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We perform direct numerical simulations of soluble bubbles dissolving in a Taylor-Couette12
(TC) flow reactor with a radius ratio of 𝜂 = 0.5 and Reynolds number in the range13
0 ⩽ 𝑅𝑒 ⩽ 5000, which covers the main regimes of this flow configuration, up to fully14
turbulent Taylor Vortex flow. The numerical method is based on a geometric Volume of Fluid15
framework for incompressible flows coupled with a phase-change solver that ensures mass16
conservation of the soluble species, whilst boundary conditions on solid walls are enforced17
through an embedded boundary approach. The numerical framework is extensively validated18
against single-phase Taylor-Couette flows and competing mass transfer in multicomponent19
mixtures for an idealised infinite cylinder and for a bubble rising in a quiescent liquid. Our20
results show that when bubbles in a Taylor-Couette flow are mainly driven by buoyancy,21
theoretical formulae derived for spherical interfaces on a vertical trajectory still provide the22
right fundamental relationship between the bubble Reynolds and Sherwood numbers, which23
reduces to 𝑆ℎ ∝

√
𝑃𝑒 for large Péclet values. For bubbles mainly transported by Taylor-24

Couette flows, the dissolution of bubbles depend on the TC Reynolds number and, for the25
turbulent configurations, we show that the smallest characteristic turbulent scales control26
mass transfer, in agreement with the small-eddy model of Lamont & Scott (1970). Finally,27
the interaction between two aligned bubbles is investigated and we show that a significant28
increase in mass transfer can be obtained when the rotor of the apparatus is operated at larger29
speeds.30

1. Introduction31

Mass transfer in two-phase systems has several applications in the chemical engineering field,32
such as the design of efficient and sustainable reactors for the production of pharmaceutical33
and agrochemical compounds. The development of continuous flow reactors, which are34
characterised by a continuous flow of reactants and products, has recently attracted the35
attention of researchers due to promising performance compared to standard batch devices.36
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A successful design of continuous flows reactors based on the Taylor-Couette (TC) flow was37
recently proposed for electrochemical (Love et al. 2021; Lee et al. 2022), and photochemical38
(Lee et al. 2017, 2020) applications involving both single- and two-phase (gas-liquid)39
reactions. The success of such design is mainly due to the excellent mixing properties40
of TC flows and the optimal bubble size distribution within the reaction vessel.41

A Taylor-Couette (Couette 1890; Taylor 1923) apparatus consists of two coaxial rotating42
cylinders and the flow behaviour within the gap is a well studied configuration that exhibits43
several consecutive states during the transition from the laminar regime (low rotating speeds)44
to a fully turbulent flow. In the last decades, Taylor-Couette flow has captured the attention of45
both scientists active in the study of laminar to turbulent transition (see, for example, Gollub46
& Swinney (1975); Smith & Townsend (1982); Townsend (1984)) as well as engineers47
involved in the design of rotating devices, like rotating machinery (Nicoli et al. 2022) or48
chemical reactors (Schrimpf et al. 2021). Extensive literature has been published on the49
characterisation of Taylor-Couette flows and the interested reader is referred to the works of50
Di Prima & Swinney (1981); Andereck et al. (1986); Wang (2015); Grossmann et al. (2016)51
and the references therein for a detailed review. In this work, only the configuration where52
the inner cylinder is rotating and the outer one is kept stationary is considered, but similar53
behaviours can be observed in the more generic case of counter-rotating walls.54

The majority of studies concerning disperse bubbly flows in Taylor-Couette apparatuses is55
mainly devoted to the analysis of drag reduction mechanisms (such as bubble deformability,56
effective compressibility of the flow (Ferrante & Elghobashi 2004)) on the rotating walls57
(Murai et al. 2005; Van den Berg et al. 2005; Sugiyama et al. 2008; Murai et al. 2008; Van Gils58
et al. 2013; Murai 2014; Wang et al. 2022), as well as bubble accumulation patterns and their59
interaction with the flow structures (Shiomi et al. 1993; Djeridi et al. 2004; Murai et al. 2005;60
Mehel et al. 2007; Ymawaki et al. 2007; Climent et al. 2007; Chouippe et al. 2014; Gao et al.61
2015b, 2016). On the other hand, a comprehensive understanding of gas-liquid mass transfer62
in Taylor-Couette flows is missing in the literature and the available studies mainly focus on63
the experimental quantification of mass transfer coefficients (𝑘𝑚) through the measurement of64
dissolved gaseous concentration in the liquid solution (Ramezani et al. 2015; Qiao et al. 2018).65
Since the interfacial gas-liquid area (𝑎Σ) is difficult to measure experimentally, the product66
𝑘𝑚𝑎Σ is generally provided instead and correlation formulae of the type 𝑆ℎ = 𝑓 (𝑅𝑒, 𝑆𝑐) are67
proposed, where 𝑆ℎ is the Sherwood number and 𝑆𝑐 is the Schmidt number. The Sherwood68
number compares the mass transfer coefficient against the characteristic velocity of diffusion69
and is defined as 𝑆ℎ = 𝑘𝑚𝐿ref/𝐷𝑐 (where 𝐿ref is the reference length and 𝐷𝑐 is the diffusion70
coefficient of the gasesous species in the liquid (continuous) phase), whilst the Schmidt71
number is 𝑆𝑐 = 𝜈𝑐/𝐷𝑐, and 𝜈𝑐 is the kinematic viscosity of the liquid. Gao et al. (2015a)72
combine a theoretical model, based on the penetration theory of Higbie (1935), with an73
Euler-Euler numerical framework to quantify mass transfer in TC reactors. The Euler-Euler74
approach does not resolve the gas-liquid interface and allows to model disperse bubbly75
flows in large domains. However, its accuracy relies on the choice of appropriate closure76
models, which typically depend on the specific application for the exchange of interfacial77
mass and momentum. To the best of the authors’ knowledge, no studies have been published78
on the modelling of bubbles in Taylor-Couette flows by means of fully resolved interfacial79
simulations. The present study (of which part of the material is based on the author’s thesis80
Gennari (2023)) contributes to the understanding of gas-liquid mass transfer in TC flows by81
deploying a fully resolved and state-of-the-art numerical Volume of Fluid (VOF) framework82
to capture both the fluid flow and mass transfer occurring at the interface and investigate how83
bubble dissolution is affected by the different regimes of Taylor-Couette flows. In the rest of84
this section, the main features of TC flows are briefly discussed along with a review of the85
available numerical methodologies for fully resolved two-phase flows with mass transfer.86
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Figure 1: Geometrical parameters of a Taylor-Couette apparatus and representation of
counter-rotating Taylor vortices.

The non-dimensional groups generally used for the characterisation of this flow configu-87
ration take into account both the geometry of the apparatus (see Figure 1), which is defined88
by the radius ratio (𝜂 = 𝑟in/𝑟out) and the aspect ratio (Γ = 𝐿𝑧/(𝑟out − 𝑟in)), as well as the89
the Reynolds number 𝑅𝑒 = 𝜌𝑐𝑈in (𝑟out − 𝑟in)/𝜇𝑐, where the subscript 𝑐 is used to refer to90
the liquid (continuous phase) within the reactor. The inner and outer radii are 𝑟in and 𝑟out,91
respectively, whilst 𝐿𝑧 is the axial extension of the device and 𝑈in = 𝑟in𝜔in is the peripheral92
speed of the inner rotor.93

The first instability that occurs in a (planar, time-independent and axisymmetric) cylindrical94
Couette flow, when the rotating speed exceeds a critical value, consists of pairs of counter-95
rotating vortices (also known as Taylor cells) superimposed on the main flow; this flow regime96
is referred to as Taylor Vortex flow (TVF) and the cells have a characteristic toroidal-like97
shape. The flow is periodic in the axial direction, axisymmetric and time-independent. The98
Reynolds number at which this instability occurs is referred to as critical Reynolds (𝑅𝑒cr)99
and the expected wavelength 𝜆 (i.e. the axial extension of two consecutive Taylor cells -100
see Figure 1) is approximately twice the gap between the cylinders. As the rotating speed101
is further increased beyond the critical Reynolds, a second instability is observed, which102
causes the vortices to travel along the azimuthal direction, following a wavy trajectory. The103
boundaries between two adjacent Taylor cells have a sinusoidal shape (wave) and the flow104
is no longer time-independent. The waves are periodic along the azimuthal direction and105
this configuration is referred to as Wavy Vortex flow (WVF). In this regime, the flow can106
exhibit multiple states, i.e. different number of Taylor cells and azimuthal waves for the107
same 𝑅𝑒 (Coles 1965). A third instability occurs for larger Reynolds numbers and it is108
characterised by the appereance of two sharp frequencies in the power spectra of the velocity109
field. The first one is still associated to the travelling of azimuthal waves (as in the WVF110
regime), whilst the second one is related to a modulation of the amplitude and the frequency111
of such waves (Gorman & Swinney 1982). This configuration is generally referred to as112
Modulated Wavy Vortex flow (MWVF). For the first three regimes (i.e. TVF, WVF and113
MWVF), Koschmieder (1979) reported that the axial wavelength increases with the rotating114
speed up to approximately 𝑅𝑒 = 10𝑅𝑒cr (for an apparatus with 𝜂 = 0.896), after which 𝜆115
is found to be independent of the rotating speed. For 𝑅𝑒 > 10𝑅𝑒cr the azimuthal waves116
progressively disappear and the flow transitions towards a turbulent regime. This is the last117
state of Taylor-Couette flow and is generally referred to as Turbulent Taylor Vortex flow118
(TTVF). From visual observations, the flow is still structured into azimuthal cells, although119
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the velocity field is no longer well organised into a toroidal pattern, due to the presence of120
strong velocity fluctuations.121

When a soluble gas is introduced in a liquid solution, the system reaches an equilibrium122
state where part of the gas is dissolved into the liquid according to the partial pressure exerted123
by the gas on the interface between the phases. In the present work, the interface is always124
assumed saturated and Henry’s law (see section 2.1) is used to compute the concentration125
jump between the disperse phase (i.e. the gas) and the continuous phase (i.e. the liquid).126
Whenever the dissolved concentration in the continuous phase (𝑐bulk) is below the interfacial127
saturated value (𝑐𝑐)Σ, i.e., the saturation ratio 𝜁 = 𝑐bulk/(𝑐𝑐)Σ < 1, a diffusion-driven process128
that depends on the local concentrations at the interface (Groß & Pelz 2017) takes place and129
redistributes gas molecules from the disperse phase into a concentration boundary layer130
𝛿𝑐 on the liquid side of the interface, leading to bubble dissolution. Assuming a uniform131
concentration within 𝛿𝑐 and no species initially dissolved in the continuous domain (i.e.,132
𝑐bulk = 0), the concentration boundary layer thickness can be estimated as 𝛿𝑐 = 𝐷𝑏/𝑆ℎ,133
where 𝐷𝑏 is the bubble diameter. In actual cases of dissolving rising bubbles, 𝛿𝑐 is a134
local quantity that varies around the interface and is determined by an advection-diffusion135
process. The relative importance of these two transport mechanisms is estimated by the136
Péclet number, defined as 𝑃𝑒 = 𝑅𝑒𝑏𝑆𝑐. For large Reynolds number, Levich (1962) used137
the potential flow theory to approximate the flow field around a moving spherical particle138
and derived the well-known formula 𝑆ℎ =

(
2/
√
𝜋
) √

𝑃𝑒. A similar functional relationship139
is also found in other theoretical formulations, such as Oellrich et al. (1973), as well as140
experimental correlation models (Takemura & Yabe 1998). By combining this relationship141
with the hydrodynamic boundary layer theory 𝛿ℎ ≈ 𝐷𝑏/

√
2𝑅𝑒𝑏 (Levich 1962), the ratio142

of concentration to hydrodynamic boundary layer thicknesses evolves as 𝛿𝑐/𝛿ℎ ∝ 1/
√
𝑆𝑐143

(Weiner & Bothe 2017).144

One of the limiting factors of fully-resolved numerical simulations of interfacial flows with145
mass transfer is due to the small scales that occur at large 𝑆𝑐 and 𝑃𝑒 numbers; additional146
challenges are given by the discontinuities that characterise the interface in terms of velocity147
(whenever mass transfer between two phases with different density occurs) and concentration148
of soluble species. Different approaches have been developed in the past years to address these149
points, such as neglecting volume changes for highly dilute species (Bothe & Fleckenstein150
2013; Farsoiya et al. 2021) or smearing the interfacial mass transfer term to improve stability151
(Hardt & Wondra 2008). Other methodologies adopt the Ghost Fluid method (Fedkiw et al.152
1999) to deal with interfacial velocity jumps (Nguyen et al. 2001; Sussman 2003; Tanguy153
et al. 2007, 2014), whilst recent works have focused on techniques to derive a divergence-free154
velocity formulation at the interface to advect the indicator function in a VOF framework155
(Scapin et al. 2020; Guo 2020; Malan et al. 2021; Gennari et al. 2022; Boyd & Ling 2023;156
Cipriano et al. 2024). Specific numerical schemes have been developed to preserve the jump157
between the concentration values at the interface and can be divided into two families,158
namely one-scalar (one transport equation per species) and two-scalar (two equations per159
species) methods. One-scalar approaches include the work of Bothe et al. (2004) and are160
further extended in (Haroun et al. 2010; Marschall et al. 2012; Deising et al. 2016; Maes161
& Soulaine 2018); examples of these methods coupled with algebraic VOF frameworks162
can be found in Maes & Soulaine (2020) for competing mass transfer and in Zanutto et al.163
(2022a,b) for evaporating flows and non-ideal mixtures. Two-scalar approaches are presented164
in Alke et al. (2009); Bothe & Fleckenstein (2013) and used in Fleckenstein & Bothe (2015)165
with a geometric VOF for multicomponent mass transfer with volume effects. A novel166
implementation is presented in Schulz et al. (2022), where the mesh is split at the interface167
based on its geometrical reconstruction. A combination of one- and two- scalar schemes is168

Focus on Fluids articles must not exceed this page length
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presented in Farsoiya et al. (2021); the same authors have recently proposed an alternative169
approach that takes into account volume effects (Farsoiya et al. 2023). In the present work,170
a geometric VOF scheme is adopted and the piece-wise linear reconstruction (PLIC) of the171
interface allows for a sharp separation between the disperse and continuous domains. Under172
these circumstances, a two-scalar method is the preferred choice to prevent any artificial173
mass transfer to occur during the advection of the interface (Deising et al. 2016).174

The rest of this article is organised as follows. The governing equations for two-phase flows175
with soluble species are introduced in section 2.1, whilst the numerical methodology, which176
is based on our previous work (Gennari et al. 2022), is briefly summarised in section 2.2. The177
numerical framework is extensively validated in 3, whilst the results of bubble dissolution178
in TC flows are discussed in section 4. It is finally reminded here that the terms continuous179
(disperse) and liquid (gas) will be used interchangeably in the rest of the work.180

2. Governing equations and numerical framework181

2.1. Governing equations182

In this work, the three-dimensional Navier-Stokes equations for a two-phase incompressible183
flow with phase-change are solved in the one-fluid framework (see Tryggvason et al. (2011)184
for a rigorous derivation):185

𝜕𝑡𝐻 + ∇ · (𝐻u) = − ¤𝑚
𝜌𝑐

𝛿Σ (2.1)186

∇ · u = ¤𝑚
(

1
𝜌𝑑

− 1
𝜌𝑐

)
𝛿Σ (2.2)187

𝜕𝑡u + ∇ · (u ⊗ u) = 1
𝜌
[−∇𝑝 + ∇ · (2𝜇S)] + g + 𝜎𝜅nΣ

𝜌
𝛿Σ (2.3)188

where equation 2.1 represents the transport of the Heaviside function, which is used to mark189
the location of the interface between the continuous and disperse domains:190

𝐻 (x, 𝑡) =
{

1, if x ∈ Ω𝑐

0, if x ∈ Ω𝑑
(2.4)191

Once 𝐻 (x, 𝑡) is known everywhere, the values of density (𝜌) and viscosity (𝜇) can be192
computed as:193

𝜌 = 𝜌𝑐𝐻 + 𝜌𝑑 (1 − 𝐻) (2.5)194

and195

𝜇 = 𝜇𝑐𝐻 + 𝜇𝑑 (1 − 𝐻) (2.6)196

where the subscript 𝑐 (𝑑) is used to refer to the continuous (disperse) phase. In the following197
we use the letter 𝑓𝑐 to refer to the volume fraction of the continuous phase in a computational198
cell with volume 𝑉 , i.e. 𝑓𝑐 = 1

𝑉

∫
𝑉
𝐻 𝑑𝑉 . Equations 2.2 - 2.3 are the balances of mass and199

momentum, respectively, where the term on the RHS of the continuity equation takes into200
account volume effects when phases with different densities exchange mass. In the system of201
equations 2.1 - 2.3, u is the velocity field, ¤𝑚 is the mass transfer rate, 𝛿Σ is the interfacial Dirac202
function, 𝑝 is the pressure, S is the deformation tensor [∇u+ (∇u)𝑇 ]/2, g is the gravitational203
acceleration, 𝜎 is the surface tension, 𝜅 and nΣ are the curvature and the normal vector of204
the interface.205

Mass transfer at the interface of a two-phase system can occur for different physical206
phenomena, such as evaporation, boiling, chemical reactions, gas solubility. In the present207
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work, the focus is on the solubility of gaseous species in liquid solutions, where the mass208
transfer is driven by a diffusive process that occurs at the interface (diffusion-driven phase-209
change) and depends on the species concentration around the interface (Σ). Therefore, to210
close the system of governing equations, the conservation law for soluble species in two-211
phase flows needs to be included. This takes the form of a system of two transport equations212
for the molar concentration field (𝑐𝑘) of each soluble component in the domain and, for the213
generic 𝑘-th species, reads (see Bothe & Fleckenstein (2013)):214 {

𝜕𝑡𝑐
𝑘
𝑐 + u𝑐 · ∇𝑐𝑘𝑐 − ∇ ·

(
𝐷𝑘
𝑐∇𝑐𝑘𝑐

)
= − ¤𝑚𝑘

𝑀𝑘 in Ω𝑐

𝜕𝑡𝑐
𝑘
𝑑
+ u𝑑 · ∇𝑐𝑘𝑑 − ∇ ·

(
𝐷𝑘
𝑑
∇𝑐𝑘

𝑑

)
= − ¤𝑚𝑘

𝑀𝑘 in Ω𝑑
(2.7)215

where the subscripts 𝑐, 𝑑 emphasize that the equations of system 2.7 must be integrated in216
the respective domain only, i.e. Ω𝑐,𝑑; 𝑀𝑘 and 𝐷𝑘

𝑐,𝑑
are the molar mass and diffusivity in217

phase (𝑐, 𝑑) of the species. The species mass transfer term that appears in the concentration218
transport equations (2.7), is, by definition, the difference between the species and interface219
velocities along the normal direction. For the generic 𝑘-th component, it reads:220

∥𝜌𝑘 (u𝑘 − uΣ) · nΣ∥ = ∥ ¤𝑚𝑘 ∥ = 0 at Σ (2.8)221

where the jump notation has been introduced (i.g. ∥𝜌𝑘 ∥ = 𝜌𝑘𝑐 −𝜌𝑘
𝑑

). Equation 2.8, also known222
as the Rankine-Hugoniot condition, implies that no mass can be stored at the interface. Here,223
a generic system of 𝑛 components is considered, where the first 𝑛 − 1 elements are soluble224
species (that can be transferred across the interface and appear as dilute components in the225
liquid phase), and the 𝑛-th component is the solvent, which is assumed to be not volatile (i.e.226
no solvent species exists in the disperse phase). Under these assumptions, the mass transfer227
rate of a single species can be rearranged into (see Fleckenstein & Bothe (2015) for more228
details):229

¤𝑚𝑘 = 𝜌𝑘

𝜌

𝑛−1∑︁
𝑙=1

¤𝑚𝑙 − 𝐷𝑘∇𝜌𝑘 · nΣ (2.9)230

where equation 2.9 can be computed from either the continuous or disperse side of the231
interface. A special case arises when the disperse phase is made of a single species only (i.e.232
no mixtures). In this case, the system contains two components (𝑛 = 2): the pure gas (𝑘 = 1)233
and the solvent (liquid phase, 𝑘 = 2) and the overall mass transfer ( ¤𝑚) is entirely given by the234
transfer rate of the single species which exists in the disperse phase, i.e. ¤𝑚 = ¤𝑚1. The mass235
transfer rate for a pure disperse phase can be computed from equation 2.9 as:236

¤𝑚 = − 𝐷1
𝑐

1 − 𝑦1
𝑐

𝜕𝜌1
𝑐

𝜕nΣ

(2.10)237

where 𝑦1
𝑐 = 𝜌1/𝜌𝑐, whilst the subscript c has been added to remind that the mass transfer238

rate must be computed from the liquid side of the interface (computing ¤𝑚 from equation 2.9239
in Ω𝑑 gives the identity ¤𝑚 = ¤𝑚).240

One more condition needs to be taken into account at the interface for the chemical241
partitioning of species densities. In a generic two-phase flow, the species distribution at the242
interface is discontinuous and, for a system at equilibrium (saturated interface), such jump in243
the concentration profile can be predicted by Henry’s Law, which states that the 𝑘-th species244
concentration on the liquid side of Σ is directly proportional to the partial pressure of the245
same gaseous species on the liquid. By taking advantage of the perfect gas law, Henry’s246
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formula can be written in terms of a jump condition for the species densities at the interface:247

(𝑐𝑘𝑐)Σ =
(𝑐𝑘
𝑑
)Σ

𝐻𝑘
𝑒

(2.11)248

where 𝐻𝑘
𝑒 is the Henry’s law coefficient for the 𝑘-th species and it is a material property of249

the system, which generally depends on the temperature and pressure fields near the interface250
(see Bothe & Fleckenstein (2013) for a detailed discussion about the generalized Henry’s251
law). For the applications considered in the present work, 𝐻𝑘

𝑒 is assumed to be constant for252
each species and the interface is always treated as saturated.253

2.2. Numerical framework254

The governing equations presented in section 2.1 are solved with the open source solver255
Basilisk (Popinet & collaborators 2013–2024). Basilisk is a Finite Volume solver for the256
solution of partial differential equations on adaptive Cartesian grids and implements a second-257
order accurate (time and space discretization) solver for Direct Numerical Simulations of two-258
phase immiscibile fluids (Popinet 2009). The interface position is tracked with a geometric259
Volume of Fluid (VOF) method and state of the art numerical techniques are implemented260
for the computation of the interface curvature, which is particularly relevant to mitigate the261
numerical effect of spurious currents (Popinet 2009). The Cartesian mesh is organised into262
an hierarchical tree structure (Popinet 2015) and can be dynamically adapted (i.e. refined263
and/or coarsened) by means of an Adaptive Mesh Refinement (AMR) technique based on a264
wavelet estimation of the spatial discretization error for selected flow fields (van Hooft et al.265
2018). The ability of adapting the mesh at each iteration in regions where strong gradients266
occur makes Basilisk an efficient solver for interfacial flows, where generally a fine mesh is267
required around the gas-liquid interface and a coarser discretization can be employed for the268
remaining part of the domain. In this work we adopt the phase-change solver presented in269
Gennari et al. (2022) and implemented in Basilisk. In the following, the main ingredients of270
the numerical algorithms are briefly summarised.271

The integration of equation 2.1 is performed in two steps: first, the advection term is272
integrated with the PLIC scheme presented in Weymouth & Yue (2010) (based on an operator-273
split method), then the interface is shifted with a rigid displacement along the normal274
direction, equivalent to hΣ = − ¤𝑚

𝜌𝑐

Δ𝑡
Δ

nΣ. This last term corresponds to the integration of275

the source term on the RHS of equation 2.1. The VOF scheme is designed to ensure mass276
conservation for incompressible flows without phase-change and relies on the kinematic277
constraint ∇ · u = 0. In case of mass transfer occurring at the interface, the non divergence-278
free condition (equation 2.2) introduces a velocity discontinuity that no longer satisfies the279
conservation of mass. To address this problem, a novel algorithm was proposed in Gennari280
et al. (2022), which consists of a redistribution of the mass transfer term ¤𝑚 from the interfacial281
cells to a layer of pure gas cells next to the interface. The redistributed term is then used for the282
numerical discretization of the continuity equation (2.2), which produces a divergence-free283
velocity field in both liquid and interfacial cells.284

To prevent artificial mass transfer during the integration of the species transport equations285
(2.7), both advection and diffusion terms must transport the molar concentration in their286
respective phase only, i.e. no transfer of moles across the interface is allowed at this stage.287
This is accomplished by advecting the molar concentration with the same geometric fluxes288
(based on the PLIC reconstruction of the interface) used for the transport of the Heavisde289
function. For the generic 𝑘-th species, the flux reads (López-Herrera et al. (2015) - see Figure290
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Figure 2: (a) Advection of species concentrations confined within the respective phases.
The transport fluxes across the cell boundary are based on the PLIC advection of the
respective volume of fluids (red and green volumes for the continuous and disperse

phases, respectively); 𝑢 𝑓 represents the face-centred velocity field. (b) Unsplit scheme for
the computation of the mass transfer term.

2a):291

𝐹
adv,𝑘
𝑝,𝑥 (𝑖−1/2, 𝑗 ) =

Δ𝑉𝑝

Δ𝑡
𝑐𝑘
𝑝 (𝑖−1/2, 𝑗 ) for 𝑝 = 𝑐, 𝑑 (2.12)292

where Δ𝑉𝑝 is the exact (in the sense of the PLIC reconstruction of the interface) amount293
of volume of phase 𝑝 that crosses the cell edge. The molar concentration on the face is294
predicted using the upwind scheme of Bell et al. (1989), which performs an extrapolation295
in time (half time step) and in space from the upwind cell centre to the cell boundary. At296
this point, a correction for the advection of 𝑐 in Ω𝑑 is required, since the velocity field is no297
longer divergence-free in the disperse domain near the interface. This is accomplished here298
using the same approach adopted in Fleckenstein & Bothe (2015), where the global dilation299
term is subtracted after all the one-dimensional advection operations are performed.300

The diffusion term is treated with the approach proposed in López-Herrera et al. (2015)301
and Magdelaine-Guillot de Suduiraut (2019), which is equivalent to a standard finite volume302
scheme, where the fluxes across the boundaries are computed on all the cell faces and the303
diffusion coefficient is multiplied by the face fraction (obtained from the PLIC reconstruction)304
of the respective phase. For the generic 𝑘-th species, the flux reads:305

𝐹
diff,𝑘
𝑝,𝑥 (𝑖−1/2, 𝑗 ) =

𝜕𝑐𝑘𝑝

𝜕n

(
𝐷𝑘
𝑝 𝑓 𝑓 , 𝑝

)
𝐴 for 𝑝 = 𝑐, 𝑑 (2.13)306

where 𝑓 𝑓 , 𝑝 is the face fraction on the cell boundary of phase 𝑝, i.e. 𝑓 𝑓 , 𝑝 = 𝐴𝑝/𝐴, and 𝐴 is307
the area of the cell face (Figure 2a). The gradients along the Cartesian axes are computed308
with a central finite difference scheme.309

Finally, the mass transfer term ¤𝑚 requires the evaluation of the gradient term ∇𝑐𝑘 · nΣ310
(equation 2.9). This is calculated here from the continuous side, by using the unsplit scheme311
proposed by Bothe & Fleckenstein (2013) and it reads (see Figure 2b):312

−
𝜕𝑐𝑘
𝑐 (𝑖, 𝑗 )

𝜕nΣ

= 𝑓𝑐
𝑐𝑘𝑐 (𝑃1) − 𝑐𝑘𝑐 (𝑃)

𝑃𝑃1
+ (1 − 𝑓𝑐)

𝑐𝑘𝑐 (𝑃2) − 𝑐𝑘𝑐 (𝑃)
𝑃𝑃2

(2.14)313

where the values of concentration in points 𝑃1 and 𝑃2 are obtained from quadratic (bi-314
quadratic in 3D) interpolation, whilst the value at the centroid of the interface 𝑐𝑘𝑐 (𝑃) is315
computed by applying Henry’s Law (equation 2.11).316



9

𝜂 𝜆/(𝑟out − 𝑟in) 𝐿𝑧 𝑅𝑒cr 𝑅𝑒 Regime Reference
0.5 2.09 2𝜆 55.6 1000 WVF Dong (2007)
0.5 2.09 2𝜆 55.6 3000 TTVF Dong (2007), Chouippe et al. (2014)
0.5 2.09 2𝜆 55.6 5000 TTVF Chouippe et al. (2014)
0.73 1.716 5𝜆 84.5 338 TVF Wang et al. (2005)
0.73 1.716 5𝜆 84.5 1014 WVF Wang et al. (2005)
0.91 3.08 8𝜆 136.1 5000 TTVF Chouippe et al. (2014)

Table 1: Single-phase Taylor-Couette cases.

3. Validation of the numerical framework317

3.1. Single-phase Taylor-Couette flow318

In this section, the Basilisk code is validated for single-phase Taylor-Couette flows against319
available data in the literature. Direct numerical simulations of (3D) incompressible flows320
are performed and wall boundaries are treated with an embedded boundary method, where321
Dirichlet boundary conditions are enforced with the approach proposed by Schwartz et al.322
(2006). The tangential velocity 𝑈in = 𝑟in𝜔in is applied at the inner cylinder, whilst the outer323
one is fixed (i.e. 𝑈ext = 0) and periodic boundary conditions are used for the top and bottom324
ends of the computational domain (see Figure 1). The choice of the axial length of the325
domain (𝐿𝑧) is particularly relevant when only a section of the apparatus is modelled, since326
periodic boundaries force the flow to adapt to the available space and constrain the number327
of Taylor vortices that form within the annulus. Results from linear stability analysis for328
infinite cylinders (see the Appendix by P. H. Roberts in Donnelly et al. (1965)) show that329
the wavelength, i.e. the axial extension of a pair of counter rotating vortices (see Figure 1),330
is expected to be close to 𝜆 ≈ 2 (𝑟out − 𝑟in). However, the results collected in the work of331
Chouippe et al. (2014) from different experimental investigations show that a significant332
dispersion is observed in the measured wavelengths. The main reason is due to the non-333
uniqueness feature of the Taylor-Couette flow for which the final observed state of the system334
depends on the procedure used to reach such state (e.g. acceleration/declaration rates of335
the rotor, etc) and not only on the geometrical configuration. Therefore, for the validation336
of the numerical method, it is important to select an axial length that is a multiple of the337
observed wavelength (i.e. 𝐿𝑧 = 𝑛𝜆), so that a number of 𝑛 vortex pairs is modelled and338
a sensible comparison can be made against the reference data. In the present work, three339
configurations are tested, namely 𝜂 = 0.5, 0.73, 0.91, at different Reynolds numbers. Details340
on the main parameters, including the observed wavelength and the critical Reynolds number341
(𝑅𝑒cr) for the transition from planar Couette flow to TVF, are summarised in Table 1 (for342
a comprehensive summary on the critical values for a range of radius ratios, the reader is343
referred to Childs (2011) and the references therein). The selected choice of configurations344
allows for a comprehensive validation of the single-phase numerical framework, since the345
main Taylor-Couette regimes are represented (i.e. TVF, WVF and TTVF). For details on the346
mesh sensistivty study and characteristics of the selected grids for fully-resolved simulations,347
the reader is referred to appendix A.348

The cases reported in Table 1 are run until an equilibrium configuration is reached and the349
flow statistics are stationary. This state occurs when the torque exerted by the fluid on the350
walls is the same for both the inner and outer cylinders (Chouippe et al. 2014) and an example351
of the plot of the non-dimensional torque (𝐺𝑤) for the configuration 𝜂 = 0.5, 𝑅𝑒 = 5000352
is reported in Figure 3. The torque is made non-dimensional with the cylinders axial length353
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Figure 3: Inner and outer cylinder (non-dimensional) torques Vs time for the
Taylor-Couette configuration with 𝜂 = 0.5 and 𝑅𝑒 = 5000. The absolute value |𝐺𝑤 | is
plotted here to compare between the two walls. The statistically stationary regime is

approximately reached after 50 revolutions.

and with the liquid density and viscosity:354

𝐺 in,out
𝑤 =

𝑇
in,out
𝑤

𝜌𝑐𝜈
2
𝑐𝐿𝑧

(3.1)355

The mean torque values for all the tested configurations at their equilibrium points are356
compared against the experimental formula proposed by Wendt (1933), where 𝐺𝑤 scales as357
𝑅𝑒3/2:358

𝐺Wendt
𝑤 = 1.45

[
𝜂3/2

(1 − 𝜂)7/4

]
𝑅𝑒3/2 (3.2)359

and the corresponding results are reported in Figure 4, where, for all the simulated cases, a360
good comparison against the experimental data is observed, confirming that the statistically361
stationary regime is reached for all the tested radius ratios and Reynolds numbers.362

The mean azimuthal velocity < 𝑢𝜃 >𝑧𝜃𝑡 and fluctuation
√︃
< 𝑢′

𝜃
2 >𝑧𝜃𝑡 (see appendix A363

for their derivation)for the configurations with 𝜂 = 0.5 and 𝜂 = 0.91 are compared against364
the available numerical data of Dong (2007) and Chouippe et al. (2014) and results are365
reported in Figure 5 and Figure 6, respectively. A good comparison is observed for almost366
all the selected configurations, for both the average azimuthal velocity and the corresponding367
fluctuation. The profiles of velocity fluctuations show the characteristic shape with two local368
peaks near the inner and outer walls and an (almost) uniform value in the bulk of the liquid;369
similar profiles are observed for different turbulent channels configurations (Moser & Moin370
1987; Hoyas & Jiménez 2006). As the Reynolds number increases, the magnitude of the371
(normalised) fluctuations decreases and the peaks move closer to the respective walls. The372
configuration with 𝜂 = 0.5, 𝑅𝑒 = 1000 shows a significant deviation for the azimuthal373
fluctuation (but not for the main velocity component) from the work of Dong (2007) (Figures374
5a - 6a). However, the same case compared to the results reported in Chouippe et al. (2014)375
for 𝑢′

𝜃
shows an excellent agreement at every distance from the walls. Surprisingly, the radial376

profile of average azimuthal velocity for the configuration with 𝜂 = 0.5, 𝑅𝑒 = 3000 (Figure377

Rapids articles must not exceed this page length
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Figure 5: Average radial profiles of the azimuthal velocity component for the
configurations with 𝜂 = 0.5, 𝑅𝑒 = 1000 (a), 𝜂 = 0.5, 𝑅𝑒 = 3000 (b), 𝜂 = 0.5, 𝑅𝑒 = 5000

(c) and 𝜂 = 0.91, 𝑅𝑒 = 5000 (d).

5b) does not match the reference data of Dong (2007) within the bulk of the liquid, where378
the velocity results underpredicted, but a good agreement is reached in the regions close to379
the inner and outer walls. However, the same configuration agrees well with both the works380
of Chouippe et al. (2014) and Dong (2007) in terms of velocity fluctuations (Figure 6b),381
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Figure 6: Average radial profiles of the azimuthal velocity fluctuation for the
configurations with 𝜂 = 0.5, 𝑅𝑒 = 1000 (a), 𝜂 = 0.5, 𝑅𝑒 = 3000 (b) and 𝜂 = 0.5,

𝑅𝑒 = 5000 (c).

although some quantitative discrepancies with the latter reference near the inner wall are382
observed.383

A qualitative representation of the flow field and the effect of the Reynolds number for384
the configurations with 𝜂 = 0.5 and 𝜂 = 0.91 is reported in Figure 7, where the contours of385
axial velocity (𝑢𝑧) on a cylindrical surface with constant 𝑟 are compared in a (planar) 2D386
plot on the corresponding 𝑧 − 𝜃 plane. Figures 7a, 7b and 7c show the effect of the Reynolds387
number on the topology of Taylor vortices as the flow regime evolves from WVF to TTVF388
(see Table 1). For 𝑅𝑒 = 1000 (Figure 7a) two organised pairs of counter rotating voritces389
develop within the annulus and a thin region of null axial velocity separates each vortex390
from the adjacent (counter rotating) one. The axial extension of the computational domain391
was set to twice the expected wavelength (see Table 1) and the qualitative results reported392
here (two pairs of vortices) confirm that the axial length of Taylor cells matches the expected393
one. The travelling trajectory along the azimuthal direction of each vortex is almost straight,394
but the onset of a wavy motion is visible from the oscillating boundaries of the vortices,395
suggesting that the apparatus is in a transitional state from TVF to WVF. As the Reynolds396
number is increased to 𝑅𝑒 = 3000 (Figure 7b), the flow is fully turbulent and the shape of397
the vortices is distorted. However, two main regions of counter rotating velocities can still be398
identified, although Taylor cells are not well defined as in the case with 𝑅𝑒 = 1000. Finally,399
for 𝑅𝑒 = 5000 (Figure 7c) the flow appears chaotic with many flow structures distributed400
in a random way and Taylor vortices do not form into an organised and clear pattern; these401
observations are qualitatively confirmed by the results reported in Dong (2007). The effect402
of the gap size is clearly visible from the comparison between Figure 7c (𝜂 = 0.5) and Figure403
7d (𝜂 = 0.91), which both run at 𝑅𝑒 = 5000. For larger radius ratios, the small gap within404
the cylinders represents a geometric constraint for the formation of Taylor vortices, whose405
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Figure 7: Contours of axial velocity on the 𝑧 - 𝜃 plane for the configurations with 𝜂 = 0.5,
𝑅𝑒 = 1000 (a), 𝑅𝑒 = 3000 (b), 𝑅𝑒 = 5000 (c) and 𝜂 = 0.91, 𝑅𝑒 = 5000 (d). These plots
are obtained from the corresponding cylindrical surface with radius 𝑟in + 0.1(𝑟out − 𝑟in)

for cases a,b,c and radius 𝑟in + 0.25(𝑟out − 𝑟in) for case d.

topology appears (even for large and fully turbulent Reynolds numbers) well organised into406
stable and clearly recognisable pairs of alternating axial velocities.407

The results presented in this section show that the numerical methodology used in the408
present work to model single-phase Taylor-Couette flows is able to accurately reproduce the409
features of the main flow regimes for different geometries (radius ratios) and rotating speeds410
(Reynolds numbers).411

3.2. Phase-change solver412

In this paragraph the numerical framework presented in section 2.2 is validated for the generic413
scenario of competing mass transfer of a mixture of soluble species. The concentration of414
species is non-uniform in both phases and the direction of mass transfer, i.e. from Ω𝑑 to Ω𝑐415
or vice-versa, can be different for each component, depending on the local concentration at416
the interface.417

3.2.1. Mass transfer in an infinite cylinder418

In this test case, a binary gaseous mixture made of two soluble components (species A and B)419
is confined by a liquid annulus where 𝑅in and 𝑅ext are the inner and outer radius respectively.420
The liquid phase is therefore confined within the region 𝑅in < 𝑟 < 𝑅ext, whilst the gaseous421
one exists for 𝑟 < 𝑅in. The axial length of the cylinder (𝐿𝑧) is infinite and the external radius422
is set to 𝑅ext = 1mm. The inner radius of the liquid annulus, which represents the interface423
between the phases, is free to move as some of the species crosses the interface and is initially424
set to 𝑅𝑡=0

in = 0.5mm. Due to the infinite axial extension, the problem is independent of the425
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Figure 8: Computational domain for an infinite gaseous cylinder (Ω𝑑) confined by a liquid
annulus (Ω𝑐).

Phase Density (Kg m -3) Viscosity (N s m -2) 𝜎 (N m -1)
Liquid 1000 1 × 10−3

0.06
Gas 1 1.8 × 10−5

Table 2: Gas-liquid properties for competing mass transfer in an infinite cylinder..

axial coordinate and can be represented by a 2D model; a sketch of the computational domain426
is shown in Figure 8.427

The properties of the gas-liquid system are reported in Table 2 and approximate an air-428
water system. The case simulated in this section replicates one of the setups proposed in Maes429
& Soulaine (2020), where the gaseous (disperse) phase is initially composed of species B430

only, i.e. 𝑐𝐵(𝑡=0)
𝑑

= 𝜌𝑑/𝑀𝐵. Species A is assumed to be weakly soluble in the liquid solvent,431

whilst species B is not soluble and the respective Henry’s law coefficients are 𝐻𝐴
𝑒 = 100 and432

𝐻𝐵
𝑒 → ∞. By setting Henry’s law coefficient to 𝐻𝐵

𝑒 → ∞ for species B, the equilibrium433
value on the liquid side of the interface is

(
𝑐𝐵𝑐

)
Σ
= 0, regardless of the amount of species434

within the gaseous domain. Since no species B exists initially in the liquid domain, the mass435
transfer of B across the interface is prevented (i.e. the solution is saturated with respect436
to species B), and the species is confined within the gaseous region. The liquid domain is437
therefore composed of the solvent (not soluble in the disperse phase) and species A, which438
has a relatively (compared to a typical gas solubility) large Henry’s law coefficient and,439
therefore, is weakly soluble in the liquid solvent; the concentration of A is kept constant at440
the external boundary (𝑟 = 𝑅ext) and set to 𝑐𝐴𝑐 (𝑅ext, 𝑡) = 𝜌𝑑/

(
𝑀𝐴𝐻𝐴

𝑒

)
. Diffusivity is the441

same for both species and is set to 𝐷𝐴
𝑐 = 𝐷𝐵

𝑐 = 10−6 m2 s-1 and 𝐷𝐴
𝑑
= 𝐷𝐵

𝑑
= 10−4 m2 s-1 in442

the continuous and disperse phases respectively.443
Due to the symmetry of the problem, the velocity and concentration fields depend only444

on the radial distance (and time), and the liquid moves along the radial direction only, i.e.445
u𝑐 = 𝑢𝑐 (𝑟, 𝑡)e𝑟 . Under this assumption, the problem can be significantly simplified and the446
following analytical model is derived (see Maes & Soulaine (2020)) for the details:447

𝑐𝐴𝑐 (𝑟, 𝑡) =
𝜌𝑑

𝑀𝐴𝐻𝐴
𝑒

(
1 −

𝑅
2(𝑡=0)
in

𝑅2
in(𝑡)

ln (𝑟/𝑅ext)
ln (𝑅in(𝑡)/𝑅ext)

)
for 𝑟 > 𝑅in(𝑡) (3.3)448

𝑑𝑅in
𝑑𝑡

=
𝐷𝐴
𝑐 𝑅

2(𝑡=0)
in

𝐻𝐴
𝑒 𝑅

3
in(𝑡) ln (𝑅in(𝑡)/𝑅ext)

for 𝑡 > 0 (3.4)449
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𝑑

𝑐
𝐵(𝑡=0)
𝑑

𝑐
𝐴(𝑡=0)
𝑐 𝑐

𝐵(𝑡=0)
𝑐 𝐻𝐴𝑒 𝐻𝐵𝑒

(m) (mol m -3) (mol m -3) (mol m -3) (mol m -3)
0.005 0 1 Eq. 3.3 0 100 ∞

Table 3: Numerical setup for a cylinder of gas expanding in an infinite liquid annulus.
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Figure 9: Inner radius of the liquid annulus Vs time.

A summary of the numerical setup is shown in Table 3; the mesh size is set to Δ =450
1.95 × 10−5 mm, whilst the molar masses are the same for both species and equal to 𝑀𝐴 =451
𝑀𝐵 = 1 kg mol-1. The concentration profile of species A inΩ𝑐 is initialized with equation 3.3452
at 𝑡 = 0, coherently with the assumption of solution at equilibrium at every time step. Results453
are made non-dimensional with the reference length 𝐿ref = 𝑅ext, time 𝑡ref = 𝜌𝑐𝑅

2
ext/𝜇𝑐 and454

concentration 𝑐ref = 𝜌𝑑/𝑀𝐴, whilst the reference velocity follows from 𝑈ref = 𝐿ref/𝑡ref. The455
numerical simulation is run for a time of Δ𝑡 = 5 s and the result in terms of interface position456
(𝑅in) is compared against the analytical solution (equation 3.4) in Figure 9, where a good457
agreement is observed.458

3.2.2. Competing mass transfer in a rising bubble459

This benchmark is based on the test case proposed in Fleckenstein & Bothe (2015) and460
consists of the study of competing mass transfer amongst three soluble species for a bubble461
rising in a quiescent flow. The properties of the gas-liquid system used for the present test462
case are reported in Table 4. The soluble species that exist in the present model are: CO2, N2463
and O2; the respective properties are reported in Table 5. The main non-dimensional numbers464
used for the present analysis are the bubble Reynolds number (𝑅𝑒𝑏 = 𝜌𝑐𝑈𝑏𝐷𝑏/𝜇𝑐), Galilei465 (√︃

𝑔𝐷3
𝑏
/𝜈2
𝑐

)
, Bond

(
𝜌𝑐𝑔𝐷

2
𝑏
/𝜎

)
, Schmidt

(
𝑆𝑐𝑘 = 𝜈𝑐/𝐷𝑘

𝑐

)
and Péclet

(
𝑃𝑒𝑘 = 𝑅𝑒𝑏𝑆𝑐

𝑘
)
. In466

these groups, the index 𝑘 refers to the generic 𝑘-th component, whilst𝑈𝑏 is the bubble rising467
velocity.468

In order to speed up the volume change process and reduce the computational time of the469
simulation, the diffusivity for all the species in the liquid domain

(
𝐷𝑘
𝑐

)
has been increased470
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Phase Density Viscosity 𝜎

(kg m-3) (N s m-2) (N m-1)
Liquid 997 8.9 × 10−4

0.072
Gas 1.962 1.445 × 10−5

Table 4: Gas-liquid properties for the competing mass transfer in a rising bubble.

Species Diffusivity in Ω𝑐 Diffusivity in Ω𝑑 𝑀 𝐻𝑒 𝑆𝑐

(m2 s-1) (m2 s-1) (kg mol-1)
CO2 1.9 × 10−8 1.9 × 10−6 0.044 1.20 46.98
N2 2.0 × 10−8 2.0 × 10−6 0.028 67.0 44.63
O2 2.3 × 10−8 2.3 × 10−6 0.032 31.5 38.81

Table 5: Species properties for the competing mass transfer in a rising bubble.

by a factor of 10 with respect to the real physical property (the same approach is used in the471
reference case of Fleckenstein & Bothe (2015)); the corresponding diffusivity in the disperse472

phase
(
𝐷𝑘
𝑑

)
is assumed to be 100 times larger than the continuous one

(
i.e. 𝐷𝑘

𝑑
= 𝐷𝑘

𝑐 × 102
)
.473

The solubility of CO2 is significantly larger than the solubility of the other species (lower474
Henry’s law coefficient), which means that for the same concentrations in both phases, the475
mass transfer from the gaseous region to the liquid (under-saturated solutions) occurs faster476
for CO2 than N2 and O2; the opposite scenario occurs for super-saturated solutions, where477
the transfer from the continuous phase to the liquid one is quicker for N2 and O2 than CO2.478
In Table 5, the Schmidt numbers are computed with the liquid properties reported in Table479
4 and are similar for all the species, since the diffusivity of each component doesn’t change480
significantly.481

The initial diameter of the bubble is set to 𝐷𝑡=0
𝑏

= 0.8 mm and the bubble is confined in482
a large square domain with dimensions 𝐿0 × 𝐿0 = 48 mm × 48 mm, where it rises under483
the effect of the gravitational field 𝑔 = 9.81 m s-2. Due to the large dimension of the domain484
compared to the bubble size, end walls effect do not affect the dynamics of the bubble in the485
present case. The Galilei and Bond numbers are 𝐺𝑎 = 79.39 and 𝐵𝑜 = 0.0869 respectively486
and, for these parameters, the bubble is expected to rise vertically, keeping the original487
spherical shape. Therefore, a 2D axisymmetric model is used here, where only half of the488
bubble is considered, and the rising trajectory is the horizontal 𝑥−axis, i.e. g = −𝑔e𝑥 . An489
outflow condition is applied to the right boundary to allow the liquid enter/leave the domain490
as the bubble volume changes, whilst symmetric conditions are used for the other boundaries;491
adaptive mesh refinement is used to keep the grid at the finest level around the bubble and492
save computational cells far from the interface. Results are made non-dimensional with the493

reference length 𝐿ref = 𝑅𝑡=0
𝑏

, time 𝑡ref =
√︁
𝐿ref/𝑔 and the gaseous concentration in Ω𝑑 when494

the bubble is composed of CO2 only, i.e. 𝑐ref = 𝜌𝑑/𝑀CO2 . The bubble is initially composed495

of CO2 (i.e. 𝑐CO2 (𝑡=0)
𝑑

= 44.59 mol m-3), whilst the liquid solution is composed by the496

solvent (not soluble in Ω𝑑) and species N2, O2 with concentrations 𝑐N2 (𝑡=0)
𝑐 = 0.51 mol m-3497

and 𝑐
O2 (𝑡=0)
𝑐 = 0.27 mol m-3. The solution is therefore under-saturated for CO2 and super-498

saturated for the other species.499
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Case A Case B Case C Case D
Δ (mm) 5.86 × 10−3 2.93 × 10−3 1.46 × 10−3 7.32 × 10−4

cells/𝐷𝑡=0
𝑏

136 273 546 1092

Table 6: Grid convergence study for the competing mass transfer in a rising bubble. The
mesh size Δ refers to the maximum refinement around the interface, whilst the number of

cells per diameter is computed assuming a uniform resolution inside the bubble.
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Figure 10: Grid convergence for the competing mass transfer in a rising bubble. Plot of
bubble volume Vs time.

A mesh sensitivity study is first performed to evaluate the level of grid refinement that is500
necessary to reach a mesh independent solution. Four grids are tested (cases A, B, C and501
D) and the mesh size around the interface, along with the number of cells per diameter502
of the bubble, is summarised in Table 6. The simulations are run for a time interval of503
Δ𝑡 = 0.25 s and results in terms of volume change for the bubble are shown in Figure 10.504
The grid convergence analysis shows that a mesh independent solution is reached for Case C,505
which corresponds to approximately 546 cells per diameter at 𝑡 = 0. For the selected chemical506
composition of the liquid and gaseous phases, CO2 is transferred from the bubble to the liquid507
(under-saturation), whilst N2 and O2 flow in the opposite direction (super-saturation). Due508
to the larger solubility of CO2 compared to the other species and the weak super-saturation509
ratios for N2 and O2, the competing mass transfer is dominated by CO2 and results in a net510
flow of mass out of the bubble; the phase volume decreases accordingly. The volume reduces511
almost linearly in the first part of the simulation (until 𝑡∗ ≈ 10), where the mass transfer512
is driven by CO2 and the concentration of N2 and O2 are still marginal. As the chemical513
composition inside the bubble changes and the mass fractions of N2 and O2 become more514
relevant, the volume change rate decreases and becomes almost negligible for 𝑡∗ > 30. Since515
the solution does not change significantly between grids C and D, Case C is used in the516
following part of the analysis.517

The maximum Péclet number is observed at 𝑡∗ ≈ 5 for CO2 and is approximately 𝑃𝑒CO2 ≈518
7800. The results in terms of grid sensitivity are consistent with the analysis performed in519
Gennari et al. (2022) (see section 4.6) for pure bubbles rising at different Péclet numbers520
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compared against the work of Fleckenstein & Bothe (2015), where a similar mesh

resolution is adopted.

in an under-saturated solution, where a resolution of 456 cells/𝐷𝑏 was required to reach a521
mesh-independent solution at 𝑃𝑒 = 4650. Results in terms of chemical composition of the522
bubble are shown in Figure 11 for Case C (Case A will be discussed later in the text). The523

bubble is initially composed of CO2 only, therefore the mass fractions are 𝑚
CO2 (𝑡=0)
𝑑

= 1524

and 𝑚
N2 (𝑡=0)
𝑑

= 𝑚
O2 (𝑡=0)
𝑑

= 0. As the phase-change process occurs, CO2 is transferred to525
the liquid, whilst the other species flow across the interface in opposite directions; the mass526
fraction of CO2 decreases, whilst the fractions of the other species increase accordingly.527
Due to the lower solubility of N2 compared to O2 and larger initial concentration in the528
liquid phase, the mass fraction of N2 grows faster than O2 and reaches the same value of the529
fraction of CO2 at 𝑡∗ ≈ 34.8 and becomes the most relevant component of the bubble for530
𝑡∗ > 34.8. The fraction of O2 equals CO2 at 𝑡∗ ≈ 37.7 and CO2 becomes the most marginal531
species at the end of the simulation. The sum of the mass fractions is reported in Figure 11,532
which shows that the method is mass conservative since the global mass fraction is always533

𝑚tot
𝑑

= 𝑚
CO2
𝑑

+ 𝑚
N2
𝑑

+ 𝑚
O2
𝑑

= 1 for 𝑡 > 0.534
To validate the accuracy of the numerical methodology, results are compared with the535

work of Fleckenstein & Bothe (2015), where the setup for this case was taken from. In536
the reference work, the mesh density corresponds to approximately 102 cells per (initial)537
diameter, which is similar to the grid refinement used for Case A in the present work (see538
Table 6). Case A is therefore used for the comparison against the reference case and results539
in terms of volume and mass fractions of the bubble are reported in Figure 11, where a good540
agreement is observed for all the plotted quantities.541

4. Bubble dissolution in Taylor-Couette flow542

4.1. Simulation setup and governing parameters543

In this section, a single (pure) gas bubble is injected at the bottom of a Taylor-Couette544
device and is let free to exchange mass with the surrounding liquid. The selected apparatus545
for this study is the one with radius ratio of 𝜂 = 0.5 for Reynolds numbers in the range546
0 ⩽ 𝑅𝑒 ⩽ 5000, which was extensively validated for the single-phase case in section 3.1.547



19

Phase Density Viscosity Diffusivity 𝑀 𝜎 𝐻𝑒

(kg m-3) (N s m-2) (m2 s -1) (kg mol -1) (N m -1)
Liquid 998 1.05 × 10−3

0.072 1.2
Gas 1.3 2.01 × 10−5 2.3 × 10−6 0.032

Table 7: Gas-liquid properties for a dissolving bubble in a Taylor-Couette flow.

Non-dimensional number Symbol Definition Value
Radius ratio 𝜂 𝑟in/𝑟out 0.5
Taylor-Couette Reynolds 𝑅𝑒 𝜌𝑐𝑈in (𝑟out − 𝑟in)/𝜇𝑐 0, 1000, 3000, 5000
Liquid-gas density ratio 𝜌𝑟 𝜌𝑐/𝜌𝑑 767.7
Liquid-gas viscosity ratio 𝜇𝑟 𝜇𝑐/𝜇𝑑 74.6
Galilei number 𝐺𝑎

√︃
𝑔𝐷3

𝑏
/𝜈2
𝑐 1050.7

Bond number 𝐵𝑜 𝜌𝑐𝑔𝐷
2
𝑏
/𝜎 3.4

Schmidt number 𝑆𝑐 𝜈𝑐/𝐷𝑐 0.458
Saturation ratio 𝜁 𝑐bulk/(𝑐𝑐)Σ 0
Henry’s law coefficient 𝐻𝑒 (𝑐𝑑)Σ/(𝑐𝑐)Σ 1.2

Table 8: Independent non-dimensional numbers for a dissolving bubble in a
Taylor-Couette flow.

The properties of the gas-liquid system are reported in Table 7. The initial bubble diameter548
is set to 𝐷𝑡=0

𝑏
= (𝑟out − 𝑟in)/3 = 5 mm and the center of the bubble is placed in the middle549

of the gap at 𝑧𝑡=0
𝑏

= 𝑟out/3 from the bottom of the device (it is reminded here that the axis550
of the apparatus is aligned to the 𝑧−direction), whilst the solution is assumed initially under-551
saturated, with no concentration of gas at 𝑡 = 0 in the continuous phase (i.e., 𝑐𝑡=0

𝑐 = 0 mol m552
-3). The cylinders are oriented vertically and standard gravitational acceleration is assumed553
here, i.e. g = −9.81 m s-2ez. Overall, the problem is defined by 13 dimensional parameters:554
apparatus radii (𝑟in, 𝑟out), rotor angular speed (𝜔in), gravitational acceleration (g), densities555
(𝜌𝑐, 𝜌𝑑), viscosities (𝜇𝑐, 𝜇𝑑), initial bubble diameter (𝐷𝑡=0

𝑏
), surface tension (𝜎), diffusion556

coefficient of the gaseous species in the liquid phase (𝐷𝑐) and initial species concentrations557 (
𝑐𝑡=0
𝑐 , 𝑐𝑡=0

𝑑

)
. Given the four units involved (i.e., length, time, mass and amount of substance558

(mole)), the system can be described by 9 independent non-dimensional numbers, reported,559
along with their definition and values, in Table 8.560

Mass transfer is characterised by the analysis of the (time-dependent) Sherwood number,561
the definition of which follows as:562

𝑆ℎ =
𝑘𝑚(𝑡)𝐿ref(𝑡)

𝐷𝑐
(4.1)563

and it depends on a reference length, computed here as the equivalent (time-dependent)564
diameter of a sphere with the same volume as the bubble, i.e. 𝐿ref(𝑡) = 2(3𝑉𝑏/(4𝜋))1/3. The565
mass transfer coefficient is based on the reference concentration difference Δ𝑐 between the566
continuous and disperse phases:567

𝑘𝑚 = −
∫
Σ
¤𝑚 𝑑𝑆

𝐴Σ𝑀Δ𝑐
(4.2)568

where the reference area 𝐴Σ is the effective area of the interface. Other useful non-dimensional569
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Figure 12: Opening of the outer cylinder for the passage of liquid (section taken at
𝑧 = 𝐿𝑧/2). This modification is necessary to ensure the continuity of mass when the

volume of the gas fraction decreases.

parameters can be derived from the ones reported in Table 8, such as the bubble Morton570
number 𝑀𝑜 = 𝐵𝑜3/𝐺𝑎4 = 3.22 × 10−11 and Péclet 𝑃𝑒 = 𝑅𝑒𝑏𝑆𝑐, where 𝑅𝑒𝑏 is the rising571
bubble Reynolds number. Finally, we introduce here the Froude number that will be used572
later to compare the effects of the inertial features of TC flows and gravity:573

𝐹𝑟 =
𝑢𝑇𝐶
√
𝑔𝐷𝑏

(4.3)574

where 𝑢𝑇𝐶 is a characteristic velocity of Taylor-Couette flow.575
Simulations are first started from rest (null liquid velocity) and the bubble is kept fixed576

until a (statistically) stationary regime is reached (see section 3.1) and Taylor vortices are577
completely formed. During this initialisation stage, the transport of species and volume578
change are not computed, i.e. the bubble volume remains constant. After the Taylor-Couette579
regime is established, the bubble is set free to move within the device and the full phase-change580
solver is run. As the volume of the bubble decreases, more liquid needs to be introduced581
within the apparatus for the conservation of mass. However, the considered domain is a582
closed system in the sense that the boundaries of the fluid domain consist of two solid walls583
(inner and outer cylinders) and two periodic boundaries (top and bottom), which do not584
allow for any net flow of liquid towards the apparatus. This issue is solved by making a585
small circular hole where the reference pressure value is set and a homogeneous Neumann586
boundary condition is applied for the velocity field. The hole has a diameter 𝑟out/12 and is587
placed halfway along the axial length (i.e. at 𝐿𝑧/2) on the external cylinder, thus allowing588
the liquid to enter the domain as the bubble dissolves (see Figure 12).589

Simulations are run in a non-dimensional form, where the selected reference quantities590
for the four units involved are: 𝐿ref = 𝐷𝑏/10, 𝜌ref = 𝜌𝑐, 𝑈ref = 𝑈in and 𝑐ref = 𝜌𝑑/𝑀 . The591
simulations are run for a (physical) time interval Δ𝑡 = 0.12 s. To facilitate the comparison592
between different Taylor-Couette Reynolds numbers, the time scales and mass transfer593
coefficients will be presented in the following in the corresponding dimensional form.594

4.2. Mesh sensitivity595

A different physical process (i.e. the mass transfer at the interface) requires a new mesh596
sensitivity study to find a suitable grid for mesh independent solutions. The selected597
configuration for this analysis is the one with steady rotor (i.e. 𝑅𝑒 = 0), which consists598
of a bubble rising in a quiescent flow bounded by cylindrical walls. The advantage of this599
configuration is that the finest mesh resolution is only needed around the bubble (with an600
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Case Δ cells/𝐷𝑡=0
𝑏

(mm)
M.1 6.10 × 10−2 ≈ 82
M.2 3.05 × 10−2 ≈ 164
M.3 1.53 × 10−2 ≈ 328

Table 9: List of cases for the grid convergence analysis of a dissolving bubble in a
Taylor-Couette device with no rotation.
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Figure 13: Grid convergence for a dissolving bubble in a Taylor-Couette device with no
rotation. Plot of bubble volume ratio Vs time.

AMR technique) and it is therefore significantly cheaper to run compared to the cases with601
Taylor vortices. The selected fields for grid refinement (see the brief introduction to AMR602
in section 2.2 and the references therein) are the volume fraction, species concentration and603
velocity field, with a threshold tolerance of 0.01 (made non-dimensional with 𝑐𝑑 and 𝑈in604
for concentration and velocity, respectively). The resulting mesh has the maximum level of605
refinement near the interface and in the wake region (as well as around the cylindrical walls),606
thus providing a suitable grid to capture both mass transfer in thin concentration boundary607
layers and the dynamics of highly deformed bubbles. At this point, it is important to remind608
here that the requirements in terms of grid density for the mass transfer depend on the Péclet609
number and this can obviously be affected by the rotor speed. However, for the considered610
bubble size (𝐷𝑡=0

𝑏
= 5 mm), the bubble Reynolds number (𝑅𝑒𝑏) is mainly determined by611

the rising velocity and, therefore, the 𝑃𝑒 number is weakly dependent on the rotor speed612
(see results below). Three different mesh refinements are compared here and the list of cases613
for the grid sensitivity study is reported in Table 9. Results in terms of volume dissolution614
rates for the three considered meshes are reported in Figure 13. Mesh M.1 over-predicts the615
volume ratio as a result of the under-resolved concentration boundary layer at the gas-liquid616
interface, whilst meshes M.2 and M.3 are indistinguishable until 𝑡 ≈ 0.05 s and produce617
similar results for 𝑡 < 0.08 s. As the bubble volume is further reduced, mesh M.2 deviates618
from mesh M.3 because not enough cells are distributed around the interface. This is a619
common issue for dissolving bubbles, since no mesh can be fine enough to capture the mass620
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Case 𝑅𝑒 TC regime 𝑔 Number of bubbles
(m s-2)

A 0 N/A 9.81 1
B 1000 WVF 9.81 1
C 3000 TTVF 9.81 1
D 5000 TTVF 9.81 1
E 1000 WVF 0 1
F 3000 TTVF 0 1
G 5000 TTVF 0 1
H 0 N/A 9.81 2
I 1000 WVF 9.81 2
J 3000 TTVF 9.81 2
K 5000 TTVF 9.81 2

Table 10: List of cases for the study of dissolving bubbles in a Taylor-Couette device at
different rotating speeds and gravitational accelerations.

transfer until complete dissolution. However, given the mesh-independent solution obtained621
for a volume reduction of up to 80% (i.e. 𝑉𝑏 (𝑡)/𝑉 𝑡=0

𝑏
= 0.2) and the cheaper computational622

cost compared to case M.3, mesh M.2 is selected for all the other cases presented in this623
section.624

4.3. Effect of inner cylinder rotating speed625

The effect of the Reynolds number is investigated by comparing the cases with 𝑅𝑒 = 0 (no626
rotation) and 𝑅𝑒 = 1000, 3000, 5000, where the TC flow regime moves from WVF to TTVF627
(see Table 1). The complete list of cases presented in the rest of this section is summarised628
in Table 10, along with four cases for the study of wake effects for two bubbles. Cases A-D629
represent a realistic configuration, where the motion of the bubble is determined by two630
major components: the gravitational acceleration and the transport induced by the carrier631
liquid (TC flow). Although the effects on the distribution of the dissolved species within the632
device are clearly dependent on the rotor speed (as will be shown later), for the selected633
bubble dimension (𝐷𝑡=0

𝑏
= 5 mm) the motion is mainly dominated by the gravitational force.634

Therefore, for a better understanding on the role of Taylor vortices on the mass transfer of635
bubbles, gravity has been neglected in cases E-G and the bubble motion is made completely636
dependent on the carrier flow. Results are first presented for the cases with gravity (cases637
A-D, section 4.3.1) and subsequently the removal of the buoyancy force is discussed in cases638
E-G (section 4.3.2). A study into the flow scales that control mass transfer is proposed in639
section 4.3.3, whilst wake effects are investigated in section 4.3.4.640

4.3.1. Single bubble with gravity641

Results for cases A-D in terms of volume ratio against time are reported in Figure 14. As was642
anticipated before, the velocity magnitude of the bubble is basically determined by the rising643
component and the volume dissolution rate for these cases is not significantly affected by the644
rotation of the inner cylinder (minor differences are observed at the start and at the end of the645
simulation, where cases C,D dissolve slightly faster than cases A,B, coherently with the larger646
rotating speed). The plot of the volume ratio shows a linear trend until𝑉𝑏 (𝑡)/𝑉 𝑡=0

𝑏
≈ 0.4 and,647

after that, the slope progressively decreases as the bubble dissolves; a similar behaviour was648
observed for the mass transfer of a rising bubble in a quiescent flow (Figure 11).649

The (time-dependent) Sherwood number is monitored during the simulation and results are650
plotted in Figure 15. The plots of the Sherwood number show a similar profile until 𝑡 ≈ 0.06 s,651
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Figure 14: Volume ratio Vs time for a dissolving bubble in a Taylor-Couette device at
different rotating speeds. For the selected configuration, gravity is dominant and the TC

flow plays a marginal role in the dissolution rate.
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Figure 15: Sherwood number Vs time for a dissolving bubble in a Taylor-Couette device at
different rotating speeds. The 𝑆ℎ number is based on the diameter of the equivalent sphere

(equation 4.1).

where the size of the bubble is larger and the buoyancy effects are more relevant. However,652
for 𝑡 > 0.06 s, two different patterns that characterise cases A,B and C,D respectively are653
clearly observable. In the higher rotating speed cases (𝑅𝑒 = 3000, 5000), the Sh number is654
enhanced by the turbulent Taylor-Couette flow structures that develop within the apparatus,655
whilst almost no difference is observed between the steady case (𝑅𝑒 = 0) and the wavy vortex656
regime (𝑅𝑒 = 1000). However, such differences occur when the bubble volume is already657
significantly reduced (𝑉𝑏/𝑉 𝑡=0

𝑏
< 0.3) and no relevant effects in terms of dissolution rates658

can be observed afterwards. Cases A-B show a local peak around 𝑡 ≈ 0.08 s that is larger than659
the values of 𝑆ℎ for cases C-D; as will be shown later, this effect is due to the corresponding660
rising speed of the bubble.661
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Figure 16: Bubbles rising trajectories projected on the 𝑥𝑧 (a), 𝑦𝑧 (b) and 𝑥𝑦 (c) planes at
different rotating speeds. Bubbles are initialised at 𝑥 = 0, 𝑦 = −(3/2)𝑟in, 𝑧 = (2/3)𝑟in.

When the rotating speed of the inner cylinder is increased, the magnitude of the main662
(azimuthal) velocity component of the carrier fluid grows and the motion of the bubble is663
affected accordingly. Figure 16 compares the trajectory of the bubble centre on different664
planes for cases A-D (it is reminded here that the axis of the cylinders is aligned with665
the 𝑧-direction). When no rotation is applied, the bubble rises following an almost perfect666
rectilinear trajectory (Figures 16a-b). As the Reynolds number is increased, the liquid velocity667
(combined with gravity) induces an irregular motion of the bubble, which results in a net668
anticlockwise displacement on the 𝑥𝑦 plane (coherently with the rotation of the rotor) and in a669
more developed trajectory in the azimuthal direction for the most turbulent case (Figure 16c).670
The rising trajectory of a bubble is the result of the interaction among several factors, such as671
the vorticity shed into the liquid phase, the shape deformation and the topology of the carrier672
flow. In the present cases, a very complex interaction of the aforementioned parameters is673
observed, where the bubble experiences shear rates on both the azimuthal (𝑟𝜃) and 𝑟𝑧 planes674
as well as chaotic fluctuations for the turbulent cases. Studies that have investigated the675
rising trajectory of bubbles in simple (planar) shear flows (e.g., Ervin & Tryggvason (1997),676
Hidman et al. (2022)) have shown that a change in the sign of the lift force (i.e., the component677
acting perpendicular to the main rising direction) occurs when the shear rate increases. The678
bubble considered in the present work (with 𝐺𝑎 = 1050.7, 𝐵𝑜 = 3.4) belongs to a region679
in the 𝐺𝑎 − 𝐵𝑜 plane where such a change is observed. The case with 𝑅𝑒 = 1000 does680
not deviate significantly from a rectilinear trajectory for most of the simulated time (Figures681
16a-b), leading to the conclusion that the TC flow pattern is not strong enough to perturb the682
buoyancy-dominated dynamics. On the other hand, when the volume of the bubble decreases683
and buoyancy is less predominant, a clear effect of the carrier flow is observed. When the684
rotating speed is increased (𝑅𝑒 = 3000, 5000), a deviation from the straight rising path is685
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induced by the combination of azimuthal and TC vortical flow patterns. Interestingly, the lift686
direction is opposite (Figure 16b), with the case 𝑅𝑒 = 3000 initially attracted towards the687
inner cylinder and subsequently towards the outer one, whilst the 𝑅𝑒 = 5000 case starts to688
rise vertically in the 𝑦𝑧 plane before moving towards the rotating wall. A similar mechanism689
to the one observed for lift forces that change sign with increasing shear rates and interfacial690
deformation could be at work in these cases. However, it is important to remind here that691
the present configuration (three-dimensional and fully turbulent flow with phase-change)692
differs significantly from planar shear flows investigated in the literature. The first instances693
of the bubble motion are also affected by the relative position between the centre and the694
Taylor vortices when the bubble is released into the flow. As was shown in section 3.1,695
Taylor-Couette flow changes from a well organised and steady pattern of alternating vortices696
for 𝑅𝑒 = 1000 to a fully turbulent and time-dependent configuration for 𝑅𝑒 = 3000, 5000.697
The initial position of the bubble is always the same for all the cases considered in this work698
(we remind here that the initial axial location of the bubble centre is 𝑧𝑡=0

𝑏
= 𝑟out/3). Based on699

the flow visualizations shown in Figure 7, for 𝑅𝑒 = 3000 the bubble is initially located within700
a vortex (closer to the lower part of the vortical cell), whilst for 𝑅𝑒 = 5000, the centre lies701
at the boundary between two adjacent vortices. In the 𝑅𝑒 = 3000 case, the bubble initially702
experiences a negative net radial velocity, which results in a displacement towards the inner703
wall. In the most turbulent case, the flow around the bubble has a positive radial component,704
although its effect is overcome by the stronger azimuthal velocity field, which forces the705
bubble to move along the 𝜃 direction.706

In order to compare the effects of the Taylor-Couette flow features and buoyancy on the707
dynamics of the rising bubble, we define two different Froude numbers. The first definition708
takes into account only the main azimuthal component of the liquid medium and reads:709

𝐹𝑟 𝜃 =
< 𝑢𝜃 >𝑧𝜃𝑡 (𝑟𝑏)√

𝑔𝐷𝑏
(4.4)710

where 𝑟𝑏 is the radial position of the bubble centre. The velocity is averaged along the axial711
and azimuthal direction as well as in time and is evaluated from the single-phase cases712
(section 3.1). The effect of the vertical component of Taylor vortices (which can enhance or713
reduce the rising speed of the bubbles) is quantified by the following Froude number:714

𝐹𝑟𝑇𝑉 =
|𝑢𝑇𝑉 (𝑟𝑏) |√

𝑔𝐷𝑏
(4.5)715

where 𝑢𝑇𝑉 is the characteristic (axial) velocity component of Taylor vortices from the716
undisturbed flow (Chouippe et al. 2014). Taylor cells are assumed to be squared (of the size717
of the reactor gap) and the velocity profile is varied linearly between the two walls. The718
profiles of 𝐹𝑟 𝜃 and 𝐹𝑟𝑇𝑉 against time for the configurations with 𝑅𝑒 = 1000, 3000, 5000 are719
reported in Figure 17a and 17b, respectively. The laminar case (𝑅𝑒 = 1000) shows almost no720
influence of Taylor-Couette features (for both the main azimuthal and axial Taylor vortices721
components), consistently with the observed dynamics of the rising bubble that resembles722
the case without rotation very closely (e.g., rectilinear trajectory and Sherwood profile).723
The azimuthal component of TC flows becomes stronger as 𝑅𝑒 increases and 𝐹𝑟 𝜃 follows724
accordingly for 𝑅𝑒 = 3000, 5000, with 𝐹𝑟 𝜃 ≈ 1 for 𝑅𝑒 = 5000 at the end of the simulation.725
The axial component of Taylor vortices (Figure 17b) is more effective for the intermediate726
case 𝑅𝑒 = 3000 rather than for the most turbulent one. In the first part of the simulation727
(𝑡 < 0.04 s), the 𝑅𝑒 = 5000 case moves exclusively along the azimuthal direction, with728
almost no deviation on the 𝑦𝑧 plane (Figure 16b). Therefore, the bubble stays at the center729
of one of the Taylor cells and experiences no significant axial velocity field. On the other730
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Figure 17: Froude number based on the main Taylor-Couette azimuthal flow (a) and axial
Taylor vortex component (b) Vs time for a dissolving bubble in a Taylor-Couette device at

different rotating speeds.

hand, the 𝑅𝑒 = 3000 case deviates almost immediately from the center of the reactor gap731
and moves towards a region with non negligible axial flow. For 𝑡 > 0.06 s the case with732
𝑅𝑒 = 3000 (5000) approaches the outer (inner) walls and the corresponding 𝐹𝑟𝑇𝑉 increases733
accordingly. The Froude number for 𝑅𝑒 = 3000 is still larger than the corresponding one734
for 𝑅𝑒 = 5000 because the former approaches the wall region faster. It is also important to735
remind here that the ratio 𝑢𝑇𝑉/𝑈in is not constant, but decreases for increasing Reynolds736
numbers (Chouippe et al. 2014). Both Froude numbers (equations 4.4 - 4.5) are below one737
for all the selected cases, leading to the conclusion that the presence of Taylor-Couette flow738
features introduces perturbations into the system (e.g., trajectory), but the dynamics of the739
dissolving bubbles is mainly driven by buoyancy.740

Although the volume dissolution rates are basically the same for cases A-D, such different741
trajectories provide some useful information for the operation of Taylor-Couette devices742
as chemical reactors. Indeed, when the gas extracted from the disperse phase is needed to743
perform a chemical reaction within the liquid phase, the more the distribution of the dissolved744
species is spread in a wide area the more likely is that the reagents react and produce the745
desired product. The case with 𝑅𝑒 = 5000 results in a more extended trajectory compared to746
the other cases, which helps distribute the gas in a wider region within the reaction vessel and,747
eventually, promote reactions. The effects of the trajectory and Taylor vortices on the (3D)748
distribution of species is shown in Figure 18, where the concentration contours of the gas749
released into the liquid on a generic 𝑟𝑧 plane that intersects the bubble and the corresponding750
iso-surfaces are compared for cases A-D. The figure clearly shows the effect of rotor speed751
(and corresponding TC regimes) on the bubble wake and the associated species distribution;752
the iso-surface representations offer a three-dimensional view over the increasing complexity753
of the distribution of species released into the wake region. When the rotor is steady (Figure754
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Figure 18: Contours of dissolved gas concentration on a 𝑟𝑧 plane (left) and corresponding
iso-surfaces with 𝑐𝑐 = 0.1𝜌𝑑/𝑀 (right) in a Taylor-Couette device at 𝑅𝑒 = 0 (a),

𝑅𝑒 = 1000 (b), 𝑅𝑒 = 3000 (c) and 𝑅𝑒 = 5000 (d). The outer cylinder has been removed to
improve the clarity of the figure. Snapshots taken at 𝑡 = 0.1 s.

18a), a symmetric iso-surface develops around the bubble and inside the wake. As the rotor is755
accelerated, the topology of the iso-surface becomes more distorted and, in the fully turbulent756
case at 𝑅𝑒 = 5000 (Figure 18d), the distribution of species results well mixed within a wide757
region below the bubble. As explained earlier, this is the most desirable scenario for the758
enhancement of the yield of a chemical reaction when the dissolved gas is one of the reactant759
species. Therefore, it can be concluded that, although no major differences are observed in760
these cases for the dissolution rates, the promotion of turbulent (chaotic) Taylor vortices is a761
desirable feature for the enhancement of species mixing within the reactor and, eventually,762
the production of chemical compounds.763

Many attempts have been made in the literature to provide formulae for the prediction of764
Sherwood numbers in rising bubbly flows and, although no formula can be generic enough765
to be independent of the specific flow configuration, most of the available correlations relate766
Sherwood with Reynolds or Péclet numbers in a proportionality law. To the best of the767
authors’ knowledge, no specific relationships have been investigated for the mass transfer of768
a single bubble in a Taylor-Couette flow at different rotating speeds (and TC flow regimes).769
Here, the correlation between Sherwood and Reynolds numbers is first investigated for cases770
A-D and the results are reported in Figure 19, where the reference length used for 𝑅𝑒𝑏 is771
the equivalent diameter of a sphere (as is done for 𝑆ℎ). In all the tested configurations, the772
plots of the Reynolds numbers exhibit a similar trend until 𝑡 ≈ 0.07 s, where a maximum773
peak is observed. In the first part of the simulation, the buoyancy force makes the bubble less774
sensitive to the carrier flow, which explains why the plots have a similar shape. Interestingly,775
the magnitude of the maximum 𝑅𝑒 is larger for the no rotation (Figure 19a) and 𝑅𝑒 = 1000776
(Figure 19b) cases than for the high speed configurations (𝑅𝑒 = 3000, 5000 in Figures777
19c-d respectively), meaning that the presence of turbulent Taylor vortices induces a strong778
downward (liquid) motion that limits the upward (rising) bubble velocity component as779
induced by gravity. This effect is significantly stronger as the strength of Taylor vortices780
increases and explains why the maximum observed peak of Reynolds number is larger in781
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Figure 19: Plots of 𝑆ℎ and 𝑅𝑒 numbers Vs time for a dissolving bubble in a
Taylor-Couette device at 𝑅𝑒 = 0 (a), 𝑅𝑒 = 1000 (b), 𝑅𝑒 = 3000 (c) and 𝑅𝑒 = 5000 (d).
The similarity of the profiles suggests a functional relationship between 𝑆ℎ and 𝑅𝑒, as

found for rising bubbles in (unbounded) quiescent flows.

cases A-B than the fully turbulent cases C-D. For 𝑡 > 0.07 s, cases A-B have a similar782
trend with a strong fluctuating profile and an almost constant mean value, whilst cases C-D783
have weaker oscillations but an average decreasing value of 𝑅𝑒 over time. Interestingly, the784
𝑅𝑒 = 3000 case has a larger 𝑆ℎ compared to the most turbulent one for 0.08 s < 𝑡 < 0.095 s,785
meaning that the local Taylor-Couette pattern (i.e., the upwards and downwards velocity786
regions) has a stronger effect than the magnitude of the rotating speed, coherently with the787
results reported in Figure 17. The plots of Sherwood numbers in Figure 19 clearly show that788
𝑆ℎ and 𝑅𝑒 are intrinsically related, since both profiles appear similar to each other and the789
peaks occur approximately at the same time (with a small delay in the Sherwood plot) for all790
the tested configurations. Given this correlation, it is not surprising that cases A-B show a791
larger 𝑆ℎ number than cases C-D at 𝑡 ≈ 0.07 s, as was observed (but not explained) in Figure792
15.793

Following the qualitative results presented in Figure 19, a conceptually equivalent pro-794
portionality law between 𝑆ℎ and 𝑅𝑒 to the ones proposed in the literature for a rising795
bubble is expected to be valid also for cases A-D. Here the corresponding Sherwood profiles796
are compared against the theoretical formulae proposed by Oellrich et al. (1973) for small797
bubbles:798

𝑆ℎ = 2 + 0.651
𝑃𝑒1.72

1 + 𝑃𝑒1.22 for 𝑅𝑒𝑏 → 0, 𝑆𝑐 → ∞ (4.6)799

and for large bubbles:800

𝑆ℎ = 2 + 0.232𝑃𝑒1.72

1 + 0.205𝑃𝑒1.22 for 𝑅𝑒𝑏 → ∞, 𝑆𝑐 → 0 (4.7)801
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Figure 20: Comparison of the corrected Sherwood number against the theoretical
formulae proposed by Oellrich et al. (1973) for 𝑅𝑒 = 0 (a), 𝑅𝑒 = 1000 (b), 𝑅𝑒 = 3000 (c)

and 𝑅𝑒 = 5000 (d).

Equations 4.6 - 4.7 provide two boundary curves for 𝑆ℎ and are generally used to predict802
the mass transfer of a single rising bubble in a steady-state regime, i.e. when 𝑃𝑒 is time-803
independent (Deising et al. 2018). Oellrich et al. (1973) show that the Sherwood number of804
spherical bubbles rising at constant speed is a function of both 𝑃𝑒 and 𝑆𝑐 and approaches805
equation 4.6 (4.7) for small (large) Péclet numbers. The Schmidt number affects how quickly806
a rising bubble migrates from equation 4.6 to 4.7 as 𝑃𝑒 increases: the larger the Schmidt807
value, the later such transition occurs. It is finally noted that equation 4.7 approaches the808
well-known potential flow solution 𝑆ℎ =

(
2/
√
𝜋
) √

𝑃𝑒, for 𝑃𝑒 → ∞ (Levich 1962). For the809
considered application, the Péclet number (= 𝑅𝑒𝑆𝑐) changes over time and formulae 4.6 -810
4.7 are compared against the numerical results by replacing 𝑃𝑒 with 𝑃𝑒(𝑡) in Figure 20.811
Since correlation formulae for 𝑆ℎ are generally based on the surface of the equivalent sphere812
(𝐴sphere), a correction factor (𝑆𝑟) is needed for the numerical results (which are based on the813
effective surface 𝐴Σ) to compare against the theoretical equations:814

𝑆𝑟 =
𝐴Σ

𝐴sphere
(4.8)815

Sr, which is always ⩾ 1, is also known as shape factor and provides a parameter for the816
estimation of the bubble deformation. As the bubble dissolves, the surface tension becomes817
more relevant (larger curvature) and the bubble approaches the spherical shape, i.e. 𝑆𝑟 → 1.818
The results reported in Figure 20 show that the qualitative trend of the corrected Sherwood819
number (i.e. 𝑆ℎ × 𝑆𝑟) is correctly reproduced by the theoretical formulae of Oellrich et al.820
(1973), where the solution is closer to equation 4.7 in the first part of the simulation (where821
𝑃𝑒 is larger due to the buoyancy-induced rising speed and larger size of the bubble) and822
progressively approaches equation 4.6 as the bubble dissolves (and 𝑃𝑒 decreases), coherently823
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Figure 21: Shape factor and bubble shapes Vs time for a dissolving bubble in a
Taylor-Couette device at 𝑅𝑒 = 0 (a), 𝑅𝑒 = 1000 (b), 𝑅𝑒 = 3000 (c) and 𝑅𝑒 = 5000 (d).

with the range of validity of these formulae. The trend of a decreasing Sherwood when the824
Reynolds number reduces (e.g. in the last part of the simulation, for 𝑡 > 0.08 s) is also825
correctly reproduced. Similar conclusions are obtained in Maes & Soulaine (2020) for a826
dissolving bubble rising in a quiescent flow and the present results confirm that volume change827
effects can be qualitatively taken into account by replacing the steady-state non-dimensional828
numbers with the corresponding time-dependent ones in the appropriate correlation formulae.829

As is shown in Figure 20, equations 4.6 - 4.7 can be used as qualitative references830
for the expected Sherwood number of a rising bubble in a TCR. However, a quantitative831
accurate match between the present results and these correlations cannot be obtained, as the832
theoretical formulae are derived assuming a spherical shape of the bubbles and a rectilinear833
rising trajectory. For the analysed configurations, the combined effect of gravity, TC flow834
and phase-change induce strong deformations (𝑆𝑟 > 1) in the bubble shape, which are835
compared in Figure 21 for cases A-D, along with the corresponding shape factors. Bubbles836
are initialised as perfect spheres (i.e. 𝑆𝑟 𝑡=0 = 1) and, as soon as the buoyancy force makes the837
bubble rise, the interface assumes the typical dimple shape that can be observed at 𝑡 ≈ 0.02 s.838
The shape factor increases accordingly until 𝑡 ≈ 0.06 s for cases A-B (Figures 21a-b) and839
𝑡 ≈ 0.055 s for cases C-D (Figures 21c-d), where a local maximum peak is reached. The840
corresponding deformations are different between the first two cases (ellipsoidal shape) and841
the fully turbulent ones (reverse dimple); the relative shape factors also differ and are stronger842
for cases A-B (𝑆𝑟 ≈ 1.65) than for configurations C-D (𝑆𝑟 ≈ 1.56). After this peak, two843
different behaviours can be observed: for the no rotation and 𝑅𝑒 = 1000 cases, a second844
maximum peak is reached slightly after 𝑡 = 0.08 s of approximately 𝑆𝑟 ≈ 1.75, where the845
bubbles approach a (less pronounced) dimple shape, whilst for cases 𝑅𝑒 = 3000, 5000 the846
profiles don’t have such a significant peak and irregular shapes can be observed. As the volume847
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Figure 22: Volume ratio Vs time for a dissolving bubble in a Taylor-Couette device at
different rotating speeds. Gravity is not taken into account.

of the bubble decreases, the surface tension force becomes dominant and all the bubbles848
move towards a spherical shape (𝑆𝑟 → 1). The time evolution of the shapes represented849
in Figure 21 suggests that the bubble interface experiences a very complex dynamics due850
to a combination of wobbling effects (initial Morton number 𝑀𝑜 = 3.2 × 10−11, see Clift851
et al. (2005)) and volume dissolution driven by mass transfer. Such irregular interfacial852
deformations result in the primary cause of the fluctuations that characterize the Sherwood853
plots for the steady case (𝑅𝑒 = 0), where the carrier flow is at rest and does not exhibit854
any other time-dependent feature. However, as the bubble reduces its size, the perturbations855
induced by the Taylor-Couette flow (particularly the toroidal vortices) result in a larger effect856
and change significantly the bubble dynamics (e.g., rising trajectory, bubble shape, 𝑆ℎ and857
𝑅𝑒 fluctuations).858

4.3.2. Single bubble without gravity859

The motion induced by the buoyancy force is the most relevant component for the configura-860
tions analysed so far, i.e. cases A-D. In this section, the focus is on cases E-G (see Table 10),861
where the initial bubble size is kept the same (i.e. 𝐷𝑡=0

𝑏
= 0.005 m) and gravity is neglected.862

The effect of the rotor speed is first investigated by comparing the bubble volume dissolution863
rates in Figure 22. The bubble dissolves now significantly faster as the inner cylinder is864
accelerated, contrary to the cases with gravity (see Figure 14) where the dissolution rates865
were independent of the rotor speed. This is the expected behaviour, since the bubble velocity866
is now entirely given by the carrier liquid, whose main velocity component (𝑢𝜃 ) increases867
with the rotating speed of the apparatus.868

The effect on the Sherwood number is shown in Figure 23. As expected, 𝑆ℎ increases as the869
rotor is accelerated and, after a transient regime where 𝑆ℎ decreases whilst a concentration870
boundary layer develops around the bubble interface, the profiles approach a quasi steady-871
state solution. Case G exhibits a constant value over time, whilst cases E-F have a slightly872
decreasing trend. Some qualitative differences between the low Reynolds case (𝑅𝑒 = 1000)873
and the fully turbulent ones (𝑅𝑒 = 3000, 5000) can be observed in the plots of Figure 23. The874
presence of unstable and chaotic Taylor vortices induce some fluctuations in the Sherwood875
profiles for the turbulent cases, whilst the well organised and steady flow structures that876
develop in the WVF regime do not introduce analogous perturbations in case E.877
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Figure 23: Sherwood number Vs time for a dissolving bubble in a Taylor-Couette device at
different rotating speeds. Gravity is not taken into account.

The volume ratio and Sherwood number are integral parameters that are mainly affected in878
these cases by the main component of the Taylor-Couette flow and do not provide insights into879
the effects of the different TC regimes that characterise the apparatus at different Reynolds880
numbers. To look into the effects of Taylor vortices on the distribution of the dissolved species881
in the liquid phase, the contours of species concentration for cases E-G are compared in Figure882
24. The concentration for case E (Figures 24a-b) appears uniform around the interface of the883
bubble and quite similar to the symmetric distribution that characterises a suspended bubble884
in a stagnant flow, meaning that the effect of Taylor vortices is marginal at 𝑅𝑒 = 1000. On the885
other hand, in cases F (Figures 24c-d) and G (Figures 24e-f), the effect of the turbulent Taylor886
cells is clearly visible in the spatial distributions of species concentration, which now assume887
irregular and non-symmetric shapes around the bubble. The position of the bubble centre in888
the vertical plane can be tracked by looking at the wake left by the dissolution of species889
(Figures 24b-d-f), and it can be observed that the bubble stays at a constant axial position for890
𝑅𝑒 = 1000, whilst in the turbulent cases (𝑅𝑒 = 3000, 5000) it moves upwards, transported by891
the upward velocity induced by the vortices. These results confirm that, in case E, Taylor cells892
play a marginal role and the bubble behaves as a particle transported by the azimuthal velocity893
component, whilst for the TTVF regime (cases F-G) Taylor vortices actively contribute to894
the dynamics of the bubble and distribute the concentration of the dissolved species in a895
wider region around the interface, which is a desirable scenario for a good mixing of species.896
It is finally observed that the concentration patterns shown in Figure 24 have a significantly897
different structure compared to the case of a rising bubble. Indeed, for rising bubbles, the898
concentration boundary layer is thinner on top (where advection counteracts the effect of899
diffusion) and becomes thicker towards the rear of the bubble. For the case of a bubble900
transported by a TC flow without gravity, the convective transport induced by the azimuthal901
velocity component has the same magnitude on both the top and bottom sides of the bubble902
and its effect is uniform around the interface (Figures 24a-c-e), contrary to the convective903
component induced by Taylor vortices, which acts on the radial-axial plane and depends on904
the bubble position and flow configuration.905

Figure 24 also shows the shape of the bubbles, which appears almost spherical (𝑆𝑟 ≈ 1)906
for all the tested configurations. This happens because the shear rate induced by the TC flow907
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Figure 24: Contours of species concentration and bubble interface in a Taylor-Couette
device without gravity at 𝑅𝑒 = 1000 (a-b), 𝑅𝑒 = 3000 (c-d) and 𝑅𝑒 = 5000 (e-f). Top
view (left) and side view (right). The outer cylinder has been removed to improve the

clarity of the figure. Snapshots taken at 𝑡 = 0.1 s.

is not strong enough to overcome the surface tension and induce significant deformations908
of the interface, contrary to cases A-D where gravity was responsible for strong deviations909
from the spherical shape (see Figure 21).910

4.3.3. Mass transfer models911

In order to gain insights into the underlying physics of the problem and discern the relevant912
flow scales that control mass transfer, the surface-renewal theory (Danckwerts 1951) is913
applied to the cases under investigation. The fundamental interphase mass transfer mechanism914
of the surface-renewal theory follows from the penetration model of Higbie (1935) and915
assumes that the species-absorbing fluid next to the interface is continuously refreshed with916
new elements from the bulk liquid. The corresponding mass transfer coefficient is:917

𝑘𝑚 ∼
√︂

𝐷𝑐

Θ
(4.9)918

where Θ is a characteristic residence time of a fluid element adjacent to the interface. The919
characteristic time Θ is not known a priori and some assumptions regarding the scales920
controlling mass transfer are required. In the following, we present two approaches for the921
prediction of Θ.922

The first approach is based on the assumption that mass transfer is driven by the923
macroscopic flow pattern, i.e., the combination of buoyancy and Taylor-Couette flow that924
transports the interface. At this point, a distinction between the cases with (cases A-D) and925
without (cases E-G) gravity is required. As shown in the analysis of the Froude number926
(Figure 17) for the cases with gravity, the Taylor-Couette flow introduces small perturbations927
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to the dynamics of the bubble and mass transfer is mainly affected by the rising speed928
induced by buoyancy. Under this circumstance, the relative velocity between the phases can929
be assumed equal to the bubble velocity 𝑈𝑏 and the residence time follows as:930

Θ ∝ 𝐷𝑏

𝑈𝑏
(4.10)931

By replacing equation 4.10 into 4.9 and using the definition of bubble Reynolds932
(𝑅𝑒𝑏 = 𝜌𝑐𝑈𝑏𝐷𝑏/𝜇𝑐) and Sherwood numbers, it follows:933

𝑆ℎ
√
𝑆𝑐

∝
√︁
𝑅𝑒𝑏 (4.11)934

In equation 4.11, 𝑆ℎ is a function of the solely bubble Reynolds and Schmidt numbers and935
corresponds to the well-known functional relationship 𝑆ℎ ∝

√
𝑃𝑒. This is indeed the case936

for the configurations with gravity considered in the present work (Figure 20) and it further937
confirms that mass transfer is controlled by buoyancy in those cases. In the following, the938
focus is on the cases without gravity in order to discern the relevant scales involved in the939
mass transfer process for configurations entirely driven by Taylor-Couette flows.940

In cases E-G (i.e., without gravity) the bubble is subject to a shear rate in the azimuthal941
direction, which depends on the radial distance from the inner wall and increases with the942
TC Reynolds number. Contrary to the gravity-driven cases, the liquid (shear) flow moves943
with the bubble (i.e., the whole fluid domain is rotating). A relative motion still exists due944
to the varying velocity field induced by the shear rate, which results in a flow direction945
(relative to the bubble centre) towards increasing 𝜃 around the bubble side exposed to the946
inner cylinder (it is reminded here that the rotor rotates towards increasing 𝜃); the opposite947
scenario occurs for the side that faces the outer wall. Such relative motion can be observed948
in Figure 24a (anticlockwise rotation), where the species distribution tends to move towards949
increasing 𝜃 faster than the centre of the bubble on the side that faces the inner wall, whilst950
the opposite trend is observed for the other side. However, the average shear-rate within the951
Taylor-Couette device is not particularly strong for the cases considered in this work, except952
for the two regions near the walls (see Figure 5). Given the initial size of the bubbles modelled953
in the present work, the surface-renewal mechanism related to the macroscopic (shear-) flow954
is not expected to be at work in the cases under consideration and is not discussed further.955

The second approach is based on the small-eddy model of Lamont & Scott (1970), where956
the smallest turbulent eddies are expected to control the exchange of mass at the interface. In957
this scenario, the characteristic turbulent length (𝑙𝐾 ) and velocity (𝑢𝐾 ) scales are computed958
as:959

𝑙𝐾 =

(
𝜈3
𝑐

𝜖

)1/4

and 𝑢𝐾 = (𝜈𝑐𝜖)1/4 (4.12)960

where 𝜖 is the rate of turbulent dissipation. The turbulent time scale 𝑡𝐾 follows from the961
corresponding length and velocity quantities and the residence time is assumed to be (Herlina962
& Wissink 2016; Theofanous et al. 1976):963

Θ ∝ 𝑡𝐾 =
𝑙𝐾

𝑢𝐾
=

√︂
𝜈𝑐

𝜖
(4.13)964

Finally, the mass transfer coefficient can be formulated as (equation 4.9):965

𝑘𝑚 ∝
√︁
𝐷𝑐

(
𝜖

𝜈𝑐

)1/4
(4.14)966

The average turbulent dissipation rate can be obtained as a function of the Taylor-Couette967
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Figure 25: Comparison of the small-eddy model (equation 4.17) against the (quasi-)
steady state mass transfer coefficients of cases E-G. The proportionality coefficient is 0.51.

𝑘𝑚 values are averaged over time for 0.08 s < 𝑡 < 0.1 s.

Reynolds number and geometry when the flow statistics are stationary, i.e., when the968
inner/outer torques balance out (𝑇 in = 𝑇out = 𝑇 - see Figure 3). Since the mechanical969
power applied to the internal cylinder must be dissipated by the fluid viscosity, the average970
dissipation rate follows as (Tokgoz et al. 2012):971

𝜖 =
𝑇𝜔in
𝜌𝑐𝑉

(4.15)972

where 𝑉 is the volume of liquid contained inside the reactor. By replacing the torque 𝑇 with973
the corresponding non-dimensional one (𝐺) and applying Wendt’s formula to predict its974
value (equation 3.2), 𝜖 can be re-formulated as:975

𝜖 =
𝐺𝜈2

𝑐𝜔in

𝜋

(
𝑟2

out − 𝑟2
in

) (4.16)976

Finally, the average 𝜖 is substituted in equation 4.14 and the prediction of the mass transfer977
coefficient of the small-eddy model follows as:978

𝑘𝑚 ∝
√︁
𝐷𝑐

©«
𝐺𝜈𝑐𝜔in

𝜋

(
𝑟2

out − 𝑟2
in

) ª®®¬
1/4

(4.17)979

The results of the small-eddy model are reported in Figure 25. The analytical prediction of980
equation 4.14 shows an increasing trend of mass transfer coefficient for increasing Reynolds981
(coherently with the dissolution rates reported in Figure 22) and shows a good agreement982
with the computed values of 𝑘𝑚 for cases 𝑅𝑒 = 3000, 5000. The 𝑅𝑒 = 1000 case is reported983
here for reference, but it is not surprising that it is significantly off compared to the analytical984
model, since this configuration is laminar and no turbulent eddies can be at work in this985
case. The good agreement offered by the small-eddy model suggests that, for fully turbulent986
cases, mass transfer is controlled by the dissipative turbulent structures, as recently found for987
bubbles dissolving in homogeneous isotropic turbulence (Farsoiya et al. 2023). Coherently988
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Figure 26: Two dissolving bubbles and contours of species concentration on a 𝑟𝑧 plane at
𝑅𝑒 = 0 (a), 𝑅𝑒 = 1000 (b), 𝑅𝑒 = 3000 (c) and 𝑅𝑒 = 5000 (d). The outer cylinder has been

removed to improve the clarity of the figure. Snapshots taken at 𝑡 = 0.057 s.

with this result, the 𝑅𝑒 = 5000 case is independent on the bubble size and approaches a989
steady-state solution, whilst case with 𝑅𝑒 = 3000 exhibits a quasi-steady solution with a990
slight decreasing trend over time.991

It is finally reminded here that the initial position of the bubbles is always the same for cases992
A-G, i.e. the center at 𝑡 = 0 is placed halfway between the inner and outer walls. For cases993
without gravity, where bubbles are entirely transported by the carrier liquid flow field, there994
might be a dependency on the initial position. This is expected to be particularly important995
for small bubbles that can be entirely trapped within the velocity boundary layer near the996
cylindrical walls. These regions show steep velocity gradients and fluctuations (Figures 5 -997
6) and the resulting mass transfer rate can be affected.998

4.3.4. Wake effect999

In this section, the interaction between two (identical) bubbles in a Taylor-Couette flow1000
at different Reynolds number is investigated in terms of volume dissolution rates. The1001
setup of the apparatus is the same as the one presented in section 4.1 (i.e., 𝜂 = 0.5 and1002
𝑅𝑒 = 0, 1000, 3000, 5000), but two bubbles (referred to as 𝑏1 and 𝑏2) with diameter 𝐷𝑡=0

𝑏1 =1003

𝐷𝑡=0
𝑏2 = (𝑟out − 𝑟in)/3 = 5 mm are initially placed at 𝑧𝑡=0

𝑏1 = 𝑟out/3 and 𝑧𝑡=0
𝑏2 = 7𝑟out/12,1004

respectively, and same (𝑥, 𝑦) coordinates (i.e. the minimum distance between the interfaces1005
is equal to 𝐷𝑏1,𝑏2/2). Bubble 𝑏1 is placed at the same initial axial location as the single1006
bubble cases presented in sections 4.3.1 - 4.3.2, so that a straightforward quantification of1007
the wake effect induced by bubble 𝑏2 can be achieved by simply monitoring the evolution of1008
volume over time. A summary of the cases for the wake effect study is reported in Table 101009
(Cases H-K).1010

A qualitative representation is shown in Figure 26, where the three-dimensional shape1011
of the bubbles is plotted, along with contours of species concentration in the continuous1012
phase on a 𝑟𝑧 plane. In the case with no rotation of the inner cylinder (Figure 26a), the1013
solution is axisymmetric and the bubbles approach a similar shape, whilst rising along a1014
vertical trajectory. In this scenario, the top bubble (𝑏2) rises in a clean environment (i.e. no1015
concentration of species is distributed in the continuous phase around the upstream side of the1016
interface). On the other hand, the bottom bubble (𝑏1) is affected by the wake of the top one,1017
which modifies both the velocity and concentration fields around the interface. In particular,1018
𝑏1 rises in a contaminated environment, where the species released from 𝑏2 as it dissolves1019
increases (locally) the saturation ratio of the liquid solvent. As a consequence, the difference1020
in species concentration (Δ𝑐) between the (saturated) interface and the surrounding liquid1021



37

0

0.2

0.4

0.6

0.8

1 a) b)

0

0.2

0.4

0.6

0.8

1

0.02 0.04 0.06 0.08 0.1

c)

0.02 0.04 0.06 0.08 0.1

d)

V
b
(t
)/
V

t=
0

b
V
b
(t
)/
V

t=
0

b

t[s] t[s]

Single bubble
Bottom bubble

Top bubble

Figure 27: Volume ratio Vs time for two dissolving bubbles in a Taylor-Couette device at
𝑅𝑒 = 0 (a), 𝑅𝑒 = 1000 (b), 𝑅𝑒 = 3000 (c) and 𝑅𝑒 = 5000 (d). The top bubble is not

affected by the bottom one and is equivalent to the single bubble case. The bottom bubble
dissolves slower and the wake effect becomes less relevant as the rotating speed increases.

at the top side of bubble 𝑏1 (which drives the transport of molecules across the interface)1022
decreases and a lower dissolution rate is expected, according to equation 2.9.1023

As the rotating speed of the inner cylinder increases, the development of counter-rotating1024
toroidal vortices induces non-null velocity components along the axial and radial directions1025
that break the symmetry of the problem (Figures 26b-d). The deviation from the symmetrical1026
solution becomes larger as the Reynolds number of the apparatus increases from 𝑅𝑒 = 10001027
(Figure 26b, where the bubbles follow slightly different trajectories but keep a similar shape)1028
to fully turbulent (Figures 26c-d), where the rising path and shapes of 𝑏1 and 𝑏2 are1029
strongly decoupled. Therefore, for increasing 𝑅𝑒, it is expected that the dissolution rate of1030
the downstream bubble becomes less affected by the wake of the upstream one, as both1031
bubbles follow different trajectories and rise in a clean environment.1032

The above qualitative observations are confirmed, from a quantitative point of view, in1033
Figure 27, where the time evolving volumes of bubbles 𝑏1 and 𝑏2 are plotted and compared1034
against the single bubble case. For all the selected Reynolds numbers, the top bubble behaves1035
in the same way as the corresponding single bubble simulation, confirming that 𝑏2 rises in a1036
clean environment and is not affected by the presence of the second bubble (nor by a different1037
initial position within the reactor). The plot of the downstream bubble exhibits two different1038
regimes. For 𝑡 < 0.04 s, the volume changes with the same dissolution rate as 𝑏2 (and the1039
single bubble case), whilst for 𝑡 > 0.04 s the bubble dissolves with a slower rate. In the first1040
part of the simulation, the wake of the top bubble is not fully developed yet and the species1041
released into the liquid (due to its dissolution) does not affect the concentration field around1042
the downstream bubble. Therefore, in the first part of the simulation, both 𝑏1 and 𝑏2 rise in1043
a clean environment and exchange moles at the same rate. For 𝑡 > 0.04 s, the wake of 𝑏2 is1044
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sufficiently extended to interact with the mass transfer process of the downstream bubble. In1045
particular, the local concentration gradient at the upstream-side of the interface decreases,1046
due to the increase in the bulk concentration in 𝑏2’s wake region, and the diffusive transfer1047
of moles becomes slower accordingly. The effect of the apparatus Reynolds number on the1048
dissolution rate of 𝑏1 can be easily understood by comparing Figures 27a-b against Figures1049
27c-d. For no rotation of the inner cylinder or low rotating speeds, the wake effect is stronger1050
as the downstream bubble clearly dissolves more slowly than the upstream one; however, for1051
the fully turbulent cases, such difference is much less relevant. This is due to the chaotic1052
motion induced by the strong vortices at 𝑅𝑒 = 3000, 5000 that decouple the trajectories1053
of the two bubbles. Figures 26c-d show that the part of the interface of bubble 𝑏1 that is1054
affected by the upstream wake is minimal (compared to the other two cases), making the mass1055
transfer dynamics almost identical to the case of a bubble rising in a clean environment. The1056
decoupling of the trajectories is mainly due to the presence of strong Taylor-Couette vortices1057
in the turbulent cases, since for the configurations with 𝑅𝑒 = 0, 1000 the wake interaction1058
significantly affects the dissolution rate of the bottom bubble. Bubbles are initially exposed1059
to concurrent upwards and downwards velocity fields and experience (with different ratios)1060
the influence of two adjacent TC cells. However, a different local flow topology between1061
the two bubbles is not sufficient to decouple the trajectories (see, for example, the case with1062
𝑅𝑒 = 1000), which happens only when the flow induced by the vortices is strong enough to1063
change the sign of the lift force acting on each bubble.1064

5. Conclusions1065

In this work we adopted our recent numerical framework (Gennari et al. 2022) to investigate1066
bubble dissolution in a wide range of Taylor-Couette flows. The methodology is first validated1067
for single-phase TC flows (with radius ratios varying between 0.5 < 𝜂 < 0.91) at Reynolds1068
numbers in the range 338 < 𝑅𝑒 < 5000, where the main regimes (TVF, WVF and TTVF)1069
are all reproduced and good agreement is observed against previous investigations.1070

Bubble dissolution in Taylor-Couette flows is first studied for a single bubble with a 5 mm1071
diameter in a reactor with a radius ratio of 𝜂 = 0.5 and a gap size of 15 mm. For this1072
configuration, the buoyancy force is predominant over the velocity induced by the rotating1073
wall and the global dissolution rate is almost unaltered in the range 0 < 𝑅𝑒 < 5000.1074
However, the concentration of species released from the bubble is significantly affected by1075
the TC regime, as a fully turbulent and chaotic flow distributes the dissolved species in a1076
wider region and enhances the mixing within the reactor. A clear correlation between 𝑆ℎ1077
and 𝑅𝑒 numbers is observed for all the modelled TC regimes where the bubble is rising.1078
The theoretical predictions proposed by Oellrich et al. (1973) for the 𝑆ℎ number of spherical1079
bubbles rising along a straight trajectory are modified by replacing the constant Péclet number1080
with the corresponding time dependent one and by introducing a correction factor to take1081
into account shape deformations. The results show that large bubbles tend to agree with1082
the predictions for 𝑅𝑒𝑏 → ∞, whilst small bubbles are close to the expected behaviour for1083
𝑅𝑒𝑏 → 0, even in the case of large interfacial deformations. The modelling of a bubble1084
in absence of gravity provides useful information to quantify the effect of the different TC1085
regimes for the cases in which the buoyancy force is marginal (e.g. small bubbles). In this1086
specific case, volume dissolution occurs significantly faster for increasing rotating speeds,1087
and all the simulated TC Reynolds numbers approach a (quasi) staeday-state solution.1088

The mass transfer mechanism is investigated by applying the surface-renewal theory of1089
Danckwerts (1951). The characteristic time and length scales of the macroscopic flow field1090
control the mass transfer process for the cases where buoyancy is predominant. This theory1091
produces the well-known functional relationship 𝑆ℎ ∝

√
𝑃𝑒, which is consistent with the1092
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Figure 28: Mesh refinements within two cylindrical regions (dashed lines) around the
inner and outer walls.

formulae of Oellrich et al. (1973) for 𝑃𝑒 → ∞. For the cases without gravity, the small-eddy1093
theory of Lamont & Scott (1970) is combined with the surface-renewal approach and a1094
simple analytical model for the prediction of the mass transfer coefficient is proposed. Our1095
results show that the smallest turbulent scales control the exchange of mass between the1096
phases in fully turbulent Taylor-Couette flows.1097

The wake effects are studied by placing two bubbles (aligned vertically) in the reactor. It1098
is shown that the top bubble is unaffected by the presence of the second one and dissolves as1099
in the single bubble case. However, the bottom bubble rises into a contaminated flow and for1100
null (𝑅𝑒 = 0) or low rotating speeds (𝑅𝑒 = 1000) the dissolution rate decreases significantly1101
(at 𝑡 = 0.1 s, the bottom bubble has a volume 41% and 52% bigger than the top one for 𝑅𝑒 = 01102
and 𝑅𝑒 = 1000, respectively). On the other hand, for turbulent TC flows, the trajectories of1103
the bubbles are decoupled and similar global mass transfer rates are observed.1104
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Appendix A. Mesh sensitivity and grid selection for fully-resolved simulations of1110
Taylor-Couette flows1111

A mesh sensitivity study is carried out for one of the most demanding cases in terms of1112
mesh resolution (i.e. 𝜂 = 0.5 and 𝑅𝑒 = 5000), where the flow regime is fully turbulent and1113
strong velocity fluctuations are expected near the walls. The octree grid structure of Basilisk1114
is used for the discretization of the domain and two cylindrical regions with thickness1115
Δℎin = Δℎout = 0.05 (𝑟out − 𝑟in) are used to set different mesh refinements near the walls (see1116
Figure 28). Therefore, three different sub-domains can be identified within the annulus, i.e.1117
the inner, outer and bulk regions. Three meshes are tested for the selected configuration and1118
the corresponding parameters are reported in Table 11. Mesh M.1 has a uniform resolution1119
within the gap, whilst meshes M.2 and M.3 take advantage of the two refinement regions to1120
increase the grid density near the cylindrical walls (M.2 and M.3 have the same resolution1121
near the walls, but a different mesh density in the bulk region). Numerical modelling of1122
Taylor-Couette flows requires that enough grid points are distributed within the gap between1123
the cylinders, in order to capture the complex flow features that develop as the rotating speed1124
is increased. Meshes M.1 and M.2 have a similar number of radial points (i.e. 𝑁𝑟 = 61 and1125
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Mesh 𝑁b
𝑧 𝑁 in

𝑧 𝑁out
𝑧 𝑁b

𝑟 𝑁 in
𝑟 𝑁out

𝑟 𝑁
𝑟in
𝜃

𝑁
𝑟out
𝜃

Cells count
M.1 256 256 256 55 3 3 385 770 9.95 × 106

M.2 256 1024 512 55 12 6 1539 1539 5.64 × 107

M.3 512 1024 512 110 12 6 1539 1539 1.13 × 108

Table 11: Mesh sensitivity study for the configuration 𝜂 = 0.5 and 𝑅𝑒 = 5000. 𝑁𝑧 , 𝑁𝑟 ,
𝑁𝜃 are the number of cells along the axial, radial and azimuthal directions, respectively.

The superscripts 𝑁b, 𝑁 in, 𝑁out refer to the bulk, inner and outer regions within the
domain (see Figure 28).
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Figure 29: Mesh sensitivity study for the configuration with 𝜂 = 0.5 and 𝑅𝑒 = 5000. The
radial profiles of the average azimuthal velocity (a) and fluctuations (b) are compared

against the work of Chouippe et al. (2014).

𝑁𝑟 = 73 respectively), where 𝑁𝑟 is computed as 𝑁𝑟 = 𝑁b
𝑟 + 𝑁 in

𝑟 + 𝑁out
𝑟 . However, the cost1126

in terms of total number of cells for this marginal increment of resolution along the radial1127
direction is significantly large (see Table 11). This is a limitation of the octree Cartesian1128
grid structure, where mesh stretching is not allowed, i.e. the aspect ratio of each cell is fixed1129
to one. Results from the selected meshes are compared for the average azimuthal velocity1130
< 𝑢𝜃 >𝑧𝜃𝑡 (where the operator <>𝑧𝜃𝑡 refers to the average in time and along the axial (𝑧)1131
and azimuthal (𝜃) directions) and for the corresponding fluctuating component:1132

𝑢′𝜃 = 𝑢𝜃− < 𝑢𝜃 >𝑡 (A 1)1133

which can be averaged in time in the following way:1134

< 𝑢′𝜃
2
>𝑡=< 𝑢2

𝜃 >𝑡 − < 𝑢𝜃 >2
𝑡 (A 2)1135

The time interval used for the computation of the average and fluctuating quantities1136
corresponds to 5 revolutions, i.e. Δ𝑡 = 5𝑡rev, where 𝑡rev = 2𝜋𝑟in/𝑈in. Results for < 𝑢𝜃 >𝑧𝜃𝑡1137

and
√︃
< 𝑢′

𝜃
2 >𝑧𝜃𝑡 are plotted in Figure 29a and Figure 29b, respectively, and compared1138

against the numerical study of Chouippe et al. (2014). The results reported in Figure 291139
show that the average radial profiles of the plotted quantities are not significantly affected1140
by an increase in the mesh resolution. Mesh M.1 tends to slightly over-predict the velocity1141
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Mesh Δin
𝑟+ Δout

𝑟+ Cells𝑟+in < 5 Cells𝑟+out < 5
M.1 2.54 1.31 1 2
M.2 0.598 0.610 4 4
M.3 0.598 0.619 4 4

Table 12: Mesh characteristics in terms of wall units and number of cells in the viscous
sublayer for the configuration 𝜂 = 0.5, 𝑅𝑒 = 5000.

𝜂 𝑅𝑒 𝑁b
𝑟 𝑁 in

𝑟 𝑁out
𝑟 Δin

𝑟+ Δout
𝑟+ Cells𝑟+in < 5 Cells𝑟+out < 5

0.5 1000 55 3 3 0.733 0.389 3 6
0.5 3000 110 6 6 0.800 0.415 3 6
0.5 5000 55 12 6 0.598 0.610 4 4
0.73 338 26 4 2 0.301 0.464 6 5
0.73 1014 26 4 2 0.965 1.05 3 2
0.91 5000 16 9 9 1.36 1.25 2 2

Table 13: Selected mesh characteristics for the single-phase Taylor-Couette cases.

fluctuations near the inner wall and the coarser resolution around the cylinders, combined1142
with the embedded boundary method, results in a underestimation of the tangential velocity1143
at the inner rotor; meshes M.2 and M.3 provide almost the same results. The grids are1144
compared in terms of wall unit resolutions in Table 12, where the average viscous length1145
scales 𝛿∗,in and 𝛿∗,out at the inner and outer cylinders respectively, are computed as:1146

𝛿∗in,out =
𝜈𝑐

𝑢∗in,out
(A 3)1147

where the friction velocity 𝑢∗ is obtained from the shear stress 𝜏𝑤:1148

𝑢∗in,out =

√︄
|𝜏in,out
𝑤 |
𝜌𝑐

(A 4)1149

The shear stress in Equation A 4 is the average value on the cylinders and follows from the1150
integral torque 𝑇𝑤:1151

𝜏in,out
𝑤 =

𝑇
in,out
𝑤

2𝜋𝑟2
in,out𝐿𝑧

(A 5)1152

The values of Δin,out
𝑟+ reported in Table 12 are computed with the average wall shear stress1153

(equation A 5) and, due to the Cartesian structure of the mesh, the non-dimensional quantities1154

Δ
in,out
𝑧+ and 𝑟in,outΔ𝜃+ are the same as Δin,out

𝑟+ . Meshes M.2 and M.3 have the same refinement1155
near the walls and both have at least four cells within the viscous sublayer region, i.e. 𝑟+ < 5.1156
Given the results reported in Figure 29 and the requirements in terms of mesh resolution1157
for DNS (i.e. Δ𝑟+ < 1), mesh M.2 is selected as the reference grid for the modelling of1158
Taylor-Couette flows; the grids used for the other configurations have similar characteristics1159
and their details are reported in Table 13. All the meshes have the first cell centre within the1160

non-dimensional distance Δ
in,out
𝑟+ < 1 from the walls and have at least three cells within the1161

regions 𝑟+in,out < 5. Exceptions are the configurations with 𝜂 = 0.73, 𝑅𝑒 = 1014 and 𝜂 = 0.91,1162
𝑅𝑒 = 5000, where Δ𝑟+ is slightly above one at the wall. In the last case (𝜂 = 0.91), this is1163
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due to the small gap within the cylinders, where the maximum number of cells is limited1164
by the Cartesian topology of the grid and a further level of refinement would generate too1165
many cells along the axial and azimuthal directions that cannot be handled with the available1166
computational resources.1167
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Stéphane & Cuoci, Alberto 2024 Multicomponent droplet evaporation in a geometric volume-of-1188
fluid framework. Journal of Computational Physics 507, 112955.1189

Clift, R., Grace, J.R. & Weber, M.E. 2005 Bubbles, Drops, and Particles. Dover Publications.1190
Climent, Eric, Simonnet, Marie & Magnaudet, Jacques 2007 Preferential accumulation of bubbles in1191

couette-taylor flow patterns. Physics of Fluids 19 (8), 083301.1192
Coles, Donald 1965 Transition in circular couette flow. Journal of Fluid Mechanics 21 (3), 385–425.1193
Couette, Maurice 1890 Etudes sur le frottement des liquides.1194
Danckwerts, P. V. 1951 Significance of liquid-film coefficients in gas absorption. Industrial & Engineering1195

Chemistry 43 (6), 1460–1467.1196
Deising, D., Bothe, D. & Marschall, H. 2018 Direct numerical simulation of mass transfer in bubbly1197

flows. Comput. Fluids 172, 524–537.1198
Deising, Daniel, Marschall, Holger & Bothe, Dieter 2016 A unified single-field model framework1199

for volume-of-fluid simulations of interfacial species transfer applied to bubbly flows. Chemical1200
Engineering Science 139, 173–195.1201

Di Prima, R. C. & Swinney, Harry L. 1981 Instabilities and transition in flow between concentric rotating1202
cylinders, pp. 139–180. Berlin, Heidelberg: Springer Berlin Heidelberg.1203

Djeridi, H., Gabillet, C. & Billard, J. Y. 2004 Two-phase couette–taylor flow: Arrangement of the1204
dispersed phase and effects on the flow structures. Physics of Fluids 16 (1), 128–139.1205

Dong, S. 2007 Direct numerical simulation of turbulent taylor–couette flow. Journal of Fluid Mechanics1206
587, 373–393.1207

Donnelly, Russell James, Schwarz, K. W., Roberts, P. H. & Chandrasekhar, Subrahmanyan 19651208
Experiments on the stability of viscous flow between rotating cylinders - vi. finite-amplitude1209
experiments. Proceedings of the Royal Society of London. Series A. Mathematical and Physical1210
Sciences 283 (1395), 531–556.1211

Ervin, E. A. & Tryggvason, G. 1997 The Rise of Bubbles in a Vertical Shear Flow. Journal of Fluids En-1212
gineering 119 (2), 443–449, arXiv: https://asmedigitalcollection.asme.org/fluidsengineering/article-1213
pdf/119/2/443/5900909/443 1.pdf.1214

Farsoiya, Palas Kumar, Magdelaine, Quentin, Antkowiak, Arnaud, Popinet, Stéphane & Deike,1215
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Thesis, Sorbonne université.1345
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