (aa)∗ · (b+ c) matching the string aab. We present
again the bird’s eye view of this particular example in each stage of the algorithm:

(aa)∗(b + c)

(aa)∗(Zb +S c)

internalise
(Z(1 · a) · (aa)∗) · (Zb +S c)

\a

(Z(0a + 1) · (aa)∗) · (Zb +S c)(Zb +S c)

\a

ZS(Z1 + 0)

\b
ZSZ

bmkeps

Seq (Stars [Seq a a]) (Left b)

decode

FIGURE 4.1: blexer with the regular expression (aa)∗(b + c) and aab

The internalise function first marks the positions in an alternative with different bit-
codes. For any subexpression its position-related bitcodes are unique: For instance
in the above b is mapped to Z, and a to S. This uniqueness links the bitcodes with
their respective values. This works for arbitrary nested alternatives, the bitcodes
just get longer: for instance in the previous example (Z(Zaba +S ab) +S a)∗ Z refers
to aba + ab, ZZ for aba, and S for a. internalise’s correctness is characterised by the
following proposition

Property 5.
` v : r =⇒ retrieve r↑ v = code v

which is proven in [15]. Interestingly a slight change in the above proposition makes
it untrue

` v : (a)↓ =⇒ retrieve a v = code v

because a may contain additional bits. A counterexample can be given:
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retrieve ZZZZ(aa)∗(Zb +S c) (Seq (Stars []) (Left b)) =
ZZZZSZ 6=
code (Seq (Stars []) (Left b)) =
SZ.

In other words, internalise does just enough bit annotation, not too much, not too lit-
tle. This way these bitcodes will uniquely determine the partial value corresponding
to their own subexpressions. The examples include

• retrieve (aa)∗(Zb+S c) (Seq (Stars []) (Left b)) = SZ = code (Seq (Stars []) (Left b))

• retrieve (aa)∗(Zb+S c) (Seq (Stars [aa]) (Right c)) = ZSS = code (Stars [aa]) (Right c)

• retrieve (Z(Zaba+S ab)+S a)∗ (Left (Left aba)) = ZZS = code (Left (Left aba))

Everything during the bitcoded derivative steps are the same as lexer’s, except that
new star iterations create new bitcodes to mark an unfold. This close alignment with
lexer guarantees its correctness, meaning that if one take a derivative and collect the
bitcodes, it will get the right bitcodes in relation to previous steps (see proof in [15]):

Property 6. ` v : (a\c)↓ =⇒ retrieve a (inj a↓ c v) = retrieve (a\c) v

Intuitively, this says the intermediate values in the injection phase are useful for
blexer as “scaffolding” to confirm that the right bitcodes are created and reside in
the right place. The very last retrieved bitcodes is equal to what was produced by
bmkeps:

Property 7.
bnullable a =⇒ bmkeps a = retrieve a (mkeps (a↓))

Now these three properties 5, 6 and 7 establishes all necessary equalities to connect
blexer and lexer’s results. This will become clear with the following list of all possible
retrieves with values from lexer:

ZSZ =

code (Seq (Stars [aa]) (Left b)) 5
=

retrieve (aa)∗ · (Zb +S c) (Seq (Stars [aa]) (Left b)) 6
=

retrieve (Z(1 · a) · (aa)∗)(Zb +S c) Seq (Seq (Seq Empty a) (Stars [aa])) (Left b) 6
=

retrieve (Z(0a + 1) · (aa)∗) · (Zb +S c) Seq (Seq (Right Empty) (Stars [])) (Left b) 6
=

retrieve ZS(aa)∗ · (Z1 + 0) (Seq (Stars []) (Left Empty)) 7
=

bmkeps ZS(aa)∗ · (Z1 + 0) =
ZSZ

Now we have all the jigsaws in the puzzle and are ready for the correctness proof.

4.3 Correctness of the Bit-coded Algorithm (Without Simpli-
fication)

The nice thing for blexer is in the end there is no backward phase, as the bitcodes
just requires decoding–the value information is already there. In our example, ZSZ
is extracted from ZS(Z1 + 0) from the nullable part. The lack of backward phase



50 Chapter 4. Bit-coded Algorithm of Sulzmann and Lu

also manifest itself in the correctness proof of blexer, where an induction case split
of s@[c] is used instead of c :: s. As we mentioned earlier while introducing flex, the
most natural inductive case split for lexer is not s@[c]. Fortunately lexer r s = flex r s,
therefore one simply needs to equate flex r s with blexer r s.
flex and blexer calculates the same value.

Property 8. If ` v : (r\s), then flex r id s v = decode (retrieve (r\s) v) r

We present the proof even if it can be found in [13], as it provides an alternative
perspective into how retrieve and flex work (and how they break down with simpli-
fications).

Proof. By induction on s. We prove the interesting case where both flex and decode
successfully terminates with some value. We take advantage of the stepwise prop-
erties both sides. The induction tactic is reverse induction on string s. The inductive
hypothesis says that flex r id s v = decode (retrieve (r\s) v) r holds, where v can be
any value satisfying the assumption ` v : (r\s). The crucial point is to rewrite

retrieve (r\(s@[c])) (mkeps (r\(s@[c])))

as
retrieve (r\s) (inj (r\s) c mkeps(r\(s@[c])))

using lemma 6. This enables us to equate

retrieve (r\(s@[c])) (mkeps (r\(s@[c])))

with
flex r id s (inj (r\s) c (mkeps(r\s@[c])))

using IH, which in turn can be rewritten as

flex r id (s@[c]) (mkeps (r\(s@[c])))

.

With this pivotal property we can now link flex and blexer and finally give the cor-
rectness of blexer–it outputs the same result as lexer:

Theorem 2.

• blexer r s = lexer r s

• The blexer function correctly implements a POSIX lexer, namely (r, s)→ v iff blexer r s =
Some v and @v.(r, s)→ v iff blexer r s = None

Proof. We only prove the first part as the second is a corallary from it. The interesting
case is when s ∈ L r and therefore bnullable r↑\s. We have

blexer r s = decode (retrieve ( r↑) (mkeps (r\s))) r

by property 7. RHS is equal to

flex r id s (mkeps (r\s)),

by property 8, which in turn equals

lexer r s.
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from property 4.

Our main reason for analysing the bit-coded algorithm over the injection-based one
is that it allows us to define more aggressive simplifications. We will elaborate on
this in the next chapter.





53

Chapter 5

Correctness of Bit-coded Algorithm
with Simplification

This chapter is the point from which novel contributions of this PhD project starts.
The material in the previous chapters is necessary for this thesis, because it provides
the context for why we need a new framework for the proof of our bitcoded lexer
with simplifications, called blexer_simp.

Sulzmann and Lu implemented an optimisation for blexer, which we call blexer_SLSimp.
They believe blexer_SLSimp achieves “linear time complexity”:

“Linear-Time Complexity Claim
It is easy to see that each call of one of the functions/operations: simp, fuse,
mkEpsBC and isPhi leads to subcalls whose number is bound by the size of
the regular expression involved. We claim that thanks to aggressively applying
simp this size remains finite. Hence, we can argue that the above mentioned
functions/operations have constant time complexity which implies that we can
incrementally compute bit-coded parse trees in linear time in the size of the in-
put.”

but in reality even with optimisations blexer_SLSimp still remains exponential. We
discovered this complexity bug in their algorithm while trying to formalise it, and
fixed those flaws with our simplification. With our formallly verified blexer_simp in
place, we were able to fulfill the “constant time per operation” claim made by Sulz-
mann and Lu, this almost gives linear time complexity. (We discuss why we believe
this is not yet a full-blown linear time complexity guarantee in the next chapter.)
This constant bound is also formalised. The correctness proof of blexer is the focus of
this chapter.

We believe this is yet another case for the importance of formalising algorithms.
The authors have developed the lexers with the catastrophic backtracking problem
in mind, and therefore their solution was targeting an efficient procedure that keeps
the compuation linear. And yet their approach still contained a complexity bug that
triggered the very behaviour they have set out to avoid. It is only after a rigorous
proof that we finally have confidence that part of the original claims about the algo-
rithm hold–that each derivative operation takes constant time. It seems that the gap
between an intuitive complexity conjecture to a formally proven complexity prop-
erty is quite often larger than expected.

We will first introduce why aggressive simplifications are needed, after which
we provide our algorithm, contrasting with Sulzmann and Lu’s simplifications. We
then explain how our simplifications make reusing blexer’s correctness proof impos-
sible. We discuss possible fixes such as rectification functions and then introduce
our proof, which uses a weaker inductive invariant than those properties in chapter
4.
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5.1 Ideas behind Sulzmann and Lu’s Simplifications

The algorithms lexer and blexer work beautifully as functional programs, but not as
practical code. One main reason for the slowness is due to the size of intermediate
representations–the derivative regular expressions tend to grow unbounded if the
matching involved a large number of possible matches. The successive derivative
steps lexer and blexer will traverse once each of these intermediate regular expres-
sions generated. The traversal time will be proportional to the size, as the derivative
function \ is a recursive function that visits every node in an expression. The overall
computational complexity of these derivative-based lexers will be greater than or
equal to the cumulative sum of traversal time in each derivative step. Therefore, an
exponential size blowup with respect to input length will indicate at least exponen-
tial runtime complexity.

Consider the derivatives of the following example (a∗a∗)∗:

(a∗a∗)∗
\a−→ (a∗a∗ + a∗) · (a∗a∗)∗
\a−→ ((a∗a∗ + a∗) + a∗) · (a∗a∗)∗ + (a∗a∗ + a∗) · (a∗a∗)∗
\a−→ . . .

From the second derivative several duplicate sub-expressions already needs to be
eliminated (possible bitcodes are omitted to make the presentation more concise be-
cause they are not the key part of the simplifications). A simple-minded simplifi-
cation function cannot simplify the third regular expression in the above chain of
derivative regular expressions, namely

((a∗a∗ + a∗) + a∗) · (a∗a∗)∗ + (a∗a∗ + a∗) · (a∗a∗)∗

because the duplicates are not next to each other, and therefore the rule r + r → r
from simp does not fire. One would expect a better simplification function to work
in the following way:

((a∗a∗ + a∗︸︷︷︸
A

) + a∗︸︷︷︸
duplicate of A

) · (a∗a∗)∗ + (a∗a∗ + a∗) · (a∗a∗)∗︸ ︷︷ ︸
further simp removes this

.

y(1)
(a∗a∗ + a∗ + a∗) · (a∗a∗)∗ + (a∗a∗ + a∗) · (a∗a∗)∗︸ ︷︷ ︸

further simp removes thisy(2)
(a∗a∗ + a∗) · (a∗a∗)∗ + (a∗a∗ + a∗) · (a∗a∗)∗y(3)

(a∗a∗ + a∗) · (a∗a∗)∗

In the first step, the nested alternative regular expression (a∗a∗+ a∗)+ a∗ is flattened
into a∗a∗+ a∗+ a∗. Now the third term a∗ can clearly be identified as a duplicate and
therefore removed in the second step. This causes the two top-level terms to become
the same and the second (a∗a∗ + a∗) · (a∗a∗)∗ removed in the final step. Sulzmann
and Lu’s simplification was designed to target such cases and their function attemps
to achieve the above steps. The definitions (using our notations) are:
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simp_SL bs(bs′1 · r)
def
= if (zeroable r) then 0

else fuse (bs@bs′) r

simp_SL (bsr1 · r2)
def
= if (zeroable r1 or zeroable r2) then 0

else bs((simp_SL r1) · (simp_SL r2))

simp_SL bs ∑[]
def
= 0

simp_SL bs ∑((bs′∑ rs1) :: rs2)
def
= bs ∑((map (fuse bs′) rs1)@rs2)

simp_SL bs ∑[r] def
= fuse bs (simp_SL r)

simp_SL bs ∑(r :: rs) def
= bs ∑(distinct (filter (¬zeroable) ((simp_SL r) :: map simp_SL rs)))

The zeroable predicate tests whether the regular expression is equivalent to 0, and
can be defined as:

zeroable bs ∑(r :: rs) def
= zeroable r ∧ zeroable [] ∑ rs

zeroable bs(r1 · r2)
def
= zeroable r1 ∨ zeroable r2

zeroable bsr∗
def
= false

zeroable bsc
def
= false

zeroable bs1
def
= false

zeroable bs0
def
= true

They also suggested that the simp_SL function should be applied repeatedly until a
fixpoint is reached. We call this construction SLSimp:

SLSimp r def
= while((simp_SL r)��= r)

r := simp_SL r
return r

We call the operation of alternatingly applying derivatives and simplifications (until
the string is exhausted) Sulz-simp-derivative, written \SLSimp:

r\SLSimp(c :: s) def
= (SLSimp (r\c))\SLSimp s

r\SLSimp[ ]
def
= r

After the derivatives have been taken, the bitcodes are extracted and decoded in the
same manner as blexer:

blexer_SLSimp r s def
= let a = (r↑)\SLSimp s in

if bnullable(a)
then decode (bmkeps a) r
else None

We implemented this lexing algorithm in Scala, and (surprisingly) found that the
final derivative regular expression size still grows exponentially under some “evil”
regular expressions (note the logarithmic scale):
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FIGURE 5.1: Lexing the regular expression (a∗a∗)∗ against strings of
the form aa . . . a︸ ︷︷ ︸
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using Sulzmann and Lu’s lexer

At n = 20 we already get an out-of-memory error with Scala’s normal JVM heap
size settings. In fact their simplification exhibits similar exponential behaviour as the
lexer with non-structural simplifications we have shown in 3.4. The time required
also grows exponentially:
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FIGURE 5.2: Lexing the regular expression (a∗a∗)∗ against strings of
the form aa . . . a︸ ︷︷ ︸

n as

using Sulzmann and Lu’s lexer

We obtain a math formula for the growth pattern of blexer_SLSimp in table 5.1:

Sn = J(a∗a∗)∗\SLSimp aa . . . a︸ ︷︷ ︸
n as

K = 2n−2 ∗ 33 + 2(x ≥ 3),

which indicates an exponential time complexity. A more detailed mathematical anal-
ysis can be found in [58], where Minamide et al. used tree transducers to calculate
the asymptotic complexity of such evil regular expressions’ matching time. The fact
that derivatives are ever-growing falsifies Sulzmann and Lu’s assumption that the
size of the regular expressions in the algorithm would stay below a constant bound.
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TABLE 5.1: Comparison of Derivative Sizes of (a∗a∗)∗ matching
aa . . . a︸ ︷︷ ︸

n as

n blexer blexer_SLSimp

0 6 6
1 19 15
2 54 33
3 129 68
4 284 138
5 599 278
6 1234 558
7 2509 1118
8 5064 2238
9 10179 4478
10 20414 8958
11 40889 17918
12 81844 35838
13 163759 71678
14 327594 143358
15 655269 286718
16 1310624 573438
17 2621339 1146878
18 5242774 2293758
19 10485649 4587518

We will now briefly describe why simp_SL does not work. The problem is that the
simplification here do not simplify thoroughly and consistently. For instance,

simp_SL bs ∑((bs′∑ rs1) :: rs2)
def
= bs ∑((map (fuse bs′) rs1)@rs2)

clause only flattens the alternative at the head position.Therefore (a + b) + (c + d)
will only be flattened into a + b + (c + d). To flatten all elements in the list one needs
something like

simp_SL′ bs ∑ rs def
= bs ∑(flatMap (λr. r match{

case bs′ ∑ rs1 ⇒ map (fuse bs′) rs1
case r ⇒ [r]}) rs).

which first turns every regular expression into a list, and then concatenate all these
lists. The second problem is that the flattened list cannot be efficiently de-duplicated
by a normal distinct function (nub in their paper which is in Haskell) because they
seek exact equality rather than modulo bitcodes. For example, a simple de-duplication
cannot simplify SZZa∗ +SZS a∗ into SZZa∗ because the two sub-expressions have dif-
ferent annotations.

Last but not least, the simp_SL function is applied repeatedly in each derivative
step until a fixed point is reached, which makes the algorithm even more unpre-
dictable and inefficient. It is be much more desirable to finish the simplification
process in one pass.
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5.2 Our Simp Function

We will now introduce our own simplification function, called bsimp. bsimp does a
pattern match on the input, and is called recursively on sub-expressions. The focus
is on simplifying alternative regular expressions, as they are the biggest source of
growth. bsimp first simplifies the children of an alternative, and then feeds the result
expression list to a flattening function and then a de-duplication function. bsimp will
then test the length of the list result, and remove the wrapper alternative if it is a
singleton list.

bsimp will be integrated into blexer in the same way as simp_SL, namely, applied
after each derivative step. We will formally prove that the after-integration lexer
blexer_simp is correct. This means that blexer_simp r s = blexer r s. But for this section
we first describe the intuition why de-duplication will not cause the lexer to change
its output.

Note that the function bsimp is by no means the optimal procedure, but it enjoys
a set of nice properties such as idempotency (see lemma 10) and bounded derivative
size. Further optimisations are possible and candidates include those introduced in
chatper 7.

5.2.1 Flattening Nested Alternatives

The previously proposed modification to the last clause of simp_SL have been turned
into a small flatten function so that it not only flattens the entire list, but also removes
0s which do not contribute to the lexing result:

flts (bs∑ as) :: as’ def
= (map (fuse bs) as) @ flts as′

flts 0 :: as′ def
= flts as’

flts a :: as′ def
= a :: flts as’ (otherwise)

Here are some examples of flts computing:

flts ZZZ(S(0 +Z 1) + a) =ZZZSZ 1 + a
flts a +ZZZ (S0 +SZ 1) + a = a +ZZZSZ 1 + a

flts a +ZZZ (S(0 +Z 1) + a) = a +ZZZS (0 +Z 1) +ZZZ a

flts only flattens same-level alternatives, as can be seen from the last example. It
is not immediately obvious how this will fully simplify things. Intuitively this is
because bsimp will recursively call flts to the inner regular expressions, and therefore
bsimp will never call flts on the last triply nested example. See lemma 10 in chapter 6
for a formal proof that flts and bsimp is indeed sufficient to simplify things in one go.

5.2.2 Duplicate Removal

After flattening is done, an alternative is ready for de-duplication. The de-duplicate
function is called distinctBy, and that is where we make our second improvement
over Sulzmann and Lu’s simplification method. The distinctBy function is defined
as:

distinctBy :: ”′a list⇒ (′a⇒′ b)⇒ (′b set)⇒′ a list
distinctBy [] f acc = []
distinctBy (x :: xs) f acc = if ( f x ∈ acc) then distinctBy xs f acc

else x :: (distinctBy xs f ({ f x} ∪ acc))
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This polymorphic function works by checking if the list head x is already in the set
acc (accumulator). If x ∈ acc then x is removed from the output, otherwise it is kept,
and its image f x is put into acc. Equivalent elements x′ in this list ( f x′ = f x) which
occurs later in xs will all be removed. Here is a detailed computation example:

distinctBy [ZSZa∗a∗, ZSSb, SZZa∗a∗] rerases ∅ =

ZSZa∗a∗ :: (distinctBy [ZSSb, SZZa∗a∗] rerases {a∗a∗}) =

ZSZa∗a∗ ::ZSS b :: (distinctBy [SZZa∗a∗] rerases {a∗a∗, b}) =

ZSZa∗a∗ ::ZSS b :: (distinctBy [] rerases {a∗a∗, b}) =

ZSZa∗a∗ ::ZSS b :: [] =

In the above example, the second a∗a∗ can be eliminated without affecting the lan-
guage of the underlying alternative regular expression. Moreover, the overall lexing
result of blexer_simp will still be the same. Intuitively this is because blexer_simp al-
ways picks up the first instance of the same subexpression. Abusing the notation
slightly, after some arbitrary next derivative steps, the list will be something like
a∗a∗\s + b\s + a∗a∗\s, and therefore bmkeps will never pick up the second a∗a∗\s if
the first is already nullable. The subexpression to the left is always the POSIX value,
either because it represents a longer initial submatch, or because it is the preferred
subexpression according to the left priority rule. For instance, the two terms have
different inital match length (1 v.s. 0), and therefore the first expression is put to the
left of the second.

Seq (Stars [a]) (Stars [a]) corresponds to ZSZ a∗︸︷︷︸
ZS: match 1 times

a∗︸︷︷︸
Z: match 1 times

Seq (Stars []) (Stars [a, a]) corresponds to SZZ a∗︸︷︷︸
S: match 0 times

a∗︸︷︷︸
ZZ: match 2 times

This idea is to be rigorously formalised and proven in the next section. The function
f can be designed to involve more de-duplications, for example by just checking
language equivalence rather than exact structural equality. Maybe f is defined in
such a way that [a · a∗ + 1, a∗] can be turned into just [a∗]. A much richer set of rules
can be employed, for example from Kleene algebra.

We give the definitions of rerase here together with the new datatype used by
rerase (as our plain regular expression datatype does not allow non-binary alterna-
tives). For now we can think of rerase as the function erase ((_)↓) defined in chapter
4 and rrexp as plain regular expressions, but having a general list constructor for
alternatives:

rrexp ::= 0r | 1r | cr | r1 · r2 | ∑ rs | r∗

FIGURE 5.3: rrexp: plain regular expressions, but with ∑ alternative
constructor

The function rerase we define as follows:

(0)↓r

def
= 0r

(bs1)↓r

def
= 1r

(bsc)↓r

def
= cr

(bsr1 · r2)↓r

def
= (r1)↓r · (r2)↓r

(bs∑ as)↓r

def
= ∑ map (_)↓r as

(bsa∗)↓r

def
= (a)∗↓r
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We will provide more details in 6.2.1 for why a new erase function and new datatype
is needed. But briefly speaking it is for backward-compatibility with blexer’s correct-
ness proof and the path we (naturally) took during our proof engineering of the
finiteness property.

5.2.3 Putting Things Together

We can now provide the definition of bsimp:

bsimp (bsa1 · a2)
def
= bsimpASEQ bs (bsimp a1) (bsimp a2)

bsimp (bs∑ as) def
= bsimpALTS bs (distinctBy (flatten(map bsimp as)) rerase ∅)

bsimp a def
= a otherwise

The simplification (named bsimp for bit-coded) does a pattern matching on the reg-
ular expression. When it detects that the regular expression is an alternative or se-
quence, it will try to simplify its children regular expressions recursively and then
see if one of the children turns into 0 or 1, which might trigger further simplifica-
tion at the current level. Current level simplifications are handled by the function
bsimpASEQ, using rules such as 0 · r → 0 and 1 · r → r.

bsimpASEQ bs a b def
= (a, b)match

case (0, _)⇒ 0
case (_, 0)⇒ 0
case (bs11, a′2)⇒ fuse (bs@bs1) a′2
case (a′1, a′2)⇒bs a′1 · a′2

The most involved part is the ∑ clause, where flts and distinctBy are used together to
get maximum simplification:

rs
flts−→ rs f lat

distinctBy rs f lat rerase ∅
−−−−−−−−−−−−→ rsdistinct

Here are some examples:

[SSa, ZZZS(0 +Z 1), ZZZa]
flts−→ [SSa, ZZZSZ1, ZZZa]

distinctBy rs f lat rerase ∅
−−−−−−−−−−−−→ [SSa, ZZZSZ1]

Finally, depending on whether the regular expression list as′ has turned into a sin-
gleton or empty list after flts and distinctBy, bsimpALTS decides whether to keep the
current level constructor ∑ as it is, and removes it when there are fewer than two
elements:

bsimpALTS bs as′ def
= as′ match

case []⇒ 0
case a :: []⇒ fuse bs a
case as′ ⇒bs ∑ as’

Therefore one could never get for example ∑[Za∗] out of bsimp as bsimpALTS will turn
it into Za∗. Here are a few examples of bsimp computation, showing some of the
intermediate recursive steps:
Example 1:

bsimp SZ(a +SSS a · 0)
↓

bsimpALTS [SZ] (distinctBy (_)↓r (flts [bsimp a, bsimp SSSa · 0]) ∅)
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↓
bsimpALTS [SZ] (distinctBy (_)↓r (flts [a, bsimpASEQ SSS a 0]) ∅)

↓
bsimpALTS [SZ] (distinctBy (_)↓r (flts [a, 0]) ∅)

↓
bsimpALTS [SZ] (distinctBy (_)↓r [a] ∅)

↓
bsimpALTS [SZ] [a]

↓
SZa

Example 2:

bsimp S(Z(a +SSS a · 0) + (ZZa + (ZSb +SZ a)))
↓

bsimpALTS [S] (distinctBy (_)↓r (flts [(bsimp Z(a +SSS a · 0)), bsimp (ZZa + (ZSb +SZ
a))]) ∅)
↓

bsimpALTS [S] (distinctBy (_)↓r (flts [bsimpALTS [Z] (distinctBy (_)↓r [a] ∅), bsimp (ZZa+
(ZSb +SZ a))]) ∅)

↓
bsimpALTS [S] (distinctBy (_)↓r (flts [Za, bsimp (ZZa + (ZSb +SZ a))]) ∅)

↓
bsimpALTS [S] (distinctBy (_)↓r (flts [Za, bsimpALTS [] distinctBy (_)↓r (flts [bsimp ZZa, bsimp (ZSb+SZ

a)]) ∅]) ∅)
↓

bsimpALTS [S] (distinctBy (_)↓r (flts [Za, bsimpALTS [] distinctBy (_)↓r (flts [ZZa, ZSb, SZa]) ∅]) ∅)
↓

bsimpALTS [S] (distinctBy (_)↓r (flts [Za, bsimpALTS [] distinctBy (_)↓r [ZZa, ZSb, SZa] ∅]) ∅)
↓

bsimpALTS [S] (distinctBy (_)↓r (flts [Za, bsimpALTS [] [ZZa, ZSb]]) ∅)
↓

bsimpALTS [S] (distinctBy (_)↓r (flts [Za, ∑[ZZa, ZSb]]) ∅)
↓

bsimpALTS [S] (distinctBy (_)↓r [Za, ZZa, ZSb] ∅)
↓

bsimpALTS [S] [Za, ZSb]
↓

SZa +SZS b

Example 3:

bsimp S(Z(a · (SSSa · 0)) · (ZZa · (ZSb ·SZ a)))
↓

bsimpASEQ [S] (bsimp Z(a · (SSSa · 0))) (bsimp (ZZa · (ZSb ·SZ a)))
↓

bsimpASEQ [S] (bsimpASEQ [Z] (bsimp a) (bsimp SSSa · 0)) (bsimp (ZZa · (ZSb ·SZ a)))
↓

bsimpASEQ [S] (bsimpASEQ [Z] a 0) (bsimp (ZZa · (ZSb ·SZ a)))
↓

bsimpASEQ [S] 0 (bsimp (ZZa · (ZSb ·SZ a)))
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↓
bsimpASEQ [S] 0 (bsimpASEQ [] (bsimp ZZa) (bsimp (ZSb ·SZ a)))

↓
bsimpASEQ [S] 0 (bsimpASEQ [] ZZa (ZSb ·SZ a))

↓
bsimpASEQ [S] 0 (ZZa · (ZSb ·SZ a))

↓
0

Note that we sometimes use the ∑ notation and sometimes the infix + notation for
alternatives, whichever makes the presentation most clear and understandable. In-
tegrating bsimp into blexer is the same as simp_SL, by adding it as a phase after a
derivative is taken:

a\bsimpc def
= bsimp(a\c)

similarly an extension from characters to strings is routine:

a\bsimps(c :: s) def
= (a\bsimp c)\bsimps s

a\bsimps[ ]
def
= a

The lexer that extracts bitcodes from the derivatives with simplifications from our
simp function is called blexer_simp:

blexer_simp r s def
= let a = (r↑)\bsimp s in

if bnullable(a)
then decode (bmkeps a) r
else None

Here are a few concrete examples showing the recursive computation for blexer_simp:
Example 1:

(aa)∗
(_)↑−→ (aa)∗

\a−→Z (1a) · (aa)∗
bsimp−→ (Za) · (aa)∗

\a−→ (Z1) · (aa)∗
bsimp−→Z (aa)∗

\a−→Z (Z(1a) · (aa)∗)
bsimp−→Z ((Za) · (aa)∗)

\a−→Z ((Z1) · (aa)∗)
bsimp−→ZZ (aa)∗

bmkeps−→ ZZS
decode (aa)∗−→ Stars [aa, aa]

Example 2:

(a∗a∗)∗
(_)↑−→ (a∗a∗)∗

\a−→Z (((Z1) · a∗) · a∗ +S (Z1a∗)) · (a∗a∗)∗
bsimp−→

Z(((Za∗)a∗) +SZ a∗) · (a∗a∗)∗
\a−→Z

(((Z(Z1a∗) · a∗ +ZS (Z1a∗)) +SZ (Z1a∗)) · (a∗a∗)∗)+

ZZZSSS(Z(((Z1) · a∗) · a∗ +S (Z1a∗)) · (a∗a∗)∗)
bsimp−→

(ZZa∗a∗+ZSZ a∗) · (a∗a∗)∗
bmkeps−→ ZZSSS

decode (a∗a∗)∗−→ Stars [Seq (Stars [a, a]), (Stars [])]

Example 3:
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(a + aa)∗
(_)↑−→ (Za +S aa)∗

\a−→Z (Z1 +S (1a)) · (Za +S aa)∗

bsimp−→Z (Z1 +S a) · (Za +S aa)∗
\a−→Z

(0 +S 1) · (Za +S aa)∗ +ZZ (Z(Z1 +S (1a)) · (Za +S aa)∗)

bsimp−→ZS (Za +S aa)∗ +ZZ (Z(Z1 +S a) · (Za +S aa)∗)
bmkeps−→ ZSS

decode (a+aa)∗−→ Stars [aa]

This algorithm keeps the regular expression size small, as we shall demonstrate
with some examples in the next section.

5.2.4 Examples (a + aa)∗ and (a∗ · a∗)∗ After Simplification

Recall the previous (a∗a∗)∗ matching aa . . . a︸ ︷︷ ︸
n as

example where simp_SL could not pre-

vent the fast growth. Now with bsimp the size is greatly reduced and stays below a
constant no matter how long the input string is. We have similar trends for (a+ aa)∗.
This is shown in the graphs below.
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Given the size difference, it is not surprising that our blexer_simp significantly out-
performs blexer_SLSimp by Sulzmann and Lu. Indeed the intermediate derivatives
of blexer_simp seem to stay below a constant bound. As promised we will use for-
mal proofs to show that our speculation based on these experimental results indeed
hold. In the next section we are going to establish that our simplification preserves
the correctness of the algorithm.

5.3 Correctness of blexer_simp

In the blexer’s correctness proof, Ausaf et al. [14] did not directly derive the fact
that blexer generates the POSIX value, but first proved that blexer generates the same
result as lexer. Then they re-used the correctness of lexer to obtain theorem 2. For
blexer_simp we build on Ausaf et al.’s result, by proving that blexer_simp r s produces
the same output as blexer r s.
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We first thought of directly re-using the proof techniques from blexer’s correct-
ness proof. However we were not able to find a suitable modification to the key
property 6 because simplification breaks things.

5.3.1 Why Blexer’s Proof Does Not Work

The fundamental reason is because lemma 6 does not hold anymore when simplifi-
cations are involved. In particular, the correctness theorem of blexer relies crucially
on property 6 that says bitcodes can be retrieved from before and after the derivative,
using values from after and before the injection:

` v : ((a↓)\c) =⇒ retrieve (a\c) v = retrieve a (inj (a↓) c v) (5.1)

The pairs
(a, inj a↓ c v) and (a\c, v)

are from two consecutive steps in the intermediate derivatives. If we call these two
steps’ derivatives ai and ai+1 and their inhabited POSX value vi and vi+1, then one
can create a diagram showing their relation pictorially:

. . . ai ai+1 = (ai\c) . . .

. . . vi = inj (ai)↓ c vi+1 vi+1 . . .

. . . bitsi bitsi+1 . . .

retrieve ai vi retrieve ai+1 vi+1

\c

` vi : ai ` vi+1 : ai+1

=

inj (ai+1)↓ c vi

Here are some concrete instances of this correspondence for blexer:
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. . . (S(1b)) (S(0b + 1)) . . .

. . . Seq Empty b Right Empty . . .

. . . S S . . .

retrieve ai vi retrieve ai+1 vi+1

\c

` vi : (ai)↓ ` vi+1 : (ai+1)↓

=

inj ri+1 c vi

. . . (Z(a∗)) (Z(Z1 · a∗)) . . .

. . . Stars [a] Seq Empty (Stars []) . . .

. . . ZZS ZZS . . .

retrieve ai vi retrieve ai+1 vi+1

\c

` vi : (ai)↓ ` vi+1 : (ai+1)↓

=

inj ri+1 c vi

As blexer_simp applies bsimp after each call to the derivatives function, it becomes a
problem to maintain the same property. It is not clear how to inject back a character
to a simplified value.
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. . . (Sb) (S1) . . .

. . . ??vi Right Empty . . .

. . . S S . . .

??retrieve ai vi ??retrieve ai+1 vi+1

\c

` vi : (ai)↓?? �̀vi+1 : (ai+1)↓

=

??inj ri+1 c vi

. . . Za∗ ZZa∗ . . .

. . . ??vi Seq Empty (Stars []) . . .

. . . ZZS ZZS . . .

??retrieve ai vi ??retrieve ai+1 vi+1

\c

?? ` vi : (ai)↓ �̀vi+1 : (ai+1)↓

=

??inj ri+1 c vi

Previously retrieve works properly, but with blexer_simp it becomes impossible unless
we re-design retrieve and inj. For instance, if we change the form of property 5.1 to
adapt to the needs of blexer_simp the precondition becomes

` v′ : (bsimp (a\c))↓,

and inj is in general not defined on the input a↓, c and v′. They may accidentally
work, like for the first example, where we have a =S b and v′ = Empty. For the
second exmaple, we do not know what inj a∗ a (Stars []) should be. One might

attempt to define a new injection like inj′ c∗ c (Stars [])
def
= Stars [c] to target this



5.3. Correctness of blexer_simp 67

specific case, however we have not yet found a generalisation from this to more
complex star regular expressions. The retrieve function will not work either. It seems
unclear what procedures needs to be used to create a new value v? such that

` v? : r and retrieve r v? = retrieve (bsimp (r\c)) v′

holds. Without retrieve the bridge from code v to bmkeps (a\s) no longer exists. Ausaf
et al. [14] used something they call rectification functions to restore the original value
from the simplified value. The idea is that simplification functions not only returns
a regular expression, but also a rectification function

simprect : Regex ⇒ (Value⇒ Value, Regex)

that is recorded recursively, and then applied to the previous value to obtain the cor-
rect value for inj to work on. The recursive case of the lexer is defined as something
like

slexer r (c :: s) def
= let (frect, rc) = simprect (r\c) in inj r c (frect (slexer rc s))

However this approach (including slexer’s correctness proof) only works without
bitcodes, and it limits the kind of simplifications one can introduce. See the thesis
by Ausaf [13] for details.

We were not able to use their idea for our simplification rules. Instead, we took
another route that completely disposes of property 6, and prove a weakened induc-
tive invariant instead. In the next section, we first explain why property 6’s require-
ment is too strong, and suggest a few possible relaxation, which leads to our proof
that seemed to us natural and effective.

5.3.2 Why Lemma 6’s Requirement is too Strong

Consider the annotated regular expressions ai = (ZZx+ZS y+S x) and ai+1 = (ZZ1+
0+S 1). We only need in the proof of blexer that for the POSIX value vi = Left (Left Empty),
the property

retrieve (ZZ1+ 0+S 1) (Left (Left Empty)) = retrieve (ZZx+ZS y+S x) (Left (Left Char x))

holds, and for blexer_simp the POSIX terms ZZ1 and ZZx are present as well. There-
fore their bitcodes can be extracted. However for the definitely non-POSIX value
v′i = Right Empty the following equality

retrieve (ZZ1 + 0 +S 1) (Right Empty) = retrieve (ZZx +ZS y +S x) (Right (Char x))

also needs to hold. These values do not exist for blexer_simp asthey have been elim-
inated during the de-duplication procedure of our smplification. If we were to use
retrieve, then we are stuck with a property that holds in blexer but does not have a
counterpart in blexer_simp.

The inductive invariant 5.1 can be weakened by strengthening the precondition
` vi : ri to ∃si. (si, ri)→ vi, namely that vi must be a POSIX value. We tried this route
but it did not work well since we need to use a similar technique as the rectification
functions by Ausaf et al, and they can get very complicated with bsimp.

Another inductive invariant we considered was that

bmkeps ai = code vi,
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namely one can extract the POSIX value using bmkeps rather than retrieve. But this
condition is too weak such that one cannot get through the inductive step. For in-
stance,

bmkeps (Z1 +SZ a∗) = Z = code Left(Seq a a)

holds. However this property is about the term Z1 alone. It cannot be used to deduce

bmkeps (Z0 +SZZ a∗) = SZZS = code Right(Stars [aa])

because it does not say anything about the second term SZa∗.
To summarise, we need a property that says POSIX values can be extracted from

every intermediate step, and that property cannot be too strong to involve definitely
non-POSIX terms, or too weak to exclude potentially POSIX terms. A natural idea
we came up with was to define a rewriting relation from a\s to a\bsimpss. Such re-
lations are sound with respect to POSIX rules because they only remove the second
duplicate. We prove that if one term is reachable from another via the rewriting
relation, then it will always output the same lexing information from bmkeps.

In the next section we first introduce the rewriting relation rrewrite (rrewrite) be-
tween two regular expressions, which stands for an atomic simplification. We then
prove properties about this rewriting relation and its reflexive transitive closure. Fi-
nally we leverage these properties to show an equivalence between the results gen-
erated by blexer and blexer_simp.

5.3.3 The Rewriting Relation rrewrite( )

The idea of a single-step rewriting relation rrewrite is that the transition from r to
bsimp r can be broken down into smaller rewrite steps of the form:

r ∗ bsimp r

where each rewrite step, written , is an “atomic” simplification that is more or less
similar to small-step operational semantics:
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bs0 · r2  0
S0l

bsr1 · 0 0
S0r

bs1((bs21) · r) fuse (bs1@bs2) r
S1

r1  r2

bsr1 · r3  bs r2 · r3
SL

r3  r4

bsr1 · r3  bs r1 · r4
SR

bs ∑[] 0
A0

bs ∑[a] fuse bs a
A1

rs1
s
 rs2

bs ∑ rs1  rs2
AL

[]
s
 []

LE

rs1
s
 rs2

r :: rs1
s
 r :: rs2

LT
r1  r2

r1 :: rs s
 r2 :: rs

LH
0 :: rs s

 rs
L0

bs ∑(rs1 :: rsb)
s
 ((map (fuse bs1) rs1)@rsb)

LS

(a1)↓r = (a2)↓r

rsa@[a1]@rsb@[a2]@rsc
s
 rsa@[a1]@rsb@rsc

LD

FIGURE 5.4: The rewrite rules that generate simplified regular ex-
pressions in small steps: r1  r2 is for bitcoded regular expressions
and rs1

s
 rs2 for lists of bitcoded regular expressions. Interesting is

the LD rule that allows copies of regular expressions to be removed
provided a regular expression earlier in the list can match the same

strings.

The rules LT and LH are for rewriting two regular expression lists such that one
regular expression in the left-hand-side list is reachable in one step to the right-hand
side’s regular expression at the same position. This helps with defining the “context
rule” AL. These inference rules at first glance seem just congruence relations for reg-
ular expressions that denote the same language. However in the context of getting
POSIX values it is not immediately obvious why the relation will generate the same
bitcodes, namely

r ∗ r′ =⇒ blexer r s = blexer_simp r s.

Indeed if we add an inference rule like

(a1)↓r = (a2)↓r

rsa@[a1]@rsb@[a2]@rsc
s
 rsa@rsb@[a2]@rsc

KEEPRIGHT

then POSIX values will be lost in rewriting. We believe this rewriting system is
terminating because the terms are all first-order, and each rewriting reduces the size
of a regular expression. The rules are not confluent unless we define two terms to be
equivalent if they only differ in the position of bitcodes, for example

Z(Za +S b) and ZZa +ZS b.
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We leave the formal proof of these for future work.
The reflexive transitive closure of and s

 are defined in the usual way:

r ∗ r rs s∗
 rs

r1  
∗ r2 ∧ r2  ∗ r3

r1  
∗ r3

rs1
s∗
 rs2 ∧ rs2

s∗
 rs3

rs1
s∗
 rs3

The main theorems we are going to prove for this chapter is that the rewriting rela-
tion commutes with derivatives:

r1  r2 =⇒ (r1\c) ∗ (r2\c)

And also, if two terms are reachable from one another via rewrites, then they pro-
duce the same bitcodes under bmkeps:

r ∗ r′ then bmkeps r = bmkeps r′

These two properties will serve as the bridge between blexer and blexer_simp. The
decoding phase of both functions are the same, which means that if they receive the
same bitcodes from bmkeps, then they generate the same values from decode. We will
provide more details of these properties in the next sub-section.

5.3.4 Important Properties of 

First we list some basic facts about , s
 ,  ∗ and s∗

 . They can be usually solved
with straightforward induction and lightweight automation in Isabelle. They are of
quite similar nature and therefore grouped together.

Lemma 1. The inference rules (5.4) we gave in the previous section have their “many-steps
version”:

• rs1
s∗
 rs2 =⇒ bs ∑ rs1  ∗bs ∑ rs2

• r ∗ r′ =⇒ bs ∑(r :: rs)  ∗ bs ∑(r′ :: rs)

• The rewriting in many steps property is composable in terms of the sequence construc-
tor:
r1  ∗ r2 =⇒ bsr1 · r3  ∗ bsr2 · r3 and r3  ∗ r4 =⇒ bsr1 · r3  ∗bs r1 · r4

• The rewriting in many steps properties  ∗ and s∗
 is preserved under the function

fuse:
r1  ∗ r2 =⇒ fuse bs r1  ∗ fuse bs r2 and rs1

s
 rs2 =⇒ map (fuse bs) rs1

s∗
 

map (fuse bs) rs2

The inference rules of s
 are defined in terms of the list cons operation. Now we show that

they also hold w.r.t prepending and appending of lists.

• rs1
s
 rs2 =⇒ rs@rs1

s
 rs@rs2

• rs1
s∗
 rs2 =⇒ rs@rs1

s∗
 rs@rs2 and rs1@rs s∗

 rs2@rs

• The s
 relation after appending a list becomes s∗

 :
rs1

s
 rs2 =⇒ rs1@rs s∗

 rs2@rs

In addition, we also prove some relations between ∗ and s∗
 .
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• r1  ∗ r2 =⇒ [r1]
s∗
 [r2]

• rs3
s∗
 rs4 ∧ r1  ∗ r2 =⇒ r2 :: rs3

s∗
 r2 :: rs4

• If we can rewrite a regular expression in many steps to 0, then we can also rewrite any
sequence containing it to 0:
r1  ∗ 0 =⇒ bsr1 · r2  ∗ 0

Proofs of these are omitted, and details can be found in [46].
With all the smaller lemmas above, we are ready to prove the more important

properties:

• r ∗ r′ ∧ bnullable r1 =⇒ bmkeps r = bmkeps r′.

• r ∗ bsimp r.

• r r′ =⇒ r\c ∗ r′\c.

Intuitively, the first property says we can extract the same bitcodes using bmkeps
from the nullable components of two regular expressions r and r′, if we can rewrite
from one to the other in finitely many steps.

For convenience, we define a predicate for a list of regular expressions having at
least one nullable regular expression:

bnullables rs def
= ∃r ∈ rs. bnullable r

And similarly, bmkepss which extracts the bit-codes on the first bnullable element in a
list:

bmkepss [] def
= []

bmkepss r :: rs def
= if (bnullable r) then bmkeps r else bmkepss rs

Lemma 2. The rewriting relation preserves (b)nullability:

• If r1  r2, then bnullable r1 = bnullable r2

• If rs1
s
 rs2 then bnullables rs1 = bnullables rs2

• r1  ∗ r2 =⇒ bnullable r1 = bnullable r2

If both regular expressions in a rewriting relation are nullable, then they produce the same
bitcodes:

• r1  r2 =⇒ (bnullable r1 ∧ bnullable r2 =⇒ bmkeps r1 = bmkeps r2)

• and rs1
s
 rs2 =⇒ (bnullables rs1 ∧ bnullables rs2 =⇒ bmkepss rs1 =

bmkepss rs2)

Proofs to these smaller lemmas are omitted. As they can be done with relative ease
by inducting on the case of and s

 .
Now we are ready for the key lemma saying that one can extract the same bit-

codes using bmkeps for regular expressions that rewrite to each other in many steps:
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Lemma 3. If r ∗ r′ and bnullable r, then bmkeps r = bmkeps r′

Proof. We induct on the cases that lead to  ∗. For r′ = r, then clearly bmkeps r =
bmkeps r′. Now for the inductive case, the assumption is that r ∗ r′, bnullable r and
bmkeps r = bmkeps r′ holds (by point 1 and 3 of lemma 2). Now for r′  r′′, we know
that both bnullable r′ and bnullable r′′ hold. Therefore bmkeps r′ = bmkeps r′′ (by point
4 of lemma 2).

Now we prove that is a complete set of rules for bsimp, in other words, one can
describe the simplification involved in bsimp using all steps from : r  ∗ bsimp r.
For this we need to prove that bsimp’s helper functions such as distinctBy and flts can
all be described by s∗

 and ∗.

Lemma 4.

• The first lemma for the completeness of  is to prove is a more general version of
rs1  ∗ distinctBy rs1 φ: For a list made of two parts rs1@rs2, one can throw away
the duplicate elements in rs2, as well as those that have appeared in rs1. rs1@rs2

s∗
 

(rs1@(distinctBy rs2 rerase (map rerase rs1)))

• (A corollary of the above property by setting rs2 to be the empty list.) rs1
s∗
 distinctBy rs1 φ.

• Similarly the flatten function flts describes a reduct of s∗
 as well:

rs s∗
 flts rs

• The function bsimpALTS preserves can also be described by : bs ∑ rs ∗ bsimpALTS bs rs

Now we can prove that  is complete in the sense that it describes all possible
simplifications that happen in bsimp:

Theorem 3. r ∗ bsimp r

Proof. By an induction on r. The most involved case is the alternative, where we use
part 2, 3 and 4 of lemma 4 to justify the following rewriting steps:

rs s∗
 map bsimp rs
s∗
 flts (map bsimp rs)
s∗
 distinctBy (flts (map bsimp rs)) rerase φ

Using this we can derive the following rewrite sequence:

r = bs ∑ rs

 ∗ bsimpALTS bs rs

 ∗ bsimpALTS bs (map bsimp rs)

 ∗ bsimpALTS bs (flts (map bsimp rs))

 ∗ bsimpALTS bs (distinctBy (flts (map bsimp rs)) rerase φ)

 ∗ bsimp r

The rest of the cases are routine and can be proven with straightforward induction
and automation.
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Now we are going to prove the central theorem that leads to the correctness of
blexer_simp: r1  ∗ r2 =⇒ r1\c  ∗ r2\c This property justifies why we are able
to interleave derivatives and simplifications and still able to get the right answer.

The rewrite relation changes into ∗ after derivatives are taken on both sides:

Lemma 5.

• If r1  r2, then r1\c ∗ r2\c

• If rs1
s
 rs2, then map (_\c) rs1

s∗
 map (_\c) rs2

Proof. For part one, we induct on the inference rules of . For each inference rule
we do a case analysis on r1. There are a few dozen cases, each solvable using au-
tomation. The second part is a corollary of the first.

Now we can prove the central theorem as an immediate corollary:

Theorem 4 (Central theorem of commuting derivatives and simplifications).

• r1  ∗ r2 =⇒ r1\c ∗ r2\c

• a\s ∗ a\bsimpss

We omit the proof as they follow straightforwardly from lemma 5 and theorem 3.

5.3.5 Main Theorem

Now with theorem 4 in place we are ready for the main result of this chapter:

Corollary 1 (Correctness of blexer_simp).

•
blexer r s = blexer_simp r s

•

(r, s)→ v iff blexer_simp r s = Some v
@v. (r, s)→ v iff blexer_simp r s = None.

Proof. We first consider the case where s ∈ L r. Then blexer r s is equal to

decode (bmkeps (r↑\s)) r.

Similarly blexer_simp r s is equal to

decode (bmkeps (r↑\bsimpss)) r.

We prove that these two terms are equal by proving that the two bitcode input are
equal:

bmkeps (r↑\s) = bmkeps (r↑\bsimpss).

Let a = r↑, we know that

a\s ∗ a\bsimpss.

by theorem 4. We also know that
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bnullable (a\s)

because s ∈ L r, which means

bmkeps (a\s) = bmkeps (a\bsimpss)

by lemma 3. This concludes the s ∈ L r case. When s /∈ L r, we still have that

a\s ∗ a\bsimpss.

We also know that bnullable (a\s) = False. Therefore, bnullable (a\bsimpss) = False
as well. Therefore both lexers will return None. The second part is a corollary of the
first proposition.

5.3.6 Comments on the Proof

The rewriting relation method we came up with was natural and intuitive, however
we tried many things that did not work before arriving at this simple solution. Di-
rectly proving blexer r s = blexer_simp r s by a structural induction on r does not
work, because bsimp ∑ rs 6= ∑(map bsimp rs)–both flts and bsimpALTS will alter the
structure of an alternative regular expression, and it is not predictable which struc-
ture bsimp ∑ rs will end up in. Therefore we cannot use the inductive hypothesis.

We also attempted to re-use the argument in lemma 6. We tried the Ausaf et al.’s
rectification function, however with flts the rectification got soon very complicated
and unmanageable.

We also tried to prove something like

bsimp (a\bsimpss) ∼= bsimp (a\s),

but a direct equality does not hold. A counterexample is

a = [(Z1 +S c) · [bb · (Z1 +S c)]] and s = bb.

Then we would have

bsimp (a\s) = [](ZZ1 +ZS c)

whereas

bsimp (a\bsimpss) = Z(Z1 +S c).

Unfortunately, if we apply bsimp differently we will always have this discrepancy.
This is due to the map (fuse bs) as operation happening at different times. This re-
quires us to define a notion of canonical form, and proving that both bsimp (a\bsimpss)
and bsimp (a\s) can be turned into the canonical form by just reordering the bits,
for example pushing the bits of Z(Z1 +S c) in to get [](ZZ1 +ZS c). That is how we
thought of using rewriting relations: it seems natural to define the bits-moving oper-
ations as rewriting relations, for instance by mandating that bs ∑ rs ∑ map (fuse bs) rs
and define the symmetric transitive closure ∗ so that we can prove something like
bsimp (a\bsimpss)  ∗ rcanonical f orm and bsimp (a\s)  ∗ rcanonical f orm. and use the
canonical form rcanonical f orm as the bridge between bsimp (a\bsimpss) and bsimp (a\s).
Soon we realised this approach can be further simplified and that is how we arrived
at the current proof approach.

The rewriting relation ∗ allows us to ignore this discrepancy and view the ex-
pressions
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[](ZZ1 +ZS c)
and

Z(Z1 +S c)

as equal because they were both re-written from the same expression.
The inference rules given in 5.4 are by no means final. One could come up with

new rules by making use of more autamaton theory and Kleene algebra, for example
by the rule

SEQr1 · (SEQr1 · r3)→ SEQs[r1, r2, r3].
SEQs

However this does not fit with the proof technique of our main theorem, but seem
to not violate the POSIX property.

Having established the correctness of our blexer_simp, in the next chapter we shall
prove that with our bsimp function, for a given r, the derivative size is always finitely
bounded by a constant.
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Chapter 6

A Formal Proof That Blexer_simp
will not Grow Unbounded

In this chapter we prove for each r a bound in terms of the size of the calculated
derivatives: given a regular expression r, let a = r↑. There exists a constant integer
C :: ”int” (which depends on r), such that for any string s our algorithm blexer_simp’s
intermediate derivatives’ sizes are bounded by C.

Ja\bsimpssK ≤ C

The size (J_K) of an annotated regular expression is defined in terms of the num-
ber of nodes in its tree structure (its recursive definition is given in the next page).
Let UNIV be the set of all possible strings in our alphabet. This result can also be
expressed as

max{Ja\bsimpssK | s ∈ UNIV} ≤ C.

Note that there are infinitely many terms in the set {a\bsimpss | s ∈ UNIV} because
the derivatives have different bit-annotations. We believe this size bound is impor-
tant in the context of POSIX lexing because

• It is a stepping stone towards the goal of eliminating “catastrophic backtrack-
ing” once and for all. The derivative-based lexing algorithm attempts to avoid
backtracking by a trade-off between space and time. Derivatives saves differ-
ent matching possibilities as sub-expressions and traverse those during future
derivatives. If such derivatives grow exponentially fast then we would still
end up with exponential runtime. Having a constant-size rather than ever-
increasing data structure gives us confidence that blexer_simp will not be un-
predictably slow.

• The bound is universal for a given regular expression, which is an advantage
over work which only gives empirical evidence on some test cases.

The bound plotted on a graph together with blexer_SLSimp and blexer_simp’s deriva-
tive sizes looks like:

string length

de
ri

va
ti

ve
si

ze blexer_SLSimp
blexer_simp
bound C
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We then extend our blexer_simp to support bounded repetitions (r{n}). We up-
date our formalisation of the correctness and finiteness properties to include this
new construct, demonstrating the extensibility and generality of our proof method.
Being able to handle bounded repetitions is nice because often regex engines are not
very good at dealing with them. For instance, running the lexer against a1005 and a
string with 50000 a’s costs the Verbatim++ [33] lexer over 5 minutes, but only a few
seconds with our extracted Scala code. See [5] for a more detailed comparison with
the Verbatim++ lexer, which is a verified lexer based on DFAs.

It is also possible to prove that the internal derivatives of blexer_SLSimp do grow
unbounded, but in the time frame we only have experimental data showing the
exponential growth trend.

The proofs in this chapter can be seen as a continuation of the proofs about the
rewriting relations introduced in chapter 5. We prove more properties about them
and also extend and use them to prove more properties about blexer_simp. This
shows that our rewriting relation approach is a general and reusable proof tech-
nique.

In the first section we describe in more detail what the finite bound means in our
algorithm and why the size of the internal data structures of a typical derivative-
based lexer such as Sulzmann and Lu’s needs formal treatment.

6.1 Formalising Size Bound of Derivatives

We first define what we mean by size.

Jbs1K def
= 1

J0K def
= 1

Jbsa1 · a2K
def
= Ja1K+ Ja2K+ 1

JbscK
def
= 1

Jbs∑ asK def
= (sum (map (J_K) as)) + 1

Jbsa∗K def
= JaK+ 1.

The size of a derivative is defined by the number of nodes in the tree, and the bit-
codes in our case do not count. This is the main reason why we are reluctant to
declare that we have a fully formalised linear time complexity result–as the input
string gets longer the bitcodes grow in proportional to it, and it is not obvious why
all operations involving bitcodes are constant. We leave this for future work.

In our lexer (blexer_simp), we take an annotated regular expression as input, and
repeately take derivative of and simplify it. Each time a derivative is taken, the
regular expression might grow. However, the simplification that is immediately af-
terwards will often shrink it so that the overall size of the derivatives stays relatively
small. This intuition is depicted by the relative size change between the black and
blue nodes in figure 6.1. After bsimp the node shrinks. Our proof states that all the
blue nodes stay below a size bound C determined by the input a.

Sulzmann and Lu’s assumed a similar picture of their algorithm, even though
it did not work as they expected. They tested out the run time of their lexer on
particular examples such as (a + b + ab)∗ and made the speculation that their algo-
rithm is linear w.r.t to the input. With our mechanised proof, we avoid this type of
unintentional generalisation.

Before delving into the details of the formalisation, we are going to provide an
overview of it in the following subsection.
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a a1

\c1

a1s

simp
a2

\c2

a2s

simp
ans

\ . . .

FIGURE 6.1: Regular expression size change during our blexer_simp
algorithm

6.1.1 Overview of the Proof

For all discussions of this Chapter we will only use un-annotated regular expres-
sions because bitcodes do not affect the size of a derivative. We will define the
un-annotated version of functions like bsimp and \bsimps, but for the moment let’s
pretend we have them and call them simp and \simps (More on this in section 6.2.1).
The most important idea in this chapter is what we call the "closed forms" of regular
expression derivatives with respect to strings. Very roughly speaking it expresses a
regular expression r’s (simplified) derivative w.r.t s as a list of derivative terms,

r\simpss ∼= (∑ r1 + r2 + r3 + . . . + rn),

where each term ri is of the form simp (r′\s′) or simp (r′\s′) · r′′, with r′, r′′ being
a child expression of r or r itself, and s′ being a sublist of s. The congruence rela-
tion means that LHS and RHS are eqaul up to simplifications. The closed forms are
precise and formalised versions of this intuition. A few simple examples for this are:

(a∗a∗)∗\simpsaaaaaaa = (a∗a∗ + a∗) · (a∗a∗)∗ ∼= ∑[(a∗a∗)∗\a],

(a + aa)∗\simpsaaa = (1 + a) · (a + aa)∗ ∼= ∑[(a + aa)∗\a],

(a + aa)∗\simpsaaaa = (a + aa)∗ + (1 + a) · (a + aa)∗ ∼=

∑[(a + aa)∗\aa, (a + aa)∗\a],

and

(aba + ab + a)∗\simpsababa = (aba + ab + a)∗ + (ba + b + 1) · (aba + ab + a)∗

∼= ∑[(aba + ab + a)∗\aba, (aba + ab + a)∗\a].

6.2 The Rrexp Datatype

The first step is to define rrexps. They are regular expressions without bitcodes but
allows a list of children expressions for alternatives, which allows a more convenient
size bound proof. The datatype definition of the rrexp, called r-regular expressions,
was initially defined in the last chapter at section 5.3. The reason for the prefix r is
to make a distinction with basic regular expressions we introduced in chapter 3. We
provide here again the definition to make this chapter self-contained as the proofs
we introduce require this type:

rrexp ::= 0r | 1r | cr | r1 · r2 |∑ rs | r∗

The size of an r-regular expression is written JrKr, whose definition mirrors that of
an annotated regular expression.
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Jbs1Kr
def
= 1

J0Kr
def
= 1

Jbsr1 · r2Kr
def
= Jr1Kr + Jr2Kr + 1

JbscKr
def
= 1

Jbs∑ asKr
def
= (sum (map (J_Kr) as)) + 1

Jbsa∗Kr
def
= JaKr + 1.

The r in the subscript of JKr is to differentiate with the same operation for annotated
regular expressions. Similar subscripts will be added for operations like ()↓r :

(0)↓r

def
= 0r

(bs1)↓r

def
= 1r

(bsc)↓r

def
= cr

(bsr1 · r2)↓r

def
= (r1)↓r · (r2)↓r

(bs∑ as)↓r

def
= ∑ map (_)↓r as

(bsa∗)↓r

def
= (a)∗↓r

6.2.1 Why a New Datatype?

Originally the erase operation (_)↓ was used by Ausaf et al. in their proofs related
to blexer. This function was not part of the lexing algorithm, and the sole purpose
was to bridge the gap between the r (un-annotated) and arexp (annotated) regular
expression datatypes so as to leverage the correctness theorem of lexer.For example,
lemma 6 uses erase to convert an annotated regular expression a into a plain one so
that it can be used by inj to create the desired value inj (a)↓ c v.

Ideally erase should only remove the auxiliary information not related to the
structure–the bitcodes. However there exists a complication where the alternative
constructors have different arity for arexp and r:

r ::= . . . | (_ + _) :: ”rexp⇒ rexp⇒ rexp”| . . .
arexp ::= . . . | (Σ_) :: ”arexp list⇒ arexp”| . . .

To convert between the two erase has to recursively disassemble a list into nested
binary applications of the (_ + _) operator, handling corner cases like empty or sin-
gleton alternative lists:

(bs∑[])↓
def
= 0

(bs∑[a])↓
def
= a

(bs∑ a1 :: a2)↓
def
= (a1)↓ + (a2)↓

(bs∑ a :: as)↓
def
= a↓ + (erase [] ∑ as)

These operations inevitably change the structure and size of an annotated regular
expression. This means that if we define the size of a basic plain regular expression
in the natural way:
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J1Kp
def
= 1

J0Kp
def
= 1

Jr1 + r2Kp
def
= Jr1Kp + Jr2Kp + 1

JcKp
def
= 1

Jr1 · r2Kp
def
= Jr1Kp + Jr2Kp + 1

Ja∗Kp
def
= JaKp + 1,

then the property

JaK ?
= Ja↓Kp

does not hold. For example, a1 = ∑Z[x] has size 2, but (a1)↓ = x only has size 1.
Another example is

a2 = (ZZa +ZS b +S c). Ja2K = 4, but J(a2)↓Kp = J(a + (b + c))Kp = 5

Bounds we obtain for rrexp does not translate into a bound for arexp–it might be too
low. It might be higher but we do not know for sure. One might be able to prove an
inequality such as JaK ≤ Ja↓Kp + C and then get a bound on a from a bound on a↓
by adding the constant C, but we found our approach more straightforward. That
leads to us defining rrexp whose size does not change during erase:

rrexp ::= . . . | (∑ _) :: ”rrexp list⇒ rrexp”| . . .

(bs∑ as)↓r

def
= ∑ map (_)↓r as

This ensures that any bound on rrexp also applies to arexp (formalised in lemma 6).

6.2.2 Functions for R-regular Expressions

The downside of our approach is that we need to redefine several functions for rrexp.
In this section we shall define the r-regular expression version of bder, and bsimp re-
lated functions. We use r as the prefix or subscript to differentiate with the bitcoded
version. The derivative operation for an r-regular expression is

(0) \rc def
= 0

(1) \rc def
= if c = d then 1 else 0

(∑ rs) \rc def
= ∑ (map (_\rc) rs)

(r1 · r2) \rc def
= if (rnullable r1)

then ∑ [(r1 \rc) · r2,
((r2 \rc))]

else (r1 \rc) · r2

(r∗) \rc def
= (r \rc) · ([]r∗))

where we omit the definition of rnullable. The generalisation from the derivatives
w.r.t a character to derivatives w.r.t strings is given as

r\rs[]
def
= r

r\rsc :: s def
= (r\rc)\rss

The function distinctBy for r-regular expressions does not need a function check-
ing equivalence because there are no bit annotations. Therefore we have
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rdistinct [] rset def
= []

rdistinct r :: rs rset def
= if(r ∈ rset) then rdistinct rs rset

else r :: rdistinct rs (rset ∪ {r})

With rdistinct in place, the flatten function for rrexp is as follows:

rflts (∑ as) :: as’ def
= as @ rflts as′

rflts 0 :: as′ def
= rflts as’

rflts a :: as′ def
= a :: rflts as’ (otherwise)

The function rsimpALTS corresponds to bsimpALTS:

rsimpALTS nil def
= 0r

rsimpALTS r :: nil def
= r

rsimpALTS rs def
= ∑ rs

Similarly, we have rsimpSEQ which corresponds to bsimpSEQ:

rsimpSEQ 0r _ = 0r

rsimpSEQ _ 0r = 0r

rsimpSEQ 1r · r2
def
= r2

rsimpSEQ r1r2
def
= r1 · r2

and get rsimp and _\rsimps_:

rsimp (r1 · r2)
def
= rsimpSEQ (rsimp r1) (rsimp r2)

rsimp (bs∑ rs) def
= rsimpALTS bs (rdistinct (rflts(map rsimp rs)) rerase ∅)

rsimp r def
= r otherwise

r\rsimp c def
= rsimp (r\r c)

r\rsimps c :: s def
= (r\rsimp c)\rsimps s

r\rsimps[ ]
def
= r

We do not define an r-regular expression version of blexer_simp, as our proof does
not depend on it. Now we are ready to introduce how r-regular expressions allow
us to prove the size bound on bitcoded regular expressions.

6.2.3 Using R-regular Expressions to Bound Bit-coded Regular Expres-
sions

Everything about the size of annotated regular expressions after the application of
function bsimp and \simps can be calculated via the size of r-regular expressions after
the application of rsimp and \rsimps:

Lemma 6. The following equalities hold:

• J(a)↓rKr = JaK

• Jbsimp aK = Jrsimp (a)↓rKr
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• Ja\bsimpssK = J(a)↓r\rsimpssKr

Proof. First part follows from the definition of (_)↓r . The second part is by induction
on the inductive cases of bsimp. The third part is by induction on the string s, where
the inductive step follows from part one.

With lemma 6, we will be able to focus on estimating only J(a)↓r\rsimpssKr in later
parts because

J(a)↓r\rsimpssKr ≤ Nr implies Ja\bsimpssK ≤ Nr.

If we attempt to prove

∀r. ∃Nr. s.t.Jr\rsimpssKr ≤ Nr

using a naive induction on the structure of r, then we are stuck at the inductive cases
such as r1 · r2. The inductive hypotheses are:

1: for r1, there exists Nr1 . s.t. ∀s.Jr1\rsimpssKr ≤ Nr1 .
2: for r2, there exists Nr2 . s.t. ∀s.Jr2\rsimpssKr ≤ Nr2 .

The inductive step to prove would be

there exists Nr1·r2 . s.t.∀s.J(r1 · r2)\rsimpssKr ≤ Nr1·r2 .

The problem is that it is not clear what (r1 · r2)\rsimpss looks like, and therefore Nr1

and Nr2 in the inductive hypotheses cannot be directly used.
The point however, is that they will be equivalent to a list of terms ∑ rs, where

each term in rs will be made of r1\s′, r2\s′, and r\s′ with s′ ∈ SubString s (which
stands for the set of substrings of s). The list ∑ rs will then be de-duplicated by
rdistinct in the simplification, which prevents the rs from growing indefinitely.

Based on this idea, we develop a proof in two steps. First, we show the below
equality (where f and g are functions that do not increase the size of the input)

r\rsimpss = f (rdistinct (g ∑ rs)),

where r = r1 · r2 or r = r∗0 and so on. For example, for r1 · r2 we have the equality as

r1 · r2\rsimpss = rsimp (∑(r1\s · r2) :: (map r2\rsimps_ (Suffix s r1)))

We call the right-hand-side the Closed Form of (r1 · r2)\rsimpss. Second, we will bound
the closed form of r-regular expressions using some estimation techniques and then
apply lemma 6 to show that the bitcoded regular expressions in our blexer_simp are
finitely bounded.

We will describe in detail the first step of the proof in the next section.

6.3 Closed Forms

In this section we introduce in detail how to express the string derivatives of regular
expressions (i.e. r\rs where s is a string rather than a single character) in a different
way than our previous definition. In previous chapters, the derivative of a regular
expression r w.r.t a string s was recursively defined on the string:

r\s(c :: s) def
= (r\c)\ss
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The problem is that this definition does not provide much information on what r\ss
looks like. If we are interested in the size of a derivative like (r1 · r2)\s, we have to
somehow get a more concrete form to begin. We call such more concrete representa-
tions the “closed forms” of string derivatives as opposed to their original definitions.
The name “closed from” was inspired by closed forms in math, and the similarity
with closed forms here is that they make estimating the same term easier.

We start by proving some basic identities involving the simplification functions
for r-regular expressions. After that we introduce the rewrite relations h, ∗sc f  f

and  g. These relations involve similar techniques as in chapter 5 for annotated
regular expressions. Finally, we use these identities to establish the closed forms
of the alternative regular expression, the sequence regular expression, and the star
regular expression.

6.3.1 Some Basic Identities

In what follows we will often convert between lists and sets. We use Isabelle’s set to
refer to the function that converts a list rs to the set containing all the elements in rs.

rdistinct’s Does the Job of De-duplication

The rdistinct function, as its name suggests, will return a list of r-regular expressions
whose elements are distinct. The function application rdistinct rs acc returns a list
of distinct regular expressions. The accumulator set acc stands for the set of regular
expressions “accumulated” so far, and therefore should be removed from rs.

We present the properties about rdistinct as a list of sub-lemmas. Sub-lemmas
14 and 15 are the most important of this list–they will be used in equalities that
we prove about rsimp. But we choose to put some of their necessary preliminary
lemmas in as they are interesting in their own right. Particularly interesting is sub-
lemma 8, as the two propositions in each point need to be proven together to allow
the induction to go through. The key takeaway of this lemma is that rdistinct does
what it is supposed to do–deduplication.

Lemma 7. Assume we have the predicate isDistinct1 for testing whether a list’s elements
are unique. Then the following properties about rdistinct hold:

1. If a ∈ acc then a /∈ (rdistinct rs acc).

2. isDistinct (rdistinct rs acc).

3. set (rdistinct rs acc) = (set rs)− acc

4. The elements appearing in the accumulator will always be removed. More precisely,
If rs ⊆ rset, then rdistinct rs@rsa acc = rdistinct rsa acc.

5. More generally, if a ∈ rset and rdistinct rs {a} = [], then rdistinct (rs@rs′) rset =
rdistinct rs′ rset

6. The accumulator can be augmented to include elements not appearing in the input list,
and the output will not change. If r /∈ rs, then rdistinct rs acc = rdistinct rs ({r}∪
acc).

1We omit its recursive definition here. Its Isabelle counterpart would be distinct.
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7. Particularly, if isDistinct rs, then we have

rdistinct rs ∅ = rs

8. The two properties hold if r ∈ rs:

• rdistinct rs rset = rdistinct (rs@[r]) rset
and
rdistinct (ab :: rs@[ab]) rset′ = rdistinct (ab :: rs) rset′

• rdistinct (rs@rs′) rset = rdistinct rs@[r]@rs′ rset
and
rdistinct (ab :: rs@[ab]@rs′′) rset′ = rdistinct (ab :: rs@rs′′) rset′

9. rdistinct (rs@rs′) ∅ = rdistinct ((rdistinct rs ∅)@rs′) ∅

10. rdistinct (rs@rs′) ∅ = rdistinct (rdistinct rs ∅@rs′) ∅

11. If rset′ ⊆ rset, then rdistinct rs rset = rdistinct (rdistinct rs rset′) rset. As a
corollary of this,

12. rdistinct (rs@rs′) rset = rdistinct (rdistinct rs ∅)@rs′ rset. This gives another
corollary use later:

13. If a ∈ rset, then rdistinct (rs@rs′) rset = rdistinct (rdistinct (a :: rs) ∅@rs′) rset,

14. rdistinct is composable w.r.t list concatenation: If isDistinct rs1, and (set rs1) ∩
acc = ∅, then applying rdistinct on rs1@rsa does not have an effect on rs1:

rdistinct (rs1@rsa) acc = rs1@(rdistinctrsa (acc ∪ rs1))

15. rdistinct needs to be applied only once, and applying it multiple times does not make
any difference: rdistinct (rs@rsa) ∅ = rdistinct ((rdistinct rs ∅)@(rdistinct rsa (set rs))) ∅

Proofs of these are omitted, as they can be completed by straightforward induc-
tion/automation. This is somewhat similar to the classical theorem prover tutorial
example rev (rev rs) = rs: as long as the necessary preliminary lemmas such as
rev(rs@rs′) = rev rs′@rev rs that needs to be proven beforehand are outlined, it is
routine to flesh out the detailed proofs. In a similar vein we do not provide the flesh
of the proofs but give an outline.

The Properties of Rflts

We give in this subsection some properties involving \r, \rsimps, rflts and rsimpALTS,
together with any non-trivial lemmas that lead to them. These will be helpful in
later closed-form proofs, when we want to transform derivative terms which have
interleaving derivatives and simplifications applied to them.

Lemma 8. The function rflts has the properties below:

• Rflts is composable in terms of concatenation: rflts (rs1@rs2) = rflts rs1@rflts rs2

• If r 6= 0r and @rs1.r = ∑ rs1, then rflts (r :: rs) = r :: rflts rs

• rflts (rs@[0r]) = rflts rs
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• rflts (rs′@[∑ rs]) = rflts rs′@rs

• rflts (rs@[1r]) = rflts rs@[1r]

• If r 6= 0r and @rs′.r = ∑ rs′ then rflts (rs@[r]) = (rflts rs)@[r]

• If r = ∑ rs and r ∈ rs′ then for all r1 ∈ rs.r1 ∈ rflts rs′.

• rflts (rsa@0r :: rsb) = rflts (rsa@rsb)

• The derivative operation and the rsimpALTS function commute:

(rsimpALTS rs)\rx = rsimpALTS (map (_\rx) rs)

(this will be used later on when deriving the closed form for the alternative regular
expression)

Simplified Rrexps are Good

We formalise the notion of “good” regular expressions, which characterise regular
expressions that have been simplified once by rsimp. The definition of good is:

good 0r
def
= false

good 1r
def
= true

good cr
def
= true

good ∑[]
def
= false

good ∑[r] def
= false

good ∑ r1 :: r2 :: rs def
= isDistinct (r1 :: r2 :: rs)
∧ (∀r′ ∈ (r1 :: r2 :: rs). good r′ ∧ nonAlt r′)

good 0r · r
def
= false

good 1r · r
def
= false

good r · 0r
def
= false

good r1 · r2
def
= good r1 and good r2

good r∗ def
= true

For alternative regular expressions that means they do not contain any nested al-
ternatives, un-eliminated 0rs, singleton or empty children list, or duplicate elements
(for example, r1 +(r2 + r3), 0r + r, ∑[] or ∑[r, r, . . .]). We omit the recursive definition
of the predicate nonAlt, which evaluates to true when the regular expression is not
an alternative, and false otherwise.

We prove that all simplified r-regular expressions are good unless they are 0r. In
other words, good precisely characterises the features of rsimp’s output:

Lemma 9. (Simplified regular expressions are good.)
For any r-regular expression r, good rsimp r or rsimp r = 0r.

Proof. By an induction on r. For the sequence case,

rsimp r1 · r2 = rsimpSEQ rsimp r1 rsimp r2.

If at least one of rsimp r1 or rsimp r2 is 0r then RHS is 0r. Otherwise both are good and
therefore rsimp r1 · r2 = RSEQ rsimp r1 rsimp r2 is good.
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For the alternative case, rsimp r = rsimp ALTS (rdistinct rflts (map rsimp rs) ∅).
Let rs′ = map rsimp rs. By inductive hypothesis, all r′ from rs′ are good or 0rs. Let
rs′′ = rflts rs′. By definition of rflts and good, all elements from rs′′ are good and not
0rs or alternatives. Let rs′′′ = rdistinct rs′′ ∅, then all elements in rs′′′ are distinct
by lemma 7, and they are good. Now we do a case analysis on rs′′′. It could be an
empty list, which means rsimp r = 0r, or a singleton list rs, which means rsimp r = rs
is good. Or it could be a list with two or more elements, and rsimp r = ∑ rs′′′ which
is good by definition.

Now we are ready to prove that good regular expressions are a fixed point for the
function rsimp , and more importantly rsimp is idempotent:

Lemma 10. (Good r-regular expressions cannot be further simplified.)

• If good r then rsimp r = r.

• (rsimp idempotency) rsimp (rsimp r) = rsimp r

Proof. For the first part, By an induction on the inductive cases of good. The most
involved case is for the alternative. Let r = ∑ rs be a good alternative. we have
the inductive hypothesis that ∀r ∈ rs.good r, and additionally: (i)rs is not an empty
or singleton list, (ii)all elements of rs are not alternative regular expressions or 0rs,
(iii)all regular expressions in rs are distinct, (iv)map rsimp rs = rs. By (ii) we know
that rflts rs = rs, and by (iii) we have rdistinct rflts rs ∅ = rs.

Therefore
rsimp r =
rsimp ∑ rs =
rsimp ALTS (rdistinct rflts (map rsimp rs) ∅) =
rsimp ALTS (rdistinct rflts rs ∅) =
rsimp ALTS (rdistinct rs ∅) =
rsimp ALTS rs =

∑ rs.

Part 2 follows from part 1 because we know that r′ = rsimp r is either good or 0r from
lemma 9. In both cases, we have rsimp r′ = r′.

The idempotency of rsimp is very useful in proving equality for closed forms. For
instance, one can use the equality rsimp rsimp r = rsimp r in a symmetric way, and
obtain properties like:

Corollary 2.

• map rsimp (r :: rs) = map rsimp (rsimp r :: rs)

• rsimp (∑ rs) = rsimp (∑ map rsimp rs).

• rsimpALTS (0r :: rs)
rsimp
= rsimpALTS rs

• rsimpALTS rs
rsimp
= rsimpALTS(map rsimp rs)

• ∑ ∑ rs
rsimp
= ∑ rs

• ∑((∑ rsa) :: rsb)
rsimp
= ∑ rsa@rsb
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• ∑ rs
rsimp
= ∑ map rsimp rs

The idempotency property also means the fixed-point construction in Sulzmann
and Lu’s simplification function is strictly unnecessary for bsimp, as one does not get
any more gains with multiple consecutive simplifications.

The idempotency lemma also allows us to prove some of the most involved prop-
erties that need to be used in the closed-form proofs. The idea is that the way alter-
natives are nested do not matter under rsimp :

(a + b) + (c + d)
rsimp
= ∑[a, b, c, d].

This is very intuitive, however surprisingly hard to prove in our formalisation. In
fact, we found this below lemma the most complicated to prove in the entire formal-
isation of this thesis:

Lemma 11. One can flatten the inside ∑ of a ∑ if it is being simplified. Concretely,

• If for all r ∈ rs, rs′, rs′′, we have good r or r = 0r, then ∑(rs′@rs@rs′′)
rsimp
=

∑(rs′@[∑ rs]@rs′′) holds. As a corollary,

• ∑(rs′@[∑ rs]@rs′′)
rsimp
= ∑(rs′@rs@rs′′)

Proof. By rewriting steps involving the use of 10 and 9.

rsimp ∑(rs′@rs@rs′′) =

rsimpALTS (rdistinct rflts ((map rsimp rs′)@(map rsimp rs)@(map rsimp rs′′)) ∅) =

rsimpALTS (rdistinct (rflts rs′@rflts rs@rflts rs′′) ∅) =

rsimpALTS (rdistinct (rflts rs′@rdistinct (rflts rs) ∅@rflts rs′′) ∅) =

rsimpALTS (rdistinct (rflts rs′@rdistinct (rflts (map rsimp rs)) ∅@rflts rs′′) ∅) =

rsimpALTS (rdistinct (rflts rs′@[rsimpALTS (rdistinct (rflts (map rsimp rs)) ∅)]@rflts rs′′) ∅) =

rsimpALTS (rdistinct (rflts rs′@[rsimp ∑ rs]@rflts rs′′) ∅) =

rsimpALTS (rdistinct (rflts (rs′@[∑ rs]@rs′′)) ∅) =

rsimp ∑(rs′@[∑ rs]@rs′′)

rsimp can be added and removed freely because rs’s elements are good (or 0r), so
map rsimp rs = rs. Getting part 2 from part 1 is by

rsimp ∑(rs′@rs@rs′′) = rsimp ∑(rsimp rs′@rsimp rs@rsimp rs′′).

Then we know that all elements of rsimp rs etc. are good and therefore part 1 applies.

It seems to us that the reason for the hardness was this lemma cannot be broken
down into several smaller properties. Therefore the term rsimp (∑ rs′@rs@rs′′) has
to be expanded manually to guide the proof or otherwise the sheer size of the ex-
panded terms and the different possibilities of expanding would cause sledgeham-
mer to time out. Even though the steps in the proof of this lemma is reasonably
detailed, it is still not a verbatim representation of the rewrite steps in the Isabelle
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RSEQ0L
0r · r2  h 0r

RSEQ0R
r1 · 0r  h 0r

RSEQ1
(1r · r) h r

RSEQL
r1  h r2

r1 · r3  h r2 · r3

RSEQR
r3  h r4

r1 · r3  h r1 · r4

RALTSCHILD
r h r′

∑(rs1@[r]@rs2) h ∑(rs1@[r′]@rs2)

RALTS0

∑(rsa@[0r]@rsb) h ∑(rsa@rsb)

RALTSNESTED

∑(rsa@[∑ rs1]@rsb) h ∑(rsa@rs1@rsb)

RALTSNIL

∑[] h 0r

RALTSSINGLE

∑[r] h r

RALTSDELETE
r1 = r2

∑ rsa@[r1]@rsb@[r2]@rsc h ∑ rsa@[r1]@rsb@rsc

FIGURE 6.2: List of one-step rewrite rules for r-regular expressions
( h)

proof script. Typesetting all detailed steps here is too cumbersome. We refer the
interested readers to the lemma called “good_flatten_middle” in the repository [46]
for details.

We need more equalities like the above lemma to enable a closed form lemma,
for which we need to introduce a few rewrite relations to help us obtain them.

6.3.2 The rewrite relation h , ∗
 sc f , f and g

Inspired by the success we had in the correctness proof of blexer_simp in chapter 5, we
follow suit here, defining individual simplification steps as “small-step” rewriting
rules. This allows capturing similarities between terms that would be otherwise
hard to express.

We use  h for one-step rewrite of regular expression simplification,  f for
rewrite of list of regular expressions that include all operations carried out in rflts,
and g for rewriting a list of regular expressions possible in both rflts and rdistinct.
Their reflexive transitive closures are used to denote zero or many steps, as was
the case in the previous chapter. As we have already done something similar, the
presentation about these rewriting rules will be more concise than that in 5. To dif-
ferentiate between the rewriting steps for annotated regular expressions and rrexps,
we add characters h and g below the squig arrow symbol to mean simplification
transitions of rrexps and rrexp lists, respectively.

Like s, it is convenient to define rewrite rules for a list of regular expressions,
where each element can rewrite in many steps to the other (scf stands for list closed
f orm). This relation is similar to the s∗

 for annotated regular expressions.
List of one-step rewrite rules for flattening a list of regular expressions( f ):
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[]
∗
 sc f []

r ∗
 h r′ rs ∗

 sc f rs′

r :: rs ∗
 sc f r′ :: rs′

FIGURE 6.3: List of one-step rewrite rules for a list of r-regular ex-
pressions

0r :: rs f rs (∑ rs) :: rsa  f rs@rsa rs1  f rs2

r :: rs1  f r :: rs2

FIGURE 6.4: List of one-step rewrite rules characterising the rflts op-
eration on a list

Lists of one-step rewrite rules for flattening and de-duplicating a list of regular
expressions ( g):

0r :: rs g rs (∑ rs) :: rsa  g rs@rsa rs1  g rs2

r :: rs1  g r :: rs2

DB
rsa@[a]@rsb@[a]@rsc  g rsa@[a]@rsb@rsc

FIGURE 6.5: List of one-step rewrite rules characterising the rflts and
rdistinct operations

We define two separate list rewriting relations f and g. The rewriting steps that
take place during flattening are characterised by f . The rewrite relation g char-
acterises both flattening and de-duplicating. Sometimes ∗

 g is slightly too powerful
so we would rather use ∗

 f to prove equalities related to rflts. For instance,  f is
more useful in proving the below lemma:

Lemma 12. ∑(rdistinct (map (_\x) (rflts rs)) ∅)
rsimp
= ∑(rdistinct (rflts (map (_\x) rs)) ∅)

Proof. We have that

map (_\x) (rflts rs) ∗
 f rflts (map (_\x) rs)

holds. Also, we have that

rs1
∗
 f rs2 =⇒ ∑(rdistinct rs1 ∅)

rsimp
= ∑(rdistinct rs2 ∅).

By letting rs1 = (rdistinct (map (_\x) (rflts rs)) ∅) and rs2 = (rdistinct (rflts (map (_\x) rs)) ∅),
we get the desired equality.

But this trick will not work for ∗
 g. For example, a rewriting step in proving closed

forms is:
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rsimp (rsimpALTS (map (_\x) (rdistinct (rflts (map (rsimp ◦ (λr.r\rsimpsxs)))) ∅)))
=

rsimp (rsimpALTS (rdistinct (map (_\x) (rflts (map (rsimp ◦ (λr.r\rsimpsxs))))) ∅))

For this, one would hope to have a rewriting relation between the two lists involved,
similar to 6.3.2. However, it turns out that

map (_\x) (rdistinct rs rset) ∗
 g rdistinct (map (_\x) rs) (rset\x)

does not hold in general. For this rewriting step we will introduce some slightly
more cumbersome proof technique later. The point is that  f allows us to prove
equivalence in a straightforward way that is not possible for g.

Terms That Can Be Rewritten Using ∗
 h, ∗
 g, and ∗

 f

In this part, we present lemmas stating pairs of r-regular expressions and r-regular
expression lists where one can rewrite from one in many steps to the other. Most
of the proofs to these lemmas are straightforward, using an induction on the corre-
sponding rewriting relations. These proofs will therefore be omitted when this is the
case. Also because we have shown similar techniques in chapter 5 with rewriting
relations, the presentation of proofs will be accelerated and more concise. Below are
some properties of ∗

 g, ∗
 g, ∗
 sc f , and ∗

 f :

Lemma 13.

• rs1@rs ∗
 g rs1@(rdistinct rs rs1)

• rs ∗
 g rdistinct rs ∅

• rsa@(rdistinct rs rsa)
∗
 g rsa@(rdistinct rs ({0r} ∪ rsa))

• rs @ rdistinct rsa rset ∗
 g rs@rdistinct rsa (rest ∪ rs)

• If a pair of terms rs1, rs2 are rewritable via ∗
 g to each other, then they are equivalent

under rsimp : If rs1
∗
 g rs2, then we have the following equivalence:

– ∑ rs1
rsimp
= ∑ rs2

– rsimpALTS rs1
rsimp
= rsimpALTS rs2

Here are a few connecting lemmas showing that if a list of regular expressions can be
rewritten using ∗

 g or ∗
 f or ∗

 sc f , then an alternative constructor taking the list can
also be rewritten using ∗

 h:

– If rs ∗
 g rs′ then ∑ rs ∗

 h ∑ rs′.

– If rs ∗
 g rs′ then ∑ rs ∗

 h rsimpALTS rs′

– If rs1
∗
 sc f rs2 then ∑(rs@rs1)

∗
 h ∑(rs@rs2)

– If rs1
∗
 sc f rs2 then ∑ rs1

∗
 h ∑ rs2

• If r1
∗
 h r2 then r1

rsimp
= r2.

• Similar to chapter 5, we prove that r-derivatives and rewriting commute:
If r ∗
 h r′ then r\rc ∗

 h r′\rc.
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• rsimp ((rsimp r)\rc) = rsimp (r\rc)

• As corollaries of the above lemma, we have

– If s 6= [] then r\rsimpss = rsimp (r\rsimpss).

– rsimpALTS (map (_\rx) (rdistinct rs ∅))
rsimp
= rsimpALTS (rdistinct (map (_\rx) rs) ∅)

Generally these lemmas are simple enough that they can be solved by straightfor-
ward induction and automation. They will be used at later proofs as individual
rewriting steps.

6.3.3 Closed Forms for ∑ rs, r1 · r2 and r∗

Lemma 13 leads to our first closed form, which is for the alternative regular expres-
sion:

Theorem 5.

(∑ rs)\rsimpss
rsimp
= ∑ (map (_\rsimpss) rs)

Proof. By an induction on the string s. The case split is [] ans s@[c] (this induction
strategy is supported by Isabelle’s list type). For the base case,

LHS = ((∑ rs)\rsimps[]) = (∑ rs) = ∑ (map id rs) = RHS.

The inductive case is proven by the following rewrite stpes:

LHS =

∑ rs\rsimps(s@[c]) =

(∑ rs\rsimpss)\rsimps[c] =

(∑(map (_\rsimpss) rs))\rsimps[c] =

rsimp ((∑(map (_\rsimpss) rs))\c) =

rsimpALTS (map (_\c) (rdistinct (rflts (map (rsimp ◦ (λr.r\rsimpss)))) ∅)) =

rsimpALTS (rdistinct (map (_\c) (rflts (map (rsimp ◦ (λr.r\rsimpss)) rs))) ∅) =

rsimpALTS (rdistinct (rflts (map ((_\c) ◦ rsimp ◦ (λr.r\rsimpss)) rs)) ∅) =

rsimpALTS (rdistinct (rflts (map (rsimp ◦ (_\c) ◦ (λr.r\rsimpss)) rs)) ∅) =

rsimpALTS (rdistinct (rflts (map ((λr.r\rsimps(s@[c]))) rs)) ∅) =

rsimp (map ((λr.r\rsimps(s@[c]))) rs).

This closed form has a variant which can be more convenient in later proofs:

Corollary 3. If s 6= [], then (∑ rs)\rsimpss = rsimp (∑ (map _\rsimpss rs)).

Here are some examples of this closed form:

·
(a∗ + b∗)\rsimpsaaaa

rsimp
= (a∗\rsimpsaaaa + b∗\rsimpsaaaa)

(aba + ab + a)\rsimpsaba
rsimp
= (aba\rsimpsaba + ab\rsimpsaba + a\rsimpsaba)
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Despite the intuition being quite simple, the precise formulation and proof is rather
heavy. The harder closed forms are the sequence and star ones. Before we obtain
them, some preliminary definitions are needed to make proof statements concise.

Closed Form for Sequence Regular Expressions

For the sequence regular expression, let’s first look at a series of derivative steps on
it (assuming that each time when a derivative is taken, the head of the sequence is
always nullable):

r1 · r2 −→\c
r1\c · r2 + r2\c −→\c′

(r1\cc′ · r2 + r2\c′) + r2\cc′ −→\c′′

((r1\cc′c′′ · r2 + r2\c′′) + r2\c′c′′) + r2\cc′c′′ −→\c′′

. . .

Roughly speaking r1 · r2\s can be expressed as a giant alternative taking a list of
terms [r1\rs · r2, r2\rs′′, r2\rs′′1 , . . .], where the head of the list is always the term rep-
resenting a match involving only r1, and the tail of the list consisting of terms of the
shape r2\rs′′, s′′ being a suffix of s. This intuition is also echoed by Murugesan and
Sundaram [61], where they gave a pencil-and-paper derivation of (r1 · r2)\s:

L [(r1 · r2)\r(c1 :: c2 :: . . . cn)] =

L [((r1\rc1) · r2 + (δ (nullable r1) (r2\rc1)))\r(c2 :: . . . cn)] =

L [((r1\rc1c2 · r2 + (δ (nullable r1) (r2\rc1c2)))

+(δ (nullable r1\rc) (r2\rc2)))\r(c3 . . . cn)] . . .

The δ function returns r when the boolean condition b evaluates to true and 0r oth-
erwise:

δ b r def
= r if b is true
def
= 0r otherwise

We are aware that this delta function notation is unconventional, however we keep
this notation to be faithful to the original authors’ derivation. Expressed as case
statements, the third term’s argument would look like

((r1 · r2)\rc1c2)\r =



{
(r1\c1c2) · r2 + r2\c2 + r2\c1c2 if nullable r1 and nullable r1\c1

(r1\c1c2) · r2 + r2\c1c2 if nullable r1 and ¬(nullable r1\c1){
(r1\c1c2) · r2 + r2\c2 if ¬(nullable r1) and nullable r1\c1

(r1\c1c2) · r2 if ¬(nullable r1) and ¬(nullable r1\c1)

The case statements are not possible to eliminate if one wants to be precise here and
not use the delta function style notation. For instance, an attempt we made was
letting the string derivatives be defined in a “convolution” style, for example for the
two-character case as
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(r1 · r2)\c1c2 = (r1\c1c2 · r2 + r1\c1 · r2\c2) + r1 · r2\c1c2.

This is clearly wrong, and the redundant sub-terms should not created in the first
place. For closed forms only terms r2\rs′′ satisfying the property

∃s′.such that s′@s′′ = s and r1\s′ is nullable.

should be generated. Given the arguments s and r1, we can define a recursive func-
tion which generates such terms in the right order: 2

Suffix :: ”string⇒ rrexp⇒ string list”
Suffix [] _ = []
Suffix (c :: cs) r1 = if (rnullable r1) then (Suffix cs (r1\rc))@[(c :: cs)]

else (Suffix cs (r1\rc))

The list starts with shorter suffixes and ends with longer ones, which means the
string elements s′′ in the list Suffix s r1 are sorted in the same order as that of
the terms r2\s′′ appearing in (r1 · r2)\s. In essence, Suffix _ _ is doing a "virtual
derivative" of r1 · r2, but instead of producing the entire result (r1 · r2)\s, it only
stores strings, with each string s′′ representing a term such that r2\s′′ is occurring in
(r1 · r2)\s. Here are a few examples of Suffix s r’s computations: Example 1:

Suffix aaa a∗ =

Suffix aa (1 · a∗)@[(aaa)] =

(Suffix a (0 · a∗ + 1 · a∗)@[(aa)])@[(aaa)] =

(Suffix [] (0 · a∗ + 0 · a∗ + 1 · a∗))@[a]@[aa]@[aaa] =

[a, aa, aaa].

We have not optimised Suffix since it is only designed for proofs. However the
derivatives can grow into cumbersome arguments soon with larger regular expres-
sions, and therefore in the next examples we simplify things in each step. This is not
completely rigorous but makes the presentation much clearer. Example 2:

Suffix aaa (aa)∗ =

Suffix aa (a · (aa)∗)@[(aaa)] =

(Suffix a ((aa)∗))@[(aaa)] =

(Suffix [] (a · (aa)∗))@[a]@[aaa] =

[a, aaa].

Example 3:

2 Perhaps a better name for it would be “NullablePrefixSuffix” to differentiate with the list of all
prefixes of s, but that is a bit too long for a function name and we are yet to find a more concise and
easy-to-understand name.
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Suffix ababa (aba + ab + a)∗ =

Suffix baba ((ba + b + 1) · (aba + ab + a)∗)@[ababa] =

Suffix aba ((a + 1) · (aba + ab + a)∗)@[baba]@[ababa] =

Suffix ba ((aba + ab + a)∗ + (ba + b + 1) · (aba + ab + a)∗)@[aba]@[baba]@[ababa] =

Suffix a ((aba + ab + a)∗ + (ba + b + 1) · (aba + ab + a)∗)@[ba]@[aba]@[baba]@[ababa] =

Suffix [] ((ba + b + 1) · (aba + ab + a)∗)@[a]@[ba]@[aba]@[baba]@[ababa] =

[a, ba, aba, baba, ababa].

We can see more clearly from example 3 that indeed we are getting the suffixes,
not substrings or prefixes. Suffix enables us to obtain the closed-form of sequence
regular expressions:

Theorem 6. (r1 · r2)\rsimpss = rsimp (∑((r1\s) · r2) :: (map (r2\_)(Suffix s r1)))

Proof. Let us first define a function LM (together with its helper LM′) which opens up
nested alternatives and turn them into a single-level alternative:

L_M′ :: ”rrexp⇒ rrexp list”

L∑ r :: rsM′ def
= LrM′@rs

L∑[]M′ def
= []

LrM′ def
= [r]

L_M :: ”rrexp⇒ rrexp”

L(∑ r :: rs)M def
= ∑(LrM′@rs)

L∑[]M def
= ∑[]

LrM def
= r

Let r = (r1 · r2)\rs and rs = LrM′, then we have that

rsimp (r1 · r2)\rs = rsimp (∑ rs)

holds. we also have that

rs = (r1\rs) · r2 :: (map (r2\r_) (Suffix s r1))

holds (see lemma 14). This concludes the proof.

We present the proof of equation rs = (r1\rs) · r2 :: (map (r2\r_) (Suffix s r1)) now,
which is required by theorem 6.

Lemma 14. L(r1 · r2)\rsM′ = (r1\rs) · r2 :: (map (r2\r_) (Suffix s r1))

Proof. The base case holds because

Lr1 · r2M′\r[] = [r1 · r2] = r1\s[] · r2 :: [] = r1\s[] · r2 :: (map (r2\r_) (Suffix [] r1)).

Now for the inductive case, first define a version of the flattening function that works
on a list of r-regular expressions:

L_M′′ :: ”rrexp list⇒ rrexp list”

L[]M′′ def
= []

L(r1 + r2) :: rsM′′ def
= r1 :: r2 :: rs

Lr :: rsM′′ def
= r :: rs
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When r1\rs is not nullable, we have

rs =

L(r1 · r2)\rs@[c]M′ =

L((r1 · r2)\rs)\rcM′ =

L(map (_\rc) L(r1 · r2)\rsM′)M′′ =

L(map (_\rc) ((r1\rs) · r2 :: (map (r2\r_) (Suffix s r1))))M′′ =

L(((r1\rs@[c]) · r2 :: (map (r2\r_) (map (λs′.s′@[c]) (Suffix s r1)))))M′′ =

L(((r1\rs@[c]) · r2 :: (map (r2\r_) (Suffix s@[c] r1))))M′′ =

(r1\rs@[c]) · r2 :: (map (r2\r_) (Suffix s@[c] r1)).

When r1\rs is nullable, the antepenultimate step above needs to be changed:

rs =

L(r1 · r2)\rs@[c]M′ =

. . . =

L(map (_\rc) ((r1\rs) · r2 :: (map (r2\r_) (Suffix s r1))))M′′ =

L(((r1\rs@[c]) · r2 :: r2\rc :: (map (r2\r_) (map (λs′.s′@[c]) (Suffix s r1)))))M′′ =

L(((r1\rs@[c]) · r2 :: (map (r2\r_) (Suffix s@[c] r1))))M′′ =

(r1\rs@[c]) · r2 :: (map (r2\r_) (Suffix s@[c] r1)).

We did not put it before theorem 6 because we wanted to highlight the reason for
defining the Suffix function–for the closed form of sequence regular expressions. In-
serting lemma 14 between the definition of Suffix and theorem 6 would make this
less clear.

Closed Forms for Star Regular Expressions

The closed form for the star regular expression involves similar tricks for the se-
quence regular expression. The Suffix function is now replaced by something slightly
more complex, because the growth pattern of star regular expressions’ derivatives is
a bit different:

r∗ −→\c
(r\c) · r∗ −→\c′

r\cc′ · r∗ + r\c′ · r∗ −→\c′′

(r1\cc′c′′ · r∗ + r\c′′) + (r\c′c′′ · r∗ + r\c′′ · r∗) −→\c′′′

. . .

When we have a string s = c :: c′ :: c′′ . . . such that r\c, r\cc′, r\c′, r\cc′c′′, r\c′c′′,
r\c′′ etc. are all nullable, the number of terms in r∗\s will grow exponentially rather
than linearly in the sequence case. An examples of this:
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(a + aa + aaa)∗\aaa =

((1) · (a + aa + aaa)∗ + (1 + a + aa) · (a + aa + aaa)∗)+

((1 + a) · (a + aa + aaa)∗ + (1 + a + aa) · (a + aa + aaa)∗)

The point is that the function rsimp ignores the difference between different nesting
patterns of alternatives, and the exponentially growing star derivative like

(r1\cc′c′′ · r∗ + r\c′′) + (r\c′c′′ · r∗ + r\c′′ · r∗)

can be treated as

∑[r1\cc′c′′ · r∗, r\c′′, r\c′c′′ · r∗, r\c′′ · r∗].

which can be de-duplicated by rdistinct and therefore bounded finitely. The closed
form of star regular expressions is the theorem for doing this. In other words, we
define a suitable rs where

r∗\rsimpss = rsimp ∑ rs.

holds. More specifically, the list rs shall be in the form of map (λs′.r\s′ · r∗) Ss. Ss
is a list of strings, and for example in the sequence closed form it is specified as
Suffix s r1. To get Ss for the star regular expression, we need to introduce starUpdate
and starUpdates:

starUpdate c r [] def
= []

starUpdate c r (s :: Ss) def
=

if (rnullable (r\rss))
then (s@[c]) :: [c] :: (starUpdate c r Ss)
else (s@[c]) :: (starUpdate c r Ss)

starUpdates [] r Ss = Ss
starUpdates (c :: cs) r Ss = starUpdates cs r (starUpdate c r Ss)

With starUpdates defined, the closed form for star regular expressions can be given
as:

Theorem 7. r∗\rsimps(c :: s) = rsimp (∑(map (λs.(r\rsimpss) · r∗) (starUpdates s r [[c]])))

We omit the (quite tedious) proof because it contains a similar set of rewrite steps as
the proofs of the sequence closed form (6). For readers interested in the details, see
the Isabelle formalisation [46] for details.

6.4 Bounding Closed Forms

In this section, we introduce how we proved the bound on derivatives r\rsimpss by
bounding the closed forms derivatives. We first show that the total size of rdistinct rs ∅
is bounded by a constant C which depends on the maximum size of any element of
rs only, not on the list length of rs. Then we prove that functions such as rflts will not
cause the size of r-regular expressions to grow. This leads to the lemma that rsimp
does not increase the size of a regular expression.
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6.4.1 Finiteness of Distinct Regular Expressions

We define the set of regular expressions whose size is no more than a certain size N
as sizeNregex N:

sizeNregex N def
= {r | JrKr ≤ N}

Then the following lemma holds:

Lemma 15. If ∀r ∈ rs, JrKr ≤ N, then there exists a natural number dN such that
Jrdistinct rs ∅Kr ≤ dN holds.

Proof. Let dN = cN ∗ N, where the constant cN = card (sizeNregex N). For all r in
set (rdistinct rs ∅), it is always the case that JrKr ≤ N. In addition, we know that
length rdistinct rs ∅ ≤ cN as every element in rs is unique and with a size smaller
than N.

This fact will be handy in estimating the closed form sizes.

6.4.2 rsimp Does Not Increase the Size

Although intuitive, proving that Jrsimp rKr is less than or equal to JrKr is harder than
we expected.

Lemma 16.

• JrsimpALTS rsKr ≤ J∑ rsKr

• JrsimpSEQ r1 r2Kr ≤ Jr1 · r2Kr

• Jrflts rsKr ≤ JrsKr

• Jrdistinct rs ssKr ≤ JrsKr

• If all elements a in the set as satisfy the property that Jrsimp aKr ≤ JaKr, then we have
J rsimpALTS (rdistinct (rflts (map rsimpas)){})K ≤

J ∑ (rdistinct (rflts (map rsimp x)) {})Kr

• Jrsimp rKr ≤ JrKr

The sub-lemmas gradually build up until the last one. All proofs can be completed
with suitable induction and automation and are therefore omitted.

6.4.3 Estimating the Closed Forms’ sizes

We recap the closed forms we obtained earlier:

• (∑ rs)\rsimpss
rsimp
= ∑ (map (_\rsimpss) rs)

• (r1 · r2)\rsimpss
rsimp
= ∑((r1\s) · r2) :: (map (r2\_)(Suffix s r1))

• r∗\rsimpsc :: s = rsimp (∑(map (λs.(r\rsimpss) · r∗) (starUpdates s r [[c]])))

The closed forms on the left-hand-side are all of the same shape: rsimp (∑ rs). This
expression, in turn is equal to rsimpALTS (rdistinct rs′ ∅) for some rs′ and therefore
the general bound for rdistinct’s output (lemma 15) applies.

We elaborate the above reasoning by a series of lemmas below, where straight-
forward proofs are omitted.
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Lemma 17.

• If we have three accumulator sets: noalts_set, alts_set and corr_set, satisfying:

– ∀r ∈ noalts_set. @xs. r = ∑ xs

– ∀r ∈ alts_set. ∃xs. r = ∑ xs and set xs ⊆ corr_set

then we have that

J(rdistinct (rflts rs) (noalts_set ∪ corr_set))Kr ≤
J(rdistinct rs (noalts_set ∪ alts_set ∪ {0r}))Kr

holds.

• rdistinct and rflts working together is at least as good as rdistinct alone, which can be
written as

Jrdistinct (rflts rs) ∅Kr ≤ Jrdistinct rs ∅Kr.

• Jrsimp ∑ rsKr ≤ Jrdistinct rs ∅Kr + 1

Proof. The last part is directly from the second part. The second part is a direct
corollary of the first by letting noalts_set and alts_set be equal to ∅, which gives us

Jrdistinct (rflts rs) ∅Kr ≤ Jrdistinct rs {0r}Kr.

RHS is less than or equal to Jrdistinct rs ∅Kr.
We focus on the first sub-lemma. Here is the intuition behind the slightly weird

preconditions: We split the accumulator into two parts: the part which contains al-
ternative regular expressions (alts_set), and the part without any of them(noalts_set).
The set corr_set is the corresponding set of alts_set with all elements under the alter-
native constructor spilled out.

Now we do an induction on the list rs. For the base case, the two terms are equal
and therefore the inequality is vacuously true. For the inductive case, the inductive
hypothesis is that

J(rdistinct (rflts rs) (noalts_set ∪ corr_set))Kr ≤
J(rdistinct rs (noalts_set ∪ alts_set ∪ {0r}))Kr

already holds. Now for rs′ = r :: rs, the LHS is equal to

J(rdistinct (rflts (r :: rs)) (noalts_set ∪ corr_set))Kr.

We do a case analysis on r. (i) If r is equal to 0r then the above is equal to

J(rdistinct (rflts (rs)) (noalts_set ∪ corr_set))Kr.

which by the inductive hypothesis is less than or equal to

J(rdistinct rs (noalts_set ∪ alts_set ∪ {0r}))Kr =
J(rdistinct (0r :: rs) (noalts_set ∪ alts_set ∪ {0r}))Kr

(ii) If r is not an alternative, LHS is equal to

J(rdistinct (r :: (rflts (rs))) (noalts_set ∪ corr_set))Kr.

in the case that r /∈ noalts_set, this is equal to

Jr :: (rdistinct (rflts (rs)) ((noalts_set ∪ {r}) ∪ corr_set))Kr.
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Now setting noalts_set′ = (noalts_set ∪ {r}), we are able to use the inductive hy-
pothesis:

Jr :: (rdistinct (rflts (rs)) ((noalts_set ∪ {r}) ∪ corr_set))Kr =
Jr :: (rdistinct (rflts (rs)) (noalts_set′ ∪ corr_set))Kr ≤
Jr :: (rdistinct rs (noalts_set′ ∪ alts_set ∪ {0r}))Kr =
J(rdistinct (r :: rs) (noalts_set ∪ alts_set ∪ {0r}))Kr. =
RHS.

The last term is equal to the RHS of the inequality desired. Similar reasoning steps
apply to the situation where r ∈ noalts_set.
(iii) If r is an alternative, then we have that r = ∑ rs′′ for some rs′′.

LHS =
J(rdistinct (rs′′@rflts (rs)) (noalts_set ∪ corr_set))Kr ≤
J(rdistinct rs′′@rs (noalts_set ∪ corr_set))Kr =
J(rdistinct (∑ rs′′) :: rs (noalts_set ∪ corr_set))Kr =
J(rdistinct (r :: rs) (noalts_set ∪ alts_set ∪ {0r}))Kr. =
RHS.

We are now ready to show the bound on the closed forms of (r1 · r2)\s and r∗\s and
in general r\s.

Theorem 8. For any regex r, one can pick a natural number Nr, s.t. ∀s. Jr\rsimpssKr ≤ Nr.

Proof. We prove this by induction on r. The base cases for 0r, 1r and cr are straightfor-
ward. In the sequence r1 · r2 case, the inductive hypotheses state ∃N1.∀s. Jr\rsimpssK ≤
N1 and ∃N2.∀s. Jr2\rsimpssK ≤ N2.

When the string s is not empty, we can reason as follows

Jr1 · r2\rsimpssKr
= Jrsimp (∑(r1\rsimpss · r2 :: map (r2\rsimps_) (Suffix s r)))Kr (1)
≤ Jrdistinct (r1\rsimpss · r2 :: map (r2\rsimps_) (Suffix s r)) ∅Kr + 1 (2)
≤ 2 + N1 + Jr2Kr + (N2 ∗ (card (sizeNregex N2))) (3)

(1) is by theorem 6. (2) is by 17. (3) is by 15.
Combining the cases when s = [] and s 6= [], we get (4):

J(r1 · r2)\rsKr ≤ max (2 + N1 + Jr2Kr + N2 ∗ (card (sizeNregex N2))) Jr1 · r2Kr (4)

We reason similarly for STAR. The inductive hypothesis is ∃N.∀s. Jr\rsimpssK ≤
N. Let nr = Jr∗Kr. When s = c :: cs is not empty,

Jr∗\rsimpsc :: csKr
= Jrsimp (∑(map (λs.(r\rsimpss) · r∗) (starUpdates cs r [[c]])))Kr (5)
≤ Jrdistinct (map (λs.(r\rsimpss) · r∗) (starUpdates cs r [[c]])) ∅Kr + 1 (6)
≤ 1 + (card(sizeNregex (N + nr))) ∗ (1 + (N + nr)) (7)

(5) is by theorem 7. (6) is by 17. (7) is by corollary 15. Combining with the case when
s = [], one obtains

Jr∗\rsKr ≤ max nr 1 + (card(sizeNregex (N + nr))) ∗ (1 + (N + nr)) (8)

The alternative case is slightly less involved. The inductive hypothesis is equiv-
alent to ∃N.∀r ∈ (map (_\rs) rs).JrKr ≤ N. In the case when s = c :: cs, we have
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J∑ rs\rsimpsc :: csKr
= Jrsimp (∑(map (_\rsimpss) rs))Kr (9)
≤ J(∑(map (_\rsimpss) rs))Kr (10)
≤ 1 + N ∗ (length rs) (11)

(9) is by theorem 5, (10) by lemma 16 and (11) by inductive hypothesis.
Combining with the case when s = [], we obtain

J∑ rs\rsKr ≤ max J∑ rsKr 1 + N ∗ (length rs) (12)

We have all the inductive cases proven.

We hope to improve this result in the future by making Nr a computable function on
r. This would make the size being parametric on r clearer and provide a more useful
estimate of the space complexity of blexer_simp. We also would like to improve the
bound as the number Nr is quite large. We plan to make it polynomial on JrKr. Here
is the main result on annotated regular expressions:

Corollary 4. For any annotated regular expression a, ∃Nr.∀s. Ja\bsimpssK ≤ Nr

Proof. By lemma 6, the size of annotated derivatives Ja\bsimpssK can be expressed as
the size of r-regular expressions’ derivatives Ja↓r\rsimpssKr. Let r = a↓r . Then by
theorem 8, there exists Nr such that Ja_ ↓r \rsimpssKr ≤ Nr.

6.5 Bounded Repetitions

We have promised in chapter 1 that our lexing algorithm can potentially be extended
to handle bounded repetitions in natural and elegant ways. Now we fulfill our
promise by adding support for the “exactly-n-times” bounded regular expression
r{n}. We add clauses in our derivatives-based lexing algorithms (with simplifica-
tions) introduced in chapter 5.

6.5.1 Augmented Definitions

There are a number of definitions that need to be augmented. The most notable one
would be the POSIX rules for r{n}. Again this has been formalised in [15], but we
put it here nevertheless so the readers do not have to dig into the proof script:

∀v ∈ vs1. ` v : r ∧ |v| 6= [] ∀v ∈ vs2. ` v : r ∧ |v| = [] length (vs1@vs2) = n

Stars (vs1@vs2) : r{n}

As Ausaf had pointed out [13], sometimes empty iterations have to be taken to get a
match with exactly n repetitions, and hence the vs2 part.

Another important definition would be the size:

Jr{n}Kr
def
= JrKr + n

One could also choose log n or 1 for the constant factor of the right-hand-side. How-
ever for simplicity of the bound proof we choose to add the counter directly to the
size.

For brevity, we sometimes use NTIMES to refer to bounded-repetition regular
expressions. The derivative, mkeps and inj function clause for NTIMES are defined
as (see [15]):
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r{n}\rc def
= r\rc · r{n−1} if n ≥ 1

0r otherwise

mkeps r{n} def
= Stars (replicate n (mkeps r))

inj r{n} c (Seq v (Stars vs)) def
= Stars ((inj r c v) :: vs)

6.5.2 Proofs for the Augmented Lexing Algorithm

We need to maintain two proofs with the additional r{n} construct: the correctness
proof in chapter 5, and the finiteness proof in chapter 6.

Correctness Proof Augmentation

The correctness of lexer and blexer with bounded repetitions have been proven by
Ausaf and Urban[14]. As they have commented, once the definitions are in place,
the proofs given for the basic regular expressions will extend to bounded regular
expressions, and there are no “surprises”. We confirm this point because the correct-
ness theorem would also extend without surprise to blexer_simp. The rewrite rules
such as  and s

 do not involve STAR, and therefore do not involve STAR-like
expressions like NTIMES either. The proof arguments remain largely unchanged ex-
cept for minor modifications to the strucutral induction cases. Readers can look at
the details in the Isabelle proof entry.

Finiteness Proof Augmentation

The NTIMES regular expressions are very similar to STAR, and therefore the treat-
ment is similar, with minor changes to handle some slight complications when the
counter reaches 0. The exponential growth is similar, assuming the counter does not
reach 0 for the first few derivatives:

r{n} −→\c

(r\c) · r{n−1} −→\c′

r\cc′ · r{n−1} + r\c′ · r{n−2} −→\c′′

(r1\cc′c′′ · r{n−1} + r\c′′ · r{n−2}) + (r\c′c′′ · r{n−2} + r\c′′ · r{n−3}) −→\c′′′

. . .

Again, we assume that r\c, r\cc′ and so on are all nullable. We can flatten the nested
alternative

(r1\cc′c′′ · r{n−1} + r\c′′ · r{n−2}) + (r\c′c′′ · r{n−2} + r\c′′ · r{n−3}) + . . .

into the list of terms for r{n}\rss

[r1\cc′c′′ · r{n−1}, r\c′′ · r{n−2}, r\c′c′′ · r{n−2}, r\c′′ · r{n−3}, . . .]

An example where r = (a∗){3}:
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(a∗){3}\aa
rsimp
= a∗ · r{2} + a∗ · r{1}

(a∗){3}\aaa
rsimp
= a∗ · r{2} + a∗ · r{1} + a∗ · r{1} + a∗ · r{0}

(a∗){3}\aaaa
rsimp
= a∗ · r{2} + a∗ · r{1} + a∗ · r{1} + a∗ · r{0} + a∗ · r{1} + a∗ · r{0} + 0r

The growth rate was 2 in each step except for the last one, where the expression with
counter 0 is not expanded by turned into 0r. Just like what we did for STAR, we
prove the closed form

r{n}\rsimpss = rsimp ∑ rs.

for some regular expression list rs. In the setting of NTIMES, the starUpdate and
starUpdates functions are replaced by nupdate and nupdates:

nupdate :: ”char⇒ rrexp⇒ ((string, nat) option) list⇒ rrexp”

nupdate c r [] def
= []

nupdate c r (Some (s, n + 1) :: Ss) def
= if (rnullable (r\rss))

then Some (s@[c], n + 1) :: Some ([c], n) :: (nupdate c r Ss)
else Some (s@[c], n + 1) :: (nupdate c r Ss)

nupdate c r (None :: Ss) def
= (None :: nupdate c r Ss)

nupdates :: ”string⇒ rrexp⇒ ((string, nat) option) list⇒ rrexp”

nupdates [] r Ss def
= Ss

nupdates (c :: cs) r Ss def
= nupdates cs r (nupdate c r Ss)

which takes into account when a subterm (r\ss · r{n})’s counter is 1, and therefore
expands to

r\s(s@[c]) · r{n} + 0

after taking a derivative. The elements of the argument Ss now have type

(string, nat) option

and therefore the function for converting such an element into a regular expression
term is called opterm:

opterm r SN def
= case SN o f

Some (s, n)⇒ (r\rss) · r{n}
None⇒ 0.

The list rs is instantiated as

map (opterm r) (nupdates s r [Some ([c], n)]).

We also define the simplified version of opterm, which is optermsimp:

optermsimp r SN def
= case SN o f

Some (s, n)⇒ (r\rsimpss) · r{n}
None⇒ 0

Now we are ready to present the closed form for NTIMES:
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Theorem 9. (The closed form for bounded-repetition regular expression)

r{n+1}\rsimps(c :: s) = rsimp (∑(map (optermsimp r) (nupdates s r [Some ([c], n)]))).

The proof is by a structural induction on the string s, and omitted here (for details
see [46]). The key observation for bounding this closed form is that the counter on
r{n} will only decrement during derivatives:

Lemma 18.

• For an element o in set (nupdates s r [Some ([c], n)]), either o = None, or o =
Some (s′, m) for some string s′ and number m ≤ n.

• For any element r′ in set (map (optermsimp r) (nupdates s r [Some ([c], n)])), we
have that r′ is either 0 or r\rs′ · r{m} for some string s′ and number m ≤ n.

The proof is routine and therefore omitted. But this lemma is crucial in establishing
the bound, as without them we do not know why rdistinct rs ∅ would be finite for
a list rs like

(map (optermsimp r) (nupdates s r [Some ([c], n)])).

Theorem 10. Assuming that for any string s, Jr\rsimpssKr ≤ N holds, then we have that
Jr{n+1}\rsimpssKr ≤ max (cN + 1) ∗ (N + Jr{n}K+ 1), where cN = card (sizeNregex (N +

Jr{n}Kr + 1)).

Proof. We have that for all regular expressions r′ in

set (map (optermsimp r) (nupdates s r [Some ([c], n)])),

r′’s size is less than or equal to N + Jr{n}Kr + 1 because r′ can only be either a 0 or
r\rsimpss′ · r{m} for some string s′ and number m ≤ n (lemma 18). In addition, we
know that the list map (optermsimp r) (nupdates s r [Some ([c], n)])’s size is at most
cN = card (sizeNregex ((N + Jr{n}K) + 1)). This gives us Jr\rsimps sKr ≤ N ∗ cN .

We aim to formalise the correctness and size bound for constructs like r{...n}, r{n...}

and so on, which is still work in progress. They should more or less follow the same
recipe described in this section. Once we know how to deal with them recursively
using suitable auxiliary definitions, we can establish the proofs with a more or less
automated procedure.

6.6 Comments and Future Improvements

6.6.1 Some Experimental Results

What guarantee does this bound give us? It states that given a regular expression r,
its derivative with any string is bounded by a constant number that only depends
on r, not s. In other words, there does not exist a regular expression r and an infinite
list of strings S = [s1, s2, . . .] such that for any natural number n, a string si can be
picked from S to make Jr\rsimpssiK greater than n. Sulzmann and Lu’s original opti-
mised lexer does not have such a property. For example, one can pick r = (a + aa)∗

and S = [a, aa, . . .] and get a series of ever-growing derivatives. Abusing mathemat-
ical notation, we might say that for Sulzmann and Lu’s lexer, some r can cause the
derivative size to go to infinity:

lim
i→∞

Jblexer_SLSimp r siK = ∞
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But for our lexer, all regular expression r has an associated constant C such that

lim
i→∞

Jblexer_simp r siK ≤ C.

We show the picture at the beginning of this chapter again:

string length

de
ri

va
ti

ve
si

ze blexer_SLSimp
blexer_simp
bound C

In our proof for the inductive case r1 · r2, the dominant term in the bound is
lN2 ∗ N2, where N2 is the bound we have for Jr2\bsimpssK. Given that lN2 is roughly
the size 4N2 , the size bound Jr1 · r2\bsimpssK inflates the size bound of Jr2\bsimpssK with
the function f (x) = x ∗ 2x. This means the bound we have will probably surge up
at least tower-exponentially with a linear increase of the depth. One might be pretty
skeptical about what this non-elementary bound can bring us.

We admit that in order to get a more straightforward proof we sacrificed the pre-
cision of our estimate of the closed forms, getting us a very loose bound. However,
having a constant bound means we can already treat each derivative operation as
constant time (except for bitcodes). Though in theory the constant factor can still
be quite large, in practice this rarely happens. Most of the regex’s sizes seem to stay
within a polynomial bound w.r.t the original size. For Sulzmann and Lu’s simplified
lexer this is not the case. We will discuss detailed improvements to this bound in the
next chapter.

6.6.2 Possible Further Improvements

There are two problems with this finiteness result, though:

• First, it is not yet a direct formalisation of our lexer’s complexity, as a com-
plexity proof would require looking into the time it takes to execute all the
operations involved in the lexer (simp, collect, decode), not just the derivative.

• Second, the bound is not yet tight, and we seek to improve C so that it is a
polynomial of JaK.

Still, we believe this bound is useful, because

• The size proof can serve as a starting point for a complexity formalisation.
Derivatives are the most important phases of our lexer algorithm. Size prop-
erties about derivatives cover the majority of the algorithm and is therefore a
good indication of the complexity of the entire program.

• The bound is already a strong indication that catastrophic backtracking is much
less likely to occur in our blexer_simp algorithm. We refine blexer_simp with
blexerStrong in the next chapter so that we conjecture the bound becomes poly-
nomial.

One might wonder if there are “evil” regular expressions for our blexer_simp. The
most “evil” regular expression we found is the following:
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(a∗ + (aa)∗ + (aaa)∗ + . . . + (a . . . a︸ ︷︷ ︸
k a’s

)∗)∗

Even though it seems quite unnatural and unlikely to appear in practice. For con-
venience we use (∑k

i=1(a . . . a︸ ︷︷ ︸
i a’s

)∗)∗ to express (a∗ + (aa)∗ + (aaa)∗ + . . . + (a . . . a︸ ︷︷ ︸
n a’s

)∗)

in the below discussion. The regular expression (∑k
i=1(a . . . a︸ ︷︷ ︸

i a’s

)∗)∗ grows quite a bit

at the beginning when taking derivatives against the string of as. The growth will
eventually stop, with a maximum size that is exponential on the number k:
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The exponential size is triggered by that the regex ∑k
i=1(a . . . a︸ ︷︷ ︸

i a’s

)∗ inside the (. . .)∗ hav-

ing exponentially many different derivatives, despite those differences being minor.
(∑k

i=1(a . . . a︸ ︷︷ ︸
i a’s

)∗)∗\ a . . . a︸ ︷︷ ︸
m a’s

will therefore contain the following terms (after flattening

out all nested alternatives):

(∑k
i=1( a . . . a︸ ︷︷ ︸

((i - (m’ % i))%i) a’s

) · (a . . . a︸ ︷︷ ︸
i a’s

)∗) · (∑n
i=1(a . . . a︸ ︷︷ ︸

i a’s

)∗)

(1 ≤ m′ ≤ m)

There are at least exponentially many such terms.3 With each new input character
taking the derivative against the intermediate result, more and more such distinct
terms will accumulate. The function distinctBy will not be able to de-duplicate any
two of these terms

(∑k
i=1( a . . . a︸ ︷︷ ︸

((i - (m’ % i))%i) a’s

) · (a . . . a︸ ︷︷ ︸
i a’s

)∗) · (∑k
i=1(a . . . a︸ ︷︷ ︸

i a’s

)∗)∗

(∑k
i=1( a . . . a︸ ︷︷ ︸

((i - (m” % i))%i) a’s

) · (a . . . a︸ ︷︷ ︸
i a’s

)∗) · (∑k
i=1(a . . . a︸ ︷︷ ︸

i a’s

)∗)∗

where m′ 6= m′′ as they are slightly different. For example, even if having a lot of
overlapping subterms, the expression

(a∗ + (a) · (aa)∗ + (aa) · (aaa)∗) · (∑3
i=1(a . . . a︸ ︷︷ ︸

i a’s

)∗)∗

3To be exact, these terms are distinct for m′ ≤ L.C.M.(1, . . . , n), a detailed mathematical analysis is
omitted, but the point is that the number is exponential.
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and

(a∗ + (a) · (aa)∗ + (aaa)∗) · (∑3
i=1(a . . . a︸ ︷︷ ︸

i a’s

)∗)∗

are deemed different, and no simplification applies between those two elements on
a list rs when simplified by distinctBy. This is because blexer_simp does not have a
distrbutivity rewrite rule. If this rule was added, the output value would no longer
be POSIX.

This means that with our current simplification methods, we will not be able to
control the derivative so that Jr\bsimpssKr stays polynomial with respect to JrKr.

One viable simplification rule for the above example might be (a + b) · r + (a +
c) · r = (a + b) · r + c · r. This does not break the POSIXness of blexer_simp, though it
is more cumbersome to define. This example also suggests a slightly different notion
of size, which we call the alphabetic width:

awidth 0 def
= 0

awidth 1 def
= 0

awidth c def
= 1

awidth r1 + r2
def
= awidth r1 + awidth r2

awidth r1 · r2
def
= awidth r1 + awidth r2

awidth r∗ def
= awidth r

Antimirov[10] has proven that PDERUNIV(r) ≤ awidth(r), where PDERUNIV(r)
is a set of all possible subterms created by doing derivatives of r against all possible
strings. If we can make sure that at any moment in our lexing algorithm our inter-
mediate result hold at most one copy of each of the subterms then we can get the
same bound as Antimirov’s. This leads to the algorithm in the next chapter.
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Chapter 7

A Better Size Bound for
Derivatives

This chapter is a “work-in-progress” chapter which records extensions to our blexer_simp.
We make a conjecture that the finite size bound from the previous chapter can be
improved to a cubic bound. We implemented our conjecture in Scala. We have not
formalised this part in Isabelle/HOL. Nevertheless, we outline the ideas we intend
to use for the proof.

7.1 A Stronger Version of Simplification

Let us first present further improvements for our lexer algorithm blexer_simp. We de-
vise a stronger simplification algorithm, called bsimpStrong, which can prune away
similar components in two regular expressions at the same alternative level, even if
these regular expressions are not exactly the same. We call the lexer that uses this
stronger simplification function blexerStrong. We conjecture that both

blexerStrong r s = blexer r s

and

Ja\bsimpStrongssK = O(JaK3)

hold. We give an informal justification why the correctness and cubic size bound
proofs can be achieved by exploring the connection between the internal data struc-
ture of our blexerStrong and Animirov’s partial derivatives.

In our bitcoded lexing algorithm, (sub)terms represent (sub)matches. For exam-
ple, the regular expression

aa · a∗ + a · a∗ + aa · a∗

contains three terms, expressing three possibilities for how it can match some more
input of the form a . . . a. The first and the third terms are identical, which means
we can eliminate the latter as it will not contribute to a POSIX value. In bsimp, the
distinctBy function takes care of such instances. The criteria distinctBy uses for re-
moving a duplicate a2 in the list

rsa@[a1]@rsb@[a2]@rsc

is that the two erased regular expressions are equal

(a1)↓r = (a2)↓r .
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This is characterised as the LD rewrite rule in figure 5.4. The problem, however,
is that identical components in two slightly different regular expressions cannot be
removed by the LD rule. Consider the stronger simplification

(a + b + d) · r1 + (a + c + e) · r1
?
 (a + b + d) · r1 + (c + e) · r1 (7.1)

where the (a + c + e) · r1 is deleted in the right alternative a + c + e. This is per-
missible because we have (a + . . .) · r1 in the left alternative. The difficulty is that
such “buried” alternatives-sequences are not easily recognised. But simplification
like this actually cannot be omitted, if we want to have a better bound. For example,
the size of derivatives can still blow up even with our bsimp function: consider again
the example ((a∗ + (aa)∗ + . . . + (a . . . a︸ ︷︷ ︸

na′s

)∗)∗)∗, and set n to a relatively small number

like n = 5, then we get the following exponential growth:
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FIGURE 7.1: Size of derivatives of blexer_simp from chapter 5 for
matching ((a∗ + (aa)∗ + . . . + (aaaaa)∗)∗)∗ with strings of the form

aa..a︸︷︷︸
n

.

One possible approach would be to apply the rewriting rule

(a + b + d) · r1 −→ a · r1 + b · r1 + d · r1

which pushes the sequence into the alternatives in our simp function. This would
then make the simplification shown in (7.1) possible. Translating this rule into our
bsimp function would simply involve adding a new clause to the bsimpASEQ function:

bsimpASEQ bs a b def
= (a, b)match

. . .
case (bs1∑ as, a′2)⇒bs1 ∑(map ([]ASEQ _ a′2) as)
case (a′1, a′2)⇒bs a′1 · a′2

Unfortunately, if we introduce this clause in our setting we would lose the POSIX
property of our calculated values. For example given the regular expression

(a + ab)(bc + c)
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and the string ab, then our algorithm generates the following correct POSIX value

Seq (Right ab) (Right c).

Essentially it matches the string with the longer Right-alternative in the first se-
quence (and then the ’rest’ with the character regular expression c from the second
sequence). If we add the simplification above, however, then we would obtain the
following value

Left (Seq a (Left bc))

where the Left-alternatives get priority. This violates the POSIX rules. The reason
for getting this undesired value is that the new rule splits this regular expression up
into a topmost alternative

a · (bc + c) + ab · (bc + c),

which is a regular expression with a quite different meaning: the original regular
expression is a sequence, but the simplified regular expression is an alternative. With
an alternative the maximal munch rule no longer works.

A method to reconcile this problem is to do the transformation in (7.1) “non-
invasively”, meaning that we traverse the list of regular expressions inside alterna-
tives

∑(rsa@[a]@rsc)

using a function similar to distinctBy, but this time we allow the following more
general rewrite rule:

rsa@[a]@rsc
s
 rsa@[prune a rsa]@rsc

CUBICRULE
(7.2)

where prune a acc traverses a without altering the structure of a, but removing com-
ponents in a that have appeared in the accumulator acc. For example

prune (ra + r f + rg + rh)rd [(ra + rb + rc)rd, (re + r f )rd]

should be equal to

(rg + rh)rd

because rgrd and rhrd are the only terms that do not appeared in the accumulator list

[(ra + rb + rc)rd, (re + r f )rd].

We implemented the function prune in Scala (see figure 7.2) The function prune is a
stronger version of distinctBy. It does not just walk through a list looking for exact
duplicates, but prunes sub-expressions recursively. It manages proper contexts by
the helper functions removeSeqTail, isOne and atMostEmpty.
Suppose we feed

r = (1 + ( f + b) · g) · (a · (d · e))

and

acc = {a · (d · e), f · (g · (a · (d · e)))}
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1 def prune(r: ARexp, acc: Set[Rexp]) : ARexp = r match{
2 case AALTS(bs, rs) => rs.map(r => prune(r, acc)).filter(_ !=

AZERO) match
3 {
4 //all components have been removed, meaning this is

effectively a duplicate
5 //flats will take care of removing this AZERO
6 case Nil => AZERO
7 case r::Nil => fuse(bs, r)
8 case rs1 => AALTS(bs, rs1)
9 }

10 case ASEQ(bs, r1, r2) =>
11 //remove the r2 in (ra + rb)r2 to identify the duplicate

contents of r1
12 prune(r1, acc.map(r => removeSeqTail(r, erase(r2)))) match {
13 //after pruning, returns 0
14 case AZERO => AZERO
15 //after pruning, got r1’.r2, where r1’ is equal to 1
16 case r1p if(isOne(erase(r1p))) => fuse(bs ++ mkepsBC(r1p),

r2)
17 //assemble the pruned head r1p with r2
18 case r1p => ASEQ(bs, r1p, r2)
19 }
20 //this does the duplicate component removal task
21 case r => if(acc(erase(r))) AZERO else r
22 }

FIGURE 7.2: The function prune is called recursively in the alternative
case (line 2) and in the sequence case (line 12). In the alternative case
we keep all the accumulators the same, but in the sequence case we
are making necessary changes to the accumulators to allow correct

de-duplication.
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1 def atMostEmpty(r: Rexp) : Boolean = r match {
2 case ZERO => true
3 case ONE => true
4 case STAR(r) => atMostEmpty(r)
5 case SEQ(r1, r2) => atMostEmpty(r1) && atMostEmpty(r2)
6 case ALTS(r1, r2) => atMostEmpty(r1) && atMostEmpty(r2)
7 case CHAR(_) => false
8 }
9

10 def isOne(r: Rexp) : Boolean = r match {
11 case ONE => true
12 case SEQ(r1, r2) => isOne(r1) && isOne(r2)
13 case ALTS(r1, r2) => (isOne(r1) || isOne(r2)) &&

(atMostEmpty(r1) && atMostEmpty(r2))
14 case STAR(r0) => atMostEmpty(r0)
15 case CHAR(c) => false
16 case ZERO => false
17 }
18

19 def removeSeqTail(r: Rexp, tail: Rexp) : Rexp =
20 if (r == tail)
21 ONE
22 else {
23 r match {
24 case SEQ(r1, r2) =>
25 if(r2 == tail) r1 else ZERO
26 case r => ZERO
27 }
28 }

FIGURE 7.3: The helper functions of prune: atMostEmpty, isOne and
removeSeqTail. atMostEmpty is a function that takes a regular expres-
sion and returns true only in case that it contains nothing more than
the empty string in its language. isOne tests whether a regular expres-
sion is equivalent to 1. removeSeqTail is a function that takes away the

tail of a sequence regular expression.
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as the input into prune. The end result will be

b · (g · (a · (d · e)))

where the underlined components in r are eliminated. Looking more closely, at the
topmost call

prune (1 + ( f + b) · g) · (a · (d · e)) {a · (d · e), f · (g · (a · (d · e)))}

The sequence clause will be called, where a sub-call

prune (1 + ( f + b) · g) {1, f · g}

is made. The terms in the new accumulator {1, f · g} come from the two calls to
removeSeqTail:

removeSeqTail a · (d · e) a · (d · e)

and
removeSeqTail f · (g · (a · (d · e))) a · (d · e).

The idea behind removeSeqTail is that when pruning recursively, we need to “zoom
in” to sub-expressions, and this “zoom in” needs to be performed on the accumula-
tors as well, otherwise the deletion will not work. The sub-call prune (1 + ( f + b) ·
g) {1, f · g} is simpler, which will trigger the alternative clause, causing a pruning
on each element in (1 + ( f + b) · g), leaving us with b · g only.

Our new lexer with stronger simplification uses prune by making it the core com-
ponent of the deduplicating function called distinctWith. DistinctWith ensures that
all verbose parts of a regular expression are pruned away.
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1 def turnIntoTerms(r: Rexp): List[Rexp] = r match {
2 case SEQ(r1, r2) =>
3 turnIntoTerms(r1).flatMap(r11 => furtherSEQ(r11, r2))
4 case ALTS(r1, r2) => turnIntoTerms(r1) :::

turnIntoTerms(r2)
5 case ZERO => Nil
6 case _ => r :: Nil
7 }
8

9 def distinctWith(rs: List[ARexp],
10 pruneFunction: (ARexp, Set[Rexp]) => ARexp,
11 acc: Set[Rexp] = Set()) : List[ARexp] =
12 rs match{
13 case Nil => Nil
14 case r :: rs =>
15 if(acc(erase(r)))
16 distinctWith(rs, pruneFunction, acc)
17 else {
18 val pruned_r = pruneFunction(r, acc)
19 pruned_r ::
20 distinctWith(rs,
21 pruneFunction,
22 turnIntoTerms(erase(pruned_r)) ++: acc
23 )
24 }
25 }

FIGURE 7.4: A Stronger Version of distinctBy. This function allows
“partial de-duplication” of a regular expression. When part of a reg-
ular expression has appeared before in the accumulator, we can re-

move that verbose component.

Once a regular expression has been pruned, all its components will be added to the
accumulator to remove any future regular expressions’ duplicate components.

The function bsimpStrong is very much the same as bsimp, just with distinctBy
replaced by distinctWith.
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def bsimpStrong(r: ARexp): ARexp =
{
r match {
case ASEQ(bs1, r1, r2) => (bsimpStrong(r1), bsimpStrong(r2))

match {
case (AZERO, _) => AZERO
case (_, AZERO) => AZERO
case (AONE(bs2), r2s) => fuse(bs1 ++ bs2, r2s)
case (r1s, AONE(bs2)) => fuse(bs1, r1s) //assert bs2 == Nil
case (r1s, r2s) => ASEQ(bs1, r1s, r2s)
}
case AALTS(bs1, rs) => {
distinctWith(flats(rs.map(bsimpStrong(_))), prune) match {
case Nil => AZERO
case s :: Nil => fuse(bs1, s)
case rs => AALTS(bs1, rs)

}
}
case ASTAR(bs, r0) if(atMostEmpty(erase(r0))) => AONE(bs)
case r => r

}
}
def bdersStrong(s: List[Char], r: ARexp) : ARexp = s match {

case Nil => r
case c::s => bdersStrong(s, bsimpStrong(bder(c, r)))

}

FIGURE 7.5: The function bsimpStrong: a stronger version of bsimp

The benefits of using prune refining the finiteness bound to a cubic bound has not
been formalised yet. Therefore we choose to use Scala code rather than an Isabelle-
style formal definition like we did for bsimp, as the definitions might change to suit
our proof needs.

We conjecture that the above Scala function bdersStrong, written _\bsimpStrongs_ as
an infix notation, satisfies the following property:

Conjecture 1. Ja\bsimpStrongssK = O(JaK3)

The stronger version of blexer_simp’s code in Scala looks like:
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def strongBlexer(r: Rexp, s: String) : Option[Val] = {
Try(Some(decode(r, strong_blex_simp(internalise(r),

s.toList)))).getOrElse(None)
}
def strong_blex_simp(r: ARexp, s: List[Char]) : Bits = s

match {
case Nil => {
if (bnullable(r)) {
mkepsBC(r)

}
else
throw new Exception("Not matched")

}
case c::cs => {
strong_blex_simp(strongBsimp(bder(c, r)), cs)

}
}

We call this lexer blexerStrong. This version is able to reduce the size of the deriva-
tives which otherwise triggered exponential behaviour in blexer_simp. Consider
again the runtime for matching ((a∗ + (aa)∗ + . . . + (aaaaa)∗)∗)∗ with strings of the
form aa..a︸︷︷︸

n

. They produce the folloiwng graphs (blexerStrong on the left-hand-side

and blexer_simp on the right-hand-side).
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FIGURE 7.6

We hope the correctness is preserved. The proof idea is to preserve the key lemma
in chapter 5 such as in equation (7.2).

Conjecture 2. blexerStrong r s = blexer r s

The idea is to maintain key lemmas in chapter 5 like r ∗
 bsimp r with the new

rewriting rule shown in figure (7.2) .
In the next sub-section, we will describe why we believe a cubic size bound can

be achieved with the stronger simplification. For this we give a short introduction to
the partial derivatives, which were invented by Antimirov [10], and then link them
with the result of the function bdersStrong.
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7.1.1 Antimirov’s partial derivatives

Partial derivatives were first introduced by Antimirov [10]. They are very similar
to Brzozowski derivatives, but split children of alternative regular expressions into
multiple independent terms. This means the output of partial derivatives is a set of
regular expressions, defined as follows

∂x (r1 · r2)
def
= (∂x r1) · r2 ∪ ∂x r2 if nullable r1

(∂x r1) · r2 otherwise

∂x r∗ def
= (∂x r) · r∗

∂x c def
= if x = c then {1} else ∅

∂x(r1 + r2) = ∂x(r1) ∪ ∂x(r2)
∂x(1) = ∅
∂x(0)

def
= ∅

The · in the example (∂x r1) · r2 is a shorthand notation for the cartesian product
(∂x r1)× {r2}. Rather than joining the calculated derivatives ∂xr1 and ∂xr2 together
using the ∑ constructor, Antimirov put them into a set. This means many sub-
terms will be de-duplicated because they are sets. For example, to compute what
the derivative of the regular expression x∗(xx + y)∗ w.r.t. x is, one can compute a
partial derivative and get two singleton sets {x∗ · (xx+ y)∗} and {x · (xx+ y)∗} from
∂x(x∗) · (xx + y)∗ and ∂x((xx + y)∗).

The partial derivative w.r.t. a string is defined recursively:

∂c::csr
def
=

⋃
r′∈(∂cr)

∂csr′

Suppose an alphabet Σ, we use Σ∗ for the set of all possible strings from the alphabet.
The set of all possible partial derivatives is then defined as the union of derivatives
w.r.t all the strings:

PDERΣ∗ r def
=

⋃
w∈Σ∗ ∂w r

Consider now again our pathological case where we apply the more aggressive sim-
plification

((a∗ + (aa)∗ + . . . + (a . . . a︸ ︷︷ ︸
na′s

)∗)∗)∗

let use abbreviate theis regular expression with r, then we have that

PDERΣ∗ r =
⋃n

i=1
⋃i−1

j=0{(a . . . a︸ ︷︷ ︸
j a’s

·(a . . . a︸ ︷︷ ︸
i a’s

)∗) · r},

The union on the right-hand-side has n ∗ (n + 1)/2 terms. This leads us to believe
that the maximum number of terms needed in our derivative is also only n ∗ (n +
1)/2. Therefore we conjecture that bsimpStrong is also able to achieve this upper
limit in general.

Conjecture 3. Using a suitable transformation f , we have that

∀s. f (r \bsimpStrongss) ⊆ PDERΣ∗ r

holds.
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The reason is that our (7.2) will keep only one copy of each term, where the function
prune takes care of maintaining a set like structure similar to partial derivatives.

Antimirov had proven that the sum of all the partial derivative terms’ sizes is
bounded by the cubic of the size of that regular expression:

Property 9. JPDERΣ∗ rK ≤ O(JrK3)

This property was formalised by Wu et al. [86], and the details can be found in
the Archive of Formal Froofs1. Once conjecture 3 is proven, then property 9 would
provide us with a cubic bound for our blexerStrong algorithm:

Conjecture 4. Jr \bsimpStrongssK ≤ JrK3

We leave this as future work.

1https://www.isa-afp.org/entries/Myhill-Nerode.html
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Chapter 8

Conclusion and Future Work

In this thesis, in order to solve the ReDoS attacks once and for all, we have set out
to formalise the correctness proof of Sulzmann and Lu’s lexing algorithm with ag-
gressive simplifications [77]. We formalised our proofs in the Isabelle/HOL theorem
prover. We have fixed some inefficiencies and a bug in their original simplification
algorithm, and established the correctness by proving that our algorithm outputs
the same result as the original bit-coded lexer without simplifications (whose cor-
rectness was established in previous work by Ausaf et al. in [13] and [14]). The proof
technique used in [13] does not work in our case because the simplification function
messes with the structure of simplified regular expressions. Despite having to try
out several workarounds and being stuck for months looking for proofs, we were
delighted to have discovered the simple yet effective proof method by modelling in-
dividual simplification steps as small-step rewriting rules and proving equivalence
between terms linked by these rewrite rules.

In addition, we have proved a formal size bound on the regular expressions. The
technique was by establishing a “closed form” informally described by Murugesan
and Shanmuga Sundaram [61] for compound derivatives and using those closed
forms to control the size. The Isabelle/HOL code for our formalisation can be found
at

https://github.com/hellotommmy/posix

Thanks to our theorem-prover-friendly approach, we believe that this finiteness bound
can be improved to a bound linear to input and cubic to the regular expression size
using a technique by Antimirov[10]. Once formalised, this would be a guarantee for
the absence of all super-linear behavious. We are yet to work out the details.

Our formalisation is approximately 7500 lines of code. Slightly more than half of
this concerns the finiteness bound obtained in Chapter 5. This slight "bloat" is be-
cause we had to repeat many definitions for the rrexp datatype. However, we think
we would not have been able to formalise the quite intricate reasoning involving
rrexps with annotated regular expressions because we would have to carry around
the bit-sequences (that are of course necessary in the algorithm) but which do not
contribute to the size bound of the calculated derivatives.

To our best knowledge, no lexing libraries using Brzozowski derivatives have
similar complexity-related bounds, and claims about running time are usually spec-
ulative and backed up only by empirical evidence on some test cases. If a matching
or lexing algorithm does not come with complexity related guarantees (for exam-
aple the internal data structure size does not grow indefinitely), then one cannot
claim with confidence of having solved the problem of catastrophic backtracking.

We believe our proof method is not specific to this algorithm, and intend to ex-
tend this approach to prove the correctness of the faster version of the lexer proposed
in chapter [Cubic]. The closed forms can then be re-used as well. Together with the

https://github.com/hellotommmy/posix
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idea from Antimirov [10] we plan to reduce the size bound to be just polynomial
with respect to the size of the regular expressions.

We have learned quite a few lessons in this process. As simple as the end result
may seem, coming up with the initial proof idea with rewriting relations was the
hardest for us, as it required a deep understanding of what information is preserved
during the simplification process. There the ideas given by Sulzmann and Lu and
Ausaf et al. were of no use. Of course this has already been shown many times,
the usefulness of formal approaches cannot be overstated: they not only allow us
to find bugs in Sulzmann and Lu’s simplification functions, but also helped us set
up realistic expectations about performance of algorithms. We believed in the be-
ginning that the blexer_simp lexer defined in chapter 5 was already able to achieve
the linear bound claimed by Sulzmann and Lu. We then attempted to prove that the
size Jblexer_simp r sK is O(JrKc · |s|), where c is a small constant, making JrKc a small
constant factor. We were then quite surprised that this did not go through despite a
lot of effort. This led us to discover the example where JrKc can in fact be exponen-
tially large in chapter 6. We therefore learned the necessity to introduce the stronger
simplifications in chapter 7. Without formal proofs we would not have found out
this so soon, if at all.

8.1 Future Work

This thesis is just a starting point for the line of research it opens up. We would have
wanted blexer_simp’s correctness proof (and finite bound) to have come out sooner.
Ideally this thesis’s formal proofs should also be extended to handle more aggres-
sive simplifications such as those in chapter 7. The actual difficulty of the proofs in
chapter 5 and 6 turned out to be much more involved and therefore time-consuming
than anticipated. We also wanted to greatly increase the usefulness of our lexer by
adding support for back-references, accompanied by a formal semantics and for-
mal correctness proofs, and we have already had some initial results. Unfortunately
these results could not be put into this thesis due to the time limit we have.

The most obvious next-step is to implement the cubic bound and correctness
of blexerStrong in chapter 7. A cubic bound (O(JrKc · |s|)) with respect to regular
expression size will get us one step closer to fulfilling the linear complexity claim
made by Sulzmann and Lu.

With a linear size bound theoretically, the next challenge would be to generate
code that is competitive with respect to matchers based on DFAs or NFAs. For that
a lot of optimisations are needed. We aim to integrate the zipper data structure into
our lexer. The idea is very simple: using a zipper with multiple focuses just like
Darragh [28] did in their parsing algorithm, we could represent

x · r + y · r + . . .

as
(x + y + . . .) · r.

This would greatly reduce the amount of space needed when we have many terms
like x · r. Some initial results have been obtained, but significant changes are needed
to make sure that the lexer output conforms to the POSIX standard. We aim to make
use of Okui and Suzuki’s labelling system [65] to ensure regular expressions repre-
sented as zippers always maintain the POSIX orderings.
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To further optimise the algorithm, we plan to add a deduplicate function that
tells whether two regular expressions denote the same language using an efficient
and verified equivalence checker like [50]. In this way, the internal data structures
can be pruned more aggressively, leading to better simplifications and ultimately
faster algorithms.

Traditional automata approaches can be sped up by compiling multiple rules
into the same automaton. This has been done in [53] and [18], for example. Currently
our lexer only deals with a single regular expression each time. Extending this to
multiple regular expressions might open up more possibilities of simplifications.

As already mentioned in chapter 1, reducing the number of memory accesses
can also accelerate the matching speed. It would be interesting to study the memory
bandwidth of our derivative-based matching algorithm and improve accordingly.

Memoization has been used frequently in lexing and parsing to achieve better
complexity results, for example in [70], [33], [6], [28] and [30]. We plan to explore
the performance enhancements by memoization in our algorithm in a correctness-
preserving way. The monadic data refinement technique that Lammich and Tuerk
used in [80] to optimise Hopcroft’s automaton minimisation algorithm seems also
quite relevant for such an enterprise. We aim to learn from their refinement frame-
work which generates high performance code with proofs that can be broken down
into small steps.

Extending the Sulzmann and Lu’s algorithm to parse more pcre regex constructs
like lookahead, capture groups and back-references with proofs on basic properties
like correctness seems useful, despite it cannot be made efficient. Creating a cor-
rect and easy-to-prove version of blexer_simp seems an appealing next-step for both
practice and theory.
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