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Abstract

In this thesis, we prove local-global compatibility results at ℓ = p for the
torsion automorphic Galois representations constructed by Scholze, general-
ising the work of Caraiani–Newton. In particular, we verify, up to a nilpotent
ideal, the local-global compatibility conjecture at ℓ = p of Gee–Newton in the
case of imaginary CM fields under some technical assumptions.

The key new ingredient is a local-global compatibility result forQ-ordinary
self-dual automorphic representations for arbitrary parabolic subgroups.
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Chapter 1

Background and introduction

1.1 Langlands reciprocity
In this thesis, we make progress towards Langlands reciprocity by veri-

fying new cases of local-global compatibility at p. Given a number field F ,
a rational prime p and an integer n ≥ 1, Langlands reciprocity, explicated
by Clozel [Clo90] and combined with the conjecture of Fontaine–Mazur, pre-
dicts a precise correspondence between certain automorphic representations
of GLn(AF ) and n-dimensional p-adic Galois representations of F . Let us
start this thesis with carefully explaining the mentioned correspondence by
breaking it into several separate conjectures, the first of which is concerned
with associating Galois representations to automorphic forms.

Conjecture 1.1.1 (Construction of Galois representations). Consider a field
isomorphism t : Qp

∼= C, and an algebraic cuspidal automorphic representa-
tion π of GLn(AF ). There is a (necessarily unique) irreducible Galois repre-
sentation

rt(π) : Gal(F/F )→ GLn(Qp)
that is unramified at every finite place v ∤ p of F where πv is unramified,
and the Satake parameters of t−1πv| det |

1−n
2

v match with the eigenvalues of
the geometric Frobenius Frobv acting on rt(π). In other words, rt(π) satisfies
local-global compatibility at unramified places of π.

We now explain the statement of the conjecture in more detail.

Algebraic automorphic representations

First, Conjecture 1.1.1 is concerned with so-called algebraic automorphic
representations. This is a rationality (or indeed, algebraicity) condition on
the infinity component of our automorphic representations introduced1 by

1Clozel’s motivation for introducing this notion was to single out the class of cuspidal
automorphic rerpesentations that should correspond to absolutely irreducible pure motives
of rank n under Langlands’s envisioned correspondence [Lan79].

11



12 CHAPTER 1. BACKGROUND AND INTRODUCTION

Clozel in [Clo90]. Given an automorphic representation π of GLn(AF ), it is,
by definition, an irreducible (g∞⊗R C, K∞)×GLn(A∞

F )-subquotient π∞⊗πf
of the space of automorphic forms A(ResF/QGLn). Here g∞ = ⊕v|∞gv is the
Lie algebra of (ResF/QGLn)(R) = ∏

v|∞ GLn(Fv), and K∞ := ∏
v|∞ Kv is the

product of maximal compact subgroups Kv of GLn(Fv). In particular, π∞ is
an irreducible admissible (g∞ ⊗R C, K∞)-module. Therefore, by a version of
Schur’s lemma, the centre Z(g∞ ⊗R C) of the universal enveloping algebra
U(g∞ ⊗R C) acts via a character

ωπ∞ : Z(g∞ ⊗R C)→ C,

called the infinitesimal character of π∞. We can express this in simpler terms,
using the Harish-Chandra isomorphism. Let Tn ⊂ Bn ⊂ GLn denote the usual
choice of Borel subgroup of upper-triangular matrices and torus of diagonal
matrices. Set t∞ to be the Lie algebra of (ResF/QTn)(R) and W to be the
Weyl group W ((ResF/QGLn)C, (ResF/QTn)C). Then Harish-Chandra sets up
an isomorphism2

Z(g∞ ⊗R C) ∼= U(t∞ ⊗R C)W .

In particular, one identifies ωπ∞ with aW -orbit in t∗∞ := HomR(t∞,C). Inside
t∗∞, we have as a W -invariant lattice the group of characters X∗((ResF/QTn)C)
by sending a character to its derivative. In particular, its shift by the half-sum
of positive roots X∗((ResF/QTn)C)− ρ is again W -invariant.

Definition 1.1.2. Let π = π∞ ⊗ πf be an automorphic representation of
GLn(AF ). We say that π is algebraic if, under the normalised Harish-Chandra
isomorphism, the W -orbit ωπ∞ lies within X∗((ResF/QTn)C) − ρ where ρ is
the usual half-sum of positive roots of ResF/QGLn.

Remark 1.1.3. Another way of introducing the notion of algebraicity is
using Langlands’s archimedean local correspondence [Lan89]. Namely, for an
archimedean place v : F ↪→ C, irreducible admissible (gv ⊗R C, Kv)-modules
πv are parametrised by semisimple representations rec(πv) : WFv → GLn(C)
where WFv denotes the Weil group of Fv. Depending on v being a complex or
a real place, WFv is given by C× or the nonsplit extension of Gal(C/R) by C×.
In either case, C× is canonically a subgroup of WFv . Then an automorphic
representation π of GLn(AF ) is algebraic if and only if rec(πv| · |

1−n
2

C )|C× :
C× → GLn(C) is an algebraic representation for every archimedean place v
of F . In other words, if it is of the form rec(πv| · |

1−n
2

C )|C× ∼= ⊕ni=1χri,si
for

some pairs of integers (ri, si) ∈ Z2 where χri,si
: C× → C×, z 7→ zri z̄si . For

details on the dictionary between the two definitions, see the remark on p.90
of [Clo90].

2We consider here the normalisation of the isomorphism that is independent of the
choice of the Borel subgroup. In particular, we take W -invariants with respect to the
natural action, not the dot action.
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Example 1.1.4. Any cuspidal Hecke eigenform f of weight k and character
ψ : (Z/NZ)× → C× gives rise to a cuspidal automorphic representation π(f)
of GL2(AQ) (cf. [Gel75], §5) with central character ψ and π(f)∞ given by
the unique infinite-dimensional subrepresentation of the normalised parabolic
induction3 n-IndGL2(R)

B2(R) (| · | k−1
2 ⊗ | · | 1−k

2 ). One can then compute that, under
the normalised Harish-Chandra isomorphism, ωπ(f)∞ is given by the S2-orbit
of the C-algebra map U(tC) ∼= C[Z,H]S2 → C, sending

Z 7→ 0, H 7→ k − 1.

Here Z =
Å

1 0
0 1

ã
, H =

Å
1 0
0 −1

ã
, and S2 acts by interchanging H and

−H. On the other hand, one sees that the lattice X∗(TC) − ρ ⊂ t∗C
∼=

HomC(⟨Z,H⟩C,C) is given by the C-linear maps sending

Z 7→ a, H 7→ b

with a, b ∈ Z such that a − b is odd. In particular, after observing that
the infinitesimal character of | det | 12 sends Z to 1 and H to 0, we see that
π(f)coh := π(f) ⊗ | det | 2−k

2 is an example of an algebraic automorphic rep-
resentation. For k ≥ 2, the system of Hecke eigenvalues of π(f)coh is the
one we see appearing in H1(Γ1(N), Symk−2C2) under the Eichler–Shimura
isomorphism.

We note that automorphic representations associated with cuspidal Hecke
newforms exhaust a huge portion of all algebraic automorphic representa-
tions. Namely, one sees that the rest of the cuspdidal algebraic automorphic
representations for GL2(AQ) are associated with algebraic Maass forms.

Satake parameters

To make sense of Conjecture 1.1.1, we first recall the definition of Satake
parameters of unramified smooth irreducible representations of GLn(Fv) for
v a finite place of F . To keep the discussion in context, fix an automorphic
representation π = π∞ ⊗ πf of GLn(AF ). A theorem of Flath [Fla79] shows
that the smooth irreducible C-representation πf of GLn(A∞

F ) decomposes as
a restricted tensor product ⊗′

v πv for some unique collection of irreducible
smooth C-representations πv of GLn(Fv) where v runs over finite places of
F . Moreover, for all but finitely many finite places v of F , πv is unramified,
meaning that it admits a fixed vector under the compact open subgroup
GLn(OFv) ⊂ GLn(Fv). Fix such a place v of F , and consider the usual
induced action of the spherical Hecke algebra4

H(GLn(Fv),GLn(OFv))C :=
3In other words, it is the (limit of) discrete series of type (k − 1, 0).
4The algebra structure is given by the usual convolution product.
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{f : GLn(OFv)\GLn(Fv)/GLn(OFv)→ C compactly supported}

on π
GLn(OFv )
v given by convolution. This action makes the space of fixed

vectors a simple module over the Hecke algebra, and the representation πv
can be recovered from this Hecke module.

On the other hand, the (normalised) Satake isomorphism sets up an iso-
morphism (see [Car79], Theorem 4.1 for instance)

H(GLn(Fv),GLn(OFv))C ∼= H(Tn(Fv), Tn(OFv))W (GLn,Tn)
C

∼= C[X±1
1 , ..., X±1

n ]Sn .

In particular, H(GLn(Fv),GLn(OFv))C, turning out to be commutative, acts
through π

GLn(OFv )
v via a C-algebra homomorphism

H(GLn(Fv),GLn(OFv))C → C

that, under the Satake isomorphism, corresponds to a GLn(C)-conjugacy
class c(πv) of a diagonal matrix diag(α1, ..., αn) ∈ GLn(C) that we call the Sa-
take parameter of πv. Finally, note that this construction sets up a correspon-
dence between unramified irreducible smooth C-representations of GLn(Fv)
and GLn(C)-conjugacy classes of semisimple elements in GLn(C).

Then the determining property of rt(π) is that for every finite place v ∤ p
of F for which πv is unramified, the characteristic polynomial of the Satake
parameter t−1c(πv ⊗ | det |

1−n
2

v ) matches with the characteristic polynomial of
the geometric Frobenius Frobv acting on rt(π).

More classically, this condition is also often expressed in terms of the
usual generators Tv,i ∈ H(GLn(Fv),GLn(OFv))C, i = 1, ..., n given by the
characteristic function of the double coset

GLn(OFv)diag(ϖv, ..., ϖv, 1, ..., 1)GLn(OFv)

where the first i elements in the diagonal are given by a choice of uniformiser
ϖv ∈ OFv and the rest by 1. Namely, after unravelling the normalised Satake
isomorphism, one finds that, if we denote by av,i ∈ Qp the eigenvalue of Tv,i
acting on t−1πv, then the characteristic polynomial of Frobv on rt(π) is asked
to coincide with

Xn − av,1Xn−1 + ...+ (−1)jq
j(j−1)

2
v av,jX

n−j + ...+ (−1)nq
n(n−1)

2
v av,n ∈ Qp[X].

Example 1.1.5. Going back to the case of modular forms, consider a nor-
malised cuspidal newform f = ∑

n≥1 anq
n of weight k, level Γ1(N), and charac-

ter ψ. Then π(f)coh is of level K1(N), and therefore is unramified at any ℓ ∤ N .
After unravelling the construction of π(f), one finds that, for ℓ ∤ N , the Satake
parameter c(π(f)coh

ℓ ) is given by the conjugacy class of diag(ℓ− 1
2αℓ, ℓ

− 1
2βℓ),

where αℓ and βℓ are the roots of the polynomial X2 − aℓX + ℓ · ℓk−2ψ(ℓ). In
particular, Conjecture 1.1.1 predicts, for any isomorphism t : Qp

∼= C, the
existence of an irreducible Galois representation

ρf,t := rt(π(f)coh) : Gal(Q/Q)→ GL2(Qp)
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unramified at every ℓ ∤ Np with characteristic polynomial of the geometric
Frobenius Frobℓ given by

X2 − t−1(aℓ)X + ℓk−1t−1(ψ(ℓ)).

This is the more classical formulation of (part of) Langlands reciprocity for
cuspidal newforms, by now a theorem of Eichler–Shimura (k = 2), Deligne
(k ≥ 2) and Deligne–Serre (k = 1).

We note that the computation of the Satake parameters c(π(f)coh
ℓ ) sheds

some light on the presence of the twist | · | 1−n
2 in the conjecture. Namely, it

is the collection of the Satake parameters of π(f)coh ⊗ | · |− 1
2 that reflects the

rationality properties of f .

Conjecture 1.1.1 allows us to associate a unique Galois representation
rt(π) to any algebraic cuspidal automorphic representation π of GLn(AF )
characterised by matching the local behaviour of the Galois representation
with that of the automorphic representation at the unramified (non-p-adic)
finite places of the latter. In fact, as we saw, for such finite places v ∤ p of F ,
πv amounts to the same piece of data as rt(π)|Gal(F v/Fv) as explained by the
Satake isomorphism. Therefore, thanks to the strong multiplicity one theorem
for GLn/F , the automorphic analogue of Chebotarev’s density theorem, we
obtain an injection of sets of isomorphism classesß

algebraic cuspidal automorphic
representations of GLn(AF )

™
↪→

 continuous p-adic n-dimensional
almost everywhere unramified
irreducible Galois representations of F

 .

There are two obvious questions that one can raise.

i. Does rt(−) set up a more precise correspondence? Namely, can we
write down πv for all finite places v of F in terms of rt(π)|Gal(F v/Fv)?
Conversely, how much of rt(π)|Gal(F v/Fv) can be reconstructed from πv?

ii. Can we describe the image?

Let us first focus on the first of these questions that is a vague formu-
lation of the problem of local-global compatibility. In order to turn it into a
precise conjecture, we first need to discuss how to relate p-adic Galois rep-
resentations of the ℓ-adic field Fv to smooth irreducible C-representations of
GLn(Fv). Even though the answer will differ depending on whether ℓ ̸= p
or ℓ = p, in both cases the main ingredient bridging the two worlds will be
the local Langlands correspondence, a vast generalisation of (consequences
of) local class field theory (the n = 1 case) and the discussed unramified
correspondence realised by the Satake isomorphism.
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The local Langlands correspondence

To explain the local correspondence, let ℓ be a rational prime and K/Qℓ

be a finite extension, and denote by q the cardinality of its residue field.
For Ω an algebraically closed field, set IrrΩ(GLn(K)) to be the set of iso-
morphism classes of irreducible smooth Ω-representations of GLn(K). The
correspondence matches such representations with so-called n-dimensional
Frobenius-semisimple Weil–Deligne representations of K over Ω. To define
these gadgets, we have to work with the Weil group WK of K, as opposed to
the whole Galois group GK := Gal(K/K). Recall that WK is the subgroup
of GK sitting in a short exact sequence

0→ IK → WK → FrobZ
K → 0

where IK is the inertia subgroup of GK and FrobK denotes the geometric
Frobenius. Moreover, it is endowed with the topology making IK ⊂ WK an
open subgroup.

Definition 1.1.6. A Weil–Deligne representation of K over Ω is a triple
(r,N, V ) where

• V is a finite-dimensional Ω-vector space,

• r is a representation WK → GL(V ) with open kernel, and

• N is a nilpotent endomorphism

subject to the compatibility that, for every σ ∈ WK , we have

r(σ)Nr(σ)−1 = q−d(σ)N

where σ ≡ Frobd(σ)
K mod IK . We say that (r,N, V ) is n-dimensional if

dimΩ V = n. Moreover, we call (r,N, V ) Frobenius-semisimple if r is semisim-
ple.

Remark 1.1.7. Given a Weil–Deligne representation (r,N, V ) of K, we can
introduce its so-called Frobenius-semisimplification (r,N, V )F−ss := (rss, N, V )
where rss : WK → GL(V ) is the semisimple representation obtained from r
by setting rss(φ) ∈ GL(V ) to be the semisimple part of r(φ) for a fixed lift
φ of FrobK , and keeping rss|IK

= r|IK
unchanged. One easily checks that the

definition is independent of our choice of lift of Frobenius.
We further define the semisimplification of (r,N, V ) to be (r,N, V )ss :=

(rss, 0, V ).

Denote by WDn
Ω(K) the set of isomorphism classes of n-dimensional Frobenius-

semisimple representations of K over Ω. One then has the celebrated local
Langlands correspondence for GLn(K).
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Theorem 1.1.8 (Harris–Taylor, Henniart). There exists a unique collection
of bijections

recK : IrrC(GLn(K))→WDn
C(K)

for every n ≥ 1 such that, for n = 1 it is induced by composition with the
Artin map5 of local class field theory, compatible with character twists, central
characters, taking contragradient to the dual Weil–Deligne representation, and
matches L− and ϵ−factors of pairs.

In fact, we will work with the arithmetic (or Tate) normalisation recTK(−) :=
recK((−)⊗ | det |

1−n
2

K ) instead. The advantage of this normalisation is that it
is compatible with automorphisms of C. In particular, it provides a unique
correspondence

recTK : IrrΩ(GLn(K))←→WDn
Ω(K)

over arbitrary Ω isomorphic to C (independent of the chosen isomorphism),
and the rationality properties of π ∈ IrrΩ(GLn(K)) will match with that of
recTK(π).

With the local Langlands correspondence in hand, to make our first ques-
tion more precise, we have to relate rt(π)|Gal(F v/Fv) to Weil–Deligne represen-
tations. This is where the case of ℓ = p becomes significantly more subtle
than the case of ℓ ̸= p. Let us first consider the latter.

Local-global compatibility at ℓ ̸= p

Let ℓ be a rational prime different from p, and v|ℓ a place of F . As it turns
out, when ℓ differs from p, p-adic Galois representations of an ℓ-adic field are
just special cases of Weil–Deligne representations. More precisely, there is a
fully faithful functor WD(−) from the category of continuous p-adic Galois
representations of Fv to the category of Weil–Deligne representations of Fv
over Qp. The point is that Grothendieck’s ℓ-adic monodromy theorem shows
that on any such Galois representation some open subgroup I ⊂ IFv will act
unipotently and, therefore, by taking its logarithm, we can rewrite this piece
of information as a nilpotent endomorphism N .

We can then finally state local-global compatibility away from p.

Conjecture 1.1.9 (Local-global compatibility at ℓ ̸= p). Assume Conjec-
ture 1.1.1, and fix an isomorphism t : Qp

∼= C. Let π be an algebraic cuspidal
automorphic representation of GLn(AF ) and v ∤ p be a finite place of F . We
then have an isomorphism

WD(rt(π)|Gal(F v/Fv))F−ss ∼= recT (t−1πv).
5We normalise the Artin map so that it sends uniformisers to lifts of the geometric

Frobenius.
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Notice that Conjecture 1.1.9 indeed generalises the unramified case as the
characteristic polyonomial of Frobv acting on recT (t−1πv) is exactly given by
the characteristic polynomial of the Satake parameters of t−1πv ⊗ | det |

1−n
2

v .

Example 1.1.10. For f a cuspidal newform of level Γ0(N), consider π(f)coh.
Then, for ℓ ̸= p, a rational prime with ℓ|N but ℓ2 ∤ N , we see that π(f)coh

ℓ ad-
mits an Iwahori fixed vector. In particular, it is either an unramified principal
series, an unramified twist of the trivial representation or a special series rep-
resentation (i.e. an unramified twist of the Steinberg representation). Since
f is a newform, π(f)coh

ℓ cannot be unramified and, therefore, it must be a
special series St ⊗ (χ ◦ det) for some unramified character χ : Q×

ℓ → C×.
Then Conjecture 1.1.9 predicts that WD(ρf,t|Gal(Qℓ/Qℓ))F−ss is isomorphic to
the Weil–Deligne representation (r,N, V ) where (r, V ) is the representation6

χ⊕χ| · |−1
ℓ , and N =

Å
0 1
0 0

ã
. In particular, arbitrarily small open subgroups

of the wild inertia at ℓ are expected to have a non-trivial action on ρf,t.

Local-global compatibility at ℓ = p

Now let v|p be a finite place of F , and set K = Fv. When trying to
mimic the prime-to-p case, the first problem we run into is that, in general,
p-adic Galois representations of K cannot be realised as Weil–Deligne rep-
resentations as they amount to a significantly more complicated collection
of data thanks to the possibly highly non-trivial action of the wild inertia
subgroup.7 There is, however, a subcategory of p-adic Galois representa-
tions of K singled out by Fontaine called de Rham Galois representations.
To such representations a p-adic version of the monodromy theorem (first
proved by Berger) applies and, by a construction of Fontaine, de Rham Ga-
lois representations of K do have an associated Weil–Deligne representation.
However, we must warn the reader that in this p-adic setup a (de Rham) Ga-
lois representation cannot be reconstructed from its associated Weil–Deligne
representation. Without going into the details, a de Rham Galois repre-
sentation ρ : Gal(K/K) → GLn(Qp) is determined by a so-called filtered
(φ,N,Gal(L/K))-module8 Dpst(ρ)9 (cf. [Fon94], §5.6.3). The associated
Weil–Deligne representation WD(ρ) is constructed from this semilinear al-
gebra gadget by forgetting the filtration.

6We consider smooth characters of Q×
ℓ as characters of WQℓ

by composing them with
the Artin map of local class field theory (sending ℓ to the geometric Frobenius).

7We can already think of the example of the p-adic cyclotomic character.
8Here L is some suitably large finite extension of K.
9This is a finite free L0⊗Qp

Qp-module where L/L0/Qp is the maximal unramified inter-
mediate extension. It is equipped with an (arithmetic Frobenius)-semilinear automorphism
φ, an L-semilinear Galois action, a nilpotent endomorphism N and an L ⊗Qp

Qp-linear
filtration on L⊗L0 Dpst(ρ).
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The upshot of the previous paragraph is that one arrives at an obvi-
ous guess for local-global compatibility at ℓ = p if we are to believe that
rt(π)|Gal(F v/Fv) is de Rham. However, when reciprocity is formulated in terms
of Galois representations, it stays slightly mysterious why this de Rham prop-
erty should be expected. The author therefore feels the urge to motivate this
expectation by going back to the more classical motivic formulation of Lang-
lands reciprocity [Lan79] as was explicated in [Clo90]. Namely, the a priori
stronger conjecture of Langlands–Clozel predicts that cuspidal algebraic au-
tomorphic representations of GLn(AF ) should admit associated irreducible
pure motives of rank n over F with coefficients in some suitable number field
E ⊂ C (cf. [Clo90], Conjecture 4.5). Whatever the category of motives over
F might be, every smooth projective variety over F provides an example and
each motive comes with a collection of realisation functors (Betti, ℓ-adic, de
Rham,...) that, for varieties, specialise to taking their respective cohomology
groups. Moreover, these realisation functors come with all the extra struc-
tures and comparison theorems that the corresponding cohomology theories
admit. In particular, rt(π) is expected to be realised as the p-adic realisation
of the conjectural motive corresponding to π (and t) and therefore should be
de Rham by the p-adic de Rham comparison theorem.

Before finally stating a local-global compatibility conjecture at ℓ = p,
there is one more subtle point that is to be explained. The reader might
have already noticed that we made no mention of "local-global compatibility
at ∞". Furthermore, soon after trying to come up with a guess for what
such a compatibility should look like, one easily gets stuck when realising
that for an archimedean place w of F , Gal(Fw/Fw) is either the trivial group
(when w is complex) or the group of two elements {1, c} (when w is real).
However, as Langlands’s parametrisation of irreducible admissible GLn(Fw)-
representations shows, πw is described by an n-dimensional complex repre-
sentation of the Weil group WFw that fits into a short exact sequence

0→ C× → WFw → Gal(Fw/Fw)→ 0.

Therefore, we have no chance of reconstructing πw from rt(π)|Gal(Fw/Fw)! More
precisely, at real places, the action of the complex conjugation c on rec(πw)
should be possible to be matched with its action on rt(π)|Gal(Fw/Fw) and in-
deed there is a precise conjecture of this kind (see [BG14], Conjecture 3.2.1).
However, it is not clear how to tell rec(πw)|C× from some local data of rt(π).
The reason for raising this issue just now is that in fact it is rt(π)|Gal(F v/Fv)
that is expected to mirror the shape of rec(πw)|C× for v|p the place induced
by w under t. In particular, when reciprocity is formulated in terms of p-adic
Galois representations, (part of) local-global compatibility at ∞ is incorpo-
rated into local-global compatibility at p. Let us first explain briefly the
prediction and then we will provide some motivation as well.

Consider an archimedean place w : F ↪→ C, set v|p to be the correspond-
ing p-adic place under the identification t, and denote by ιw : Fv ↪→ Qp
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the induced embedding. Recall that, since πw is algebraic, rec(πw| · |
1−n

2
C ) ∼=

⊕ni=1χrw,i,sw,i
for some tuple of integers (rw,1, ..., rw,n, sw,1, ..., sw,n) ∈ Z2n (see

Remark 1.1.3 for the notation) with rw,1 ≤ ... ≤ rw,n. On the other hand,
rt(π)|Gal(F v/Fv) is de Rham, and, in particular, Hodge–Tate, and we obtain
its ιw-Hodge–Tate weights λιw,1 ≤ ... ≤ λιw,n by recording the corresponding
jumps of the filtration on Dpst(rt(π)|Gal(F v/Fv))L. Then local-global compati-
bility predicts that (sw,n, ..., sw,1) = (λιw,1, ..., λιw,n).

Remark 1.1.11. Note that thanks to purity of πw (see Clozel’s "purity
lemma" [Clo90], Lemma 4.9), (sw,1, ..., sw,n) already determines rec(πw|·|

1−n
2

w )|C× .

Again, to motivate this expectation, we revisit the motivic formulation
of reciprocity. Given π and w : Fw ↪→ C as before, [Clo90], Conjecture 4.5
tells us that there should be an associated motive M . Its Betti realisation
with respect to the embedding w : F ↪→ C admits a Hodge decomposition
HB,w(M) = ⊕r+s=dHr,s where d is the purity weight of π and, therefore,
of M . Moreover, if w is a real place, there is an action of Gal(Fw/Fw) on
HB,w(M) induced by the action on the motive (i.e. by complex conjugation on
X×F C for a motive induced by a smooth proper F -variety X) and not on the
coefficients. This Galois action interchanges the components Hr,s and Hs,r,
and all of its eigenvalues lie in {+1,−1}. The Hodge numbers then give rise to
an algebraic representation ⊕r+s=dχdimCH

r,s

−r,−s : C× → GLn(C). In the complex
case we treat this as a representation of WFw and denote it by r(M,w). In the
real case, by a recipe of Serre ([Ser69], [Clo06] p.17), the action of complex
conjugation on HB,w(M) allows us to extend the given representation of C× to
a representation r(M,w) : WFw → GLn(C). Then local-global compatibility
predicts that there is an isomorphism rec(πw| det |

1−n
2

C ) ∼= r(M,w) (cf. [Clo90],
4.3.3).

Now the point is that the p-adic realisation sees the Hodge numbers,
and in the real case, even the action of Gal(Fw/Fw) through comparison
theorems. In the case of the former, this is a consequence of the Hodge–
Tate comparison theorem that shows that the Hodge numbers of HB,w(M)
can be read off from the ιw-Hodge–Tate weights λιw,1 ≤ ... ≤ λιw,n of the
Gal(F v/Fv)-action on the p-adic realisation of the motive. More precisely,
one obtains that r(M,w)|C× ∼= ⊕ni=1χ−d−λιw,i,λιw,i

. In the case of the latter,
it follows already from the (properties of the) comparison theorem between
the Betti and p-adic realisations.

We can now finally state a hopefully well-motivated conjecture.

Conjecture 1.1.12 (Local-global compatibility at ℓ = p). Assume Conjec-
ture 1.1.1, and fix an isomorphism t : Qp

∼= C. Let π be an algebraic cuspidal
automorphic representation of GLn(AF ) and v|p be a finite place of F .

Then rt(π)|Gal(F v/Fv) is de Rham. Moreover, we have an isomorphism

WD(rt(π)|Gal(F v/Fv))F−ss ∼= t−1recT (πv), (1.1.1)
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and, for every embedding ι : F ↪→ Qp inducing v, the ι-Hodge–Tate weights
λι,1 ≤ ... ≤ λι,n of rt(π)|Gal(F v/Fv) satisfy

rec(πtι| det |
1−n

2
C )|C× ∼= ⊕ni=1χ−d−λι,i,λι,i

where χr,s : C× → C×, z 7→ zrz̄s, and d is the purity weight of πtι.

Example 1.1.13. Let f = ∑
n≥1 anq

n be a normalised cuspidal newform of
weight k and level Γ0(N). Assume that p ∤ N . In particular, π(f)coh

p is un-
ramified, so recT (π(f)coh

p ) is unramified as well, meaning that the action of the
inertia subgroup IQp is trivial and the monodromy N is zero. Consequently,
according to Conjecture 1.1.12, the same should hold for WD(ρf,t|Gal(Qp/Qp)).
One concludes from this that ρf,t must be crystalline meaning in particu-
lar that we have an isomorphism Dcris(ρf,t|Gal(Qp/Qp)) ∼= WD(ρf,t|Gal(Qp/Qp))
where we treat the former as an unramified Weil–Deligne representation by
inflating the action of the crystalline Frobenius (playing the role of the arith-
metic Frobenius). After unravelling 1.1.1, we then obtain that the trace of
the inverse of the crystalline Frobenius of ρf,t is expected to coincide with
t−1ap.

As for the Hodge–Tate weights of ρf,t, we indicated already that, under
the normalised Harish–Chandra isomorphism, the infinitesimal character of
π(f)coh

∞ is given by (1
2 ,

3
2−k). In particular, one sees that rec(π(f)coh

∞ | det |− 1
2 )|C× ∼=

χ0,1−k ⊕ χ1−k,0 (cf. [Clo90], p.90). Then Conjecture 1.1.12 predicts that the
Hodge–Tate weights of ρf,t should be (k − 1, 0).

We are now ready to answer our first question. As we can see from Conjec-
ture 1.1.9 and Conjecture 1.1.12 (and the discussion beforehand), for every
place v of F , πv is expected to be determined by the corresponding local
behaviour of rt(π). In fact, in the case of v ∤ p,∞, πv and rt(π)|Gal(F v/Fv) de-
termine each other. When v|p, however, rt(π)|Gal(F v/Fv) not only determines
πv, but the infinitesimal characters of the corresponding archimedean factors
of π as well. On the other hand, πv and the corresponding archimedean factors
of π are still not sufficient to reconstruct rt(π)|Gal(F v/Fv), only up to passing
to the associated graded on Dpst(rt(π)|Gal(F v/Fv)). Wondering what the filtra-
tion should correspond to on the automorphic side is the starting point of the
p-adic Langlands program, and is beyond the scope of this thesis.

Automorphy

We finally discuss our second question, the question of automorphy of
Galois representations. On the way of investigating our first question, we ob-
served that in fact every irreducible continuous p-adic Galois representation
coming from an algebraic cuspidal automorphic representation has a special
local behaviour. Following Fontaine–Mazur, we isolate such Galois represen-
tations by calling them geometric.
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Definition 1.1.14. Let ρ : Gal(F/F )→ GLn(Qp) be a continuous represen-
tation. We call ρ geometric if

i. it is unramified at all but finitely many places, and

ii. is de Rham at p.

The striking conjecture of Fontaine–Mazur says that every irreducible
geometric p-adic Galois representation is motivic.

Conjecture 1.1.15 (Fontaine–Mazur). Any irreducible geometric Galois rep-
resentation

ρ : Gal(F/F )→ GLn(Qp)

can be realised as the Gal(F/F )-equivariant subquotient of

H i(X ×F F ,Qp)(j)10

for some smooth proper variety X/F , i ∈ Z≥0, and j ∈ Z.

The Fontaine–Mazur conjecture combined with Langlands’s prediction
and the observations of Clozel (cf. [Clo90], Question 4.16) tells us what
the answer to our second question should be.

Conjecture 1.1.16 (Automorphy). For every irreducible geometric p-adic
Galois representation ρ : Gal(F/F ) → GLn(Qp), and isomorphism t : Qp

∼=
C, there is an algebraic cuspidal automorphic representation π of GLn(AF )
and an isomorphism ρ ∼= rt(π).

Example 1.1.17. Let E/F be an elliptic curve without CM (i.e. End(E) ∼=
Z). As is well-known, the dual of its Tate module TpE = lim←−n≥1 E[pn](F )
is isomorphic to H1

ét(E ×F F ,Zp) as a continuous Gal(F/F )-module. By
inverting p and fixing a basis, we obtain a 2-dimensional geometric Galois
representation

ρE,p : Gal(F/F )→ GL2(Qp).

A theorem of Serre says that E having no CM means that ρE,p must be
irreducible. By looking at the Hodge numbers of E, we see that all of its
labelled Hodge–Tate weights are given by (0, 1). In particular, for every
choice of isomorphism t : Qp

∼= C, Conjecture 1.1.16 predicts the existence
of an algebraic cuspidal automorphic representation π of GL2(AF ) with all
of its archimedean components having infinitesimal character (1

2 ,−
1
2).11

10Here (−)(j) denotes the Tate twist of the Galois action by the jth power of the cyclo-
tomic character.

11Note that this is the infinitesimal character of the trivial representation of GL2(Fw),
i.e. the representation with highest weight (0, 0).
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On the other hand, at any v ∤ p finite place of F where E has good
reduction, ρE,p is unramified and by the Lefschetz fixed point formula for E,

trρE,p(Frobv) = 1 + |OFv/ϖv| − |E(OFv/ϖv)| =: av(E).

In particular, the L-function of E is exactly the L-function of ρE,p that is the
L-function of π. In other words, E is expected to be modular, and therefore,
its L-function should enjoy the properties of an automorphic L-function.

In the case of F = Q, algebraic cuspidal automorphic representations with
infinitesimal character (1

2 ,−
1
2) are exactly the ones of the form π(f)coh for

weight 2 normalised cuspidal newforms. In this case, the conjecture translates
exactly to modularity of elliptic curves E/Q (cf. [Wil95], [TW95], [Bre+01])
in the classical sense: the existence of a newform f = ∑

n≥1 an(f)qn of weight 2
matching the dconductor of E with the level of f and satisfying aℓ(f) = aℓ(E)
at all primes ℓ where E has good reduction.

Combining Conjecture 1.1.1, Conjecture 1.1.9, Conjecture 1.1.12 and Con-
jecture 1.1.16 we obtain Langlands reciprocity.

Conjecture 1.1.18 (Langlands reciprocity). For any choice of integer n ≥ 1,
and isomorphism t : Qp

∼= C, there is a (necessarily unique) bijection of sets
of isomorphism classesß

algebraic cuspidal automorphic
representations of GLn(AF )

™
rt(−)−−−→

 irreducible geometric
n-dimensional p-adic
Galois representations of F


satisfying local-global compatibility at every place of F .

1.2 Known cases of Langlands reciprocity
After a general introduction to the statement of reciprocity, we now turn to

discussing known cases of Conjecture 1.1.18 with a focus on progress towards
Conjecture 1.1.12. However, we do not attempt to do enough justice to the
history of Langlands reciprocity here, instead provide an incomplete list of
the major achievements of the subject most relevant to this thesis.

1.2.1 The case of GL1/F

The only integer n ≥ 1 for which Langlands reciprocity is known in its
entirety is n = 1. For GL1/F for a general number field F , Conjecture 1.1.18
is about matching algebraic Hecke characters of F with 1-dimensional Galois
representations of F and it can be deduced from Class Field Theory as for
instance is explained in [Far11].



24 CHAPTER 1. BACKGROUND AND INTRODUCTION

The correspondence is set up by first noting that the global Artin reci-
procity map ArtF : A×

F/F
× → Gal(F ab/F ) induces an isomorphism of profi-

nite groups A×
F/(F×

∞)◦F× = π0(A×
F/F

×) ∼= Gal(F ab/F ). In particular, every
finite order (i.e. weight 0 algebraic) Hecke character gives rise to a finite order
character Gal(F/F ) ↠ Gal(F ab/F ) → C× ∼=t−1 Q×

p . For general algebraic
Hecke characters, one notes that the finite part of the Hecke character must
always land in some number field E and the induced algebraic character of
F×

∞ descends to an algebraic character (ResF/QGm)E → Gm,E. This allows
for exchanging the algebraic character at∞ to an algebraic character at p on
the cost of landing in a p-adic coefficient field.

We note that local-global compatibility away from p then follows from
compatibility between local and global Class Field Theory. At ℓ = p one fur-
ther needs to check that the induced local character is potentially semistable
(in fact potentially crystalline) with the right Hodge–Tate weights to verify
the predicted compatibility.

We mention that the construction is even proved to factor through the
category of motives, matching algebraic Hecke characters with rank 1 motives
generated by potentially CM abelian varieties and Artin motives (cf. [Sch88],
Chapter I, §4, [Far11], Proposition 7.4).

1.2.2 The case of GL2/Q
The next group for which significant progress has been made is GL2/Q.

However, already in this case, Conjecture 1.1.18 is far from known in its
entirety. The most developed case is that of regular algebraic cuspidal auto-
morphic representations.

Definition 1.2.1. Let F be a number field, and n ≥ 1 be an integer. An
algebraic automorphic representation π of GLn(AF ) is called regular if, for
every place w | ∞ of F , if we write rec(πw ⊗ | det |

1−n
2

C )|C× = ⊕ni=1χpw,i,qw,i
12,

the integers pw,i are all distinct for i = 1, ..., n. Equivalently, π is regular if
π∞ has the same infinitesimal character as a highest weight representation of
(ResF/QGLn)R.

We say that a regular algebraic automorphic representation π of GLn(AF )
is of weight λ ∈ (Zn)Hom(F,C) if the infinitesimal character of π∞ coincides
with that of the dual of the highest weight representation of (ResF/QGLn)R
of highest weight λ.

Example 1.2.2. Given a cuspidal newform of weight k ≥ 2, the infinitesimal
character of π(f)coh

∞ coincides with that of (Symk−2C2)∨. Conversely, every
regular algebraic cuspidal automorphic representation of GL2(AQ) is of the
form π(f)coh ⊗ | det |mC for a unique normalised cuspidal newform of some
weight k ≥ 2 and an integer m ∈ Z.

12See Remark 1.1.3 for the notation.
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By work of plenty of mathematicians, we have the following result towards
Conjecture 1.1.18.

Theorem 1.2.3. For any choice of field isomorphism t : Qp
∼= C, there is

an injective map of sets of isomorphism classesß
regular algebraic cuspidal automorphic
representations of GL2(AQ)

™
rt(−)−−−→


irreducible odd geometric
2-dimensional p-adic
Galois representations of Q
with distinct Hodge–Tate weights


satisfying local-global compatibility at every rational prime. Moreover, it is
known to be a bijection as long as p ≥ 5.

Let us indicate the construction of rt(−) in the weight 0 case (i.e. in the
case of weight 2 cuspidal newforms), already going back to Eichler–Shimura.
The first important point is that the Eichler–Shimura isomorphism tells us
that, for every weight 0 cuspidal automorphic representation π of GL2(AQ),
πf sits in

H := lim−→
K

H1(XK(C),C)

as a GL2(A∞
Q )-equivariant direct summand with multiplicity 2 where XK/Q

is the compactified modular curve. On the other hand, XK being a smooth
algebraic variety over Q already, H ⊗C,t−1 Qp is naturally a Gal(Q/Q) ×
GL2(A∞

Q )-module. Therefore, we get a 2-dimensional Galois representation
of Q

rt(π) := HomGL2(A∞
Q )(πf , H ⊗C,t−1 Qp).

Now enters the Eichler–Shimura relation to show that rt(π) is the right can-
didate for verifying Conjecture 1.1.1. More precisely, the Eichler–Shimura
relation tells us that, for N ≥ 3 and ℓ ∤ Np, the geometric Frobenius acting
on H1

ét(XK1(N),Q,Qp) satisfies the polynomial

X2 − Tℓ,1X + ℓTℓ,2.

In particular, rt(π)(Frobℓ) is killed by X2−aℓ,1(π)X+ℓaℓ,2(π) and with some
extra work (see for instance [Con10]) one sees that it is in fact its characteristic
polynomial.

The construction for general (dominant) weight (k−2, 0) is due to Deligne
and goes along similar lines but considering cohomology with coefficients in
the local system attached to the algebraic representation Symk−2C2 of GL2/Q
and the étale local system attached to its p-adic variant (see [Del71]).

Local-global compatibility of rt(π) away from p is a theorem of Carayol
[Car86]. The fact that the modular Galois representation is de Rham with
the right Hodge–Tate weights follows from the de Rham comparison theorem
and Falting’s p-adic Eichler–Shimura decomposition [Fal87]. The rest of the



26 CHAPTER 1. BACKGROUND AND INTRODUCTION

compatibility at p is a result of Saito [Sai97] reducing the question to Carayol’s
work.

Finally, the fact that the associated Galois representations are irreducible
is a theorem of Ribet (cf. [Rib77], Theorem (2.3)).

Remark 1.2.4. The modularity part of Theorem 1.2.3 has a lot more com-
plicated history starting with the work of Wiles [Wil95] and Taylor–Wiles
[TW95]. They proved that in the residually irreducible case suitable local-
global compatibility and residual modularity together imply modularity in the
Barsotti–Tate case by introducing the so-called Taylor–Wiles method. Their
argument was generalised to certain potentially Barsotti–Tate and crystalline
cases with small weight as well13 (see for instance [Dia96], [Dia97], [CDT99],
[DFG04]). Kisin later introduced a modification [Kis09a] making it flexible
enough to succeed even in cases when the local deformation ring at p is not
formally smooth.

More general modularity results (in the residually irreducible case) were
proved by Kisin [Kis09b] and Emerton [Eme11].

In the residually reducible case there is the work of Skinner–Wiles [SW99]
for ordinary representations. In general, it was established by Pan in his
thesis work [Pan22].

However, the proof of all of the more uniform results ([Kis09b], [Eme11],
[Pan22]) rely on the p-adic local Langlands correspondence for GL2(Qp). In
particular, these arguments as of now have no chance of being generalised
beyond the case of GL2/F with p being completely split in F .

Nevertheless, we mention that recently a major breakthrough has been
made by Pan [Pan23] that reproves the modularity results of [Eme11] without
the use of the p-adic local Langlands correspondence giving some hope for
generalisations to other groups.

Remark 1.2.5. We also note that, in light of Example 1.1.4, the irregular
algebraic automorphic representations all come either from weight 1 mod-
ular forms or algebraic Maass forms. In the case of the latter very little
is known. In the case of the former, even though these forms can only be
found in coherent cohomology, Deligne–Serre [DS74] showed that one can as-
sociate Galois representations to them by using the Hasse invariant to find
mod p congruences with higher weight modular forms. All of these modular
Galois representations will be odd and have finite image and in particular
have Hodge–Tate weights (0, 0). For modularity results in this direction see
[Pan20], Theorem 1.0.5 and the references in loc. cit. Remark 1.0.6.

13All of these cases are so that the local deformation rings at p are formally smooth
integrally.
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1.2.3 GLn/F , the self-dual case
As we saw, in the case of GL2/Q the main point that allowed us to

have a good grip on the problem of reciprocity was the existence of a tower
of Shimura varieties (that of the modular curves) with Betti cohomology
groups realising our automorphic representation. In particular, in light of the
Eichler–Shimura isomorphism, we had to assume that our algebraic automor-
phic representation satisfies a certain regularity condition. This is not special
to GL2/Q.

To make this more precise, let G/Q be a connected reductive group. Then
it is a theorem of Matsushima when G is compact mod centre at infinity and
of Franke ([Fra98], Theorem 18) for general G that a cuspidal automorphic
representation π of G(AQ) contributes to the Betti cohomology of the asso-
ciated locally symmetric spaces if and only if π is cohomological in the sense
of [BG19], Definition 7.2.1. On the other hand, for G = ResF/QGLn, π is
cohomological if and only if it is regular algebraic.

In particular, in the hope of generalising the construction of Galois repre-
sentations to GLn/F , we restrict ourselves to regular algebraic automorphic
representations. However, even after making this assumption, another issue
is waiting to be dealt with: The locally symmetric spaces associated with
GLn/F typically do not give rise to Shimura varieties, only possess the struc-
ture of a real manifold. One can already see this happen for instance in the
case of GL2/Q(

√
−2) where the induced locally symmetric spaces are unions

of Bianchi manifolds, having real dimension 3 leaving no chance for them to
carry a complex algebraic structure.

The key idea that still allows for some progress is to involve another major
player from the Langlands’s programme, functoriality. Given an imaginary
CM number field F with totally real subfield F+ and complex conjugation c,
we can consider certain n-dimensonal quasi-split unitary group U/F+. These
groups do admit Shimura data and so bring us one step closer to carry out
the strategy of GL2/Q for their automorphic representations.

On the other hand, they are related to general linear groups by being
forms thereof. Namely, we have an identification ResF/F+(U ×F+ F )(AF+) =
U(AF ) ∼= GLn(AF ). Now enters functoriality in the form of automorphic
quadratic base change for U . A theorem of Clozel–Labesse14 asserts that ev-
ery cuspidal cohomological automorphic representation Π of U(AF+) admits
a base change BCF/F+(Π), an automorphic representation of ResF/F+(U ×F+

F )(AF+), and if θ is the automorphism 1⊗c of ResF/F+(U×F+F ), then coho-
mological cuspidal automorphic representations π of ResF/F+(U×F+F )(AF+)
satisfying π ∼= π ◦ θ are all of the form BCF/F+(Π).15 The automorphism θ
under the isomorphism ResF/F+(U ×F+ F )(AF+) ∼= GLn(AF ) is given by

14To be more precise, their unconditional results only hold under some mild constraints
that in practice can be be assumed to be satisfied.

15Note that Π is typically not unique here.
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g 7→t (g−c) motivating the following definition.

Definition 1.2.6. Let F be an imaginary CM number field with complex
conjugation c, and π be a regular algebraic cuspidal automorphic representa-
tion of GLn(AF ). We call π conjugate self-dual if there is an isomorphism

π∨ ∼= π ◦ c

as automorphic representations.

In particular, for conjugate self-dual regular algebraic cuspidal automor-
phic representations π one can at least find their system of Hecke eigenvalues
in the cohomology of unitary Shimura varieties (that does admit a Galois
action) by considering their descent to the corresponding unitary group.

One then would like to pick a suitable unitary group U/F+ of rank n, set
G := ResF+/QU , consider the (ξ∨-cohomological) descent Π of π to U , and
define rt(π) to be the Galois module

HomG(A∞
Q )(Π∞, lim−→

K⊂G(A∞
Q )
Hd(ShK(C),Wt,ξ))

where {ShK}K is a tower of Shimura varieties attached to G, d is the middle
degree for the Shimura variety,16 and Wt,ξ is the p-adic local system induced
by the algebraic representation ξ of GC. Guided by the Kottwitz conjecture,
the quasi-split unitary group with signature (1, n − 1) at one, and (0, n) at
the rest of the archimedean places is the right group to pick( provided that it
exists).17 The existence of such a U can be ensured as long as n and [F+ : Q]
are not simultaneously even. In the latter case one goes around this issue by
working with the isobaric sum π ⊞ χ for some suitable self-dual character χ.

A subtlety to be pointed out is that to check that the characteristic
polynomials of the Frobenii are the right ones one has to employ something
significantly more complicated than the Eichler–Shimura relation called the
Langlands–Kottwitz–Rapoport method. This is a systematic programme that
expresses the L-function of the Shimura variety in terms of automorphic rep-
resentations for the unitary group and its endoscopic groups. For how this
works in the case of the modular curve (and to compare its nature to that of
the Eichler–Shimura relation) the reader can consult [Sch13] and for a survey
on the method see [Zhu20].

16The reason for considering only the middle degree originates in the combination of
the expectation that the tempered spectrum is concentrated in the middle degree for
Shimura varieties and the Ramanujan–Petersson conjecture predicting that cuspidal (glob-
ally generic) automorphic representations should all be tempered at every place.

17The corresponding Shimura varieties are often referred to as Harris–Taylor Shimura
varieties as they were famously used in [HT01] to construct the first examples of rt(π) in the
self-dual case in great generality and use them to prove the local Langlands correspondence
for GLn.
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Without attempting to explain the many complications one has to face to
make this strategy work, we point the reader to the excellent surveys [Shi11],
[CS23], §2.2 on the subject and the references therein.

As the culmination of the effort of several mathematicians starting with
the work of Harris–Taylor [HT01] we have the following theorem.

Theorem 1.2.7. Let F be an imaginary CM field with complex conjugation
c. Let π be a regular algebraic conjugate self-dual cuspidal automorphic rep-
resentation of GLn(AF ) of weight λ. Then for any isomorphism t : Qp

∼−→ C
there is a continuous semisimple Galois representation

rt(π) : Gal(F/F )→ GLn(Qp)

satisfying the following conditions:

i. We have an isomorphism rt(π)c ∼= rt(π)∨(1− n).

ii. For each p-adic place v of F , rt(π)|Gal(F v/Fv) is de Rham and, for each
embedding ι : Fv ↪→ Qp, the labelled ι-Hodge–Tate weights are given by

HTι(rt(π)|Gal(F v/Fv)) = {λt◦ι,n < λt◦ι,n−1 + 1 < ... < λt◦ι,1 + n− 1}.

iii. For each finite place v of F , we have

WD(rt(π)|Gal(F v/Fv
)F−ss ∼= recFv(t−1πv| det |

1−n
2

v ).

Remark 1.2.8. We note that Theorem 1.2.7 is not concerned with irre-
ducibility of the associated Galois representations and indeed, it is not known
in general. Nevertheless, rt(π) is proved to be irreducible as long as πv is
square integrable for some finite place v ∤ p of F (cf. [TY07], Corollary B).

On the other hand, besides the question of irreducibility, Theorem 1.2.7
completely settles Conjecture 1.1.1, Conjecture 1.1.9 and Conjecture 1.1.12
under the extra regularity and self-duality assumption.

Even though in this self-dual setup the construction of Galois representa-
tions satisfying full local-global compatibility is established, the problem of
automorphy is still far from solved. However, the Taylor–Wiles–Kisin method
generalises well ([CHT08]) and allows for a great source of automorphy lift-
ing theorems. For some of the sharper results of this kind (in the residually
irreducible case) the reader can look at [Tho12], Theorem 7.1, and [Bar+14],
Theorem B. Moreover, in [Bar+14] it is shown that using their automorphy
lifting results, one can deduce potential automorphy (i.e. automorphy af-
ter possible base change along some finite Galois extension L/F ) of certain
irreducible geometric Galois representations.
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1.2.4 GLn/F , beyond the self-dual case
Relaxing the self-duality condition in Theorem 1.2.7 proved to require a

genuinely new and more indirect construction. As we saw, the self-duality
condition was key to find the corresponding systems of Hecke eigenvalues in
the étale cohomology of Shimura varieties. However, as was made precise in
[JT], certain non-self-dual geometric irreducible Galois representations (under
some standard conjectures) cannot be found in the cohomology of Shimura
varieties.

Another new phenomenon that comes with going beyond the self-dual
case is the presence of genuine "torsion automorphic forms".18 We elaborate
on the significance of extending Langlands reciprocity to torsion classes at
the end of the subsection.

Construction of Galois representations

The first major step in establishing reciprocity in this generality was made
in [Har+16] and shortly after independently in [Sch15]. The authors con-
structed rt(π) for arbitrary regular algebraic cuspidal automorphic represen-
tation π of GLn over imaginary CM fields. Let us now briefly sketch their
argument. We will follow the construction of [Sch15] as this is the perspective
on which this thesis builds on.

In light of [JT] perhaps not surprisingly, the construction goes via p-adic
congruences and reduces the question to the self-dual case. The two main
ideas are the introduction of a robust Eisenstein series construction for the
Betti cohomology of locally symmetric spaces and a novel automorphic result
concerning congruences between automorphic forms appearing in completed
cohomology and classical cusp forms for groups giving rise to (Hodge type)
Shimura varieties. We start by explaining the first of these on a regular al-
gebraic cuspidal automorphic representation π of GLn/F for some imaginary
CM field F/F+.

Consider the quasi-split unitary group G̃ = U(n, n)/F+ associated with
the imaginary quadratic extension F/F+, a form of GL2n. The group G̃
has a maximal parabolic subgroup P (called the Siegel parabolic) with Levi
quotient ResF/F+GLn. From this point on we impose as a blanket assumption
the existence of an imaginary quadratic subfield F0 ⊂ F .19 The end product
of Scholze’s construction is, for every integer m ≥ 1, an "Eisenstein series"
for G̃ associated with π mod pm appearing in the Betti cohomology of the

18To support this sentence mathematically, we invite the reader to look at for instance
[BV13] where, in the defect 1 case (such as the case of GL2 over an imaginary quadratic
field), they prove exponential growth of torsion in the cohomology of locally symmetric
spaces as we deepen the level while the space of characteristic 0 automorphic forms con-
tributing to the cohomology stays small.

19This is only a technical point ensuring that we have access to unconditional base change
along F/F + for ‹G cf. [Shi14].
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corresponding unitary Shimura variety. To make this more precise, set T to
be the set of finite places v of F where either π ramifies or v is p-adic. Then
π is determined by the associated system of Hecke eigenvalues

ψ : TT := Z[GLn(A∞,T
F )//GLn(“O∞,T

F )]→ Zp.

Moreover, ψm := ψ mod pm factors through the Hecke action on the Betti
cohomology group H i(XK ,Z/pm) of the GLn/F -locally symmetric space for
some integer i ≥ 0 and level subgroup K ⊂ GLn(A∞

F ). Then, abstractly, the
"Eisenstein series" for G̃ induced by ψm is the system of Hecke eigenvalues›ψm : ‹TT := Z[G̃(A∞,T

F+ )//G̃(“O∞,T
F+ )]→ Zp/p

m

obtained as the mod pm reduction of the system of Hecke eigenvalues attached
to Ind

‹G(A∞,S
F )

P (A∞,T

F + )π
T
f . Scholze’s observation is that ›ψm always appears in the

compactly supported (degree i + 1) or ordinary (degree i) Betti cohomology
of the unitary Shimura variety with p-torsion coefficients.

The proof of this fact is a topological argument making use of the Borel–
Serre boundary of the unitary Shimura variety. Namely, the Borel–Serre
boundary admits a stratification labelled by G̃(F+)-conjugacy classes of (proper)
parabolic subgroups with the open strata corresponding to conjugacy classes
of maximal parabolic subgroups (cf. [NT16], §3.1.2). The stratum corre-
sponding to P contains as an open subspace a torus bundle over XK (cf.
[Sch15], §V.2, [Clo22]). The point is then that the natural map induced be-
tween the cohomology of the Borel–Serre boundary and the (interior) coho-
mology of XK descends the (unnormalised) Satake transform S : ‹TT → TT .
Moreover, the Satake transform has the property that ›ψm is given by precom-
posing ψm with S. To conclude, one relates the cohomology of the Borel-Serre
boundary to the cohomology of the Shimura variety via the usual excision long
exact sequence.

The other ingredient is the main automorphic result of [Sch15] whose proof
occupies most of loc.cit. It states that every system of Hecke eigenvalues ap-
pearing in the compactly supported completed cohomology of a Hodge type
Shimura variety (like the unitary Shimura varieties in our consideration) is
lifted by the Hecke eigensystem of a finite linear combination of classical cus-
pidal eigenforms of the corresponding group.20 As for its proof, as mentioned
this is the main result of [Sch15] using the full strength of the most significant
innovation of the paper: the introduction and analysis of perfectoid Shimura
varieties and their Hodge–Tate period map.

One can now construct rt(π) with relative ease. The Eisenstein series
construction tells us that, for every integer m ≥ 1, we can find ›ψm = ψm ◦ S
in the compactly supported cohomology of the Shimura variety, and so also

20For a precise formulation, see loc. cit. Theorem IV.3.1.
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in its compactly supported completed cohomology. In particular, ψ̃m is glued
from a finite collection of classical cusp forms for G̃(AF+). By making use
of the trace formula and Theorem 1.2.7, we can attach to these cusp forms
2n-dimensional Galois representations of F .21 Since ›ψm is glued from these
forms, we obtain a 2n-dimensional determinant Dψ̃m

: Gal(F/F ) → Zp/p
m

(in the sense of Chenevier [Che09]) matching Frobenii away from T with the
Satake parameters of ψ̃m. We can pass to the limit over m to obtain Dψ̃ :
Gal(F/F )→ Zp, the 2n-dimensional determinant associated with ψ̃. We can
then look at the unique semisimple Galois representation rψ̃ : Gal(F/F ) →
GL2n(Qp) associated with it. By unravelling the effect of the Satake transform
on the Satake parameters, we further obtain that, for v /∈ T ,

(rψ̃|WFv
)ss ∼= t−1recFv(πv| det | 1−n

2 )⊕ t−1recFv(πv| det | 1−n
2 )∨,c(1− 2n) (1.2.1)

where (−) denotes the usual twist by the p-adic cyclotomic character. Then
the expectation would be to obtain a global factorisation of rψ̃ of this kind
as then the first factor was forced to be rt(π). This is achieved by a twisting
argument. Namely, one notices that twisting π by | det |M for some integer
M and looking at the induced system ψ(M) allows us to tell apart the two
factors of 1.2.1 for r‡ψ(M) for any fixed place v /∈ T . Then an elementary group
theory argument shows (cf. [Har+16], §7) that, for any sufficiently large M ,
r‡ψ(M)

∼= rt(π| det |M) ⊕ rt(π| det |M)∨,c(1 − 2n). The construction of rt(π) is
then finished by setting rt(π) := rt(π| det |M)(−M).

Torsion automorphic Galois representations

As was already hinted at, the cohomology groups H∗(XK ,Z/pm) can con-
tain Hecke eigenclasses that do not lift to characteristic 0 (cf. [BV13]). One
is tempted to study these Hecke eigenclasses as well.

Definition 1.2.9. Given a system of Hecke eigenvalues ψ : TT → A valued
in some local Artinian Zp-algebra, we call ψ automorphic if it factors through
the natural Hecke action on H∗(XK ,Z/pm) for some level subgroup K ⊂
GLn(A∞

F ) and integer m ≥ 1.

The novelty of Scholze’s construction is that it deals with arbitrary auto-
morphic Hecke eigensystems.

Theorem 1.2.10 (Scholze). Given an automorphic system of Hecke eigen-
values ψ : TT → A, there is an associated n-dimensional determinant Dψ :

21What we mean by this is that the corresponding cuspidal automorphic representations
base change along F/F + to (isobaric sums) of regular algebraic conjugate self-dual cuspidal
automorphic representations of GLm/F for some integers m ≤ 2n (cf. [Shi14]). These
then admit associated Galois representations with full local-global compatibility above
split places of F + thanks to Theorem 1.2.7.
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Gal(F/F ) → A′ unramified outside T , and matching characteristic polyno-
mial of Frobv with Satake parameters at v /∈ T . Here A′ is a local Artinian
quotient A → A′ with kernel I ⊂ A having nilpotence degree bounded by an
integer only depending on n and [F : Q].

In particular, every automorphic mod p Hecke eigensystem ψ : TT →
Fp admits an associated continuous semisimple Galois representation rψ :
Gal(F/F )→ GLn(Fp).

Remark 1.2.11. From now on we will largely ignore the subtle point that the
associated determinant is only defined up to a nilpotent ideal and will simply
write A′ for the quotient. However, whenever we appeal to this notation, the
nilpotence degree of the kernel of A→ A′ will always satisfy the property of
stated in the theorem.

Note that, as we have seen, the nilpotent ideal causes no issues for appli-
cations to classical reciprocity.

We also note that Newton–Thorne [NT16] has proved that the bound on
the nilpotence degree can always be chosen to be 4 in Scholze’s theorem.
However, this bound is only known for rψ without knowing local-global com-
patibility and in the soon to be discussed local-global compatibility results
the nilpotence degree might be larger than this.

Since the deformation theory of absolutely irreducible determinants coin-
cides with the deformation theory of the corresponding Galois representations,
the following class of automorphic Hecke eigensystems is of special interest.

Definition 1.2.12. Given an automorphic Hecke eigensystem ψ : TT → A,
we call it non-Eisenstein if the Galois representation associated with the cor-
responding mod p system of Hecke eigenvalues ψ : TT → A/mA is absolutely
irreducible.

For such automorphic Hecke eigensystems, we will denote by rψ the Galois
representation associated with Dψ.

Local-global compatibility at ℓ ̸= p

With the non-self-dual automorphic Galois representations of [Har+16]
and [Sch15] at our disposal, the question of local-global compatibility in this
generality was waiting to be answered. Away from p in characteristic 0 the
problem was almost completely solved in the thesis work of Varma [Var14].
More precisely, she proved that at any finite place v ∤ p the isomorphism of
Conjecture 1.1.9 holds up to semisimplification and was able to bound the
nilpotence of the monodromy of rt(π)|Gal(F v/Fv) by that of πv. She achieves
the semisimple local-global compatibility by keeping track of the local Hecke
action at ramified non-p-adic places in the construction of [Har+16] proving
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that rψ̃ satisfies 1.2.1 at these places as well.22 Then a refinement of the
"separation argument" of the previous paragraph allows her to conclude local-
global compatibility.

For torsion automorphic Hecke eigensystems the best known results away
from p are limited to cases relevant to the Taylor–Wiles method (see [All+23],
§3, [MT22]).

Remark 1.2.13. In light of Varma’s result, to completely settle Conjec-
ture 1.1.9 in the regular algebraic case over imaginary CM fields, the only
thing left to prove is that the monodromy operators of rt(π) and πv match
for v ∤ p. Such results have been obtained in [AN21], [Yan21] and [Mat24]
with the general strategy of first establishing a fine enough potential auto-
morphy result to reduce the problem to Varma’s result (see the introduction
of [AN21]).

Local-global compatibility at ℓ = p: New congruences between
Eisenstein series and cusp forms

The question of local-global compatibility at ℓ = p is more subtle. In
[Sch15] the Eisenstein series›ψm are realised in completed cohomology allowing
for no control over the level and weight of the cusp forms we find congruences
with. Similarly, in [Har+16] ψ̃ is found in some space of p-adic cusp forms
leading to the same issue. Therefore, to tackle our problem, we need a source
of congruences with better control at p.

Such a source has been provided by the novel work of Caraiani–Scholze
[CS19]. The existence of these finer congruences forces us to impose additional
conditions on our mod p system of Hecke eigenvalues.

Definition 1.2.14. Given a continuous Galois representation

r̄ : Gal(F/F )→ GLh(k)

for some finite field extension k/Fp, we call r decomposed generic if there is
a prime ℓ ̸= p splitting completely in F such that for every place v | ℓ in
F , r|Gal(F v/Fv) is unramified and the eigenvalues α1, ..., αn of r(Frobv) satisfy
αi/αj ̸= ℓ for i ̸= j. Given a mod p system of Hecke eigenvalues ψ, we further
call ψ decomposed generic if rψ satisfies that condition.

We further need the notion of an irreducible algebraic representation ξ
of the group (ResF+/QG̃)C being CTG ("cohomologically trivial for G =
ResF/QGLn") (cf. [All+23], Definition 4.3.5). Instead of giving the precise

22More precisely, [Har+16] in fact realises the finer Eisenstein series given by

Ind
‹G(A∞,p

F + )
P (A∞,p

F + )π
p
f as a p-adic cusp form and Varma tracks the Hecke action on this Eisen-

stein series at ramified places as well and matches it with that of the congruent cusp forms.
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definition, we only mention that it ensures that there are no (classical) ξ∨-
cohomological Eisenstein-series for G̃ coming from regular algebraic cuspidal
automorphic representations of GLn(AF ).

Now set ‹K ⊂ G̃(A∞
F+) to be a (sufficiently small) compact open subgroup.

From now on, E/Qp will denote a suitably large finite field extension with
ring of integers O and a choice of uniformiser ϖ. In particular, E contains
the image of all embeddings F ↪→ Qp. Let ξ be an irreducible algebraic
representation of (ResF+/QG̃)C ∼=

∏
w|∞ GL2n/C. To ξ one can attach an

O-local system Vξ on the Borel–Serre boundary ∂‹X‹K of the Shimura variety
with level ‹K. Then a vague form of the corollary of [CS19] to congruences
between cusp forms and Eisenstein series is as follows.

Corollary 1.2.15 ([CS19],[Kos21],[All+23]). Given an automorphic system
of Hecke eigenvalues ψ : TT → A. Assume that the Eisenstein series ψ̃ :‹TT → A factors through the middle degree cohomology

Hd(∂‹X‹K ,Vξ)
of the Borel–Serre boundary ∂‹X‹K of the U(n, n)/F+-Shimura variety of level‹K ⊂ G̃(A∞

F+). Then ψ̃ lifts to a finite linear combination of classical ξ∨-
cohomological level ‹K cuspidal eigenforms of G̃ if the following are satisfied.

i. The associated mod p Hecke eigensystem ψ is non-Eisenstein,

ii. the associated mod p Eisenstein series ›ψm is decomposed generic, and

iii. the algebraic representation ξ is CTG.

Local-global compatibility at ℓ = p: The Fontaine–Laffaille degree
shifting argument

The use of the mentioned new congruences led to the breakthrough of the
ten authors [All+23] on local-global compatibility at p. We now spell out the
main innovation of [All+23], a new construction of Eisenstein series they call
the degree shifting argument.

From now on, we further assume that p splits in our imaginary quadratic
subfield F0 ⊂ F . In particular, every p-adic place v̄ of F+ splits in F , and
for a place v | p of F we will write v̄ for the place in F+ lying below it.

We remind the reader that, for a highest weight vector λ for ResF/QGLn,
we are interested in proving instances of Conjecture 1.1.12 for cuspidal auto-
morphic representations π of GLn(AF ) of weight λ. To λ, one can associate
an E-local system Vλ on XK , and according to Franke’s formula, the cuspidal
part of the cohomology H∗(XK , Vλ), as a Hecke module, computes all such
π’s of level K. One can define an O-lattice Vλ ⊂ Vλ and so more gener-
ally we are interested in local-global compatibility for non-Eisenstein Hecke
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eigensystems appearing in H∗(XK ,Vλ) = lim←−m≥1 H
∗(XK ,Vλ/ϖm). In light of

Corollary 1.2.15, a first attempt in the hope of progress on such local-global
compatibility is investigating the following problem.

Problem 1.2.16. Fix the following collection of data.

• An integer 0 ≤ q ≤ d− 1;23

• A place v̄ of F+ dividing p;

• A compact open subgroup ‹K ′
v̄ ⊂ G̃(OF+

v̄
);

• An irreducible algebraic representation ξ′
v̄ = (ξ′

ι)ι:F+
v̄ ↪→Qp

of (ResF+/QG̃)Qp
.

Consider an automorphic Hecke eigensystem ψ : TT → A that satisfies as-
sumption i) and ii) of Corollary 1.2.15. Assume that ψ appears in

Hq(XK ,Vλ/ϖm)

for some integer m, with

• level K satisfying ‹K ′
v̄ ∩ (GLn(Fv)×GLn(Fvc)) = Kv ×Kvc and

• highest weight vector λ = (λι)ι:F ↪→Qp
such that ξ′

v̄ is associated with
(−w0λvc , λv).24

Can we find the associated Eisenstein series ψ̃ : ‹TT → A′ in Hd(∂‹X‹K ,Vξ)
for some CTG weight ξ = (ξι)ι:F+↪→Qp

such that, ‹Kv̄ = ‹K ′
v̄ and ξv̄ = ξ′

v̄?

The authors of [All+23] then prove the following.

Proposition 1.2.17 (Fontaine–Laffaille degree shifting, [All+23], Propostion
4.4.1). Fix a place v ·vc = v̄ of F+ dividing p, and an integer d

2−1 ≤ q ≤ d−1.
Assume that the following are satisfied.

i. There is a place v̄′ ̸= v̄ in F+ dividing p such that

∑
v̄′′ ̸=v̄,v̄′

[F+
v̄′′ : Qp] ≥

1
2[F+ : Q]

where the sum runs over p-adic places of F+;

ii. p > n2;
23We note that the top degree for XK is d− 1.
24In particular, (−w0λvc , λv) must be dominant. In applications to local-global com-

patibility this condition can always be achieved after twisting our Hecke eigensystem by a
large enough power of the determinant character and from now on we will typically ignore
this condition in our discussions.
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iii. p is unramified in F .

Then Problem 1.2.16 has an affirmative answer as long as U(OF+
v̄

) ⊂ ‹K ′
v̄.

Solving Problem 1.2.16 already has strong applications to local-global
compatibility in the "crystalline case" i.e. when ‹Kv̄ = G̃(OF+

v̄
). Namely, in

characteristic 0, one obtains the following result towards Conjecture 1.1.12.

Corollary 1.2.18. Let F be an imaginary CM field and assume that

i. p > n2;

ii. p is unramified in F .

Let π be a regular algebraic cuspidal automorphic representation of GLn(AF )
such that

• rt(π) is non-Eisenstein and decomposed generic;

• πGLn(OFv ) and πGLn(OFvc ) are both non-zero.

Then rt(π) is crystalline both at v and vc with the expected Hodge–Tate
weights.

Remark 1.2.19. If we further assumed that the coordinates of the high-
est weight vector λv̄ are not too far apart in the sense of Fontaine–Laffaille
theory so that integrally we had a workable notion of weight, one could ob-
tain (with significantly more work) results on local global compatibility for
genuine torsion classes as well (cf. [All+23], Theorem 4.5.1).

We note that this is our reason to name the method after Fontaine–
Laffaille even though in characteristic 0 it is sufficient to handle arbitrary
weights.

We now elaborate on the proof of Proposition 1.2.17. Note that the re-
alisation of Eisenstein series appearing in [Sch15] is of no use for us when
investigating Problem 1.2.16. Namely, if ψ appears in degree i(≤ d − 1),
Scholze’s construction realises ψ̃ in the degree i boundary cohomology. This
is due to the purely topological nature of his argument.

Therefore, in [All+23] it was key to change the perspective on the co-
homology of locally symmetric spaces. Instead of working with cohomology,
they work with the corresponding complexes in the relevant derived cate-
gory, allowing for tools from representation theory. Favouring this point of
view allows for a richer pool of congruences and more exotic realisations of
Eisenstein series.

Sketch of proof of Proposition 1.2.17. Set ξ to be so that ξv̄′ is arbitrary, ξv̄ =
ξ′
v̄ and ξ is trivial elsewhere. Denote by λ′

w̄ the highest weight vector for
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ResFw/QpGLn×ResFwc/QpGLn corresponding to ξw̄.25 It suffices to prove that
ψ̃ can be found in Hd(∂‹X‹K ,Vξ) for some ‹K as in Problem 1.2.16 (cf. [All+23],
Lemma 4.3.6).

Recall that ∂‹X‹K admits a (Hecke equivariant) stratification ∐
{Q} ∂‹XQ‹K

with open strata corresponding to maximal parabolic subgroups. It is enough
to find ψ̃ in Hd(∂‹XP‹K ,Vξ). This follows from the fact that ψ is non-Eisenstein
and so rψ̃ is of length 2 (see [All+23], Theorem 2.4.2)

To make some further reductions, we further recall that the strata of the
Borel–Serre boundary admit natural26 decompositions

∂‹XQ‹K ∼= ∐
g∈Q(A∞

F + )\‹G(A∞
F + )/‹KXQ‹KQ,g

(1.2.2)

into opens given by Q-locally symmetric spaces with level ‹KQ,g := Q(A∞
F+)∩

g‹Kg−1. In particular, Hd(XP‹KP
,Vξ) is a Hecke-equivariant direct summand of

Hd(∂‹XP‹K ,Vξ) where ‹KP := ‹KP,1. Therefore, it suffices to find ψ̃ in the former
cohomology group.

Now the key observation that allows us to shift the degree is that there is
a Hecke-equivariant isomorphism

RΓ(XP‹KP
,Vξ) ∼= RΓ(XK′ ,VUξ ) (1.2.3)

where K ′ = ‹K ∩ GLn(AF ), and VUξ is a certain complex of sheaves on XK′

we define now. Set ξ◦ to be the O[‹Kp]-module associated with ξ (see [Ger18],
Definition 2.3 for details).27 Then VUξ = lim←−m≥1 V

U
ξ (m) where VUξ (m) is the

complex of sheaves on XK′ associated with the complex

RΓcont(U(“OF+), ξ◦/ϖm) (1.2.4)

of O/ϖm[K ′]-modules (where we inflate ξ◦ from ‹Kp to ‹K).
The proof of 1.2.3 follows from combining two observations:

• RΓ(XP‹KP
,Vξ/ϖm) is the derived ‹KP -invariants of (derived) completed28

cohomology of P with ξ◦-coefficients;

• The completed cohomology of U is trivial so the completed cohomology
of P becomes isomorphic with that of its Levi quotient ResF/F+GLn.

25Again, this means that ξw̄ has highest weight vector (−w0λwc , λw).
26The decomposition is natural in the sense that it is compatible with the natural maps

between the corresponding strata for different level subgroups ‹K, so the ‹G(A∞
F +)-action

on the full tower permutes the members of the decomposition accordingly.
27Our local system Vξ is associated with this particular representation.
28We complete with respect to every finite place.
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To further simplify 1.2.4, we note that continuous U0
w̄ := U(OF+

w̄
)-cohomology

with O/ϖm-coefficients is trivial for w̄ ∤ p. Moreover, RΓcont(U0
w̄, ξ

◦
w̄/ϖ

m) al-
ways admits Vλ′

w̄
[0] as a K ′-equivarant direct summand. We therefore see

that 1.2.4 further admits RΓcont(
∏
v̄′′ ̸=v̄,v̄′ U0

v̄′′ ,O/ϖm) ⊗ ξ◦ as K ′-equivariant
direct summand. In particular, VUξ admits the corresponding complex of
sheaves V{v̄,v̄′}

U ⊗ Vξ ∼= lim←−m≥1 V
{v̄,v̄′}
U (m) ⊗ Vξ as a direct summand reducing

our problem to finding ψ in the hypercohomology group

Hd(XK′ ,V{v̄,v̄′}
U ⊗ Vλ′)

for the highest weight vector λ′ corresponding to ξ.
Lemma 1.2.20 (Key Lemma, [All+23], Lemma 4.2.2, Lemma 4.2.3). Under
the assumptions ii) and iii) of Proposition 1.2.17, we have an isomorphism

V{v̄,v̄′}
U

∼= ⊕j≥0H
j(V{v̄,v̄′}

U )[−j]

of complexes of sheaves on XK′.
Moreover, for each j, VjU := Hj(V{v̄,v̄′}

U ) is a finite direct sum of explicit
sheaves on XK′ associated with highest weight representations for ResF+/QGLn
trivial at v̄. Finally, assuming i) of Proposition 1.2.17, VjU is non-zero for
0 ≤ j ≤ ⌊d2⌋.

Thanks to Lemma 1.2.20, we have a Hecke equivariant identification

Hd(XK′ ,V{v̄,v̄′}
U ⊗ Vλ′) ∼= ⊕j≥0H

d−j(XK′ ,VjU ⊗ Vλ′) (1.2.5)

and by picking j so that d − j = q, the problem is reduced to finding ψ in
the corresponding direct summand. This is still not an obvious task as ψ is
an eigensystem in cohomology with p-torsion coefficients, with level K and
weight λ. However, the levels K, K ′ and weights Vλ, VjU ⊗ Vλ′ agree at v̄
and so by an elaborate but elementary argument (cf. [All+23], Proposition
4.4.1) relying on congruences, repeatedly changing the weight and level at
prime-to-v̄ places allows one to conclude.

Local-global compatibility at ℓ = p: The ordinary degree shifting
argument

Even though Proposition 1.2.17 is sufficient to make significant progress on
Conjecture 1.1.12 in the crystalline case, it is too coarse to obtain similarly
strong results for more general level subgroups. Moreover, it is certainly
not enough to track down the p-adic Hodge theoretic properties of torsion
automorphic Galois representations once we leave the safety of the Fontaine–
Laffaille setup.

However, there is another popular case where the integral theory is robust
enough for satisfactory progress that was considered in [All+23]. This is the
case of ordinary automorphic representations.
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Fix a finite place v|p of F and t : Qp
∼= C. For integers 0 ≤ a ≤

b, 1 ≤ b, set Iwv(a, b) ⊂ GLn(Fv) to be the Iwahori subgroup of matrices
that are congruent to strict upper triangular matrices modulo ϖa

v and to
upper triangular matrices modulo ϖb

v. Let Bn = TnNn ⊂ GLn be the Borel
subgroup of upper triangular matrices with its usual Levi decomposition. Set
uv := diag(ϖn−1

v , ϖn−2
v , ..., 1) ∈ Tn(Fv) for some fixed choice of uniformiser

ϖv ∈ OFv .
Definition 1.2.21. A regular algebraic cuspidal automorphic representation
π of GLn(AF ) of weight λ is called t-ordinary at v if t−1πIwv(b,b)

v ̸= 0 for some
b ≥ 1 and the (λv-normalised) Uv-operator

Uv := (−w0λv(uv)) · [Iwv(b, b)uvIwv(b, b)]29

acting on t−1πIwv(b,b)
v has an eigenvalue lying in Z×

p .
Denote by πt-ord

v ⊂ lim−→b≥1 t
−1πIwv(b,b)

v the generalised eigenspace of vectors
with such Uv-eigenvalues.
Remark 1.2.22. As it turns out, πt-ord

v has a rather rich structure. Namely,
we can rewrite lim−→b≥1 t

−1πIwv(b,b)
v as t−1πN

0
v

v for N0
v = N(OFv) to see that it

admits a smooth action of the open submonoid T+
v := {t ∈ T (Fv) | tN0

v t
−1 ⊂

N0
v } ⊂ Tn(Fv) via Hecke action of the double coset operators [N0

v tN
0
v ]. Then

πt-ord
v is in fact a T+

v -equivariant direct summand. Moreover, it is the ad-
missible smooth ⟨T+

v , u
−1
v ⟩ = Tn(Fv)-representation we obtain by passing

to the generalised eigenspace with eigenvalues with p-adic valuation that of
(w0λv)(uv). Finally, a simple argument (cf. [Ger18], Lemma 5.4) shows that
in fact it must be a 1-dimensional Tn(Fv)-representation.

Then the expectation is that ordinary automorphic representations satisfy
the following compatibility with the local Langlands correspondence.
Conjecture 1.2.23 (Ordinary local-global compatibility). Let π be a regular
algebraic cuspidal automorphic representation of GLn(AF ) of weight λ that
is t-ordinary at v. Write the 1-dimensional Tn(Fv)-representation πt-ord

v as
χ1 ⊗ ...⊗ χn.30 Then there is an isomorphism

rt(π)|Gal(F v/Fv) ∼

à
Ψ1 ∗ ... ∗
0 Ψ2 ... ∗
. . . .
. . . .
0 ... 0 Ψn

í
such that, for 1 ≤ i ≤ n, Ψi : Gal(F v/Fv)→ Q×

p is the potentially crystalline
character with Hodge–Tate weights λv,n−i+ i−1 and associated Weil–Deligne
representation χi ◦ Art−1

Fv
.

29By this expression we mean a scalar (namely −w0λv(uv) ∈ Q×
p ) multiple of a double

coset operator.
30Note that to formulate the conjecture it is essential that πt-ord

v is 1-dimensional.
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The validity of Conjecture 1.2.23 lies in the fact that it can be deduced
from Conjecture 1.1.12 (cf. [Tho15], Theorem 2.4). The above conjecture
admits a very simple extension to the torsion setup (see [All+23], Theorem
5.5.1). Namely, in characteristic 0, the characters Ψi can be read off from the
weight vector λv, the the Uv-eigenvalues and the Hecke action of the Iwasawa
algebra that admit obvious integral analogues. Moreover, the notion of upper
triangular Galois representations admits well-behaved and easy to control
extension to the integral setup.

To set up such local-global compatibility, we certainly have to investi-
gate Problem 1.2.16 in the case when ‹Kv̄ is a deep enough Iwahori sub-
group Ĩwv̄(a, b) ⊂ G̃(OF+

v̄
) ∼= GL2n(OFv). However, we need more than that.

Namely, it is crucial for us to realise ψ̃ in the ordinary part of the relevant
middle degree boundary cohomology. Moreover, to be able to track the ac-
tion of the Iwasawa algebra and the Uv-operator at v, we need to also include
the corresponding eigenvalues in our Hecke eigensystem ψ and introduce the
corresponding finer abstract Eisenstein series.

To make this more precise, we introduce the enlarged Iwasawa algebra

O[[T+
p ]] := O[[ResF/QTn(Zp)]]⊗O[ResF/QTn(Zp)] O[

∏
v|p
T+
v ]

that contains both the usual Iwasawa algebra O[[ResF/QTn(Zp)]] and the Up-
operators. We then introduce the ordinary Hecke algebra TT,ord := TT ⊗O
O[[T+

p ]]. The enlarged Hecke algebra acts on cohomology H∗(XK ,Vλ/ϖm)
with arbitrary Iwahori level at p with uv ∈ O[[T+

p ]] playing the role of the
(λv-normalised) Uv-operator. By passing to the maximal direct summand
where the action of uv is invertible for each v|p, we obtain the ordinary part
of cohomology

H∗(XK ,Vλ/ϖm)ord. (1.2.6)

Definition 1.2.24. An ordinary (abstract) system of Hecke eigenvalues (for
GLn/F ) is an algebra map

ψord
m : TT,ord → A

valued in some finite local Artinian Zp-algebras. It is called automorphic
when it appears in 1.2.6 for some level and weight.

Define O[[T̃+
p ]] similarly and set ‹TT,ord := ‹TT ⊗O O[[T̃+

p ]]. To prove cases
of ordinary local-global compatibility, one would like to find some suitably
defined finer Eisenstein series fiψord for ‹TT,ord in the ordinary middle degree
boundary cohomology for G̃ with the right weight and level as before.

In [All+23], to achieve this, the authors rely heavily on Emerton’s repre-
sentation theoretic point of view on ordinary parts (cf. [Eme10a], [Eme10b])
and the full strength of Hida theory in the Betti setting. After assuming
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that ψord is non-Eisenstein, one reduces the question to finding fiψord in the
middle degree cohomology of ∂‹XP‹K just as in the crystalline case. However,
to take advantage of the representation theoretic features of the cohomology
of the Borel–Serre boundary, one does not restrict further to XP‹KP

. Namely,
thanks to the internal structure 1.2.2 of ∂‹XP‹K , we have a G̃(A∞

F+)-equivariant
isomorphism

lim−→‹K H∗(∂‹XP‹K ,O/ϖm) ∼= Ind
‹G(A∞

F + )
P (A∞

F + )(lim−→‹KP

H∗(XP‹KP
,O/ϖm)).

Moreover, the isomorphism already holds on the level of complexes computing
these cohomology groups. In particular, by taking ‹Kp-invariants, passing to
the right direct summand in the Mackey formula, and remembering that
completed cohomology of P and G = ResF/F+GLn are naturally isomorphic,
we are left with finding our Eisenstein series in

RdΓ(Ĩwp(b, c), (Ind
‹G(F+

p )
P (F+

p )π(Kp,m))⊗ Vξ)ord. (1.2.7)

Here π(Kp,m) is the suitable complex of smooth O/ϖm[G(F+
p )]-modules

that computes mod ϖm completed cohomology of tame level Kp for G and
F+
p := ∏

v̄|p F
+
v̄ .

Then the ordinary degree shifting is done by computing the parts of 1.2.7
corresponding to each "Bruhat stratum" of Ind

‹G(F+
p )

P (F+
p )(−). To make this slightly

more precise, recall that for each place v̄ of F+ dividing p we have the Bruhat
stratification

G̃(F+
v̄ ) =

∐
w∈WP

v̄

P (F+
v̄ )w‹B(F+

v̄ )

labelled by the shortest representatives W P
v̄ ⊂ W (G̃F+

v̄
, T̃F+

v̄
) of the quotient

of Weyl groups W (GF+
v̄
, Tn,F+

v̄
) \W (G̃F+

v̄
, T̃F+

v̄
). The functor Ind

‹G(F+
v̄ )

P (F+
v̄ )(−) ad-

mits a filtration by the subfunctors given by functions supported on the opens
G̃≥i = ∐

ℓv̄(w)≥i P (F+
v̄ )w‹B(F+

v̄ ). Employing the properties of ordinary parts
one shows that it yields a filtration of the functorHj(Ĩwv̄(a, b), Ind

‹G(F+
v̄ )

P (F+
v̄ )(−))ord

with subquotients labelled by w and (up to an explicit twist depending on
w) computed as the degree j − ℓ(w)31 ordinary cohomology of Iwv̄(a, b). A
vague form of the end product of these observations for 1.2.7 is as follows.
Lemma 1.2.25 (Key Lemma, cf. [All+23] Proposition 5.3.8, Theorem 5.4.3).
Fix w = (wv̄) ∈

∏
v̄|pW

P
v̄ . Then 1.2.7 admits

Hd−ℓ(w)(XK ,Vλw/p
m′) (1.2.8)

31Here ℓ(−) is the length function of the absolute Weyl group W ((ResF +/Q‹G)Qp
) and w

is viewed as an element of the absolute Weyl group via the natural map W (‹GF +
v̄

, T̃F +
v̄

)→
W ((ResF +/Q‹G)Qp

).



1.2. KNOWN CASES OF LANGLANDS RECIPROCITY 43

as a ‹TT,ord-equivariant subquotient for λw an explicit weight vector depending
on w and ξ equipped with the ‹TT,ord-action via an explicit map

Sord,w,ξ : ‹TT,ord → TT,ord

depending only on w and ξ and satisfying Sord,w,ξ|‹TS = S.

Remark 1.2.26. Without giving the definition of λw and the (w, ξ)-twisted
transfer maps Sord,w,ξ we only mention that their interaction is exactly the
one expected by local-global compatibility.

Thanks to the above discussion (and Remark 1.2.26), one can settle ordi-
nary local-global compatibility for any non-Eisenstein and decomposed generic
ordinary ψord that is automorphic of weight λw for some w and CTG ξ and
appears in degree ℓ(w). With considerably more work relying on congruences,
making use of the independence of weight property of Hida theory, and sev-
eral tricks and elementary combinatorial arguments, the authors of [All+23]
manage to reduce the case of arbitrary weight and cohomological degree to
these cases.

The work of Caraiani–Newton

Most recently, Caraiani–Newton [CN23] went way further and relaxed
the assumptions on p and the weights in the torsion crystalline local-global
compatibility results of [All+23].
Theorem 1.2.27 (Caraiani–Newton). Let ψ : TT → A be a system of Hecke
eigenvalues factoring through some H∗(XK ,Vλ/ϖm) with Kv̄ = GLn(OFv)×
GLn(OFvc ) for a place v̄ = v · vc of F+ dividing p. Assume that

i. the mod p Hecke eigensystem ψ is non-Eisenstein and decomposed generic,

ii. and assumption (i) of Proposition 1.2.17 holds.

Then, if we write rψ : Gal(F/F ) → GLn(A′) for the associated Galois rep-
resentation constructed in [Sch15], rψ|Gal(F v/Fv) admits a crystalline lift with
labelled Hodge–Tate weights (λt◦ι,1 + n− 1, ..., λt◦ι,n)ι:Fv ↪→Qp

.32

To prove such a local-global compatibility result, they significantly gen-
eralise and combine the Fontaine–Laffaille and ordinary degree shifting argu-
ments to make use of the features of both methods.

Let us first explain their vast improvement of the Fontaine–Laffaile de-
gree shifting argument. The main weakness of the corresponding argument
in [All+23] originates in their Key Lemma 1.2.20. One of the main new in-
novations of [CN23] was the replacement of the key lemma by the following
more general statement.

32To be more precise, one might need to change A′ to be smaller quotient for the state-
ment to hold. However, the point is that the kernel of A → A′ still satisfies the property
from Theorem 1.2.10.
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Lemma 1.2.28 (Key Lemma 2.0, [CN23], Lemma 2.3.17). Given an integer
m ≥ 1, there is M(m) ≥ m such that there is an isomorphism

V{v̄,v̄′}
U (m) ∼= ⊕j≥0H

j(V{v̄,v̄′}
U (m))

as complexes of sheaves on XK′ as long as K ′
v̄′′ ⊂ Kv̄′′(M(m)) := ker(G(OF+

v̄′′
)→

G(OF+
v̄′′
/ϖ

M(m)
v̄′′ )) for every p-adic place v̄′′ ̸= v̄′, v̄ of F+.

Moreover, under the assumption i) of Proposition 1.2.17, VjU(m) is non-
zero for 0 ≤ j ≤ ⌊d2⌋.

Finally, VjU(m) := Hj(V{v̄,v̄′}
U (m)) is a direct sum of finitely many copies

of V0/p
m for 0 the trivial highest weight vector.

Using Lemma 1.2.28 however comes with the difficulty that Hd(XK′ ,V{v̄,v̄′}
U ⊗

Vλ′) does not decompose as in 1.2.5 anymore. Therefore, we only have TS-
equivariant spectral sequence

Hd−j(XK′ ,VjU ⊗ Vλ′)⇒ Hd(XK′ ,V{v̄,v̄′}
U ⊗ Vλ′) (1.2.9)

that is not known to degenerate. However, 1.2.9 admits a map of spectral
sequence towards the analogous one for V{v̄,v̄′}

U (m) that will split thanks to
Lemma 1.2.28. Using this, on the cost of a very impressive homological
algebra argument, Caraiani–Newton relax assumptions ii) and iii) in Propo-
sition 1.2.17 and so also in Corollary 1.2.18.

Remark 1.2.29. We mention that the improved Fontaine–Laffaille degree
shifting appears already in the thesis work of A’Campo [ACa23], attributing
Lemma 1.2.28 to Caraiani–Newton. In particular, the improved version of
Corollary 1.2.18 (relaxing ii) and iii)) is already obtained in [ACa23].

However, for genuine torsion Hecke eigenclasses the congruences of the
kind appearing in Proposition 1.2.17 are only sufficient to prove (part of)
crystalline local-global compatibility when integral p-adic Hodge theory is
robust enough (e.g. the Fontaine–Laffaille case). For instance, in order for
the authors of [All+23] to conclude, it was crucial to have access to a notion
of "torsion crystalline" Galois representations with a trackable set of Hodge–
Tate weights that is closed under taking subquotients, a feature of Fontaine–
Laffaille theory.

Moreover, already formulating a conjecture in general is not obvious. Nev-
ertheless, one possible formulation is to ask that the local representation at
v̄ admits a crystalline lift with the expected Hodge–Tate weights. Another
great insight of Caraiani and Newton was that this can be achieved by finding
congruences to cusp forms that are P -ordinary at v̄ with maximal parahoric
level.

Namely, one can introduce the notion of t−Qv̄-ordinary ξ∨-cohomological
automorphic cuspidal automorphic representations π̃ of G̃(AF+) for every
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standard parabolic subgroup Qv̄ ⊂ G̃F+
v̄

. For Qv̄ = ‹Bv̄ we recover the notion
of being t-ordinary at v̄. For Qv̄ = Pv̄ = GF+

v̄
UF+

v̄
the unnormalised Uv̄-

operators are given by the double coset operators [Pv̄(a, b)ũv̄Pv̄(a, b)] where
Pv̄(a, b) ⊂ G̃(OF+

v̄
) is one of the Pv̄-parahoric level subgroups, and ũv̄ :=

diag(ϖv, ..., ϖv, 1, ..., 1) ∈ GL2n(Fv) ∼= G̃(F+
v̄ ) is the element with the first

n entries being ϖv and the rest being 1. The role of T̃+
v̄ is now played by

G+
v̄ := {g ∈ G(F+

v̄ ) | gU0
v̄ g

−1 ⊂ U0
v̄ }. Then π̃ is called t − Pv̄-ordinary if

the analogous ξv̄-normalised Uv̄-operator acting on t−1π̃
Pv̄(b,b)
v̄ for some deep

enough parahoric level subgroup has an eigenvalue in Z×
p . One can then sim-

ilarly introduce π̃t−Pv̄-ord
v̄ , a G+

v̄ -equivariant direct summand of t−1π̃
U0

v̄
v̄ and a

smooth admissible representation of ⟨G+
v̄ , ũ

−1
v̄ ⟩ = G(F+

v̄ ). Then the motiva-
tion for finding a congruence with a t−Pv̄-ordinary cusp form is the following
result.

Theorem 1.2.30 (Caraiani–Newton, [CN23], Theorem 3.1.2). Let π̃ be a ξ∨-
cohomological cuspidal automorphic representation of G̃(AF+) that is t−Pv̄-
ordinary of maximal parahoric level Pv̄(0, 1). Let −w0λ̃v̄ = (−w0λ̃ι)ι:F+

v̄ ↪→Qp

be the lowest weight vector of t−1ξv̄. Then we have an isomorphism

rt(π̃)|Gal(F v/Fv) ∼
Å
ρ1 ∗
0 ρ2

ã
.

with ρ1, ρ2 : Gal(F v/Fv)→ GLn(Qp) are crystalline with the expected Hodge–
Tate weights. Moreover, (t−1π̃v̄)Pv̄(0,1) is 1-dimensional and

(det ρ1) ◦ ArtFv = t−1π̃
Pv̄(0,1)
v̄ ⊗ (−w0λ̃v̄)

where F×
v acts on the latter via the first factor of the centre of G under the

isomorphism ZG(F+
v̄ ) ∼= Gm(Fv)×Gm(Fv) ⊂ GL2n(Fv).

Sketch of proof of Theorem 1.2.27. Consider the abstract Hecke algebras

TT,v̄-ord := TT ⊗ZO[ZG(F+
v̄ )/ZG(OF+

v̄
)], ‹TT,v̄-ord := ‹TT ⊗ZO[Z+

G,v̄/ZG(OF+
v̄

)]

for Z+
G,v̄ = ZG(F+

v̄ ) ∩ G+
v̄ . Note that we simply added the Gv̄-ordinary (i.e.

central elements), respectively Pv̄-ordinary Uv̄-operators at maximal para-
horic level. These then act on H∗(XK ,Vλ/ϖm) with Kv̄ hyperspecial, and
on Hd(∂‹X‹K ,Vξ) with ‹Kv̄ = Pv̄(0, 1) via the λv̄- respectively, ξv̄-normalised
Uv̄-operators.

By developing a Pv̄-ordinary analogue of Lemma 1.2.25, and simultane-
ously performing a Pv̄-ordinary degree shifting at v̄ (by degree 0) and the
improved Fontaine–Laffaille degree shifting away from v̄ and v̄′, Caraiani–
Newton prove their main degree shifting result (cf. [CN23], Proposition 4.2.6).

To briefly formulate the end product of this, let ψv̄-ord be a Hecke eigensys-
tem for TT,v̄-ord extending ψ and appearing in H∗(XK ,Vλ/ϖm). After some
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reduction steps as before, their degree shifting result shows that the (suitably
twisted) Eisenstein series ψ̃v̄-ord for ‹TT,v̄-ord lifts to the Hecke eigensystem of
some finite linear combination of t−Pv̄-ordinary cuspidal automorphic repre-
sentations π̃1, ..., π̃k of G̃(AF+) of weight ξ and level ‹K with ξv̄ corresponding
to (−w0λvc , λv) and ‹Kv̄ = Pv̄(0, 1). By Theorem 1.2.30, rt(π̃i)|Gal(F v/Fv) ad-
mits an n-dimensional crystalline subrepresentation ρ1,i with the right Hodge–
Tate weights for the expected lift of rψ|Gal(F v/Fv).

To conclude, one uses that, by the last part of Theorem 1.2.30, det ρ1,i

is compatible with the Uv̄-operator for G̃ that, under the twisted Satake
transform, is the central action of ϖv for G. This central action can easily
be shown to be compatible with det rψ|Gal(F v/Fv), showing that det ρ1,i and
det rψ|Gal(F v/Fv) match for every i. After a twisting argument putting the
Jordan–Hölder constituents of rψ|Gal(F v/Fv) and rψ∨,c(1− 2n)|Gal(F v/Fv) in suf-
ficiently generic position, this forces ∏

i ρ1,i to be a lift of rψ (cf. [CN23],
§3.2).

Significance of torsion: Automorphy beyond the self-dual case

In the articles [Sch15], [All+23] and [CN23] a significant amount of work
went into developing reciprocity for torsion automorphic forms as well. One
of the main motivations for this comes from making progress on automorphy
beyond the self-dual case.

Recall that in the case of GL2/Q the main source of establishing auto-
morphy was the Taylor–Wiles–Kisin method. When trying to generalise this
method to GLn/F , one notices that it only succeeds in the cases when F
is totally real and n = 2. The point is that its success relies on a so-called
"numerical coincidence" for the group ResF/QGLn that only holds in these
special cases.

Still, one can make work their method in self-dual situations essentially
because the mentioned numerical coincidence does hold for unitary groups
to which we can transfer our self-dual automorphic representations using the
trace formula (see [CHT08]).

However, without the self-duality condition it was a long standing problem
to find the right modification that works even when the classical numerical
coincidence fails to hold. The solution to this was laid out in the beautiful
work of Calegari–Geraghty [CG18]. They established a vast generalisation of
the Taylor–Wiles–Kisin method to GLn/F relying on a list of conjectures on
torsion reciprocity (see loc. cit., Conjecture B). These can be divided into
three main groups:

i. Existence of Galois representation associated with torsion Hecke eigen-
classes appearing in the integral cohomology of GLn/F -locally symmet-
ric spaces.
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ii. Local–global compatibility for these automorphic Galois representa-
tions.

iii. Vanishing of the non-Eisenstein part of mod p cohomology of the GLn/F -
locally symmetric spaces outside the "Borel–Wallach range" [q0, q0 + l0].

Assuming that F is imaginary CM, the first of these conjectures was (up to
a nilpotent ideal) settled in [Sch15].

Keeping the assumption on the field, the torsion local-global compatibility
conjectures formulated in [CG18] were treated in [All+23] allowing them to
prove automorphy lifting results beyond the self-dual case by bypassing the
vanishing conjecture. These automorphy lifting results, among other things,
were sufficient for them to prove potential automorphy of elliptic curves over
CM fields.

Most recently, in [CN23] with the significantly stronger torsion crystalline
local-global compatibility theorems at their disposal Caraiani and Newton
even proved modularity for a large portion of these elliptic curves.

Perhaps more relevant to this thesis is the work of Gee–Newton [GN20].
Combining ideas of [Eme11] and [CG18], they show that, assuming stan-
dard conjectures on completed cohomology and some rather sharp local-global
compatibility at p, one can make progress on the Fontaine–Mazur–Langlands–
Clozel conjecture when n = 2 and p splits completely in F . Settling their
conjectures on local-global compatibility and their generalisations is the con-
tent of this thesis.

1.3 Statement of results and method of proof
In this thesis, we push the ideas of [All+23] and [CN23] on local-global

compatibility at p close to their limits. Our main result in characteristic 0 is
as follows.

Theorem 1.3.1. Let F be an imaginary CM field, t : Qp
∼= C be any iso-

morphism, and π be a regular algebraic cuspidal automorphic representation
of GLn(AF ) of weight λ ∈ (Zn

+)Hom(F,C). Assume that

• rt(π) is irreducible and decomposed generic in the sense of [CS19] (see
Definition 2.9.7).

Then, for any p-adic place v|p of F , and ι : Fv ↪→ Qp, rt(π) is de Rham at
v, with labelled ι-Hodge–Tate weights λt◦ι,n < ... < λt◦ι,1 + n− 1 and we have

WD(rt(π)|Gal(F v/Fv))F−ss ⪯ t−1rec(πv ⊗ | det |
1−n

2
v ). (1.3.1)

Remark 1.3.2. For the notion of "⪯" in 1.3.1, see §2.6. It in particular means
that semisimple local-global compatibility holds, i.e. we have an isomorphism

WD(rt(π)|Gal(F v/Fv))ss ∼= (t−1rec(πv ⊗ | det |
1−n

2
v ))ss.
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On top of this it says that, in some precise sense, the monodromy of the LHS
is at least as nilpotent as the monodromy of the RHS. As a consequence,
assuming that monodromy of rec(πv ⊗ | det |

1−n
2

v ) is in fact 0, we obtain full
local-global compatibility

WD(rt(π)|Gal(F v/Fv))F−ss ∼= t−1rec(πv ⊗ | det |
1−n

2
v ).

We deduce Theorem 1.3.1 from a more general result that also deals with
the torsion automorphic Galois representations constructed in [Sch15]. In
this generality, formulating a precise conjecture already requires some work
that we summarise now assuming that F is an imaginary CM field and for
details we point the reader to §5.

Let K ⊂ GLn(A∞
F ) be a good compact open subgroup (in the sense of

[All+23], §2.1.1) with Kp = ∏
v GLn(OFv) and let XK be the correspond-

ing locally symmetric space for GLn/F . Let E ⊂ Qp be a large enough
finite field extension so that the images of all embeddings F ↪→ Qp lie in
E, and set O to be its ring of integers, and ϖ ∈ O be a choice of uni-
formiser. Given a highest weight vector λ = (λv)v|p for (ResF/QGLn)E, and
a so-called Weil–Deligne inertial type33 τ = (τv)v|p at p (see §2.6 for a defi-
nition), we obtain an O-local system V(λ,τ) on XK . The corresponding Betti
cohomology groups H∗(XK ,V(λ,τ)) admit an action of an abstract Hecke alge-
bra Tλ,τ = TT ⊗O z◦

λ,τ . Here TT is the usual abstract spherical Hecke algebra
(over O) acting at the prime-to-T unramified places and z◦

λ,τ = ⊗v|pz
◦
λv ,τv

is an O-flat algebra consisting of Hecke operators at p admitting a natural
identification z◦

λv ,τv
[1/p] ∼= zτv where the latter denotes the Bernstein centre

corresponding to τv. Denote by Tλ,τ (K) the quotient of Tλ,τ acting faithfully
on H∗(XK ,V(λ,τ)). Given a maximal ideal m ⊂ Tλ,τ (K), Theorem 1.2.10
attaches a continuous semisimple Galois representation

ρm : Gal(F/F )→ GLn(Tλ,τ (K)/m)

to the system of Hecke eigenvalues Tλ,τ → Tλ,τ (K)/m induced by quotienting
out by m. Assuming that ρm is absolutely irreducible (in other words, m
is non-Eisenstein), Theorem 1.2.10 further provides a lift to a continuous
representation

ρm : Gal(F/F )→ GLn(Tλ,τ (K)m/I),
associated with the Hecke eigensystem Tλ,τ → Tλ,τ (K)m. Here I ⊂ Tλ,τ (K)m
is a nilpotent ideal with I4 = 0 (for the bound on the nilpotence degree, see
[NT16]). Both of these representations are determined by the property that
they satisfy local-global compatibility away from T .

One then seeks an integral version of local-global compatibility for ρm.
As discussed already, in cases when the integral theory on the Galois side is

33This is simply, for each p-adic place v of F , a choice of an isomorphism class of a pair
of an inertial type and a monodromy operator.
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robust enough, Calegari–Geraghty in [CG18] formulated and the authors of
[All+23] proved such local-global compatibility conjectures. These however
only treated a handful of cases. The first signs (known to the author) of
a more general (and sharper) conjecture (in the potentially crystalline case)
appeared in [Car+16b] and a precise formulation (in the crystalline case) can
be found in [GN20], Conjecture 5.1.12. Caraiani and Newton recently proved
a large part of the conjecture of Gee–Newton (cf. [CN23], Theorem 1.3).

The two key ideas going into [GN20], Conjecture 5.1.12 are the use of
Kisin’s potentially semistable (p-torsion free) local deformation rings and the
interpolation of the semisimple local Langlands over the generic fibre of these
deformation rings. The first of these ingredients provides a workable notion
of being "torsion potentially semistable of a given weight and inertial type".
Moreover, by p-adically rescaling, we can test compatibility of the action of
Hecke operators at p using the interpolation map.

Namely, for v|p setting ρv := ρm|Gal(F v/Fv), anO-flat quotientRλv ,⪯τv

ρv
of the

unrestricted local framed deformation ring R2
ρv

is constructed in [Kis07]. It
is characterised by the property that its E-points ρ : Gal(F v/Fv)→ GLn(E)
are exactly those lifts of ρv that are potentially semistable with Hodge–Tate
weights determined by λv (by the usual ρ-shift) and such that the Weil–
Deligne inertial type of WD(ρ) is bounded by τv. Moreover, on the generic
fiber one can construct a map

η : zτv → Rλv ,⪯τv

ρv
[1/p]

interpolating the (Tate-normalised) semisimple local Langlands correspon-
dence. Although η does not necessarily send z◦

λv ,τv
into Rλv ,⪯τv

ρv
, we can intro-

duce the subring

z◦,int
λv ,τv

:= η−1(Rλv ,⪯τv

ρv
) ∩ z◦

λv ,τv
⊂ z◦

λv ,τv
.

This ring still has the property z◦,int
λv ,τv

[1/p] = zτv . Local-global compatibility
can then be phrased by asking that there exists a (necessarily unique) dotted
arrow making the diagram

R2
ρv

Tλ,τ (K)m/I

Rλv ,⪯τv

ρv
z◦,int
λv ,τv

Rλv ,⪯τv

ρv
[1/p] zτv

ρv

nat

η|
z
◦,int
λv,τv

η

(1.3.2)

commutative. Here the map nat denotes the natural map towards the faithful
Hecke algebra (along the inclusion z◦,int

λv ,τv
⊂ z◦

λv ,τv
) and the inclusions in the

bottom are the ones induced by inverting p. Our main result is then (roughly)
as follows (cf. Theorem 5.3.4).
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Theorem 1.3.3. Let F be an imaginary CM field that contains an imaginary
quadratic field F0 in which p splits with totally real subfield F+. Assume that
the finite set of places T is as in Theorem 5.3.4. Let v̄ be a p-adic place in
F+. Assume the following:

i. There is a p-adic place v̄′ of F+ such that v̄ ̸= v̄′ and
∑

v̄′′ ̸=v̄,v̄′
[F+
v̄′′ : Qp] ≥

1
2[F+ : Q]

where the sum runs over p-adic places of F+;

ii. ρm is decomposed generic.

Then, up to possibly enlarging I, there is a (necessarily unique) dotted arrow
making (1.3.2) commutative.

Remark 1.3.4. The further constraint on T in the statement of Theo-
rem 5.3.4 is a mild one that can be always achieved by enlarging T . This
condition is so that we can appeal to the unconditional base change results
of [Shi14] and it is already present in [Sch15].

Assumption i) is essential to our methods and already appears in [All+23],
and [CN23]. In particular, this rules out the case of F being an imaginary
quadratic field. Using Theorem 1.3.1, it seems plausible to weaken this as-
sumption, for instance allowing one to prove the theorem for n = 2, and
[F : Q] = 4.

Finally, assumption ii) on ρm is crucial to be able to use the vanishing
results of [CS19] and so to appeal to Corollary 1.2.15.

Remark 1.3.5. Let us elaborate on Theorem 1.3.3 in the crystalline case.
Note that this is the case when τv is trivial (i.e. when the inertial type is
the trivial representation of the inertia subgroup and the monodromy is the
0 matrix). Indeed, one has then V(λv ,τv) = Vλv and so we are in the setup
of [CN23]. Their main local-global compatibility theorem (Theorem 1.2.27)
then proves the existence of a dotted arrow making the top triangle of (1.3.2)
commute. In particular, Theorem 1.3.3 is new even in the crystalline case.

To spell out the meaning of the second half of the diagram (1.3.2), note
that in the crystalline case zτv

∼= E[T1, ..., T
±1
n ] is the usual spherical Hecke

algebra, and z◦
λv ,τv
⊂ zτv is some suitable subalgebra acting on H∗(XK ,V(λ,τ)).

The interpolation map η then simply sends Tj to the universal function auniv
v,j ∈

Rλv ,0
ρv

[1/p] such that, for every x : Rλv ,0
ρv

[1/p]→ Qp with corresponding Galois
representation ρx,

Xn − auniv
v,1 X

n−1 + ...+ (−1)jq
j(j−1)

2
v auniv

v,j X
n−j + ...+ (−1)nq

n(n−1)
2

v auniv
v,n

specialises along x to the characteristic polynomial of Frobv acting on WD(ρx).
Therefore, the commutativity of the lower triangle of (1.3.2) roughly says that,
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beyond ρm|Gal(F v/Fv) being crystalline with the right Hodge–Tate weights, its
crystalline Frobenius too is compatible with the local Langlands correspon-
dence.

In particular, in characteristic 0, for a given automorphic representation
π, this proves that the inverse of the crystalline Frobenius on the filtered
φ-module associated with rt(π)|Gal(F v/Fv) coincides with the Frobenius on
t−1rec(πv ⊗ | det |

1−n
2

v ).
Although in general for proving small R = T results it often suffices to

prove factorisation through the right potentially semistable deformation rings
at p, we remark that understanding the crystalline Frobenius is for instance
essential to make the big R = T results of [GN20], §5 unconditional.

In the rest of the introduction, we briefly explain our approach to Theo-
rem 1.3.3 focusing on what it adds to the proof of [CN23].

We saw in §1.2.4 that in loc. cit. the main ingredients34 going into the
proof of Theorem 1.2.27 were

i. a new robust degree shifting argument combining their improved Fontaine–
Laffaille style and P -ordinary degree shifting arguments,

ii. and a P -ordinary local-global compatibility result in characteristic 0
(Theorem 1.2.30).

Because of the limitations of ii), from the Hecke action at p they could only
read off the inertial type and the central character (under local Langlands)
of the constructed crystalline lift. In particular, even if they could keep track
of the action of a larger Hecke algebra at p in their degree shifting argument,
they had no chance to conclude anything stronger.

The main technical innovation of this thesis is the following vastly im-
proved Q-ordinary local-global compatibility result (cf. Theorem 4.3.1 and
Theorem 4.3.4).35

Theorem 1.3.6. Let π be a regular algebraic conjugate self-dual cuspidal
automorphic representation of GLn(AF ) of weight λ ∈ (Zn

+)Hom(F,C), t : Qp
∼=

C be a fixed identification and v|p be a p-adic place of F . Let Q ⊂ GLn be the
standard parabolic subgroup corresponding to a partition n = n1 + ...+nt, and
denote by M its Levi quotient. Assume that t−1πv is Q-ordinary of weight λv.

Then the Q-ordinary part (t−1πv)Q-ord is irreducible as a smooth represen-
tation of M(Fv) = GLn1(Fv)×...×GLnt(Fv). Write (t−1πv)Q-ord = π1⊗...⊗πt.

34We must point out that their most novel results are all part of the first of these
ingredients and there is an obvious imbalance between i) and ii) in terms of difficulty.
However, for the sake of explaining the new ingredients of this thesis, it was most natural
to the author to group them in this manner.

35The reader might find it useful to compare it with Conjecture 1.2.23 and Theo-
rem 1.2.30.
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Then there is moreover an isomorphism

rt(π)|Gal(F v/Fv) ∼

à
ρ1 ∗ ... ∗
0 ρ2 ... ∗
. . . .
. . . .
0 ... 0 ρt

í
where, for 1 ≤ j ≤ t,

ρj : Gal(F v/Fv)→ GLnj
(Qp)

is potentially semistable such that, for every embedding ι : Fv ↪→ Qp, the
labelled ι-Hodge–Tate weights of ρj are given by

λt◦ι,n+1−(n1+...+nj)+n1+...+nj−1 > ... > λt◦ι,n+1−(n1+...+nj−1+1)+n1+...+nj−1

and we have an isomorphism

WD(ρj)F−ss ∼= rec(πj ⊗ | det |n1+...+nj−1
v ⊗ | det |

1−nj
2

v ).

By specialising the above theorem to the case of the Siegel parabolic sub-
group P(n,n) inside GL2n, and comparing it with Theorem 1.2.30, we see that
in the notation of loc. cit., Theorem 1.3.6 allows us to read off the whole of ρ1
from the Hecke action of π̃t−Pv̄-ord

v̄ , not just its inertial type and determinant.
Therefore, by carrying out the degree shifting argument with the larger Hecke
algebras ‹TT ⊗ z◦

λv ,τv
, and TT ⊗ z◦

λv ,τv
one obtains Theorem 1.3.3.

To achieve such a degree shifting, our main technical results are a gener-
alisation of the Hida theory developed in [All+23], [CN23] and an improved
Hecke equivariant Q-ordinary degree shifting argument. Having these results
in hand, with some care (most notably a tracking of Hecke operators at p
under Poincaré duality for XK with p-torsion coefficients), one checks that
the improved P -ordinary degree shifting argument can be combined with the
Fontaine–Laffaille style degree shifting argument of Caraiani–Newton.

Remark 1.3.7. Theorem 1.3.6 generalises the ordinary local-global compat-
ibility result [Ger18], Corollary 2.7.8 (see also [Tho15], Theorem 2.4) to the
case of a general standard parabolic subgroup. The main extra difficulty is
having a generalisation of [Ger18], Lemma 5.4 2) for Q-ordinary parts for a
general standard parabolic subgroup. This is the first part of Theorem 1.3.6
and is a question purely in the realm of smooth representations of p-adic re-
ductive groups. This part of the theorem we prove in a rather general setup
in §4.2 that might be of independent interest.

Remark 1.3.8. As it does not require any significant extra work, we in fact
also produce (locally at p) Q-ordinary lifts with expected shape of Galois
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representations associated with Q-ordinary torsion Hecke eigenclasses for any
standard parabolic subgroup Q ⊂ GLn (see Proposition 6.3.1). Although we
do not investigate it further, after formulating a suitable Q-ordinary local-
global compatibility conjecture, these Q-ordinary lifts seem to have the po-
tential to make progress on such conjectures.

The organisation of the thesis is as follows. In Chapter 2, we collect the
preliminaries on the cohomology of locally symmetric spaces and introduce
the necessary local systems and the corresponding Hecke actions for the group
GLn/F and the quasi-split unitary group G̃. In Chapter 3, we recollect and
generalise Hida theory in the Betti setting for general standard parabolic sub-
groups and carry out the computation of ordinary parts of the Bruhat strata
of parabolic induction, further keeping track of the Hecke actions. In Chap-
ter 4, we revisit and further develop a theory of ordinary parts for locally
algebraic representations. Moreover, we finish the chapter with proving The-
orem 1.3.6. In Chapter 5, we formulate a torsion local-global compatibility
conjecture following [GN20]. In Chapter 6, we execute the strategy outlined
in the introduction to prove Theorem 1.3.3 and conclude the chapter with de-
ducing Theorem 1.3.1. In the Appendix, we make a brief recollection on the
smooth representation theory of GLn over a p-adic field and prove a couple
of relevant technical lemmas that are only used at the end of §4.2.

Notation and Conventions
Given a number field F , we will denote by S(F ) its set of finite places and

by Sp(F ) its set of p-adic places. We set GF to be the absolute Galois group
Gal(F/F ) and for a finite set S ⊂ S(F ) we denote by GF,S the quotient of
GF corresponding to the maximal Galois extension of F , unramified outside
S. For v ∈ S(F ), set Fv to be the v-adic completion of F , fix a choice of
uniformiser ϖv and set kv := OFv/ϖv to be its residue field. Set GFv :=
Gal(F v/Fv). Moreover, IFv ⊂ GFv will denote its inertia subgroup and set
Frobv ∈ GFv/IFv to be the geometric Frobenius. We denote by AF the ring
of adeles of F and for S a finite set of places of F we denote by AS

F its
prime-to-S part and set “OF,S := ∏

v∈S OFv .
For G a reductive group over a number field F and a finite set S ⊂ S(F ),

we will denote by GS := G(AS∪∞
F ) and by GS := G(∏

v∈S Fv). Moreover, if
S = Sp(F ), we only write Gp, respectively Gp.

Let G be a linear algebraic group over OL where OL is the ring of integers
of a finite extension L/Qp. Let ϖL ∈ OL be a choice of uniformiser. For
n ∈ Z≥0, denote ker(G(OL)→ G(OL/ϖn

L)) by Gn.
For G a reductive group over a finite extension L/Qp with parabolic sub-

group Q = M ⋉ N ⊂ G, we denote by δQ : M(L) → Q× the correspond-
ing modulus character x 7→ | det(ad(x)|LieN)|L. For a smooth representa-
tion σ of M(L), we denote by n-IndG(L)

Q(L)σ the normalised parabolic induction
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IndG(L)
Q(L)δ

1/2
Q σ. For a smooth Qp-representation π of G(L), we will denote by

JQ(π) its unnormalised Jacquet module associated with Q. In general we
denote by c-Ind compact induction for smooth representations.

For a smooth irreducible representation π of GLn(L) with supercuspidal
support (GLn1(L)× ...×GLnk

(L), π1⊗ ...⊗ πk), we set SC(π) := {π1, ..., πk}.
Set WL to be the Weil group of L and write ArtL : L× ∼−→ W ab

L for the
Artin map of local class field theory normalised by sending uniformisers to
lifts of the geometric Frobenius.

We denote by recL the local Langlands correspondence for L. If it’s clear
from the context, we will just write rec instead. Moreover, for π an irreducible
admissible GLn(L)-representation, we set recT (π) = rec(π⊗|·|

1−n
2

L ). Then recT
commutes with Aut(C) and therefore recT makes sense over Qp by choosing
an abstract isomorphism t : Qp

∼= C. In the literature, this is often called the
Tate normalisation of the local Langlands correspondence.

We fix an algebraic closure Qp/Qp and denote by valp the p-adic valuation
normalised by setting valp(p) = 1. By convention, the ι-Hodge–Tate weights
of the p-adic cyclotomic character ϵ : GL → Z×

p are −1.
For an ℓ-adic Galois representation ρ : GL → GLn(Qℓ) with ℓ ̸= p, we

denote by WD(ρ) the associated Weil–Deligne representation. For a de Rham
p-adic Galois representation ρ : GL → GLn(Qp), we denote by WD(ρ) the
associated Weil–Deligne representation provided by the recipe of Fontaine.

For a Weil–Deligne representation (r,N), we denote by (r,N)F−ss its
Frobenius semisimplification and by (r,N)ss its semisimplification.

For a ring R, we denote by D(R) the derived category of left R-modules
and by D+(R) resp. Db(R) the bounded below resp. bounded derived
category. Given moreover a locally profinite group G, we will denote by
Modsm(R[G]) the category of smooth R[G]-modules and denote by Dsm(R[G])
its derived category and by D+

sm(R[G]) resp. Db
sm(R[G]) its bounded below

resp. bounded derived category.
Given a topological group G, and a topological space X with a continuous

right action of G, we denote by ShG(X) the category of G-equivariant sheaves
on X in the sense of [NT16], Definition 2.22, (2). Moreover, for a ring R, we
denote by ShG(X,R) the category of G-equivariant sheaves of R-modules on
X.

For G/L a split reductive group with a choice of a Borel subgroup B and
a maximal torus T , denote by wG0 the longest element in the Weyl group
WG := W (G, T ). For a standard parabolic subgroup Q ⊂ G with Levi
decomposition M⋉N , set WQ to be the set of minimal length representatives
of WG/WQ. We denote by wQ0 the longest element in WQ that is, in fact, given
by wG0 w

M
0 . Similar notations apply to QW . Moreover, for another standard

parabolic subgroup Q′ ⊂ G with Levi decomposition M ′ ⋉ N ′, denote by
Q′
WQ the set of minimal length representatives of WQ′\WG/WQ.

For an integer n ≥ 1, we denote by Zn
+ ⊂ Zn the subset of n-tuples of

integers (k1, ..., kn) satisfying k1 ≥ ... ≥ kn.



Chapter 2

Preliminaries

We collect the necessary preliminaries regarding locally symmetric spaces
and their cohomology following [CN23], §2. The main differences compared to
the setup of [All+23], §2 are the use of different infinite level locally symmetric
spaces, which take into account the profinite topology on the adelic part.

2.1 Locally symmetric spaces
Consider a number field F and a connected linear algebraic group G over

F , with a model over OF , still denoted by G. One can then associate with
ResF/QG its symmetric space XG, a homogeneous G(F ⊗Q R)-space, as is
defined in [BS73], §2. By [BS73], Lemma 2.1, XG is unique up to isomorphism
of homogeneous G(F ⊗Q R)-spaces.

Given a good compact open subgroup KG ⊂ G(A∞
F ) in the sense of

[All+23], §2.1.1, we can form the corresponding locally symmetric space

XKG
:= G(F )\(XG ×G(A∞

F )/KG),

a smooth orientable Riemannian manifold. Borel–Serre then construct a par-
tial compactification X

G of XG (cf. [BS73], §7.1) and form the compactified
locally symmetric space

XKG
:= G(F )\(XG ×G(A∞

F )/KG),

an orientable compact smooth manifold with corners and with interior XKG
.

We will denote the corresponding boundary by ∂XG := X
G \ XG resp.

∂XKG
:= XKG

\XKG
.

Following [CN23], we define the sets

XG := lim←−
KG

XKG
, XG := lim←−

KG

XKG
, ∂XG = lim←−

KG

∂XKG

where the limits run over good subgroups of G(A∞
F ), and make them into

topological spaces by endowing them with the projective limit topology. The

55
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latter two then become compact Hausdorff spaces, being projective limits
of such. They all are equipped with the natural continuous right action of
G(A∞

F ). Moreover, the induced action of any good subgroup KG ⊂ G(A∞
F )

on XG, and ∂XG is free in the sense of [NT16], Definition 2.23. As explained
in [CN23], §2.1.1, we can also introduce these spaces as the quotient spaces

XG = G(F ) \XG ×G(A∞
F ), XG = G(F ) \XG ×G(A∞

F ), and

∂XG = G(F ) \ ∂XG ×G(A∞
F )

where the group G(A∞
F ) is equipped with its locally profinite topology. We

remind the reader that, before [CN23], the more common choice was to use
the discrete topology of G(A∞

F ) instead (see [NT16]). They yield different
spaces of course, but the produced finite level cohomology groups (with the
induced Hecke actions) compare well (cf. [CN23], Lemma 2.1.5). We denote
by j : XG ↪→ XG the natural open immersion.

For later use we introduce some further notation. Set S to be a finite set
of finite places of F and KS

G ⊂ G(AS∪{∞}
F ) be a compact open subgroup that

extends to some good subgroup of G(A∞
F ). We then set

XKS
G

:= XG/K
S
G = lim←−

KG,S

XKS
GKG,S

, and ∂XKS
G

:= ∂XG/K
S
G = lim←−

KG,S

∂XKS
GKG,S

where the limits run over compact open subgroups KG,S ⊂ G(A∞
F ) such that

KS
GKG,S is good.

2.2 Coefficient systems and Hecke operators
For S a finite set of finite places of F , we set GS := G(AS∪{∞}

F ) and
GS := G(AF,S), and similarly, for a good subgroup KG ⊂ G(A∞

F ), we set
KS
G := ∏

v/∈SKG,v and KG,S := ∏
v∈SKG,v.

LetR be a commutative ring. Note that both XG, and XG admit a continu-
ous right action ofGS×KG,S. In particular, we can consider the corresponding
categories of GS×KG,S-equivariant sheaves of R-modules ShGS×KG,S

(XG, R),
ShGS×KG,S

(XG, R) in the sense of [NT16], Definition 2.22, (2). Given a
smooth R[KG,S]-module V , the formalism of [All+23] attaches to it a GS ×
KG,S-equivariant sheaf V ∈ ShGS×KG,S

(XG, R) resp. V ∈ ShGS×KG,S
(XG, R).

Namely, one inflates V to get an element of Modsm(R[GS × KG,S]) which,
by [NT16], Lemma 2.25, is equivalent to the category ShGS×KG,S

(∗, R) and
we then pull it back along f : XG → ∗ resp. f : XG → ∗. As ex-
plained in [Sch98], the categories ShGS×KG,S

(XG, R) and ShGS×KG,S
(XG, R)

have enough injectives and both f! and f ! = f ∗ land in ShGS×KG,S
(∗, R) ∼=

Modsm(R[GS ×KG,S]). Therefore, we see that both

RΓ(XG, j!V) = 1R(f ∗ ◦ j!)V = Rf!V
1Here we use that j! preserves injective objects.
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and
RΓ(XG,V) = Rf ∗V = Rf !V

lie in D+
sm(R[GS ×KG,S]). By taking derived invariants, we end up with

RΓ(KG, RΓ(XG,V)) and RΓ(KG, RΓ(XG, j!V))

in D+(H(GS, KS
G) ⊗Z R) where H(GS, KS

G) := Z[KS
G\GS/KS

G] is the prime-
to-S Hecke algebra i.e., the additive group of integer valued KS

G-biinvariant
functions on GS equipped with the convolution product.

On the other hand, by descent (cf. [NT16], Lemma 2.24), V and j!V give
rise to sheaves on XKG

, which, by abuse of notation, we denote by the same
letter. Then, by combining the fact that j is a homotopy equivalence and
[CN23], Proposition 2.1.3, we obtain natural isomorphisms

RΓ(XKG
,V) ∼= RΓ(XKG

,V) ∼= RΓ(KG, RΓ(XG,V))∼

and
RΓc(XKG

,V) := RΓ(XKG
, j!V) ∼= RΓ(KG, RΓ(XG, j!V))∼

in D+(R), where (−)∼ denotes the forgetful functor. In particular, we have
a ring homomorphism

H(GS, KS
G)⊗Z R→ EndD+(R)(RΓ(c)(XKG

,V)).

The same observations also apply to RΓ(∂XKG
,V).

Finally, assuming that R is Noetherian and K ′
G ⊂ KG is a good normal

subgroup, one sees, by writing down the complex explicitly in terms of a well-
chosen simplicial complex, that RΓ(c)(XK′

G
,V) is in fact a perfect object in

D+(R[KG/K
′
G]) (cf. [CN23], Lemma 2.1.6).

We now turn our attention to completed cohomology following the view-
point of [CN23]. For this we fix m ∈ Z≥1 and set R = O/ϖm where
O is the ring of integers of a finite field extension E/Qp. Moreover, let
S ⊂ Sp := Sp(F ) be a subset of the set of p-adic places of F .

Definition 2.2.1. Given V ∈ Modsm(O/ϖm[KG,Sp ]), we define its completed
cohomology (with compact support) at S of level KS

G to be

π(KS
G,V) := RΓ(KS

G, RΓ(XG,V))∼ ∼= 2RΓ(XKS
G
,V) ∈ D+

sm(O/ϖm[KG,S])

resp.

πc(KS
G,V) := RΓ(KS

G, RΓ(XG, j!V))∼ ∼= RΓ(XKS
G
, j!V) ∈ D+

sm(O/ϖm[KG,S]).

Note that if V is inflated from an element VS ∈ Modsm(O/ϖm[KG,Sp\S]), then
the S-completed cohomology complexes in fact lie in D+

sm(O/ϖm[GS]).
2This identification is proved exactly the same way as in the proof of [CN23], Proposition

2.1.3.
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For any set of finite places Sp ⊂ T , H(GT , KT
G) ⊗Z O/ϖm acts on the

completed cohomology complexes (with compact support) as it does so on
RΓ(KS

G, RΓ(XG, (j!)V)). Moreover, one similarly defines boundary completed
cohomology

π∂(KS
G,V) := RΓ(∂XKS

G
,V) ∈ D+

sm(O/ϖm[KG,S]).

Note that [CN23], Lemma 2.1.7 justifies the use of the term completed co-
homology i.e., it shows that, after taking cohomology groups, we get back
Emerton’s completed cohomology as defined in [Eme06b].

Finally, we have the usual phenomenon of completed cohomology at S
being independent of the weight at S (cf. [CN23], Lemma 2.1.8). To state
this more precisely, let V ∈ Modsm(O/ϖm[KG,Sp\S ×∆S]) where ∆S ⊂ GS is
a submonoid containing a compact open subgroup US ⊂ GS and assume that
V is O/ϖm-flat. We can view V as a GSp × KG,Sp\S × US-equivariant sheaf
on XG.

Lemma 2.2.2. We have canonical isomorphisms

RΓ(XG,V) ∼= RΓ(XG,O/ϖm)⊗O/ϖm V ,

and
RΓ(∂XG,V) ∼= RΓ(∂XG,O/ϖm)⊗O/ϖm V

in D+
sm(O/ϖm[GSp ×KG,Sp\S × US]).

Proof. This is [CN23], Lemma 2.1.8.

Following [CN23], we use the lemma above to define the object

RΓ(XG,V) := RΓ(XG,O/ϖm)⊗O/ϖm V ∈ D+
sm(O/ϖm[GSp ×KG,Sp\S ×∆S])

in a way that is independent of the choice of US. In particular, we can endow
RΓ(XKG

,V) with a natural H(GSp , K
Sp

G ) ⊗ H(∆S, US)-action for any choice
of compact open subgroup US ⊂ GS

We also have a version of Lemma 2.2.2 with V being a complex of sheaves
with bounded cohomology. Namely, consider V ∈ Db

sm(O/ϖm[KG,Sp\S]) and
denote also by V the associated object in Db(ShGSp\S×KG,Sp\S

(XG,O/ϖm)).
One can then make sense of the derived tensor product

RΓ(XG,O/ϖm)⊗L
O/ϖm− : Db

sm(O/ϖm[KG,Sp\S])→ Db
sm(O/ϖm[GSp\S×KG,Sp\S])

as explained on page 13 of [CN23].3 Then loc. cit. Lemma 2.1.9 shows that
there is a canonical isomorphism

RΓ(XG,O/ϖm)⊗L
O/ϖm V ∼−→ RΓ(XG,V)

3Note that it is the consideration of the derived tensor product that forces us to switch
here to the bounded derived category.
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in Db
sm(GSp\S ×KG,Sp\S).

We finally define cohomology complexes with O-coefficients by taking ho-
motopy limit. For this we start with an O[KG,S]-module V , finite free as an
O-module. We set

RΓ(c)(XKG
,V) := lim←−

m

RΓ(c)(XKG
,V/ϖm) ∈ D+(O),

where the projective limit is understood as a homotopy limit. One can endow
these complexes with an action of the Hecke algebra H(GS, KS

G) ⊗Z O (see
the footnote on Page 14 of [CN23] for a discussion on how it relates to the
Hecke action defined in [NT16]).

The next lemma explains that after taking cohomology we get back clas-
sical Betti cohomology with O-coefficients. Such an argument will be used at
several places whenever the Mittag–Leffler condition holds.
Lemma 2.2.3. Let KG ⊂ G(A∞

F ) be a good subgroup, S be a finite set of finite
places of F and V an O[KG,S]-module, finite free as an O-module. Then, for
every j ∈ Z≥0, we have a natural identification

Hj(RΓ(c)(XKG
,V)) ∼= Hj

(c)(XKG
,V).

Proof. By [Sta24, Lemma 0CQE], it suffices to prove that the higher inverse
limit

R1 lim←−
m

Hj
(c)(XKG

,V/ϖm)

vanishes. This vanishing is ensured once we prove that the inverse system
{Hj

(c)(XKG
,V/ϖm)}m≥0

satisfies Mittag-Leffler. To see this, we note that, by [CN23], Lemma 2.1.6,
all the appearing cohomology groups are finite. Therefore, the images of all
the transition maps in the inverse system must stabilise after finitely many
steps.

We now recall the definition of the unnormalised Satake transform. As-
sume that G is reductive and P = M ⋊ N ⊂ G is a parabolic subgroup
with its Levi decomposition. Given a good subgroup KG ⊂ G(A∞

F ), set
KP = KG ∩ P (A∞

F ), KN = KG ∩ N(A∞
F ) and KM = im(KP → M(A∞

F )).
We call KG decomposed with respect to P = M ⋊ N , if KP = KM ⋊ KN ;
equivalently, if KM = KG ∩M(A∞

F ).
Assume KG is decomposed with respect to P = M ⋊ N and let S be a

finite set of finite places such that, for v /∈ S, KG,v is a hyperspecial maximal
compact in G(Fv). Then we have the usual maps on Hecke algebras

rP : H(GS, KS
G)→ H(P S, KS

P ) and rM : H(P S, KS
P )→ H(MS, KS

M)
given by "restriction to P " and "integration along N", respectively (cf. [NT16],
2.2.3, 2.2.4). We then can define S := rM ◦ rP , the unnormalised Satake
transform.

https://stacks.math.columbia.edu/tag/0CQE
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2.3 Hecke algebras of types
We will make use of the Hecke algebra and Bernstein centre action at p

with respect to locally algebraic types. For this we briefly recall the content
of Appendix A.1 and A.4 of [Vig04]. First we consider the following general
setup. Let R be a commutative ring, G be a locally profinite group, K ⊂ G
an open subgroup and σ be a smooth R[K]-module, finitely generated over
R.

Given σ, we can define the corresponding Hecke algebra

H(σ) := EndR[G](c-IndGKσ).

For π ∈ Modsm(R[G]), H(σ) acts on the space of invariants

HomR[G](c-IndGKσ, π) = HomR[K](σ, π) = σ∨ ⊗R[K] π

on the right. We also note that H(σ) can be identified with the convolu-
tion algebra of compactly supported functions f : G → EndR(σ) satisfying
f(k1gk2) = σ(k1)f(g)σ(k2) for every k1, k2 ∈ K and g ∈ G. The isomorphism
is realised by acting with the convolution algebra on c-IndGKσ via convolution.
From this description it is clear that H(σ) is spanned over R by elements rep-
resented by pairs [g, ψ] where g ∈ G and ψ ∈ EndR(σ) such that

σ(k) ◦ ψ = ψ ◦ σ(g−1kg) (2.3.1)

for every k ∈ K∩gKg−1. More precisely, such a pair gives rise to the function
G → EndR(σ) supported on KgK that sends g to ψ. Moreover, under the
mentioned identification, [g, ψ] acts on ϕ ∈ HomR[K](σ, π) by the formula

ϕ · [g, ψ] : v 7→
∑
i

π(gi)−1ϕ([g, ψ](gi)v)

for v ∈ σ and KgK = ∐
iKgi.

Note that we have an anti-involution

H(σ) ∼−→ H(σ∨),

[g, ψ] 7→ [g−1, ψt].
Moreover, [h, χ] = [g−1, ψt] ∈ H(σ∨) acts on ∑

j fj ⊗ pj ∈ σ∨ ⊗R[K] π =
(σ∨ ⊗R π)K via the formula

[h, χ] · (
∑
j

fj ⊗ pj) =
∑
i

Ç∑
j

[h, χ](hi)fj ⊗ π(hi)(pj)
å

=

=
∑
i

Ç∑
j

[g−1, ψt](g−1
i )fj ⊗ π(g−1

i )(pj)
å
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for ∐
i hiK = KhK = Kg−1K = ∐

i g
−1
i K = (∐

iKgi)−1. This gives rise to
a left action of H(σ∨) on σ∨ ⊗R[K] π. Moreover, as the computation shows,
the anti-isomorphism H(σ) ∼−→ H(σ∨) intertwines the two actions under the
identification HomR[K](σ, π) ∼= σ∨ ⊗R[K] π.

We are now ready to equip the cohomology of locally symmetric spaces
with a Hecke action at p. For this, we revisit the setup of §2.1, and G
will again denote a connected linear algebraic group G over F admitting a
model over OF . Before stating the lemma, we remind the reader that, for a
compact open subgroup KG ⊂ G(A∞

F ) and a smooth O/ϖm[KG,S]-module σ,
we introduced a GS ×KG,S-equivariant sheaf on XG and, by descent, a sheaf
on XKG

. Moreover, by abuse of notation, we denoted all of these objects by
σ.

Lemma 2.3.1. Let S ⊂ S(F ) be a finite set of finite places, KG ⊂ G(A∞
F ) a

good subgroup, and σ ∈ Modsm(O/ϖm[KG,S]), finite free as an O/ϖm-module.
Then the diagram of derived functors

D+ShG(A∞
F )(XG,O/ϖm) D+

sm(O/ϖm[G(A∞
F )]) D+(H(GS, KS

G)×H(σ∨))

D+ShKG
(XG,O/ϖm) D+Sh(XKG

,O/ϖm) D+(O/ϖm)

RΓ(XG,−)

forget

descent

RHomO/ϖm[KG](σ,−)

RΓ(XKG
,−⊗O/ϖmσ∨)

forget

is commutative.4

Proof. Throughout the proof, we repeatedly use [Wei94], Corollary 10.8.3
without further mention. According to [NT16], Lemma 2.28, Γ(XG,−) pre-
serves injectives. Moreover, the forgetful functor

(−)∼ : D+ShG(A∞
F )(XG,O/ϖm)→ D+ShKG

(XG,O/ϖm)

is exact and preserves injectives by [Sch98], §3, Corollary 3.5 In particular, we
get that the composition of the functors on the top of the square is naturally
isomorphic to the functor

RΓ(KG, RΓ(XG, (−)∼)⊗O/ϖm σ∨) : D+ShG(A∞
F )(XG,O/ϖm)→ D+(O/ϖm).

On the other hand, the proof of Lemma 2.2.2 (cf. [CN23], Lemma 2.1.8)
with arbitrary G ∈ D+ShKG

(XG,O/ϖm) in place of O/ϖm shows that we
have a natural isomorphism

RΓ(XG,−)⊗O/ϖm σ∨ ∼= RΓ(XG,−⊗O/ϖm σ∨)
4Here by the lower right horizontal arrow we mean the composition of first tensoring over

O/ϖm with σ∨ ∈ Sh(XKG
,O/ϖm) and then applying derived invariants to the obtained

object.
5Note that a running assumption in [Sch98] is that the ring of coefficients is C. However,

one sees that the proof of loc. cit. goes through without a change also with O/ϖm-
coefficients.
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of derived functors D+ShKG
(XG,O/ϖm)→ D+

sm(O/ϖm[KG]).
Finally, we note that the descent functor respects tensor products since

the pullback functor (its inverse) does. We then obtain a natural isomorphism
of derived functors

RΓ(KG, RΓ(XG,−⊗O/ϖm σ∨)) ∼= RΓ(XKG
,−⊗O/ϖm σ∨).

By putting these observations together, we can conclude.

We spell out a generalisation of [All+23], Proposition 2.2.22 that will be
used to make twisting arguments in the proof of local-global compatibility
analogous to the ones in loc. cit., Corollary 4.4.8. Let G = GLn,F , and
K ⊂ GLn(A∞

F ) be a good subgroup, and χ : GF → O× be a continuous
character such that χ ◦ArtFv is trivial on det(Kv) for each finite place v /∈ T
of F . Let σ ∈ Modsm(O/ϖm[Kp]), finite free as an O/ϖm-module. Set
σχ : Kp → O× to be the continuous character defined by

(kv)v∈Sp 7→
∏
v∈Sp

χ(ArtFv(det(kv))).

Define the isomorphism of O-algebras

fχ : H(GT , KT )⊗Z H(σ∨)→ H(GT , KT )⊗Z H(σ∨ ⊗ σχ−1)

sending a function f : GLn(AF ) → End(σ∨) lying in the source of fχ to the
function fχ(f) : g 7→ χ(ArtF (det(g)))−1f(g).

Lemma 2.3.2. Let K ⊂ GLn(A∞
F ) be a good subgroup, and χ : GF → O×

be a continuous character such that χ ◦ ArtFv is trivial on det(Kv) for each
finite place v /∈ T of F . Let σ ∈ Modsm(O/ϖm[Kp]), finite free as an O/ϖm-
module. Then there is an isomorphism

RΓ(XK , σ
∨) ∼= RΓ(XK , σ

∨ ⊗ σχ−1)

in D+(O/ϖm) that is H(GT , KT )⊗ZH(σ∨)-equivariant when we consider its
usual action on the left and the one induced by pre-composition with fχ on
the right.

Proof. To see this, we introduce some constructions. For any GLn(A∞
F )-

equivariant sheaf F ∈ ShGLn(A∞
F )(XGLn ,O/ϖm), consider the map

Γ(XGLn ,F)→ Γ(XGLn ,F), (2.3.2)

s 7→ sχ

defined by the formula sχ((x, g)) := χ(ArtF (det(g)))s((x, g)). An easy com-
putation shows that 2.3.2 becomes GLn(A∞

F )-equivariant when we twist the
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target by the character g 7→ χ(ArtF (det(g)))−1. In particular, 2.3.2 descends
to a map

HomO/ϖm[K](σ,Γ(XGLn ,F))→ HomO/ϖm[K](σ ⊗ σχ,Γ(XGLn ,F)). (2.3.3)

After unravelling the definition of the Hecke action, one sees that this amounts
to saying that the induced map 2.3.3 satisfies the desired Hecke-equivariance
of the lemma.

We can conclude by choosing an injective resolution O/ϖm → I• in
the category ShGLn(A∞

F )(XGLn ,O/ϖm) and applying the previous observation
with the choice of F = I i for every i ∈ Z≥0. Indeed, this is because, by
Lemma 2.3.1, applying the forgetful functor to

HomO/ϖm[K](σ,Γ(XGLn , I•)), and HomO/ϖm[K](σ ⊗ σχ,Γ(XGLn , I•))

computes RΓ(XK , σ
∨), and RΓ(XK , σ

∨ ⊗ σχ−1), respectively. Moreover, the
Hecke actions come from these identifications.

2.4 Hecke equivariance of Poincaré duality
In the proof of our local-global compatibility results, we appeal to the

Poincaré duality isomorphism for the cohomology of the locally symmetric
spaces attached to GLn/F . To keep track of the Hecke algebra actions during
this process, it is crucial to verify that Poincaré duality is equivariant with
respect to suitable Hecke actions on the two sides. This is already checked
for instance in [NT16], Proposition 3.7 for unramified prime-to-p places. We
will need a version of this Hecke equivariancy for the Hecke algebra actions
at p. This will need slightly more care and will be handled in this section.

We return to our setup in §2.2. We let S ⊂ Sp(F ) to be a set of p-adic
places, K ⊂ G(A∞

F ) a good subgroup. Let σ ∈ Modsm(O/ϖm[KS]), which
we also assume to be finite free over O/ϖm. Then, by the previous section,
for any GS-equivariant sheaf G on XKS in the sense of [NT16], Section 2.4,
the complex

RHomO/ϖm[KS ](σ,RΓ(XKS ,G))

lies in D+(H(σ)op) = D+(H(σ∨)). Then, if we let π : XKS → XK to be the
natural projection and f : XKS → ∗, Lemma 2.3.1 implies that there is an
induced morphism of algebras

H(σ∨)→ EndD+(O/ϖm)(RΓ(XK , π
KS
∗ (G ⊗O/ϖm f

∗
σ∨)).

To prove Hecke equivariancy of Poincaré duality for RΓ(XK , σ
∨), we give

a different description of this action as in [NT16], Lemma 2.19. As we are
working with places above p, which are not assumed to be unramified, we
need to refine the constructions of [NT16].
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We pick an element [g, ψ] ∈ H(σ)op as in the previous section. We define
an action of this element on cohomology. Let K ′ := KSK ′

S where K ′
S =

KS ∩ g−1KSg. By abuse of notation, whenever K ′′
S ⊂ KS is a compact open

subgroup, we denote by π the projection XKS → XKSK′′
S
. We consider the

correspondence
XK′

XK XK

p1 p2

where p1 is the natural projection and p2 is given by the map XK′
·g−1
−−→

XKS ·gK′
Sg

−1 followed by the natural projection. By the intertwining property
2.3.1 of ψ, it descends to a map

p∗
1π

KS
∗ f

∗
σ = π

K′
S∗ f

∗
σ

ψ−→ (g−1)∗π
gK′

Sg
−1

∗ f
∗
σ = p∗

2π
KS
∗ f

∗
σ,

giving a cohomological correspondence. For any GS-equivariant sheaf of
O/ϖm-modules G on XKS , we get an induced map

Ψ : RΓ(XK′ , p∗
2π

KS
∗ (G⊗O/ϖmf

∗
σ∨)) ∼= RHomSh(XK′ ,O/ϖm)(p∗

2π
KS
∗ f

∗
σ, p∗

2π
KS
∗ G)→

RHomSh(XK′ ,O/ϖm)(p∗
1π

KS
∗ f

∗
σ, p∗

1π
KS
∗ G) ∼= RΓ(XK′ , p∗

1π
KS
∗ (G ⊗O/ϖm f

∗
σ∨)),

where the map in the middle is induced by the map ψ in the first component
and by the multiplication g−1 : p∗

2π
KS
∗ G ∼= p∗

1π
KS
∗ G in the second component.

We then obtain an endomorphism

θ([g, ψ]) ∈ EndD+(O/ϖm)(RΓ(XK , π
KS
∗ (G ⊗O/ϖm f

∗
σ∨)))

defined by

RΓ(XK , π
KS
∗ (G ⊗O/ϖm f

∗
σ∨)) p∗

2−→ RΓ(XK′ , p∗
2π

KS
∗ (G ⊗O/ϖm f

∗
σ∨)) Ψ−→

→ RΓ(XK′ , p∗
1π

KS
∗ (G ⊗O/ϖm f

∗
σ∨)) = RΓ(XK , p1,∗p

∗
1π

KS
∗ (G ⊗O/ϖm f

∗
σ∨)) tr−→

→ RΓ(XK , π
KS
∗ (G ⊗O/ϖm f

∗
σ∨))

where the last map is the trace map coming from the canonical map induced
by the adjoint pair (p1,∗ = p1,!, p

∗
1 = p!

1).

Lemma 2.4.1. The endomorphism θ([g, ψ]) of RΓ(XK , π
KS
∗ (G⊗O/ϖm f

∗
σ∨))

coincides with the one induced by [g, ψ] via the recipe of Lemma 2.3.1.

Proof. Note that we have a natural isomorphism

RΓ(XK , π
KS
∗ (G ⊗O/ϖm f

∗
σ∨)) ∼= RHomSh(XK ,O/ϖm)(πKS

∗ f
∗
σ, πKS

∗ G)

in D+(O/ϖm). Indeed, this follows from the fact that the functor

πKS
∗ : ShKS

(XKS ,O/ϖm) −→ Sh(XK ,O/ϖm)



2.4. HECKE EQUIVARIANCE OF POINCARÉ DUALITY 65

is an equivalence of categories with inverse π∗ and pullbacks commute with
tensor products. We obtain analogous descriptions of the other two complexes
appearing in the definition of θ([g, ψ]).

We now pick an injective resolution G → I• in D+(ShGS
(XKS ,O/ϖm)).

Notice that, by [Sch98], §3, Corollary 3, it gives rise to an injective resolution
in D+(ShKS

(XKS ,O/ϖm)), and D+(ShK′
S
(XKS ,O/ϖm)). Moreover, since

the functors πKS
∗ , p∗

1π
KS
∗ , and p∗

2π
KS
∗ are all equivalences, πKS

∗ I•, p∗
1π

KS
∗ I•,

and p∗
2π

KS
∗ I• are injective resolutions. If we combine this with the discussion

of the previous paragraph, we see that

Γ(XK , π
KS
∗ (I• ⊗O/ϖm f

∗
σ∨)) = HomKS

(σ, I•(XKS ))

computes RΓ(XK , π
KS
∗ (G⊗O/ϖm f

∗
σ∨)). Analogous observations apply to the

other two complexes appearing in the definition of θ([g, ψ]). We reduced the
lemma to comparing the two actions in

EndO/ϖm(HomKS
(σ, I i(XKS )))

for every i ∈ Z. The lemma then follows from the concrete description of
the effect of the trace map on global sections and an easy unravelling of the
definitions.

Remark 2.4.2. Note that our discussion applies also to the case ofRΓc(XK , σ
∨).

To see this, denote by j : XG ↪→ XG the natural open immersion and by
f : XG → ∗ the projection to the point. Then the claim follows from the fact
that we have an isomorphism

j!j
∗f

∗
σ∨ ∼= j!O/ϖm ⊗O/ϖm f

∗
σ∨

of G(A∞
F )-equivariant sheaves. This identification follows from an equivariant

version of [KS94], Proposition 2.5.13.

Corollary 2.4.3. Given σ ∈ Modsm(O/ϖm[KS]), finite free as an O/ϖm-
module. The Verdier duality isomorphism

RHomO/ϖm(RΓc(XK , σ
∨),O/ϖm) ∼= RΓ(XK , σ)[dimR XK ]

is equivariant with respect to the natural left action of H(σ) on the right and
the one induced by the anti-isomorphism

H(σ) ∼−→ H(σ∨),

[g, ψ] 7→ [g−1, ψt]
on the left.

Proof. Just as in the proof of [NT16], Proposition 3.7, this follows from
the functoriality of Verdier duality and Lemma 2.4.1 taking into account
that passing to duals interchanges pullbacks with traces in the definition of
θ([g, ψ]).
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2.5 The quasi-split unitary group
From now on we specialise to our setup of interest. The two groups we

will be interested in are the quasi-split unitary group U(n, n) and the general
linear group appearing as its Levi subgroup. In particular, we fix an integer
n ≥ 2 and an imaginary CM field F with maximal totally real subfield F+ ⊂
F . Denote by c ∈ Gal(F/F+) its complex conjugation and set Sp := Sp(F+)
resp. Sp := Sp(F ). Consider the 2n× 2n matrix

Jn :=
Å

0 Ψn

−Ψn 0

ã
where Ψn denotes the n × n matrix with 1’s on the anti-diagonal and 0’s
elsewhere. We then set G̃/OF+ to be the group scheme that, for an OF+-
algebra R, has R-points given by

G̃(R) = {g ∈ GL2n(R⊗OF + OF ) | tgJngc = Jn}

where t(−) denotes the transpose matrix. This is an integral model of the
quasi-split unitary group U(n, n)/F+, a form of GL2n, splitting after base
change to F . In particular, it becomes reductive after base change to OF+

v̄

for v̄ a finite place of F+ which is unramified in F .
We let P ⊂ G̃ to be the Siegel parabolic consisting of block upper tri-

angular matrices with blocks of size n × n. Let P = G ⋉ U be a Levi
decomposition such that G is given by the closed subgroup of block diagonal
matrices. Then G can be identified with ResOF /OF + GLn as in [NT16], Lemma
5.1. Namely, if we denote by (−)∗ the anti-involution of ResOF /OF + GLn given
by A∗ = ψtnA

cψ−1
n then, by its very definition, P ⊂ G̃ can be identified with

the subgroup of ResOF /OF + GL2n of the formÅ
A B
C D

ã
=
Å
D−∗ B

0 D

ã
where D ∈ ResOF /OF + GLn without any condition and B is so that B∗ = B.
Under this identification, the subgroup defined by B = 0 is the Levi subgroup
G. Then

Å
D−∗ B

0 D

ã
7→ D gives the identification G ∼= ResOF /OF + GLn.

We will write ‹X for the symmetric space X‹G and ‹X‹K for the associated
locally symmetric space for a good subgroup ‹K ⊂ G̃(A∞

F+). Similarly, we
denote by X the symmetric space XG and write XK for the associated locally
symmetric space for a good subgroup K ⊂ G(A∞

F+) = GLn(A∞
F ).

Write T ⊂ ‹B ⊂ G̃ for the subgroup consisting, respectively, of the diagonal
and upper triangular matrices of G̃. These form a maximal torus and a Borel
subgroup of G̃. Moreover, B = ‹B ∩ G ⊂ G is the Borel subgroup of upper
triangular matrices.
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Recall that, for a place v̄ of F+ splitting in F , a choice of place v | v̄
in F gives a canonical isomorphism ιv : G̃(F+

v̄ ) ∼= GL2n(Fv). Indeed, there
is an isomorphism F+

v̄ ⊗F+ F ∼= Fv × Fvc and ιv is the projection to the
first factor of the natural inclusion G̃(F+

v̄ ) ⊂ GL2n(Fv) × GL2n(Fvc). Under
ιv, P (F+

v̄ ) is identified with the standard parabolic subgroup P(n,n)(Fv) ⊂
GL2n(Fv) of block upper triangular matrices of type (n, n) and G(F+

v̄ ) with
its standard Levi subgroup of block diagonal matrices. Similarly, ‹B(F+

v̄ ) is
identified with the subgroup of upper triangular matrices and T (F+

v̄ ) with
the diagonal matrices. Moreover, for any parabolic subgroup ‹BF+

v̄
⊂ Q̃ ⊂

PF+
v̄

, Q̃(F+
v̄ ) is identified with a standard parabolic subgroup P(n1,...,nt)(Fv) ⊂

GL2n(Fv) where (n1, ..., nt) refines (n, n). Let Q̃ = M̃ ⋉ ‹N its standard Levi
decomposition and set M = G ∩ M̃ .

Note that, since the inclusion

G(F+
v̄ ) = GLn(Fv)×GLn(Fvc) ↪→ GL2n(Fv)

under ιv is given by

(A,B) 7→
Å

(Ψn
tB−1Ψn)c 0

0 A

ã
, (2.5.1)

we have M(F+
v̄ ) = M(nk+1,...,nt)(Fv) ×M(nk,...,n1)(Fvc) ↪→ G(F+

v̄ ) where 1 ≤
k ≤ t is so that n1 + ...+ nk = n. We set θn : GLn(Fvc) ∼= GLn(Fv) to be the
map B 7→ (Ψn

tB−1Ψn)c above.

2.6 Inertial local Langlands for GLn
Set L = Fv for some v ∈ Sp(F ). According to [BD84], the category

Modsm(E[G(L)]) admits a direct sum decomposition

⊕ΩModsm(E[G(L)])[Ω]

into so-called Bernstein blocks. In terms of the local Langlands correspon-
dence, two irreducible representation π1, π2 ∈ Modsm(E[G(L)]) correspond to
the same Bernstein block if and only if

rec(π1)ss|IL
∼= rec(π2)ss|IL

,

and a general representation π ∈ Modsm(E[G(L)]) lies in Ω if each of its
Jordan–Hölder constituents does. Moreover, the centre zΩ of the category
Modsm(E[G(L)])[Ω] is called the Bernstein centre possessing the following
property. Being the centre of the Bernstein block, it acts on each object
lying in Ω. In particular, for any irreducible π lying in Ω, the natural action
induces a character χπ : zΩ → E. Then, given a pair of irreducible objects
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π1, π2 ∈ Modsm(E[G(L)])[Ω], χπ1 = χπ2 if and only if π1 and π2 have the same
supercuspidal support (cf. [BD84]).6

Work of Bushnell–Kutzko [BK99] shows that, given any Bernstein block Ω,
there is always a pair (J, σ) of a compact open J ⊂ G(OL) and an irreducible
E-representation of J such that π ∈ Modsm(E[G(L)]) lies in Ω if and only if it
is generated by its σ-isotypic vectors. Such a pair is then called a semisimple
Bushnell–Kutzko type for the block Ω. Given a semisimple Bushnell–Kutzko
type (J, σ), [BK98], Theorem 4.3 shows that taking σ-invariants sets up an
equivalence of categories

Modsm(E[G(L)])[Ω] ∼−→ Mod(H(σ)),

π 7→ HomJ(σ, π) ∼= HomG(L)(c-IndG(L)
J σ, π)

where H(σ) := EndG(L)(c-IndG(L)
J σ). In particular, we see that the action

of the Bernstein centre on c-IndG(L)
J σ identifies zΩ with the centre Z(H(σ))

of H(σ). Finally, given a Bernstein block Ω, as was observed in [Car+16b],
§3.13,7 after possibly enlarging E, the Bernstein centre zΩ admits a model
zΩ,E over E acting on any π ∈ Modsm(E[G(L)]) such that π ⊗E Qp lies in
Ω. Moreover, for any type (J, σ) for Ω with a model σE over E, the natural
action zΩ,E → EndG(L)(c-IndG(L)

J σE) = H(σE) induces an isomorphism zΩ,E ∼=
Z(H(σE)) as one notes by combining [Car+16b], (3.15), Lemma 3.18 and
Proposition 3.23. In particular, from now on for a given Bernstein block Ω
we always assume that E is sufficiently large so that the centre is already
defined over E.

In [SZ99], the authors refine the Bernstein decomposition of Modsm(E[G(L)])
to a "stratification" of the category and construct a type theory with respect
to this stratification as we will discuss now. We state their results in terms
of the local Langlands correspondence following [BC09], §6.5.

Definition 2.6.1. We define a Weil–Deligne inertial type (of L over E) to
be an isomorphism class of pairs τ = (ρτ , Nτ ) such that ρτ : IL → GLn(E)
is a representation of the inertia subgroup IL ⊂ WL with open kernel, Nτ ∈
Mn(E) is a nilpotent matrix such that there exists a Weil–Deligne represen-
tation (r,N) of L and an isomorphism (r,N)|IL

∼= (ρτ , Nτ ).

Given a nilpotent matrix N ∈ Mm(E), its Jordan normal form gives
rise to a partition PN of m. A partition P can be viewed uniquely as a
decreasing function P : Z>0 → Z≥0 with finite support (where P is a partition
of ∑

i∈Z>0 P (i)). Given two nilpotent matrices N1, N2 ∈ Mm(E), we write
N1 ⪯ N2 if and only if ∑

1≤i≤k PN1(i) ≤ ∑
1≤i≤k PN2(i) for every k ∈ Z≥1. We

record the following observation (cf. [BC09], Proposition 7.8.1).
6For a brief overview of these results stated with more care, see [Hel16], §3.
7See in particular loc. cit. Proposition 3.23.
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Proposition 2.6.2. Let N1, N2 ∈ Mm(E) be two nilpotent matrices. Then
N1 ⪯ N2 if and only if, for all i ∈ Z≤1, we have

rank(N i
1) ≤ rank(N i

2).

Given a Weil–Deligne inertial type τ = (ρτ , Nτ ) of L over E, and a fi-
nite dimensional irreducible Qp-representation θ : IL → GL(Vθ) with open
kernel, we can consider the θ-isotypic component ρτ [θ] : IL → GL(Vτ [θ]) of
ρτ ⊗E Qp. As Nτ commutes with the action of IL, it restricts to a nilpotent
endomorphism Nτ [θ] ∈ End(Vτ [θ]).

Definition 2.6.3. Given two Weil–Deligne inertial types τ1, τ2 of L, we write
τ1 ⪯ τ2 if ρτ1

∼= ρτ2 and Nτ1 [θ] ⪯ Nτ2 [θ] for every irreducible Qp-representation
θ : IL → GL(Vθ) with open kernel. Moreover, given two Weil–Deligne repre-
sentations r1, r2 of L, we write r1 ⪯ r2 if r1|IL

⪯ r2|IL
.

We note that the partial order (on Weil–Deligne representations) appear-
ing in Definition 2.6.3 is the one defined in [BC09], Definition 6.5.1,8 [Var14],
Defintion 8.3 and [Hun+18], Definition 2.5.3, respectively.

Theorem 2.6.4 ([SZ99]). Let τ be a Weil–Deligne inertial type. Then there
is a smooth irreducible E-representation σ(τ) of G(OL) such that, for any
irreducible smooth representation π of G(L), the following hold.

i. If π|G(OL) contains σ(τ), then rec(π)|IL
⪯ τ ;

ii. if rec(π)|IL
∼= τ , then π|G(OL) contains σ(τ) with multiplicity one;

iii. if rec(π)|IL
⪯ τ and π is generic, then π|G(OL) contains σ(τ).

Proof. See [Hun+18], Theorem 2.5.4 and the references therein.

We point out that the Theorem makes no mention about the uniqueness
of σ(τ). Throughout this thesis, given a Weil–Deligne inertial type τ , we
work with the σ(τ) constructed in [SZ99].

Remark 2.6.5. Notice that when τ = (ρτ , Nτ ) is so that Nτ = 0, we obtain
the potentially crystalline inertial local Langlands of [Car+16b], Theorem 3.7.

Note that each Weil–Deligne inertial type τ gives rise to an inertial type
ρτ in the classical sense and henceforth to a Bernstein block Ω. Moreover,
if (J, σ) is a type for Ω, then, by construction, σ(τ) is a direct summand of
c-IndG(OL)

J σ. In particular, zΩ acts on c-IndG(L)
G(OL)σ(τ). One sees that this, in

fact, is a faithful action,9 yielding an injection zΩ ↪→ zτ := Z(H(σ(τ))).
8They introduce the partial order for irreducible smooth representations of GLn(L)

but, under the local Langlands correspondence, it translates to our definition (cf [BC09],
Proposition 7.8.1).

9In fact, [Pyv20a], Theorem 7.1 shows that H(σ(τ)) is a free module over zΩ.
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2.7 Local systems on ‹X‹K and XK

We now introduce the local systems we will be working with. These will
be constructed from locally algebraic representations σalg ⊗ σsm where the
algebraic part σalg will encode the weight of the automorphic representations
considered (i.e. their shape at ∞) and the smooth part σsm will pin down
their inertial type at p.

Our integral coefficient systems will depend on the choice of a prime p.
We further set E/Qp to be our coefficient field, a sufficiently large subfield of
Qp finite over Qp such that Hom(F,E) = Hom(F,Qp), and denote by O its
ring of integers. Fix a choice of uniformiser ϖ ∈ O as well.

We start by introducing our locally algebraic representations for G. For
each p-adic place v of F , we consider a standard (possibly non-proper) parabolic
subgroup Qv ⊂ GLn with standard Levi decomposition Qv = Mv ⋉ Nv and
consider the corresponding parahoric subgroup scheme vQ of GLn. For S ⊂
Sp, we set QS := ∏

v∈S Qv and Qp := QSp . Set Qv := vQ(OFv) ⊂ GLn(OFv)
to be the corresponding parahoric subgroup. For a finite set of p-adic places
S ⊂ Sp, we set QS := ∏

v∈S Qv ⊂ GLn(“OF,S). Moreover, for any v ∈ Sp,
and integers c ≥ b ≥ 0 with c ≥ 1, we denote by Qv(b, c) ⊂ Qv the sub-
group of matrices which are block upper triangular modulo ϖc

v and block
unipotent modulo ϖb

v, where ϖv ∈ OFv is some choice of uniformiser. Ex-
tend the definition in the obvious way to define QS(b, c). In particular, we
have Qv(0, 1) = Qv. Note that Qv(b, c) admits an Iwahori decomposition
N
c

vM
b
vN

0
v

10 and therefore the formalism of [All+23], 2.1.9 applies.
Such parahoric subgroups will be our level subgroups for which we in-

troduce locally algebraic representations. These representations will then
yield local systems convenient for the development of Qp-ordinary Hida the-
ory. After taking Qp-ordinary parts, the cohomology of these local systems
will encode integral Qp-ordinary automorphic representations with prescribed
weights at ∞ and inertial types at p. When Qp is taken to be ∏

v GLn, this
will simply mean pinning down the weight of the automorphic and the inertial
type at p of the whole automorphic representation.

We first take care of the algebraic part. As usual, the character group
of (ResF+/QT )E = (ResF/QTn)E, for Tn ⊂ GLn the subgroup of diagonal
matrices, can be identified with (Zn)Hom(F,E). Denote by Zn

+ ⊂ Zn the subset
of tuples (k1, ..., kn) satisfying

k1 ≥ ... ≥ kn.

A character λ = (λι,i) ∈ (Zn)Hom(F,E) will then be (ResF+/QB)E = (ResF/QBn)E-
dominant if and only if, it lies in (Zn

+)Hom(F,E). In other words, for every
ι ∈ Hom(F,E), we have

λι,1 ≥ ... ≥ λι,n.

10Recall from 1.3 that for H being any of the groups Nv, Mv, or Nv, and n ∈ Z≤0, Hn

denotes the subgroup of matrices of H(OFv ) that reduce to the identity modulo ϖn
v .
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Given λ ∈ (Zn
+)Hom(F,E), highest weight theory provides an integral represen-

tation of ∏
ι:F ↪→E GLn(O). This will simply be the representation constructed

for instance in [Ger18], §2.2. More precisely, if Bn ⊂ GLn is the standard
Borel of upper triangular matrices, w0,n denotes the longest element of the
Weyl group of GLn and ι ∈ Hom(F,E), we consider the algebraic induction

ξλι := (IndGLn
Bn

w0,nλι)/O := {f ∈ O[GLn] | f(bg) = (w0,nλι)(b)f(g)

for every O → R, b ∈ Bn(R), g ∈ GLn(R)},

and set Vλι := ξλι(O), Vλι := Vλι ⊗O E. We then set Vλ := ⊗ι,OVλι and Vλ :=
Vλ⊗OE. Note that Vλ is the highest weight representation of (ResF+/QG)E =
(ResF/QGLn)E ∼=

∏
ι:F ↪→E GLn,E of highest weight λ, a finite dimensional E-

representation. Moreover, Vλ ⊂ Vλ is a G(O)-stable O-lattice. In particular,
for every m ∈ Z≥1, Vλ/ϖm is a smooth O/ϖm[∏v∈Sp

GLn(OFv)]-module11

under the product of diagonal embeddings GLn(OFv) ↪→ ∏
ι:Fv ↪→E GLn(O),

finite free over O/ϖm, and the formalism of §2.2 applies.
For a dominant weight λv ∈ (Zn

+)Hom(Fv ,E), set VwQv
0 λv

= ⊗ι:Fv ↪→EVwQv
0 λι

to be the representation of ∏
ι:Fv ↪→EMv(O) associated with wQv

0 λv by the
previous procedure where wQv

0 = wMv
0 wGLn

0 denotes the product of the longest
Weyl group element of Mv, and of GLn. Concretely, if we assume that Qv =
P(n1,..,nk), then wQv

0 λv = (λn1
v , ..., λ

nk
v ), where

λni
v = (λni

ι )ι:Fv ↪→E = (λι,n+1−(n1+...+ni), ..., λι,n+1−(n1+...+ni−1+1))ι ∈ (Zni
+ )Hom(Fv ,E), 12

and
VwQv

0 λv
= Vλn1

v
⊗ ...⊗ Vλnk

v
.

We then have the analogue of [CN23], Lemma 2.1.12 with identical proof.

Lemma 2.7.1. The natural ∏
ι:Fv ↪→E Qv(O)-equivariant map

Vλv → VwQv
0 λv

given by evaluation of functions at the identity is a surjection.

We now turn to the smooth part which will be given by inflating to para-
horic level the types of Schneider–Zink. Therefore, the smooth part will in
fact depend on the choice of Qv. For v ∈ Sp consider a standard parabolic
Qv and assume that it corresponds to a partition (n1, ..., nk) of n.

Definition 2.7.2. We call a tuple τv = (τv,i)i=1,...,k consisting of (E-valued)
ni-dimensional Weil–Deligne inertial types τv,i for Fv to be an inertial type of
type Qv.

11In particular, it becomes a smooth O/ϖm[QSp
]-module.

12Here we use the convention n0 = 0.
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Given an inertial type τv of type Qv, Schneider–Zink provides a smooth ir-
reducible E-representation σ(τv,i) of GLni

(OFv) for every i = 1, ..., k (cf. The-
orem 2.6.4). In particular, we obtain an irreducible smooth E-representation

σ(τv) := ⊗i=1,...,kσ(τv,i)

of M0
v = Mv(OFv). We fix a choice of M0

v -stable O-lattice σ(τv)◦ ⊂ σ(τv).
We set cv ≥ 0 to be the smallest integer such that M cv

v = ker(M0
v →∏

v∈Sp
Mv(OFv/ϖ

cv)) acts trivially on σ(τv)◦. Then Qv(0, cv) acts on σ(τv)◦

by sending à
A1 . . . ∗
. A2 .
. . .
. . .
∗ . . . Ak

í
∈ Qv(0, cv)

to σ(τv)◦(A1, ..., Ak). Since the corresponding map

Qv(0, cv)→M0
v /M

cv
v = Mv(OFv/ϖ

cv
v )

is easily checked to be a group homomorphism, this indeed defines a group
action. We then denote by flσ(τv)

◦
the representation σ(τv)◦ viewed as an

O[Qv(0, cv)]-module.
We then set our locally algebraic representation associated with the data

(QSp , λ, τ) := (Qv, λv, τv)v∈Sp to be

VQp

(λ,τ) := Vλ ⊗O (
⊗

v∈Sp,O

flσ(τv)
◦
)∨.

This gives rise to a O/ϖm[Qp(0, cp)]-module for cp := max{cv}v∈Sp . By abuse
of notation, we will use the same notation for the induced local systems on
XK , XK and ∂XK , respectively, for K ⊂ G(A∞

F+) any good subgroup with
Kp ⊂ Qp(0, cp).

Note that when, at each place v ∈ Sp, Qv = GLn, these local systems
simplify. In this case we will abbreviate the notation to V(λ,τ) = Vλ⊗Oσ(τ)◦,∨.
We denote the corresponding locally algebraic type by σ(λ, τ)◦ := (V(λ,τ))∨.
By Lemma 2.3.1, the corresponding mod ϖm cohomology groups are obtained
by taking invariants of completed cohomology

RΓ(c)(XK ,V(λ,τ)/ϖ
m) ∼= RHomO/ϖm[Kp](σ(λ, τ)◦/ϖm, π(c)(Kp,O/ϖm)) ∼=

RHomO/ϖm[Gp](c-IndGp

Kp
σ(λ, τ)◦/ϖm, π(c)(Kp,O/ϖm)).

As a consequence, we get a natural right action of the Hecke algebraH(σ(λ, τ)◦) =
EndGp(c-IndGp

Kp
σ(λ, τ)◦) on RΓ(c)(XK ,V(λ,τ)/ϖ

m). In particular, as we will
explain in 5.3, we obtain a natural action of an "integral Bernstein centre"
z◦
λ,τ := H(σ(λ, τ)◦)∩zΩ. In fact, we will see that we have a similar description
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for general Q after taking Q-ordinary parts due to independence of level and
weight, yielding natural Hecke actions at p.

We now turn to treating the case of G̃. From now on we introduce the
following running assumption on F .

Assumption 2.7.3. Assume that our imaginary CM field F/F+ is so that
every v ∈ Sp = Sp(F+) splits in F .

Therefore we can write v̄ = v · vc in F for each v̄ ∈ Sp. In particular, we
fix a choice of a preferred place v | v in F . This fixes a lift ι : F ↪→ E for
every embedding ι : F+ ↪→ E. Therefore, it induces an identification

(ResF+/QG̃)E =
∏

Hom(F+,E)
GL2n,E

and an identification of the character group of (ResF+/QT )E with (Z2n)Hom(F+,E).
This identifies a weight λ = (λι,i) ∈ (Zn)Hom(F,E) with λ̃ = (λ̃ι,i) where

λ̃ι = (−wGLn
0 λιc, λι) = (−λιc,n, ...,−λιc,1, λι,1, ..., λι,n).

Note that the (ResF+/Q‹B)E-dominant weights are precisely given by (Z2n
+ )Hom(F+,E).

For such weights we can therefore define Vλ̃ ⊂ Vλ̃. For every m ∈ Z≥1, we
then obtain a smooth O/ϖm[∏v̄∈Sp

G̃(OF+
v̄

)]-module Vλ̃/ϖm, finite free as
an O/ϖm-module. These cover the algebraic parts of our locally algebraic
representations.

For G̃ we will only take ordinary parts at a certain subset S ⊂ Sp
where we wish to prove local-global compatibility using the degree shift-
ing argument and will vary the level at the rest of the places. Therefore,
we fix such a set S ⊂ Sp of p-adic places and will introduce locally alge-
braic representations that are only non-algebraic at S. Namely, if for v̄ ∈ S
given a tuple (Qv′ , λv′ , τv′)v′|v̄ as before such that the weight λ̃v̄ associated
with (λv, λvc) is dominant (i.e. lies in (Z2n

+ )Hom(F+,E)), we introduce a tuple
(Q̃v̄, λ̃v̄, τv̄ = (τv, τvc)) where Q̃v̄ = M̃v̄ ⋉ ‹Nv̄ ⊂ G̃F+

v̄
is the standard parabolic

subgroup with Q̃v̄∩GF+
v̄

= Qv×Qvc ⊂ GLn,Fv×GLn,Fvc . As before, we denote
by

v̄‹Q the corresponding parahoric subgroup scheme of G̃F+
v̄

∼=ιv GL2n,Fv . We

set ‹Qv̄ =
v̄‹Q(OF+

v̄
) with Iwahori decomposition ‹N1

v̄M̃
0
v̄
‹N0
v̄ . We define the

identification

ιw0
v : GLn(Fv)×GLn(Fvc) ∼−→ GLn(Fv)×GLn(Fv),

(A,B) 7→ (A, θnB).

We then set Q̃w0
v̄ = M̃w0

v̄ ⋉ ‹Nw0
v̄ ⊂ G̃F+

v̄
to be the standard parabolic subgroup
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associated with the Levi ιw0
v M̃v̄ ⊂ GL2n,Fv under the identification ιv. Set

σ̃(τv̄)◦ := σ(τv)◦ ⊗O (θ−1
n )∗σ(τvc)◦ ∈ Modsm(O[M̃w0,0

v̄ ]).13

Note that here θn : GLn(Fvc) ∼= GLn(Fv), as previously defined, is given by
the map B 7→ (Ψn

tB−1Ψn)c and we are applying the pullback along θ−1
n . For

v̄ ∈ S, define
V
‹Qw0

v̄

(λ̃v̄ ,τv̄) := Vλ̃v̄
⊗O σ̃fi(τv)◦

∨

where λ̃v̄ have the obvious meaning of considering the weights corresponding
to all the embeddings inducing the given place.

Finally, given a tuple (Q̃S, λ̃S, τS) = (Q̃v̄, λ̃v̄, τ v̄)v̄∈S coming from a tuple
(Qp, λ, τ) as above, and a dominant weight λ̃ ∈ (Z2n

+ )Hom(F+,E) for G̃ extending
λ̃S, we set

V
‹Qw0

S

(λ̃,τ) := (
⊗
v̄ /∈S,O

Vλ̃v̄
)⊗O (

⊗
v̄∈S,O

V
‹Qw0

v̄

(λ̃v̄ ,τv̄)),

a locally algebraic O-representation of
Ä∏

v̄∈Sp\S G̃(OF+
v̄

)
ä
× ‹Qw0

S
(0, cp) for an

appropriate integer cp ≥ 1 as before. In particular, V
‹Qw0

S

(λ̃,τ)/ϖ
m becomes a

smooth
Ä∏

v̄∈Sp\S G̃(OF+
v̄

)
ä
× ‹Qw0

S
(0, cp)-module. When, for every v̄ ∈ S, the

parabolic at v̄ is the Siegel one, we will abbreviate the notation to VS(λ̃,τ).
Again, by abuse of notation we will denote identically the local systems they
induce on locally symmetric spaces.

Example 2.7.4. For the convenience of the reader, we spell out an example
of Q̃v̄, Q̃w0

v̄ , and σ̃(τv̄)◦.
Let n = 3, fix v̄ ∈ S and write v̄ = v · vc. We set Qv = GL3 and

Qvc = P(1,2) ⊂ GL3,Fvc , the standard parabolic subgroup with standard Levi
subgroup M(1,2) = GL1 × GL2 ⊂ GL3,Fvc . Then Q̃v̄ ⊂ G̃F+

v̄
is the standard

parabolic subgroup with standard Levi subgroup

M̃v̄ = GL3 ×M(1,2) ⊂ GL3,Fv ×GL3,Fvc .

In particular, ιvQ̃v̄ = P(2,1,3) ⊂ GL6,Fv . Moreover, ιw0
v M̃v̄ = M(3,2,1) ⊂

GL6,Fv . Comsequently, Q̃w0
v̄ ⊂ G̃F+

v̄
is the standard parabolic subgroup satis-

fying ιvQ̃w0
v̄ = P(3,2,1) ⊂ GL6,Fv . Therefore, its standard Levi subgroup is

M̃w0
v̄ = M(2,1) ×GL3 ⊂ GL3,Fv ×GL3,Fvc .

Further consider Weil–Deligne inertial types τ v = (τv), and τvc = (τvc,1, τvc,2)
and (a choice of) associated smooth O-representations σ(τv)◦ = σ(τv)◦, and

13We note that σ̃(τv̄)◦ is a representation of ιvM̃w0,0
v̄

∼= ιw0
v M̃0

v̄ ⊂ GL2n(OFv
) and we

view it as a representation of M̃w0,0
v̄ via ιv.
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σ(τvc)◦ = σ(τvc,1)◦ ⊗ σ(τvc,2)◦ of GL3(OFv), and M(1,2)(OFvc ) = GL1(OFvc )×
GL2(OFvc ), respectively. Then σ̃(τv̄)◦, as a representation of ιvM̃w0,0

v̄ =
GL3(OFv)×GL2(OFv)×GL1(OFv), is given by

σ(τv)◦ ⊗
(
(θ−1

2 )∗σ(τvc,2)◦ ⊗ (θ−1
1 )∗σ(τvc,1)◦) .

In particular, as a representation of M̃w0,0
v̄ = GL2(OFv)×GL1(OFv)×GL3(OFvc )

via the identification ιv, it is given by(
(θ−1

2 )∗σ(τvc,2)◦ ⊗ (θ−1
1 )∗σ(τvc,1)◦)⊗ (θ3)∗σ(τv,3)◦.

We also introduce a local system on ‹X‹K suitable for a dual version of
the degree shifting argument in §6.1. For this we assume now that, for each
v̄ ∈ S, λ̃v̄ := (λv,−wGLn

0 λvc) is dominant for G̃.14 Then, for v̄ ∈ S, we set

σ̃(τv̄)◦,w0 := (θ−1
n )∗σ(τvc)◦ ⊗O σ(τv)◦ ∈ Modsm(O[M̃0

v̄ ]), 15

and
V
‹Qv̄ ,wP

0
(λ̃v̄ ,τv̄) := VwP

0 λ̃v̄
⊗O (σ̃(τv̄)◦,w0)∼,∨ ∈ Mod(O[‹Q(0, cp)]).

For any dominant weight λ̃ ∈ (Z2n
+ )Hom(F+,E) extending λ̃S, we can then set

V
‹Q

S
,wP

0
(λ̃,τ) := (

⊗
v̄ /∈S,O

Vλ̃v̄
)⊗O (

⊗
v̄∈S,O

V
‹Qv̄ ,wP

0
(λ̃v̄ ,τv̄ ,)

)

an O-representation of
Ä∏

v̄∈Sp\S G̃(OF+
v̄

)
ä
× ‹QS(0, cp). We denote identically

the corresponding local systems induced on locally symmetric spaces for G̃.

2.8 Explicit Hecke operators
Next we spell out the explicit formula for the usual unramified Hecke op-

erators and Up-operators as for instance in [NT16], [All+23] and [CN23]. Fix
for any v finite place of F a uniformiser ϖv ∈ OFv . We start by introducing
the usual explicit Hecke operators at unramified places. Let v be a finite place
of F , and 1 ≤ i ≤ n an integer. Write Tv,i ∈ H(GLn(Fv),GLn(OFv)) for the
double coset operator

Tv,i = [GLn(OFv)diag(ϖv, ..., ϖv, 1, ..., 1)GLn(OFv)]
14Note that this identification (Zn)Hom(F,E) ∼= (Z2n)Hom(F +,E) is not the one used in the

previous paragraph.
15Again, the representation present is a representation of ιvM̃0

v̄ and we view it as a
representation of M̃0

v̄ via ιv. Note that in particular, it is simply the representation
σ(τv)◦ ⊗O σ(τvc)◦ of M̃0

v̄ .
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where ϖv appears exactly i times in the diagonal. We define the polynomial

Pv(X) = Xn − Tv,1Xn−1 + ...+ (−1)iqi(i−1)/2
v Tv,iX

n−i + ...

+qn(n−1)/2
v Tv,n ∈ H(GLn(Fv),GLn(OFv))[X]

where recall that qv = |OFv/ϖv|. Note that Pv(X) corresponds to the char-
acteristic polynomial of the Frobenius element acting on recTFv

(πv) for πv any
unramified representation of GLn(Fv).

If v̄ is a finite place of F+, unramified in F , v is a choice of place of
F above it, and 1 ≤ j ≤ 2n is an integer, then we denote by T̃v,j ∈
H(G̃(F+

v̄ ), G̃(OF+
v̄

))⊗ZZ[q−1
v̄ ] the Hecke operator denoted by TG,v,j in [NT16],

Proposition-Definition 5.2. In particular, q−j(2n−j)/2
v T̃v,j is the operator cor-

responding to the ith symmetric polynomial in 2n variables under the dual
map on Hecke algebras corresponding to the unramified endoscopic trans-
fer from G̃(F+

v̄ ) to GL2n(Fv) (where we also apply the (normalised) Satake
isomorphism). We then define the polynomial

P̃v(X) = X2n − T̃v,1X2n−1 + ...+ (−1)jqj(j−1)/2
v T̃v,jX

2n−j + ...

+q2n(2n−1)/2
v T̃v,2n ∈ H(G̃(F+

v̄ ), G̃(OF+
v̄

))⊗Z Z[q−1
v̄ ][X].

This then corresponds to the characteristic polynomial of the Frobenius ele-
ment acting on recTFv

(πv), where πv is the base change with respect to Fv/F+
v̄

of any unramified representation σv̄ of G̃(F+
v̄ ).

We finally describe the effect of the unnormalised Satake transform S =
rG ◦ rP (for the notation, see the end of section 2.2) at unramified places. We
use the following notation: for f(X) a polynomial of degree d, with constant
term a unit a0, set f∨(X) := a−1

0 Xdf(X−1). Therefore, f∨(X) is the monic
polynomial with zeroes given by the inverse of the zeroes of f(X). We then
have the following.

Proposition 2.8.1. Let v be a finite place of F , unramified above the place
v̄ of F+. Then the unnormalised Satake transform

S : H(G̃(F+
v̄ ), G̃(OF+

v̄
))→ H(G(F+

v̄ ), G(OF+
v̄

))

sends P̃v(X) to Pv(X)qn(2n−1)
v P∨

vc(q1−2n
v X).

Proof. This follows from the explicit formula for S given in [NT16], Proposition-
Definition 5.3.

We now turn to discussing the Up-operators we will consider. As before, we
assume that every p-adic place v̄ ∈ Sp splits in F and we fix a choice of v|v̄ in
Sp. We start with the case ofG. Consider a tuple (QSp , λ, τ) = (Qv, λv, τv)v∈Sp

with Levi decomposition Qv = Mv ⋉ Nv. Set XQv to be the set of Bn-
dominant cocharacters in X∗(Z(Mv)). Concretely, if Qv = P(n1,...,nk) ⊂ GLn,
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then it identifies in X∗(Tn)+ = Zn
+ with the elements with jumps only at the

indices n1 + ... + nj for 1 ≤ j ≤ k. For c ≥ 1, we then define the subset
∆Qv(c) ⊂ GLn(Fv) given by

∆Qv(c) :=
∐

ν∈XQv

Qv(0, c)ν(ϖv)Qv(0, c).

By [CN23], Lemma 2.1.15, the elements ν(ϖv) are Qv(0, c)-positive in the
sense of loc. cit.. In particular, ∆Qv(c) forms a monoid and ∆+

Mv
:= ∆Qv(c)∩

Mv(Fv) ⊂ Mv(Fv)+ = {m ∈ Mv(Fv) | mN0
vm

−1 ⊂ N0
v and m−1N

1
vm ⊂ N

1}
so the formalism of [All+23], 2.1.9 applies. Set ∆Mv to be the group generated
by ∆+

Mv
. One proves that the map

H(∆+
Mv
,M0

v )→ H(∆Qv(c),Qv(0, c)),

[M0
v ν(ϖv)M0

v ] 7→ [Qv(0, c)ν(ϖv)Qv(0, c)]

is an isomorphism of Hecke algebras (cf. [BK98], Corollary 6.12). In partic-
ular, the latter is commutative.

We introduce our distinguished element, the "Up-operator at v" in our
Hecke algebras. Namely, if Qv = P(n1,...,nk), set

uQv
v := diag(ϖk−1, ..., ϖk−1, ϖk−2, ..., ϖ, 1, ..., 1) ∈ ∆Qv

where, for 1 ≤ j ≤ k, ϖj−1 appears exactly nj times. Then, for c ≥ 1, we de-
note by UQv

v ∈ H(∆Qv(c),Qv(0, c)) the double coset operator [Qv(0, c)uQv Qv(0, c)].
Note that ∆Mv = ∆+

Mv
[uQv ,±1
v ].

We introduce the usual λ-twisted action of ∆Qv(cp)16 on VQv

(λv ,τv) which will
then yield our action of Up-operators on the corresponding cohomology groups
by the formalism of [All+23], 2.1.9. Define the character αQv

λ : ∆Qv → E×

by setting it to be trivial on Qv and, for ν ∈ XQv , sending ν(ϖv) to
∏

ι:Fv ↪→E

ι(ϖv)⟨ν,wG
0 λι⟩.

We then view VQv

(λv ,τv) as an O[∆Qv(cp)]-module by inflating the Qv(0, cp)-

action on the factor (flσ(τv)
◦
)∨ and acting on the factor Vλv by the recipe

g ·λ,Qv x := αQv

λ (g)−1g · x

where − · − is the usual action of g ∈ ∆Qv(cp) on x ∈ Vλv .

Lemma 2.8.2. The O[∆Qv(cp)]-module structure on VQv

(λv ,τv) makes sense i.e.,
the twisted action of ∆Qv(cp) on Vλv preserves the lattice Vλv .

16For the integer cp ≥ 1 introduced in the previous section.
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Proof. This follows from the fact that Vλv has lowest weight wG0 λv. More
precisely, one uses [Ger18], Lemma 2.2 to conclude.

As mentioned, the formalism of [All+23], 2.1.9 applies here. In particular,
for Sp ⊂ T any finite set of finite places, and a choice of good subgroup
K ⊂ GLn(A∞

F ) with Kv = Qv(b, c) for some 0 ≤ b ≤ c with cp ≤ c, for every
v ∈ Sp, we have a canonical homomorphism

H(GT , KT )⊗Z H(∆Qp(cp), Kp)→ EndD+(O)(RΓ(XK ,VQp

(λ,τ))).

In particular, the above constructed Up-operators act on the cohomology com-
plex RΓ(XK ,VQp

(λ,τ)).
For later use, set TT (K,λ, τ) to be the image of H(GT , KT )⊗Z O inside

the ring EndD+(O)(RΓ(XK ,VQp

(λ,τ))), a finite O-algebra.
Next we consider the case of G̃. Fix a subset of p-adic places S ⊂ Sp and,

for each v̄ ∈ Sp, fix a choice v | v̄ in Sp. Consider a tuple (Q̃S, λ̃S, τS) :=
(Q̃v̄, λ̃v̄, τv̄)v̄∈S as before. We can then similarly define the set of ‹B-dominant
cocharacters X‹Qw0

v̄
⊂ X∗(Z(M̃w0

v̄ )) and the corresponding open submonoids‹∆‹Qw0
v̄

(c) ⊂ G̃(F+
v̄ ). The rest of the conclusions of [CN23], Lemma 2.1.15 will

again apply. We further set ‹∆‹Qw0
S

(cp) := ∏
v̄∈S
‹∆‹Qw0

v̄
(cp). Again, we introduce

a notation for our Up-operator in H(‹∆‹Qw0
v̄

(cp), ‹Qw0
v̄ (0, cp)). For v|v̄, we set

u
‹Qw0

v
v̄ := ι−1

v u
ιv‹Qw0

v̄
v where ιv̄Q̃w0

v ⊂ GL2n/Fv is the standard parabolic subgroup
corresponding to Q̃w0

v̄ under ιv. Then set U
‹Qw0

v̄
v̄ ∈ H(‹∆‹Qw0

v̄
(cp), ‹Qw0

v̄ (0, cp)) to

be the double coset operator [‹Qw0
v̄ (0, c)u

‹Qw0
v̄

v ‹Qw0
v̄ (0, cp)]. We note that as the

notation suggests, U
‹Qw0

v̄
v̄ is independent of the choice of v|v̄.

Moreover, by the exact same recipe as before, we equip V
‹Q

S

(λ̃,τ) with an‹∆‹Qw0
S

(cp)-module structure extending the natural action of ‹Qw0
S

(0, cp). This
yields a canonical homomorphism of algebras

H(G̃T , ‹KT )⊗Z H(‹∆‹Qw0
S

(cp), ‹KS)→ EndD+(O)(RΓ(‹X‹K ,V ‹Qw0
S

(λ̃,τ)))

for any finite set of finite places Sp ⊂ T with T = T c and good subgroup‹K ⊂ G̃(A∞
F+) with ‹Kv̄ = ‹Qw0

v̄ (b, c′) for some 0 ≤ b ≤ c′ with cp ≤ c′ for
every v̄ ∈ S. Therefore, the constructed Up-operators act on the complex

RΓ(‹X‹K ,V ‹Qw0
S

(λ̃,τ)).
We finally set TT (‹K, λ̃, τ) to be the corresponding faithful quotient of

H(G̃T , ‹KT )⊗Z O.
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2.9 Automorphic Galois representations
In this section, we recall the well-known results which we will need later

about Galois representations attached to (mod p) automorphic forms. We
also state the consequence of the vanishing results of Caraiani–Scholze that
serves as the key ingredient for proving local-global compatibility in the style
of [All+23].

Recall that π is called a regular algebraic conjugate self-dual cuspidal au-
tomorphic representation (RACSDCAR) of GLn(AF ) if it is a regular alge-
braic cuspidal automorphic representation (RACAR) of GLn(AF ) satisfying
πc ∼= π∨ where (.)∨ denotes the contragradient of the representation.

By work of many people, such automorphic representations admit asso-
ciated Galois representations satisfying local-global compatibility at every
place.

Theorem 2.9.1. [HT01; TY07; Shi11; CH13; Clo13; Bar+12; Bar+11;
Car12; Car14] Let π be a RACSDCAR of GLn(AF ) of weight λ ∈ (Zn

+)Hom(F,C).
Then for any isomorphism t : Qp

∼−→ C there is a continuous semisimple Ga-
lois representation

rt(π) : GF → GLn(Qp)

satisfying the following conditions:

i. We have an isomorphism rt(π)c ∼= rt(π)∨(1− n).

ii. For each p-adic place v of F , rt(π)|GFv
is potentially semistable and for

each embedding ι : Fv ↪→ Qp we have

HTι(rt(π)|GFv
) = {λt◦ι,n, λt◦ι,n−1 + 1, ..., λt◦ι,1 + n− 1}.

iii. For each finite place v of F , we have

WD(rt(π)|GFv
)F−ss ∼= recT (t−1πv).

Once combined with Shin’s base change result [Shi14] for automorphic
representations of G̃, we obtain the following.

Theorem 2.9.2. Suppose that F contains an imaginary quadratic field. Let
π̃ be a ξ-cohomological cuspidal automorphic representation of G̃(AF+) for
some irreducible algebraic representation ξ of G̃C ∼=

∏
Hom(F+,C) GL2n,C. For

any field isomorphism t : Qp
∼−→ C, there exists a continuous, semisimple

Galois representation
rt(π̃) : GF → GL2n(Qp)

satisfying the following conditions:
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i. For each prime ℓ ̸= p, unramified in F , above which π̃ is unramified,
and for each place v of F dividing ℓ, rt(π̃)|GFv

is unramified and the
characteristic polynomial of rt(Frobv) coincides with image of P̃v(X) in
Qp[X] corresponding to the base change of t−1(π̃v̄).

ii. For each place v of F dividing p, rt(π̃) is potentially semistable, and
for each embedding ι : F ↪→ Qp, the ι-labelled Hodge–Tate weights are
given by

λ̃ι,1 + 2n− 1 > λ̃ι,2 + 2n− 2 > ... > λ̃ι,2n,

where λ̃ ∈ (Z2n
+ )Hom(F,Qp) is the highest weight of the representation

t−1(ξ ⊗ ξ)∨ of GL2n over Qp.

iii. If F0 ⊂ F is an imaginary quadratic field and ℓ is a prime (possibly
ℓ = p) that splits in F0, then for each place v | ℓ of F lying above a
place v̄ of F+, there is an isomorphism

WD(rt(π̃)|GFv
)F−ss ∼= recT (π̃v̄ ◦ ιv).

Proof. For the proof see [All+23], Theorem 2.3.3 and the references therein.

Theorem 2.9.3. Assume that F contains an imaginary quadratic field. Let
m ⊂ TT (K,λ, τ) be a maximal ideal. Suppose that the finite set of places T
is so that T = T c and further satisfies the following condition.

• Given a finite place v not lying in T , denote its residual characteristic
by ℓ. Then either ℓ is unramified in F and T contains no ℓ-adic places,
or ℓ splits in some imaginary quadratic subfield F0 ⊂ F .

Then there exists a continuous semisimple Galois representation

ρ̄m : GF,T → GLn(TT (K,λ, τ)/m)

such that for each finite place v of F not lying in T , the characteristic polyno-
mial of ρ̄m(Frobv) coincides with the image of Pv(X) in (TT (K,λ, τ)/m)[X].

Proof. This is proved the same way as [All+23], Theorem 2.3.5.

Definition 2.9.4. We say that a maximal ideal m ⊂ TT (K,λ, τ) is non-
Eisenstein if ρ̄m is absolutely irreducible.

Theorem 2.9.5. Assume that F and T satisfies the conditions of Theo-
rem 2.9.3. Let m ⊂ TT (K,λ, τ) be a non-Eisenstein maximal ideal. There
exists an integer N ≥ 1, depending only on n and [F : Q], an ideal I ⊂
TT (K,λ, τ) satisfying IN = 0, and a continuous group homomorphism

ρm : GF,T → GLn(TT (K,λ, τ)/I)

such that, for each finite place v of F not lying in T , the characteristic polyno-
mial of ρm(Frobv) coincides with the image of Pv(X) in (TT (K,λ, τ)/I)[X].
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Proof. This is proved the same way as [Sch15], Corollary 5.4.4.

Theorem 2.9.6. Assume that F and T satisfies the conditions of Theo-
rem 2.9.3. Let m̃ ⊂ ‹TT (‹K, λ̃, τ) be a maximal ideal. Then there is a contin-
uous, semisimple Galois representation

ρ̄m̃ : GF,T → GL2n(‹TT (‹K, λ̃, τ)/m̃)

such that for each finite place v /∈ T of F , the characteristic polynomial of
ρ̄m̃(Frobv) is given by the image of P̃v(X) in (‹TT (‹K, λ̃, τ)/m̃)[X].

Proof. The same proof applies as in [CN23], Theorem 2.1.26 noting that the
first step is to pass to deep enough level where V

‹Qw0
S

(λ̃,τ)/ϖ is trivialised.

Finally, we discuss the key technical condition we need to have access to
the vanishing result of Caraiani–Scholze.

Definition 2.9.7. A continuous representation ρ̄ : GF → GLm(O/ϖ) is
called decomposed generic if there exists a prime ℓ different from p such that:

i. ℓ splits completely in F ;

ii. for every place v of F dividing ℓ, ρ̄|GFv
is unramified and the eigenvalues

α1, ..., αm of ρ̄(Frobv) satisfy αi/αj ̸= ℓ for i ̸= j.

Remark 2.9.8. As explained in [All+23], Lemma 4.3.2, once we know that
ρ̄ is decomposed generic, an argument using Chebotarev’s density theorem
shows that there are infinitely many choices of ℓ as in Definition 2.9.7.

Theorem 2.9.9. [CS19; Kos21] Let m̃ ⊂ ‹TT (‹K, λ̃, τ) be a maximal ideal such
that the associated Galois representation ρ̄m̃ is decomposed generic. If we set
d = dimC‹X‹K, we have a ‹TT -equivariant diagram

Hd(‹X‹K ,V ‹Qw0
S

(λ̃,τ)[1/p])m̃ ←↩ H
d(‹X‹K ,V ‹Qw0

S

(λ̃,τ))m̃ ↠ Hd(∂‹X‹K ,V ‹Qw0
S

(λ̃,τ))m̃.

Proof. This follows from the main result of [CS19] as explained in [All+23],
Theorem 4.3.3 except the extra conditions appearing in [CS19] that [F+ :
Q] ≥ 2 and that the length of ρ̄m̃ is at most 2. These conditions were removed
in [Kos21].
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Chapter 3

Q-ordinary Hida theory

In the first part of the chapter, based on [All+23], §5.2 and [CN23], §2.2,
we spell out Q-ordinary Hida theory for the Betti cohomology of the locally
symmetric spaceX‹K andXK , where Q will be an arbitrary standard parabolic
subgroup. Finally, we close the chapter with a computation of Q-ordinary
parts of certain Bruhat strata of parabolic induction. This is completely
analogous to [All+23], §5.3 and [CN23], §2.3. More precisely, the contents of
§3.1, §3.2, and §3.4 are carried out for the Borel subgroup in [All+23], §5.2,
and for the Siegel parabolic subgroup in [CN23], §2.2. Moreover, the content
of §3.5 has been worked out for the Borel subgroup in [All+23], §5.3, and
for the Siegel parabolic subgroup in [CN23], §2.3. Finally, Hida theory with
dual coefficients for the opposite parabolic is considered in [CN23] that we
generalise in §3.3. A seemingly new result in §3.3 is a Q-ordinary and Hecke
equivariant Verdier duality with O/ϖm-coefficients (see Proposition 3.3.5).

3.1 Ordinary parts of smooth representations
In this text we use several incarnations of ordinary parts. To track the

representation theory throughout our arguments, it is often crucial to take the
point of view of Emerton [Eme10a], [Eme10b] on taking ordinary parts. We
recollect here his approach. In fact, following [All+23], we consider a modified
version that is more convenient to do homological algebra with and coincides
with the original definition on admissible representations which exhaust all
the objects which we will consider here.

The setup for the section is as follows. We let L/Qp be a finite field
extension, G/L a connected reductive group. Set Q ⊂ G to be a parabolic
subgroup with a Levi decomposition Q = M ⋉N and denote by Q = M ⋉N
the opposite parabolic subgroup. Denote by ZM ⊂ M the centre of the Levi
factor. Assume that Q ⊂ G(L) is a compact open subgroup which admits an
Iwahori decomposition

N
1 ×M0 ×N0 ∼−→ Q ∼←− N0 ×M0 ×N1

83
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with respect to Q in the sense of [All+23], §2.1.9. Let

... ⊂ Q(b, b) ⊂ ... ⊂ Q(1, 1) ⊂ Q(0, 1) = Q ⊂ G(L)

be a cofinal family of compact open subgroups of G(L) such that each Q(b, b)
is normal in Q and Q(b, b) admits an Iwahori decomposition

N
b
M bN0 ∼−→ Q(b, b)

with respect to Q. Then, by setting Q(b, c) = N
c
M bN0 for 1 ≤ b ≤ c, one

checks that we get a compact open subgroup of Q (admitting an Iwahori
decomposition).

Example 3.1.1. For G = GLn,L, and Q = M ⋉N ⊂ G a parabolic subgroup
standard with respect to the Borel subgroup of upper triangular matrices, we
can consider the corresponding parahoric group scheme Qsch ⊂ GLn. Then
Q := Qsch(OL) admits an Iwahori decomposition N

1
M0N0, where M0 =

M(OL), N0 = N(OL), and N
1 is ker(N(OL) → N(OL/ϖL). If Q is the

parabolic subgroup corresponding to the partition (n1, ..., nt) of n, Q will
be the subgroup of matrices in G(OL) that are upper block triangular of
type (n1, ..., nt) modulo ϖL. For integers 0 ≤ b ≤ c with c ≥ 1, we can
then set Q(b, c) to be the subgroup of matrices in G(OL) that are block
upper triangular of type (n1, ..., nt) modulo ϖc

L, and block unipotent of type
(n1, ..., nt) modulo ϖb

L.
However, we consider this more general setup since it allows us to for

instance set M1 to be ker(M(OL) → M(OL/ϖd
L) for some arbitrary integer

d ≥ 0. Moreover, we have the freedom to choose N0 to be other compact open
subgroups in N(OL) that are preserved under conjugation by M0. All of this
allows the formalism to be more flexible and saves some space in introducing
notations and applying it in later chapters.

Remark 3.1.2. Note that an easy argument using the Iwahori decomposition
shows that M0 normalises N0 = N(L)∩Q and each N c = N(L)∩Q(0, c) for
c ≥ 1.

We set

M+ := {m ∈M(L) | mN0m−1 ⊂ N0 and m−1N
1
m ⊂ N

1}1

and define Z+
M := ZM(L) ∩M+. By Remark 3.1.2, we see that in fact both

M+ ⊂M(L) and Z+
M ⊂ ZM(L) are open submonoids. We make the following

assumption that will be satisfied in our context.
1We note that this is not the definition that appears in [Eme10a], [Eme10b] as there

the second condition on the elements m ∈M+ is not present. However, this is needed for
us in order to compare the two natural Hecke actions of our monoids on finite level (see
Propostion 3.3.5). We also note that this extra condition is already present for instance in
§2.1.9 of [All+23].
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Hypothesis 3.1.3. For any m ∈M+, and c ≥ 1, we have m−1N
c
m ⊂ N

c.

Denote by M+×Z+
M
ZM(L) the quotient of the monoid M+×ZM(L) by the

equivalence relation generated by (mz+, z) ∼ (m, z+z) for m ∈M+, z+ ∈ Z+
M

and z ∈ ZM(L).

Lemma 3.1.4. The morphism of monoids M+ × ZM(L) → M(L) given by
multiplication factors through M+ ×Z+

M
ZM(L) and descends to an isomor-

phism.

Proof. This is essentially Proposition 3.3.6 of [Eme06a]. Since our definition
of M+ is slightly different, we provide a sketch of proof here.

We start by picking zp ∈ Z+
M such that {zkpN0z−k

p }k≥0 forms a basis of
neighborhoods of 0. Such a zp ∈ Z+

M exists by (the discussion above [Eme10b],
Lemma 3.1.3, and) [Eme10b] Lemma 3.1.3 (2),(3) and Lemma 3.1.4, (3). Note
that z−1

p and Z+
M generate ZM(L) as a monoid. Indeed, given z ∈ ZM(L),

then for k ≥ 0 large enough, zkpz will satisfy the assumption of loc. cit.
Lemma 3.1.3, (3) and Lemma 3.1.4, (3), and, in particular, will lie in Z+

M .
We further see that M+ and z−1

p generate M(L) as a monoid. To see this,
pick m ∈M(L) and assume that we have

mN0m−1 ⊂ z−k
p N0zkp and m−1N

1
m ⊂ zkpN

1
z−k
p

for a large enough integer k ≥ 0. Such k always exists by loc. cit. Lemma
3.1.3, (2) and Lemma 3.1.4, (2). Then zkpm = mzkp clearly lies in M+.

One can now conclude just as in the proof of [Eme06a], Proposition 3.3.6.

From now on, we fix a zp ∈ Z+
M as in the proof of Lemma 3.1.4. We set

∆+
M ⊂ M+ to be any open submonoid containing M0 and zp. Moreover, for

c ≥ 1, we set Q+(0, c) = N
c
M+N0 and ∆Q(c) = N

c∆+
MN

0. Then [All+23],
Lemma 2.1.10 says that Q+(0, c) is also a monoid, open in G(L). Moreover,
QQ+(0, c)Q = Q+(0, c), and Q+ ∩M(L) = M+. The same conclusion holds
for ∆Q(c) too, since the assumption M0 ⊂ ∆+

M ensures that the proof of loc.
cit. Lemma 2.1.10 applies. Moreover, set Q+ = Q+(0, c)∩Q(L) = M+ ⋉N0

and ∆Q = ∆Q(c) ∩ Q(L) = ∆+
M ⋉ N0. We finally set ∆M to be the monoid

generated by ∆+
M and z−1

p .
Given π ∈ Modsm(O/ϖm[∆Q]), we can consider the Hecke action of ∆+

M on
the space of N0-invariants Γ(N0, π). Namely, for m ∈ ∆+

M and v ∈ Γ(N0, π),
the action is given by

m · v :=
∑

n∈N0/mN0m−1

nmv.

We then obtain a left exact functor

Γ(N0,−) : Modsm(O/ϖm[∆Q])→ Modsm(O/ϖm[∆+
M ])
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and, in particular, a derived functor2

RΓ(N0,−) : D+
sm(O/ϖm[∆Q])→ D+

sm(O/ϖm[∆+
M ]).

We also have the exact localisation functor

(−)Q-ord : Modsm(O/ϖm[∆+
M ])→ Modsm(O/ϖm[∆M ])

induced by the inclusion ∆+
M ⊂ ∆M . We then obtain the functor of "taking

Q-ordinary parts at infinite level"

D+
sm(O/ϖm[∆Q])→ D+

sm(O/ϖm[∆M ]),

π 7→ RΓ(N0, π)Q-ord.

We now consider several versions of taking Q-ordinary parts at finite level
and will compare them. To work in the generality we need, we will take invari-
ants with respect to general "types" and not only the trivial representation. In
particular, set σ to be a smooth O/ϖm[M0]-modules, finite free over O/ϖm.
We will often abuse the notation and confuse σ with InfM0⋉N0

M0 σ. We define
the Hecke algebras H(σ)∆+

M ⊂ H(σ)+ ⊂ H(σ) as the subalgebra generated by
functions supported on ∆+

M , respectively on M+. Finally, note that [zp, id]
lies H(σ)∆+

M and is a central element. Combined with Lemma 3.1.4, it easily
implies that H(σ)+[[zp, id]−1] = H(σ). We set H(σ)∆M = H(σ)∆+

M [[zp, id]−1].
The first candidate for ordinary parts at level σ is as follows. For π ∈

D+
sm(O/ϖm[∆Q]) we apply the functor

RHomO/ϖm[M0](σ∨,−) : D+
sm(O/ϖm[∆M ])→ D+

sm(H(σ)∆M )

to RΓ(N0, π)Q-ord. Here the functor RHomO/ϖm[M0](σ∨,−) is constructed by
taking the usual left Hecke action of H(σ)∆M on the space of σ∨-invariants.

In order to define the other candidate, we introduce the functor

HomO/ϖm[M0⋉N0](σ∨,−) : Modsm(O/ϖm[∆Q])→ Mod(H(σ)∆+
M )

where the target is the category of left H(σ)∆+
M -modules. We spell out the

definition of HomO/ϖm[M0⋉N0](σ∨,−). Let π ∈ Modsm(∆Q), pick [m,ψ] ∈
H(σ)∆+

M and ϕ ∈ HomO/ϖm[M0⋉N0](σ∨, π). The action is defined by setting

[m,ψ] · ϕ : v 7→
∑

nm̃∈N0⋊M0/m(N0⋊M0)m−1∩(N0⋊M0)
π(nm̃m)ϕ(ψt ◦ σ∨((nm̃)−1)v).

Note that we have identifications of sets

N0 ⋊M0/
(
m(N0 ⋊M0)m−1 ∩ (N0 ⋊M0)

) ∼= (3.1.1){
(n, m̃) | n ∈ N0/m̃mN0(m̃m)−1, m̃ ∈M0/mM0m−1 ∩M0} ∼=

(M0/mM0m−1 ∩M0)×N0/mN0m−1.

In particular, we obtain the following lemma.
2Here we use [All+23], Lemma 5.2.4 to see that both categories considered are abelian

with enough injectives.
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Lemma 3.1.5. We have a natural equivalence of functors

HomO/ϖm[M0](σ∨,−)◦Γ(N0,−) ∼= HomO/ϖm[M0⋉N0](σ∨,−) : Modsm(O/ϖm[∆Q])→

→ Mod(H(σ)∆+
M ).

In particular, for π ∈ D+
sm(O/ϖm[∆Q]), we have a natural isomorphism

RHomO/ϖm[M0](σ∨, RΓ(N0, π)) ∼= RHomO/ϖm[M0⋉N0](σ∨, π)

in D+(H(σ)∆+
M ).

Proof. As the underlying O/ϖm-modules of the two functors evaluated on
some π ∈ Modsm(O/ϖm[∆Q]) clearly coincide, to see the first part, we only
have to check that the Hecke actions match up. This follows from the defini-
tions and the identifications 3.1.1.

The second part follows from [Wei94], Corollary 10.8.3 as soon as we verify
the fact that Γ(N0,−) carries injectives to HomO/ϖm[M0](σ∨,−)-acyclics. To
see this we argue just as in the proof of [All+23], Lemma 5.2.7, (1). Namely,
we have the exact forgetful functors

Modsm(O/ϖm[∆Q]) α−→ Modsm(O/ϖm[M0 ⋉N0]),

Modsm(O/ϖm[∆+
M ]) β−→ Modsm(O/ϖm[M0]) and

Mod(H(σ)∆+
M ) γ−→ Mod(O/ϖm).

Moreover, [All+23], Lemma 5.2.4 says that α and β preserve injectives. Now
pick an injective I ∈ Modsm(O/ϖm[∆Q]). We would like to show that, for
i ≥ 1,

RiHomO/ϖm[M0](σ∨,Γ(N0, I)) = 0.
As the previous discussion shows, we can equivalently verify that

γRiHomO/ϖm[M0](σ∨,Γ(N0, I)) = RiHomO/ϖm[M0](σ∨,Γ(N0, αI)) = 0.

However, Γ(N0,−), as a functor Modsm(O/ϖm[M0⋉N0])→ Modsm(O/ϖm[M0]),
preserves injectives as it possesses an exact left adjoint given by inflation.
Therefore, αI being injective, RiHomO/ϖm[M0](σ∨,Γ(N0, αI)) vanishes.

We further consider the functor

(−)Q-ord : Mod(H(σ)∆+
M )→ Mod(H(σ)∆M )

defined by localising along H(σ)∆+
M ⊂ H(σ)∆M .

Lemma 3.1.6. The functor

(−)Q-ord : Modsm(O/ϖm[∆+
M ])→ Modsm(O/ϖm[∆M ])

sends injectives to HomO/ϖm[M0](σ∨,−)-acyclics.
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Proof. Set ∆′+
M to be the monoid generated by M0 and zp. Then, for any

integer b ≥ 0, H(∆′+
M ,M

b) = O/ϖm[∆′+
M/M

b] ∼= O/ϖm[M0/M b][zp] is a
polynomial ring over the Noetherian ring O/ϖm[M0/M b]. In particular, lo-
calisation along H(∆′+

M ,M
b) ↪→ H(∆′

M ,M
b) ∼= O/ϖm[M0/M b][z±1

p ] preserves
injectives for every integer b ≥ 0.3 Therefore, the proof of [All+23], Lemma
5.2.7, (2) applies and we get that (−)Q-ord, as a functor

Modsm(O/ϖm[∆′+
M ])→ Modsm(O/ϖm[∆′

M ]),

preserves injectives.
We claim that the forgetful functors

α : Modsm(O/ϖm[∆+
M ])→ Modsm(O/ϖm[∆′+

M ]),

β : Modsm(O/ϖm[∆M ])→ Modsm(O/ϖm[∆′
M ])

preserve injectives. Note that once this is verified, running the argument of
the second part of the proof of Lemma 3.1.5 with γ being the forgetful functor
Mod(H(σ)∆M )→ Mod(H(σ)∆′

M ) would allow us to conclude.
To see that α, respectively β preserves injectives, we note that it admits

the functor O/ϖm[∆+
M ]⊗O/ϖm[∆′+

M ] −, respectively O/ϖm[∆M ]⊗O/ϖm[∆′
M ] −

as a left adjoint. Therefore, it’s enough to see that the latter functors are
exact. This follows from the fact that O/ϖm[∆+

M ], respectively O/ϖm[∆M ]
is free as a right O/ϖm[∆′+

M ]- , respectively O/ϖm[∆′
M ]-module with set of

generators given by a set of representatives of ∆M/∆′
M .

Our other candidate for ordinary parts of some π ∈ D+
sm(O/ϖm[∆Q])

is the composition RHomO/ϖm[M0⋉N0](σ∨, π)Q-ord. Using Lemma 3.1.5 and
Lemma 3.1.6 we see that the two candidates in fact coincide.

Corollary 3.1.7. Given π ∈ D+
sm(O/ϖm[∆Q]), we have a natural isomor-

phism

RHomO/ϖm[M0](σ∨, RΓ(N0, π)Q-ord) ∼= RHomO/ϖm[M0⋉N0](σ∨, π)Q-ord

in D+(H(σ)∆M ).

Proof. Exactness of (−)Q-ord, Lemma 3.1.6, and an argument just as in the
proof of [All+23], Lemma 5.2.6 implies that we have

RHomO/ϖm[M0](σ∨,−) ◦ (−)Q-ord ∼=

R(HomO/ϖm[M0](σ∨,−) ◦ (−)Q-ord) ∼=
R((−)Q-ord ◦ HomO/ϖm[M0](σ∨,−)) ∼=

3Indeed, this is true for arbitrary localisation of the form R[x] ↪→ R[x±1] for R a (not
necessarily commutative) left Noetherian ring.
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(−)Q-ord ◦RHomO/ϖm[M0](σ∨,−).

In particular, for π ∈ D+
sm(O/ϖm[∆Q]), we get a natural isomorphism

RHomO/ϖm[M0](σ∨, RΓ(N0, π)Q-ord) ∼= RHomO/ϖm[M0](σ∨, RΓ(N0, π))Q-ord.

As a consequence, Lemma 3.1.5 implies that there is a natural isomorphism

RHomO/ϖm[M0](σ∨, RΓ(N0, π)Q-ord) ∼= RHomO/ϖm[M0⋉N0](σ∨, π)Q-ord.

We now further assume that the action of M1 on σ is trivial. Note that
it is not a serious restriction since σ is assumed to be finite and free over
O/ϖm and, by the second paragraph of Example 3.1.1, we are free to change
M1 to be a smaller compact open subgroup so that it acts trivially on σ.
For c ≥ 1, set σ̃ to be the smooth O/ϖm[Q(0, c)]-module defined by the
map Q(0, c) → Q(0, c)/Q(c, c) ∼= M0/M c i.e., for n̄mn ∈ Q(0, c), we set
σ̃(n̄mn) = σ(m). Consider the subalgebras H(σ̃)∆Q(c) ⊂ H(σ̃)+ ⊂ H(σ̃)
generated by functions supported on ∆Q(c) and Q+(0, c), respectively. We
then have the following observation.

Lemma 3.1.8. For any c ≥ 1, there is an isomorphism of algebras

tc : H(σ)∆+
M → H(σ̃)∆Q(c)

such that, for any π ∈ Modsm(O/ϖm[∆Q(c)]), the inclusion

HomO/ϖm[Q(0,c)](σ̃∨, π) ↪→ HomO/ϖm[M0](σ∨,Γ(N0, π))

intertwines the action of H(σ)∆+
M on the source via tc with the action of

H(σ)∆+
M on the target.

Proof. Note thatH(σ)∆+
M is freely generated as anO/ϖm-module by elements

of the form [m,ψ] with m ∈ ∆+
M running through any choice of set of repre-

sentatives for M0 \∆+
M/M

0 and ψ is an element of EndO/ϖm(σ) intertwining
m. Similarly, H(σ̃)∆Q(c) is freely generated as an O/ϖm-module by elements
of the form [q, ψ̃] with q ∈ ∆Q(c) running through any choice of set of rep-
resentatives for Q(0, c) \ ∆Q(c)/Q(0, c) and ψ̃ is an element of EndO/ϖm(σ̃)
intertwining q. We definte tc by sending a generator [m,ψ] ∈ H(σ)∆+

M to the
function that is supported on Q(0, c)mQ(0, c) and sends m to ψ regarded as
an element of EndO/ϖm(σ̃). In other words, tc([m,ψ]) = [m,ψ] ∈ H(σ̃).

We check that tc([m,ψ]) indeed lies in H(σ̃)∆Q(c). To do so, we pick
k ∈ Q(0, c) ∩mQ(0, c)m−1 and verify that σ̃(k) ◦ ψ = ψ ◦ σ̃(m−1km). Write
k = nhn̄ = mn′h′n̄′m−1 = (mn′m−1)(mh′m−1)(mn̄′m−1) for n, n′ ∈ N0,
h, h′ ∈M0, and n̄, n̄′ ∈ N c. Using the Iwahori decomposition for Q(0, c), it is
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easy to see that we must have n = mn′m−1, h = mh′m−1, and n̄ = mn̄′m−1.
In particular, we have

ψ ◦ σ̃(m−1km) = ψ ◦ σ̃(m−1nmm−1hmm−1n̄m) =

ψ ◦ σ̃(n′h′n̄′) = ψ ◦ σ(h′) =
σ(h) ◦ ψ = σ̃(nhn̄) ◦ ψ =

σ̃(k) ◦ ψ.

We further claim that tc yields an isomorphism tc : H(σ)∆+
M

∼−→ H(σ̃)∆Q(c)

of O/ϖm-modules. To see this, we have to prove that

i. the map M0 \∆+
M/M

0 → Q(0, c) \∆Q(c)/Q(0, c) is bijective, and

ii. for m ∈ ∆+
M , [m,ψ] ∈ H(σ) if and only if [m,ψ] ∈ H(σ̃) (where in the

latter case we treat ψ as an element of EndO/ϖm(σ̃)).

The first claim follows from the observation that every q1mq2 ∈ ∆Q(c) can
be written uniquely as nm′n′ for n ∈ N0, m′ ∈ M0mM0, and n ∈ N c. This
further follows from the existence of an Iwahori decomposition for Q(0, c) and
the fact that ∆+

M ⊂M+. The "only if" direction of the second claim is exactly
the well-definedness of tc that we already have checked. The other direction
follows from the inclusion M0 ∩mM0m−1 ⊂ Q(0, c) ∩mQ(0, c)m−1.

Before proving that tc also respects the algebra structure, we check the
last claim. To do this, we pick an element ϕ ∈ HomO/ϖm[Q(0,c)](σ̃∨, π) ⊂
HomO/ϖm[M0](σ∨,Γ(N0, π)), and compute, first the action of [m,ψ],

[m,ψ] · ϕ : v 7→
∑

m̃∈M0/mM0m−1∩M0

πN
0(m̃m)ϕ(ψt ◦ σ∨(m̃−1)v) =

∑
m̃∈M0/mM0m−1∩M0

π(m̃)
∑

n∈N0/mN0m−1

π(nm)ϕ(ψt ◦ σ̃∨(n−1m̃−1)v) =

∑
(m̃,n)∈(M0/mM0m−1∩M0)×(N0/mN0m−1)

π(m̃nm)ϕ(ψt ◦ σ̃∨(n−1m̃−1)v).

On the other hand, we have

tc([m,ψ]) · ϕ : v 7→
∑

q∈Q(0,c)/Q(0,c)∩mQ(0,c)m−1

π(qm)ϕ(ψt ◦ σ̃∨(q−1)v).

Therefore, it suffices to prove that the inclusion M0⋉N0 ↪→ Q(0, c) descends
to a bijection

(M0/mM0m−1 ∩M0)× (N0/mN0m−1) ∼= Q(0, c)/Q(0, c) ∩mQ(0, c)m−1.

This follows from the Iwahori decomposition, the fact that m ∈ ∆+
M ⊂ M+

and 3.1.1.
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We now easily deduce that tc respects the algebra structure. Indeed, note
that if we set π := c-IndG(L)

Q(0,c)σ̃
∨, the action of H(σ̃)∆Q(0,c) on π gives an

embedding
H(σ̃)∆Q(0,c) ↪→ HomO/ϖm[Q(0,c)](σ̃∨, π).

In particular, tc must be an algebra homomorphism as, by the previous para-
graph, tc yields an algebra action of H(σ)∆+

M on HomO/ϖm[Q(0,c)](σ̃∨, π), that
factors through the faithful algebra action of the target of tc.

As a consequence of Lemma 3.1.8, for every c ≥ 1, we get a left exact
functor

HomO/ϖm[Q(0,c)](σ̃∨,−) : Modsm(O/ϖm[∆Q])→ Mod(H(σ)∆+
M ).

Lemma 3.1.9. For any c ≥ 1, there is a natural isomorphism

HomO/ϖm[Q(0,c)](σ̃∨,−)Q-ord ∼= HomO/ϖm[M0⋉N0](σ∨,−)Q-ord

of functors
Modsm(O/ϖm[∆Q])→ Mod(H(σ)∆M ).

Proof. By the exactness of (−)Q-ord, for π ∈ Modsm(O/ϖm[∆Q]), we have an
inclusion

HomO/ϖm[Q(0,c)](σ̃∨, π)Q-ord ↪→ HomO/ϖm[M0⋉N0](σ∨, π)Q-ord (3.1.2)

and, by Lemma 3.1.8, it is H(σ)∆M -equivariant. In particular, we are left
to check that 3.1.2 is a bijection. Given ϕ ∈ HomO/ϖm[M0⋉N0](σ∨, π), by
smoothness of π and the fact that σ∨ is finite free as an O/ϖm-module, ϕ lies
in HomO/ϖm[Q(0,c′)](σ̃∨, π) for some c′ > c. By induction, it suffices to prove
that, for some integer k ≥ 1,

[zp, id]k · ϕ ∈ HomO/ϖm[Q(0,c′−1)](σ̃∨, π).

This, for instance, is proved in [Eme10a], Lemma 3.3.1.

The following Corollary then summarises the observations of the subsec-
tion.

Corollary 3.1.10. Given π ∈ D+
sm(O/ϖm[∆Q]), we have natural isomor-

phisms

RHomO/ϖm[M0](σ∨, RΓ(N0, π)Q-ord) ∼= RHomO/ϖm[M0⋉N0](σ∨, π)Q-ord ∼=

∼= RHomO/ϖm[Q(0,c)](σ̃∨, π)Q-ord

in D+(H(σ)∆M ).
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3.2 Q-ordinary Hida theory for G
We revisit the setup from §2.7. In particular, F will be a CM field and

G = ResOF /OF + GLn. Moreover, we fix a tuple (Qp, λ, τ) = (Qv, λv, τv)v∈Sp

as in §2.7. We will work with good subgroups K ⊂ G(A∞
F+) with Kp being

fixed and Kp of the form
Qp(b, c) =

∏
v∈Sp

Qv(b, c) ⊂
∏
v∈Sp

GLn(OFv)

for c ≥ b ≥ 0 with c ≥ cp where Qv(b, c) is the parahoric level subgroup
corresponding to Qv, just as before. We denote such a good subgroup by
K(b, c) ⊂ G(A∞

F+). Recall that, given a local system VQp

(λ,τ) as in §2.7,
H(∆Qp(c),Qp(b, c)) acts on RΓ(XK(b,c),VQp

(λ,τ)) via endomorphisms in D+(O)
(cf. §2.8).4 In particular, for v ∈ Sp, the corresponding Up-operator UQv

v acts
on the mentioned complex. Following [KT17], §2.4, we set

RΓ(XK(b,c),VQp

(λ,τ))Qp-ord

to be the maximal direct summand of RΓ(XK(b,c),VQp

(λ,τ)) on which UQv
v acts in-

vertibly for each v ∈ Sp. This will then be an object ofD+(O[Qp(0, c)/Qp(b, c)])
with an action of the spherical Hecke algebra TT .

On the other hand, we can apply the formalism of §3.1 with the parabolic
subgroup Qp ⊂ Gp, compact opens given by Qp(b, c), open submonoid of
Gp given by ∆+

Mp
(from §2.8) and σ being the trivial ∆+

Mp
-module. Note

that in this case H(σ)∆+
Mp = H(∆M+

p
,M0

p ) ⊗Z O/ϖm = O/ϖm[∆+
Mp
/M0

p ],
H(σ)∆Mp = O/ϖm[∆Mp/M

0
p ] and H(σ̃)∆Q(c) ∼= H(∆Qp ,Qp(0, c)) ⊗Z O/ϖm.

One notes that, since the cohomology groups of RΓ(XK(b,c),VQp

(λ,τ)/ϖ
m) are

finite O/ϖm-modules, the notions of taking Qp-ordinary parts in the sense of
[KT17] and in the sense of [Eme10a] coincide. For an argument see the proof
of [All+23], Proposition 5.2.15. In other words, we have the following.
Lemma 3.2.1. For any m ≥ 1, c ≥ b ≥ 0 with c ≥ cp, there is a natural
TT -equivariant isomorphism

RΓ(XK(b,c),VQp

(λ,τ)/ϖ
m)Qp-ord ∼−→ RΓ(Qp(b, c), π(Kp,VQp

(λ,τ)/ϖ
m))Qp-ord

in D+(O/ϖm[M0
p/M

b
p ]), induced by the natural isomorphism

RΓ(XK(b,c),VQp

(λ,τ)/ϖ
m) ∼= RΓ(Qp(b, c), π(Kp,VQp

(λ,τ)/ϖ
m)).

We now highlight the two important features of Hida theory for Betti
cohomology. The first is usually referred to as the independence of level
property. Consider completed cohomology

π(Kp,VQp

(λ,τ)/ϖ
m) ∈ D+

sm(O/ϖm[∆Qp(cp)]).

Recall that it is equipped with an action of TT .
4We emphasise that here ∆Qp(c) denotes the monoid introduced in §2.8.
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Definition 3.2.2. We set Qp-ordinary completed cohomology to be

πQp-ord(Kp,VQp

(λ,τ)/ϖ
m) := RΓ(N0

p , π(Kp,VQp

(λ,τ,N)/ϖ
m))Qp-ord ∈ D+

sm(O/ϖm[∆Mp ]).

By Corollary 3.1.10 and Lemma 3.2.1, for integers m ≥ 1, c ≥ b ≥ 0 with
c ≥ cp, we have

RΓ(M b
p , π

Qp-ord(Kp,VQp

(λ,τ)/ϖ
m)) ∼= RΓ(XK(b,c),VQp

(λ,τ)/ϖ
m)Qp-ord

in D+(O/ϖm[M0
p/M

b
p ]). As an immediate consequence, we can deduce the

independence of level property.

Corollary 3.2.3. (Independence of level) For integers m ≥ 1, and c ≥ b ≥ 0
with c ≥ cp, the natural TT -equivariant morphism

RΓ(XK(b,max{cp,b}),VQp

(λ,τ)/ϖ
m)Qp-ord →

RΓ(XK(b,c),VQp

(λ,τ)/ϖ
m)Qp-ord

is an isomorphism in D+(O/ϖm[M0
p/M

b
p ]).

Note that the analogous statement also holds for compactly supported
and boundary cohomology.

As a consequence of independence of level (or rather the statements be-
hind its proof), we can deduce that the Qp-ordinary part of the cohomol-
ogy complexes RΓ(XK(0,c),VQp

(λ,τ)) is given by taking invariants of Qp-ordinary
completed cohomology with respect to the corresponding smooth types of the
Levi subgroup.

Corollary 3.2.4. For every integer c ≥ cp, we have a natural TT -equivariant
isomorphism

RΓ(XK(0,c),VQp

(λ,τ)/ϖ
m)Qp-ord ∼=

RHomO/ϖm[M0
p ](σ(τ)◦/ϖm, πQp-ord(Kp,Vλ/ϖm))

in D+(O/ϖm) induced by Corollary 3.1.10, Lemma 3.2.1 and Lemma 2.2.2.

Proof. By Corollary 3.1.10 and Lemma 3.2.1, we have a natural isomorphism

RΓ(XK(0,c),VQp

(λ,τ,N)/ϖ
m)Qp-ord ∼= RΓ(M0

p , π
Qp-ord(Kp,V(λ,τ)/ϖ

m))

in D+(O/ϖm). Recall that by definition we have

πQp-ord(Kp,VQp

(λ,τ)/ϖ
m) = RΓ(N0

p , π(Kp,Vλ/ϖm)⊗O/ϖm
fiσ(τ)

◦,∨
/ϖm)Qp-ord.

(3.2.1)
Since −⊗O/ϖm

fiσ(τ)
◦,∨
/ϖm is exact and has −⊗O/ϖm

fiσ(τ)
◦
/ϖm as an exact

left adjoint, [Wei94], Corollary 10.8.3 applies proving that 3.2.1 is naturally
isomorphic to

πQp-ord(Kp,Vλ/ϖm)⊗O/ϖm σ(τ)◦,∨/ϖm =
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HomO/ϖm(σ(τ)◦/ϖm, πQp-ord(Kp,VQp

(λ,τ)/ϖ
m))

in D+
sm(O/ϖm[∆Mp ]) when σ(τ)◦ is viewed as an O/ϖm[∆Mp ]-module via

inflation from M0
p . Another application of [Wei94], Corollary 10.8.3 to

HomO/ϖm[M0
p ](σ(τ)◦/ϖm,−) = Γ(M0

p ,−) ◦ HomO/ϖm(σ(τ)◦/ϖm,−)

finishes the proof.

We now turn to discussing the second feature of Hida theory called inde-
pendence of weight. Recall the representation

V
w

Qp
0 λ

= ⊗v∈SpVwQv
0 λv

∈ Mod(O[
∏
v∈Sp

M0
v ])

from Lemma 2.7.1. View it as a ∆Mp-module via inflation.

Proposition 3.2.5. (Independence of weight) For any integers m ≥ 1, c ≥
cp, subset S ⊂ Sp, and complex π ∈ D+

sm(O/ϖm[∆Q
S
(c)]), the map introduced

in Lemma 2.7.1 induces an isomorphism

RΓ(N0
S
, π ⊗O/ϖm Vλ

S
/ϖm)QS

-ord ∼−→ RΓ(N0
S
, π)QS

-ord ⊗O/ϖm V
w

Q
S

0 λ
S

/ϖm

in D+
sm(O/ϖm[∆M

S
]). In particular, we have a natural isomorphism

πQp-ord(Kp,Vλ/ϖm) ∼−→ πQp-ord(Kp,O/ϖm)⊗O/ϖm V
w

Qp
0 λ

/ϖm

in D+
sm(O/ϖm[∆Mp ]).

Proof. The same argument as in the proof of [CN23], Proposition 2.2.15 ap-
plies here.

We now can deduce that RΓ(XK(0,cp),VQp

(λ,τ)/ϖ
m)Qp-ord admits a natural

Hecke action at p corresponding to the data (λ, τ). Namely, we set

σ(λ, τ)◦ := V∨
w

Qp
0 λ
⊗O σ(τ)◦,

a locally algebraic O-representation of M0
p .

Corollary 3.2.6. We have a natural isomorphism

RΓ(XK(0,cp),VQp

(λ,τ)/ϖ
m)Qp-ord ∼=

RHomO/ϖm[M0
p ](σ(λ, τ)◦/ϖm, πQp-ord(Kp,O/ϖm))

in D+(O/ϖm) induced by Corollary 3.2.4, and Proposition 3.2.5. In partic-
ular, we have an induced algebra homomorphism

H(σ(λ, τ)◦,∨)⊗O O/ϖm → EndD+(O/ϖm)(RΓ(XK(0,cp),VQp

(λ,τ)/ϖ
m)Qp-ord).
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Proof. The first part of the statement follows immediately from Corollary 3.2.4
and Proposition 3.2.5.

For the second part, note that the formalism of §3.1 with the choice M+
p

for the role of ∆+
Mp

implies that πQp-ord(Kp,O/ϖm) can be viewed as an object
in D+

sm(O/ϖm[Mp]). We then have
RHomO/ϖm[M0

p ](σ(λ, τ)◦/ϖm, πQp-ord(Kp,O/ϖm)) ∈ D+(H(σ(λ, τ)◦,∨/ϖm)).
Moreover, the forgetful functor

Modsm(O/ϖm[Gp])→ Modsm(O/ϖm[∆+
Mp

⋉N0
p ])

sends injectives to Γ(N0
p ,−)-acyclics by [Eme10b], Proposition 2.1.11. Con-

sequently, an application of [Wei94], Corollary 10.8.3 shows that the ordi-
nary completed cohomology complex πQp-ord(Kp,O/ϖ) ∈ D+(Modsm[∆Mp ])
can be computed by applying RΓ(N0

p ,−)Qp-ord to the completed cohomology
complex π(Kp,O/ϖm) ∈ D+

sm(O/ϖm[Gp]) followed by an application of the
forgetful functor Modsm(O/ϖm[Mp]) → Modsm(O/ϖm[∆Mp ]). On the other
hand, [Eme10b], Proposition 2.1.2 shows that the forgetful functor

Modsm(O/ϖm[Mp])→ Modsm(O/ϖm[M0
p ])

preserves injectives. In particular, another application of [Wei94], Corollary
10.8.3 yields an algebra homomorphism

H(σ(λ, τ)◦,∨/ϖm)→ EndD+(O/ϖm)(RΓ(XK(0,cp),VQp

(λ,τ)/ϖ
m)Qp-ord).

Moreover, we have a natural morphism
H(σ(λ, τ)◦,∨)→ H(σ(λ, τ)◦,∨/ϖm)

induced by the short exact sequence

0→ c-IndMp

M0
p
σ(λ, τ)◦,∨ ϖm·−−→ c-IndMp

M0
p
σ(λ, τ)◦,∨ → c-IndMp

M0
p
(σ(λ, τ)◦,∨/ϖm)→ 0

and the proof is finished.

We note that the action of H(σ, τ)◦,∨ on RΓ(XK(0,cp),VQp

(λ,τ)/ϖ
m)Qp-ord ad-

mits another description. Namely, by independence of level, we can pass to
level K(0,m) and then, by independence of weight, we get an identification

RΓ(XK(0,cp),VQp

(λ,τ)/ϖ
m)Qp-ord ∼= RΓ(XK(0,m), Â�σ(λ, τ)◦,∨/ϖm)Qp-ord

in D+(O/ϖm). On the other hand, we have

RΓ(XK(0,m), Â�σ(λ, τ)◦,∨/ϖm) ∼= RHomQp(0,m)(Â�σ(λ, τ)◦/ϖm, π(Kp,O/ϖm))
in D+(O/ϖm) and the latter naturally lives in D+(H(σ(λ, τ)◦,∨/ϖm)+) ac-
cording to §3.1. Therefore, we get a natural action of H(σ(λ, τ)◦,∨/ϖm)+ on
the complex RΓ(XK(0,m), Â�σ(λ, τ)◦,∨/ϖm) and, using Corollary 3.1.10, one sees
that the induced action of H(σ(λ, τ)◦,∨/ϖm) on RΓ(XK(0,cp),VQp

(λ,τ)/ϖ
m)Qp-ord

is the one constructed in Corollary 3.2.6. An upshot of this observation is
that this way the Hecke action can be described using the formalism of §2.4.
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3.3 Hida theory with dual coefficients
Given a tuple (Qp, λ, τ) as in §3.2, and an integer m ≥ 1, we also discuss

Qp-ordinary Hida theory for VQp,∨
λ,τ /ϖm on XK where K ⊂ G(A∞

F+) is a
good subgroup such that Kp = Qp(0, c̃) with c̃ ≥ cp. This is developed by
applying the formalism of §3.1 with parabolic subgroup Qp = Mp⋉Np ⊂ Gp,
N0 := N

c̃

p, M b := M b
p , N

c := N c
p , ∆+

M := (∆+
Mp

)−1, zp := uQp,−1
p , and

σ := σ(λ, τ)◦,∨. We can then introduce Qp-ordinary parts of the level K(0, c̃)
cohomology of VQp,∨

(λ,τ) /ϖ
m by inverting the Hecke operator attached to uQp,−1

p .
We can also introduce Qp-ordinary completed cohomology

πQp-ord(Kp,VQp,∨
(λ,τ) /ϖ

m) := RΓ(N c̃

p, π(Kp,VQp,∨
(λ,τ) /ϖ

m))Qp-ord ∈ D+
sm(O/ϖm[∆Mp ]).

Given this setup, the formalism of §3.1 combined with the short exact se-
quence

0→ V∨
w

Qp
0 λ
→ V∨

λ → K∨
λ → 0

induced by taking duals of the surjection of Lemma 2.7.1 yields the indepen-
dence of weight property for dual coefficients.

Proposition 3.3.1. (Independence of weight) For any integer m ≥ 1, there
is a natural isomorphism

πQp-ord(Kp,V∨
λ /ϖ

m) ∼−→ πQp-ord(Kp,O/ϖm)⊗O/ϖm V∨
w

Qp
0 λ

/ϖm

in D+
sm(O/ϖm[∆Mp ]).

Remark 3.3.2. Note that even though the definition of Qp-ordinary com-
pleted cohomology seems to depend on the choice of c̃ ≥ cp, it in fact is
independent of this choice up to natural isomorphism. To see this, consider
two integers c̃1, c̃2 ≥ cp. Then, by independence of weight for i = 1, 2, we
have natural isomorphisms

RΓ(N c̃i

p , π(Kp,VQp,∨
(λ,τ) /ϖ

m))Qp-ord ∼= RΓ(N c̃i

p , π(Kp,O/ϖm))Qp-ord⊗O/ϖmσ(λ, τ)◦/ϖm

in D+
sm(O/ϖm[∆Mp ]). In particular, we can reduce the question to one with

trivial coefficients. In that case, π(Kp,O/ϖm) in fact lies inD+
sm(O/ϖm[∏v∈Sp

Qv(Fv)])
and the proof of [Eme10a], Proposition 3.1.12 shows that there is a natural
isomorphism

RΓ(N c̃1
p , π(Kp,O/ϖm))Qp-ord ∼= RΓ(N c̃2

p , π(Kp,O/ϖm))Qp-ord (3.3.1)

in D+
sm(O/ϖm[Mp]), showing the claim. We note that the same argument

shows that instead of N c̃
p, we could have taken any compact open N

◦
p ⊂ N

cp

p

that is preserved under conjugation by M0
p .
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As a consequence of Remark 3.3.2, we obtain an independence of level
property for dual coefficients.

Proposition 3.3.3 (Independence of level). For integers m ≥ 1, and c̃ ≥ cp,
the natural TT -equivariant morphism

RΓ(XK(0,cp),VQp,∨
(λ,τ) /ϖ

m)Qp-ord → RΓ(XK(0,c̃),VQp,∨
(λ,τ) /ϖ

m)Qp-ord

is an isomorphism in D+(O/ϖm).

Due to the independence of weight property, and Corollary 3.1.10, we can
introduce the relevant Hecke action at p.

Corollary 3.3.4. We have a natural isomorphism

RΓ(XK(0,c̃),VQp,∨
(λ,τ) /ϖ

m)Qp-ord ∼=

∼= RHomO/ϖm[M0
p ](σ(λ, τ)◦,∨/ϖm, πQp-ord(Kp,O/ϖm))

in D+(O/ϖm). In particular, we have a natural algebra homomorphism

H(σ(λ, τ)◦)⊗O O/ϖm → EndD+(O/ϖm)(RΓ(XK(0,c̃),VQp,∨
(λ,τ) /ϖ

m)Qp-ord).

Proof. The proof is identical to that of Corollary 3.2.6. Namely, by apply-
ing Corollary 3.1.10, and the obvious analogue of Lemma 3.2.1, we get an
isomorphism

RΓ(XK(0,c̃),VQp,∨
(λ,τ) /ϖ

m)Qp-ord ∼= RΓ(M0
p , π

Qp-ord(Kp,VQp,∨
(λ,τ) /ϖ

m)).

Then the isomorphism we seek is induced by the dual of the surjection

VQp

(λ,τ)/ϖ
m → Â�σ(λ, τ)◦,∨/ϖm. (3.3.2)

We mention that the introduced Hecke action once again has a slightly
different description just as explained at the end of §3.2.

Finally, we deduce Hecke-equivariance of Poincaré duality for Qp-ordinary
cohomology with VQp

(λ,τ)/ϖ
m-coefficients.

Proposition 3.3.5. The Verdier duality isomorphism

RHomO/ϖm(RΓc(XK(0,c̃),VQp,∨
(λ,τ) /ϖ

m),O/ϖm) ∼= RΓ(XK(0,c̃),VQp

(λ,τ)/ϖ
m)[dimR XK ]

induces an isomorphism

RHomO/ϖm(RΓc(XK(0,c̃),VQp,∨
(λ,τ) /ϖ

m)Qp-ord,O/ϖm) ∼=
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∼= RΓ(XK(0,c̃),VQp

(λ,τ)/ϖ
m)Qp-ord[dimR XK ]

in D+(O/ϖm). Moreover, the latter isomorphism is equivariant with respect
to the natural left action of H(σ(λ, τ)◦,∨)⊗O O/ϖm on the RHS and the one
induced by the anti-isomorphism

H(σ(λ, τ)◦,∨/ϖm) ∼−→ H(σ(λ, τ)◦/ϖm),

[g, ψ] 7→ [g−1, ψt]
on the LHS.

Proof. The first part follows from applying Corollary 2.4.3 with σ = VQp

(λ,τ)/ϖ
m

and noting that UQp
p = [uQp

p , uQp
p · (−)] ∈ H(VQp

(λ,τ)/ϖ
m).

To see the second part, we reduce the question to the case when c̃ ≥
m using independence of level (cf. Corollary 3.2.3, Proposition 3.3.3). In
particular, Â�σ(λ, τ)◦,∨/ϖm makes sense as a representation of Q(0, c̃)! Then,
by independence of weight and naturality of Verdier duality applied to the
Q(0, c̃)-equivariant surjection

VQp

(λ,τ)/ϖ
m → Â�σ(λ, τ)◦,∨/ϖm, (3.3.3)

the mentioned Verdier duality isomorphism for ordinary parts is also induced
by the Verdier duality isomorphism

RHomO/ϖm(RΓc(XK(0,c̃), Â�σ(λ, τ)◦/ϖm),O/ϖm) ∼= RΓ(XK(0,c̃), Â�σ(λ, τ)◦,∨/ϖm).
(3.3.4)

However, the Verdier duality isomorphism 3.3.4 satisfies the desired Hecke-
equivariance by Corollary 2.4.3 and Corollary 3.1.10.5

3.4 Q̃-ordinary Hida theory for G̃
As everything mentioned in the previous two sections applies verbatim for

the group G̃ at split p-adic places of F+, we will only set up the notations
and explain the relevant results. We revisit the setup of the corresponding
part of §2.7. In particular, we remind the reader of Assumption 2.7.3. Fix
a subset of p-adic places S ⊂ Sp and a lift v | v̄ for each v̄ ∈ Sp in Sp.
Consider a tuple (Qp, λ, τ) as previously and consider a corresponding tuple
(Q̃S, λ̃S, τ) := (Q̃v̄, λ̃v̄, τv̄)v̄∈S as in §2.7.6 Further set λ̃ to be some extension
of λ̃ to a (ResF+/Q‹B)E-dominant weight of (ResF+/QG̃)E. We then similarly
form the parahoric level subgroups‹QS(b, c) =

∏
v̄∈S

‹Qv̄(b, c) ⊂ ∏
v̄∈S

G̃(OF+
v̄

)

5Note that at this step we used that our Hecke action at p matches up with the Hecke
action constructed at the end of §3.2.

6Note that in particular we are implicitly assuming that λ̃S is dominant.
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for integers 0 ≤ b ≤ c with c ≥ cp. For the rest of the section, we fix a
prime-to-S good level subgroup ‹KS ⊂ G̃(AS∪{∞}

F+ ) and set ‹K(b, c) to be the
good subgroup ‹KS‹QS(b, c) ⊂ G̃(A∞

F+). We then freely borrow the notation
of §2.8. In particular, we have an open submonoid ‹∆‹Qw0

S

(cp) ⊂ G̃S, and can

set ‹∆+
M̃

w0
S

:= ‹∆‹Qw0
S

(cp) ∩ M̃w0
S
⊂ M̃w0,+

S
, and ‹∆M̃

w0
S

:= ‹∆+
M̃

w0
S

[u‹Qw0
v ,±1

v̄ | v̄ ∈ S].

For c ≥ b ≥ 0 with c ≥ cp, the Hecke algebra H(‹∆‹Qw0
S

(c), ‹QSw0 (b, c))

acts on RΓ(‹X‹K(b,c),V
‹Qw0

S

(λ̃,τ)) via endomorphisms in D+(O). In particular, we

introduce the Q̃w0
S

-ordinary parts of the complex RΓ(‹X‹K(b,c),V
‹Qw0

S

(λ̃,τ))
‹Qw0

S
-ord as

the maximal direct summand on which each U
‹Qw0

v̄
v̄ acts invertibly.

On the other hand, the formalism of §3.1 can be applied with the choices
Q = Q̃w0

S
, N0 = ‹Nw0,0

S
, M b = M̃w0,b

S
, N c = ‹Nw0,c

S , and σ being the trivial‹∆+
M̃

w0
S

-module. One can then compare the two constructions and see that the
analogue of Lemma 3.2.1 holds.

We can further introduce Q̃w0
S

-ordinary completed cohomology

π
‹Qw0

S
-ord(‹KS,V

‹Qw0
S

(λ̃,τ)/ϖ
m) :=

RΓ(‹Nw0,0
S

, π(‹KS,V
‹Qw0

S

(λ̃,τ,N)/ϖ
m))‹Qw0

S
-ord ∈ D+

sm(O/ϖm[‹∆M̃
w0
S

]).

The analogues of the independence of level and weight property hold once
again. To emphasise the normalisations and introduce the necessary notations
for later, we spell out the statement of the latter.

Proposition 3.4.1 (Independence of weight). For any integer m ≥ 1, there
is a natural isomorphism

π
‹Qw0

S
-ord(‹KS,Vλ̃/ϖm) ∼−→ π

‹Qw0
S

-ord(‹KS,V
λ̃S )⊗O/ϖm V

w
‹Qw0

S
0 λ̃

S

/ϖm

in D+
sm(O/ϖm[‹∆M̃

w0
S

]).

Here we denoted by λ̃S the dominant weight for G̃ that is trivial at S and
coincides with λ̃ outside S. Similarly, λ̃S is the dominant weight for G̃ that is
trivial outside S and coincides with λ̃ at S. Also, analogously to the previous
section, we view V

w
‹Qw0

S
0 λ̃

S

/ϖm as an O/ϖm[‹∆M̃
w0
S

]-module via inflation from

M̃w0,0
S

.
We can then also deduce the analogues of Corollary 3.2.4 and Corol-

lary 3.2.6. In particular, RΓ(‹X‹K(0,c),V
‹Qw0

S

(λ̃,τ)/ϖ
m)‹Qw0

S
-ord admits a natural Hecke
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action at p. Namely, set
σ̃(λ̃S, τS)◦ := V∨

w
‹Qw0

S
0 λ̃

S

⊗O σ̃(τS)◦ ∈ Mod(O[M̃w0,0
S

]).

Then there is a natural algebra homomorphism

H(σ̃(λ̃S, τS)◦,∨)⊗O O/ϖm → EndD+(O/ϖm)(RΓ(‹X‹K(0,c),V
‹Qw0

S

(λ̃,τ)/ϖ
m)‹Qw0

S
-ord).

Remark 3.4.2. We note that if we set S̃ := {v | v̄ ∈ S}, we have V
w
‹Qw0

S
0 λ̃

S

=

V
w

Q‹S
0 λ‹S ⊗O V−w

Q‹Sc
0 λ‹Sc

, and, by the proof of [CN23], Lemma 2.2.14, we get

σ̃(λ̃S, τS)◦ = σ(λS̃, τ S̃)◦ ⊗O (θ−1
n )∗σ(λS̃c , τ S̃c)◦ ∈

Mod(O[
(∏
v∈S̃

Mv(OFv)
)
×

( ∏
vc∈S̃c

(θnMvc)(OFv)
)

].

Finally, one can develop Q̃S-ordinary Hida theory for V
‹Q

S
,wP

0 ,∨
(λ̃,τ) /ϖm (see

the end of §2.7 for the notation) just as in §3.3. In particular, one arrives to
Hecke-equivariance of Poincaré duality at p for ordinary cohomology of ‹X‹K .

3.5 Ordinary parts of the Bruhat stratifica-
tion

Here we again closely follow [CN23] on computing the ordinary parts of
certain Bruhat strata of parabolic inductions in the derived category. As we
often will not need serious changes in the proofs, we sometimes only state
the results we need and indicate how to deduce them from the arguments of
[All+23] and [CN23].

As in [CN23], 2.3.1, we restrict ourselves to a completely local setup.
Let L/Qp be a finite field extension with ring of integers OL and a choice
of uniformiser ϖL. Let G/L be a split connected reductive group with a
split maximal torus T ⊂ G and Weyl group W = W (G, T ). Fix a Borel
subgroup T ⊂ B and two standard parabolic subgroups B ⊂ Q1, Q2 ⊂ G
with Levi decomposition Q1 = M1 ⋉N1 and Q2 = M2 ⋉N2, respectively. We
denote by WQi

the Weyl group of Mi and by Q1WQ2 ⊂ W the set of minimal
length representatives of WQ1\W/WQ2 . For w ∈ W we denote its length by
ℓ(w) ∈ Z≥0. Recall that G(L) admits a stratification (with respect to its
p-adic topology) called the Bruhat stratification7

G(L) =
∐

w∈Q1WQ2

Q1(L)wQ2(L) =
∐

w∈Q1WQ2

Sw

7For a reference in this generality, see [Hau18], Lemma 2.1.2. However, note that loc.
cit. considers the opposite parabolic Q1 on the left instead, so the closure relations are
reversed there.
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with closure relations given by the Bruhat order

Sw =
∐

w≥w′∈Q1WQ2

Sw′ .

In particular, for i ∈ Z≥0, the subset

G≥i :=
∐

ℓ(w)≥i
Sw ⊂ G(L)

is open.
We first recall how the Bruhat stratification provides a "stratification" of

the exact functor

IndG(L)
Q1(L) : D+

sm(O/ϖm[Q1(L)])→ D+
sm(O/ϖm[G(L)])

in a suitable sense. We define the functor

I≥i : Modsm(O/ϖm[Q1(L)]))→ Modsm(O/ϖm[Q2(L)])

which sends π to the Q2(L)-stable subspace of functions in IndG(L)
Q1(L)π which

are supported at G≥i. For w ∈ Q1WQ2 , we can further define the functor

Iw : Modsm(O/ϖm[Q1(L)]))→ Modsm(O/ϖm[Q2(L)]))

which sends π to the set of locally constant functions f : Sw → π which
are compactly supported modulo Q1(L) and left invariant with respect to
elements of Q1(L) equipped with the left Q2(L)-action given by right mul-
tiplication on the source. Finally, for w ∈ Q1WQ2 , consider also the open
subspace S◦

w := Q1(L)wM2(L)N2(OL) ⊂ Sw. We then define the functor
I◦
w : Modsm(O/ϖm[Q1(L)]) → Modsm(O/ϖm[M2(L)+ ⋉ N2(OL)]) by setting
I◦
w(π) ⊂ Iw(π) to be the subset of functions supported on S◦

w. Each of these
functors are exact as the argument of [All+23], Proposition 5.3.1 shows.

For every i ∈ Z≥0 and π ∈ D+
sm(O/ϖm[Q1(L)]), the natural inclusion of

functors I≥i+1 ⊂ I≥i induces a distinguished triangle

I≥i+1(π)→ I≥i(π)→ ⊕ℓ(w)=iIw(π)→ I≥i+1(π)[1] (3.5.1)

in D+
sm(O/ϖm[Q2(L)]). For the proof of this, see [Hau18], Lemma 2.2.1.

Given a σ ∈ Modsm(O/ϖm[M2(OL]), finite free over O/ϖm, we consider
the functor

RHomO/ϖm[M2(OL)](σ,RΓ(N2(OL),−)Q2-ord) : D+
sm(O/ϖm[Q2(L)])→ D+(H(σ∨)).

We can apply this functor to 3.5.1 to get a distinguished triangle

RHomO/ϖm[M2(OL)](σ,RΓ(N2(OL), I≥i+1(π))Q2-ord)→
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→ RHomO/ϖm[M2(OL)](σ,RΓ(N2(OL), I≥i(π))Q2-ord)→

→ ⊕ℓ(w)=iRHomO/ϖm[M2(OL)](σ,RΓ(N2(OL), Iw(π))Q2-ord)→

→ RHomO/ϖm[M2(OL)](σ,RΓ(N2(OL), I≥i+1(π))Q2-ord)[1].

The argument of [CN23], Proposition 2.3.4 shows that taking long exact
sequence of cohomology of the distinguished triangle above gives a H(σ∨)-
equivariant short exact sequence

0→ RjHomO/ϖm[M2(OL)](σ,RΓ(N2(OL), I≥i+1(π))Q2-ord)→

→ RjHomO/ϖm[M2(OL)](σ,RΓ(N2(OL), I≥i(π))Q2-ord)→

→ ⊕ℓ(w)=iR
jHomO/ϖm[M2(OL)](σ,RΓ(N2(OL), Iw(π))Q2-ord)→ 0

for every j ∈ Z≥0. To be more precise, the proof of Proposition 2.3.4 in loc.
cit. relies on their Lemma 2.3.5. We state the obvious generalisation we need.
However, we omit the proof as it can be proved just as the version in loc. cit.

Lemma 3.5.1. For any i ∈ Z≥0, there are decompositions

G≥i = Um
1

∐
Um

2

into open and closed subsets, indexed by m ∈ Z≥1, that are Q1(L)-invariant
on the left and Q2(OL)-invariant on the right such that

G≥i+1 =
⋃
m≥1

Um
1 .

To apply this line of argument, we compute

RΓ(N2(OL), Iw(π))Q2-ord

for a class of w ∈ Q1WQ2 . First we note the following lemma that is essentially
[All+23], Lemma 5.3.4 (see also [CN23], Lemma 2.3.6).

Lemma 3.5.2. Let w ∈ Q1WQ2 such that wM2(L)w−1 ⊂M1(L). Then:

i. I◦
w takes injectives to Γ(N2(OL),−)-acyclics.

ii. Let π ∈ D+
sm(O/ϖm)[Q1(L)]). Then there is a natural isomorphism

RΓ(N2(OL), I◦
w(π))Q2-ord ∼−→ RΓ(N2(OL), Iw(π))Q2-ord.

Proof. Note that the assumption on w implies that

S◦
w = Q1(L)wN2(OL).

Knowing this, the proof of [All+23], Lemma 5.3.4 applies verbatim.
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If w ∈ Q1WQ2 such that wM2(L)w−1 ⊂M1(L), we define

N◦
2,w := Q1(L) ∩ wN2(OL)w−1,

a compact subgroup of Q1(L). We define the functor

Γ(N◦
2,w,−) : Modsm(O/ϖm[Q1(L)])→ Modsm(O/ϖm[M2(L)+])

where an element m ∈M2(L)+ acts on a v ∈ πN◦
2,w by the formula

m · v :=
∑

n∈N◦
2,w/wmw

−1N◦
2,wwm

−1w−1

nwmw−1 · v

where on the right we consider the natural action of wmw−1 ∈ Q1(L). One
checks easily that our assumption on w ensures that this formula makes sense
meaning that we have wmw−1N◦

2,wwm
−1w−1 ⊂ N◦

2,w.

Lemma 3.5.3. Let w ∈ Q1WQ2 such that wM2(L)w−1 ⊂M1(L) and consider
π ∈ D+

sm(O/ϖm[Q1(L)]). Then we have a natural isomorphism

RΓ(N2(OL), I◦
w(π)) ∼= RΓ(N◦

2,w, π)

in D+
sm(O/ϖm[M2(L)+]).

Proof. Again, it can be proved by running the proof of the analogous state-
ment [All+23], Lemma 5.3.5, keeping in mind our assumption on w. For the
reader’s convenience, we recall the argument here.

By the first part of Lemma 3.5.2, it suffices to give a natural isomorphism
of underived functors

Γ(N2(OL), I◦
w(−)) ∼= Γ(N◦

2,w,−).

For π ∈ Modsm(Q1(L)), the map will send an N2(OL)-invariant function

f : Q1(L)wN2(OL)→ π

to f(w) ∈ πN
◦
2,w . This visibly gives an isomorphism of underlying O/ϖm-

modules with inverse sending v ∈ πN◦
2,w to fv : pwn 7→ p · v.

We are left with checking that this defines an M2(L)+-equivariant map.
In other words, for f ∈ Γ(N2(OL), I◦

w(π)) and m ∈ M2(L)+, we need to see
that ∑

n∈N2(OL)/mN2(OL)m−1

f(wnm) =
∑

ñ∈N◦
2,w/wmw

−1N◦
2,w(wmw−1)−1

ñwmw−1f(w).

(3.5.2)
Note that the association

N◦
2,w/wmw

−1N◦
2,w(wmw−1)−1 → N2(OL)/mN2(OL)m−1, (3.5.3)
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ñ 7→ w−1ñw

is injective. Moreover, for n = w−1ñw lying in the image, we have f(wnm) =
ñwmw−1f(w). In particular, to see that 3.5.2 holds, it suffices to prove that
f(wnm) ̸= 0 only if n lies in the image of 3.5.3. So assume that wnm ∈
S◦
w = Q1(L)wN2(OL). Accordingly, we write it in the form wnm = qwn′

with q ∈ Q1(L) and n′ ∈ N2(OL). On the other hand,

n = w−1qwn′m−1 = (w−1qwm−1)(mn′m−1) ∈ N2(OL)

and our assumptions imply that mn′m−1 ∈ N2(OL). Therefore, we get

w−1qwm−1 = w−1(qwm−1w−1)w ∈ w−1Q1(L)w ∩N2(OL) = w−1N◦
2,ww.

Corollary 3.5.4. Let w ∈ Q1WQ2 such that wM2(L)w−1 ⊂ M1(L) and π ∈
D+

sm(O/ϖm[Q1(L)]). There is a natural isomorphism

RΓ(N2(OL), Iw(π))Q2-ord ∼= RΓ(N◦
2,w, π)Q2-ord

in D+
sm(O/ϖm[M2(L)]).

Finally, we compute RΓ(N◦
2,w, π)Q2-ord as in [All+23], Lemma 5.3.7. For

the rest of the section, we assume that G = GLn with T = Tn, the torus
consisting of diagonal matrices and B = Bn the Borel consisting of upper
triangular matrices. We also introduce some further notation. Given w ∈
Q1WQ2 such that wM2(L)w−1 ⊂M1(L), set Qw := wQ2w

−1 ∩M1 ⊂M1 with
Levi quotient Mw = wM2w

−1 and unipotent radical Nw = wN2w
−1 ∩M1.

Consider the character
χw : M2(L)→ O×,

m 7→
NormL/Qp detL(Ad(mw) |LieNw(L))−1

|NormL/Qp detL(Ad(mw) |LieNw(L))|p
where we set mw := wmw−1. Introduce the equivalence of categories

τw : Modsm(O/ϖm[M2(L)])→ Modsm(O/ϖm[wM2(L)w−1])

sending π to τw(π) with underlying O/ϖm-module π but with the twisted
action τw(π)(m) = π(w−1mw). Finally, set N◦

w = Nw(OL) and N◦
2,w,N1 :=

N◦
2,w ∩N1(L).

Lemma 3.5.5. Assume that G = GLn with T = Tn, B = Bn and let w ∈
Q1WQ2 such that wM2(L)w−1 ⊂M1(L). Then, for any π ∈ D+

sm(O/ϖm[M1(L)]),
there is a natural isomorphism between

RΓ(N◦
2,w, InfQ1(L)

M1(L)π)Q2-ord

and
O/ϖm(χw)⊗O/ϖm τ−1

w RΓ(N◦
w, π)Qw-ord[−rkZpN

◦
2,w,N1 ]

in D+
sm(O/ϖm[M2(L)]).
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Proof. Before starting the proof, we note that the argument is just an obvious
generalisation of the proof of [All+23], Lemma 5.3.7 and so we kept the
structure of their argument and sometimes will refer to it as loc. cit.

We set the monoid M2(L)+ ⋉w N
◦
2,w to be M2(L)+×N◦

2,w with the action
(m, 1)(1, n) = (1,mwn(mw)−1)(m, 1). Consider the short exact sequence

0→ N◦
2,w,N1 → N◦

2,w → N◦
w → 0

and note that it is obviously equivariant for the M2(L)+-action on each
groups via m 7→ wmw−1. Then just as in loc. cit., we basically write
RΓ(N◦

2,w, InfQ1(L)
M1(L)−)Q2-ord as ”RΓ(N◦

w,−)Qw-ord◦RΓ(N◦
2,w,N1 , InfQ1(L)

M1(L)−)Q1-ord”.
To make this precise, we need to introduce some functors. Denote by

Resw : Modsm(O/ϖm[M1(L)])→ Modsm(O/ϖm[M2(L)+ ⋉w N
◦
2,w])

the composite of InfQ1(L)
M1(L) with the functor that sends π ∈ Modsm(Q1(L)) to

itself as an O/ϖm-module with the action Resw(π)(mn) = π(mwn). Further
set

α : Modsm(O/ϖm[M2(L)+ ⋉w N
◦
w])→ Modsm(O/ϖm[Mw(L)+ ⋉N◦

w])

to be the functor defined by composing the equivalence

Modsm(O/ϖm[M2(L)+ ⋉w N
◦
w]) ∼−→ Modsm[wM2(L)+w−1 ⋉N◦

w])

with the localisation

Modsm(O/ϖm[wM2(L)+w−1 ⋉N◦
w])→ Modsm(O/ϖm[Mw(L)+ ⋉N◦

w])

induced by the inclusion wM2(L)+w−1 ⊂ Mw(L)+. Analogous construction
defines a functor β such that they fit into a commutative diagram (up to
natural equivalence)

Modsm(O/ϖm[M2(L)+ ⋉w N
◦
w]) Modsm(O/ϖm[Mw(L)+ ⋉N◦

w])

Modsm(O/ϖm[M2(L)+]) Modsm(O/ϖm[Mw(L)+])

α

Γ(N◦
w,−) Γ(N◦

w,−)

β

where the vertical arrows are defined the usual way by considering the cor-
responding Hecke actions. A reasoning similar to the proof of Lemma 3.1.6
shows that α takes injectives to Γ(N◦

w,−)-acyclics. Therefore, by checking
things on underived functors, we have

RΓ(N◦
2,w, InfQ1(L)

M1(L)π)Q2-ord ∼=

τ−1
w (βRΓ(N◦

w, RΓ(N◦
2,w,N1 ,Resw(π)))Qw-ord ∼=
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τ−1
w (RΓ(N◦

w, αRΓ(N◦
2,w,N1 ,Reswπ)))Qw-ord.

Since N◦
2,w,N1 acts trivially on Reswπ, we get

RΓ(N◦
2,w,N1 ,Reswπ) ∼= Reswπ ⊗O/ϖm RΓ(N◦

2,w,N1 ,O/ϖ
m)

inD+
sm(O/ϖm[M2(L)+⋉wN

◦
w]). In particular, to compute αRΓ(N◦

2,w,N1 ,Reswπ),
it suffices to compute αRΓ(N◦

2,w,N1 ,O/ϖ
m).

Claim: We have natural isomorphisms

αRΓ(N◦
2,w,N1 ,O/ϖ

m) ∼= τwO/ϖm(χw)[−rkZpN
◦
2,w,N1 ] ∼=

αO/ϖm(χw)[−rkZpN
◦
2,w,N1 ]

in D+
sm(O/ϖm[Mw(L)+ ⋉N◦

w]) where, by abuse of notation we consider χw as
an M2(L)+ ⋉w N

◦
w-module by inflation.

Proof of claim. Assume that Q1 = P(n1,...,nt). Then we can write

N1(OL) ∼=
∏

1≤i<j≤t
N◦
i,j

where N◦
i,j ⊂ N1(OL) corresponds to the entries lying in [ni−1 +1, ni]× [nj−1 +

1, nj] with the convention that n0 = 0. This induces an isomorphism

N◦
2,w,N1

∼=
∏

1≤i<j≤t
N◦

2,w,ij.

Set ri,j := rkZpN
◦
2,w,ij and, for 1 ≤ k ≤ t,

zp,k := diag(p, ..., p, 1, ..., 1)

where the first n1 + ... + nk entries in the diagonal are given by p and the
rest by 1. Note that zp,k is in the centre of M1(L), so it lies in Mw(L)+ and
it is invertible there, in particular, its Hecke action on αRΓ(N◦

2,w,N1 ,O/ϖ
m)

is invertible.
Moreover, Künneth formula gives

RΓ(N◦
2,w,N1 ,O/ϖ

m) ∼=
⊗

1≤i<j≤t
RΓ(N◦

2,w,ij,O/ϖm)

and the Hecke action of zp,k is given by multiplying by the scalar

[N◦
2,w,N1 : zp,kN◦

2,wz
−1
p,k] = p

∑
i<k<j

ri,j

the tensor product of maps

mk
i,j : RΓ(N◦

2,w,ij,O/ϖm)→ RΓ(N◦
2,w,ij,O/ϖm)

induced by multiplication by p on N◦
2,w,ij if i < k < j and by id : N◦

2,w,ij →
N◦

2,w,ij otherwise. In the first case this means that, for 0 ≤ di,j ≤ ri,j,
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Hdi,j (mk
i,j) is multiplication by p−di,j and it is multiplication by 1 otherwise.

In particular, α(⊗
i<j H

di,j (N◦
2,w,ij,O/ϖm)) ̸= 0 only when di,j = ri,j for each

1 ≤ i < j ≤ t. Note that ∑
i<j ri,j = rkZpN

◦
2,w,N1 . Therefore, we have

αRΓ(N◦
2,w,N1 ,O/ϖ

m) ∼= αHrkZpN
◦
2,w,N1 (N◦

2,w,N1 ,O/ϖ
m)[−rkZpN

◦
2,w,N1 ].

Moreover, just as in the proof of [Hau16], Proposition 3.1.8, using [Eme10b],
Proposition 3.5.6 and the description of the corestriction map on top degree
cohomology (cf. [Eme10b], Lemma 3.5.10), we see that the latter is, as an
O/ϖm[Mw(L)+]-module, given by αO/ϖm(χw)[−rkZpN

◦
2,w,N1 ].

Putting everything together, we get

RΓ(N◦
2,w, InfQ1(L)

M1(L)π)Q2-ord ∼=

τ−1
w RΓ(N◦

w, α(O/ϖm(χw)⊗ Reswπ))Qw-ord[−rkZpN
◦
2,w,N1 ] ∼=

τ−1
w (τw(O/ϖm(χw)))⊗O/ϖm τ−1

w RΓ(N◦
w, π)Qw-ord[−rkZpN

◦
2,w,N1 ] ∼=

O/ϖm(χw)⊗O/ϖm τ−1
w RΓ(N◦

w, π)Qw-ord[−rkZpN
◦
2,w,N1 ].

Combining the results of the section, we obtain the following.

Corollary 3.5.6. Assume that G = GLn, T = Tn and B = Bn. Let w ∈
Q1WQ2 such that wM2(L)w−1 ⊂M1(L). Then, for every π ∈ D+

sm(O/ϖm[M1(L)]),
σ ∈ Modsm(O/ϖm[M2(OL)]) finite free as an O/ϖm-module, and j ∈ Z≥0,
the group

RjHomO/ϖm[M2(OL)](σ,RΓ(N2(OL), IndG(L)
Q1(L)π)Q2-ord)

admits

Rj−rkZpN
◦
2,w,N1 HomO/ϖm[M2(OL)](σ,O/ϖm(χw)⊗O/ϖm τ−1

w RΓ(N◦
w, π)Qw-ord)

as a H(σ)-equivariant subquotient.

For the reader’s convenience, we spell out the case of interest for our
application in proving local-global compatibility. For this we introduce some
notation that hopefully makes it easier to motivate how Corollary 3.5.6 will be
applied. In particular, consider G̃ = GL2n, and set P = P(n,n) ⊂ G̃ to be the
Siegel parabolic with Levi decomposition P = G ⋉ U . Moreover, set Q̃ ⊂ P
to be any standard8 parabolic subgroup with Levi decomposition M̃⋉ ‹N . Set
Q̃ ∩ G = Qc × Q ⊂ G = GLn × GLn and denote their Levi decompositions
by Mc ⋉ Nc, and M ⋉ N , respectively. Note that M̃ = Mc ×M . Denote
by Q̃w0 ⊂ P ⊂ G̃ the standard parabolic subgroup with Levi decomposition

8Standard with respect to the Borel of upper triangular matrices.
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M̃w0 ⋉ ‹Nw0 where M̃w0 = M × Mc ⊂ GLn × GLn. Pick σ̃ = σ ⊗ σc ∈
Modsm(O/ϖm[M̃w0(OL]) = Modsm(O/ϖm[M(OL) ×Mc(OL)]), finite free as
an O/ϖm-module. Finally, note that wP0 ∈ PW

‹Qw0 . Then a direct application
of Corollary 3.5.6 with Q1 = P , Q2 = Q̃w0 , and w = wP0 gives.

Corollary 3.5.7. For every π ∈ D+
sm(O/ϖm[G(L)]), and j ∈ Z≥0, the group

RjHomO/ϖm[M̃w0 (OL)](σ̃, RΓ(‹Nw0(OL), Ind‹G(L)
P (L)π)‹Qw0 -ord)

admits

RjHomO/ϖm[M(OL)×Mc(OL)](σ ⊗ σc, RΓ(N(OL)×Nc(OL), τ−1
wP

0
π)Q×Qc-ord)

as a H(σ)×H(σc)-equivariant subquotient.

We also deduce a dual statement computing Q̃-ordinary parts of a Bruhat
stratum of Ind‹G(L)

P (L)π.

Corollary 3.5.8. For every π ∈ D+
sm(O/ϖm[G(L)]), and integer j ∈ Z≥0,

the group
RjHomO/ϖm[M̃(OL)](τwP

0
σ̃, RΓ(‹N1

, Ind‹G(L)
P (L)π)‹Q-ord)

admits

RjHomO/ϖm[Mc(OL)×M(OL)](σc ⊗ σ,RΓ(N1
c ×N

1
, π)Qc×Q-ord)

as a H(σc)×H(σ)-equivariant subquotient.

Proof. We reduce it to Corollary 3.5.6. Set z̃p := u
‹Q
p ∈ Z+

M̃
to be the usual

element defining the Up-operator with respect to Q̃ and w̃0 := w
‹Q
0 . Set

Q̃w̃0 = M̃ w̃0 ⋉ ‹N w̃0 to be the standard parabolic subgroup with Levi sub-
group w̃−1

0 M̃w̃0. Note that N
◦ := z̃pw̃0‹N w̃0(OL)(z̃pw̃0)−1 ⊂ ‹N1

and, by
Remark 3.3.2, we have a natural (H(τwP

0
σ̃)-equivariant) isomorphism

RjHomO/ϖm[M̃(OL)]

Å
τwP

0
σ̃, RΓ(‹N1

, Ind‹G(L)
P (L)π)‹Q-ord

ã
∼=

RjHomO/ϖm[M̃(OL)]

(
τwP

0
σ̃, RΓ(N◦

, Ind‹G(L)
P (L)π)‹Q-ord

)
.

Moreover, multiplication by z̃pw̃0 sets up a H(τPw0σ̃)-equivariant isomorphism
between the latter and

RjHomO/ϖm[M̃ w̃0 (OL)]

(
τwQ×Qc

0
σ̃, RΓ(‹N w̃0(OL), Ind‹G(L)

P (L)π)‹Qw̃0 -ord
)

(3.5.4)
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where the Hecke action on 3.5.4 is through the isomorphism H(τwP
0
σ̃) ∼=

H(τwQ×Qc
0

σ̃) induced by w̃0. Set N w̃0×N w̃0
c := ‹N w̃0∩G and note that N w̃0 , re-

spectively N w̃0
c is the unipotent radical corresponding to M w̃0 := wQ0 MwQ,−1

0 ,
respectively M w̃0

c := wQc
0 Mcw

Qc,−1
0 . Then Corollary 3.5.6 shows that 3.5.4

admits

RjHomO/ϖm[M w̃0,0
c ×M w̃0,0]

(
τwQc

0
σc × τwQ

0
σ,RΓ(N w̃0

c (OL)×N w̃0(OL), π)Q
w̃0
c ×Qw̃0 -ord

)
(3.5.5)

as a H(τwQ×Qc
0

σ̃)-equivariant subquotient. Note that w̃0 = (wQc
0 , wQ0 )wP0 =

wP0 (wQ0 , wQc
0 ). Therefore, multiplication by (wQc

0 uQc
p , wQ0 u

Q
p ) and another ap-

plication of Remark 3.3.2 sets up a H(σ̃) ∼= H(τw̃0σ̃)-equivariant isomorphism
between 3.5.5 and

RjHomO/ϖm[Mc(OL)×M(OL)]
Ä
τwP

0
σ̃, RΓ(N1

c ×N
1
, π)Qc×Q-ord

ä ∼=
RjHomO/ϖm[Mc(OL)×M(OL)](σc ⊗ σ,RΓ(N1

c ×N
1
, π)Qc×Q-ord).
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Chapter 4

Q-ordinary parts in
characteristic 0

In this chapter, we discuss the notion of taking ordinary parts of smooth
admissible representations of a p-adic reductive group that arise as local com-
ponents of cohomological automorphic representations (see [Ger18], §5.1 for
instance). In fact, we take a slightly more involved approach and define or-
dinary parts of locally algebraic representations in terms of Emerton’s slope
0 part. It will allow us to compare it to the corresponding Jacquet module
and to our previous notion of ordinary parts. The latter will be useful in the
endgame of proving our local-global compatibility results. We will then prove
our main characteristic 0 result regarding Q-ordinary parts of Q-ordinary lo-
cally algebraic representations of GLn. Finally, we close the chapter with
deducing Q-ordinary local-global compatibility for regular algebraic cuspidal
automorphic representations of GLn in the conjugate self-dual case.

4.1 Ordinary parts of locally algebraic repre-
sentations

We briefly summarise the notion of ordinary parts for locally algebraic
representations as introduced in [BD20], §4.3 (see also [Eme11], §5.6) and
how it compares to Emerton’s ordinary part functor from [Eme10a] when the
representation admits an invariant lattice. We revisit the setup of §3.1 and
without further notice will use the introduced notation. However, we further
assume that G is split over L and fix a choice of maximal torus T and a Borel
subgroup B containing it. Finally, Q is now assumed to be standard with
respect to B. Recall that our coefficient field is E/Qp, a finite extension,
large enough, so that [L : Qp] = Hom(L,E). Then, given a (ResL/QpB)E-
dominant weight λ ∈ Hom((ResL/QpT )E,Gm,E) ∼= ⊕ι:L↪→EHom(TE,Gm,E),
set Vλ = ⊗ιVλι to be the corresponding absolutely irreducible algebraic E-
representation of G(L). Note that the dual V ∨

λ is isomorphic to Vλ∨ where

111
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λ∨ := −wG0 λ.

Definition 4.1.1. An E-representation Π of G(L) is called locally algebraic
of weight λ if it is locally Vλ∨-algebraic in the sense of [Eme17], Definition
4.2.1 such that the smooth vectors Hom(Vλ∨ ,Π)sm = lim−→K→1 HomK(Vλ∨ ,Π)
form an admissible smooth representation of G(L).

We note that our definition admits a more intrinsic formulation (cf. [Eme17]
Definition 6.3.9, Proposition 6.3.10).

Remark 4.1.2. Note that any locally algebraic E-representation Π of weight
λ is of the form π ⊗ Vλ∨ with π a smooth admissible E-representation (cf.
[Eme17], Proposition 4.2.4). The functor Hom(Vλ∨ ,−)sm sets up a natural
equivalence between the category of locally algebraic E-representations of
G(L) of weight λ and the category of smooth admissible E-representations
of G(L). However, the reason one might want to appeal to the notion of
locally algebraic representations is that it yields a different notion of p-adic
integrality. Indeed, this is our motivation to work with locally algebraic
representations.

Remark 4.1.3. Note that, Vλ being an algebraic E-representation of ResL/QpG,

V N0

λ
∼= V

N(L)
λ

as subspaces of Vλ. Moreover, the latter is the absolutely irreducible repre-
sentation of M(L) associated with λ viewed as a (ResL/QpB∩M)E-dominant
weight for (ResL/QpM)E (see [Cab84]). In particular, the former is naturally
an M(L)-representation. As a corollary, one sees that for a locally algebraic
E-representation Π = π ⊗ Vλ∨ of weight λ, we have an induced identification
ΠN0 ∼= πN

0 ⊗ V N(L)
λ∨ . Moreover, under this isomorphism, the Hecke action of

M+ on ΠN0 coincides with the M+-action on πN0 ⊗V N(L)
λ∨ given by the usual

Hecke action on the first factor and the natural action on the algebraic part
(see the proof of [Eme17], Proposition 4.3.6).

We now introduce the notion of finite slope and slope 0 parts of ΠN0 . For
b ≥ 1, consider the finite dimensional E-vector space

Πb := πQ(b,b) ⊗ V N(L)
λ∨ ⊂ ΠN0

.

By Hypothesis 3.1.3, it is a Z+
M -invariant subspace. Denote by Bb the E-

subalgebra of EndE(Πb) generated by Z+
M . This is an Artinian E-algebra and

as such, it decomposes into a product of local Artinian E-algebras indexed by
its maximal ideals. We then say that a maximal ideal m ⊂ Bb is of finite slope
if the image of Z+

M in Bb is disjoint from m. For such an m, the composition

Z+
M → Bb ↠ Bb/m ↪→ Qp
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lands in Q×
p . We further say that a finite slope maximal ideal m ⊂ Bb is

of slope zero if the composition lands in Z×
p . Considering the corresponding

factors of Bb induces Z+
M -equivariant decompositions

Πb
∼= (Πb)fs ⊕ (Πb)null ∼= (Πb)0 ⊕ (Πb)>0 (4.1.1)

into finite slope and slope 0 parts and their complements. Note that (Πb)0 ⊂
(Πb)fs and that the Z+

M -action uniquely extends to a ZM(L)-action on both by
definition. The decompositions in 4.1.1 are easily checked to be compatible
when we vary b. Therefore, by passing to the colimit over b ≥ 1, we get
Z+
M -equivariant decompositions

ΠN0 ∼= (ΠN0)fs ⊕ (ΠN0)null ∼= (ΠN0)0 ⊕ (ΠN0)>0.

Moreover, in the colimit, the decompositions are preserved by the M+-action.
In particular, Lemma 3.1.4 and Remark 4.1.3 shows that (ΠN0)fs and (ΠN0)0
become locally algebraic E-representations of M(L) of weight wM0 wG0 λ =
wQ0 λ.

First, we compare the finite slope part with the classical (unnormalised)
Jacquet functor. This is essentially the theory of canonical liftings that goes
back to Casselman (cf. [Cas95]).

Proposition 4.1.4. We have a natural M(L)-equivariant isomorphism

(ΠN0)fs ⊗ δQ ∼= JQ(π)⊗ V N(L)
λ∨

induced by the natural M+-equivariant (surjective) map

ΠN0 ⊗ δQ → JQ(π)⊗ V N(L)
λ∨ .

Proof. This can be deduced from [Eme06a], §4.3. We sketch an argument
here. It is an easy consequence of the definitions that (ΠN0)fs = (πN0)fs ⊗
V
N(L)
λ∨ and (ΠN0)null = (πN0)null⊗V N(L)

λ∨ . Moreover, one sees that (πQ(b,b))null ⊂
πQ(b,b) is the subspace of vectors on which, for some choice of zp ∈ Z+

M
1 as in

Lemma 3.1.4, the action of zp is nilpotent. Using this description of (πN0)null,
one sees that (πN0)null is exactly the kernel of the natural πN0 → JQ(π).
Moreover, [Eme06a], Proposition 4.3.4 i) shows that πN0 ⊗ δQ → JQ(π) is
an M+-equivariant surjection (see also [Cas95], Theorem 3.3.3 and Lemma
4.1.1). Note that in [Eme06a] we don’t see the appearance of δQ. This is due
to the fact that they work with a different normalisation of the Hecke action
on πN

0 (see loc. cit. Definition 3.4.1). Combining these observations, we get
the proposition.

1Hence for any choice of such zp.
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Remark 4.1.5. To avoid confusion, we point out that what is denoted by JQ
in [Eme06a] is Emerton’s locally analytic Jacquet functor. It can be applied
to a certain class of locally analytic representations Π of G(L) and defined
by the analogous formula (ΠN0)fs for a suitable notion of finite slope parts
in this setup. Without elaborating on it any further, we just note that it is
easily extracted from [Eme06a], §4.3 that the constructions of [BD20], §4.3
are all compatible with the ones of Emerton. In other words, for Π a locally
algebraic E-representation of G(L) we have JQ(Π) ∼= (ΠN0)fs ⊗ δQ where the
former is in the sense of Emerton and the latter is in the sense of Breuil–Ding.
Again, the character δQ appears because of the different normalisations of the
Hecke action. From now on, we freely use the notation JQ(Π) for Π a locally
algebraic representation to denote its Jacquet module in the sense of Emerton.
In light of Proposition 4.1.4, it recovers the classical Jacquet functor.

We now turn to discussing (ΠN0)0. We would like to compare it with
Emerton’s ordinary parts for smooth admissible O/ϖm[G(L)]-modules (cf.
[Eme10a]). In order to have a chance to compare the two notions, we assume
that our Π is also a unitary representation of G(L). By this we mean that
there is an O-lattice Π◦ ⊂ Π2 that is invariant under the action of G(L). The
given lattice induces O-lattices Π◦

b := Π◦ ∩ Πb ⊂ Πb which are necessarily
finite and free as O-modules. Then, for an integer b ≥ 1, set Ab to be the
O-subalgebra of EndO(Π◦

b) generated by Z+
M . This is a finite O-algebra and,

in particular, we have Ab ∼=
∏

n(Ab)n, where the propduct runs over maximal
ideals in Ab. Call a maximal ideal n ⊂ Ab ordinary if the image of Z+

M in Ab
is disjoint from n. This gives a Z+

M -equivariant decomposition
Π◦
b
∼= (Π◦

b)ord ⊕ (Π◦
b)nonord

and, just as before, the Z+
M -action on (Π◦

b)ord extends uniquely to a ZM(L)-
action. By passing to the colimit over b ≥ 1, we obtain an M+-equivariant
decomposition

Π◦,N0 ∼= Ordlalg
Q (Π◦)⊕ NOrdlalg

Q (Π◦).
Therefore, Ordlalg

Q (Π◦) is naturally a representation of M(L). Then [BD20],
Lemma 4.10 shows that we have a natural isomorphism

Ordlalg
Q (Π◦)⊗O E ∼= (ΠN0)0

of locally algebraic E-representations of M(L). In particular, the former is
independent of the choice of lattice Π◦ ⊂ Π and N0 and the latter is unitary.
Motivated by this, introduce the following notation.
Definition 4.1.6. Let Π be a locally algebraic E-representation of G(L) of
weight λ. We then define its Q-ordinary part

Ordlalg
Q (Π) := (ΠN0)0,

a locally algebraic E representation of M(L) of weight wQ0 λ.
2In other words, an O-submodule that spans Π over E and contains no E-line.
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In the rest of the section, we will justify that when Π is assumed to be
unitary our locally algebraic Q-ordinary parts does behave like an ordinary
part. In the next section we will see that in fact under some a priori milder
assumption it still behaves like an ordinary part functor.

From now on, for the rest of the section, we assume that Π is unitary
and choose an O-lattice Π◦. For an integer m ≥ 1, we can also introduce
analogous constructions for Π◦

b/ϖ
m to get a Z+

M -equivariant decomposition
Π◦
b/ϖ

m ∼= (Π◦
b/ϖ

m)ord ⊕ (Π◦
b/ϖ

m)nonord. The natural map then induces an
isomorphism (cf. [BD20], 4.16)

(Π◦
b)ord/ϖ

m ∼−→ (Π◦
b/ϖ

m)ord. (4.1.2)

On the other hand, Π◦/ϖm is a smooth admissible O/ϖm[G(L)]-module so
one can take its Q-ordinary part in the sense of Emerton. Then [BD20],
Lemma 4.14 shows that we have a natural injection

lim−→
b≥1

(Π◦
b/ϖ

m)ord ↪→ OrdQ(Π◦/ϖm) (4.1.3)

where the latter is Emerton’s Q-ordinary part (cf. [Eme10a], Definition
3.1.7).3 However, due to the presence of group cohomology, 4.1.3 is not nec-
essarily surjective. Combining 4.1.2 and 4.1.3, one gets (cf. [BD20], Lemma
4.16) a natural M(L)-equivariant injection

Ordlalg
Q (Π◦) ↪→ OrdQ(Π◦) := lim←−

m

OrdQ(Π◦/ϖm). (4.1.4)

Remark 4.1.7. The map 4.1.4 is clearly not surjective in general: The source
is a locally algebraic representation, the target is a lattice in an E-Banach
space representation. A more sensible question to ask is whether it has dense
image or not. One notes that it does have dense image as long as 4.1.3 is
surjective, see [BD20], Remark 4.15 and Remark 4.17.

Given a unitary admissible E-Banach space representation Π of G(L),
with a unit ball Π◦, then lim←−m OrdQ(Π◦/ϖm) is what Emerton calls OrdQ(Π◦)
in [Eme10a]. Moreover, one can then set OrdQ(Π) := OrdQ(Π◦) ⊗O E.4 We
borrow his notation. We conclude the section with discussing a corollary
of the adjunction property of [BD20], §4.4. Before stating the corollary, we
introduce the following notation. Let Π be any E-representation of G(L) and
W be an algebraic E-representation of G(L). We then denote by ΠW -lalg ⊂ Π
the G(L)-invariant subspace of locally W -algebraic vectors in Π in the sense
of [Eme17], Proposition-Definition 4.2.6.

3We note here that since we are in an admissible situation, Emerton’s ordinary part
simplifies to localising (Π◦/ϖm)N0 along O[zp] ↪→ O[z±1

p ] for any zp as in Lemma 3.1.4
(see [Eme10b], Lemma 3.2.1).

4One checks easily that it is independent of the choice of unit ball.
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Proposition 4.1.8. Let Π be a unitary admissible5 E-Banach space repre-
sentation of G(L). Then, for any choice of (ResL/QpB)E-dominant weight λ,
we have a natural M(L)-equivariant identification

OrdQ(Π)V
N(L)

λ∨ -lalg ∼= Ordlalg
Q (ΠVλ∨ -lalg).

Proof. Before proving the proposition, we first remark that the statement
indeed makes sense. In other words, we need to check that ΠVλ∨ -lalg is in-
deed a locally algebraic representation (of weight λ) in the sense of this text.
Note that the functor of taking locally Vλ∨-algebraic vectors factors through
the functor Π 7→ Πla of taking locally analytic vectors. By [Eme17], Propo-
sition 6.2.2 and Proposition 6.2.4, we see that Πla is an admissible locally
analytic representation of G(L). By loc. cit. Proposition 6.3.6, we see that
Πla,Vλ∨ -lalg ∼= ΠVλ∨ -lalg is again an admissible locally analytic representation.
Finally, the claim follows from loc. cit. Proposition 6.3.10 by noting that
EndE[G(L)](Vλ∨) = E.

Now the proposition easily follows from [BD20] §4 as we explain now. We
first apply [BD20], Lemma 4.18 with the choice V = ΠVλ∨ -lalg ⊂ W = Π,
W ◦ = Π◦ and V ◦ = V ∩W ◦. It gives an injection

Ordlalg
Q (ΠVλ∨ -lalg) ↪→ OrdQ(Π). (4.1.5)

As Ordlalg
Q (ΠVλ∨ -lalg) is a locally algebraic representation of M(L) of weight

wQ0 λ, it necessarily lands in OrdQ(Π)V
N(L)

λ∨ -lalg.
For the other inclusion, note that OrdQ(Π) is again a unitary admissible

E-Banach space representation by [Eme10a], Theorem 3.4.8 (and [Eme17],
Proposition 6.5.7). Therefore, we see that OrdQ(Π)V

N(L)
λ∨ -lalg ∼= π⊗ V N(L)

λ∨ is a
locally algebraic representation of weight wQ0 λ. Consider the natural inclusion

ιv : π ⊗ V N(L)
λ∨

∼= OrdQ(Π)V
N(L)

λ∨ -lalg ↪→ OrdQ(Π).

Then [BD20], Proposition 4.21 applied to f := ιv yields a map

IndG(L)
Q(L)π ⊗ Vλ∨ → Π

and ιv can be reconstructed by precomposing the map

Ordlalg
Q (IndG(L)

Q(L)π ⊗ Vλ∨)→ OrdQ(Π) (4.1.6)

induced by loc. cit. Lemma 4.18 with the inclusion

π ⊗ V N(L)
λ∨ ↪→ Ordlalg

Q (IndG(L)
Q(L)π ⊗ Vλ∨)

of loc. cit. Lemma 4.19. But 4.1.6 factors through 4.1.5 and the proof is
finished.

5For the notion of admissible E-Banach space representations, see [ST06], and [Eme17],
§6.
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4.2 Ordinary parts of weakly admissible rep-
resentations

We introduce the notion of weakly admissible locally algebraic represen-
tations, an a priori weaker integrality notion than unitariness. We then prove
that the notion of being Q-ordinary behaves well for such representations.
For the rest of the section, we assume that G = GLn, T is the torus of di-
agonal matrices and B is the Borel subgroup of upper-triangular matrices.
In particular, Q = P(n1,...,nt) for a partition n1 + ... + nt = n. Fix a choice
of uniformiser ϖL ∈ OL and recall that e denotes the ramification index of
L. Moreover, for integers 0 ≤ b ≤ c with c ≥ 1, let Q(b, c) ⊂ G(OL) be the
corresponding parahoric subgroup associated with Q. Then, by the Iwahori
decomposition, Q(b, c) = N

c
M bN0. For 1 ≤ i ≤ n, set

u(i)
p := diag(ϖL, ..., ϖL, 1, ..., 1)

where the first i elements are given by ϖL and the rest by 1. Then u(n1)
p ·

.... · u(n1+...+nt−1)
p ∈ Z+

M is our choice for the role of zp from the proof of
Lemma 3.1.4. For x ∈ L×, set ⟨x⟩ := diag(x, ..., x) ∈ G(L).

Definition 4.2.1. Let Π be a locally algebraic E-representation of G(L) of
weight λ. We say that Π is weakly admissible (of weight λ) if, for any standard
parabolic subgroup Q′ = M ′ ⋉ N ′ ⊂ G and locally algebraic character χ :
ZM ′(L)→ Q×

p , such that HomZM′ (L)(χ, JQ′(Π)) ̸= 0, we have

| χ(z)δ−1
Q′ (z) |p≤ 1,

for every z ∈ Z+
M ′ . We denote the category of such representations by

Modwa,λ
E (G(L)).

Remark 4.2.2. This is what Hu refers to as Emerton’s condition in [Hu09],
where he proves the "easy" direction of the Breuil–Schneider conjecture.6 The
main result (Théorème 1.2) of [Hu09] shows that, at least when Π is of the
form π ⊗ Vλ∨ with π irreducible and generic, Π is weakly admissible if and
only if recT (π) comes from a de Rham Galois representation with Hodge–Tate
weights given by the usual ρ-shift of λ. The latter means that the (φ,N,GL)-
module associated with recT (π) admits a filtration with jumps given by the ρ-
shift of λ that makes it a weakly admissible filtered (φ,N,GL)-module.7 The
way Hu applies it to the Breuil–Schneider conjecture is that if Π is unitary

6In fact, he asks for this condition to be satisfied for any parabolic subgroup Q′ ⊂ G, but
as it is explained in loc. cit. Remarque 2.11, it suffices to check it for standard parabolic
subgroups.

7To avoid confusion, note that the original formulation of the Breuil–Schneider conjec-
ture uses different normalisations. Namely, one instead asks whether the representation
π(n−1)⊗Vλ∨+n−1 admits a unitary completion. As the character (|det |det)n−1 is unitary,
regardless of the mismatch, the two different normalisations yield equivalent conjectures.
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then one deduces easily that it must be weakly admissible (see [Eme06a],
Lemma 4.4.2).

Using Emerton’s condition to define weak admissibility has the advantage
of being easy to keep track of while proving results regarding weakly admis-
sible representations. However, we record here an equivalent condition that
has the advantage that in the case of our examples appearing in this text it
will clearly be satisfied.

Lemma 4.2.3. Let Π = π ⊗ Vλ∨ be a locally algebraic E-representation of
G(L) of weight λ and P(n′

1,...,n
′
h

) = Q′ = M ′ ⋉ N ′ ⊂ G a standard parabolic
subgroup. The following two conditions are equivalent:

i. For each 1 ≤ i ≤ h, the generalised eigenvalues of the double coset
operator [N ′0u(n1+...+ni)

p N ′0] acting on ΠN ′0 lie in Zp.

ii. For any locally algebraic character χ : ZM(L)→ Q×
p with

HomZM (L)(χ, JQ′(Π)) ̸= 0,

we have
|χ(z)δ−1

Q′ (z)|p ≤ 1

for every z ∈ Z+
M .

In particular, Π is weakly admissible if and only if it satisfies i) for every
choice of standard parabolic subgroup Q′ ⊂ G.

Proof. We first make a few observations about condition ii). Note that χ is
of the form χsm⊗ χalg. Moreover, JQ′(Π) = JQ′(π)⊗ V(wQ

0 λ)∨ and V(wQ
0 λ)∨ has

constant central character sending u(n′
1+...+n′

i)
p to

−wG0 λ(u(n′
1+...+n′

i)
p ) =

∏
ι:L↪→E

ι(ϖL)−(λι,n+...+λι,n+1−(n1+...+ni)).

Therefore, χ is forced to be a smooth twist of −wG0 λ.
Moreover, after extending π to a Qp-representation, we can apply [Cas95],

Proposition 2.1.9 to get a direct sum decomposition

JQ′(π) =
⊕

χsm:ZM′ (L)→Q×
p

JQ′(π)χsm (4.2.1)

of the M(L)-representation into generalised eigenspaces with respect to all
the possible central characters. Here we used that both base change to Qp

and JQ′ preserves admissibility. In particular, we see that JQ′(π)χsm ̸= 0 if
and only if HomZM′ (L)(χsm(−wG0 λ), JQ′(Π)) ̸= 0.

We also note that the decomposition 4.2.1 is a refinement of the decom-
position of JQ′(π) into generalised eigenspaces with respect to the actions of
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the u(n′
1+...+n′

i)
p ’s. On the other hand, it is easy to check that χ|Z0

M′
and δQ′|Z0

M′

necessarily land in Z×
p . So the inequality |χ(z)δ−1

Q′ (z)|p ≤ 1 is satisfied for all
z ∈ Z+

M ′ if and only if it is satisfied for z = u
(n′

1+...+n′
i)

p for all 1 ≤ i ≤ h.
Finally, we finish the proof by recalling that the natural map ΠN ′0⊗δQ′ →

JQ′(Π) is Z+
M ′-equivariant, and its kernel is the subspace on which the Up-

operators act nilpotently.
Remark 4.2.4. As was promised, using Lemma 4.2.3, we can find a large
source of examples of weakly admissible representations. Namely, given a
number field F , we can consider any regular algebraic cuspidal automor-
phic representation π of GLn(AF ) of weight λ. Given a p-adic place v ∈
Sp(F ), set L = Fv, and look at the component πv, a smooth admissible
C-representation of G(L). After fixing an identification t : Qp

∼= C, we
can find a model of t−1πv over some large enough field extension E/Qp.
Since t−1πv can then be found as a GLn(Fv)-equivariant direct summand
in (lim−→Kv⊂GLn(OFv ) H

∗(XKvKv ,Vλ)) ⊗O E and the normalised Up-operators
already act integrally on the latter by [CN23], Lemma 2.1.17, we see that
Lemma 4.2.3, i) is satisfied for any standard parabolic subgroup, making
t−1πv ⊗E Vλ∨ into a weakly admissible E-representation of G(L).
Definition 4.2.5. Let Π be a weakly admissible E-representation of G(L)
of weight λ. We say that Π is Q-ordinary if Ordlalg

Q (Π) ̸= 0. We denote the
subcategory of such by ModQ-ord,λ

E (G(L)) ⊂ Modwa,λ
E (G(L)).

Remark 4.2.6. We also note that both the notion of weakly admissible and
the notion of ordinary generalises to any split reductive group over L and we
will be speaking of weakly admissible and ordinary representations of Levi
subgroups M(L) of G(L) without further explanation.

We would also like to talk about parabolic induction for locally algebraic
representations.
Definition 4.2.7. Let ΠM = πM⊗V(wG

0 λ)∨ be a weakly admissibleE-representation
of M(L) of weight wQ0 λ. We then set its parabolic induction to be

IndGQ(ΠM) := (IndG(L)
Q(L)πM)⊗ Vλ∨ ,

a locally algebraic E-representation of G(L) of weight λ.
Note that IndGQ can only be applied to locally algebraic representations

with weight of the form wQ0 λ.
The key result of the section is the following theorem.

Theorem 4.2.8. Let ΠM be a weakly admissible E-representation of M(L)
of weight wQ0 λ. Then IndGQ(δQ⊗ΠM) is a weakly admissible E-representation
of G(L) of weight λ and we have a natural isomorphism

Ordlalg
Q (IndGQ(δQ ⊗ ΠM)) ∼= Ordlalg

M (ΠM). (4.2.2)
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In particular, if ΠM is M-ordinary, then IndGQ(δQ ⊗ ΠM) is Q-ordinary and
if ΠM is also absolutely irreducible, we have Ordlalg

Q (IndGQ(δQ ⊗ ΠM)) ∼= ΠM .

Before starting the proof, we prove some preliminary technical lemmas.
The proof of these lemmas and the proof of Theorem 4.2.8 was intentionally
written in a way so that it clearly generalises to split reductive groups other
than GLn. However, we kept the assumption G = GLn for the whole section
as later we will appeal to the specific features of the representation theory of
GLn(L), such as the Bernstein–Zelevinsky classification.

Introduce the following notation. Denote by ΣG the set of roots of (G, T )
and by Σ+

G ⊂ ΣG the subset of B-dominant roots. Given a standard parabolic
subgroup M ′ ⋉N ′ = Q′ ⊂ G, analogous notations apply to M ′. Further de-
note by ΣN ′ ⊂ Σ+

G the roots corresponding to N ′. Note that Σ+
G = Σ+

M ′
∐ ΣN ′

and ΣG = −ΣN
∐ ΣM ′

∐ ΣN ′ .

Lemma 4.2.9. Let M⋉N = Q,M ′⋉N ′ = Q′ ⊂ G be two standard parabolic
subgroups, ν ∈ X∗(ZM ′) be a cocharacter that is moreover B-dominant. Con-
sider an element w ∈ Q′

WQ and define the standard parabolic subgroups
Mw−1 ⋉ Nw−1 = QM

w−1 := M ∩ w−1Q′w ⊂ M and M ′
w ⋉ N ′

w = QM ′
w := M ′ ∩

wQw−1 ⊂M ′. Then w−1ν is in X∗(ZMw−1 ) and is a B∩M-dominant cochar-
acter. In particular, the isomorphism M ′

w(L) ∼−→ Mw−1(L), m 7→ w−1mw
restricts to a map Z+

M ′ → Z+
Mw−1 .8

Proof. To see that w−1ν lies in X∗(ZMw−1 ), note that, by [Hau18], Lemma
2.1.1, (ii), we have Mw−1 = M ∩ w−1M ′w and M ′

w = M ′ ∩ wMw−1. In
particular, conjugation by w−1 restricts to an isomorphism M ′

w
∼−→ Mw−1

from which the claim follows.
To verify that w−1ν is B ∩M -dominant, we have to check that for any

α ∈ Σ+
M , we have ⟨w−1ν, α⟩ ≥ 0. Equivalently, we prove that ⟨ν, wα⟩ ≥ 0.

Since w ∈ Q′
WQ, we know that wα ∈ Σ+

G so the inequality follows from the
fact that ν is B-dominant.

For the last claim of the lemma, note that any z ∈ Z+
M ′ must be of the form

ν(ϖL) · z′ for some B-dominant cocharacter ν ∈ X∗(ZM ′) and z′ ∈ Z0
M ′ .

Lemma 4.2.10. Let M⋉N = Q, M ′⋉N ′ = Q′, w ∈ Q′
WQ, QM

w−1 = Mw−1 ⋉
Nw−1 and QM ′

w = M ′
w⋉N ′

w as in Lemma 4.2.9. Further consider the standard
parabolic subgroups Qw−1 = Mw−1 ⋉ (Nw−1N), Q′

w = M ′
w ⋉ (N ′

wN
′) ⊂ G.

Then, for any z ∈ Z+
M ′, we have

valp(δQ′
w
(z)) ≤ valp(δQw−1 (w−1zw)).

Moreover, if w ̸= 1, we can find z ∈ Z+
M ′ such that valp(δQ′

w
(z)) < valp(δQw−1 (w−1zw)).

8Note that Mw−1 is considered as a Levi subgroup in M and Z+
Mw−1

has its meaning
accordingly.
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Proof. Recall that we have

δQ′
w
(z) =

∣∣∣∣∣∣ ∏
α∈ΣN′

w

∐
ΣN′

α(z)

∣∣∣∣∣∣
L

and

δQw−1 (w−1zw) =

∣∣∣∣∣∣ ∏
α∈ΣN

w−1
∐

ΣN

α(w−1zw)

∣∣∣∣∣∣
L

=

∣∣∣∣∣∣ ∏
α∈ΣN

w−1
∐

ΣN

wα(z)

∣∣∣∣∣∣
L

.

We also note that w ∈ Q′
WQ means that we have

i. w−1(−Σ+
G) ∩ Σ+

G ⊂ ΣN , and

ii. (−Σ+
G) ∩ w(Σ+

G) ⊂ −ΣN ′ .

Moreover, by [Hau18], Lemma 2.1.1, (ii), w sets up a bijection between ΣMw−1

and ΣM ′
w
. In particular, we have

w(ΣNw−1

∐
ΣN) ⊂ ΣN ′

w

∐
ΣN ′

∐
−ΣN ′ .

From this the first part of the lemma follows.
For the last part, we assume that 1 ̸= w and would like to find z ∈ Z+

M ′

such that δQ′
w
(z) < δQw−1 (w−1zw). Note that if we found an α ∈ ΣN such that

wα ∈ −ΣN ′ , then for any choice of a B-dominant cocharacter ν ∈ X∗(ZM ′)
with ⟨ν, wα⟩ < 0, ν(ϖ) would be a suitable choice for z. The existence of
such an α is the content of [AHV19], Lemma 5.13.

Proof of Theorem 4.2.8. We first prove that IndGQ(δQ⊗ΠM) is weakly admis-
sible. To do so, we fix a standard parabolic subgroup Q′ = M ′ ⋉N ′ ⊂ G and
write ΠM = πM ⊗ V−wG

0 λ
. We would like to understand the Z+

M ′-action on
JQ′(IndGQ(δQ ⊗ ΠM)). By applying the geometric lemma (cf. [BZ77], Lemma
2.12) to JQ′(IndG(L)

Q(L)(δQ ⊗ πM)), we obtain an M ′(L)-equivariant filtration of
JQ′(IndGQ(δQ ⊗ ΠM)) with subquotients given by

IQ
′

w :=
Å
δ

1/2
Q′ IndM ′

QM′
w

(
δ

1/2
QM′

w
w∗(δ−1/2

QM
w−1

JQM
w−1

(δ1/2
Q πM)

))ã
⊗ V(wQ

0 λ)∨
9

for w ∈ Q′
WQ where M ′

w⋉N ′
w = QM ′

w := M ′∩wQw−1 ⊂M ′, Mw−1 ⋉Nw−1 =
QM
w−1 := M ∩ w−1Q′w, and w∗(−) denotes the pullback along the isomor-

phism Mw−1(L) ∼−→ M ′
w(L), m 7→ wmw−1.10 To check weak admissibility,

9We warn the reader that we consider unnormalised versions of parabolic induction and
the Jacquet functor as opposed to [BZ77], where each of the functors are normalised, hence
the appearance of several modulus characters in the definition of IQ′

w .
10For the fact that it is indeed an isomorphism, see [Hau18], Lemma 2.1.1, (ii).
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it suffices to see that for any w ∈ Q′
WQ, any locally algebraic character

χ = χsm(−wG0 λ) : ZM ′(L) → Q×
p with a ZM ′(L)-equivariant embedding

χ ↪→ IQ
′

w and any z ∈ Z+
M ′ , we have

valp(χsm(z)) ≥ valp(wG0 λ(z)) + valp(δQ′(z)). (4.2.3)

Fix such a Weyl group element w, character χ, and embedding χ ↪→ IQ
′

w . Set
IQ

′,sm
w to be the smooth part of IQ′

w . Fix a z ∈ Z+
M ′ and compute

IQ
′,sm

w (z) = δ
1/2
Q′ (z)δ1/2

QM′
w

(z)δ−1/2
QM

w−1
(w−1zw)JQM

w−1
(δ1/2
Q πM)(w−1zw) =

= δ
1/2
Q′ (z)δ−1/2

QM
w−1

(w−1zw)δ1/2
Q (w−1zw)JQM

w−1
(πM)(w−1zw).

Here we used that z is a central element in M ′(L). Since w ∈ Q′
WQ,

Lemma 4.2.9 shows that w−1zw ∈ Z+
Mw−1 . In particular, by weak admis-

sibility of ΠM , we see that for any ZMw−1 (L)-equivariant embedding χ̃ =
χ̃sm(−wG0 λ) ↪→ JQM

w−1
(ΠM) = JQM

w−1
(πM)⊗ V−wG

0 λ
, we have

valp(χ̃sm(w−1zw)) ≥ valp(δQM
w−1

(w−1zw)) + valp(wG0 λ(w−1zw)).

Our chosen embedding χ ↪→ IQ
′

w then induces a w−1ZM ′(L)w-equivariant
embedding χ̃′

sm := (w−1)∗(χsmδ
−1/2
Q′ )δ1/2

QM
w−1

δ
−1/2
Q ↪→ JQM

w−1
(πM). As a conse-

quence, there exists a character χ̃ := χ̃sm(−wG0 λ) : ZMw−1 (L)→ Q×
p with an

embedding χ̃ ↪→ JQM
w−1

(ΠM) such that χ̃sm|w−1ZM′ (L)w = χ̃′
sm. Pick any such

χ̃ and compute

valp
(
χsm(z)δ−1/2

Q′ (z)δ1/2
QM

w−1
(w−1zw)δ−1/2

Q (w−1zw)
)

= valp(χ̃sm(w−1zw))
(4.2.4)

≥ valp(δQM
w−1

(w−1zw))+valp(wG0 λ(w−1zw)) ≥ valp(δQM
w−1

(wzw−1))+valp(wG0 λ(z)).

Here the last inequality follows from the fact that λ is (ResL/QpB)E-dominant.
After rearranging 4.2.4, we get

valp(χsm(z)) ≥ 1
2

(
valp(δQM

w−1
(w−1zw)) + valp(δQ(w−1zw))− valp(δQ′(z))

)
+

+valp(δQ′(z)) + valp(wG0 λ(z)).
In particular, it suffices to prove that

valp
(
δQM

w−1
(w−1zw)δQ(w−1zw)δ−1

Q′ (z)
)
≥ 0.

To see this, denote by Qw−1 ⊂ G the standard parabolic subgroup Mw−1 ⋉
(Nw−1N) and by Q′

w ⊂ G the standard parabolic subgroup M ′
w ⋉ (N ′

wN
′).

Then one has δQ′(z) = δQ′
w
(z) and δQM

w−1
(w−1zw)δQ(w−1zw) = δQw−1 (w−1zw).
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In particular, we only need to see that valp(δQ′
w
(z)) ≤ valp(δQw−1 (w−1zw)).

This is the content of the first part of Lemma 4.2.10. We conclude that
IndGQ(δQ ⊗ ΠM) is indeed weakly admissible.

We note that we essentially already proved the rest of the theorem, too.
Namely, recall that we have an M(L)-equivariant split injection

Ordlalg
Q (IndGQ(δQ ⊗ ΠM)) ⊕

↪−→ JQ(IndGQ(δQ ⊗ ΠM))⊗ δ−1
Q (4.2.5)

with image given by the slope 0 part (cf. §4.1). By the geometric lemma
applied to the RHS of 4.2.5, we get a surjection

JQ(IndGQ(δQ ⊗ ΠM))⊗ δ−1
Q ↠ IQ1 ⊗ δ−1

Q = ΠM (4.2.6)

with its kernel K admitting a filtration with subquotients given by IQw ⊗ δ−1
Q

for 1 ̸= w ∈ QWQ. In particular, if we prove that, for any 1 ̸= w ∈ QWQ, the
slope zero part (δ−1

Q ⊗ IQw )0 is trivial, then we immediately obtain that 4.2.2
holds. Indeed, we then can conclude by applying slope 0 part to the short
exact sequence

0→ K → JQ(IndGQ(δQ ⊗ ΠM))⊗ δ−1
Q → ΠM → 0.

By the proof of Lemma 4.2.3, to prove the claimed description of K, it is
enough to check that for any 1 ̸= w ∈ QWQ and any locally algebraic charac-
ter χ = χsm(−wG0 λ) : ZM(L)→ Q×

p with an embedding χ ↪→ Iw ⊗ δ−1
Q , there

is a z ∈ Z+
M such that

valp(χsm(z)) > valp(wG0 λ(z)).

Based on the previous paragraph of the proof, to see this, we only need to
prove that we can find z ∈ Z+

M such that valp(δQw(z)) < valp(δQw−1 (w−1zw)).
This is the content of the second part of Lemma 4.2.10.

Theorem 4.2.8 shows that we obtain a functor

IndGQ(−⊗ δQ) : Modwa,wQ
0 λ

E (M(L))→ Modwa,λ
E (G(L))

that restricts to a functor

ModM -ord,wQ
0 λ

E (M(L))→ ModQ-ord,λ
E (G(L)).

Furthermore, we already constructed a functor

Ordlalg
Q (−) : Modwa,λ

E (G(L))→ Modwa,wQ
0 λ

E (M(L)).

We introduce the notion of Z-integral weakly admissible representations which,
by Theorem 4.2.8, form the essential image of Ordlalg

Q .
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Definition 4.2.11. Call a weakly admissible E-representation Π of G(L)
(of weight λ) Z-integral if Ordlalg

G (Π) = Π. We denote the corresponding
subcategory by ModZ-int,λ

E (G(L)) ⊂ Modwa,λ
E (G(L)).

Lemma 4.2.12. The pair of functors (Ordlalg
Q , IndGQ(− ⊗ δQ)), between the

categories Modwa,λ
E (G(L)) and ModZ-int,wQ

0 λ
E (M(L)), forms an adjoint pair.

The association in one direction sends, for Π ∈ Modwa,λ
E (G(L)), ΠM ∈

Modwa,wQ
0 λ

E (M(L)), a map f : Π → IndGQ(ΠM ⊗ δQ) to the composition
Ordlalg

Q (Π) g1−→ Ordlalg
Q (IndGQ(ΠM ⊗ δQ)) g2−→ ΠM where g1 is induced by ap-

plying Ordlalg
Q to f and g2 is the isomorphism of Theorem 4.2.8.

Proof. By Frobenius reciprocity, maps of the form f : Π → IndGQ(ΠM ⊗ δQ)
are in natural bijection with maps of the form g : JQ(Π) → ΠM ⊗ δQ. Since
ΠM is Z-integral, any such g must factor through the split surjection

JQ(Π) ↠ Ordlalg
Q (Π)⊗ δQ. (4.2.7)

Moreover, from the obtained map Ordlalg
Q (Π) ⊗ δQ → ΠM ⊗ δQ, g can be

recovered by precomposing it with 4.2.7. Finally, twisting by δ−1
Q certainly

sets up a bijection of Hom sets.
That this association coincides with the one in the statement follows from

an easy diagram chase, the definition of Frobenius reciprocity and the defini-
tion of the isomorphism 4.2.2.

We record an immediate corollary that was the main motivation to prove
Theorem 4.2.8.

Corollary 4.2.13. Let Π be an absolutely irreducible Q-ordinary E-representation
of G(L) of weight λ. Then Ordlalg

Q (Π) is an absolutely irreducible locally al-
gebraic E-representation of M(L) of weight wQ0 λ.

Proof. Since JQ(Π) is of finite finite length, at the very least, so is Ordlalg
Q (Π).

After possibly enlarging E, we can pick an absolutely irreducible quotient

Ordlalg
Q (Π) ↠ ΠM . (4.2.8)

In particular, ΠM is Z-integral. Adjunction then gives a non-trivial map g :
Π→ IndGQ(ΠM ⊗ δQ) that must then be an embedding. By Lemma 4.2.12, we
recover 4.2.8 by applying Ordlalg

Q (−) to g and postcomposing it with 4.2.2. In
particular, due to left exactness of Ordlalg

Q , 4.2.8 must also be an injection.

As a consequence, for any absolutely irreducible object Π ∈ ModQ-ord,λ
E (G(L)),

there is a unique absolutely irreducible ΠM ∈ Modwa,wQ
0 λ

E (M(L)) such that Π
embeds into IndGQ(ΠM ⊗ δQ). We can then make the following definition.
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Definition 4.2.14. Given an absolutely irreducible Π ∈ ModQ-ord,λ
E (G(L)),

we say that ΠM ∈ Modwa,wQ
0 λ

E (M(L)) is its Q-ordinary support if it is the (nec-
essarily unique) absolutely irreducible representation in Modwa,wQ

0 λ
E (M(L))

with an embedding Π ↪→ IndGQ(ΠM ⊗ δQ).

A very useful feature of the notion of the Q-ordinary support is that it
can be read off from Π by applying Ordlalg

Q (−).
For the rest of the section, we will be occupied with understanding the

relation between Π and its Q-ordinary support in terms of the Bernstein–
Zelevinsky and Langlands classifications. In particular, it is this point from
which we make use of the assumption that G = GLn. For a quick review on
the Bernstein–Zelevinsky classification and the relevant notations used in the
rest of the section, we refer to the appendix.

Lemma 4.2.15. Let Π = π ⊗ Vλ∨ be an absolutely irreducible weakly admis-
sible E-representation of G(L) of weight λ that is Z-integral. Then, for any
πsc ∈ SC(π)11, we have12

1
e

∑
ι:L↪→E

(λι,n + 1− n
2 ) ≤ valp(πsc(⟨ϖ⟩))

deg(πsc)
≤ 1
e

∑
ι:L↪→E

(λι,1 + n− 1
2 ). (4.2.9)

Proof. Assume that π = Z(∆1, ...∆k) for an ordered multiset of segments
∆ := (∆1, ...,∆k) with ∆i := ∆(πi, ri) for i = 1, ..., k. Denote by Q∆ ⊂ G the
standard parabolic subgroup attached to the corresponding ordering of the
supercuspidal support of π. For ∆ = ∆(σ, r), set

v∆ :=
∑r−1
i=0 valp(σ(i)(⟨ϖ⟩))

r deg(σ) = valp(σ(⟨ϖ⟩))
deg(σ) + [L : Qp]

e

1− r
2 ,

the arithmetic mean value of the numbers valp(πsc(⟨ϖ⟩))
deg(πsc) for πsc ∈ SC(Z(∆)).

Note that we can assume that ∆ is ordered so that

(v∆1 ,−r1) ≤ ... ≤ (v∆k
,−rk) (4.2.10)

with respect to the lexicographic ordering. Similarly, we can assume that ∆
is ordered so that

(v∆1 , r1) ≤ ... ≤ (v∆k
, rk). (4.2.11)

Indeed, if ∆i and ∆j are linked for some 1 ≤ i ̸= j ≤ k, say ∆i precedes ∆j,
then v∆j

< v∆i
and, by well-orderedness of the multiset of segments in the

sense of Bernstein–Zelevinsky, we must also have j < i. Otherwise, if ∆i and
∆j are not linked, for instance if v∆i

= v∆j
, we have the freedom of choosing

the order.
11Recall that we denote by SC(π) the set {π1, ..., πk} where (GLn1(L)×...×GLnk

(L), π1⊗
...⊗ πk) is the supercuspidal support of π.

12We remind the reader to the notation ⟨ϖ⟩ = diag(ϖ, ..., ϖ) ∈ G(L).
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If we choose ∆ so that 4.2.10 is satisfied, we see that

v∆1 + [L : Qp]
e

1− r1

2 = valp(π1(r1 − 1)(⟨ϖ⟩))
deg(π1)

≤ valp(πsc(⟨ϖ⟩))
deg(π)

for any πsc ∈ SC(π). Similarly, if we choose ∆ so that 4.2.11 is satisfied, we
see that

valp(πsc(⟨ϖ⟩))
deg(πsc)

≤ v∆k
+ rk − 1

2 = valp(πk)(⟨ϖ⟩))
deg(πk)

for any πsc ∈ SC(π). In particular, it suffices to prove that, for any choice of
ordering ∆, we have

valp((δ1/2
Q∆
wG0 λ)(u(deg(∆1))

p ))
deg(∆1)

≤ v∆1 + [L : Qp]
e

1− r1

2 (4.2.12)

and

v∆k
+ [L : Qp]

e

rk − 1
2 ≤

valp((δ1/2
Q∆
wG0 λ)(u(n)

p /u(n−deg(∆k))
p ))

deg(∆k)
. (4.2.13)

Indeed, an easy computation, combined with the regularity of λ and the
equality

valp(δ1/2
Q∆

(u(m)
p )) = [L : Qp]

e

m∑
i=1

(1− n
2 + i− 1) for every 1 ≤ m ≤ n,

shows that the LHS of 4.2.9 is bounded by the LHS of 4.2.12 and the RHS of
4.2.13 is bounded by the RHS of 4.2.9.

To prove these inequalities, we note that, by Lemma A.0.4, JQ∆(π) admits
δ

1/2
Q∆

∆1 ⊗ ... ⊗∆k as a quotient. In particular, weak admissibility of Π gives
that

valp((δQ∆w
G
0 λ))(u(deg(∆1))

p ) ≤ valp(∆1(⟨ϖ⟩)δ1/2
Q∆

(u(deg(∆1))
p ))

and 4.2.12 is proved.
To get 4.2.13, one similarly applies weak admissibility with the choice

z = u(n−deg(∆k))
p and combines it with the equality

valp((δQ∆w
G
0 λ)(⟨ϖ⟩)) = valp(JQ∆(π)(⟨ϖ⟩)) = valp((δ1/2

Q∆
∆1 ⊗ ...⊗∆k)(⟨ϖ⟩))

coming from the assumption that Π is absolutely irreducible and Z-integral,
so it has a central character that must be integral, and the fact that δQ∆(⟨ϖ⟩) =
1.
Lemma 4.2.16. Let ΠM = πM ⊗ V(wQ

0 λ)∨ be an absolutely irreducible weakly
admissible E-representation of M(L) of weight wQ0 λ that is Z-integral. If
Q = M ⋉N = P(n1,...,nt) and δ1/2

Q ⊗πM = π1⊗ ...⊗πt, then, for 1 ≤ i < j ≤ t
and πsc,i ∈ SC(πi), πsc,j ∈ SC(πj), we have
valp(πsc,i(⟨ϖ⟩))

deg(πsc,i)
≤ valp(πsc,j(⟨ϖ⟩))

deg(πsc,j)
− [L : Qp]

e
= valp(πsc,j(⟨ϖ⟩))

deg(πsc,j)
+valp(|ϖ|L).
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Proof. Write ΠM = Π1⊗...⊗Πt. Then the lemma follows easily from applying
Lemma 4.2.15 to each of the Πi’s for 1 ≤ i ≤ t and noting that, for 1 ≤ i ≤ t,

δ
1/2
Q |GLni (L) = | det |

n−ni
2 −(n1+...+ni−1).

Combining Lemma A.0.3 with the results of the section, we are now ready
to understand the relation between the Langlands classification of Π and its
Q-ordinary support. This is best stated using the local Langlands correspon-
dence.

Corollary 4.2.17. Let Π be an absolutely irreducible P(n1,...,nt) = Q-ordinary
E-representation of G(L) of weight λ with Q-ordinary support ΠM . Write
Π ⊗E Qp = π ⊗Qp

Vλ∨ and ΠM ⊗E Qp = (π1 ⊗ ... ⊗ πt) ⊗Qp
V−wG

0 λ
. Fix

an identification t : Qp
∼= C and assume further that π is t-preunitary (see

the appendix). Then recT (π) admits a flag 0 = F0 ⊂ F1 ⊂ ... ⊂ Ft =
recT (π) of sub-Weil–Deligne representations such that, for 1 ≤ j ≤ t, we
have isomorphisms

Fj/Fj−1 ∼= recT (πj ⊗ | · |−
∑

j−1)

where ∑
j := n1 + ...+ nj. In other words, there is an isomorphism of Weil–

Deligne representations

recT (π) ∼

à
recT (π1) ∗ ... ∗

0 recT (π2 ⊗ | · |−n1) ... ∗
. . . .
. . . .
0 ... 0 recT (πt ⊗ | · |nt−n)

í
.

Proof. Note that adjunction applied to Ordlalg
Q (Π)⊗| · | 1−n

2 = ΠM ⊗| · |
1−n

2
id−→

ΠM ⊗ | · |
1−n

2 gives an embedding

π⊗|·|
1−n

2 ↪→ n-IndG(L)
Q(L)(δ

1/2
Q |GLn1 (L)⊗|·|

1−n
2 ⊗π1)⊗...⊗(δ1/2

Q |GLnt (L)⊗|·|
1−n

2 ⊗πt).
(4.2.14)

One computes that, for 1 ≤ j ≤ t, we have

δ
1/2
Q |GLnj (L) = | · |

n−nj
2 −

∑
j−1 .

Therefore, we compute

δ
1/2
Q |GLnj (L)⊗|·|

1−n
2 ⊗πj = (πj⊗|·|

1−nj
2 )⊗|·|

−(n−nj )
2 ⊗δ1/2

Q = (πj⊗|·|
1−nj

2 )⊗|·|−
∑

j−1 .

This implies the existence of a filtration

0 = F ss
0 ⊂ ... ⊂ F ss

t = recT (π)ss
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of representations of the Weil group with subquotients given by

recT (πj ⊗ | · |−
∑

j−1)ss.

In fact, this really is a direct sum decomposition as the underlying Weil group
representation of recT (π) is semisimple.

By combining Lemma 4.2.16 and our unitariness assumption, we can apply
Lemma A.0.3 to 4.2.14. After unravelling the construction of the reduction
of the local Langlands correspondence to supercuspidal representations, this
exactly says that the monodromy on the subquotients does not change. In
particular, we can upgrade F ss

• to the desired filtration of Weil–Deligne rep-
resentations of recT (π).

To ease the notation in the upcoming sections, we introduce the following
notation.
Definition 4.2.18. Denote by Π an absolutely irreducible Q-ordinary E-
representation of G(L) of weight λ and write Π⊗E Qp = π⊗E Vλ∨ . Then we
set πQ-ord to be the smooth Qp-representation ofM(L) such that Ordlalg(Π)⊗E
Qp = πQ-ord ⊗Qp

V−wG
0 λ

.

4.3 A Q-ordinary local-global compatibility re-
sult

Finally, we use our observations about Q-ordinary representations to de-
duce Q-ordinary local-global compatibility for regular algebraic conjugate
self-dual cuspidal automorphic representations (RACSDCAR). We fix an in-
teger n ≥ 1 with a partition n1 + ... + nt and denote by Q = M ⋉ N the
corresponding parabolic subgroup of GLn. We further consider the appro-
priate global setup i.e., F will denote a CM number field and v|p is a fixed
p-adic place. If π is a RACAR of GLn(AF ) of weight λ ∈ (Zn

+)Hom(F,C) and
t : Qp

∼= C is a fixed isomorphism then t−1πv can be realized over a finite
extension E/Qp. Moreover, t−1πv ⊗E Vt−1λ∨ becomes a weakly admissible E-
representation of GLn(Fv) of weight t−1λv (see Remark 4.2.4). Therefore, we
are in the situation of §4.2. We are then interested in proving the following
local-global compatibility result.
Theorem 4.3.1. Let π be a RACSDCAR of GLn(AF ) of weight λ ∈ (Zn

+)Hom(F,C),
t : Qp

∼= C be a fixed isomorphism and v|p be a p-adic place of F . Assume
that t−1πv ⊗E Vλ∨ is Q-ordinary. Write πQ-ord = π1 ⊗ ... ⊗ πt (see Defini-
tion 4.2.18). Then there is an isomorphism

rt(π)|GFv
∼

à
ρ1 ∗ ... ∗
0 ρ2 ... ∗
. . . .
. . . .
0 ... 0 ρt

í
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where, for 1 ≤ j ≤ t,
ρj : GFv → GLnj

(Qp)
is potentially semistable such that, for every embedding ι : Fv ↪→ Qp, the
labelled ι-Hodge–Tate weights of ρj are given by

λt◦ι,n+1−(n1+...+nj)+n1+...+nj−1+nj−1 > ... > λt◦ι,n+1−(n1+...+nj−1+1)+n1+...+nj−1

and we have
WD(ρj)F−ss ∼= recT (πj ⊗ | · |−

∑
j−1)

where ∑
j := n1 + ...+ nj.

We highlight the following simple observation.

Lemma 4.3.2. Let πv and (π1, ..., πt) as in Theorem 4.3.1. Then, for any
lift of (geometric) Frobenius φv ∈ WFv and 1 ≤ j ≤ t, we have

valp(det(recT (πj⊗|·|−
∑

j−1)(φv))) = 1
ev

∑
ι:Fv ↪→Qp

n1+...+nj∑
i=n1+...+nj−1+1

(λι,n+1−i+i−1).

Proof. Recall that for σ a smooth admissible Qp-representation of GLn(Fv),
det ◦ rec(σ) = rec(ωσ), where ωσ denotes the central character of σ.

In particular, we have

valp(det(recT (πj⊗|·|−
∑

j−1)(φv))) = valp((πj⊗|·|
1−nj

2 −
∑

j−1)(diag(ϖv, ..., ϖv)))

for ϖv the image of φv under the local Artin map. To see that the RHS of
the equation above is the desired number, we use that (π1⊗ ...⊗πt)⊗E V−wG

0 λ

has (p-adically) integral central character. Namely, it implies that we have

valp(πj(diag(ϖv, ..., ϖv))) =
∑

ι:Fv ↪→E

n1+...+nj∑
i=n1+...+nj−1+1

λι,n+1−i · valp(ι(ϖv)) =

1
ev

∑
ι:Fv ↪→E

n1+...+nj∑
i=n1+...+nj−1+1

λι,n+1−i. (4.3.1)

Moreover, we have

valp(| det(diag(ϖv, ..., ϖv)) |
1−nj

2 −
∑

j−1) = (1− nj
2 −

∑
j−1

) · nj · valp(|ϖv|v) =

fv ·

(
n1+...+nj∑

i=n1+...+nj−1+1
(i− 1)

)
= 1
ev
|Hom(Fv,Qp)| ·

(
n1+...+nj∑

i=n1+...+nj−1+1
(i− 1)

)
(4.3.2)

where in the last equality we used that fv = [Fv :Qp]
ev

.
We conclude by combining 4.3.1 and 4.3.2.
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Before starting the proof of Theorem 4.3.1, we recall some constructions
from p-adic Hodge theory which we will make use of in the proof. Consider
a potentially semistable p-adic Galois representation ρ : GFv → GLd(E) for
some finite extension E/Qp and for simplicity assume that it has distinct
Hodge–Tate weights. Let K/Fv be a finite Galois extension such that ρ|GK

is semistable and enlarge E so that it contains the images of all embeddings
K ↪→ Qp. Set K0 := W (OK/mK)[1/p] and denote by σ its arithmetic Frobe-
nius.

We can then apply Fontaine’s construction which associates with ρ a fil-
tered (φ,N,K/Fv, E)-module D := Dst,K(ρ). This, by definition, is a free
K0 ⊗Qp E-module with

i. a σ ⊗ 1-semilinear automorphism φ of D;

ii. a K0 ⊗Qp E-linear endomorphism N of D such that Nφ = pφN ;

iii. a K-semilinear, E-linear action of Gal(K/Fv) commuting with φ and
N ;

iv. and a filtration Fil•DK of DK := D ⊗K0 K by K ⊗Qp E-submodules.

Moreover, we know that D is weakly admissible. In other words, "its Newton
polygon lies over its Hodge polygon", i.e. in the notations of [Fon94], tN(D) =
tH(D) and for any sub-(φ,N,K/Fv, E)-module D′ ⊂ D equipped with the
induced filtration from D we have tN(D′) ≥ tH(D′). See [Fon94], 4.4.1 and
Definition 4.4.3.

We have identifications

DK
∼=

∏
ι:K↪→E

Dι, Fil•DK =
∏

ι:K↪→E

Fil•Dι.

Then for every embedding ι : K ↪→ E, we have

dimE griFil•Dι =
®

1, if i = λι|Fv ,j
for j ∈ {1, ..., d}

0, otherwise

where λι|Fv ,1 > ... > λι|Fv ,d
are the labelled ι|Fv -Hodge–Tate-weights of ρ. In

other words, the Hodge–Tate weights are encoded in the Hodge-filtration of
D.

We can further associate to D a Weil–Deligne representation as follows.
Given g ∈ WFv , let g act on D by (g mod WK) ◦ φ−α(g) where α(g) is given
by the power of the arithmetic Frobenius given by the action of g on the
residue field of F v. Note that if fK resp. fv denotes the inertia degree of
K/Qp resp. Fv/Qp, then we have that, for any lift of geometric Frobenius
φv ∈ WFv , φfK/fv

v acts on D by φfK . This action is then K0 ⊗Qp E-linear by
definition and we can consider the WFv - and N -invariant decomposition

D =
∏

ι0:K0↪→E

Dι0 .
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We then set WD(ρ) := Dι0 to be the associated Weil–Deligne representation
over E for a choice of ι0. As the notation suggests, it is independent of the
choice of ι0 and K up to isomorphism.

Proof of Theorem 4.3.1. We argue as in [Tho15], Theorem 2.4 which was
based on [Ger18], Corollary 2.7.8. In particular, the key ingredients are local-
global compatibility at v for rt(π), Fontaine’s theory of weakly admissible
modules and Corollary 4.2.17.

Let E ⊂ Qp be a finite extension of Qp such that rt(π)|GFv
lands in

GLn(E). First note that by Theorem 2.9.1 we have that rt(π) is potentially
semistable at v. Let K/Fv be a finite Galois extension such that rt(π)|GK

is semistable and enlarge E if necessary to assume that it contains all im-
ages of embeddings K ↪→ Qp. Set D to be the weakly admissible filtered
(φ,N,K/Fv, E)-module associated with rt(π)|GFv

. By Theorem 2.9.1 again,
we further have an identification

WD(rt(π)|GFv
)F−ss ∼= recT (t−1πv).

Therefore, by Corollary 4.2.17, we have an isomorphism

WD(rt(π)|GFv
)F−ss ∼

à
recT (π1) ∗ ... ∗

0 recT (π2 ⊗ | · |−n1) ... ∗
. . . .
. . . .
0 ... 0 recT (πt ⊗ | · |nt−n)

í
.

In particular, we obtain an isomorphism

WD(rt(π)|GFv
) ∼

à
WD1 ∗ ... ∗

0 WD2 ... ∗
. . . .
. . . .
0 ... 0 WDt,

í
such that, for 1 ≤ j ≤ t, WDF−ss

j
∼= recT (πj ⊗ | · |−

∑
j−1). Consequently,

D = Dst,K(rt(π)|GFv
) admits a flag

F0 = 0 ⊂ F1 ⊂ ... ⊂ Ft = D

of sub-(φ,N,K/Fv, E)-modules with Fj/Fj−1 corresponding to recT (πj ⊗ | ·
|−

∑
j−1).

We now can apply Fontaine’s theorem about classifying weakly admissible
filtered (φ,N)-modules. Namely, if we combine Lemma 4.3.2 with [Fon94],
Theorem 5.6.7 and use that φfK/fv

v acts on D by φfK , we get that, for each 1 ≤
j ≤ t, Fj ⊂ D comes from a sub-GFv -representation ρ̃j ⊂ rt(π)|GFv

. Moreover,
their subquotients ρj := ρ̃j/ρ̃j−1 are clearly potentially semistable and have
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the right associated Weil–Deligne representations as in the statement of the
theorem.

Finally, to find the Hodge–Tate weights, we argue by induction on 1 ≤ j ≤
t. Assume that the claim holds for indices smaller than j. We can combine the
fact that tN(Fj) = tH(Fj), WD(ρj)F−ss ∼= recT (πj ⊗ | · |−

∑
j−1), Lemma 4.3.2

and the induction hypothesis to see that the sum of the Hodge–Tate weights
of ρj is given by

∑
ι:Fv ↪→Qp

n1+...+nj∑
i=n1+...+nj−1+1

(λt◦ι,n+1−i + i− 1).

Now the regularity of λ combined with Theorem 2.9.1 forces ρj to have the
right Hodge–Tate weights.

Remark 4.3.3. Note that the proof of Theorem 4.3.1 already works for
automorphic representation π with πv being pre-unitary (in the sense of
the appendix) and admitting an associated Galois representation satisfying
local-global compatibility at v. Therefore, our results will already hold for
automorphic representations π which are pre-unitary at v and are isobaric
sums of regular algebraic discrete conjugate self-dual automorphic represen-
tations. Indeed, this follows from Moeglin–Waldspurger’s classification of
discrete automorphic representations. This observation combined with Shin’s
base change result [Shi14] leads to the application below, which is one of the
crucial ingredients in proving our main local-global compatibility results.

To be able to appeal to [Shi14], we assume for the rest of the section
that F contains an imaginary quadratic field in which p splits. Fix a p-adic
place v̄ of F+ and fix a place v of F above v̄. Let Q̃v̄ ⊂ PF+

v̄
⊂ G̃F+

v̄
be a

parabolic subgroup with Levi decomposition Q̃v̄ = M̃v̄⋉ ‹Nv̄. Then Q̃v̄(F+
v̄ ) is

identified under ιv with P(n1,...,nt)(Fv) ⊂ GL2n(Fv) for some tuple of integers
(n1, ..., nk, nk+1, ..., nt), refining (n, n).

Theorem 4.3.4. Let π̃ be a ξ-cohomological cuspidal automorphic represen-
tation of G̃(AF+) as in Theorem 2.9.2. Denote by λ̃ the highest weight of the
representation (ξ⊗ ξ)∨. Assume further that, for a fixed t : Qp

∼= C, t−1(π̃v̄ ◦
ι−1
v ) ⊗ Vt−1λ̃v̄

is Q̃v̄-ordinary of weight t−1λ̃v̄. Write (t−1(π̃ ◦ ι−1
v ))‹Qv̄-ord =

π̃1 ⊗ ...⊗ π̃t. Then there is an isomorphism

rt(π̃)|GFv
∼



ρ1 ∗ . . . . ∗ ∗
0 . ∗
. . .
. ρk .
. ρk+1 .
. . .
0 . ∗
0 0 . . . . 0 ρt


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with ρj being potentially semistable and, for every ι : Fv ↪→ Qp, it has labelled
ι-Hodge–Tate weights

λ̃ι,2n+1−n1+...+nj
+n1 + ...+nj−1 > ... > λ̃ι,2n+1−n1+...+nj−1+1 +n1 + ...+nj−1.

Moreover, we have

WD(ρj)F−ss ∼= recT (π̃j ⊗ | · |−
∑

j−1)

where ∑
j := n1 + ...+ nj.

Proof. This follows from Remark 4.3.3, and Theorem 2.9.2.
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Chapter 5

A torsion local-global
compatibility conjecture

In this chapter, we formulate integral local-global compatibility conjec-
tures in great generality and state our progress on proving them. Most of this,
although only in more restrictive setups, was already formulated in [Car+16b],
and [GN20].

For the rest of the chapter, set G := GLn/F for a fixed number field F
and an integer n ≥ 2. Pick a subfield E ⊂ Qp, finite over Qp, with ring of
integers O ⊂ E and a choice of uniformiser ϖ ∈ O. We assume that E is
large enough so that [F : Q] = |Hom(F,E)|.

5.1 Local deformation rings
To formulate local-global compatibility that also keeps track of torsion,

we make use of Kisin’s potentially semistable local deformation rings.
Let CNLO denote the category of complete local Noetherian O-algebras

with residue field k := O/ϖ. Set L := Fv for some v ∈ Sp(F ). Denote by L0
its maximal subfield that is unramified over Qp, and by L0 the maximal un-
ramified extension of L0. Similar notations apply to any finite field extension
L′/L. Given a continuous Galois representation ρ : GL → GLn(k), we can
form the framed deformation functor D2

ρ : CNLO → Sets, sending a test ob-
ject (A,mA) to the set of continuous homomorphisms ρ : GL → GLn(A) with
ρ⊗AA/mA = ρ. It is known to be represented by an object R2

ρ ∈ CNLO, that
is called its framed deformation ring. We denote by ρuniv : GL → GLn(R2

ρ )
the universal lift, and, for x : R2

ρ → A in CNLO, by ρx its specialisation
ρuniv ⊗R2

ρ
,x A.

Consider an n-dimensional Weil–Deligne inertial type τ = (ρτ , Nτ ) for L
over E and a highest weight vector λ ∈ (Zn

+)Hom(L,E) for ResL/QpGLn. From
now on we will make the following technical assumption.

Assumption 5.1.1. Assume that E is large enough so that there is a finite

135
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Galois extension Lτ/L such that ρτ |ILτ
is trivial with |Hom(Lτ , E)| = |Lτ :

Qp|. Fix such an Lτ/L.

In [Kis07], Kisin constructs a reduced O-flat quotient Rλ,ρτ

ρ of R2
ρ whose

E ′-points, for any finite extension E ′/E, correspond to lifts ρ : GL → GLn(E ′)
of ρ such that ρ is potentially semistable with labelled Hodge–Tate weights
(λι,1 + n − 1 > ... > λι,n)ι∈Hom(L,E) and WD(ρ)ss|IL

∼= ρτ ⊗E E ′. After
introducing some terminology, we will further describe its B-valued points
for a general finite E-algebra B.

To a given λ, we associate a p-adic Hodge type vλ in the sense of [Kis07].
Consider an n-dimensional E-vector space DE and write

DE,L := DE ⊗Qp L
∼= ⊕ι:L↪→EDE,ι.

For each ι : L ↪→ E, we pick an (arbitrary) decreasing filtration Fil•DE,ι by
sub-E-vector spaces so that dimE griDE,ι ̸= 0 if and only if i = λι,n+j−1 +j−1
for 1 ≤ j ≤ n in which case the E-dimension is exactly 1. By taking the direct
sum of the filtrations, we get a decreasing a decreasing filtration Fil•DE,L on
DE,L by E ⊗Qp L-submodules. We set vλ = {DE,Fil•DE,L}. For a finite
E-algebra B, and a continuous de Rham representation ρB of GL on a finite
free rank n B-module VB, we say that ρB has p-adic Hodge type vλ if, for
each i ∈ Z, there is an isomorphism

gri(VB ⊗Qp BdR)GL ∼= B ⊗E griDE,L

of B ⊗Qp L-modules. In particular, any de Rham Galois representation
ρ : GL → GLn(E) with labelled Hodge–Tate weights (λι,1 + n − 1 > ... >
λι,n)ι∈Hom(L,E) has p-adic Hodge type vλ.

Consider a finite E-algebra B, and a continuous potentially semistable
representation ρB of GL on a finite free B-module VB of rank n. We explain
the notion of ρB having inertial type ρτ . Assume for a second that B is
local with residue field E ′. Further assume that VB becomes semistable as a
representation of GLτ . Set

DLτ
st (VB) = (VB ⊗Qp Bst)GLτ ,

a finite free B⊗Qp Lτ,0-module, forming a filtered (φ,N,Lτ/L,E)-module. In
particular, it admits a B ⊗Qp Lτ,0-linear action of ILτ/L that commutes with
φ and N . Since higher cohomology of finite groups is trivial in characteristic
0, deformation theory tells us that the ILτ/L-action on DLτ (VB) comes as
extension of scalars along E ′ ⊗Qp Lτ,0 ↪→ B ⊗Qp Lτ,0 of a representation over
a rank n free E ′⊗Qp Lτ,0-module. Moreover, since the ILτ/L-action commutes
with φ, it further descends to a representation of ILτ/L on some n-dimensional
E ′-vector space PρB

. We say that ρB is of inertial type ρτ if its restriction to
GLτ is semistable and PρB

with its ILτ/L-action is equivalent to ρτ . One then
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easily extends the definition to general finite E-algebras using that every such
algebra is a product of finite local E-algebras.

Finally, we prepare the upcoming result by making the following defini-
tion. Let A be an E-algebra. We then define a (φ,N,Lτ/L,A)-module of
rank n to be a projective A⊗Qp Lτ,0-module of rank n equipped with

i. a Frobenius semilinear automorphism φ;

ii. an A⊗Qp Lτ,0-linear endomorphism N satisfying Nφ = pφN ;

iii. and an Lτ,0-semilinear, A-linear Gal(Lτ/L)-action commuting with φ
and N .

Theorem 5.1.2. There is a unique O-flat quotient R2
ρ → Rλ,ρτ

ρ characterised
by the property that an arbitrary map x : R2

ρ → B to a finite E-algebra factors
through Rλ,ρτ

ρ if and only if ρx is potentially semistable of p-adic Hodge type
vλ and inertial type ρτ . Moreover, Rλ,ρτ

ρ is reduced.
Finally, there exists a rank n (φ,N,Lτ/L,Rλ,ρτ

ρ [1/p])-module Dλ,ρτ

st,Lτ ,ρ such
that, for any finite E-algebra B, and map x : Rλ,ρτ

ρ → B, we have a canonical
isomorphism of (φ,N,Lτ/L,B)-modules

Dλ,ρτ

st,Lτ ,ρ ⊗Rλ,ρτ
ρ

[1/p],x B
∼= (ρx ⊗Qp Bst)GLτ = DLτ

st (ρx).

Proof. The first part, besides the reducedness, is [Kis07], Theorem 2.7.6. The
reducedness follows from [BG19], Theorem 3.3.3.

The second part is implicit in [Kis07] and follows from loc. cit., Theorem
2.5.5 and Proposition 2.7.2. Namely, by loc. cit. Theorem 2.5.5, there is
a projective Rλ,ρτ

ρ [1/p] ⊗Qp Lτ,0-module Dλ,ρτ

st,Lτ ,ρ of rank n with a Frobenius
semilinear automorphism φ, and an Rλ,ρτ

ρ [1/p]⊗Qp Lτ,0-linear endomorphism
N such thatNφ = pφN . Moreover, for any x : Rλ,ρτ

ρ → B as in the statement,
there is a canonical isomorphism

Dλ,ρτ

st,Lτ ,ρ ⊗Rλ,ρτ
ρ

[1/p],x B
∼= (ρx ⊗Qp Bst)GLτ = DLτ

st (ρx). (5.1.1)

respecting φ and N . Furthermore, the isomorphism above is induced by the
Rλ,ρτ

ρ [1/p]⊗Qp Lτ,0-linear isomorphism

Dλ,ρτ

st,Lτ ,ρ
∼−→ (ρuniv ⊗Rλ,ρτ

ρ
[1/p] Bst,Rλ,ρτ

ρ
[1/p])

GLτ (5.1.2)

of [Kis07], Proposition 2.7.2. The RHS of 5.1.2 admits a natural Lτ,0-semilinear
and Rλ,ρτ

ρ -linear action of Gal(Lτ/L), and this action commutes with φ and
N , equipping Dλ,ρτ

st,Lτ ,ρ with the structure of a (φ,N,Lτ/L,Rλ,ρτ

ρ [1/p])-module.
Therefore, by definition, 5.1.1 will also respect the Gal(Lτ/L)-action.
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Finally, we consider a slight refinement of Kisin’s deformation rings. Set
Rλ,⪯τ
ρ be the the O-flat reduced quotient of Rλ,ρτ

ρ corresponding to the Zariski
closure of

S⪯τ := {x ∈ m-Spec(Rλ,ρτ

ρ [1/p]) |WD(ρx)|IL
⪯ τ} =

{x : Rλ,ρτ

ρ [1/p]→ Ex | Ex/E finite extension, WD(ρx)|IL
⪯ τ}

in Spec(Rλ,ρτ

ρ [1/p]). We check the only property of Rλ,⪯τ
ρ that we will need.

Proposition 5.1.3. An E-algebra map x : Rλ,ρτ

ρ → Ex for a finite field
extension Ex/E factors through Rλ,⪯τ

ρ if and only if WD(ρx)|IL
⪯ τ .

Proof. Note that it suffices to check that S⪯τ ⊂ m-Spec(Rλ,ρτ

ρ [1/p]) is Zariski
closed. Indeed, as then, Rλ,ρτ

ρ being a Jacobson ring, the set of closed points
of the Zariski closure of S⪯τ in Spec(Rλ,ρτ

ρ [1/p]) must be S⪯τ itself (cf. [Sta24,
Lemma 005Z]).

We further note that we are free to enlarge E as one checks that Rλ,ρτ

ρ,O ⊗O

OE′ ∼= Rλ,ρτ

ρ,OE′ for any finite extension E ′/E. In particular, we may assume
that the isotypic decomposition

Vρτ
∼= ⊕θVρτ [θ]

is defined over E where Vρτ is the representation space of ρτ and the sum
runs over absolutely irreducible E-representations of ILτ/L.

According to Theorem 5.1.2, we have a rank n (φ,N,Lτ/L,Rλ,ρτ

ρ [1/p])-
module D := Dλ,ρτ

st,Lτ ,ρ. In particular, for a fixed ι0 : Lτ,0 ↪→ E, we can
introduce

W := D ⊗Rλ,ρτ
ρ

[1/p]⊗QpLτ,0,ι0
Rλ,ρτ

ρ [1/p],

a projective rank n Rλ,ρτ

ρ [1/p]-module with a linear endomorphism N , and a
commuting linear action of ILτ/L. For any ring map Rλ,ρτ

ρ [1/p] → R, we use
the abbreviation WR := W ⊗Rλ,ρτ

ρ
[1/p] R. For a closed point x : Rλ,ρτ

ρ [1/p] →
Ex, we further denote by (Wx, Nx) the corresponding specialisation and note
that it is isomorphic to WD(ρx)|IL

.
We now pick an irreducible component Z = Spec(A) ↪→ Spec(Rλ,ρτ

ρ [1/p])
and prove the following lemma from which the proposition follows.
Lemma 5.1.4. There is a Weil–Deligne inertial type of the form τ ′ = (ρτ , Nτ ′)
such that the locus on m-Spec(A) where WD(ρx)|IL

∼ τ ′ is open and dense.
Moreover, the locus on m-Spec(A) where WD(ρx)|IL

⪯ τ is Zariski closed and
only non-empty if τ ⪯ τ ′.

Proof. To prove the first statement, set F = FracA, and consider the base
change WF , a finite free F -module of rank n. Consider the decomposition
into isotypic components

WF = ⊕θWF [θ]

https://stacks.math.columbia.edu/tag/005Z


5.1. LOCAL DEFORMATION RINGS 139

with respect to the action of the inertia subgroup. Set dθ = dimF WF [θ] =
dimE Vρ[θ].

Consider the intersection WA[θ] := WA ∩WF [θ] and note that it is pre-
served by N and the action of ILτ/L as it holds for both members of the
intersection. Moreover, we have the equality WA[θ] ⊗A F = WF [θ]. In par-
ticular, WA[θ] is generically both a free module of rank dθ and a direct sum-
mand of WA. In other words, we can find f ′

θ such that the base change
WA[1/f ′

θ
][θ] = WA[θ]⊗A A[1/f ′

θ] is finite free over A[1/f ′
θ] and is a direct sum-

mand of WA[1/f ′
θ
]. Again, it is preserved by the monodromy and the action of

the inertia subgroup. Denote the restriction of N to the obtained subspace
by N [θ].

Now we can apply Lemma 7.8.10 of [BC09] to get f ′′
θ ∈ A such that, for

fθ = f ′
θf

′′
θ , the equivalence class ofN [θ]x is independent of x ∈ m-Spec(A[1/fθ]).

The first part of the lemma follows by noting that N [θ]x = Nx[θ], the lat-
ter denoting the restriction of the specialisation of Nx to Wx[θ] where Wx ∼
WD(ρx)|IL

. Denote the resulting Weil–Deligne inertial type by τ ′ = (ρτ , Nτ ′).
Now consider an arbitrary point x ∈ m-Spec(A) with corresponding max-

imal ideal mx ⊂ A, Galois representation ρx and residue field Ex, a finite
extension of E. We prove that WD(ρx)|IL

⪯ τ ′. Consider the localisa-
tion Wmx := WAmx

, and its base change W∧
mx

along Amx → A∧
mx

. Write
Fx := FracA∧

mx
and W∧

mx
[θ] := W∧

mx
∩WFx [θ].

Since ILτ/L is a finite group, it has trivial higher cohomology in char-
acteristic 0. In particular, the deformation ρA∧

mx
: ILτ/L → EndA∧

mx
(W∧

mx
) of

WD(ρx)ss |IL
must be isomorphic to the extension of scalars of the latter along

Ex → A∧
mx

. In other words, we have an isomorphism W∧
mx
∼= Wx ⊗Ex A

∧
mx

of
ILτ/L-representations. In particular, W∧

mx
[θ] ⊂ W∧

mx
is a free direct summand

for all isotypic component.
Set NA∧

mx
[θ] = NA∧

mx
|W∧

mx [θ]. Note that NA∧
mx

[θ] ⊗A∧
mx
Fx = NFx [θ] ∼

NF [θ] ∼ Nτ ′ [θ]. Moreover, NA∧
mx

[θ]⊗A∧
mx
Ex = Nx[θ]. Therefore, using Propo-

sition 2.6.2 one sees that Nx[θ] ⪯ Nτ ′ [θ] (cf. [Dot21], Lemma 4.2 and Re-
mark 4.4). Running over all isotypic components, we obtain WD(ρx)|IL

(∼
(Wx, Nx)) ⪯ τ ′.

We have proved so far that Spec(A) contains a dense open D(∏
θ fθ) with

closed points satisfying WD(ρx)|IL
∼ τ ′ and that, for every x ∈ m-Spec(A)

we have WD(ρx)|IL
⪯ τ ′. Set Spec(A⪯τ ) ⊂ Spec(A) to be an irreducible

component of the Zariski closure of

S⪯τ = {x ∈ m-Spec(A)|WD(ρx) |IL
⪯ τ}

in Spec(A) with its induced reduced subscheme structure. To conclude, it
suffices to see that every closed point of Spec(A⪯τ ) is of type ⪯ τ .

By considering the base changeWA⪯τ
with the induced action of the inertia

subgroup and nilpotent operator, and running the previous argument, we see
that there is a Weil–Deligne inertial type τ̃ and an open dense subspace
Ũ ⊂ Spec(A⪯τ ) such that
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i. every closed point in Ũ is of type ∼ τ̃ , and

ii. every closed point in Spec(A⪯τ ) is of type ⪯ τ̃ .

In particular, we must have τ̃ ⪯ τ and the proof is finished.

5.2 Interpolation of local Langlands
An essential ingredient to formulate torsion local-global compatibility

is the existence of a (semisimple) local Langlands correspondence over the
generic fiber of our potentially semistable deformation rings. Such a corre-
spondence was already defined in [Car+16b] for the potentially crystalline
deformation rings of Kisin. However, as it is shown in [Pyv20b], one can
define it for the whole potentially semistable deformation ring following the
same strategy. Let τ be a Weil–Deligne inertial type, Ω be the corresponding
Bernstein block, and ρ : GL → GLn(k) be a continuous Galois representation
as in the previous section.

Theorem 5.2.1. There is an E-algebra homomorphism

η : zΩ → Rλ,ρτ

ρ [1/p]

such that, for any x ∈ m-Spec(Rλ,ρτ

ρ [1/p]) with residue field Ex (necessarily
a finite extension of E), the character

x ◦ η : zΩ → Ex

coincides with the one induced by the natural action of zΩ on rec−1(WD(ρx)F−ss)⊗
| det |

n−1
2

L . In particular, we also have a map η : zΩ → Rλ,⪯τ
ρ [1/p] with the same

property.

Proof. The result follows from (the proof of) [Pyv20b], Theorem 3.3. We
note that he states the existence of a map with source being a Hecke algebra
H(σmin) for a certain type σmin of Schneider–Zink. This Hecke algebra in fact
is isomorphic to zΩ and, in the proof of Theorem 3.3 of loc. cit., the map is
first constructed from zΩ and it is only at the very end that it is precomposed
with the identification H(σmin) ∼= zΩ.

The rough sketch is as follows. The two key ingredients in the proof are:

i. The existence of a pseudo-representation T : WL → zΩ constructed by
Chenevier interpolating local Langlands (cf. [Che09], Proposition 3.11);

ii. and the existence of a universal (φ,N,Lτ/L,E)-module overRλ,ρτ

ρ [1/p]⊗Qp

Lτ,0 (cf. Theorem 5.1.2).
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Then, for w ∈ WL it is clear that η(T (w)) should be (some normalisation
of) the trace of w acting on the universal (φ,N,Lτ/L,E)-module. In par-
ticular, we have defined η for every element in the image of T . Moreover,
[Car+16b], Lemma 4.5 shows that zΩ is generated (as an E-vector space) by
the image of T . Therefore, we can linearly extend the domain of η from the
image of T to the whole Bernstein centre.

Remark 5.2.2. It is interesting to investigate on a possible integral avatar
of η. For instance, one can ask under what circumstance does η send z◦

λ,τ :=
Z(H(σ(λ, τ)◦)) ∩ zΩ into Rλ,⪯τ

ρ ? Moreover, is there a subring in Rλ,⪯τ
ρ [1/p],

say finite over Rλ,⪯τ
ρ , such that z◦

λ,τ always lands in this ring? This turns out
to be a rather subtle question, and the answer in most cases depends on some
folklore conjectures. More precisely, in [Car+16b] they remark that, at least
in the potentially crystalline case, η(z◦

λ,τ ) should land in the normalisation of
Rλ,⪯τ
ρ inside its generic fiber. This prediction is supported by what they see

after patching (cf. loc. cit. Lemma 4.18, 3), and Remark 4.21). However,
their observation can only be made into a rigorous proof for the components
of the local deformation rings for which we know automorphy.

In some very special cases, it seems plausible that one can prove that
η sends z◦

λ,τ into the normalisation by other means. Namely, when n = 2,
ρτ is a tame type, τ = (ρτ , 0), and we look at the potentialy Barsotti–Tate
deformation ring R0,⪯τ

ρ̄ , one can appeal to the work of Caraiani–Emerton–
Gee–Savitt to realise the normalisation of the local deformation ring as the
direct image of the Kisin variety1 (parametrising Breuil–Kisin models of the
deformations of ρ) along its map towards Spec(R0,⪯τ

ρ̄ ). Moreover, using the
construction of the map, the fact that the Kisin variety parametrises Breuil–
Kisin models of the deformations appearing in Spec(R0,⪯τ

ρ̄ ), and comparisons
between Breuil–Kisin modules and Weil–Deligne representations associated
to the corresponding Galois representations, it seems possible to show that
the image of z◦

λ,τ already lies in the direct image of the Kisin variety.
There is some further evidence already present in the literature. Namely,

[Car+16a] Lemma 2.15 (under some further assumptions on ρ) shows that
when n = 2, τ = (1, 0), L = Qp and λ is in the Fontaine–Laffaille range,
η sends z◦

λ,τ into Rλ,⪯τ . Moreover, up to a suitable completion of z◦
λ,τ , the

integral avatar of η becomes an isomorphism. Note that in this case Rλ,⪯τ
ρ

is a regular local ring hence normal. In particular, their result is compatible
with the prediction of [Car+16b], Remark 4.21.

1These spaces were first constructed in [Kis09a], in the Barsotti–Tate case, and have
been constructed over any potentially Barsotti–Tate deformation ring associated with a
tame type in [Car+21], §5 (where it is denoted by Xr).
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5.3 The local-global compatibility conjecture
Fix a dominant weight λ ∈ (Zn

+)Hom(F,E) for G, and a collection of n-
dimensional Weil–Deligne inertial types τ = {τv}v∈Sp(F ). Set λv := (λι)ι:Fv ↪→E ∈
(Zn

+)Hom(Fv ,E). Recall that we introduced the abstract spherical Hecke alge-
bra TT and the corresponding faithful Hecke algebra TT (K,λ, τ) acting on
RΓ(XK ,V(λ,τ)). We further introduce a refinement of the abstract Hecke
algebra that also consists of Hecke operators at p. To do this, note that
since c-IndGLn(Fv)

GLn(OFv )σ(λv, τv)◦ is finitely generated as an O[GLn(Fv)]-module,
we have H(σ(λv, τv)◦)[1/p] = H(σ(λv, τv)). We have an identificationÄ

c-IndGLn(Fv)
GLn(OFv )σ(τv)

ä
⊗E Vλ∨

v
∼= c-IndGLn(Fv)

GLn(OFv )σ(λv, τv),

f ⊗ w 7→ [g 7→ f(g)Vλ∨
v
(g)w].

We can then define a natural map

H(σ(τv))→ H(σ(λv, τv)),

ϕ 7→ ϕ⊗ idVλ∨

that, thanks to [ST06], Lemma 1.4, is an isomorphism of E-algebras. In
particular, we have zτv = Z(H(σ(λv, τv)◦))[1/p]. Let Ωv denote the Bern-
stein block corresponding to τv and set zΩv to be the corresponding Bernstein
centre. We then set

z◦
λv ,τv

:= Z(H(σ(λv, τv)◦)) ∩ zΩv ⊂ zτv ,

a commutative O-subalgebra and note that z◦
λv ,τv

[1/p] = zΩv . Finally, set

TT,λ,τ := TT ⊗O (
⊗

v∈Sp(F )
z◦
λv ,τv

),

a commutative O-algebra. As a consequence of Lemma 2.3.1, Frobenius reci-
procity, and [NT16], Lemma 3.11, we get a map of O-algebras

TT,λ,τ → EndD+(O)(RΓ(XK ,V(λ,τ)))

for every good subgroup K ⊂ G(A∞
F+) with Kp = ∏

v̄∈Sp
G(OF+

v̄
). Denote by

TT,λ,τ (Kp) the corresponding faithful Hecke algebra TT,λ,τ (RΓ(XK ,V(λ,τ))).
Since RΓ(XK ,V(λ,τ)) is a perfect complex in D+(O), TT,λ,τ (Kp) is a commu-
tative finite O-algebra. In particular, we obtain a decomposition

TT,λ,τ (Kp) =
∏
m

TT,λ,τ (Kp)m

where we run over all maximal ideals of TT,λ,τ (Kp). Therefore, for each m, we
have a corresponding TT,λ,τ -equivariant direct summand RΓ(XK ,V(λ,τ))m of
RΓ(XK ,V(λ,τ)) and the natural map TT,λ,τ (Kp)m → TT,λ,τ (RΓ(XK ,V(λ,τ))m)
becomes an isomorphism (cf. [NT16], §3.2).

We recall the following conjecture (cf. [CG18], Conjecture B).
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Conjecture 5.3.1 (Construction of torsion Galois representations). Let K ⊂
G(A∞

F+) be any good subgroup and m ⊂ TT (K,λ, τ) = TT (RΓ(XK ,V(λ,τ))m)
be a maximal ideal. Then there exists a continuous semisimple Galois repre-
sentation

ρm : GF,T → GLn(TT (K,λ, τ)/m)
such that, for each finite place v /∈ T of F , the characteristic polynomial of
ρm(Frobv) is equal to the image of Pv(X) in (TT (K,λ, τ)/m)[X].

Moreover, if ρm is absolutely irreducible, then it admits a lift to a contin-
uous homomorphism

ρm : GF,T → GLn(TT (K,λ, τ)m)
such that, for each finite place v /∈ T of F , the characteristic polynomial of
ρm(Frobv) is equal to the image of Pv(X) in TT (K,λ, τ)m[X].

Since we have a natural map TT (K,λ, τ) → TT,λ,τ (Kp), assuming Con-
jecture 5.3.1, a maximal ideal m ⊂ TT,λ,τ (Kp) gives rise to a continuous
semisimple Galois representation

ρm : GF,T → GLn(TT,λ,τ (Kp)/m).
Moreover, if we denote by mT the induced maximal ideal of TT , we have a
natural inclusion

TT (K,λ, τ)mT ↪→ TT,λ,τ (Kp)m.
In particular, assuming that ρm is absolutely irreducible, Conjecture 5.3.1
provides a lift

ρm : GF,T → GLn(TT,λ,τ (Kp)m)
of ρm satisfying the assertion of Conjecture 5.3.1.

To state the local-global compatibility conjecture, we need to further in-
troduce the subring

z◦,int
λv ,τv

:= η−1(Rλv ,⪯τv

ρv
) ∩ z◦

λv ,τv
⊂ z◦

λv ,τv
.

Note that we still have the property z◦,int
λv ,τv

[1/p] = zΩv .
Conjecture 5.3.2 (Torsion local-global compatibility at ℓ = p ). Assume
Conjecture 5.3.1. Let m ⊂ TT,λ,τ (Kp) be a non-Eisenstein maximal ideal.
For v ∈ Sp(F ), set ρv := ρm|GFv

and ρv := ρm|GFv
. Then, for any v ∈ Sp(F ),

there is a (necessarily unique) dotted arrow making the following diagram
commutative

R2
ρv

TT,λ,τ (Kp)m

Rλv ,⪯τv

ρv
z◦,int
λv ,τv

Rλv ,⪯τv

ρv
[1/p] zΩv .

ρv

nat

η|
z
◦,int
λv,τv

η



144CHAPTER 5. A TORSION LOCAL-GLOBAL COMPATIBILITY CONJECTURE

Remark 5.3.3. In the diagram above, we denote by nat the canonical map
coming from the fact that the target of the map is a faithful Hecke algebra.
We also note that the complication of introducing the ring z◦,int

λv ,τv
originates in

the fact the η does not necessarily send z◦
λv ,τv

into Rλv ,⪯τv

ρv
(see Remark 5.2.2).

We could also, instead of using the lower part of the diagram, simply just ask
that whenever z ∈ z◦

λv ,τv
such that η(z) lies in Rλv ,⪯τv

ρv
, then nat(z) coincides

with ρv ◦ η(z).
Note that since we have z◦,int

λv ,τv
[1/p] = zΩv , whenever we specialise to an

E-algebra TT,λ,τ (Kp)m → B, we get that the induced natural zΩv -action co-
incides with the one induced by η.

We finally state our theorem that settles a large part of Conjecture 5.3.2
in the case when F is assumed to be an imaginary CM field.

Theorem 5.3.4. Let F be an imaginary CM field that contains an imaginary
quadratic field F0 in which p splits. Assume that T is stable under complex
conjugation and satisfies:

• Let v /∈ T be a finite place of F , with residue characteristic ℓ. Then
either T contains no ℓ-adic places and ℓ is unramified in F , or there
exists an imaginary quadratic subfield of F in which ℓ splits.

Let K ⊂ G(A∞
F ) be a good compact open subgroup with KT hyperspecial. Fix

a place v̄ ∈ Sp(F+). Let m ⊂ TT,λ,τ (Kp) be a non-Eisenstein maximal ideal.
Assume that:

i. There is a place v̄′ ∈ Sp(F+) such that v̄ ̸= v̄′ and

∑
v̄′′ ̸=v̄,v̄′

[F+
v̄′′ : Qp] ≥

1
2[F+ : Q]

where the sum runs over v̄′′ ∈ Sp(F+);

ii. and ρm is decomposed generic.

Then there exists an integer N ≥ 1, depending only on n and [F+ : Q], a
nilpotent ideal I ⊂ TT,λ,τ (Kp)m with IN = 0 and a continuous homomorphism

ρm : GF,T → GLn(TT,λ,τ (Kp)m/I)

lifting ρm such that

• for each finite place v /∈ T of F , the characteristic polynomial of ρm(Frobv)
is equal to the image of Pv(X) in TT,λ,τ (Kp)[X].
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Moreover, if, for v|v̄, we set ρv := ρm|GFv
and ρv := ρm|GFv

, there is a (neces-
sarily unique) dotted arrow making the following diagram commutative

R2
ρv

TT,λ,τ (Kp)m/I

Rλv ,⪯τv

ρv
z◦,int
λv ,τv

Rλv ,⪯τv

ρv
[1/p] zΩv .

ρv

nat

η|
z
◦,int
λv,τv

nat

η

Remark 5.3.5. We say a few words about the assumptions appearing in
Theorem 5.3.4.

The assumption on T is already present in [Sch15] and it makes sure that,
up to nilpotent ideal, Conjecture 5.3.1 is known to be true (see Theorem 2.9.3
and Theorem 2.9.5). It is a rather mild condition that can always be fulfilled
after enlarging T .

Assumption (i) is a lot more serious and excludes the case of imaginary
quadratic fields. Its appearance originates in the use of the Fontaine–Laffaille
style degree shifting argument (cf. [CN23], Lemma 4.2.5).

Finally, (ii) is again essential for our methods to work. It ensures that we
can appeal to the vanishing results of Caraiani–Scholze. To our knowledge
this is the only known way of producing the necessary congruences between
cusp forms for U(n, n)F+ and Eisenstein series coming from cusp forms for
GLn,F .

Remark 5.3.6. Although we don’t discuss it here, one could possibly formu-
late a more general conjecture treating the case when our choice of parabolic
subgroup Qp = ∏

vQv ⊂
∏
v GLn,Fv is not the trivial one, and the complexes

appearing are Qp-ordinary. However, to do this, one would need to introduce
the appropriate potentially semistable Qv-ordinary deformation rings. This
should be possible using ideas of [Ger18], §3.3.

Nevertheless, in the next chapter we will prove a general result (Proposi-
tion 6.3.1) that has the potential to settle the more general conjecture too,
once it’s formulated.
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Chapter 6

Proof of Theorem 5.3.4

In this chapter, we provide a proof of Theorem 5.3.4 refining the argument
of [CN23]. In fact, we prove a local-global compatibility result for the more
general Qp-ordinary complexes considered in §3.2. For the rest of the chapter,
we fix the following setup. Let n ≥ 2 be an integer, F be an imaginary
CM field, and T ⊂ S(F ) as in Theorem 5.3.4. In particular, we assume
Assumption 2.7.3. Fix a choice of lift v|v̄ in F for each v̄ ∈ Sp. We consider
the corresponding groups G, P , and G̃ as before. Moreover, we fix a tuple
(Qp, λ, τ) = (Qv, λv, τv)v∈Sp(F ) as in §2.7.

6.1 Degree shifting
One essential step in executing the strategy laid out in [All+23] is what

they call the "degree shifting argument". The most robust version of which
appears in [CN23]. In fact, besides some enrichment of the method, their ar-
gument is already sufficient for our proof. We first state the precise statement
we need and then indicate the changes to the argument of [CN23] one needs
to prove our generalisation of loc. cit. Proposition 4.2.6.

Fix a place v̄ ∈ Sp, and assume that, under the identification of §2.7
(λv, λvc) corresponds to a dominant weight λ̃v̄ = (−wGLn

0 λvc , λv) ∈ (Z2n
+ )Hom(F+

v̄ ,E).
Extend it to an arbitrary dominant weight λ̃ for G̃. Set Qv̄ := Qv × Qvc ⊂
GF+

v̄
= GLn,Fv × GLn,Fvc , and consider the standard parabolic subgroup

Q̃w0
v̄ = M̃w0

v̄ ⋉ ‹Nw0
v̄ ⊂ G̃F+

v̄
associated to it (cf. §2.7). We then obtain a

tuple (Q̃w0
v̄ , λ̃v̄, τv̄). Write Qv = P(n1,...,nk), and Qvc = P(m1,....,mkc ). Accord-

ingly, write
τv = (τv,1, ..., τv,k), τvc = (τvc,1, ..., τvc,kc),

wQv
0 λv = (λv,1, ..., λv,k) ∈ (Znk

+ )Hom(Fv ,E) × ...× (Zn1
+ )Hom(Fv ,E), and

wQvc

0 λvc = (λvc,1, ..., λvc,kc) ∈ (Zmkc

+ )Hom(Fvc ,E) × ...× (Zm1
+ )Hom(Fvc ,E).

Set
z◦
λv ,τv

:= ⊗ki=1z
◦
λv,i,τv,i

, z◦
λvc ,τvc := ⊗kc

i=1z
◦
λvc,i,τvc,i

,

147
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and introduce the abstract Hecke algebras‹TT,λv̄ ,τv̄ := ‹TT ⊗O
Ä
z◦
λv ,τv
⊗ z◦

λvc ,τvc

ä
,

TT,λv̄ ,τv̄ := TT ⊗O
Ä
z◦
λv ,τv
⊗ z◦

λvc ,τvc

ä
.

By Corollary 3.2.6 and its analogue for G̃, ‹TT,λv̄ ,τv̄ respectively, TT,λv̄ ,τv̄ natu-
rally acts on RΓ(‹X‹K ,V ‹Qw0

v̄

(λ̃,τv̄))
‹Qw0

v̄ -ord respectively, RΓ(XK ,VQp

(λ,τ))Qv̄-ord as long

as ‹Kv̄ = ‹Qw0
v̄ (0, c), and Kv̄ = Qv̄(0, c) with c ≥ cp. More precisely, in the case

of the former, the action of z◦
λvc ,τvc is via the identification H(σ(λvc , τvc)◦) ∼=

H((θ−1
n )∗σ(λvc , τvc)◦) induced by θn (see Remark 3.4.2). We introduce an

extension of the unnormalised Satake transform

S v̄ := S ⊗ id : ‹TT,λv̄ ,τv̄ → TT,λv̄ ,τv̄ .

Let m ⊂ TT be a non-Eisenstein maximal ideal, and set m̃ := S∗(m) ⊂ ‹TT .
By Theorem 2.9.6, we have an associated Galois representation

ρm̃ : GF,T → GL2n(‹TT/m̃)

and, by Proposition 2.8.1, we have ρm̃ = ρm ⊕ ρ∨,c
m (1 − 2n). Introduce the

faithful Hecke algebras

A(K,λ, τ , q, v̄) := TT,λv̄ ,τv̄(Hq(XK ,VQp

(λ,τ))Qv̄-ord
m ),

A(K,λ, τ , q, v̄,m) := TT,λv̄ ,τv̄(Hq(XK ,VQp

(λ,τ)/ϖ
m)Qv̄-ord

m ), and

Ã(‹K, λ̃, τv̄, v̄) := ‹TT,λv̄ ,τv̄(Hd(‹X‹K ,V ‹Qw0
v̄

(λ̃,τv̄))
‹Qw0

v̄ -ord
m̃ )

for d = dimC ‹X‹K , the middle degree for the (Betti) cohomology of ‹X‹K and
integers 0 ≤ q ≤ d− 1.1

Given a good subgroup K ⊂ G(A∞
F+), a subset S ⊂ Sp, and an integer

m ∈ Z≥1, define the subgroup K(m,S) ⊂ K by setting

K(m,S)v̄ := Kv̄ ∩Km
v̄

2

if v̄ ∈ S and K(m,S)v̄ = Kv̄ otherwise. Also, given a good subgroup ‹K ⊂
G̃(A∞

F+), define the good subgroup ‹K(m,S) ⊂ ‹K by setting‹K(m,S)v̄ := ‹Kv̄ ∩ Pv̄(m,m)

if v̄ ∈ S, and ‹K(m,S)v̄ := ‹Kv̄ otherwise.
1Note that the real dimension of XK is d − 1 so its Betti cohomology has top degree

d− 1.
2Recall that Km

v̄ := ker(G(OF +
v̄

)→ G(OF +
v̄

/ϖm
v̄ )).
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Proposition 6.1.1 (Degree shifting). Let v̄, v̄′ be two distinct places of Sp.
Let S1 := {v̄′}, S3 := {v̄}, and S2 := Sp \ {v̄, v̄′} their complement. Let‹K ⊂ G̃(A∞

F+) be a good subgroup and m ∈ Z≥1 be an integer. Assume that
the following conditions are satisfied.

i. We have ∑
v̄′′∈S2

[F+
v̄′′ : Qp] ≥

1
2[F+ : Q].

ii. For v̄′′ ∈ S1∪S2, we have U(OF+
v̄′′

) ⊂ ‹Kv̄′′, and ‹Kv̄′′ = ‹K(m,S1∪S2)v̄′′.
Finally, we have ‹Kv̄ = ‹Qw0

v̄ (0, cp).

iii. For each ι : F ↪→ E inducing v̄ or v̄′, we have −λιc,1 − λι,1 ≥ 0.

iv. ρm̃ is decomposed generic.

Define a weight λ̃ ∈ (Z2n
+ )Hom(F+,E) as follows: if ι : F+ ↪→ E does not induce

either v̄ or v̄′, set λ̃ι = 0. Otherwise, set λ̃ι = (−w0,nλιc, λι). Set K := (‹K v̄ ∩
G(A∞,v̄

F+ )
)
·
(‹Qv̄(0, cp) ∩G(F+

v̄ )
)

= (‹K v̄ ∩G(A∞,v̄
F+ )

)
·
(
Qv(0, cp)×Qvc(0, cp)

)
.

Let q ∈ [⌊d2⌋, d−1]. Then there exist an integer m′ ≥ m, an integer N ≥ 1,
a nilpotent ideal I ⊂ A(K,λ, τ , q, v̄,m) satisfying IN = 0, and a commutative
diagram ‹TT,λv̄ ,τv̄ Ã(‹K(m′, S2), λ̃, τv̄, v̄)

TT,λv̄,τv̄ A(K,λ, τ , q, v̄,m)/I.

S v̄

Moreover, N can be chosen to only depend on n and [F+ : Q].

As a preliminary step, one proves the following lemma (compare with
[CN23], Proposition 4.2.2). This already consists of (one of) the ideas coming
from the ordinary degree shifting argument. Moreover, this lemma is one
of the points where the main result of [CS19], in particular the decomposed
generic assumption gets used. Finally, for this lemma to hold it is crucial that
m is non-Eisenstein as otherwise there is possible contribution to the boundary
cohomology from strata corresponding to parabolic subgroups other than P
and consequently, [CN23], Corollary 4.1.9 could fail to hold.

Before stating the lemma, we need to introduce some notation. Given a
subset S ⊂ Sp and an integerm ≥ 1, set VU(S,m) := RΓ(U(OF+,S),O/ϖm) ∈
Db

sm(O/ϖm[KS]). We can view it as an object of Db
sm(O/ϖm[GS ×KS]) via

inflation. In particular, it gives rise to a bounded complex of GS × KS-
equivariant sheaves on XG and descends to an object in Db(Sh(XK ,O/ϖm))
for any good subgroup K ⊂ G(A∞

F+). It has locally constant cohomology
sheaves VjU(S,m) that are non-zero if and only if j ∈ [0, n2 ∑

v̄∈S[F+
v̄ : Qp]]
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according to Lemma 2.3.17 of [CN23] (combined with the Künneth formula).
By loc. cit. Lemma 2.1.9, we have

RΓ(XG,O/ϖm)⊗L VU(S,m)3 ∼= RΓ(XG,VU(S,m))

in Db
sm(O/ϖm[GS ×KS]). In particular, by the proof of Corollary 3.2.6, the

complex RΓ(XK ,VU(S,m)⊗ V
Q

Sp\S

(λ
Sp\S

,τ
Sp\S

)/ϖ
m)Qv̄-ord carries a natural action

of TT,λv̄ ,τv̄ for any v̄ ∈ Sp \ S such that Kv̄ = Qv̄(0, cp). We can pass to the
homotopy limit over m to get VU(S) ∈ Db(Sh(XK ,O)) which once again has
locally constant cohomology sheaves VjU(S). Assuming that for v̄ ∈ Sp \S we
have Kv̄ = Qv̄(0, cp), we get a natural action of TT,λv̄ ,τv̄ on RΓ(XK ,VU(S)⊗
V
Q

Sp\S

(λ
Sp\S

,τ
Sp\S

))Qv̄-ord by passing to the limit over m.

Lemma 6.1.2. Let ‹K ⊂ G̃(A∞
F+) be a good subgroup that is decomposed with

respect to P such that, for each v̄ ∈ Sp, ‹Kv̄ ∩U(F+
v̄ ) = U(OF+

v̄
). Let m ⊂ TT

be a non-Eisenstein maximal ideal, let m̃ := S∗(m) ⊂ ‹TT and assume that ρm̃
is decomposed generic.

Fix places v̄, v̄′ ∈ Sp and introduce S1, S2 and S3 as before. Let (Qp, λ, τ)
be a tuple as in §2.7, and let (Q̃w0

v̄ , λ̃, τv̄) be the tuple associated to it as in
Proposition 6.1.1. Assume that ‹Kv̄ = ‹Qw0

v̄ (0, cp) and define K as in Proposi-
tion 6.1.1. Then the Satake transform S v̄ : ‹TT,λ̃v̄ ,τv̄ → TT,λ̃v̄ ,τv̄ descends to a
homomorphism ‹TT,λv̄ ,τv̄(Hd(‹X‹K ,V ‹Qw0

v̄

(λ̃,τv̄))
‹Qw0

v̄ -ord
m̃ )→

TT,λv̄ ,τv̄

(
Hd
(
XK ,Vλv̄′ ⊗ VU(S2)⊗ VQv̄

(λv̄ ,τv̄)
)Qv̄-ord
m

)
where Hd denotes the degree d hypercohomology.

Proof. By Theorem 2.9.9, the genericity of m̃ implies that we have a ‹TT,λv̄ ,τv̄ -
equivariant surjection

Hd(‹X‹K ,V ‹Qw0
v̄

(λ̃,τv̄))
‹Qw0

v̄ -ord
m̃ ↠ Hd(∂‹X‹K ,V ‹Qw0

v̄

(λ̃,τv̄))
‹Qw0

v̄ -ord
m̃ .

In particular, it suffices to prove that S v̄ descends to a homomorphism‹TT,λv̄ ,τv̄(Hd(∂‹X‹K ,V ‹Qw0
v̄

(λ̃,τv̄))
‹Qw0

v̄ -ord
m̃ )→ TT,λv̄ ,τv̄

(
Hd
(
XK ,Vλv̄′⊗VU(S2)⊗VQv̄

(λv̄ ,τv̄)
)Qv̄-ord
m

)
.

Consider π∂(‹K v̄,Vλ̃v̄/ϖm) := RΓ(∂‹X‹K v̄ ,Vλ̃v̄/ϖm) ∈ D+
sm(O/ϖm[G̃(F+

v̄ )]),
the v̄-completed boundary cohomology. We then have a ‹TT,λv̄ ,τv̄ -equivariant
isomorphism

Hd(∂‹X‹K ,V ‹Qw0
v̄

(λ̃,τv̄)/ϖ
m)

‹Qw0
v̄ -ord

m̃
∼=

3See Page 13 of [CN23] for how to define this derived tensor product.
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RdHomO/ϖm[M̃w0,0
v̄ ]

(
σ̃(λ̃v̄, τv̄)◦/ϖm, RΓ

(‹Nw0
v̄ (OF+

v̄
), π∂(‹K v̄,Vλ̃v̄/ϖ

m)
)‹Qw0

v̄ -ord
)
.

On the other hand, [CN23], Corollary 4.1.9 shows that π∂(‹K v̄,Vλ̃v̄/ϖm)m̃
admits

S∗Ind
‹G(F+

v̄ )
P (F+

v̄ )RΓ(XK v̄ ,Vλv̄′/ϖ
m ⊗ VU(S2,m))m

as a ‹TT -equivariant direct summand in D+
sm(O/ϖm[G̃(F+

v̄ )]). To simplify
notation, set π := π(K v̄,Vλv̄′/ϖ

m ⊗ VU(S2,m))m. Then, by the previous
discussion, Hd(∂‹X‹K ,V ‹Qw0

v̄

(λ̃,τv̄)/ϖ
m)

‹Qw0
v̄ -ord

m̃ admits

RdHomO/ϖm[M̃w0,0
v̄ ]

(
σ̃(λ̃v̄, τv̄)◦/ϖm, RΓ

(‹Nw0
v̄ (OF+

v̄
),S∗Ind

‹G(F+
v̄ )

P (F+
v̄ )π
)‹Qw0

v̄ -ord
)

as a ‹TT,λv̄ ,τv̄ -equivariant direct summand.
By Corollary 3.5.7, the latter admits

RdHomO/ϖm[M0
v̄ ]

(
σ(λv, τv)◦⊗σ(λvc , τvc)◦/ϖm, RΓ

(
Nv(OFv)×Nvc(OFvc ), π

)Qv×Qvc -ord
)

∼= Hd(XK ,Vλv̄′ ⊗ VU(S2)⊗ VQv̄

(λv̄ ,τv̄)/ϖ
m)Qv̄-ord

m

as a‹TT,λv̄ ,τv̄ -equivariant subquotient, giving the desired map with modϖm co-
efficients. Here we implicitly used the identification σ(λv, τv)◦⊗σ(λvc , τvc)◦ ∼=
τ−1
wP

0
σ̃(λ̃v̄, τv̄)◦ induced by ιv : G̃(F+

v̄ ) ∼= GL2n(Fv).
We finally note that these identifications are compatible when we vary

m, and, since all the cohomology groups appearing are finitely generated
O-modules, we can conclude by passing to the limit over m ≥ 1.

Proof of Proposition 6.1.1. This is a generalisation of [CN23], Proposition
4.2.6. More precisely, the role of the faithful Hecke algebras A(K,λ, q),
A(K,λ, q,m), and Ã(‹K, λ̃, v̄) of loc. cit. are now played by A(K,λ, τ , q, v̄),
A(K,λ, τ , q, v̄,m), and Ã(‹K, λ̃, τv̄, v̄). Consequently, in our case T, respec-
tively ‹T will denote TT,λv̄ ,τv̄ , respectively ‹TT,λv̄ ,τv̄ and our goal is to show the
existence of non-negative integers m′ ≥ m, and N such that

S v̄(Ann‹THd(‹X‹K(m′,S2),V
‹Qw0

v̄

(λ̃,τv̄))
‹Qw0

v̄ -ord
m̃ )N ⊂ AnnTH

q(XK ,VQp

(λ,τ)/ϖ
m)Qv̄-ord

m .

Regardless the change of setup, the proof is identical to that of loc. cit. In
particular, we only indicate the necessary new inputs for the argument to
work in our case and direct the reader to [CN23] for the proof.

• The proof uses Poincaré duality at certain points. To be able to appeal
to Poincaré duality in our case, we need that it is Hecke-equivariant
also at v̄. This is the content of Proposition 3.3.5.
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• To deepen the level at certain steps, their proof uses the Hochschild–
Serre spectral sequence, and we need to verify that all of these spectral
sequences are TT,λv̄ ,τv̄ -equivariant. However, this is clear as we only
have to go deeper level at places in S2 and our Hecke operators are at
places in T ∪ {v̄}.

• We also need to argue that the hypercohomology spectral sequences
with respect to VU(S2) and VU(S2,m) (that are denoted in [CN23] by
Ei,j
n (O) resp. Ei,j

n (O/ϖm)) are TT,λv̄ ,τv̄ -equivariant. To see this, we
note that the TT,λv̄ ,τv̄ -action on the target of the map in Lemma 6.1.2
is induced by the identification

RΓ(XK ,Vλv̄′/ϖ
m ⊗ VU(S2,m)⊗ VQv̄

(λv̄ ,τ v̄))Qv̄-ord ∼=

∼= RHomO/ϖm[M0
v

](σ(λv, τv)◦/ϖm, πQv-ord(Kv,Vλv′ ⊗ VU(S2,m)))

in D+(O/ϖm). We can then construct Ei,j
n (O/ϖm) of loc. cit. by

taking the hypercohomology spectral sequence of

RHomO/ϖm[M0
v

](σ(λv, τv)◦/ϖm, πQv-ord(Kv,Vλv′ ⊗−)) ∼=

R

(
HomO/ϖm[M0

v
]

Å
σ(λv, τv)◦/ϖm,Γ

(
N0
v̄ ,Γ
(
K v̄,Γ(XG,Vλv̄′⊗−)

))Qv̄-ordã)
applied to VU(S2,m) ∈ DbSh

GS2 ×K
S2

(XG,O/ϖm). In particular, it
will be TT,λv̄ ,τv̄ -equivariant by construction. Since all the members of
Ei,j
n (O/ϖm) are finite O/ϖm-modules, the Mittag–Leffler condition is

satisfied and, in particular, the limit of the spectral sequences Ei,j
n (O/ϖm)

over m ≥ 1 produces Ei,j
n (O).

• As input, we use Lemma 6.1.2 instead of loc. cit. Proposition 4.2.2.

Just as in [CN23], we will need a dual version of the degree shifting ar-
gument. We only explain the setup and the statements here as the proofs
are identical to that of Proposition 6.1.1, and Lemma 6.1.2. Set ‹TT,λv̄ ,τv̄ ,ι̃,
respectively TT,λv̄ ,τv̄ ,ι to be the image of ‹TT,λv̄ ,τv̄ , respectively TT,λv̄ ,τv̄ under
the anti-isomorphism

ι̃ : ‹TT ⊗O H(σ(λv̄, τ v̄)◦) ∼= ‹TT ⊗O H(σ(λv̄, τ v̄)◦,∨),

respectively

ι : TT ⊗O H(σ(λv̄, τ v̄)◦) ∼= TT ⊗O H(σ(λv̄, τ v̄)◦,∨)



6.1. DEGREE SHIFTING 153

given by [g, ψ] 7→ [g−1, ψt] on double coset operators.4 We denote by S v̄,∨ :‹TT,λv̄ ,τv̄ ,ι̃ → TT,λv̄ ,τv̄ ,ι the extension of the unnormalised Satake transform
given by S⊗id. We consider a tuple (Qp, λ, τ) as before, but now, just as in the
last paragraph of §2.7, we assume that λ̃ := (−wGLn

0 λvc , λv) is dominant for
G̃ (instead of wP0 λ̃v̄). We also pick some dominant weight λ̃ ∈ (Z2n

+ )Hom(F+,E)

for G̃ extending λ̃v̄. We consider the dual local systems VQp,∨
(λ,τ) , and V ‹Q,w0,∨

(λ̃,τv̄) .

Then ‹TT,λv̄ ,τv̄ ,ι̃, respectively TT,λv̄ ,τv̄ ,ι acts on RΓ(‹X‹K ,V ‹Qv̄ ,w0,∨
(λ̃,τv̄) /ϖm)‹Qv̄-ord, re-

spectively RΓ(XK ,VQp,∨
(λ,τ) /ϖ

m)Qv̄-ord when ‹K ⊂ G̃(A∞
F+) is a good subgroup

with ‹Kv̄ = ‹Qv̄(0, cp), and K = ‹K ∩ G(A∞
F+). In the case of the latter, it

follows from Corollary 3.3.4. The action in the case of the former comes from
the identification

RΓ(‹X‹K ,V ‹Qv̄ ,w0,∨
(λ̃,τv̄) /ϖm)‹Qv̄-ord ∼=

RHomO/ϖm[M̃0
v̄ ](θ

−1
n σ(λvc , τvc)◦,∨ ⊗ σ(λv, τv)◦,∨, π

‹Qv̄-ord(‹K v̄,V∨
λ̃v̄/ϖ

m))

in D+(O/ϖm) and the isomorphism H(σ(λv, τv)◦,∨) ⊗ H(σ(λvc , τvc)◦,∨) ∼=
H(θ−1

n σ(λvc , τvc)◦,∨)⊗H(σ(λv, τv)◦,∨) induced by ιv.
Given a maximal ideal m ⊂ TT , set m∨ := ι|TT (m) ⊂ TT . Define the

faithful Hecke algebras

A∨(K,λ, τ , q, v̄) := TT,λv̄ ,τv̄ ,ι(Hq(XK ,VQp,∨
(λ,τ) )Qv̄-ord

m∨ ),

A∨(K,λ, τ , q, v̄,m) := TT,λv̄ ,τv̄ ,ι(Hq(XK ,VQp,∨
(λ,τ) /ϖ

m)Qv̄-ord
m∨ ), and

Ã∨(‹K, λ̃, τv̄, v̄) := ‹TT,λv̄ ,τv̄ ,ι̃(Hd(‹X‹K ,V ‹Qv̄ ,wP
0 ,∨

(λ̃,τv̄) )‹Qv̄-ord
S∗m∨ ).

Then the dual version of degree shifting reads as follows.

Proposition 6.1.3 (Dual degree shifting). Let v̄, v̄′ be two distinct places of
Sp. Let S1 := {v̄′}, S3 := {v̄}, and S2 := Sp \ {v̄, v̄′} their complement. Let‹K ⊂ G̃(A∞

F+) be a good subgroup and m ∈ Z≥1 be an integer. Assume that
the following conditions are satisfied.

i. We have ∑
v̄′′∈S2

[F+
v̄′′ : Qp] ≥

1
2[F+ : Q].

ii. For v̄′′ ∈ S1∪S2, we have U(OF+
v̄′′

) ⊂ ‹Kv̄′′, and ‹Kv̄′′ = ‹K(m,S1∪S2)v̄′′.
Finally, we have ‹Kv̄ = ‹Qv̄(0, cp).

iii. For each ι : F ↪→ E inducing v̄ or v̄′, we have λι,n + λιc,n ≥ 0.
4Recall that ι̃ and ι are the maps intertwining the Hecke actions between the two sides

of Poincaré duality.
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iv. ρS∗m∨ is decomposed generic.
Define a weight λ̃ ∈ (Z2n

+ )Hom(F+,E) as follows: if ι : F+ ↪→ E does not
induce either v̄ or v̄′, set λ̃ι = 0. Otherwise, set λ̃ι = (λι,−w0,nλιc). Set
K := ‹K ∩G(A∞

F+).
Let q ∈ [⌊d2⌋, d − 1]. Then there exists an integer m′ ≥ m, an integer

N ≥ 1, a nilpotent ideal I ⊂ A∨(K,λ, τ , q, v̄,m) satisfying IN = 0, and a
commutative diagram‹TT,λv̄ ,τv̄ ,ι̃ Ã∨(‹K(m′, S2), λ̃, τv̄, v̄)

TT,λv̄ ,τv̄ ,ι A∨(K,λ, τ , q, v̄,m)/I.

S v̄,∨

Moreover, N can be chosen to only depend on n and [F+ : Q].
Proof. One can argue the same way as in the proof of Proposition 6.1.1. In
particular, one first proves the dual analogue of Lemma 6.1.2 (see [CN23],
Proposition 4.2.4 for how the dual statement might look like). This can
be done analogously using loc. cit., Lemma 4.2.3 (taking into account the
discussion above the lemma), and replacing Corollary 3.5.7 by Corollary 3.5.8.

6.2 Middle degree cohomology
As before, consider a collection of data

v̄ ∈ Sp, (λv, λvc) ∈ (Zn
+)Hom(Fv ,E) × (Zn

+)Hom(Fvc ,E),

Qv ×Qvc = P(n1,...,nk) × P(m1,...,mkc ) ⊂ GF+
v̄

,
(τv, τvc) = ((τv,1, ..., τv,k), (τvc,1, ..., τvc,kc)).

Let ((Ωv,1, ...,Ωv,k), (Ωvc,1, ...,Ωvc,kc)) to be the corresponding collection of
Bernstein centres. Consider the tuple (Q̃w0

v̄ , λ̃v̄ = (−w0,nλvc , λv), τv̄ = (τv, τvc)).
Set λ̃ ∈ (Z2n

+ )Hom(F+,E) to be an extension of λ̃v̄. Let ‹K ⊂ G̃(A∞
F+) be a good

subgroup such that ‹Kv̄ = ‹Qv̄(0, cp). Let m ⊂ TT be a non-Eisenstein maxi-
mal ideal and set m̃ := S∗(m). Recall that d = dimC(‹X‹K). Then the goal of
this short section is to decompose the ‹TT,λv̄ ,τv̄ [1/p]-module

Hd(‹X‹K ,V ‹Qw0
v̄

(λ̃,τv̄))
‹Qw0

v̄ -ord
m̃ [1/p] (6.2.1)

in terms of cuspidal automorphic representations for G̃. As without further
assumptions the possibility of some Eisenstein series for G contributing to
6.2.1 cannot be ruled out, following [All+23], we put an extra assumption on
the weight λ̃ to ensure that only cuspidal automorphic representations for G̃
contribute. We recall the definition here.
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Definition 6.2.1. A weight λ̃ ∈ (Z2n
+ )Hom(F+,E) is CTG ("cohomologically

trivial for G") if it satisfies the following condition

• Given w ∈ W P , define λw = w(λ̃ + ρ) − ρ, viewed as an element of
(Zn

+)Hom(F,E) as usual where ρ denotes the half-sum of positive roots.
For each w ∈ W P and i0 ∈ Z, there exists ι ∈ Hom(F,E) such that
λw,ι − λ∨

w,ιc ̸= (i0, ..., i0).

We recall that ‹TT,λv̄ ,τv̄ [1/p] is naturally identified with‹TT [1/p]⊗E
Ç

(
k⊗
i=1

zΩv,i
)⊗ (

kc⊗
i=1

zΩvc,i
)
å
.

Proposition 6.2.2. Assume that m̃ = S∗(m) is decomposed generic, and λ̃
is CTG. Then, after possibly enlarging E,

Hd(‹X‹K ,V ‹Qw0
v̄

(λ̃,τv̄))
‹Qw0

v̄ -ord
m̃ [1/p]

is a semisimple ‹TT,λv̄ ,τv̄ [1/p]-module. Moreover, for any homomorphism

x : ‹TT,λv̄ ,τv̄(Hd(‹X‹K ,V ‹Qw0
v̄

(λ̃,τv̄))
‹Qw0

v̄ -ord
m̃ )→ Qp

and isomorphism t : Qp
∼−→ C, there is a cuspidal automorphic representation

π̃ of G̃(AF+) such that t−1(π̃v̄ ◦ ι−1
v ) ⊗ V ∨

λ̃v̄
is Q̃w0

v̄ -ordinary (in the sense of
Definition 4.2.5) and x is induced by the natural Hecke action of‹TT,λv̄ ,τv̄ [1/p] = ‹TT [1/p]⊗E

Ç
(
k⊗
i=1

zΩv,i
)⊗ (

kc⊗
i=1

zΩvc,i
)
å

on

(t−1π̃{∞}∪T )‹G(“OT
F + )⊗Qp

HomM̃
w0
v̄ (Fv)

Ä
σ(τv)⊗ (θ−1

n )∗σ(τvc), (t−1(π̃v̄ ◦ ι−1
v ))‹Qw0

v̄ -ord
ä
.5

(6.2.2)

Before starting the proof, recall that zΩvc,1⊗ ...⊗ zΩvc,kc acts on the second
factor of the Hom in 6.2.2 via θn. Moreover, we emphasise that in the state-
ment we are implicitly using that, by Corollary 4.2.13, (t−1(π̃v̄ ◦ ι−1

v ))‹Qw0
v̄ -ord

is irreducible, so ‹TT,λv̄ ,τv̄ [1/p] indeed acts on 6.2.2 through scalars.

Proof. To prove the statement, we show that there is a‹TT,λv̄ ,τ v̄ [1/p]-equivariant
direct sum decomposition

Hd(‹X‹K ,V ‹Qw0
v̄

(λ̃,τv̄))
‹Qw0

v̄ -ord
m̃ ⊗O Qp

∼=

5For the definition of (−)‹Qw0
v̄ -ord, see Definition 4.2.18.
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⊕
π̃

d(π̃)(t−1π̃{∞}∪T )‹G(“OT
F + )⊗Qp

HomM̃
w0
v̄ (Fv)

Ä
σ(τv)⊗ (θ−1

n )∗σ(τvc), (t−1(π̃v̄ ◦ ι−1
v ))‹Qw0

v̄ -ord
ä

where the sum runs over cohomological cuspidal automorphic representations
of G̃(AF+) of weight λ̃ and d(π̃) ≥ 0 denotes some integer. A ‹TT -equivariant
decomposition of this kind is given in the proof of [All+23], Theorem 2.4.11.
To see that this decomposition is also Hecke equivariant at v̄, we unravel the
definition of this action.

To ease the notation, set Q := Q̃w0
v̄ ⊂ GL2n,Fv , M := M̃w0

v̄ , and V :=
V
‹Qw0

v̄

(λ̃,τv̄). Recall that we have

RΓ(‹X‹K ,V)Q-ord
m̃

∼= lim←−
m

RΓ(‹X‹K ,V/ϖm)Q-ord
m̃ .

Moreover, as explained in §3.4, the ‹TT,λv̄ ,τv̄ -action is induced by the identifi-
cation

RΓ(‹X‹K ,V/ϖm)Q-ord
m̃

∼= RHomM0

Ä
σ̃(λv̄, τv̄)◦/ϖm, πQ-ord(‹K v̄,Vλ̃v̄/ϖm)m̃

ä
.

Since m̃ is decomposed generic, the cohomology of πQ-ord(‹K v̄,Vλ̃v̄/ϖm)m̃ van-
ishes for degrees below d thanks to [CS19], Theorem 1.1. Therefore, a stan-
dard argument with a hypercohomology spectral sequence (combined with
the previous observations) gives an identification

Hd(‹X‹K ,V/ϖm)Q-ord
m̃

∼= HomM0(σ̃(λv̄, τv̄)◦/ϖm, Hd(πQ-ord(‹K v̄,Vλ̃v̄/ϖm)m̃)).

Another application of the vanishing result of [CS19] combined with a stan-
dard argument with a Hocschild–Serre spectral sequence gives a‹TT -equivariant
isomorphism of smooth O/ϖm[M(Fv)]-modules

Hd(πQ-ord(‹K v̄,Vλ̃v̄/ϖm)m̃) ∼= OrdQ(‹Hd(‹K v̄,Vλ̃v̄/ϖm)m̃).

Here ‹Hd(‹K v̄,Vλ̃v̄/ϖm) denotes the degree d v̄-completed cohomology of level‹K v̄ and weight Vλ̃v̄/ϖm and OrdQ(−) is Emerton’s ordinary part functor from
§4.1. Using that thanks to finiteness of finite level cohomology Mittag–Leffler
applies in our situation, we deduce an identification

Hd(‹X‹K ,V)Q-ord
m̃ [1/p] ∼= HomM0

Ä
σ̃(λv̄, τ v̄),OrdQ(‹Hd(‹K v̄, Vλ̃v̄)m̃)

ä
.6 (6.2.3)

The ‹TT,λv̄ ,τv̄ -action on the former then is induced from this identification.
As a consequence of Proposition 4.1.8, 6.2.3 is further identified (‹TT,λv̄ ,τv̄ -
equivariantly) with

HomM0

(
σ̃(λv̄, τ v̄),OrdQ(‹Hd(‹K v̄, Vλ̃v̄)m̃)

V
−w

Q
0 λ̃v̄

-lalg) ∼=
6For the definition of OrdQ applied to E-Banach space representations, see the discus-

sion below Remark 4.1.7.
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HomM0

Å
σ̃(λv̄, τ v̄),Ordlalg

Q (‹Hd(‹K v̄, Vλ̃v̄)
Vλ̃∨

v̄
-lalg

m̃ )
ã
.

Using Emerton’s spectral sequence (cf. [Eme06b], Corollary 2.2.18), and the
fact that ‹H∗(‹K v̄, Vλ̃v̄)m̃ vanishes below the middle degree, we see that there
is a ‹TT -equivariant isomorphism‹Hd(‹K v̄, Vλ̃v̄)

Vλ̃∨
v̄

-lalg
m̃

∼=

Ñ
lim−→‹K′

v̄

Hd(‹X‹K v̄ ‹K′
v̄
, Vλ̃v̄)m̃

é
⊗E Vλ̃∨

v̄

of locally algebraic E-representations of GL2n(Fv). Moreover, by the proof of
[All+23], Theorem 2.4.11, we have a‹TT -equivariant direct sum decompositionÑ

lim−→‹K′
v̄

Hd(‹X‹K v̄ ‹K′
v̄
, Vλ̃v̄)m̃

é
⊗E Qp

∼=

⊕
π̃

d(π̃)(t−1π̃{∞}∪T )‹G(“OT
F + ) ⊗ t−1(π̃v̄ ◦ ι−1

v )

of smooth admissible Qp[GL2n(Fv)]-modules.
In particular, to conclude, it suffices to prove that for any π̃ appearing in

the direct sum decomposition above, there is an identification

HomM0
(
σ̃(τv̄), t−1(π̃v̄ ◦ ι−1

v

)Q-ord) ∼= (6.2.4)

HomM0

Ä
σ̃(λv̄, τv̄),Ordlalg

Q

Ä
t−1(π̃v̄ ◦ ι−1

v )⊗E Vλ̃∨
v̄

ää
such that the isomorphism

H(σ̃(τv̄)) ∼−→ H(σ̃(λv̄, τv̄)), (6.2.5)

ϕ 7→ ϕ⊗ id−wQ
0 λ̃v̄

(provided by [ST06], Lemma 1.4) intertwines the Hecke actions on the two
sides. After noting that Ordlalg

Q (t−1(π̃v̄ ◦ ι−1
v )⊗E Vλ̃∨

v̄
) ∼= (t−1(π̃v̄ ◦ ι−1

v ))Q-ord⊗E
V−wQ

0 λ̃v̄
, and that σ̃(λv̄, τ v̄) = σ̃(τ v̄)⊗E V−wQ

0 λ̃v̄
, the isomorphism 6.2.4 is given

by the natural isomorphism

HomM0(σ̃(τ v̄),−) ∼= HomM0(σ̃(τ v̄)⊗E V−wQ
0 λ̃v̄

,−⊗E V−wQ
0 λ̃v̄

).

The induced identification is clearly H(σ̃(τv̄))-equivariant when on the RHS
of 6.2.4 we act through 6.2.5.
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6.3 The end of the proof
We are now ready to prove our main local-global compatibility result in

this level of generality. The reader is invited to compare it with [CN23],
Proposition 4.2.13. The content of this result is, for every p-adic place v ∈
Sp(F ), constructing a characteristic zero lift of ρm|GFv

with the right shape
according to the tuple (Qv, λv, τ v). We then show that in the case of Qv =
GLn the existence of such a lift easily implies Theorem 5.3.4.

Proposition 6.3.1. Assume that p splits in an imaginary quadratic subfield
of F . Let K ⊂ G(A∞

F+) be a good subgroup and fix distinct places v̄, v̄′ ∈ Sp.
Fix a preferred lift v | v̄ in Sp(F ). Let (Qp, λ, τ) = (Qv, λv, τ v)v∈Sp(F ) be
a tuple as in §2.7 and assume that Kp ⊂ Qp(0, cp) and Kv̄ = Qv(0, cp) ×
Qvc(0, cp).

Let m ∈ Z≥1 be an integer, and m ⊂ TT,λv̄ ,τv̄ be a maximal ideal in the
support of H∗(XK ,VQp

(λ,τ)/ϖ
m)Qv×Qvc -ord. Write

Qv = P(n1,...,nk),Fv ⊂ GLn,Fv , and Qvc = P(m1,...,mkc ),Fvc ⊂ GLn,Fvc .

Assume that:

i. We have ∑
v̄′′ ̸=v̄,v̄′

[F+
v̄′′ : Qp] ≥

1
2[F+ : Q]

where the sum runs over v̄′′ ∈ Sp(F+).

ii. The maximal ideal m is non-Eisenstein such that ρm is decomposed
generic.

iii. Let v /∈ T be a finite place of F , with residue characteristic ℓ. Then
either T contains no ℓ-adic places and ℓ is unramified in F , or there
exists an imaginary quadratic subfield of F in which ℓ splits.

Then, for each q ∈ [0, d − 1], there exists an integer N ≥ 1, depending only
on n and [F+ : Q], a nilpotent ideal I ⊂ TT,λv̄ ,τv̄

Ä
Hq(XK ,VQp

(λ,τ)/ϖ
m)Qv̄-ord

m

ä
with IN = 0, and a continuous n-dimensional representation

ρm : GF,T → GLn
Ä
TT,λv̄ ,τv̄

Ä
Hq(XK ,VQp

(λ,τ)/ϖ
m)Qv̄-ord

m

ä
/I
ä

such that the following conditions hold:

i. For each finite place v /∈ T of F , the characteristic polynomial of
ρm(Frobv) is equal to the image of Pv(X).

ii. For ṽ = v, vc, the representation ρm|GFv
has a lift to ρ̃ṽ : GFṽ → GLn(Ã),

where Ã is a finite flat local O-algebra equipped with a z◦
λṽ ,τṽ

-algebra
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structure such that Ã[1/p] ∼=
∏
xE is a semisimple E-algebra with a

morphism

S ṽ : Ã→ TT,λv̄ ,τv̄

Ä
Hq(XK ,VQp

(λ,τ)/ϖ
m)Qv̄-ord

m

ä
/I

of z◦
λṽ ,τṽ

-algebras.

iii. For ṽ = v, vc, ρ̃ṽ[1/p] is potentially semistable with labelled Hodge–Tate
weights (λι,1 + n− 1 > ... > λι,n)ι:Fṽ ↪→E.

iv. Moreover, these lifts admit isomorphisms

ρ̃v[1/p] ∼

à
ρ̃v,1 ∗ ... ∗
0 ρ̃v,2 ... ∗
. . . .
. . . .
0 ... 0 ρ̃v,k

í
, ρ̃vc [1/p] ∼

à
ρ̃vc,1 ∗ ... ∗

0 ρ̃vc,2 ... ∗
. . . .
. . . .
0 ... 0 ρ̃vc,kc

í
such that, for 1 ≤ i ≤ k, and 1 ≤ j ≤ kc, ρ̃v,i, respectively ρ̃vc,j has
Weil–Deligne inertial type bounded by τv,i, respectively τvc,j. Moreover,
the labelled Hodge–Tate weights of ρ̃v,i, respectively ρ̃vc,j are determined
by the property that they are increasing as i, respectively j grows.

v. For ṽ = v or vc, an integer 1 ≤ i ≤ k̃ for k̃ = k or k̃ = kc (depending
on ṽ), and a morphism x : Ã → E the following property is satisfied.
The morphism zΩṽ,i

→ E induced by postcomposing the structure map
zΩṽ,i

→ Ã with x coincides with the one induced by the natural action
of zΩṽ,i

on
recT,−1(WD(x ◦ ρ̃ṽ,i))⊗ | · |n1+...+ni−1 .7

Proof. As the argument follows very closely the proof of [CN23], Proposition
4.2.13, we only provide a sketch. Since the existence of ρm satisfying the first
condition is known, we are free to enlarge T .8 By various twisting arguments,
and an application of the Hocschild–Serre spectral sequence, we can assume
the following:

• ρm̃ is decomposed generic.

• K = K(m,Sp \ {v̄}).

• For v̄′′ ∈ Sp \ {v̄, v̄′}, λv̄′′ = 0, and τv̄′′ is trivial.

• For each ι : Fv ↪→ E, −λιc,1 − λι,1 ≥ 0, and λ̃ = (−wGLn
0 λvc , λv)v̄∈Sp

is
CTG.9

7Here the convention is that n0 := 0.
8This will be used in the various upcoming twisting arguments.
9See Remark 6.3.2 for the role of this condition.
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In particular, by setting ‹K ⊂ G̃(A∞
F+) to be a good subgroup satisfying

• ‹K v̄ ∩G(A∞
F+) = K v̄;

• ‹KT = G̃(“OTF+);

• For v̄′′ ∈ Sp \ {v̄}, U(OF+
v̄

) ⊂ ‹Kv̄′′ , ‹K = ‹K(m,Sp \ {v̄});

• ‹Kv̄ = ‹Qw0
v̄ (0, cp) (associated with Qv̄);

and assuming that q ∈ [⌊d2⌋, d−1], we are in the situation of Proposition 6.1.1.
We briefly explain what we mean by "twisting argument" as it will be

also used in the next step of the proof. Assume that we have a continuous
character χ : GF → k×. Since for the upcoming step this is the only relevant
case, we also assume that χ is unramified at Sp. We set χ : GF → O× to be its
Teichmüller lift. Choose a finite set of finite places T ⊂ T ′ of F that is closed
under complex conjugation, containing all places at which χ is ramified, and
a good normal subgroup K ′ ⊂ K satisfying:

• (K ′)T ′\T = KT ′\T .

• K/K ′ is abelian of order prime to p.

• For each finite place v of F , χ|GFv
◦ ArtFv is trivial on det(K ′

v).

• T ′ again satisfies assumption iii) from the Proposition.

Then set m(χ) ⊂ TT,λv̄ ,τv̄ to be fχ(m), where fχ : TT,λv̄ ,τv̄
∼−→ TT,λv̄ ,τv̄ is the

map defined in the discussion preceding Lemma 2.3.2. Note that ρm(χ) =
ρm ⊗ χ. Set

A(K ′, λ, τ , q, v̄,m, χ) := TT,λv̄ ,τv̄

Ä
Hq(XK′ ,VQp

(λ,τv̄)/ϖ
m)Qv̄-ord

m(χ)

ä
.

Claim: Verifying the Proposition for any of the m(χ)’s with corresponding
level K ′ will imply it for m with level K.

Proof of Claim. Note that we have a surjection

A(K ′, λ, τ , q, v̄,m)→ A(K,λ, τ , q, v̄,m)

of TT,λv̄ ,τv̄ -algebras so we can and do assume that K = K ′. Use the ab-
breviation A(χ) := A(K,λ, τ , q, v̄,m, χ). Assume that we found an integer
Nχ, a nilpotent ideal Iχ ⊂ A(χ), a continuous representation ρm(χ) : GF,T →
GLn(A(χ)/Iχ), a surjection Ã(χ) ↠ A(χ)/Iχ of z◦

λv ,τv
-algebras, and a con-

tinuous representation ρ̃v,χ : GFv → GLn(Ã) satisfying the conditions of the
Proposition. Set N := Nχ, I := fχ−1(Iχ), ρm := (fχ−1 ◦ ρm(χ)) ⊗ χ−1, and
Ã := f ∗

χ−1Ã(χ) as a z◦
λv ,τv

-algebra. Define the surjection Ã → A/I to be
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Ã(χ)→ A(χ)/Iχ ∼=fχ−1 A/I and set ρ̃v := (fχ−1◦ρ̃v,χ)⊗χ−1 : GFv → GLn(Ã).
Then, as already observed at the end of the proof of [All+23], Corollary 4.4.8,
ρm satisfies the first condition of the Proposition. An easy diagram chase
shows that condition ii) is satisfied. Conditions iii) and iv) are clearly pre-
served under twisting by χ, so they are also satisfied. To check the last
condition, pick x : Ã → E, and consider one of the subquotients ρ̃v,χ,i
of ρ̃v,χ[1/p] from condition iii) for m(χ). Then the corresponding subquo-
tient of ρ̃v[1/p] is ρ̃v,χ,i ⊗ χ−1, and the morphism zΩv,i

→ E is induced by
zΩv,i

→ Ã(= zΩv,i

fχ−→ zΩv,i
→ Ã(χ)). Then condition v) follows from the

computation

recT,−1(WD(x ◦ ρ̃v,i)) = recT,−1(WD(x ◦ ρ̃v,χ,i)⊗ χ−1) =

recT,−1(WD(x ◦ ρ̃v,χ,i))⊗ (χ−1 ◦ ArtFv)
and the definition of fχ : zΩv,i

→ zΩv,i
.

For now we assume that q ∈ [⌊d2⌋, d − 1]. Then, according to Proposi-
tion 6.1.1, for every choice of χ such that flm(χ) is decomposed generic, we
obtain an integer Nχ, a nilpotent ideal Iχ, a flat O-algebra Ã(χ), and a
map Ã(χ) → A(K ′, λ, τ , q, v̄,m, χ)/Iχ. Write Ã(χ) = ∏

xE using Proposi-
tion 6.2.2. Applying Theorem 2.9.2, and Theorem 4.3.4 to each x : Ã → E
(keeping in mind Proposition 6.2.2), we obtain a continuous representation

ρ̃m(χ) :=
∏
x

ρ̃m(χ),x : GF → GL2n(Ã(χ)[1/p]),

admitting a block upper-triangular shape with blocks of size (n1, ..., nk,mkc , ...,m1).
In particular, for each x, we have an isomorphism

ρ̃m(χ),x|GFv
∼
Å
r1,χ,x ∗

0 r2,χ,x

ã
.

As shown in Sub-Lemma 1 in the proof of [CN23], Proposition 4.2.13, we can
find χ such that

• the set of isomorphism classes of the Jordan-Hölder constituents of
ρm(χ)|GFv

and ρ∨,c
m(χ)(1− 2n)|GFv

are disjoint;

• and, for all x : Ã → E, the isomorphism classes of the Jordan-Hölder
constituents of r1,χ,x coincide with those of ρm(χ)|GFv

.

For such a χ, we can apply [CN23], Proposition 3.2.4 to obtain a Ã(χ)-
valued lift ρ̃v,χ : GFv → GLn(Ã(χ)) of ρm(χ)|GFv

such that ρ̃v,χ[1/p] becomes
isomorphic to ∏

x r1,χ,x. In particular, by Theorem 4.3.4 and Proposition 6.2.2,
conditions iii), iv), and v) are all satisfied for ρ̃v,χ. This finishes the proof in
the case of q ∈ [⌊d2⌋, d− 1].
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To treat the case of q < ⌊d2⌋, one uses the Poincaré duality isomorphisms

ι : A(K,λ, τ , q, v̄,m) ∼= A∨(K,λ, τ , d− 1− q, v̄,m),

ι̃ : ‹TT,λv̄ ,τv̄

(
Hd(‹X‹K ,V ‹Qv̄ ,wP

0
(λ̃,τv̄) [1/p])‹Qv̄-ord

ι̃∗S∗(m∨)

)
∼= Ã∨(‹K, λ̃, τv̄, v̄)[1/p]

provided by Proposition 3.3.5. Then an analogous argument using the dual
degree shifting (Proposition 6.1.3), and a version of Proposition 6.2.2 for the
cohomology group Hd(‹X‹K ,V ‹Qv̄ ,wP

0
(λ̃,τv̄) [1/p])‹Qv̄-ord

ι̃∗S∗(m∨) proves the Proposition also
for q. For more details, see [CN23], Proposition 4.2.13.

Remark 6.3.2. We emphasise the role of reserving the place v̄′ in the de-
gree shifting argument (cf. Proposition 6.1.1). Namely, combined with the
assumption that the level is deep enough at v̄′, it allows us to freely change
the weight λv̄ without changing the faithful Hecke algebra A(K,λ, τ , q, v̄,m).
This lets us assume in the proof of Proposition 6.3.1 that λ̃ is CTG (cf.
[All+23], Lemma 4.3.6). This is crucial for us in order to have access to
Proposition 6.2.2.

Nevertheless, as was pointed out to the author by James Newton, once
Theorem 5.3.4, in particular, Theorem 1.3.1 is proved, one could try and run
the proof of Theorem 5.3.4 with a version of Proposition 6.2.2 where we drop
the CTG assumption. This way the role of v̄′ would not be relevant anymore,
leading to a strengthening of Theorem 5.3.4 where condition i) is weakened
to asking for ∑

v̄′′∈Sp,v̄′′ ̸=v̄

[F+
v̄′′ : Qp] ≥

1
2[F+ : Q] (6.3.1)

instead. The author is planning to revisit this strategy in future work.

Proof of Theorem 5.3.4. Pick a collection of data (F,K, λ, τ,m, v̄) as in the
statement of the Theorem. Pick a choice of lift v | v̄ in Sp(F ). We will apply
Proposition 6.3.1 with the choice (Qv, λv, τv)v∈Sp(F ) := (GLn, λv, τv).

Note that it suffices to prove the statement for Galois representations
with coefficients in TT,λ,τ (RΓ(XK ,V(λ,τ)/ϖ

m)m) for integers m ∈ Z≥1. This
is because, by [NT16], Lemma 3.11, we have an isomorphism

TT,λ,τ (RΓ(XK ,V(λ,τ))m) ∼−→ lim←−
m

TT,λ,τ (RΓ(XK ,V(λ,τ)/ϖ
m)m)

of TT,λ,τ -algebras. Moreover, by an argument using [KT17], Lemma 2.5,
and Carayol’s lemma (cf. the proof of [All+23] Corollary 4.4.8, and The-
orem 4.5.1), it suffices to verify the Theorem one cohomological degree at
a time. Therefore, fix q ∈ [0, d − 1], and set mv̄ ⊂ TT,λv̄ ,τv̄ to be the
maximal ideal obtained by pulling back m along TT,λv̄ ,τv̄ ↪→ TT,λ,τ . Set
Av̄ := TT,λv̄ ,τv̄(Hq(XK ,V(λ,τ)/ϖ

m)mv̄). It is then clearly sufficient to verify
the statement for a Galois representation with coefficients in Av̄.
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Applying Proposition 6.3.1 gives a nilpotent ideal Iv̄ ⊂ Av̄, a continu-
ous representation ρm : GF → GLn(Av̄/Iv̄), a finite flat local O-algebra Ã,
a surjective homomorphism Sv : Ã → Av̄/Iv̄ of z◦

λv ,τv
-algebras, and a lift

ρ̃v : GFv → GLn(Ã) of ρv := ρm|GFv
under Sv satisfying the five listed con-

ditions. In particular, by the first condition, it satisfies local-global compati-
bility outside T , and the only thing left to check is the existence of a dotted
arrow making the diagram in the statement of the Theorem commutative.

We first note that an easy unravelling of the definitions (using condition
iii), iv), and v) from Proposition 6.3.1) shows that we have a (necessarily
unique) dotted arrow making the diagram

R2
ρv

[1/p] Ã[1/p]

Rλv ,⪯τv

ρv
[1/p] zΩv

ρ̃v [1/p]

η

nat ‹A (6.3.2)

commutative. Here nat‹A denotes the natural map towards the faithful Hecke
algebra and η denotes the interpolation of local Langlands. We then obtain
the following diagram

zΩv Rλv ,⪯τv

ρv
[1/p] Ã[1/p]

Rλv ,⪯τv

ρv
Ã Av̄/Iv̄

z◦
λv ,τv

ρ̃v [1/p]η

ρ̃v Sv

nat ‹A
natAv̄

where all the inclusions are the natural ones induced by inverting p. Note
that, by abuse of notation, we write Kisin’s local deformation rings as the
source of ρ̃v[1/p] resp. ρ̃v. This is justified by 6.3.2. Moreover, by the very
definition of ρ̃v, we have Sv ◦ ρ̃v = ρm|GFv

. In particular, we see that in the
local-global compatibility diagram of Theorem 5.3.4 we indeed have a dotted
arrow making the upper triangle commutative. To see that the obtained
arrow also commutes with the lower triangle, we need to prove the following.
Claim: If z ∈ z◦

λv ,τv
such that η(z) lies in Rλv ,⪯τv

ρv
, then natAv̄(z) = ρv(z).

Proof of Claim. We have

natAv̄(z) = Sv(nat‹A(z)) = Sv(ρ̃v[1/p](η(z))) =

Sv(ρ̃v(η(z))) = ρv(η(z)),
where the first equality is by the definition of the degree shifting map, the
second equality is the content of 6.3.2, and the last equality follows from the
definition of ρ̃v.
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Proof of Theorem 1.3.1. Consider an imaginary CM field F , an identification
t : Qp

∼= C, and a regular algebraic cuspidal automorphic representation π
of GLn(AF ) as in the statement of the Theorem. Fix also a p-adic place v
in F where we wish to prove local-global compatibility. We can then find
a cyclic CM field extension F ′/F such that v and vc split completely in F ′,
F ′ is linearly disjoint from F

ker rt(π), rt(π)|GF ′ stays decomposed generic, and
F ′ and v satisfy the conditions of Theorem 5.3.4. In particular, it suffices to
prove local-global compatibility for the cyclic base change π′ := BCF ′/F (π)
for any place v′|v in F ′.

Let τ be the Weil–Deligne inertial type of π′, set λ′ to be its weight, and
note that λv′ = λv. Let T be a suitable finite set of places containing Sp(F ′)
such that (π′)T∪{∞} is unramified. Pick a good subgroup Kp ⊂ GLn(A∞,p

F ′ )
such that ((π′)p)Kp ̸= 0. Set K = KpK0

p where K0
p := ∏

v∈Sp(F ′) GLn(OF ′
v
).

Then, by Theorem 2.6.4,

HomK0
p
(σ(τ), (π′)Kp) ̸= 0,

and TT,λ′,τ [1/p] acts via scalars, inducing a map x : TT,λ′,τ [1/p] → Qp. For
a large enough field extension E/Qp, [Fra98], and [FS98] show (cf. [All+23],
Theorem 2.4.10) that (π′)KpK′

p can be found in

H∗(XKpK′
p
,V(λ′,τ)[1/p])

as a TT -equivariant direct summand for any compact open normal sub-
group K ′

p ⊂ K0
p such that σ(τ)|K0

p
is trivial. Since finite group cohomology

is torsion, an argument with Hocschild–Serre spectral sequence shows that
HomK0

p
(σ(τ), (π′)Kp) can be found in

H∗(XK ,V(λ′,τ)[1/p])

as a TT -equivariant direct summand. To see that this direct summand is also
TT,λ′,τ [1/p]-equivariant one has to compare the natural action of TT,λ′,τ [1/p]
(cf. §2.6) on

HomK0
p
(σ(τ), (π′)Kp)

with the one on
H∗(XK ,V(λ′,τ)[1/p])

given by Lemma 2.3.1. The two induced actions on the direct summand can
be seen to coincide by writing both actions in terms of correspondences as in
§2.4.

In the previous paragraph we proved that the map x factors through
TT,λ′,τ (Kp)m where m ⊂ TT,λ′,τ is the (non-Eisenstein and decomposed generic)
maximal ideal so that rt(π′) ∼= ρm. The Theorem then follows from applying
Theorem 5.3.4 to m and specialising the diagram in the statement at x.



Appendix A

Bernstein–Zelevinsky and
Langlands classifications

Since the theory of Bernstein–Zelevinsky and its relation to the Langlands
classification is used at several points in §4.2, we recollect the necessary results
of the theory. Throughout this section, we fix a finite field extension L/Qp

with a choice of uniformiser ϖL and, for any integer m ∈ Z≥1, we set Gm :=
GLm(L). All of our representations will have Qp-coefficients and recall that
we fix an identification t : Qp

∼= C. For a smooth representation π of Gm, we
set deg(π) := m.

For an integer n ∈ Z≥1 with a partition n = n1 + ... + ns, consider the
corresponding standard parabolic subgroup Q ⊂ Gn with its Levi decompo-
sition Q = M ⋉ N . Recall that for any smooth representations πi of Gni

(i = 1, ..., s) we denoted by n-IndGn
Q π1 ⊗ ... ⊗ πs the normalised parabolic

induction. For this chapter, we will abbreviate this by writing

π1 × ...× πs := n-IndGn
Q π1 ⊗ ...⊗ πs.

Moreover, for any smooth representation π, we set JQ(π) to be the (unnor-
malised) Jacquet module of π with respect to Q. By [Zel80], Proposition 1.4,
both operations carry finite length representations to finite length ones. (See
[Zel80], Proposition 1.1 for some of the properties of these functors.)

For any smooth irreducible representation π of Gn, there is a unique multi-
set {π1, ..., πs} of supercuspidal representations of auxiliary general linear
groups Gni

such that π is a subquotient of π1 × ...× πs. We will refer to this
multi-set as the supercuspidal support of π.1 Moreover, the supercuspidal
support can be ordered in a way so that π is actually a subrepresentation of
π1 × ...× πs (cf. [BZ77], Theorem 2.5, Theorem 2.9).

Given a smooth representation π of Gn, for some n ≥ 1, and a real num-
ber a ∈ R, set π(a) to be π ⊗ |det|aL. Zelevinsky introduced the notion of a

1We warn the reader that this is slightly unconventional as in the literature it is the
pair (π1 ⊗ ...⊗ πs, Gn1 × ...×Gns) that is referred to as the supercuspidal support of π.

165
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segment, a set of isomorphism classes of irreducible supercuspidal represen-
tations of the form

∆(π, r) := {π, π(1), ..., π(r − 1)}

where r ≥ 1 is some integer. We also use the notation [π, π(r− 1)] for the set
∆(π, r). We further say that two segments ∆1 and ∆2 are linked if neither
contains the other and ∆1 ∪ ∆2 is also a segment. Finally, for two linked
segments ∆1 = [π(r1), π(r2)] and ∆2 = [π(u1), π(u2)], respectively, we say
that ∆1 precedes ∆2 if r1 ≤ u1. Given a segment ∆ = ∆(π, r), we write

π(∆) := π × ...× π(r − 1).

Then the Bernstein–Zelevinsky and Langlands classifications read as follows
(cf. [Zel80], Theorem 6.1, [Rod82], Theorem 3).

Theorem A.0.1. i. Given a segment ∆ = ∆(π,m), π(∆) has length
2m−1 and admits a unique irreducible subrepresentation Z(∆) and a
unique irreducible quotient L(∆) (called the Langlands quotient of the
segment).

ii. Call an ordered multiset of segments (∆1, ...,∆l) well-ordered, if it is
ordered in a way that, for i < j, ∆i doesn’t precede ∆j. Then, for such
a well-ordered multiset of segments, the representation

Z(∆1)× ...× Z(∆l)

admits a unique irreducible subrepresentation Z(∆1, ...,∆l). Similarly,
the representation

L(∆1)× ...× L(∆l)

admits a unique irreducible quotient L(∆1, ...,∆l) (called the Langlands
quotient of the multiset of segments (∆1, ...,∆l)). Moreover, in both
cases, the isomorphism class of the obtained representation does not
depend on the chosen order.

iii. For any smooth irreducible representation π of Gn, up to reordering,
there is a unique well-ordered multiset of segments (∆1, ...,∆l) resp.
(∆′

1, ...,∆′
h) such that π ∼= Z(∆1, ...,∆l) resp. π ∼= L(∆′

1, ...,∆′
h).

The relation between the Bernstein–Zelevinsky and Langlands classifica-
tions is slightly subtle. Nevertheless, Zelevinsky introduced an involution
which allows one to pass between the two to some extent. Namely, for every
n ≥ 1, one can look at the Grothendieck group Rn of finite length smooth
representations of Gn. Then the operation of normalised parabolic induction
makes R := ⊕n≥0Rn into a graded commutative ring (cf. [Zel80], 1.9). More-
over, according to [Zel80], Corollary 7.5, R is in fact a polynomial algebra
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over Z with indeterminates given by Z(∆). Therefore, one can define a ring
endomorphism

D : R → R
by sending, for any segment ∆, the element Z(∆) to L(∆) and linearly extend-
ing it. One observes that D is in fact an involution which sends Z(∆(π, r)) to
Z(π, ..., π(r−1)) (cf. [Zel80], 9.15). Moreover, Zelevinsky conjectured that D
sends irreducible representations to irreducible representations ([Zel80], 9.17).
Assuming Zelevinsky’s conjecture, Rodier deduced that, for a (well-ordered)
multiset of segments (∆1, ...,∆l), D sends Z(∆1, ...,∆l) resp. L(∆1, ...,∆l) to
L(∆1, ...,∆l) resp. Z(∆1, ...,∆l). Bernstein proposed a proof of the conjec-
ture which stayed unpublished. The first written up proofs can be found in
[Aub95] and [Pro98], respectively. Another property of the involution which
will be useful for us is the fact that it commutes with the operation of twist-
ing by the determinant character. This can be easily seen by first verifying
it on the generators of R as a polynomial algebra over Z corresponding to
segments.

Given the Langlands classification, we can explain the reduction of the lo-
cal Langlands correspondence for GLn to a correspondence between the set of
supercuspidal representations and irreducible Weil–Deligne representations.
Namely, given a supercuspidal representation π of Gn, [HT01; Hen00] at-
taches to it an n-dimensional irreducible Weil–Deligne representation recT (π).
Moreover, if π is only essentially square integrable i.e., according to Bern-
stein, it is of the form L(∆(π′, r)) ([Zel80], Theorem 9.3), we set recT (π) =
recT (π′)⊗ Sp(r) where Sp(r) is the Steinberg representation (see page 213 of
[Rod82]). Finally, if π is a general smooth irreducible representation of the
form L(∆1, ...,∆l), we set recT (π) = ⊕li=1recT (L(∆i)).

Since we will mainly be working with smooth irreducible representations
of Gn coming from cuspidal automorphic representations, we can always as-
sume that our representations π are so that tπ ⊗ |det|−s is unitary for some
s ∈ R. We will refer to such representations as t-preunitary and if s = 0,
then we further call it t-unitary. In particular, it will be useful for us to re-
call Tadic’s classification of unitary irreducible smooth representations of Gn

[Tad86] which reveals that, in the case of unitary representations, the rela-
tion between the Bernstein–Zelevinsky and Langlands classifications becomes
explicit. To state the classification, we first need to introduce some further
notation. Given a t-unitary supercuspidal representation π of Gm for some
m ∈ Z≥1 and an integer d ∈ Z≥1, we define the unitary segment

∆u(d, π) := [π(1− d
2 ), ..., π(d− 1

2 )].

Then the building blocks of the classification will be the following two types
of representations.

i. Given d, n ∈ Z≥1 and π a t-unitary supercuspidal representation of Gm
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for some m ∈ Z≥1, we set

a(d, n, π) = Z

Å
∆u(d, π)(n− 1

2 ), ...,∆u(d, π)(1− n
2 )

ã
.

ii. Given d, n ∈ Z≥1, α ∈ (0, 1
2) and π a t-unitary supercuspidal represen-

tation of Gm for some m ∈ Z≥1, we set

a(d, n, π, α) = a(d, n, π)(α)× a(d, n, π)(−α).

The classification is as follows ([Tad86], Theorem A, Theorem B).

Theorem A.0.2. Given an integer m ≥ 1, all smooth representations of Gm

obtained as normalised parabolic induction of type i) and type ii) representa-
tions are t-unitary and irreducible.

Moreover, any smooth irreducible t-unitary representation of Gm can be
obtained this way and the associated multiset of type i) and type ii) represen-
tations is well-defined (i.e., the associated ordered multiset is unique up to
permutation).

Finally, under the Zelevinsky involution a type i) representation a(d, n, π),
respectively a type ii) representation a(d, n, π, α) is sent to a(n, d, π), respec-
tively a(n, d, π, α). In particular, we have

a(d, n, π) = aL(n, d, π) := L

Å
∆u(n, π)(d− 1

2 ), ...,∆u(n, π)(1− d
2 )

ã
,

respectively

a(d, n, π, α) = aL(d, n, π)(α)× aL(d, n, π)(−α).

We conclude the appendix with two technical lemmas, the first of which
relies on Tadic’s classification. The role of the first computation is to under-
stand the monodromy under local Langlands of the ordinary support in §4.2
(see Corollary 4.2.17).

Lemma A.0.3. Let {∆1, ...,∆l} be a multiset of segments, r ∈ Z≥2 and
0 = k0 < k1 < ... < kr = l be integers such that

valp(π′
1(⟨ϖ⟩))

deg π′
1

≤ valp(π′
2(⟨ϖ⟩))

deg π′
2

+ valp(|ϖ|K)

whenever π′
1 resp. π′

2 lies in the underlying supercuspidal support of {∆ki−1+1, ...,∆ki
}

resp. {∆kj−1+1, ...,∆kj
} for i < j. In particular, if π′

1 happens to be of the
form π′

2⊗|det|s, then s ≥ 1. Assume that for each 1 ≤ i ≤ r, (∆ki−1+1, ...,∆ki
)

is well-ordered.2 Finally, assume that

π̃ := Z(∆1, ...,∆l) = L(∆′
1, ...,∆′

h)
2Note that this ensures that already (∆1, ..., ∆l) is well-ordered.
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is t-preunitary and, for i = 1, ..., r, set

πi := Z(∆ki−1+1, ...,∆ki
) = L(∆′′

ti−1+1, ...,∆′′
ti

)

where 0 = t0 < t1 < ... < tr are the appropriate integers. Then every segment
∆′
i is of the form

r⋃
j=1

∆′′′
j

with ∆′′′
j ∈ {∅,∆′′

kj−1+1, ...,∆′′
kj
}.

Proof. Note that we can assume that π̃ is t-unitary. This follows from the
fact that recT is compatible with character twists and that the involution D
commutes with twisting by the determinant character. Arguing by induction
on r, we can further restrict ourselves to the case when r = 2. Therefore,
we do assume the above restrictions and set k := k1. In particular, we have
access to Tadic’s classification. This means that, since we know the shape of
(∆′

1, ...,∆′
h) by Theorem A.0.2, we need to compute the shape of the segments

(∆′′
1, ...,∆′′

t2).
First, we pin down the possible unitary representations appearing in Tadic’s

classification as building blocks which have underlying multiset of segments
strictly separated by

{(∆1, ...,∆k), (∆k+1, ...,∆l)}. (A.0.1)

By the assumption on the central characters of the supercuspidal support of
the partition A.0.1, the representations of the second type appearing in π̃ =
Z(∆1, ...,∆l)’s description via Tadic’s classification have associated multiset
of segments lying either in (∆1, ...,∆k) or (∆k+1, ...,∆l), respectively. Indeed,
this is because all the neighbours of the supercuspidal support of such a
representation differ by a power of the determinant character with exponent
strictly smaller than 1. Now assume that a representation of the first type
appears in π̃ and its associated multiset of segments is strictly separated by
the partition {(∆1, ...,∆k), (∆k+1, ...,∆l)}. Say it is given by a(d, n, π) for
some integers d, n ≥ 1 and t-unitary supercuspidal representation π of Gm

for some integer m ≥ 1. Note that in the case when n = 1, we have only 1
segment so n must be at least 2. On the other hand, notice that d must be
equal to 1. Indeed, if we assume that d is at least 2, then all the neighbours
of

(∆u(d, π)(n− 1
2 ), ...,∆u(d, π)(1− n

2 ))

have overlapping supercuspidal supports. In particular, by the assumption
on the central characters, all the segments must be contained in (∆1, ...,∆k)
or (∆k+1, ...,∆l), respectively. This leads to a contradiction. Therefore, d
necessarily equals 1 and

a(d, n, π) = Z(π(n− 1
2 ), ..., π(1− n

2 )).
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We now have the following claim.
Claim: Z(∆1, ...∆k) is obtained by applying normalised parabolic induction
to a product of representations of type i), type ii) and representations of the
form

Z(π(n− 1
2 ), ..., π(j)) = L([π(j), ..., π(n− 1

2 )])

for some t-unitary supercuspidal representation π of Gm, n ∈ Z≥0 and 1−n
2 ≤

j ≤ n−1
2 .

Proof of Claim. For a choice of t-unitary supercuspidal representation of Gm,
set Sπ ⊂ (∆1, ...,∆k) to be the ordered subset of segments with supercuspidal
support lying in {π ⊗ | det |s}s∈R. By [Zel80], Proposition 8.5, Z(∆1, ...,∆k)
is the parabolic induction of the representations Z(Sπ) for all π such that
Sπ ̸= ∅.3 Moreover, Sπ decomposes into Sint

π and Snonint
π where the first

ordered subset consists of the segments with supercuspidal support lying in
{π⊗ | det |s}s∈ 1

2 Z and define the latter to be its complement. Again, Z(Sπ) is
the parabolic induction of Z(Sint

π ) and Z(Snonint
π ).

By looking at Tadic’s classification, we see that Snonint
π consists of all

the segments corresponding to type ii) representations and nothing else. In
particular, using Tadic’s classification and [Zel80], Proposition 8.4, we see
that it must be the parabolic induction of type ii) representations. We are
left with spelling out Z(Sint

π ).
We further divide Sint

π into the ordered multiset of segments Snonres
π given

by the collection of segments which correspond to a type i) representations
which are not separated by the partition A.0.1 and Sres

π consisting of segments
that are part of the multiset of segments of a type i) representation which is
strictly separated by the partition A.0.1. Then, by [Zel80], Proposition 8.4,
Z(Sint

π ) occurs with multiplicity 1 in the set of Jordan-Hölder factors of

Z(Snonres
π )× Z(Sres

π ). (A.0.2)

Therefore, in order to prove the claim, it suffices to prove that A.0.2 is irre-
ducible and that both Z(Snonres

π ) and Z(Sres
π ) have the claimed shape.

Note that by our previous discussion Z(Sres
π ) is of the form

Z({π(n1 − 1
2 ), ..., π(j), π(n2 − 1

2 ), ..., π(j), ..., π(nf − 1
2 ), ..., π(j)}ord)

where {−}ord means that we chose any allowable ordering of the underlying
multiset of segments, f ∈ Z≥0, n1, ..., nf ∈ Z≥1 and j is some integer between
1−ni

2 and ni−1
2 for any 1 ≤ i ≤ f . This is simply given by

Z(π(n1 − 1
2 ), ..., π(j))× ....× Z(π(nf − 1

2 ), ..., π(j)). (A.0.3)

3Note that the order does not matter.
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To see this, note that A.0.3 can be rewritten as

L([π(j), ..., π(n1 − 1
2 )])× ....× L([π(j), ..., π(nf − 1

2 )]).

This is irreducible by [Zel80], Proposition 9.7 so it must be Z(Sres
π ) by [Zel80],

Proposition 8.4.
By combining Tadic’s classification with [Zel80], Proposition 8.4, we also

see that Z(Snonres
π ) is of the form

a(d̃1, ñ1, π)× ...× a(d̃h, ñh, π) = aL(ñ1, d̃1, π)× ...× aL(ñh, d̃h, π)

for some h ∈ Z≥0, ñ1, ..., ñh, d̃1, ..., d̃h ∈ Z≥1.
We are left with proving that A.0.2 is irreducible. Note that if we ap-

ply Zelevinsky duality to A.0.2 bearing in mind the previous discussion and
Theorem A.0.2, we get(

a(ñ1, d̃1, π)× ...× a(ñh, d̃h, π)
)
×Å

Z([π(j), ..., π(n1 − 1
2 )])× ....× Z([π(j), ..., π(nf − 1

2 )])
ã
.

By Proposition 8.5 of [Zel80], it suffices to see that for any 1 ≤ a ≤ h,
1−d̃a

2 ≤ b ≤ d̃a−1
2 and 1 ≤ c ≤ f , the segments

[π(1− ña
2 + b), ..., π( ña − 1

2 + b)] and [π(j), ..., π(nc − 1
2 )]

are not linked. Note that by assumption j ∈ 1
2Z is the lowest such that π(j)

appears as a supercuspidal support of some segment in Sint
π . Therefore, we

have

j ≤ 1− ña
2 + 1− d̃a

2 ≤ 1− ña
2 + b.

On the other hand, if the two segments were linked, we would need to have

nc − 1
2 <

ña − 1
2 + b ≤ ña − 1

2 + d̃a − 1
2 .

So, by multiplying by −1, we would get

1− ña
2 + 1− d̃a

2 ≤ 1− nc
2 < j,

a contradiction. Therefore, A.0.2 is indeed irreducible and we proved the
claim.
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The same observations apply to Z(∆k+1, ...,∆l) and the lemma now fol-
lows. To be more precise, from the claim we see what can be the shape of a seg-
ment ∆′′

i1 appearing in Z(∆1, ...,∆k) = L(∆′′
1, ...,∆′′

t1). Moreover, the proof of
the claim shows that if any such segment is of the form [π(j), ..., π(n−1

2 )] with
1−n

2 < j, then there must be a corresponding segment ∆i2 with t1+1 ≤ i2 ≤ t2
such that they are disjoint and linked and their union is [π(1−n

2 ), ..., π(n−1
2 )].

Such pairs then build up to segments in L(∆′
1, ...,∆′

h) and any other segments
of the latter were already a segment of (∆′′

1, ..,∆′′
t2).

Lemma A.0.4. Let (∆1, ...,∆l) be a well-ordered multiset of segments such
that Z(∆1, ...,∆l) has degree n and set Qsc = Msc ⋉Nsc ⊂ Gn to be the stan-
dard parabolic subgroup corresponding to the underlying supercuspidal support
with the induced ordering. Then the Jacquet module JQsc(Z(∆1, ...,∆l)) ad-
mits δ1/2

Qsc∆1⊗ ...⊗∆l as a quotient where, by abuse of notation, for a segment
∆ = [π, ..., π(r− 1)] we also denote by ∆ the representation π⊗ ...⊗π(r− 1).

Proof. Let Q = M ⋉ N ⊂ Gn be the parabolic subgroup corresponding to
Z(∆1) ⊗ ... ⊗ Z(∆l). Then Frobenius reciprocity applied to Theorem A.0.1
gives a surjection JQ(Z(∆1, ...,∆l))→ δ

1/2
Q Z(∆1)⊗ ...⊗Z(∆l). Then [Zel80]

Proposition 1.1 parts a) and c) combined with loc. cit. 3.1 implies that taking
Jacquet module with respect to Qsc gives the desired result.
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