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Abstract 

Mega-city regions have emerged from urban growth and improved inter-city connectivity. Due 

to the complexity of its spatial arrangement, quantitatively describing and predicting the 

functional spatial structure within mega-city regions has become a new challenge. To address 

this challenge, human mobility has become the hot spot of research, as it enables the exchange 

of ideas, goods, services, and cultural interactions that shape the dynamics of urban spaces. 

Human mobility is integral to the functioning of society. It could explain the relationship 

between micro-level individual behaviour and macro-level urban phenomenon. Therefore, this 

research proposes to develop an analytical framework for modelling the functional spatial 

structure in mega-city regions through the lens of human mobility, predicting the dynamic shift 

in the urban spatial structure. To achieve the main research aim of predicting the urban spatial 

structure, this research set a series of research objectives as follows: (1) To identify urban 

functional zones within mega-city regions by examining travel behaviour and differentiating 

intra-city from inter-city trips; (2) To develop a novel spatial interaction model that enhances 

travel flow predictions by incorporating residents' socio-economic characteristics; and (3) To 

predict the impact of urban interventions and policies on travel patterns and the mega-city 

region's functional spatial structure through localised changes. 

This study proposes several novel algorithms based on spatial-interaction models to achieve its 

research objectives and then tests them with case studies. The study first designed a 

regionalisation algorithm for delineating urban functional zones, utilising cell phone signalling 

data in the Great Bay Area in China. Secondly, this research proposes a novel variation of the 
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spatial interaction model, combined with the k-means clustering algorithm, to predict the travel 

flows of residents using census data in the Greater London Area in the United Kingdom. 

Furthermore, this research integrated the tools to simulate how urban interventions and policies 

affect the functional spatial structure in the Great Bay Area in China from the perspective of 

human mobility patterns. 

The primary research outcome of this study suggests that the distance decay in the spatial 

interaction model exhibits significant spatial heterogeneity, and this parameter could be used 

to represent the functional urban spatial structure. This distance decay parameter could also be 

associated with various factors, including spatial arrangement and non-spatial factors, such as 

socio-economic factors. By predicting the local variation of the distance decay with socio-

economic characteristics and travel flows, we can forecast the dynamics of the urban spatial 

structure in the mega-city region for future scenarios. This simulation model could help 

governments and urban planners make informed decisions by forecasting the impacts of urban 

interventions on the spatial structure of mega-city regions. 

Furthermore, this thesis advances the discussion on long-standing issues in spatial interaction 

models using human mobility big data research, such as localisation, calibration methods, and 

spatial heterogeneity, which contribute to solving these long-standing issues through novel 

approaches. 



   

 

 7 

 

List of publications based on the thesis 

Parts of the materials included in this thesis have been published or are under consideration for 

publication in the form of journal articles or book chapters as follows: 

Journal Papers 

Zhang, B., Zhong, C., Gao, Q., Shabrina, Z., & Tu, W. (2022). Delineating urban functional 

zones using mobile phone data: A case study of cross-boundary integration in Shenzhen-

Dongguan-Huizhou area. Computers, Environment and Urban Systems, 98, 101872. 

 

Zhang, B., Zhong, C., Gao, Q., & Shabrina, Z., Exploring the Associations of Socioeconomic 

Characteristics and Distance Decay effects in Spatial Interaction (Preprint available at SSRN 

4733461, Under review by Sustainable Cities and Society) 

 

Selected Conference Proceedings 

Zhang, B., Zhong, C., Gao, Q., & Shabrina, Z., Exploring the Distance-decay Effect in 

Commuting Behaviour at the Local-level with a Localised Spatial Interaction Model. GISRUK 

2023, Glasgow, United Kingdom 

 

Zhang, B., Zhong, C., Gao, Q., Shabrina, Z., & Tu, W., Delineating urban functional zones 

using mobile phone data: A case study of cross-boundary integration in Shenzhen-Dongguan-

Huizhou area. The 2021 European Colloquium on Theoretical and Quantitative Geography 

(ECTQG), Manchester, United Kingdom 

  



 

  
8 

 

 



 

 9 

 

Table of Content 

DECLARATION ................................................................................................ 1 

ACKNOWLEDGEMENTS ............................................................................... 3 

ABSTRACT ........................................................................................................ 5 

LIST OF PUBLICATIONS BASED ON THE THESIS ................................. 7 

TABLE OF CONTENT...................................................................................... 9 

LIST OF FIGURES .......................................................................................... 15 

LIST OF TABLES ............................................................................................ 19 

1 INTRODUCTION ..................................................................................... 21 

1.1 RESEARCH BACKGROUND ....................................................................................... 21 

1.2 RESEARCH QUESTION AND OBJECTIVES. ............................................................... 23 

1.3 SIGNIFICANCE OF THE STUDY .................................................................................. 24 

1.4 METHODOLOGY SUMMARY ..................................................................................... 26 

1.4.1 Spatial interaction models ............................................................................. 27 

1.4.2 Regionalisation algorithm ............................................................................. 28 

1.4.3 Urban simulation model ................................................................................ 29 

1.5 CASE STUDY AREA .................................................................................................. 29 

1.5.1 Shenzhen-Dongguan-Huizhou (SDH) metropolitan area ........................... 30 



 

  
10 

1.5.2 Greater London Area (GLA) ........................................................................ 32 

1.6 STRUCTURE OF THIS REPORT .................................................................................. 33 

2 LITERATURE REVIEW ......................................................................... 37 

2.1 HUMAN MOBILITY AND SPATIAL INTERACTION MODEL .......................................... 38 

2.1.1 Classic gravity model theory and its development...................................... 39 

2.1.2 Localised gravity models ............................................................................... 43 

2.1.3 Other types of spatial interaction models .................................................... 45 

2.1.4 Combining socioeconomic characteristics and travel behaviour .............. 48 

2.1.5 Research gap for applying spatial interaction models in small zones 

within urban system ....................................................................................................... 50 

2.2 URBAN SPATIAL STRUCTURE FOR THE MEGA-CITY REGION ................................... 51 

2.2.1 Describing the urban spatial structure ........................................................ 51 

2.2.2 Detecting the urban spatial structure........................................................... 55 

2.2.3 Research related to detecting cities’ boundary ............................................ 58 

2.3 BIG DATA IN HUMAN MOBILITY RESEARCH ............................................................. 63 

3 DELINEATING URBAN FUNCTIONAL ZONES USING MOBILE 

PHONE DATA .................................................................................................. 73 

3.1 INTRODUCTION ........................................................................................................ 73 

3.2 CHALLENGE IN DELINEATING THE URBAN FUNCTIONAL ZONES. ........................... 75 

3.2.1 Modifiable Areal Unit Problem (MAUP) and boundary effects ................ 77 

3.2.2 Using human mobility data to understand urban functional zones .......... 78 

3.3 DATA COLLECTION .................................................................................................. 79 

3.4 METHODOLOGY....................................................................................................... 83 



 

  
11 

3.4.1 Basic spatial interaction model ..................................................................... 83 

3.4.2 Hierarchical spatial interaction model ......................................................... 84 

3.4.3 Regionalisation algorithm for delineating urban functional zones ........... 86 

3.5 RESULTS ................................................................................................................... 89 

3.5.1 Goodness of fitting for HSIM ........................................................................ 89 

3.5.2 Result for detection of urban functional zones in SDH area ...................... 93 

3.5.3 Policy implications for city integration in SDH area .................................. 97 

3.6 METHODOLOGICAL DISCUSSION ............................................................................. 99 

3.6.1 Spatial interaction methods vs Network-based methods ........................... 99 

3.6.2 Methodological limitations .......................................................................... 100 

3.7 CHAPTER CONCLUSION ......................................................................................... 101 

4 EXPLORING THE ASSOCIATIONS OF SOCIOECONOMIC 

CHARACTERISTICS AND DISTANCE DECAY EFFECTS IN SPATIAL 

INTERACTION ............................................................................................. 103 

4.1 BACKGROUND ........................................................................................................ 103 

4.2 METHODOLOGY..................................................................................................... 106 

4.2.1 Two-step localised distance-decay with origin-specific gravity model .... 106 

4.2.2 Grouping k-local groups and two-step flow prediction method .............. 107 

4.3 CASE STUDY ........................................................................................................... 109 

4.3.1 Data collection .............................................................................................. 109 

4.3.2 Exploring spatial heterogeneity from distance decays in commuting 

behaviour ...................................................................................................................... 112 

4.3.3 Paradox between local distance decay and spatial structure ................... 114 



 

  
12 

4.3.4 Grouping areas based on socioeconomic characteristics associations with 

localised distance decay ............................................................................................... 117 

4.3.5 Goodness of fitting comparison .................................................................. 124 

4.4 DISCUSSION FOR LOCALISING DISTANCE DECAY WITHIN URBAN SPACE .............. 125 

4.5 CHAPTER CONCLUSION ......................................................................................... 127 

5 APPLICATION: PREDICTING THE IMPACT OF CHANGES IN 

TRANSPORT INFRASTRUCTURE ON URBAN INTEGRATION ....... 129 

5.1 DATA COLLECTION ................................................................................................ 132 

5.2 DESIGN OF THE SIMULATION FRAMEWORK .......................................................... 135 

5.3 SIMULATION RESULTS ............................................................................................ 139 

5.3.1 Baseline in 2020 ............................................................................................ 140 

5.3.2 Predilect the future of mega-city region in 2035 ....................................... 146 

5.4 DISCUSSION AND POLICY IMPLICATION ................................................................ 155 

5.4.1 Driving factor of the urban functional zones change................................ 155 

5.4.2 The debate of good commuting pattern ..................................................... 156 

5.5 CHAPTER CONCLUSION ......................................................................................... 158 

6 DISCUSSION ........................................................................................... 159 

6.1 IMPROVING THE MODELLING FRAMEWORK FOR UNDERSTANDING URBAN SPATIAL 

STRUCTURE IN MEGA CITY-REGIONS ................................................................................. 159 

6.1.1 Incorporating socioeconomic factors when modelling travel pattern and 

urban spatial structure ................................................................................................ 160 

6.1.2 Modelling mega city region using hierarchical vs unified system ........... 163 

6.2 CALIBRATION SPATIAL INTERACTION MODELLING WITH FINE GRANULARITY ... 165 



 

  
13 

6.2.1 Choosing estimation methods ..................................................................... 166 

6.2.2 Predicting zero interaction .......................................................................... 170 

6.2.3 Errors in converting predicted flows to integers ....................................... 172 

6.3 UNCERTAINTY IN URBAN MODELLING BASED ON HUMAN MOBILITY ................... 173 

7 CONCLUSION ........................................................................................ 177 

7.1 CONTRIBUTIONS OF THIS STUDY ........................................................................... 177 

7.2 FUTURE RESEARCH DIRECTION............................................................................. 178 

REFERENCES ............................................................................................... 181 

APPENDIX A: LIST OF ABBREVIATIONS .............................................. 211 

APPENDIX B:  DATA INVENTORY........................................................... 213 

 

  



 

  
14 

  



 

 15 

 

List of Figures 

 

Figure 1.1 Flowchart of the methodology framework ............................................................. 27 

Figure 1.2 Great Bay Area (GBA)and Shenzhen-Dongguan-Huizhou (SDH) areas, China ... 31 

Figure 1.3 The Great London Area (GLA), United Kingdom ................................................. 33 

Figure 2.1 The Conceptions in Urban Spatial Structure .......................................................... 54 

Figure 2.2 Data sample of Mobile phone Signalling data. (Source: (Song et al., 2010)) ........ 66 

Figure 2.3 Example of taxi GPS dataset in Beijing, source (Yao et al., 2021) ........................ 68 

Figure 2.4 Dataset of smart card data (source: Song et al. (2018)) ......................................... 69 

Figure 2.5 The social media checked-in data (source: Hu and Jin (2017)). ............................ 70 

Figure 3.1 Distribution of Cross-city flows within the SDH area ........................................... 82 

Figure 3.2 The Hierarchical Spatial Interaction Model: The total predicting trips equals to city-

level intra-city models plus one inter-city model, Equation (5) = Equation (6) + Equation (7)

.................................................................................................................................................. 85 

Figure 3.3 Flowchart of the redrawing boundaries tabu search algorithm .............................. 87 

Figure 3.4 (a) The GSIM model with one whole modelling area (left); Figure 3.4(b) the HSIM 

model with random boundaries (middle); Figure 3.4(c) the HSIM model with administrative 

boundaries (right) ..................................................................................................................... 90 



 

  
16 

Figure 3.5 Setting 1- Current functional boundary within SDH area ...................................... 95 

Figure 3.6 Setting 2- Predicted functional boundary within SDH area in long-term .............. 96 

Figure 4.1 Socioeconomic characteristics in London ............................................................ 110 

Figure 4.2 Distance decay parameters in London in 2011 ..................................................... 113 

Figure 4.3 Relationship between average travel distance and the distance-decay effect ...... 115 

Figure 4.4 Difference of local distance decay parameter between 2001-2011. ..................... 116 

Figure 4.5 The fitting figures to demine the K (both R-square reports and RMSE reports 

goodness of fitting) ................................................................................................................ 118 

Figure 4.6 K-means cluster results for the socioeconomic characteristics when K=2 .......... 119 

Figure 4.7 K-means cluster results for the socioeconomic characteristics with K=6 ............ 121 

Figure 5.1 Map of SDH area and Zhongshan City ................................................................ 131 

Figure 5.2 Road network downloaded from OSMnx............................................................. 132 

Figure 5.3 Design of integrated simulation model................................................................. 136 

Figure 5.4 The local distance-decay parameters in the SDH area ......................................... 140 

Figure 5.5 The k-means cluster results for the socioeconomic characteristics in SDH areas 141 

Figure 5.6 The k-means cluster results for the socioeconomic characteristics in SDH plus 

Zhongshan areas..................................................................................................................... 145 

Figure 5.7 The exits of Shenzhen-Zhongshan bridges (image source: Baidu map) .............. 148 



 

  
17 

Figure 5.8 The shortest road from Nanlang to Bao'an, comparing the scenarios before (left))and 

after(right) the road opening .................................................................................................. 150 

Figure 5.9 Change of average travel time by origin in SDHZ. .............................................. 151 

Figure 5.10(a) and Figure 5.10 (b)The delineation of unfunctional zones in the SDHZ area 

before intervention was applying (left); after the intervention applying (right) .................... 154 

Figure 5.11 Simulation results without population growth.................................................... 155 

Figure 5.12 The increased average travel distance after the new bridge open ...................... 157 

Figure 6.1 (a) and 6.1 (b) The localised distance decay in GLA area (left) and SDH area (right)

................................................................................................................................................ 161 

Figure 6.2  Different distance decay formats could exist within one city (source: Šveda and 

Madajová,,2023) .................................................................................................................... 169 

Figure 6.3 Difference of the urban functional zones when using different dataset ............... 174 

  



   

 

 18 

 

  



 

  
19 

List of Tables 

 

Table 2.1 Family of gravity models ......................................................................................... 41 

Table 2.2 Mainstream type of new form of mobility data ....................................................... 65 

Table 3.1 Data sample of GBA mobile phone signalling data ................................................. 81 

Table 3.2 The distance decay parameters in sub-models ......................................................... 91 

Table 3.3 Goodness of fitting for GSIM and HSIMs ............................................................... 92 

Table 3.4 Goodness of fitting for HSIM in different scenarios ............................................... 94 

Table 3.5 Distance decays of sub-models ................................................................................ 94 

Table 4.1 Data sample of Census data ................................................................................... 111 

Table 4.2 The distance decay and socioeconomic characteristics for groups of areas when K=2

................................................................................................................................................ 120 

Table 4.3 The distance decay and socioeconomic characteristics for groups of areas when K=6

................................................................................................................................................ 122 

Table 4.4 Comparison results for different gravity models ................................................... 125 

Table 5.1 Data sample of user portrait data ........................................................................... 134 

Table 5.2 The distance decay and socioeconomic characteristics for groups of areas in SDH 

areas ....................................................................................................................................... 142 



 

  
20 

Table 5.3 The population growth targets set for the four cities ............................................. 147 

Table 5.4 Parameters of new edge ......................................................................................... 149 

Table 6.1 Comparison of fitting performance between attractive-constrained gravity model 

using iteration-based method regression-based method. ....................................................... 167 

  



   

 

 21 

 

1 Introduction 

1.1 Research Background  

During (the second half of) the 20th century, a significant change in urban spatial structure 

occurred. The typical monocentric organisation of cities transformed into the decentralised 

polycentric urban land-use form in many areas (Anas et al., 1998; Smith, 2009). The most 

recent phase is that city regions and super mega-city regions have been formed as a 

consequence of urban growth and a vast improvement in inter-cities connectivity (Hall & Pain, 

2006). The mega-city regions are characterised by a network of closely linked urban areas 

centred around one or more core cities, which gained vast attention from the public and scholars 

because of the massive population and its economic agglomeration effects (Scott, 2019). With 

the spatial structure of an urban environment/space becoming more complex, our knowledge 

about the mechanism of how cities grow. However, even after a century of work, the 

understanding of how cities evolve is still insufficient (Batty, 2008). The concept of urban 

functional zones (UFZs) varies based on the research objectives and the data utilised, including 

different factors such as land-use patterns, human activities, and regional planning principles 

(Chen & Yeh, 2022; Niu & Jin, 2020; Zhong et al., 2014). In the context of mega-city regions, 

daily activities tied to urban functions—like work, living, and leisure—spill over established 

administrative borders, happening across various cities. This expansion gives rise to the new 

concept of urban functional zones (UFZs), where these activities are no longer contained within 
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a single city's limits but spread across a larger metropolitan region. Therefore, in this PhD thesis, 

the UFZs primarily refer to the geographical extent covered by each city’s functional area 

within a mega-city region. In urban analytics, it is a challenge to quantitatively describe and 

predict the complex urban spatial structure within mega-city regions. Researchers have 

addressed this challenge and developed urban models as simplified representations of reality. 

A model is an approximation of truth that mediates between theory and the physical world, 

allowing scientific experimentation and a means of analytical testing (Morgan & Morrison, 

1999). Urban models originated in the late 1950s as simulations designed to represent the 

patterns of land use and the transport flows within cities, then further developed as the Land 

Use-Transport Interaction (LUTI) model during the 1960s in the United States. Computational 

models have long been used to support planners' decisions to eliminate complexity and codify 

a straightforward and concise understanding of many aspects of urban structure and transport. 

In the last decades, various types of urban models have been created to explain the mechanism 

of urban space forms and changes and how urban space will influence residents' daily activities. 

The famous examples include the gravity model, fractal models, cellular automata, and Agent-

based models (Batty & Longley, 1994; Matthews et al., 2007; Santé et al., 2010; Wilson, 1971). 

However, traditional urban models primarily utilise conventional data sources, emphasising 

location and infrastructure while often neglecting individual social characteristics and 

preferences. 

Additionally, computational limitations have historically restricted the scale of urban systems 

these models can accurately represent. Recently, the evolution of computing power and data 

collection/storage techniques enabled the possibility of using spatial interaction models to build 

larger urban models with granular spatial resolutions, and this trend is known as "the 

Renaissance of large-scale modelling" (Batty & Milton, 2021). More research suggests that 
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cities are complex systems that grow from the bottom up (Batty, 1976a), and there is optimism 

that big-data techniques will address the lack of individual dimensions in research (Geurs & 

Van Wee, 2004).  

The emerging data sources gathered from sources like smartphones, GPS devices, and smart 

cards provide a high-resolution image of how people move across and interact with urban 

spaces (González et al., 2008), and the amount of these urban mobility data has grown 

exponentially in recent years (Zhong et al., 2016). Human mobility is integral to the functioning 

of society, as it enables the exchange of ideas, goods, services, and cultural interactions that 

shape the dynamics of urban spaces (Yuan et al., 2012). Especially with the concept of big data, 

human mobility patterns have become the hot spot for explaining the relationship between 

micro-level individual behaviour and macro-level urban phenomenon (Anejionu et al., 2019; 

Huang et al., 2019; Shelton et al., 2015). This granular understanding enables urban 

geographers and analysts to unravel daily movement patterns, pinpoint critical areas of activity, 

and model the complex urban spatial structure.  The unprecedented speed of urban growth and 

the change in human mobility patterns in a data-rich era would provide a valuable perspective 

to observe how accessibility and geospatial planning policy reshape the urban spatial structure.  

1.2 Research Question and Objectives.  

The thesis explores methods for modelling the mega-city region's functional spatial structure 

based on human mobility patterns. The doctoral research attempts to answer the question, 

“How can we predict the changes of functional urban spatial structure in mega-city 

regions from a human mobility perspective?” The hypothesis is that residents' travel 

behaviour could reflect the functional urban spatial structure. In addition, we also hypothesise 
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that local socioeconomic demographics and travel behaviour correlate, thus enabling 

improvements in travel flow prediction.  Therefore, these research questions can be answered 

through three specific research objectives as follows: 

 

1. To detect the urban functional zones of emerging mega-city regions reflected by the 

human mobility pattern and the difference between intra-city and inter-city trips. 

2. To establish a novel spatial interaction model to predict travel flows more accurately by 

highlighting the socioeconomic characteristics of local residents. 

3. To predict how specific urban interventions and policy can influence human mobility 

patterns via changing localised characteristics, further affecting the functional spatial 

structure within the mega-city region.  

1.3 Significance of the study  

This doctoral research aims to provide an in-depth analytic framework for understanding the 

mechanism of functional spatial structure reshaping in mega-city regions through the lens of 

human mobility. In his book Overview of Land Use Transport Models, Wegener, M. (2004) 

defined the urban spatial processes and temporal scales. Fast processes include information 

flows (which may only take seconds via the internet) and everyday urban transport loops. 

Regarding land use and urban function, the mechanisms shaping communities' physical 

configuration are typically medium-term temporal relations (10 years or less), mainly involving 

industries, residents' location decisions, and urban growth cycles. Meanwhile, these medium-

term processes are correlated with faster complex processes like travel patterns and slower 

urban functions like structural economic/major demographic change or techno-economic 

paradigm shift (Wegener, 2004). One of the main challenges of urban analytics is building a 
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framework that connects different spatiotemporal scales. Thus, this doctoral research would 

use figures of fast processes, such as human mobility patterns, to assess mid-term and long-

term processes, such as urban spatial structure, contributing to a better understanding of how 

to incorporate the interrelationships between urban spatial structure at various levels. 

Methodologically, this study aims to make several contributions: 

Firstly, the research contributes to improving the current spatial interaction models. Most 

current spatial interaction models and other flow-predicting models at an aggregated level 

assume that the interior space of the modelling region is spatially isogenous, meaning that the 

distribution of trips only obeys a general law associated with distance between locations (De 

Vries et al., 2009; Fotheringham & O'Kelly, 1989; Simini et al., 2021). Researchers found that 

a global approach to spatial analysis may not be suitable for the local area within the sub-case 

study area due to spatial heterogeneity (Fotheringham & Sachdeva, 2022). Thus, adding local 

socioeconomic characteristics to improve the accuracy of spatial interaction models is a long-

standing research topic. Thus, rethinking and building a more localised model is not only the 

first stage needed for this study but also a contribution to the methodology in urban analytics. 

This research seeks to fill a knowledge gap by answering how variations in urban spatial 

structure and social groups could be reflected in the spatial interaction of travel behaviours. 

This helps to establish a link between socioeconomic characteristics, urban spatial 

configuration, and spatial interaction. 

Secondly, this research aims to provide a new definition of the functional urban structure of 

cities/city regions by human mobility patterns. An urban system often does not coincide with 

the administrative boundaries, which may cause distortion and lead to planning failure (Calafati 

& Veneri, 2013).  Due to the vagueness of the word 'urban' and the uncertainty of which feature 

of urbanity produces the efficiency premium, there is a lack of theoretical formulation on 
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agglomeration economies' urban boundary (Bretagnolle et al., 2002). Compared to traditional 

monocentric cities, boundaries in the form of city-region are even more challenging to define. 

To discuss the urban spatial structures of the mega-city regions, it is necessary to determine the 

boundaries that fit the specific urban context. The urban space is formed by residential and 

industrial activities (Lynch, 1960). Modern big data techniques enable the possibility to observe 

how individuals' daily activities agglomerate to create urban spaces, indicating the in-fact 

boundary of cities/city-regions. The view from human mobility would help measure the 

functional urban boundaries and explain their geographical meaning. 

Lastly, this research also establishes a simulation-based approach to understanding how 

specific policies and interventions affect the human mobility pattern and ultimately influence 

the spatial structure of cities in relatively medium- or long-term periods. Urban systems are 

becoming even broader and more complex with the development of economies and social and 

transport structures. Computational models have long been used to support planning decisions 

to eliminate complexity and codify a straightforward and concise understanding of many 

aspects of urban structure and transport. Previous LUTI models determine the land-use patterns 

and then predict the transport interactions. Besides, it mostly focuses on separated urban 

systems and rarely considers socioeconomic characteristics. Therefore, this research would 

establish a model for a mega city region that predicts the spatial structure change based on the 

human mobility pattern and considering socioeconomic characteristics. This simulation 

framework will support decision-making by the government and planners in predicting future 

scenarios with/without urban interventions. 

 

1.4 Methodology Summary 
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In this thesis, we would like to advocate an urban analytic methodology framework for 

modelling functional spatial structure about human mobility patterns in the context of mega-

city regions. The methodological framework is shown in Figure 1.1, the specific research and 

modelling method is introduced below: 

 

Figure 1.1 Flowchart of the methodology framework 

1.4.1 Spatial interaction models 

The spatial interaction model is a framework for predicting and understanding the flow of 

goods, services, people, and information between different locations based on their distance, 

economic size, and other intervening factors. The spatial interaction model (SIM) addresses 

research inquiries concerning how specific urban interventions can impact urban spatial 

structures by influencing human mobility. The traditional, or global, spatial interaction model 

assumes that all trips adhere to a general law, typically characterised by a negative power or 

exponential function with uniform distance decay parameters. However, our assumptions 

suggest that multiple human mobility patterns may coexist within the same region. Therefore, 

we propose a novel variant of the spatial interaction model for predicting regional human 

mobility flows. This research refined existing spatial interaction models to better elucidate local 

variations in travel flow distributions. The fitted localisation parameters (especially for the 

distance decay) and updated predicted movement flow could serve to measure social indicators 
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and urban spatial structures through the analytical framework proposed.  To emphasise the local 

socioeconomic characteristics in the SIM model, we utilise the k-means clustering algorithm 

to partition our modelling areas into k-clusters, facilitating the prediction of local distance 

decay parameters while limiting the computing complexity. Additionally, the goodness of fit in 

spatial interaction models could be employed as an indicator to assess the validity of 

delineating the boundaries of sub-models. 

1.4.2 Regionalisation algorithm 

The regionalisation algorithm aims to delineate N larger regions from the aggregation of M 

smaller regions, where M exceeds N (Duque et al., 2007; Shortt, 2009). Research Objective 2 

seeks to identify urban functional zones within the mega-city region, aligning with the 

regionalisation algorithm's fundamental concept. Consequently, the regionalisation algorithm 

serves as a core research method in this study to delineate the urban functional zones from 

human mobility. Specifically, the study examines the spatial interaction volumes between areas 

with two urban cores, which typically follow a distance decay law. If the spatial interaction 

suggests a continuous urban space between these cores, it implies integration within the urban 

space. Conversely, significant discrepancies between predicted and observed commuting flows 

between cores may indicate the presence of an invisible barrier, suggesting two separate urban 

spaces in spatial structure terms. We have designed and applied a novel regionalisation 

algorithm based on the spatial interaction model (SIM) to operationalise this approach. This 

algorithm aims to identify the optimal partitioning scheme that best fits the observed variation 

in SIM. The iteration-based algorithm iteratively refines the partitioning scheme until the best 

partition, characterised by the highest goodness of fit, is achieved. 
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1.4.3 Urban simulation model 

Urban simulation models are powerful tools in this effort, providing insights into the complex 

interactions between land use patterns, transportation networks, and population trends (Harris 

& Batty, 1993). Urban spaces are changing dynamically, with population growth, economic 

development, and technological advances reshaping the structure of mega-city regions. 

Quantitative analysis of the physical urban environment and the study of the relationship 

between form and function are the future trends of urban science (Wu et al., 2024). In this 

research, we built an urban simulation model integrated with the other methods and models 

mentioned above to predict how specific urban interventions and policies can influence the 

functional spatial structure within the mega-city region as human mobility patterns change. 

 

1.5 Case Study Area 

In the global north context, the formation of mega-city regions usually followed the pathway 

of cities - city regions - mega-city regions (Scott et al., 2001). It finally grew as a super mega-

city region with a huge population and complex spatial structure. However, recent research 

pointed out that the formation of super mega-city regions in some emerging markets countries, 

such as China and Mexico, didn't follow this typical pathway (Scott, 2019; Yeh & Chen, 2019). 

In global northern countries, especially in the global mega city-region like London, data 

availability and reliability are significant advantages compared to developing countries because 

of their publicly available advanced facilities and mature data platforms. However, the 

formation of urban spatial structures in the majority of mega-cities was completed before the 

1980s in the global north countries (Brenner, 2002; Scott, 2019), which means we cannot obtain 
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the benefits of big data techniques to understand the spatial transformation in the mega-city 

regions. Fortunately, global southern countries like China have been experiencing urban 

growth and spatial structure change in recent decades along with their economic growth (Li, 

2020; Wang et al., 2016). Meanwhile, the inequality in mobilities and accessible opportunities 

is still remarkable across regions and social groups in global southern countries. Thus, this 

research will take the Great London Area in the UK and the Great Bay Area in China as two 

case study areas, exploring the interplay between socioeconomic status, human mobility 

patterns and urban spatial structure. 

1.5.1 Shenzhen-Dongguan-Huizhou (SDH) metropolitan area  

This doctoral research takes the Shenzhen-Dongguan-Huizhou (SDH) metropolitan area, 

which is one of the sub-regions in the Pearl River Delta Great Bay Area (GBA), as the first 

case study area. The Greater Bay Area comprises the two Special Administrative Regions of 

Hong Kong and Macao and the nine Pearl River Delta (PRD) cities of Guangzhou, Shenzhen, 

Zhuhai, Foshan, Huizhou, Dongguan, Zhongshan, Jiangmen and Zhaoqing in Guangdong 

Province. The GBA area has a total area of 56,000 square kilometres and a total population of 

86 million at the end of 2022, according to the yearbook of Guangdong Province (2022). 

Shenzhen-Dongguan-Huizhou area as a geographical concept formally appeared in the 2004 

PRD Urban Cluster Coordinated Development Plan. It consists of one vice-provincial-level 

municipality, Shenzhen (subordinate to the central government and the Guangdong Provincial 

Government) and two prefecture-level municipalities, Dongguan and Huizhou (under the 

Guangdong Provincial Government). SDH area covers a total area of 15,800 square kilometres, 

with a resident population of 34.15 million and a total GDP of RMB 4.9 trillion in 2022. This 

area has been experiencing rapid urban growth and change in urban spatial structure since the 

1980s and has become one of China's most open and economically vibrant regions.  



Introduction 

  
31 

 

Figure 1.2 Great Bay Area (GBA)and Shenzhen-Dongguan-Huizhou (SDH) areas, China 

Since 1978, reform and opening-up policies have led to exponential population growth and 

industrial prosperity, especially concentrated in super mega-city regions. Because of their 

crucial role in China's urbanisation and economic growth, mega-city regions have recently been 

put at the forefront of policy. The Chinese government has issued a series of policies since 

2004 to encourage cities within one city-region growth and integration as one city, which 

further promoted the urban spatial structure change and urban space integrations (Li et al., 2015; 

Wu, 2016). The national and international spotlight has increasingly been on this region, 

particularly following the proposition of the Guangdong-Hong Kong-Macao Greater Bay Area 

in 2015.  
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1.5.2 Greater London Area (GLA) 

Another case study area is the Greater London Area, which is substantial both in size and 

population, making it a significant urban zone in the United Kingdom and a vital player in the 

global economy. GLA covers approximately 1,572 square kilometres (about 607 square miles). 

This area encompasses the City of London, the historic and financial heart of the metropolis, 

and 32 boroughs. Greater London is home to nearly 9 million people, making it the most 

populous municipality in the United Kingdom (Census, 2021). It is the engine of the UK's 

economy, contributing 23% of the country's GDP (ONS, 2021). The city's economic activity 

benefits from its status as a global transport hub, served by extensive underground and rail 

networks, and major airports like Heathrow and Gatwick. As a global mega-city region, it 

presents a rich cultural, economic, and environmental amalgamation, rendering it a prime 

subject for a broad spectrum of geographical studies. London could provide the best data 

availability in multi-dimensions including geographical data, flow data, and social 

characteristics data. In addition, numerous previous literatures taking London as a case study 

area could be referenced to help us understand the urban phenomenon, and better design our 

modelling method. 
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Figure 1.3 The Great London Area (GLA), United Kingdom 

1.6 Structure of this report  

The thesis is divided into seven chapters:  

Chapter 1 introduces the research background, focusing on how to model urban spatial 

structure in mega-city regions, and outlines the research questions and objectives aimed at 

addressing the identified gaps in the literature. It then delineates the rationale for undertaking 

this research by highlighting the significance of this study. Finally, the chapter presents an 

overview of the report's structure, guiding readers through the subsequent text for clear 

navigation. 

Chapter 2 is a literature review chapter. It first introduces previous research about the travel 

flow prediction method, particularly focusing on spatial interaction models. Then the spatial 

GLA
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transformation of the city region and the urban boundaries, as the key element of the spatial 

structure, were examined by reviewing the related research. In later sections, the current large-

scale urban simulation model and its trend of the 'Renaissance' are reviewed. Lastly, the 

previous research about mobility big data utilisation in urban analytics will be summarised. 

The specific research gaps are identified in this chapter, contributing to establishing the 

methodologies of this study.  

Chapter 3 introduces a regionalisation algorithm for delineating urban functional zones using 

human mobility data, aiming to achieve the objectives of detecting the functional spatial 

organisation.  By analysing the mobile phone data in the Great Bay Area in China as a case 

study, this chapter provides insights into cross-boundary city integration and related policy 

implications. This chapter is a “thesis incorporating publications” chapter, as the content has 

been published in the Journal of Computers, Environment and Urban Systems (Zhang et al., 

2022). 

Chapter 4 proposes a novel travel prediction tool with consideration of localised 

characteristics. In this chapter, a two-step spatial interaction model emphasises this variance in 

the local distance-decay effect by reflecting the socioeconomic characteristics of residents.  As 

a case study in the Great London Area in the UK, this model predicts commuting behaviours 

using census 2021 data. 

Chapter 5 establishes a simulation model to predict how the specific urban intervention could 

influence the urban spatial structure. Based on the two-step spatial interaction model in Chapter 

4, specific policy assumptions (e.g. population growth & migration, transport facilities 

development, and changes in socioeconomic characteristics) are tested in this simulation model 
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to predict travel behaviour change. The possible change in functional spatial organisation will 

also be examined in relation to the regionalisation algorithm proposed in Chapter 3.   

Chapter 6 is a discussion chapter based on the previous chapters. The chapter first discusses 

the relationship between distance decay and urban spatial structure in Mega-city regions 

through analytical results. This thesis concludes that the distance decay in the spatial interaction 

model exhibits significant spatial heterogeneity, and this parameter could be used to represent 

the functional urban spatial structure. Furthermore, this chapter discusses some long-standing 

issues in spatial interaction models using human mobility big data research, such as localisation, 

calibration method, and spatial heterogeneity. It illustrates how this doctoral research could 

contribute to solving these long-standing issues.  

Chapter 7 summarises the significant contributions of this doctoral study, including 

understanding the transformation of urban spatial structures through the lens of human mobility, 

methodological contribution, and support for urban planning and policymaking via an urban 

simulation model. Furthermore, this chapter suggests directions for future research in related 

fields of urban analytics. 
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2 Literature review 

The interplay between human mobility and urban spatial structures has emerged as a key area 

of research within geography and urban studies, particularly in emphasising the dynamic of 

urban space in the 21st century. This literature review chapter aims to introduce the historical 

development of these concepts and explore their relevance and application in the modern 

context. 

This chapter first reviews the spatial interaction models by comprehensively examining the 

evolution, theories, and methodologies underpinning this dynamic field. The literature review 

delves into the challenges and opportunities presented by applying spatial interaction models 

within urban systems, highlighting the need for localised models to accommodate the granular 

spatial resolutions in the big data era. Then, this discussion around the concept of urban spatial 

structure examines cities' morphological and functional aspects and the transition from 

monocentric to polycentric forms as urban areas expand and evolve. The spatial transformation 

of the city region and the urban boundaries, as the key element of the spatial structure, will be 

examined by reviewing the related research. Lastly, the previous research about mobility big 

data utilisation in urban analytics is summarised.  

By identifying existing gaps in the literature, this review chapter proposes directions for future 

research, focusing on integrating new data sources and localisation of the models in studying 

human mobility and urban spatial structures. 
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2.1 Human mobility and spatial interaction model 

The foundational concept of human mobility patterns was first introduced during the 19th 

century to elucidate the frequency of travel between neighbouring cities, considering factors 

such as population size and distance. Subsequent decades witnessed the development of 

migration laws and Zipf's formulation (Zipf, 1946), which laid the groundwork for the 

emergence of the widely recognised gravity law, serving as the cornerstone for contemporary 

analyses of human mobility patterns. Quantitative investigations into human mobility 

commenced in the United States metropolitan areas, driven by the conceptualisation of 

'geography as spatial interaction' in the 1950s, as articulated by Haynes and Fotheringham 

(1985). 

As data collection efforts improved, particularly with the advent of Information and 

Communication Technology (ICT) data, the concept of time geography gained prominence. 

This approach considers both temporal and spatial constraints and has been extensively utilised 

to measure, comprehend, and forecast spatiotemporal trajectories at the individual level. 

Researchers have examined various travel scales, ranging from daily commuting to 

international travel, to unravel their associations with practical real-world applications, such as 

traffic flow forecasting (Lopane et al., 2023), urban planning (Bokányi et al., 2019), and 

epidemic modelling (Spooner et al., 2021; Zhou et al., 2020), risk management (Song et al., 

2014). In the realm of urban studies, significant indicators such as accessibility and 

employment density can exert considerable influence on human mobility patterns within cities 

(Bocarejo S & Oviedo H, 2012; Preston & Rajé, 2007). Correspondingly, the human mobility 

model, along with its outcomes and parameters, can serve as valuable indicators for unveiling 

the distinctive characteristics of cities (Zhong et al., 2017). 
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Human mobility models can be employed to replicate both individual mobility patterns and 

population movement patterns (Alessandretti et al., 2020). In both scenarios, it is imperative to 

account for the distinctive geographical and temporal dimensions inherent to the mobility 

process, encompassing distances ranging from hundreds of meters to thousands of kilometres 

and time spans varying from hours to years (Wegener, 2004). At the individual level, a range 

of models, such as Brownian motion and Lévy flight, have been developed based on the 

principles of random walk theory. These models predict the likelihood of an individual's 

location or travel range (Barbosa et al., 2018; Rhee et al., 2011). Conversely, at the population 

level, models are designed to represent collective mobility behaviours and aim to replicate 

Origin-Destination (OD) matrices by estimating the average number of individuals travelling 

between any two geographical zones over a given unit of time (Willumsen, 2001). The spatial 

interaction model is the prevailing model for forecasting travel flows in this context.   

2.1.1 Classic gravity model theory and its development   

Spatial interaction studies have employed a variety of methods, with the gravity model 

emerging as the most frequently utilised approach (Haynes & Fotheringham, 1985). In 1946, 

George K. Zipf introduced an equation to forecast movement flows, positing that the volume 

of movement flow is directly proportional to the product of the population sizes of any two 

communities, denoted as 𝑃𝑖 × 𝑃𝑗, and inversely proportional to the shortest transport distance, 

represented as 𝑑𝑖𝑗 (Zipf, 1946). 

𝑇𝑖𝑗 ∝
𝑃𝑖 × 𝑃𝑗

𝑑𝑖𝑗
 (1) 

While the gravity model has gained popularity due to its formal simplicity and successful 

application in modelling empirical flows and movements, its theoretical underpinnings have 
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remained a subject of debate. In 1970, a significant breakthrough occurred when Wilson 

introduced the entropy-maximizing methodology into the gravity model, bridging the gap 

between its theoretical foundation and empirical utility (Wilson, 1970). The gravity model’s 

popularity can be attributed to its concise formulation, and its simplest version, the 

unconstrained gravity model, can be written down as the equation (2). 

𝑇𝑖𝑗 = ∑ ∑ 𝐾
𝑂𝑖

𝛼𝐷𝑗
𝛾

𝑓(𝑑𝑖𝑗)
𝑗𝑖

 (2) 

In the gravity model, each variable and parameter have a straightforward geographical 

interpretation, whereas 𝑂𝑖
𝛼 and 𝐷𝑗

𝛾
 represents the production form origins and attraction of the 

destinations, respectively. The distance decay effect is represented as 𝑓(𝑑𝑖𝑗), which is the core 

of the gravity models.  

Wilson's contributions extended beyond this methodological innovation, as he also delineated 

four general types of spatial interaction models (as presented in Table 2.1 below): 

unconstrained (where both Oi and Dj are unknown), production-constrained (where Oi is 

known but Dj is unknown), attraction-constrained (where Oi is unknown, but Dj is known), 

and doubly constrained spatial interaction models (where both Oi and Dj are known) (Wilson, 

1971). 
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Table 2.1 Family of gravity models 

Model Forms Formula 

Unconstrained 𝑇𝑖𝑗 = 𝐴𝑖𝐵𝑗𝑓(𝑑𝑖𝑗) 

Production-constrained 𝑇𝑖𝑗 = 𝐴𝑖𝑂𝑖𝑓(𝑑𝑖𝑗) 

Attraction-constrained 𝑇𝑖𝑗 = 𝐵𝑗𝐷𝑗𝑓(𝑑𝑖𝑗) 

Doubly constrained 

spatial interaction model 

𝑇𝑖𝑗 = 𝐴𝑖𝐵𝑗𝑂𝑖𝐷𝑗𝑓(𝑑𝑖𝑗) 

Depending on the availability of data and research objectives, researchers can select the 

appropriate form and approach to calibrate the model to approximate its parameters. These 

fundamental forms of the gravity model gained further credibility in 1971 when Alan Wilson 

demonstrated their reliability by integrating classical transportation theory and entropy 

maximization theory into the framework.  

After determining the basic formulation of the gravity model, the function form of the 

relationship 𝑓(𝑑𝑖𝑗)  between travel cost with the travel flow needs to be chosen. The most 

common formats of 𝑓(𝑑𝑖𝑗) are for populations of origin and destination and exponential laws 

 (exp (𝛽𝑑𝑖𝑗))  or laws of power (𝑑𝑖𝑗
−𝛽

)  for dependency on distances (Dennett, 2012). These 

specific functional forms are chosen to allow for quick and precise calibration of the model. 

This makes it possible for researchers to use linear regression approaches to predict the value 

of parameters by functions of the population and distance (Barbosa et al., 2018).  
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During the application of the SI model, the parameters calibration process is seen as the critical 

step for fitting the prediction model to match the real-world flows. One of the mainstream 

method to calibrate parameters is applying general linear regression after exponential 

transformation of equations (Flowerdew & Aitkin, 1982).  After the log formed transformation, 

equation (2) can be written as equation (3) 

𝑡𝑖𝑗 = exp(𝐾+ 𝛼𝑂𝑖 + 𝛾𝐷𝑗 − 𝛽𝑙𝑛𝑑𝑖𝑗) (3) 

The flows addressed by spatial interaction models, such as migration or commuting, pertain to 

non-negative integer counts. Consequently, the probability of migration or commuting is not 

delineated by a continuous (normal) probability distribution, which typically underlies the error 

distribution in standard linear regression models. Instead, it is characterised by a discrete 

probability distribution, such as the Poisson distribution or the negative binomial distribution, 

with the Poisson distribution being a special case of the latter (Dennett, 2018; Flowerdew & 

Aitkin, 1982). The equation (3), therefore, could apply the Poisson regression to estimate the 

value of parameters , 𝛾, and  in the programming platform or software. 

Another method to calibrate the parameters is the iteration-based calibration algorithm based 

on Maximum Likelihood Estimation. (Batty & Mackie, 1972) proposed calibration procedure 

which picks the distance decay parameters β by continually executing the iterations of standard 

non-linear optimised until the difference between the predicted mean trip cost C and the 

observed mean trip cost 𝐶𝑜𝑏𝑠  is less than the pre-set threshold ε. Technically, this method 

usually performs better but can only apply to single (distance decay) parameter models.  

 

 | 𝐶𝑝𝑟𝑒−𝐶𝑜𝑏𝑠 | < 𝜀 (4)  
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𝐶 =
∑ ∑ 𝑇𝑖𝑗𝑑𝑖𝑗𝑗𝑖

∑ ∑ 𝑇𝑖𝑗𝑗𝑖

(5) 

 

Another commonly used iteration-based calibration method is designed specifically for doubly 

constrained gravity models. This method typically involves establishing two balancing factors, 

each associated with origins and destinations, and allowing them to mutually influence each 

other. Subsequently, an initial value is set, and iterations are performed until a specified 

convergence criterion is achieved (Dennett, 2012; Plane, 1984). 

2.1.2  Localised gravity models 

Most previous spatial interaction models have operated under the assumption that the internal 

space of the modelling area exhibits spatial isogeneity, meaning that the distribution of trips 

follows a single overarching law associated with f(dij). Previous research suggested that spatial 

heterogeneity widely exists in the spatial interaction model and may reflect uneven trip 

distribution within urban space due to factors like system boundaries, transport accessibility, 

and other intricate urban contexts (Fotheringham, 1981; Nakaya, 2001; Zhang et al., 2022).  

The spatial heterogeneity effect, often referred to as the Modifiable Areal Unit Problem 

(MAUP), stemming from the configuration of zoning systems, has been extensively discussed. 

Spatial heterogeneity, which can lead to inconsistent results in spatial interaction models, has 

been perceived as a challenge, prompting efforts to identify optimal zoning systems or technical 

solutions to mitigate its impact (Arbia & Petrarca, 2011; Marceau, 1999; Openshaw, 1977). 

Some researchers have explored hierarchical structures to address MAUP issues during 

interaction estimation (Masser & Brown, 1975). Building upon the MAUP concept, others have 

proposed that implementing a hierarchical structure within spatial interaction models could 
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diminish spatial heterogeneity among sub-systems, thereby enhancing predictive accuracy 

(Fotheringham et al., 2001; Nazara et al., 2006; Qian et al., 2020). The hierarchical spatial 

interaction model distinguishes trips between intra and inter-subsystems for flow estimation, 

effectively reducing spatial heterogeneity at sub-system borders. 

Since the 1970s, scholars have been aware that the spatial factor could affect the SI significantly, 

and correctly representing the spatial effect in the model could improve the performance of SI 

models (Masser & Brown, 1975; Openshaw, 1977; Oshan, 2020). Thus, another attempt is to 

modify the gravity models by highlighting the local characters in spatial interaction models. 

The Origin-Specific SI model is the most successful branch, which improves the fitting 

performance by separating the flows by subsets of each origin and calibrating parameters in 

each sub-model (Fotheringham, 1981; Fotheringham & Brunsdon, 1999; Gould, 1975). 

Subsequently, a set of parameter estimates for each model term is derived for each origin, which 

can be mapped to explore potential spatial variation (Oshan, 2020). Following the classic 

unconstrained (or sum-constrained) gravity model written as equation (2) above, this study 

adopted a disaggregated spatial interaction model referenced by the previous research 

(Fotheringham & Brunsdon, 1999), which divides the flows by origins and then fits the flows 

with separate models in the formatting of the classic unconstrained gravity model (6). For 

giving a specific origin, the 𝑂𝑖 is part of the constant (7). Each sub-gravity model has its own 

distance-decay parameters calibrated by the general linear regression model.  

 

𝑡𝑖 = ∑ 𝑡𝑖𝑗

𝑗

= 𝑂𝑖
𝛼𝑖 ∑ 𝐾

𝐷𝑗
𝛾𝑖

𝑑𝑖𝑗

𝛽𝑖
 

𝑗

(6) 
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𝑇 = ∑ 𝑡𝑖

𝑖

 (7) 

Based on this method, Fotheringham (1983) developed and extended the Origin-Specific that 

the distance-decay parameter can be an accessibility indicator to show the competing 

destinations. Nakaya (2001) proposed a method to model the immigration flow within Japan 

by using Geographically Weighted Regression (GWR) to calibrate the spatial interaction model 

with local parameters. By differing the bandwidth of GWR, different local parameters for both 

origin-specific and destination-specific distance decay parameters are generated.  

On the contrary, some scholars have argued that spatial heterogeneity may have a positive 

aspect in detecting agglomeration effects (Menon, 2012). Given that the functional space of 

cities relies on how residents perceive their activity domains and interact with urban 

environments (Lynch, 1960), certain researchers have recognised the connection between 

border effects and spatial heterogeneity within spatial interaction models. They have 

endeavoured to quantify the border effect between zones using spatial interaction models 

(Engel & Rogers, 1994; McCallum, 1995; Yin et al., 2017). 

2.1.3 Other types of spatial interaction models 

Unlike taking distance as the core factor of spatial interaction in the gravity model, another set 

of human mobility models is the intervening opportunities model.  In 1940, Stouffer suggested 

that “the number of persons going a given distance is directly proportional to the number of 

opportunities at that distance and inversely proportional to the number of intervening 

opportunities”. The definition of opportunities could vary depending on the social phenomena 

investigated. Specifically, the opportunities could be jobs, market size or public services.  Since 

the distribution of opportunities can be extremely heterogeneous in space, distance, therefore, 
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has an indirect effect on the final assignment of trip destinations and, as a result, on the decay 

of overall flows. The concept can be written as the formula (8) and (9) below: 

𝑇𝑖𝑗 ∝
1

𝑥

𝑑𝑥(𝑟)

𝑑𝑟
(8) 

and 

𝑉𝑖𝑗 =
𝑑𝑥(𝑟)

𝑑𝑟
(9) 

Where 𝑥(𝑟) in the equation stands a cumulative number of intervening opportunities in given 

the travel distance 𝑟. An application of the intervening opportunities concept uses intervening 

opportunities𝑉𝑖𝑗 to replace the distance or deterrence in the gravity models like the formula 

below.  The intervening opportunities model may be described as a specific form of the gravity 

model. 

𝑇𝑖𝑗 = 𝐴𝑖𝐵𝑗𝑂𝑖𝐷𝑗𝑓(𝑉𝑖𝑗) (10) 

Based on the statistical results of abundant previous research, the advantages of the intervening 

opportunities model have been proven to explain the mobility data at a broad range (Kang et 

al., 2015; Stouffer, 1940). However, the intervening opportunities model has lost popularity in 

recent years due to the lack of research effort into the implementation and calibration of the 

model (Barbosa et al., 2018).  

A new variant of the intervening opportunities model is the so-called radiation model, which 

established on Schneider’s hypothesis: “The probability that a trip ends in a given location is 

equal to the probability that this location offers an acceptable opportunity times the probability 

that an acceptable opportunity in another location closer to the origin of the trips has not been 
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chosen” (Schneider, 1959). It assumes travellers would make the best possible choice for 

statistical treatment simplification (Simini et al., 2012). The density of opportunities is related 

to the population. There are two steps for how a traveller chooses a destination based on the 

assumption of the radiation model:   

1. The quality of the traveller's opportunity in every location is represented by a number, z, 

which is allocated by some distribution p(z).  

2. The traveller would pick the closest locations with opportunity quality higher than the 

traveller’s threshold, which is another random number extracted from the fitness distribution 

p(z). 

𝑇𝑖𝑗 = 𝑂𝑖

𝑚𝑖𝑚𝑗

(𝑚𝑖 + 𝑠𝑖𝑗)(𝑚𝑖 + 𝑚𝑗 + 𝑠𝑖𝑗)
(11) 

Where: 

𝑂𝑖: Total number of trips departing from location i 

𝑚𝑖 and 𝑚𝑗: Total opportunities at location i and location j. 

𝑠𝑖𝑗: Total population in the circle of radius rij centred at i (excluding the source and 

destination population) 

The most important feature of the radiation model, also the reason why it has been favoured by 

practitioners, is the simple form and parameter-free property (Kang et al., 2015). On the other 

hand, one shortcoming of radiation the elements with substantial importance like spatial scale 

and heterogeneity, are overlooked in the model due to the parameter-free property, limiting the 

simulation abilities at the city level (Masucci et al., 2013).  
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Some other spatial interaction models have been proposed recently, including the population-

weighted opportunities model (Yan et al., 2014) and the rank-based gravity model (Noulas et 

al., 2012), which are still based on the two basic frameworks of gravity and intervening 

opportunities theory. Pieces of research have been conducted to compare the performance of 

the gravity model framework and the intervening opportunities model framework in the 

decades since both frameworks developed (Lenormand et al., 2016; Pyers, 1966) Still, no 

conclusion has been drawn for which model is better than the other  (Barbosa et al., 2018). 

Thus, some scholars attempted to combine the characteristics of these two frameworks with 

improving the goodness of fitting, Kang et al. (2015) proposed a ‘generalised radiation model’ 

which introduced gravity model-liked parameters into the radiation model system to fit more 

variety of mobility systems, improved the goodness of fitting of origin radiation model. In 

addition, updating the calibrating methods related to specific research topics by various data 

sources is the current research hotspot for spatial interaction models. Mobile phone data (Gao 

et al., 2013), social media check-in data(Liu et al., 2014), and smart card data (Zhong et al., 

2015) have been used in the spatial interaction model under urban research topics. 

2.1.4 Combining socioeconomic characteristics and travel behaviour  

An existing criticism states that many studies explore the connections between land use and 

travel patterns neglecting to incorporate the socioeconomic dimension, and the omission causes 

oversimplified perspectives on the relationship between land use and travel (Stead, 2001). 

Various studies have supported the idea that the spatial relationship between workplaces and 

residences cannot be the sole explanation for observed commuting patterns (Kitamura et al., 

1997; van de Coevering & Schwanen, 2006). Even in areas with abundant transport options, 

marginalised groups might find it challenging to utilise urban services due to other major 

obstacles (e.g., health conditions, poverty) hindering their participation in these opportunities 
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(Bradshaw et al., 2004). Thus, individual-level socioeconomic characteristics, individual 

preferences, and attitudes also play a role in influencing people's commuting behaviours (Lin 

et al., 2015).  In 1982, Hanson posited that socio-demographic factors often have a greater 

impact on various travel behaviours than the aspects of urban spatial layout. In a study of the 

Boston metropolitan area, Shen (2000) elucidated that both the configuration of urban spatial 

structures and specific socioeconomic attributes play a pivotal role in determining the patterns 

of commuting durations.  

Various socioeconomic characteristics could reflect the variation in travel behaviours. It has 

been widely recognised that age, income, and life stage significantly and interactively influence 

travel behaviour, impacting how individuals move and commute (Kattiyapornpong & Miller, 

2009; Lin et al., 2015; Srinivasan & Rogers, 2005). With the trend of globalisation, migration 

and ethnic groups have also been identified as important factors that could affect travel 

behaviours (Hu, 2017; Mattioli & Scheiner, 2022). As an effective indicator to reflect 

individuals' socioeconomic characteristics, housing conditions have been drawn attention to 

their relationship with travel behaviours and the correlation has been confirmed (Jain & Tiwari, 

2019; Scheiner, 2006). In addition, multiple research projects found that private car ownership 

could lead to residents having a larger coverage area by travelling longer distances and enjoying 

higher travel efficiency(Gao et al., 2022; Haque et al., 2019) . 

In previous research, the relationship usually be investigated by establishing a straightforward 

regression model between socioeconomic characteristics and typical indicators of travel 

behaviours (i.e., average travel distance/time, travel frequency) (Hu, 2017; Mattioli & Scheiner, 

2022; Srinivasan & Rogers, 2005). Thus, the majority of research about socioeconomic 

chrematistics and travel behaviour tends to draw analytic conclusions, but previous research 

has not focused on using socioeconomic characteristics in its model to predict travel flows.  
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2.1.5 Research gap for applying spatial interaction models in small zones 

within urban system 

Recently, the evolution of computing power and data collection/storage techniques enabled the 

possibility of using spatial interaction models to build larger urban models with granular spatial 

resolutions, and this trend is known as "the renaissance of large-scale modelling" (Batty & 

Milton, 2021). However, a research gap for applying the localised spatial interaction model is 

that most localised spatial interaction models stay at the relatively macro level (e.g., 

province/state/ regional level), and do not go further into a finer spatial resolution within the 

urban systems (Dennett & Wilson, 2013). This is due to some associated issues that sometimes 

prevent the localised spatial model from being utilised in predicting flow within the urban 

system. As the spatial resolution becomes finer, the number of origin-destination pairs grows 

exponentially. This proliferation of data points increases the model's complexity and 

computational demands. Each sub-model may have its own set of parameters, necessitating 

separate fitting processes. The need to fit and validate these sub-models further adds to the 

computational burden.  

Another issue is the local calibration in the origin-specific gravity model may be invalid in 

low-flow volume areas within the urban system. In granular spatial resolutions, some areas 

may have low flow volumes recorded. Local calibration requires enough data to make reliable 

estimates, in the case of grouping the flow by its origin area, those areas with a lot of zeros 

flow could lead to imprecise and unstable parameter estimates (Fotheringham & O'Kelly, 1989). 

Practically, Poisson regression sometimes cannot provide reliable results due to uncontrolled 

model error and the non-linear iteration method may not be able to converge in some situations. 
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2.2 Urban spatial structure for the mega-city region 

The study of the spatial structure within cities can be traced back to von Thünen's The Isolated 

State (1966). The location theory focuses on how agricultural resources can be allocated to 

different distances from the market (urban centres), thereby improving the efficiency of 

agricultural operations. Urban spatial structure refers to the arrangement of urban space 

concerning the relationships arising out of urban form and its underlying interactions, 

composed of people, freight and materials, and information (Rodrigue, 2020). The urban spatial 

structure is one research topic in the urban geography field, that attracts much attention. Like 

politics, economic activities, topography, history, infrastructures, and policies, various factors 

interact with the urban structure and eventually form how city elements are located 

(Dadashpoor & Yousefi, 2018; Engelfriet & Koomen, 2018).  Therefore, researchers have 

dedicated themselves to finding an ‘optimal’ spatial structure for encouraging the achievement 

of specific development goals of cities, such as economic performance (Wu & Yeh, 1999).   

 

2.2.1 Describing the urban spatial structure  

Although academics were aware of the importance of the urban spatial structure, the definition 

of urban spatial structure is arguable. Moreover, urban spatial structure is an interdisciplinary 

object of study, and it is difficult to form a common conceptual framework due to the different 

perspectives of various disciplines.  The current prevailing interpretations may be categorised 

into morphological form and functional form, distinguished from the data sources and how 

urban structures are interpreted (Green, 2007). This debate is fuelled by evolving patterns in 
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location and transportation behaviour, as well as the influx of new data sources such as big data 

and crowd-sourced transport information (Thomas et al., 2018). 

The urban spatial structures are traditionally described using morphological properties. The 

morphological method is based on traditional geographical data and survey data, such as 

population concentration and density, employment, and built-up area, to detect the CBDs and 

sub-centres (Zhang et al., 2021). This method is intuitional and easy to understand but has been 

criticised for failing to take the dynamic elements, such as human activities and interaction, 

into account. In contrast to the concept of morphology, functional structure emphasises the 

socioeconomic links between urban areas. Therefore, two distant areas can be integrated into a 

community because of the strong links of functional elements (Zhang et al., 2021). The 

previous research used various urban flows, i.e. commuting flow (Zhong et al., 2014), for 

detecting the functional structure of cities. 

Another dimension of the urban spatial structure is monocentric-polycentric. Monocentric 

refers to the concentration of population, employment, and other factors within a certain area 

in a single centre. At the same time, polycentric describes the relatively balanced distribution 

of population and employment in multiple centres. Previous studies have focused on 

understanding polycentric structures in terms of both morphological and functional (Burger & 

Meijers, 2012). In the monocentric model, the gradient of the density function gradually 

decreases as the total population rises, incomes increase, land rents rise, and transport costs fall. 

As a result, the spatial structure within the city shows a decentralization trend. With rapid 

urbanisation processing, decentralised population and employment have led to the monocentric 

city model becoming less effective in explaining the spatial structure of the inner city. To obtain 

the economic effects of agglomeration, the decentralised population and employment regroup 

in the suburbs, creating new urban sub-centres independent or dependent on the central 
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business district (Anas et al., 1998). The urban space organisation can be more decentralised 

and complicated with a city expansion. Apart from the central business districts (CBD), the 

more urban hub has built up around a traditional urban centre (Zhong et al., 2014). Thus, cities 

began to shift towards a polycentric structure from their original monocentric forms. In terms 

of monocentric-polycentric measures, city polycentricity is often measured based on the size 

pattern of the centres within the city. Basically speaking, more equilibrium in the size of the 

centres means more polycentricity in the city (Burger & Meijers, 2012).   

At the city level, spatial structure is usually described by the degree of concentration or 

decentralisation. In contrast, activity at the local level can be described as clustered or 

dispersed, depending on whether the distribution is a polycentric/monocentric pattern.  Anas et 

al. (1998) suggested that centralisation depends on the extent to which urban activity is 

concentrated in the immediate area of a city's central business district (CBD).   

Last but not least, the conceptions we introduced are not isolated. These conceptions can be 

employed at the same time to describe the urban structure of the same city. It may depend on 

the research topic and measuring method. For instance, Greater London has been identified as 

a morphologically monocentric region but a functionally more polycentric region (Hall & Pain, 

2006). Taking the description by Zhang et al. (2021), the relationship between different 

conceptions of urban spatial structure is shown in Figure 2.1 below: 
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Figure 2.1 The Conceptions in Urban Spatial Structure 

Based on the basic conceptions of urban spatial structures, scholars attempted to establish 

various models by empirical research to explain the urban structure and its evolutionary 

pathway. The negative exponential model is the most widely used in studying monocentric 

urban spatial structure among traditional monocentric models like the classic Alonso-Mills-

Muth model (AMM model). Therefore, the negative exponential model's density gradient is 

commonly used to measure the concentration/decentralisation in urban structures with 

evolutionary characteristics (Mieszkowski & Smith, 1991). With more discussions about 

decentralisation and polycentric cities, various measuring methods about monocentric-

polycentric, and centralised-decentralised were emerging. Helsley and Sullivan (1991) 

proposed a dynamic model of intra-urban spatial structure, in which the polycentric spatial 

structure is considered as a system formed by primary and secondary centres together, which 
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gradually goes through the stages of primary centre development, secondary centre 

development, and primary and secondary centre co-development in chronological order, with 

secondary centres emerging after the primary centres and their formation being influenced by 

both agglomeration economy and agglomeration diseconomy. Thus, the formation of 

secondary centres is influenced by both agglomeration and deagglomeration economies. 

Henderson and Mitra (1996) proposed the Edge City model, which incorporates land 

developers and historical factors into a model of the evolution of spatial structure within cities. 

They argued that land developers play an important role in forming urban sub-centres. The 

building plans of land developers in medium-sized cities can influence the locational choices 

of residents and businesses. 

2.2.2 Detecting the urban spatial structure  

Researchers have conducted studies on the urban spatial structure at two levels due to spatial 

scale differences:  the intra-city level and the city-region level. For intra-city polycentric spatial 

structures, scholars have focused on the location, and morphological attributes of the newly 

emerged centres in the evolution of cities from monocentric to polycentric and then analysed 

the systemic characteristics and interrelationships between the internal centres. Meanwhile, in 

regional-level or country-level polycentric studies of spatial structure, studies usually take 

administrative cities as the centre of regional spatial structure rather than searching the urban 

centres by detecting method (Gao et al., 2017). Some studies (Gordon & Richardson, 1997; 

Richardson, 1969) have found that there is a significant relationship between metropolitan 

spatial structure and economic growth, depending on metropolitan size and its structural 

organisation.  
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In the study of intra-city spatial structure, individual cities are generally considered as a surface. 

Thus, the intra-city spatial structure reflects the interaction of elements within the urban 

territory. According to the study by McDonald's (1987), urban sub-centres are generally defined 

by these two perspectives: (i) they are areas of high regional population (employment) density; 

(ii) they concentrate enough population (employment) to have an impact on the surrounding 

area.  

Based on the definition of sub-centres, scholars have developed various methods to identify 

morphological urban sub-centres. In the early research, the threshold method was the most 

common method to identify sub-centres. However, the threshold method is highly subjective, 

as different thresholds for the same city often give different results. Therefore, thresholds in 

different cities are not comparable (Anas et al., 1998). In addition, this method usually ignores 

the suburban area due to relatively lower density. The relative threshold approach was 

introduced to reduce the subjectivity of threshold setting and, more importantly, compare cities. 

For example, some studies have selected employment density above the mean (or above the 

mean plus one or two standard deviations) and employment above 1% of total urban 

employment as criteria for identifying urban centres (Garcia-López & Muñiz, 2010; Muñiz et 

al., 2008). Moreover, the relative threshold approach was applied not only to street and 

neighbourhood vector spatial data but also to population density raster data (Liu & Wang, 2016).  

Methods such as kernel density mapping are also used for identifying urban centres. Gordon et 

al. (1986) and Maoh and Kanaroglou (2007) searched for urban centres from the high-value 

areas in the raster map employing density mapping. Although the graphical method can 

visualise the internal spatial structure of the city, shortcomings such as the inability to identify 

the extent of urban centres limit the application of the graphical method. Besides, scholars have 

used spatial statistical analysis to identify urban areas with significantly higher employment 
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(population) densities than their neighbours as urban centres (Arribas-Bel & Sanz-Gracia, 2014; 

Asikhia & Nkeki, 2013; Hajrasouliha & Hamidi, 2017). For this approach, only the 

neighbourhood range and significance thresholds need to be selected based on the local Moran 

index and the local G-statistic. 

Excluding the numerical methods introduced above, geometry methods like city fractals have 

also been employed to detect the urban morphological structure. This is because the geographic 

world contains many phenomena without characteristic scales, which cannot be effectively 

portrayed by traditional mathematical methods but can be described spatially and statistically 

using fractal geometry (Zhang, 2018). However, due to how land-use data is summarised and 

ignoring differences in processes operating at the micro and macro scales (Anas et al., 1998), 

the graphical methods are not taken as often as quantitative methods. 

In parallel with morphological discussion, the functional structural is another strand for urban 

structure detection. Green (2007) firstly proposed a framework for measuring functional 

polycentricity drawing on the conceptions used in social network analysis. It defined the 

indicators of polycentricity by classic topology and network analysis methods, such as nodality, 

centrality, and network density.  

Human mobility big data can reflect the interaction between regions, using human mobility big 

data to detect the functional urban structure has become a hotspot of urban studies. For example, 

trajectory data such as taxi and bus swipe cards, and mobile phone signalling can generate OD 

flow. These data can identify the centre areas in the network, further identifying the city's 

spatial structure (Jiang et al., 2017; Zhong et al., 2017). In 2014, Zhong et al. detected and 

depicted urban structure in Singapore by graph-based community detection algorithm, and it is 

one of the representative studies for functional urban structure detection. According to their 
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analysis, they suggested collective human mobility can shape geographic communities like 

social networks. The network method may explain the composition via structural shifts of 

transient sub-centres. For example, it might describe the increasing interaction between certain 

developing sub-centres (Zhang et al., 2021). Recently, Shen and Batty (2019) detected 

community structures in the London Metropolitan area based on disaggregated flow data, 

suggesting that the functional structure may vary for people with different occupations. Zhang 

et al. (2021) analysed multi-year transport smart card data in London, the results of network 

community detection show that Greater London can be clustered into five communities based 

on the travel pattern, but London moved towards a more polycentric and compact urban 

structure.    

2.2.3 Research related to detecting cities’ boundary 

As we introduced in last section, the main task of detecting the Urban spatial structure at the 

intra-city level is mainly about detecting the urban (sub-)centres and describing the relationship 

between centres. But at the city-region or larger scale, studies usually take administrative cities 

as regional spatial centres. Therefore, the priority in city-region spatial structure shifts to 

detecting the city boundaries. Once the border is fixed, the size and the interaction relationship 

between centres can be used to discuss the city region spatial structure similar to the intra-city 

urban structure analysis. However, it is always a great challenge for urban geographers and 

planners to define city boundaries. Cities combine multiple systems from local to national on 

different spatial scales and varying temporal scales from day-to-day operations to those that 

run over decades. Therefore, the concept of system boundary is a significant issue. The word 

‘boundary’ refers to something that indicates or fixes a limit or extent (Merriam-Webster 

dictionary). Owing to the constant interaction of urban sub-systems into dynamic wholes, 

attempting to separate systems' facets is difficult. Besides, a persistent source of error known 
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as the Modifiable Areal Unit Problem (MAUP) is one of the key reasons why cities' boundaries 

must be specified (Openshaw, 1984). They pointed out that the changing system's spatial 

boundaries in a zonal system may significantly affect the overall statistical properties. All zonal 

data could be influenced by the MAUP and compounded by the fact that zonal borders are often 

arbitrary or set for purposes incidental to the study intention (Openshaw, 1996). A prevalent 

example is that local governments often only consider administrative boundaries as zonal 

boundaries due to their job duty. In this case, the difference between administrative boundaries 

and the range of people’s movements and industries’ activity may distort simulation results. 

The situation could be worse for defining urban clusters since the urban term is a very vague 

one. The issue of which feature of urbanity produces the efficiency premium is also unclear 

due to the lack of theoretical formulation on the spatial side of agglomeration economies 

(Bretagnolle et al., 2002; Parr, 2007). 

If we focus on previous research in terms of urban boundary or boundary detection, many 

previous researches dedicated to identifying the area of the built environment from remote 

sensing data by novel classification algorithms (Henderson et al., 2003). However, there is 

relatively little research that discusses the boundaries defined by invisible activities such as 

people’s movement or economic agglomeration. 

Calafati and Veneri (2013) highlighted that Italy's spatial polarisation and territorial integration 

processes since the 1950s have not been matched with necessary institutional changes. This 

mismatch has led to a significant gap between the territory's functional and political-

administrative organization. They argued that in Italy, the central city, along with its first and 

second rings of municipalities, should be recognised as a "fact city" rather than considering 

only the central city or a broader area like the entire functional urban region (FUR). To support 

their viewpoint, they employed basic geographical and economic statistical data, drawing 
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comparisons based on distances among urban settlements, commuting-to-work patterns, 

changes in the spatial distribution of population and employment, and patterns of residential 

and employment density. 

Arcaute et al. (2015) developed a framework to consistently define cities, using commuting to 

work and population density thresholds, and construct thousands of realizations of systems of 

cities with different boundaries for England and Wales. The research was based on the census 

data of the UK in 2001/02 given by ward level, along with demographical data like household 

income, and land use data including road facilities, paths and buildings. They employed the 

concept of ubiquitous scaling law:  

𝑌(𝑡) = 𝑌0(𝑡)𝑁(𝑡)β (12) 

Where Y(t) and N(t) represent the urban indicator and the population size of a city at time t 

respectively, and Y0(t) is a time-dependent normalization constant, with the scaling exponent 

β represented defined by the nature of the urban observable. Based on the 10 years period 

simulation results and the calibration with the real data, they suggest continuous wards with a 

density of more than 14 persons per hectare could be an appropriate threshold for defining the 

urbanised space. In addition, they particularly mentioned that for a mega-city like London, its 

strong role as an information and economic hub suggests that the urban system is highly 

integrated and that it is difficult to partition the system into individual cities that capture these 

social interaction effects. The research scaling of mega-city should not be limited to regional 

or even national levels. Following Arcaute et al,’ s work, Cottineau et al. (2019) attempted to 

build a comprehensive representation of where cities extend by a case study in France. They 

used census data to identify the ‘night-time cities’ and ‘day-time cities’ by using residential and 

workplace geographies. After predicting aggregated wages Y from the scaling equations 
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specified for population and density by the OLS-regression model, they confirmed that the 

urban aggregation economic effect would relate to jobs and residential density. Based on this 

result, the belief that the scale of analysis (local, metropolitan, regional) is therefore critical in 

detecting the agglomeration effect on wages or not, since it means that the entire or only parts 

of the urban system are counted in the calculation. They also suggested that mega-cities tend 

to be either wealthier or equally affluent as smaller cities, but never poorer. In addition, larger 

towns appear to be more or similarly unequal than smaller towns, but on average never more 

equal. In the last part of the paper, they admitted that there should be a way to define the urban 

cluster to discuss the effect of agglomeration economies, and the effect could be affected by 

policy and infrastructure such as roads, the topic should be a research gap which needs further 

investigation. 

Besides, some researchers also attempted to define or detect the urban boundaries from 

morphological observation (Tannier et al., 2011b), and the transport network's density (Long, 

2016; Long et al., 2018). Different data and analysis methods have been employed to achieve 

the targets, but these researchers observed cities from a macro insight. The statistical number 

or geographical could shape an image of cities from up to bottom. However, the spatial extents, 

in other words, the cities’ boundaries, often overlap and agglomerate depending on how citizens 

perceive their activity space and interact with their urban environments (Lynch 1960). In recent 

years, defining cities’ boundaries by new forms of data, especially spatial big data, enables 

detection of cities' boundaries from the daily activities of individuals living in the cities. 

Yin et al.(2017) defined a method focused on human experiences with physical space inferred 

from social media to delineate urban boundaries. The hierarchical definition of non-

administrative urban boundaries is from various movement activity ranges extracted from 

1,153,891 users' collective mobility habits reflected by 69,847,497 tweets made geotagged on 
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Twitter (now X). They found a 92% possibility for collective displacements within the range 

(10m, 70km) and 10km is the distinct geographic distance for separating two main groups of 

Twitter users regarding the UK's spatial coverage. They established a spatial interaction model 

to depict urban structures by overserving the distance decay effects and drew the 

nonoverlapping boundaries of UK cities. The limitation of the boundary is that social media 

data like Twitter data cannot represent the complete real-world image, and the spatial 

sparseness of geo-located Twitter data could make the relatively small cities be ignored 

(Stefanidis et al., 2013). Therefore, it is worth to use more representative data to identify the 

boundaries of citizens’ activities. 

To conclude the previous research about urban boundaries, defining cities’ boundaries is a 

meaningful research question since an urban system often does not coincide with the 

administrative boundaries, which may cause distortion and planning failure due to an effect 

similar to MAUP. However, current research for defining and measuring the urban system’s 

boundary is minimal, and the measuring methods and indicators are usually limited to 

population density. Fortunately, defining urban boundaries from “bottom to up” becomes 

possible since the big data records individuals’ daily movements. Still, more data dimensions 

and methods activities need to be considered in further research. Besides, none of the research 

considers the city’s boundaries as dynamic processing means the relationship between city 

boundaries and specific urban interventions is still unclear. Thus, as one of the most commonly 

used indicators to modelling the functional urban structure, human mobility could be a good 

entry point to solve this unanswered question.   
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2.3 Big data in human mobility research 

Acquiring proper data has been identified as the major challenge to using metrics in human 

mobility and comparative studies between cities (Boisjoly & El-Geneidy, 2017). The starting 

point of research on a relatively large spatial scale normally is census data, which can provide 

basic demographical information at the city, regional, and country levels. Currently, a census 

survey in most countries includes the name, ethnic group, age, gender, occupation, and 

marriage of each resident in a household (Tizzoni et al., 2014). One obvious advantage of 

census data is it almost covers all population in a country since it is mandatory for citizens. 

Census data in some countries also include income, education, workplace location, and 

household type (Statistics, 2021). Thus, census data is very reliable and informative for 

researchers. However, it is implausible to access the individual-level information of census data 

due to privacy issues:  the individual socioeconomic data is highly sensitive because it can 

identify personal identity without pre-authorised, which may cause an ethical argument even 

risk of criminal in case of leaking.  Thus, the census data has often been aggregated at a 

relatively rough level. Therefore, research at the finer level (spatial and/or temporal) usually 

requires additional data sources.  

The travel survey data can be seen as another data source other than census data for measuring 

human mobility. The census is more about demographics, not designed for travel, but the travel 

survey is designed to provide data on personal travel. The most common travel survey data is 

at cities level, which mainly focuses on short-term trips with related information such as travel 

purpose, time, cost, and transport mode, enabling researchers to investigate the movement 

pattern and establish the transport model. Nevertheless, unlike the census data, most travel 

demand surveys take sampling data in a specific region. Therefore, sample selection bias is a 
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common issue for the survey data. Besides, when considering inter-city and intra-city trips 

simultaneously, survey data quality is not satisfying since the study area usually cannot be fully 

covered by a single trip survey. In addition, the National Travel Survey (NTS) is another widely 

used data source of travel data, which primarily designed to track long-term development of 

trends since 1960s (Morris et al., 2013). Excluding census and trip survey data, some traditional 

data sources can indirectly reflect human mobility, such as tax revenue data or currency bill 

data. These sources have not been regarded as widely used data sources in existing human 

mobility research (Barbosa et al., 2018). 

In recent decades, new forms of data have driven a revolution in human mobility measuring. 

The traditional method of obtaining travel origins and destinations (OD) is to conduct travel 

surveys, which are very time-consuming and costly, and the accuracy of which needs to be 

improved. In the era of Big Data, various data sources have emerged to obtain travel OD 

without conducting field surveys, including mobile phone signalling data, GPS location data, 

Smart Card Data, etc.  
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Table 2.2 Mainstream type of new form of mobility data 

 Mobile Phone 

Signalling Data  

GPS Data Smart 

Card Data 

Social Media 

Data 

Mobile 

Application 

Data 

Coverage All mobile 

phone users in 

signal-covered 

areas  

Individuals 

or vehicles 

with GPS 

tracker 

Public 

Transport 

passengers 

who use 

smart card    

Social media 

users who 

publish content 

with a geotag. 

Users who use 

related mobile 

application 

Location/spatial 

precision 

Up to but 

usually 

provided by 

aggregated level 

due to privacy  

3-5m for 

outdoor 

Locations 

of public 

transport 

nodes  

Depending on 

the Geotag 

Depending on 

the method of 

location 

information 

collected 

Data Availability Hard to obtain Hard to 

obtain 

Easy to 

obtain 

Easy to obtain Hard to obtain 

Pros -Huge data size 

-Relatively high 

resolution both 

in spatial and 

temporal  

-Highest 

spatial and 

temporal 

accuracy 

-Huge data 

size 

-Record 

individuals' 

daily 

movement 

activities   

-Easy to obtain 

-Textual 

message is 

associated with 

geoinformation  

-Rich 

dimension in 

user's behaviour 

-Large 

geographical 

extent 

Cons -Computational 

expense is high 

-Data 

availability due 

to privacy 

issues  

-The sample 

size is very 

limited  

- Unavailable 

or lower 

precision 

when indoor    

-Data is 

limited by 

public 

transport 

nodes, 

lacking 

other 

information. 

 

-Data points 

usually are 

scattered in 

temporal and 

temporal 

distribution 

-User group 

cannot cover 

the majority of 

the population 

-User group 

cannot cover 

the majority of 

the population 

- Data quality 

largely depends 

on the use 

frequency  
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Mobile phone data, which has been seen as the most important 'game-change data' (Barbosa et 

al., 2018), has been widely used in related research. Mobile phone signalling data is generated 

by cell phone users in the event of calls, text messages or mobile location, captured by the 

operator's communication base station and recorded by the same user signalling trajectory, the 

sample of mobile phone signalling data can be found in Figure 2.2 below. After decryption, 

desensitization, expansion of the sample and other processing, it can be applied to research on 

human mobility and other urban applications such as town spatial layout. The spatial 

 

Figure 2.2 Data sample of Mobile phone Signalling data. (Source: (Song et al., 2010))  

resolutions of mobile phone signalling data usually are in the range of 50m to 5km, depending 

on the density of stations, while the temporal resolution can be accurate to seconds (Jiang et 

al., 2017). Mobile phone data has been widely used in discussing the human mobility pattern 

both at the individual level (De Domenico et al., 2015; González et al., 2008; Lu et al., 2013) 

and population-levels (Palmer et al., 2013; Phithakkitnukoon et al., 2012; Zhou et al., 2020). 

One significant advantage of mobile signalling data is its wide coverage - as long as the user 

switches on the phone, the data will be automatically captured (González et al., 2008). Besides, 



Literature review 

  
67 

because it records high-precision individual movement trajectory, mobile signalling data have 

been applied to research with different spatial scales from neighbourhoods to the country-wide 

level (even international travel and movement across borders). The shortcoming of mobile 

phone signalling data is the lack of data availability due to privacy issues because it may contain 

private information about the user, requiring applying desensitisation algorithms before being 

provided to researchers (Barbosa et al., 2018; Williams et al., 2015). Another disadvantage is 

since the data size of signalling data is huge, it may require an extremely high computational 

cost.  

Another data source of human mobility analysis is the Global Positioning System (GPS) data, 

which records the highest precision trajectories of movement located by satellites at regular 

intervals (usually in seconds) (Zheng et al., 2009). GPS device-attached vehicles are the one of 

main data providers for GPS data worldwide (Pappalardo et al., 2013; Yuan et al., 2010). 

Human mobility topics related to road traffic benefited from these data for discussing issues 

such as congestion, travel cost, and taxi accessibility (Bazzani et al., 2011; Li et al., 2012; 

Pappalardo et al., 2013). Individual GPS trackers are another part of GPS data which requires 

pedestrians or cyclists to carry the GPS device with them. An example of research utilising 

individual-carrying GPS data is Geolife (Figure 2.3), which contains 17,621 trajectories 

recorded per 1–5 s or 5–10 m for 182 individuals in a period of over three years. Those data 

have been applied to mining the transport mode, point of interest (POI), and purpose of travel 

(Zheng et al., 2010; Zheng et al., 2009).  Compared with mobile phone data, the drawback of 

GPS data is that the typical data size of GPS data is tiny, usually no more than several thousand 

individual users.  
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Figure 2.3 Example of taxi GPS dataset in Beijing, source (Yao et al., 2021) 

Smart Card data arouses researchers’ attention because Smart Card has been replacing paper 

tickets or single-use tokens in cities worldwide in recent decades. When cards become affiliated 

with specific individuals, it enables the possibility of recording each trip by individuals, 

capturing relatively precise spatial and temporal attributes such as the origin/destination 

stations and the stay durations, the data sample is shown in Figure 2.4 below. Thus, smart card 

data is an ideal data source for research related to human mobility patterns. Smart card data 

have also been widely applied to optimising public transport design and management systems 

for dealing with issues like delays, disruptions and congestion, improving the passengers’ 

experience (Uniman et al., 2010). Transport planners and researchers benefit from Smart Card 

data for analysing travel patterns with heuristic and stochastic approaches at a disaggregated 
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level (Sari Aslam & Cheng, 2018). For instance, a series of research has been conducted 

utilising the Oyster Card in London, identifying the service reliability, deprived areas and 

temporal mobility patterns (Smith et al., 2013; Uniman et al., 2010; Zhong et al., 2016). The 

advantage of smart card data is it can reflect individuals’ spatiotemporal movement patterns as 

a sequence of activity locations and durations daily. However, the spatial resolution of smart 

card data is limited by public transport nodes. Inferring secondary activities (other than work 

and residence) is difficult when supplementary information is lacking (Sari Aslam et al., 2021). 

 

Figure 2.4 Dataset of smart card data (source: Song et al. (2018)) 

The last data format discussed in this review is the social media data. Since the era of 

smartphones, social media providers have been collecting valuable data, including social 

networks and geographical information. Whenever users publish content, social network 

providers such as Twitter, Facebook, and WeChat would collect geoinformation including the 

geographic coordinates, the time stamp, and additional information (such as POIs or contacts 
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nearby) (Barbosa et al., 2018). Various research methodologies have been applied to reveal 

human mobility patterns from massive social media data containing spatiotemporal 

information, including data mining, spatial statistical analysis and geo-visualisation (Gao et al. 

2013, Zheng et al., 2010), while the typical applications of human mobility researches utilising 

social network data include recommendation POIs to the user based on the users’ past trajectory, 

estimating local commuting patterns and visualisation the social interactions (Bao et al., 2015; 

Zheng, 2015). Data availability is one of the pros of social network data since the social media 

world is open to browsing for everyone, which means massive data can be simply acquired 

through free APIs.  

 

Figure 2.5 The social media checked-in data (source: Hu and Jin (2017)). 
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Meanwhile, more contextual information can be collected associated with the geoinformation, 

contributing to classifying the data for application to the research under specific contexts. The 

cons of social media data mainly include the representativeness for the general population is 

questionable and massive invalid/fake information needs extensive data clean work. In addition, 

privacy concerns recently drove some countries to tighten laws to limit getting user data from 

social network providers, which may affect data availability in the future. 

Analysing human mobility patterns through mobile application data offers many insights into 

how people move and interact within various environments. This analysis method has become 

increasingly popular with advancements in technology and the widespread use of smartphones. 

The most significant advantage of mobile application data is that it can provide rich dimensions 

of user behaviour depending on the purpose of the mobile application, particularly benefiting 

those research focuses on specific travel behaviour (e.g. shopping, tourism, dating). The spatial 

resolution of this type of data varies. Applications using GPS information (like navigation 

applications) provide highly accurate and precise location data, allowing for detailed analysis 

of movement patterns, but other application datasets can only provide the IP address as 

recorded to represent the geolocation information (Wang et al., 2021). Mobile application data 

are mainly collected by online mobile application operators, who treat their users' data as 

commercial assets(C. Hu et al., 2022). Thus, the open published dataset of mobile application 

data is rare. The main disadvantage of this data type is the data bias: most mobile applications 

serve specific use groups, and there are demographic differences between user and non-user 

groups. This can result in biased data not representing the entire population's mobility patterns. 

In addition, the quality of mobility data largely relies on the frequency of use: location data is 

collected when using those applications, but the location information during other times 

remains unknown, which makes it hard for low-use-frequency applications to generate reliable 
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trajectories. Some “Big Tech” companies (like Google, Baidu, Alibaba) have capability to 

combines data from different applications to overcome the disadvantages of data bias and low 

frequency (Quilty et al., 2020; Ruktanonchai et al., 2018), but this data collection behaviour 

itself is arguable due to the wide concern of privacy issues (Cohen & Mello, 2019).  

There are also some other new form data sources such as point of interest (POIs) data, toll-fee 

data, and tickets data also be applied to human mobility research. However, these data sources 

often are used as supplementary data sources due to their limited number and application, 

insufficient sample size and lack of precision. A new trend is emerging that some researchers 

combine more than one data format to analyse the human mobility pattern, overcoming the 

drawback of a single data format. For example, the Smart card data and POI data were 

combined to infer secondary activities (Sari Aslam et al., 2021), and GPS Probe Data and social 

media data are incorporated to measure indicators of urban traffic congestion (Wang et al., 

2017). Overall, big data and new data formats are changing the measuring method for human 

mobility, and it enables more possibilities for research. On the other hand, limitations persist 

in all other data sources. Keeping the balance between rich information and privacy protection 

is a significant issue for human mobility big data. 
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3 Delineating Urban Functional Zones 

using Mobile Phone Data 

3.1 Introduction 

The formation of city regions has been driven by urban growth and significant improvements 

in inter-city connectivity since the second half of the 20th century (Hall & Pain, 2006). 

Governments worldwide have encouraged regional cooperation to leverage efficiency benefits 

from agglomeration economies (Brenner, 2002). For instance, the Chinese government has 

implemented a series of policies since 2004 to foster integration among cities within one city-

region. These policies aim to promote industrial cooperation and facilitate the sharing of urban 

functions (Li et al., 2015; Wu, 2016). As cities continue to expand and interact with one another, 

human daily activities related to urban functions, such as work, residence, and recreation, have 

extended beyond their original administrative boundaries and now occur across different cities. 

This phenomenon has given rise to the concept of urban functional zones (UFZs) (Gao et al., 

2017; Yeh & Chen, 2019; Zhai et al., 2019; Zhong et al., 2014).  The ambiguity surrounding 

UFZs poses new challenges for regional planning and management in response to the rapid 

development of mega-city regions. 

Despite the widespread existence of this phenomenon, there are limited accurate quantitative 

methods to assess how UFZs have been integrated across cities. The emerging mobility data 
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provides an opportunity for a breakthrough to delineate UFZs of cross-city from human activity. 

The current mobility data mining techniques can track the daily movement flows of a huge 

population. Moreover, unlike the traditional surveys data conducted by local authorities, the 

new form of data (e.g., mobile signalling data and social media data) enables us to analyse a 

finer-grained networks beyond city/county boundaries. By taking the benefit of mobility big 

data, previous research mainly applied network analysis methods in many urban analytics 

applications, including detecting spatial structure and community detections (Jin et al., 2021; 

Shen & Batty, 2019; Wu et al., 2021; Zhong et al., 2014). However, the network-based analysis 

also show limitations as the distance decays effect often has not been appropriately reflected in 

the topology relationship (Liu et al., 2014; Yin et al., 2017). When detecting the communities 

across boundaries, this would cause the network-based interaction model to be insensitive for 

changes in cross-boundary flows (Liu et al., 2014). Thus, a novel method for detecting UFZs 

with more sensitivity for cross-boundary travel flow and distance decay effect is needed.  

In this chapter, a critical hypothesis is that the boundary of a functional zone is highly 

associated with local distance decay. Zipf (1946) proposed that human mobility follows a 

spatial distribution with a distance decay from centres to the periphery. This concept has been 

accepted and applied in previous trip estimation models (Batty & Milton, 2021; Masucci et al., 

2013; Wilson, 1971). Thus, the heterogeneity of trip distribution can be seen as an indicator to 

reveal the discontinuity of urban functional space or the "border effect" of urban functional 

zones (Brown et al., 2020; Jin et al., 2021). When crossing different urban functional zones, 

the border effect can be observed in human travel activity. Such border effects could be used 

as indicators for delineating urban functional zones (Jin et al., 2021; Rinzivillo et al., 2012; 

Shen & Batty, 2019). As one of the most widely used methods for predicting interaction flows, 

spatial interaction models predict the strength of spatial interaction based on the distance decay 



Delineating Urban Functional Zones using Mobile Phone Data 

  
75 

effect. Previous studies confirmed the border effect can be represented by spatial heterogeneity 

in the spatial interaction model (Jin et al., 2021; McCallum, 1995), which provides a new 

method for delineating the UFZs and overcoming the limitations of network-based methods.  

To achieve research objective 2 raised in  Chapter 1.2 of delineating UFZs, this chapter will 

introduce a new method that first applies a two-level hierarchical spatial interaction model 

(HSIM) to generate the flow of spatial interaction between zones, then redraws non-overlap 

boundaries of urban functional zones by searching for the best partition with the best goodness 

of fitting in HSIM. By applying this algorithm to delineate the cities’ functional regions within 

a specific mega-city region, the Shenzhen-Dongguan-Huizhou (SDH) area, in two different 

settings, empirical results prove that the goodness of fitting in HSIM can represent reasonable 

cities’ boundaries. The results show that current UFZs almost coincide with administrative 

boundaries. Meanwhile, the results of long-term predictions remind policymakers to give more 

attention to the areas near the Dongguan-Huizhou boundary to promote industry cooperation 

and avoid serval mismatches between functional and administrative regions, providing 

implications for related regional planning policies. 

3.2 Challenge in delineating the urban functional zones. 

The urban spatial structure is topical research in urban geography. Various factors, such as 

politics, economic activities, topography, history, infrastructures, and policies, interact with the 

urban spatial structure and eventually form how city elements are geographically located 

(Dadashpoor & Yousefi, 2018; Engelfriet & Koomen, 2018). The current prevailing 

interpretations of urban spatial structure can be categorised into morphological structures and 

functional structures, distinguished based on the data sources and how urban structures are 
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interpreted (Green, 2007). In previous literature review sections, the basic concept about 

morphological vs functional urban spatial structure has been discussed. Some researchers also 

attempted to define or detect the urban boundaries from morphological observation (Tannier et 

al., 2011a), using data analytic framework such as the scaling law (Alvioli, 2020; Arcaute et 

al., 2015; Cottineau et al., 2019) and the transport network density (Long, 2016; Long et al., 

2018). Compared with the morphological structure, the functional structure is more temporal 

and dynamic (Wu et al., 2021), which would better correspond to the rapid changes in the urban 

environment. Various urban flows like commuting and logistic flows within the city are being 

used to describe the urban spatial structure by spatial interactions (Burger & Meijers, 2012; 

Sohn, 2005; Zhong et al., 2014). Therefore, two distant areas can be integrated into a 

community because of the strong links of functional elements (Zhang et al., 2021). This feature 

would benefit understanding the integration of urban functional integration across cities.  

Researchers also conducted studies on the urban spatial structure at two levels due to spatial 

scale differences:  the intra-city level and city-region level. For intra-city polycentric spatial 

structures, scholars have focused on the location, and morphological attributes of the newly 

emerged centres in the evolution of cities from monocentric to polycentric and then analysed 

the systemic characteristics and interrelationships between the internal centres. Meanwhile, in 

regional-level or country-level polycentric studies of spatial structure, studies usually take 

administrative cities as the centre of regional spatial structure rather than searching the urban 

centres by detecting method (Huang et al., 2015b; Gao et al., 2017). Therefore, delineating the 

urban functional zones between cities is essential for discussing the functional spatial structure 

in a city region or larger scope. There are some existing regionalisation algorithms are well-

known for delineating regions based on indicators or objective functions. For example, P-

regions and max-p is based on a defined objective function, meanwhile, REDCAP and 
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SKATER is based on hierarchical structure reflecting neighbourhood relationship (Duque et 

al., 2011; Guo, 2008; Helbich et al., 2013). These methods mainly use socioeconomic 

indicators (e.g., house price, income) to find the spatial clustering or non-spatial similarity 

rather than using flow data to evaluate the connection between areas. 

3.2.1 Modifiable Areal Unit Problem (MAUP) and boundary effects 

As reviewed in the section 2.1.2, most of the previous spatial interaction models assume that 

the inner space of the modelling area has spatial isogeneity, which means the distribution of 

trips only follows one general law related to 𝑓(𝑑𝑖𝑗). Meanwhile, section 2.1.2 also introduced 

the basic conception of the Modifiable Areal Unit Problem (MAUP). Since spatial 

heterogeneity may cause inconsistent results in spatial interaction models, previous research 

has regarded spatial heterogeneity as a “problem” and has attempted to find an optimal zoning 

system or technical solution to mitigate its effect (Arbia & Petrarca, 2011; Marceau, 1999; 

Openshaw, 1977). Besides, a few researchers attempted to adopt hierarchical structures to 

eliminate the MAUP issues during estimating interactions (Masser & Brown, 1975). Following 

the conception of MAUP, some researchers proposed that applying a hierarchical structure in 

the spatial interaction model may eliminate the spatial heterogeneity between each sub-system, 

improving the overall performance of prediction (Fotheringham et al., 2001; Nazara et al., 

2006; Qian et al., 2020). The hierarchical spatial interaction model distinguished the trips 

between inner and inter sub-systems for estimating the flows respectively. By applying this 

framework, spatial heterogeneity on borders between sub-systems can be largely eliminated 

(Qian et al., 2020). 

On the other hand, some scholars also argued that MAUP issues have the ‘bright side’ for 

detecting the agglomeration effect (Menon, 2012). Considering the cities’ functional space 
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depends on how citizens perceive their activity space and interact with their urban 

environments  (Lynch, 1960), some researchers were aware of the linkage between the border 

effect and spatial heterogeneity in the spatial interaction model and attempted to quantify the 

border effect between zones by spatial interaction model (Engel & Rogers, 1994; McCallum, 

1995; Yin et al., 2017). However, how to use the variability of hierarchical boundary in the 

spatial interaction model as the indicator for delineating the urban functional zone or other 

types of communities has not been further discussed. Thus, it would be an interesting 

perspective to observe the boundary effect by trip distribution, providing a solid reference for 

delineating the boundaries of the urban functional zones.  

3.2.2  Using human mobility data to understand urban functional zones  

Origin-destination (OD) flow matrix generated from human mobility data (e.g. taxi and bus 

swipe cards, mobile phone signalling data) can be used as a proxy of the interaction between 

regions (González et al., 2008). Based on that, some studies have been developed to identify 

urban functional zones and urban spatial structures. Network-based methods is a commonly 

used approach based on the intensity of human interactions between different spatial units 

(Jiang & Miao, 2015; Louail et al., 2015; Zhang et al., 2020; Zhong et al., 2015). Each spatial 

unit is seen as a node, and human interactions are represented as edges between the two nodes. 

 In 2014, Zhong et al. detected and depicted urban structures in Singapore using a graph-based 

community detection algorithm, and it is one of the representative studies for urban functional 

zones detection. The network method may explain the composition via structural shifts of 

transient sub-centres. For example, it can describe the increasing interaction between certain 

developing sub-centres (Zhang et al., 2021). Shen and Batty (2019) detected community 

structures in the London Metropolitan area based on disaggregated flow data, suggesting that 
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the functional structure may vary for people with different occupations. Zhang et al. (2021) 

analysed several years of transport smart card data in London and the results of network 

community detection shows that Greater London can be clustered into five communities based 

on the travel pattern, but London moved towards a more polycentric and compact urban 

structure. However, the traditional network analysis and most community detection algorithms 

usually only consider the absolute value of flow volume (edges) for dividing the partitions 

regardless of the spatial factors such as distance decay or time consumption (Adam et al., 2018; 

Hong & Yao, 2019; Jin et al., 2021).  

Some researchers have been aware of this and tried to apply spatial interaction to improve their 

method. Jin et al.(2021) identified the activity broad within Shenzhen city and discussed the 

boundary effect by using a modified spatial interaction model. Yin et al. (2017) proposed a 

method to delineate urban boundaries for Great Britain based on the physical space inferred 

from human activities of social media then verified the results by a gravity model. However, 

both still applied a network-based algorithm to identify the functional urban regions. Currently, 

due to the limitation of the data and computation, most of the previous studies on spatial 

structure from movement flow investigated one city only (Jin et al., 2021; Wu et al., 2021; 

Zhang et al., 2021; Zhong et al., 2014). This study would explore functional urban spatial 

structure at a larger scale by delineating the urban functional zones based on human mobility 

and movement flows. In addition, Because of the importance of distance factors and the 

absence of a method that can detect urban boundaries by distance-based trip distribution, we 

believe it is worth establishing a new method for depicting the form of urban boundaries.  

3.3 Data collection 



Delineating Urban Functional Zones using Mobile Phone Data 

  
80 

The case study area of this study is Shenzhen-Dongguan-Huizhou (SDH) area. SDH area 

covers a total area of 15,800 square kilometres, with a resident population of 26.25 million and 

a total GDP of RMB 3.7 trillion in 2019. This area has been experiencing rapid urban growth 

and change of urban spatial structure since the 1980s and became one of the most open and 

economically vibrant regions in China. SDH persistent attracts national and global focuses, 

especially after the Guangdong-Hong Kong-Macao Greater Bay Area was proposed in 2015. 

This research uses the mobile phone data provided by one of the main mobile phone operators 

called China Unicom. The data contains Origin sub-district ID, Destination sub-district ID, the 

volume of travel flow and travel time. The spatial resolution of the original data is collected as 

500m*500m but is provided as aggregated form into 172 sub-district level zones (“jiedao level” 

or “街道级” in China). The specific study units are shown in Figure 3.1 below. The mobile 

phone data detected 13,588,846 commuters (about 37% of the overall population), including 

both intra-city and inter-city. The observed period of the data is February 2019. To identify 

commuting trips, home and workplaces are first determined from one-month sequent locations 

of mobile phones.  
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Specifically, the site with the most prolonged stay during the observation period (9:00 pm-

08:00 am) in a day is considered the candidate place of residence. When a candidate residence 

lasts for more than 15 days in a month, it is deemed to be valid. Similarly, the location with the 

most prolonged stay between 09:00 am and 5:00 pm is determined to be the workplace. 

Commuting is defined as a journey from one's home to the workplace. Individual commuting 

trips of mobile phone users are aggregated at the street scale, generating links between streets 

across the study area (SDH region), the data sample could be found in Table 3.1.  

Table 3.1 Data sample of GBA mobile phone signalling data 

Origin Area 

Name 

Origin Area 

No. 

Destination 

Area Name 

Destination 

Are No. 

The volume of 

the flow 

Avg time 

(by min) 

Guiyuan Street 

 

440303001 Guiyuan Street 440303001 4024 11.87 

Guiyuan Street 440303001 Huangbei 

Street 

440303002 1513 10.08 

Guiyuan Street 440303001 Dongmen 

Street 

440303003 1609 9.43 

Guiyuan Street 440303001 Cuizhu Street 440303004 1345 16.67 
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Figure 3.1 Distribution of Cross-city flows within the SDH area 

The data used for our study is at the sub-district level. In total, there are 8,921 pairs of Origin-

destinations (OD) summarised from commuting trips. For each pair of ODs, the data records 

the original street ID, the destination street ID, the number of commuters, average commuting 

time and distance. Figure 3.1 shows the distribution of inter-city flows within the SDH area. 

  



Delineating Urban Functional Zones using Mobile Phone Data 

  
83 

3.4 Methodology 

This study adopted disaggregated spatial interaction model for simulating the flow of spatial 

interaction between zones.  Furthermore, a Hierarchical Spatial Interaction Model (HSIM) is 

applied to reflect the boundary effect between cities.  For detecting the urban functional zones, 

this research proposed a novel regionalisation algorithm that redraws non-overlap boundaries 

of urban functional zones by searching for the best partition with the best goodness of fitting 

in HSIM.  

3.4.1  Basic spatial interaction model  

In this study, we established a set of spatial interaction models using the singly constrained 

gravity model, which assumes the distribution of trips roughly follows the format of the 

negative-power function for predicting the flow between zones. The core spatial interaction 

model can be represented as the following Equation (13):  

𝑇𝑖𝑗 = 𝑂𝑖
𝑜𝑏𝑠

𝐷𝑗
𝑜𝑏𝑠𝑐𝑖𝑗

−𝛽

∑ 𝐷𝑘
𝑜𝑏𝑠𝑐𝑖𝑘

−𝛽
𝑘

 (13) 

Where 𝑂𝑖
𝑜𝑏𝑠 is observed origins totals from zone 𝑖 and 𝐷𝑗

𝑜𝑏𝑠 refers observed destinations totals to zone 𝑗, 𝑐𝑖𝑗 is the 

main travel time between origins and destinations, 𝛽 is a parameter related to the travel cost.  

The basic framework of this model is a form of classic gravity models (Wilson, 1971). The 

calibrating processing is a parameter-free since the model picks the distance decay parameters 

𝛽 by continually executing the iterations of standard non-linear optimised (Batty, 1976b; Batty 

& Milton, 2021) until the difference between the predicted mean trip cost 𝐶 and the observed 
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mean trip cost  𝐶𝑜𝑏𝑠   is less than the pre-set threshold 𝜀  (default is 5% for balancing the 

calculation time and accuracy) (Equation (14)-(15)).   

 | 𝐶𝑝𝑟𝑒−𝐶𝑜𝑏𝑠 | < 𝜀 (14)  

Where:  

𝐶 =
∑ ∑ 𝑇𝑖𝑗𝑐𝑖𝑗𝑗𝑖

∑ ∑ 𝑇𝑖𝑗𝑗𝑖

(15) 

 

3.4.2 Hierarchical spatial interaction model 

Although spatial heterogeneity exists within a mega-city region, most traditional (or “global”) 

spatial interaction models assume the inner space of the modelling area is spatial isogeneity, 

which means all trips flow one general law. Thus, we further adopted a two-level hierarchical 

spatial interaction model for estimating the travel flow between zones (Figure 3.2). By applying 

this framework, it can eliminate spatial heterogeneity because of the boundary between sub-

systems. It divides the global spatial interaction model into some intra-city interaction models. 

For each sub-model, the form is the same as the basic spatial interaction model introduced in 

section 3.4.1. Since the distance decay parameters β is an auto-fitted value that is different in 

each sub-system, each sub-system describes a distinguished travel pattern. The model can be 

written as Equation (16)-(18). 

𝑇𝑡𝑜𝑡𝑎𝑙 = ∑ 𝑇𝑖𝑛𝑡𝑟𝑎(𝑛) + 𝑇𝑖𝑛𝑡𝑒𝑟 (16) 
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𝑇𝑖𝑛𝑡𝑟𝑎(𝑛) = ∑ ∑ 𝑂𝑖
𝑜𝑏𝑠

𝐷𝑗
𝑜𝑏𝑠𝑐𝑖𝑗

−𝛽𝑛

∑ 𝐷𝑘
𝑜𝑏𝑠𝑐𝑖𝑘

−𝛽𝑛
𝑘𝜖𝑛𝑗∈𝑛𝑖∈𝑛

(17) 

 

𝑇𝑖𝑛𝑡𝑒𝑟 = ∑ ∑ 𝑂𝑖
𝑜𝑏𝑠

𝐷𝑗
𝑜𝑏𝑠𝑐𝑖𝑗

−𝛽𝑖𝑛𝑡𝑒𝑟

∑ 𝐷𝑘
𝑜𝑏𝑠𝑐𝑖𝑘

−𝛽𝑖𝑛𝑡𝑒𝑟
𝑘𝑗∈𝑚𝑖∈𝑛

     (𝑛 ≠ 𝑚) (18) 

Where 𝑛 and 𝑚 represents set of zones in different cities,  𝑂𝑖
𝑜𝑏𝑠 is observed origins totals from zone 𝑖 and 𝐷𝑗

𝑜𝑏𝑠 

and 𝐷𝑘
𝑜𝑏𝑠refers to observed destinations totals to zone 𝑗 and zone 𝑘. 

 

Figure 3.2 The Hierarchical Spatial Interaction Model: The total predicting trips equals to city-level 

intra-city models plus one inter-city model, Equation (5) = Equation (6) + Equation (7) 

As a key condition, the difference of boundary of cities can affect the performance of this model 

because of the boundary effect and spatial heterogeneity. If the cities’ boundaries in this model 

coincide with the boundary effect, the overall performance of this model will improve since 

the processing of splitting has eliminated the spatial heterogeneity between sub-models. 

Therefore, we believe the goodness of fitting of this model can be an indicator for assessing 
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the reasonableness when drawing the functional boundary of cities. The detailed proof of this 

hypothesis will be described in section 3.5.1. Since all trip flows can be allocated to one of the 

sub-models, the sum of the total trip and the constrained factor (volume origin trips in our 

model) would keep constant by applying the HSIM framework without any loss of information. 

3.4.3  Regionalisation algorithm for delineating urban functional zones 

Based on the Hierarchical Spatial Interaction Model, we propose a novel regionalisation 

algorithm for delineating urban functional zones by searching the best partition with the best 

goodness of fitting in the HSIM. After determining a predefined number of regions (in this case 

study is three because there are three cities-level governments within this area), our iteration-

based algorithm will run several times until the best partition which has the highest R2. This 

algorithm design takes the conception of the tabu search algorithm. As an evolutional method 

of local search, it inherits the basic concepts of greedy algorithms that continually choose the 

optimal choice at each step to find the optimal solution to reduce complexity and time 

consumption. At the same time, it can avoid being trapped in local optima by adopting the “tabu 

list”.  This design of this algorithm referenced previous works of  by Openshaw and Rao (1995). 
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Figure 3.3 Flowchart of the redrawing boundaries tabu search algorithm  

The basic workflow for each iteration is: 

Step one Testing to find reassigning which zones will improve the goodness of fitting of HISM 

and then update the boundary.  

Step two When the algorithm finds that reassigning any zone not in the tabu list cannot improve 

the result anymore, the algorithm will test if reassigning zones currently in the tabu list can 

further improve the result, called the "aspiration move". 
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Step three If no further improvement or aspiration move can be made, the algorithm would 

reassign the zones with the best result even current assigning improving, then back to step one 

for starting a new iteration. 

Every reassigned zone will be recorded into the "'tabu list", which not be considered in the 

following iterations. In addition, a stopping criterion has been set to avoid endless iterations. 

The iteration will be terminated if the best partition has not been updated after N (N=20 in this 

study) times iterations. We have conducted a sensitivity analysis for these two parameters, 

which determines R=11, which can maximise the goodness of fitting. The results keep the same 

when R is within the range 1~10. Then the result slightly improved and then kept the same 

when R equals 11 or continually increased until reaching the length of the candidate zone list. 

In addition, the sensitivity analysis finds that the algorithm is not sensitive to the value of N. 

Whether the N increase to 50 or 100, the result would not change.   

Although theoretically, the candidate zones could be any zone within the region, we could 

customise a set of prioritised zones to improve the algorithm's efficiency. For instance, in our 

experience, we set the scope of search space to all zones whose intercity commuters are more 

than 1%, which matches the average ratio of inter-city commuters in the case study area. A 

flow chart of this algorithm for reassigning the boundaries can be found in Figure 3.3. 

To provide appropriate decision support, this algorithm should not only assess the current 

functional zones but also predict the long-term situation. Thus, we designed two different 

settings that have a minor difference when we execute the algorithm.  The first setting is based 

on the situation that current cities' core functional regions can only spill over to zones close to 

the administrative boundary due to the local authority's current land-use planning and 

management scope. Therefore, the proportion of inter-city trips in each zone would not change 
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further by updating functional zones during each step of iterations. In other words, the inter-

city flows for each zone is static according to the administrative boundary.   

The second setting is the inter-city flows for each zone is dynamically updated according to the 

current boundary in iteration processing. That is, inter-city flows may be re-classified as intra-

city flow after iterations of a boundary. This setting could be used for predicting long-term 

scenarios.  in which the cities' core functional zones can spill over freely without restriction by 

the current administrative boundary, forecasting the potential functional boundary in the long 

term.  

3.5  Results 

3.5.1  Goodness of fitting for HSIM 

For this case study, we split the global spatial interaction model of the whole SDH area into 

four sub-SIM models: three intra-city trips models for Shenzhen, Dongguan, Huizhou 

respectively based on its original administrative boundaries, plus one model for only predicting 

the inter-city trip. 

To verify the hypothesis, we raised before that if the goodness of fitting can be an indicator for 

reflecting the boundary effect of cities, we introduced a controlled group Since the spatial 

heterogeneity and the boundary effect are often more significant around the boundaries 

between cities, this controlled group is set as it still has the same trips and zoning system (172 

sub-district level zones) but with randomly urban boundaries. The boundaries applied in 

models for shown in Figure 3.4. 
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Figure 3.4 (a) The GSIM model with one whole modelling area (left); Figure 3.4(b) the HSIM model with random boundaries (middle); Figure 3.4(c) the 

HSIM model with administrative boundaries (right)    



Delineating Urban Functional Zones using Mobile Phone Data 

 91 

 

 

There are some flow trips produced by the spatial interaction model and hierarchical spatial 

interaction model (HSIM) introduced in section 3.4.1 and 3.4.2 according to the different 

boundaries. As introduced before, the goodness of fitting can be an indicator for assessing the 

reasonableness when drawing the functional boundary of cities. The estimated distance decay 

parameters in sub-models have been attached as Table 3.2. 

Table 3.2 The distance decay parameters in sub-models 

 

Global-SIM HSIM with RB HSIM with AB 

Area 1 2.5425 3.2006 2.4759 

Area 2 N/A 2.3841 3.4837 

Area 3 N/A 2.6334 2.0937 

Inter-city N/A 1.7279 1.6927 

*RB means Random Boundaries, and AB means administrative boundaries. 

 For assessing the goodness of fitting, we calculated the mean-square error (MSE), Mean 

absolute error (MAE), Root Mean Square Error (RMSE) and R-square (R2) compared with the 

observed flow, the results are represented in Table 3.3 below. 
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Table 3.3 Goodness of fitting for GSIM and HSIMs 

 

Global-SIM HSIM with RB HSIM with AB 

MSE 14,945,798 9,082,981 5,013,151 

MAE 335.73 278.188 239.90 

RMSE 3865.80 3013.79 2239.01 

R2 0.4531 0.6564 0.8165 

*RB means Random Boundaries, and AB means administrative boundaries. 

As the statistical measures are shown in Table 3.3, compared with the traditional GSIM model, 

the R2 for the HSIM model with Random Boundaries and administrative boundary sharply rise 

to 0.6564 and 0.8165 from 0.45310. Meanwhile, MSE, MAE, and RMSE decreased 

significantly, which shows that the HSIM model largely shortened the difference between the 

estimated and actual values. Thus, all statistical measures indicators prove that the modular 

spatial interaction can significantly improve the goodness of fitting from the traditional Global 

methods in regional-scale scenarios.  This result indicating the broader effect can be partly 

represented by this random boundary. 

By comparing the result of HSIM with arbitrary boundaries and the HSIM with administrative 

boundaries, all statistical measures indicators reveal that applying appropriate boundary that 

reflects the spatial heterogeneity in HSIM would significantly improve the model's 

performance. This finding suggests that the travel behaviours of people who belong to the same 

functional city may yield better performance in fitting the specific distribution of trips. In other 
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words, in the case of the spatial resolution and number of sub-models keeping constant, the 

goodness of fitting by HSIM can be an indicator for assessing the reasonability of functional 

boundaries of cities. This finding provides a solid theoretical reference for the algorithm that 

we will introduce in the next section.  

3.5.2  Result for detection of urban functional zones in SDH area 

Table 3.4 reports the statistical result for the models with different boundaries. Although the 

performance of the basic scenario with the administrative boundary is already good enough, 

the models of both settings with new boundaries still slightly outperform the basic model. 

Comparing the minor improvement of statistical measurements, the new boundary itself is 

more meaningful for assessing the urban functional integration. The estimated distance decay 

parameters in sub-models have been attached in Table 3.5. 
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Table 3.4 Goodness of fitting for HSIM in different scenarios 

 

Base Scenario (AB)  Setting 1 (CB) Setting 2 (LB) 

MSE 5,013,151 4,842,008 3,969,357 

MAE 239.90 242.71 225.90 

RMSE 2239.01 2200.456 1992.32 

R2 0.8165 0.8228 0.8548 

 

Table 3.5 Distance decays of sub-models 

 

Base Scenario (AB)  Setting 1 (CB) Setting 2 (LB) 

Shenzhen 2.4759 2.4594 2.4594 

Dongguan 3.4837 3.5455 3.7646 

Huizhou 2.0937 2.0552 2.3514 

Inter City 1.6927 1.7429 1.7746 

* AB means administrative boundaries; CB means current boundaries; and LB means long-

term boundaries. 
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3.5.2.1 Setting 1-Current functional boundary 

 

Figure 3.5 Setting 1- Current functional boundary within SDH area 

Figure 3.5 shows the result of setting 1 (statistic inter-city flow), indicating the current 

functional boundary within the SDH area. This result suggests that the current administrative 

boundary explains the boundary effect of trip distribution well. The statistical measurements 

in Table 3.2 support it. Compared with the current administrative boundary in the base scenario, 

the R2 and other statistical indicators improved very slightly as only a few zones changed their 

belonging. For example, the functional core of Dongguan city is in the west of its administrative 

boundary because of its good transport connection with Shenzhen and Guangzhou. Therefore, 

the only zone in Dongguan that should be re-assigned to Shenzhen is Fenggang, as it has been 

known as the ‘sleep city’ for workers in Shenzhen, which is a typical example for cross-cities 
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functional integration. Moreover, a few zones near the Dongguan-Huizhou boundary will be 

re-allocated to Huizhou from Dongguan because these zones are away from the city centre and 

lack commuting connection with the city centre. It might be the main reason why trips in these 

zones would better fit the trip distribution in Huizhou rather than Dongguan. Similarly, a few 

zones in east Shenzhen that have been re-assigned to Huizhou. 

 

3.5.2.2 Setting 2- Predicted functional boundary within SDH area in long-term 

 

 

Figure 3.6 Setting 2- Predicted functional boundary within SDH area in long-term 

As for the dynamic inter-city flow setting, the result (shown in figure 3.6) predicts that the 

functional areas will have more reassigning between Huizhou and Dongguan. The re-assigned 

zones in Dongguan are mainly from the ‘East industrial park’, Songshan Lake, and Dalang. 
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Historically, East industrial park areas are the cluster of manufacturing industries but lack 

commuting connection with the city centre. The algorithm also finds the Songshan Lake area 

in the middle of Dongguan is reassigned. This region has been assigned because of its strong 

linkage with the ‘East industrial park’ area. Local governments have recently emphasised such 

connections in their planning report. Besides, the Dalang area may also be reassigned for long-

term prediction. Unlike the Fenggang area, this area lacks road linkage directly with Shenzhen 

though it is physically close to Shenzhen. Thus, this area has been re-assigned to Huizhou 

following the reassigning of the Songshan Lake area, which is one of the main workplaces for 

residents in Dalang.  These results show that there will be more potential interaction and 

functional integration opportunities between zones between Dongguan and Huizhou because 

of the chain reaction in long-term prediction. 

 

3.5.3 Policy implications for city integration in SDH area 

These empirical-based results can help the governments and planners to understand the spatial 

structure in mega city-region and support their urban integration policy. Previous studies have 

always focused more on the north-western part of Shenzhen and the south-western part of 

Dongguan since it has the most volume of the cross-boundary trip statistically. Our study argues 

that in the case of balanced bidirectional flows present, the functional boundary effect between 

the cities would not change obviously. Because trips in this area fit their original intra-city trip 

distributions, the high inter-city flow might be a natural consequence of the high population 

density and spatially relatively close to their original urban centres. In contrast, this study 

reveals that Fenggang and Shenzhen have a very high degree of functional integration, 

indicating that the urban function (e.g., housing or employment) are shared within these areas. 
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When considering such an integration between the two regions, the policymakers should pay 

more attention to amenities and public service for inter-city commuters.  

For the long-term prediction, zones in mid-Dongguan should be given more attention. These 

areas are very 'sensitive' to any change of trips since fits in these areas do not fit the intra-city 

trip distribution of their original cities and are far away from city centres. Thus, our algorithm 

predicts a severe mismatch between functional zones and administrative boundaries could 

occur in these areas, even with tiny inter-city interactions. This result proves that transport 

linkages are vital for reshaping the urban functional zones in the long term because of the chain 

reaction of the previous reassigned zones. An example is the Dalang area. Though it is 

physically close to Shenzhen, it has been re-assigned to Huizhou because the road linkage with 

Songshan Lake is better than those with Shenzhen. 

Overall, these empirical results imply that there will be more potential interaction and 

functional integration opportunities between zones between Dongguan and Huizhou in the 

future. Besides, policymakers should consider improving transport connectivity between the 

reassigned areas and Dongguan city centres to eliminate the boundary effect of city centres in 

trip distribution. Such measures would also avoid severe mismatches between functional zones 

and administrative regions, which may cause extra difficulty for management. 

  



Delineating Urban Functional Zones using Mobile Phone Data 

  
99 

3.6 Methodological discussion  

3.6.1 Spatial interaction methods vs Network-based methods 

The network-based community detection method is the mainstreaming method employed for 

detecting the boundary of communities and functional spatial structure at the cities-level in 

previous studies. However, there is some limitation as well. The traditional network analysis 

and most community detection algorithms usually only consider the absolute value of flow 

volume for dividing the partitions but overlook the spatial factors like travel distance/cost (Liu 

et al., 2014; Yin et al., 2017).  

Typical community detection algorithms (e.g., Louvain algorithm) are always trying to search 

a partition for maximising the ratio of intra-city flows in overall flows. However, because the 

percentage of inter-city trips is usually tiny (3% or less compared to intra trips) among all trips, 

thus when ignoring the spatial factors, the traditional community detection prefers to split space 

within the origin of administrative boundaries rather than break it. Similar to the phenomenon 

observed by previous research (Liu et al., 2014), the detected communities are precisely the 

same as the original administrative boundary when we use the Louvain algorithm and adjust 

the minimum resolution point to let the number of communities equals to the number of cities. 

According to the definition by OECD, the city or town whose 10% of the population exhibits 

cross-boundary commuting behaviour can be regarded as the satellite city of the mega-city. 

Thus, the traditional network analysis is not sensitive enough for cross-boundary commuting 

trips, which may fail to support planners and policymakers appropriately when discussing the 

cross-boundary integration of the functional region.  
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In contrast with the network analysis-based method, our proposed spatial interaction-based 

algorithm will more consider the distance decay effect when detecting the boundary effect 

reflecting spatial heterogeneity. Because zones close to the cities’ boundary are usually 

spatially far from the city centre, our algorithm would be more sensitive to cross-boundary trips 

even with a relatively small volume. 

Besides, another limitation of network-based methods is the difficulty of predicting the future 

situation. Almost all research applied community detection methods must base on the existing 

data of travel flow. If the data is unavailable, the estimation of flows would still rely on spatial 

interaction models (Wu et al., 2021). It will cause more deviation when switching between the 

multi-methods. Because of the strength for estimating the travel flow, the spatial interaction-

based methods would have a special advantage for the prediction and simulation of future urban 

regions dynamically.   

 

3.6.2 Methodological limitations  

There are some limitations, and several directions can be further explored. First, different forms 

of spatial interaction models can be adopted for predicting the trip distribution. This method 

only employed the most widely used gravity model with a negative power functional form. 

Therefore, more conditions of the spatial interaction model, including the intervening 

opportunity and radiation models, can be discussed and employed in future work.  

The second point is the “scaling issue”. Additional experiments have been conducted to 

validate the model with more communities and different boundaries. One of the experiments 

attempted to extend the case study area to a border area, the Great Bay Area (GBA) in Pearl 

River Delta China, for nine cities with the same zoning system (sub-district level units). It 
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confirms algorithm still works appropriately for this extended area, but the algorithm would 

yield different results for local results in the SDH areas. The reason could be that the added 

areas and the additional trips will affect the existing results when applying the inter-city trip 

estimation models. The difference would be extended in long-term prediction due to the chain 

reaction. Thus, choosing the spatial extent needs to be associated with the specific research 

question and focus study area.  

Lastly, our regionalised algorithm considers connections and flows between any pairs of units, 

not just neighbours. The spatial factors have mainly been reflected by travel time in this study. 

On the one hand, this is one of the advantages of emphasising mobility flows compared with 

other regionalisation algorithms. However, on the other hand, spatial adjacency is crucial in 

some cases (land-use planning, air pollution, etc.).  Thus, spatial constraints on physical 

distance may need to be added to this algorithm to handle more situations.   

3.7 Chapter conclusion 

There are several contributions from this Chapter. First, this research confirms that the results 

of the hierarchical spatial interaction model (HSIM) can assess if the boundary of subsystems 

appropriately represents the inter-city boundary effect in trip distribution. Furthermore, this 

study proposes a novel method to delineate UFZs by searching for the best partitions in HSIM. 

By adopting the proposed model into a specific mega-city region, China, Shenzhen-Dongguan-

Huizhou (SDH) area, this research confirmed the model's effectiveness in delineating UFZs 

based on spatial interaction from the perspective of human activity behaviour. 
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4 Exploring the Associations of 

Socioeconomic Characteristics and 

Distance Decay Effects in Spatial 

Interaction 

4.1 Background 

Understanding and predicting commuting behaviours are long-standing topics in urban 

analytics and numerous attempts have been made to use various quantitative models to achieve 

this (Barbosa et al., 2018; Lenormand et al., 2016; Schläpfer et al., 2021). The spatial 

Interaction (SI) model is one of the most powerful techniques for modelling and predicting 

flows. It forecasts the strength of spatial interaction based on the influence of distance decay, 

which means the interaction strength would be decreased along with the distance increasing.  

Most current spatial interaction models and other flow-predicting models at an aggregated-

level assume that the interior space of the modelling region is spatially isogenous, meaning that 

the distribution of trips only obeys a general law associated with distance between locations 

(De Vries et al., 2009; Fotheringham & O'Kelly, 1989; Simini et al., 2021). However, previous 

research has evidenced that spatial heterogeneity widely exists in the spatial interaction model 
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and may reflect the border effect of trip distribution within urban space (Zhang et al., 2022).  

Researchers found that a global approach to spatial analysis may not be suitable for the local 

area within the sub-case study area due to spatial heterogeneity. (Fotheringham & Sachdeva, 

2022). Thus, adding local characteristics to improve the accuracy of spatial interaction models 

is a long-standing research topic.  

As introduced in Chapter 2.1, previous research considers the variation in the distance decays 

resulting from the spatial structure (Curry, 1972; Griffith & Jones, 1980; Oshan, 2020); thus, 

previous research has attempted to represent the local spatial attributes in spatial interaction 

models with different methods, such as the singly constrained gravity model, which is the most 

successful branch (Fotheringham, 1981; Nakaya, 2001; Oshan, 2016; Zhang & Li, 2024). 

However, some existing issues prevented the localised spatial interaction model from being 

applied to urban systems with granular spatial resolution, such as the excessive computing 

complexity and difficulty in calibrating parameters in low-flow or zero-flow areas due to data 

sparsity (Fotheringham & O'Kelly, 1989).  

Recently, the evolution of computing power and data collection/storage techniques enabled the 

possibility of using spatial interaction models to build large-scale urban models with granular 

spatial resolutions, and this trend is known as "the renaissance of large-scale modelling" (Batty 

& Milton, 2021). However, a research gap for applying the localised spatial interaction model 

is that most localised spatial interaction models stay at the relatively macro level (e.g., 

province/state/ regional level), and do not go further into a finer spatial resolution within the 

urban systems (Dennett & Wilson, 2013). This is due to some associated issues that sometimes 

prevent the localised spatial model from being utilised in predicting flow within the urban 

system. As the spatial resolution becomes finer, the number of origin-destination pairs grows 

exponentially. This proliferation of data points increases the model's complexity and 
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computational demands. Each sub-model may have its own set of parameters, necessitating 

separate fitting processes. The need to fit and validate these sub-models further adds to the 

computational burden.  

Another issue is the local calibration in the origin-specific gravity model may be invalid in 

low-flow volume areas within the urban system. In granular spatial resolutions, some areas 

may have low flow volumes recorded. Local calibration requires enough data to make reliable 

estimates. In the case of grouping the flow by its origin area, those areas with a lot of zeros 

flow could lead to imprecise and unstable parameter estimates (Fotheringham & O'Kelly, 1989). 

Practically, Poisson regression usually cannot provide reliable results and the non-linear 

iteration method could meet the issue of being unable to converge. 

Besides, various studies have supported the idea that the spatial relationship between 

workplaces and residences is not the sole factor explaining the spatial heterogeneity observed 

in commuting patterns. Individual-level socioeconomic characteristics, individual preferences, 

and attitudes also play a role in influencing people's travel behaviours (Gao et al., 2024; S. Hu 

et al., 2022; Lin et al., 2015). While research on localised spatial interaction has predominantly 

focused on its relationship with spatial structure (Chen et al., 2019; Zhang et al., 2022), non-

spatial factors like socioeconomic characteristics are normally not considered in the models. 

Reviewing previous studies, the research gap in integrating socioeconomic characteristics into 

spatial interaction models has been identified in Chapter 2.1.4. Therefore, this chapter will 

introduce a novel method to fill this research gap. 

Thus, this chapter aims to introduce an algorithm by addressing the central question of how 

local socioeconomic characteristics can be integrated into a localised spatial interaction model 

for predicting commuting trips’. We proposed a two-step spatial interaction model framework 



Exploring the Associations of Socioeconomic Characteristics and Distance Decay Effects in Spatial Interaction 

  
106 

for achieving research objective 2 to tackle this. This framework quantitatively captures the 

variance of distance-decay effects in local commuting behaviours, substantiating the 

correlation between socioeconomic characteristics, urban spatial configuration, and spatial 

interaction. Furthermore, by integrating a clustering algorithm based on socioeconomic factors 

into the localised spatial interaction model, we demonstrate that the performance of the trip 

prediction model can be remarkably enhanced with only a limited parameter increase. This 

opens avenues to devise trip prediction models that more precisely align with the evolving 

socioeconomic scenarios of residents. 

4.2 Methodology 

4.2.1 Two-step localised distance-decay with origin-specific gravity model 

This research applies an origin-specific gravity model (OSGM) to observe the variant of 

distance decay for commuting by different origins and destinations in London. Following the 

classic unconstrained (or sum-constrained) gravity model written as equation (2) above, this 

study adopted a disaggregated spatial interaction model referenced the previous research 

(Fotheringham & Brunsdon, 1999), which divides the flows by origins and then fits the flows 

with separate models in the formatting of the classic unconstrained gravity model (19). For 

giving a specific origin, the 𝑂𝑖 is part of the constant (20). Each sub-gravity model has its own 

distance-decay parameters calibrated by the general linear regression model.  

 

𝑡𝑖 = ∑ 𝑡𝑖𝑗

𝑗

= 𝑂𝑖
𝛼𝑖 ∑ 𝐾

𝐷𝑗
𝛾𝑖

𝑑𝑖𝑗

𝛽𝑖
 

𝑗

(19) 
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𝑇 = ∑ 𝑡𝑖

𝑖

 (20) 

 Where 𝑡𝑖𝑗is travel flow between zone 𝑖 and zone 𝑗,  𝑂𝑖 is observed origins totals from zone 𝑖 

and 𝐷𝑗 refers to observed destinations totals to zone 𝑗, 𝑑𝑖𝑗 is the main travel distance between 

origins and destinations, and 𝛽 is a parameter related to the distance decay.  

To determine the distance decay parameters 𝛽, we employ the general linear model (Poisson 

regression) to calibrate the sum-constrained model (Dennett & Wilson, 2013) after the log 

formed transformation. (21) 

𝑡𝑖𝑗 = exp(𝐾+ 𝛾𝑖𝐷𝑗 − 𝛽𝑖𝑙𝑛𝑑𝑖𝑗) (21) 

The OSGM has a better prediction ability by aggregating the predicted flows as one predicting 

O-D matrix (6). It performs better in statistical measurements (e.g., R-square and Root Mean 

Squared Error) compared with a classic constrain gravity model fitted by general linear 

regression models, proving the reasonability for highlighting the local distance-decay 

parameters.   

 

4.2.2 Grouping k-local groups and two-step flow prediction method 

Equation 3 has a key parameter 𝛽𝑖 which controls the local distance decay effect in the flow 

prediction. From previous literature, predicting the local level of 𝛽𝑖 in the urban system has 

been identified as a significant research gap and, in this Chapter, we propose a novel approach 

in utilising socioeconomic characteristics to shape the local distance decay as a potential 
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solution, because similar social groups may have similar commuting behaviours. Thus, we 

design a two-step spatial interaction model introduced after the fitting process of the OSGM 

has determined the localised distance-decay parameter is described below: 

Step One: Identifying areas in which specific social groups with a k-means clustering 

algorithm by applying residents’ socioeconomic status. 

Step Two: calibrating the localised distance-decay parameter in origin specific gravity 

model by the general linear model in equation (21) for predicting the travel flows. 

Clustering, a versatile tool for identifying groups or clusters within multivariate datasets, has 

found extensive application across domains such as biology, psychology, and economics 

(Kodinariya & Makwana, 2013). This research uses the k-means method to partition our dataset 

into k distinct, non-overlapping clusters to predict local distance decay parameters. k-means is 

a prevalent clustering technique that groups data points based on their similarity in specific 

features. The Sum of Squared Errors (SSE) represents the aggregate of these squared distances 

across all data points, and the primary objective of the k-means algorithm is its minimisation.  

It operates with the assumption that data within a given cluster is more akin to each other than 

to data in other clusters. This similarity is quantified by calculating the squared distance of each 

point to its assigned centroid.  

Determining the value of k is a key step for the k-means algorithm. Thus, we utilised a method 

similar to the current determining k elbow method which finds the optimal value for k by 

finding the local optimum point. This technique is rooted in the principle that the ideal number 

of clusters, k, is identified at the point where the reduction in the sum of squared distances 

between data points and their corresponding centroids begins to plateau or 'level off'. However, 

unlike the current method, which merely determines k from the clustering performance, our 
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method adds the goodness of fitting for the OSGM model as a second indicator to determine 

the value of k. The Root Mean Squared Error (RMSE) estimates how well the model can predict 

the target and actual values. RMSE is employed to find the optimised number of k to improve 

the goodness of fitting of the OSGM model.   

After identifying the number of k and social group within the modelling space area, we apply 

the OSGM in fitting the distance decay as the localised distance-decay parameter as the proxy 

of distance-decay parameters for the whole group to reduce the number of parameters and 

complexity of the OSGM model. Thus, the model in equation (21) will be further transformed 

as (22) to let the local parameters of equal zones be represented by a set of parameters calibrated 

with other zones belonging to the same social group.  

𝑡𝑖𝑗 = exp(𝐾+ 𝛼𝑘𝐷𝑗 − 𝛽𝑘𝑙𝑛𝑑𝑖𝑗) | 𝑍𝑜𝑛𝑒 𝑖 ∈ 𝐺𝑟𝑜𝑢𝑝 𝑘 (22) 

4.3 Case study   

4.3.1  Data collection 

The case study focuses on the Great London Area in the United Kingdom and utilises research 

based on UK census data 20111. The data sources include Origin-Destination (O-D) data, which 

 

 

1 Link of Data source: https://www.nomisweb.co.uk/sources/census_2011 

https://www.nomisweb.co.uk/sources/census_2011
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tracks the location of usual residence and place of work, as well as the socioeconomic 

characteristics of local residents.  

Meanwhile, socioeconomic data encompasses various demographic and economic indicators. 

The research covers a wide range of socioeconomic variables, such as gender ratio, mean age, 

one-person household ratio, house ownership rate, minority ethnic group rate, higher education 

rate, economic active rate, car ownership rate, and marriage rate (figure 4.1). The selection of 

variables is referenced previous research introduced in the literature review and subjected to 

the availability of census dataset. These indicators offer valuable information about the social 

and economic dynamics of the local population. 

 

Figure 4.1 Socioeconomic characteristics in London 

The spatial resolution employed in the study is based on the Middle Layer Super Output Area 

(MSOA) level, with 983 areas in total for London. For comparison the possible change from 
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2001 to 2011, we also download the 2001 census data. The data sample is shown at Table 4.1 

below: 

 

Table 4.1 Data sample of Census data 

Category Class Example 

Location Area Name City of 

London 001 

MSOA Code E02000001 

Education No qualifications (%) 6.7 

Highest level of qualification: Level 1 qualifications (%) 4.3 

Highest level of qualification: Level 2 qualifications (%) 6.6 

Highest level of qualification: Apprenticeship (%) 0.7 

Highest level of qualification: Level 3 qualifications (%) 7.2 

Highest level of qualification: Level 4 qualifications and above 

(%) 

68.4 

Highest level of qualification: Other qualifications (%) 6.2 

Schoolchildren and full-time students: Ages 16 to 17 (%) 1 

Schoolchildren and full-time students: Ages 18 and over (%) 6.2 

Housing Owned (%) 42.3 
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Shared ownership (part owned and part rented) (%) 0.3 

Social rented (%) 16.5 

Private rented (%) 35.9 

Living rent-free (%) 5.0 

Car 

Ownership 

No cars or vans in household (%) 69.4 

1 cars or vans in household (%) 25.1 

 

4.3.2 Exploring spatial heterogeneity from distance decays in commuting 

behaviour  

Utilising the Origin-Specific Gravity Model (OSGM) demonstrated a notable enhancement in 

model fitting compared to classic gravity models. Specifically, the r-square value improved 

markedly from 0.522 when using the sum-constrained spatial interaction model fitted by the 

general linear regression model to 0.815 with the OSGM. Concurrently, there was a significant 

reduction in the RMSE from 12.15 in the sum-constrained spatial interaction approach to 7.009 

in the OSGM. This enhancement in performance suggests that incorporating local distance 

decay can considerably mitigate errors stemming from spatial heterogeneity. Consequently, 

local distance decay parameters emerge as pivotal variables, warranting further exploration. 

Figures 4.2 provide an analysis of the local distance-decay parameters in London in 2011. In 

this figure, the lighter colours indicate smaller absolute values of the distance-decay parameter, 

suggesting smoother distance-decay effects for the corresponding areas. Conversely, the border 
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areas depicted in darker colours represent sharper distance-decay effects within these zones. 

The distribution of distance decay remained relatively stable during this relatively long-term 

period by comparing with the 2001 distance decay parameters, and the comparison results will 

be further discussed later. 

The clustering of highlight values in the central area indicates that the distance-decay effects 

in these regions are more gradual and less influenced by distance. This smoother decay suggests 

that commuting patterns or other spatial interactions within these central areas are relatively 

consistent, regardless of the distance between locations. On the other hand, the border areas 

displaying darker colours signify stronger distance-decay effects. In these zones, the impact of 

distance on commuting or other spatial interactions is more pronounced, implying that the ease 

of interaction decreases significantly as one moves away from the central areas.  

 

Figure 4.2 Distance decay parameters in London in 2011 
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To identify the spatial clustering pattern, Moran’s I was utilised to measure spatial 

autocorrelation for the distance decay parameters (beta) for 2011’s results. The Global Moran’s 

I index yielded a value of 0.801, indicating a strong positive spatial autocorrelation. The 

associated p-value, which is less than 0.01, signifies that this result is statistically significant. 

4.3.3 Paradox between local distance decay and spatial structure  

Typically, the sharper distance-decay effect means the commuters living in these areas are more 

sensitive about travel distance and vice versa. Therefore, those people who are more sensitive 

to travel distances should live in the central areas. However, our results denied that statement, 

a proof of this is the distance decay effect shows a negative linear relationship with the travel 

distances. Figure 4.3 clearly illustrates the distance-decay effect is more significant as the 

absolute value of beta expanded along with the average travel distance increasing. Please note 

that this distance decay mainly indicates to what extent the travel frequency between two areas 

is decreased along with the distance increasing, however, the absolute value of travel frequency 

and average travel distance cannot be represented by the distance decay. The subplots in Figure 

4.3 show the histogram for the number of travellers vs travel distance in two areas with similar 

average travel distances but different distance decay. The above subplot is in the relatively 

central area, Newham, which has a high travel frequency, but the distribution of travel 

frequency does not significantly decrease with the commuting distance before 15000m. The 

bottom subplot is from an area in Hillingdon, a border Borough in London. It could be spotted 

that the distance decay effect here is sharper. 
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Figure 4.3 Relationship between average travel distance and the distance-decay effect 

A possible explanation is most people are commuting from their residence towards city centres, 

but not in the opposite direction. Still, most commuters would not go beyond the central area 

to another side of the city, that is why the previous research pointed out that travel frequency 

has sharply decayed along with the increasing of travel distance. This edge effect could be 

determined by the functional spatial organisation in London’s case, as most job opportunities 

are mainly distributed in the central area rather than the border area.  In contrast, commuters 

living in the central areas would freely choose their workplace without significant limitations 

of specific directions or areas. Thus, the distance-decay effect for those people shows smooth 

trends. Based on this explanation, socioeconomic characteristics, such as housing prices and 

affordability, could play a significant role in shaping distance-decay patterns in commuting 

behaviour. In other words, Socioeconomic factors can influence residential and employment 
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decisions and in turn, impact commuting behaviours and the distribution of distance-decay 

effects.  

 

 

Figure 4.4 Difference of local distance decay parameter between 2001-2011. 

Another Interesting discussion is about the temporal variation in the distance decay effect. We 

also use the same commuting dataset from the 2001 census. The areas within the Great London 

Area are developed, so the spatial structure generally remained stable within these 10 years. 

Even though the overall trend of distance decay is stable because the spatial structure is stable, 

the local change still exists. Figure 4.4 illustrates those certain areas in East London, such as 

Canning Town, Greenwich, and Woolwich, have experienced a notable reduction in the 

distance decay effect. These East London areas have also been identified as gentrification zones 
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since the 21st century. The reduction of distance decay clustering in these areas indicates 

changes in the commuting behaviours of residents as the results of gentrification. 

Conversely, some areas in West London and central regions have experienced a slight increase 

in the distance decay effect. This could indicate that commuting patterns between these areas 

and other locations have become more influenced by distance over time. One possible 

explanation for this trend is the emergence of employment opportunities in East London, which 

could draw workers from the city's western and central parts. But compared with the distance-

decay reduced area, these increased areas do not show spatial clustering in some specific areas. 

The two-year comparison result confirms that the local residents' socioeconomic characteristics 

will significantly affect the distance decay, and this effect is beyond the explanation range of 

pure spatial factors. 

4.3.4 Grouping areas based on socioeconomic characteristics associations 

with localised distance decay 

 

From the last section, the distance decay effect significantly correlated with spatial structure, 

which socioeconomic factors could drive. Based on this hypothesis, we designed an algorithm 

to predict the variation of the local distance decay effect with functional spatial structure 

reflected by residents' socioeconomic characteristics, predicting the more accurate travel flows 
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Figure 4.5 The fitting figures to demine the K (both R-square reports and RMSE reports goodness of 

fitting) 

For our case study data, we found k=2 and k=6 could be the optimum value of k (Figure 4.5). 

k=2 is a local optimum point since it is the peak for both indicators when k<5, and k=5 has 

been identified as another local optimum point because it then increasing slowly after k=6 

(over-fitting region).  
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Figure 4.6 K-means cluster results for the socioeconomic characteristics when K=2 

Figure 4.6 delineates the results from k-means clustering. Notably, even though the algorithm 

does not incorporate spatial data, the classification based on socioeconomic characteristics still 

reveals a discernible spatial clustering pattern. The results depict roughly two concentric circles 

from the centre outwards, evincing the London area's mono-centric spatial configuration. This 

result confirms that the clustering of socioeconomic characteristics can represent the spatial 

autocorrelation in the distance decay effect, though the dataset is non-spatial. 
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We refer to Group 1 as the “Inner London” group, indicated by the light-yellow colour. The 

areas boasting a mean distance decay value of -1.57, and primarily inhabit central London. 

They tend to exhibit a high education level and are economically active, with a higher level of 

one-person household and ethnic minority rate with lower car and house ownership rates.  

Group 2 is the “Outer London” group, which manifests a more pronounced distance decay 

effect, marked by a beta value of -1.95. Distinctively, these zones have elevated percentages of 

car and house ownership, along with the oldest mean age and the fewest one-person households. 

These characteristics imply that Group 2 offers the most stability compared with the inner 

London Group. 

Table 4.2 The distance decay and socioeconomic characteristics for groups of areas when K=2 

Group Distance 

decay 

(𝜷) 

Car 

Ownership 

(%) 

Higher 

Education 

(%) 

Economic 

Active 

(%) 

Ethnic 

Minority 

(%) 

Housing 

Ownership 

(%) 

One-

person 

Household 

(%)  

 

Inner 

London 

-1.13 44.93 43.86 72.23 40.62 33.76 16.16  

Outer 

London 

-1.71 72.82 31.9 70.96 38.39 62.58 10.01  
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When K=6, the grouping map (Figure 4.7) shows a different trend compared with the results 

when K=2. On the one hand, the grouping results are still clustered in the spatial aspect, 

reflecting that the grouping results still can reflect spatial factors. On the other hand, this 

clustering result can go beyond the continuous spatial restriction of the concept of 'boundary’, 

the detailed socioeconomic characteristics and distance decay could be found in Table 4.3. 

  

Figure 4.7 K-means cluster results for the socioeconomic characteristics with K=6 
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Table 4.3 The distance decay and socioeconomic characteristics for groups of areas when K=6 

Group Name Car 

Ownership 

(%) 

Higher 

Education 

(%) 

Economic 

Active 

(%) 

Ethnic 

Minority 

(%) 

Housing 

Ownership 

(%) 

One-

person 

Household 

(%)  

 Distance 

decay 

(𝜷) 

1 Inner-city 

professionals 40.17 51.28 72.68 32.39 32.92 22.21 

 

-0.96 

2 Mixed-

ethnicities 

city renters 39.93 35.15 69.59 52.11 26.13 14.04 

 

-1.26 

3 Settled city 

achievers 60.34 55.81 77.08 24.82 50.79 14.90 

 

-1.31 

4 Ethnic-

minorities 

family 66.27 30.54 68.45 69.74 55.27 7.22 

 

-1.68 

5 Working-

class suburbs 63.01 26.84 69.59 40.50 49.01 11.19 

 

-1.70 

6 City Fringe 

Homeowners 81.01 32.38 72.47 20.57 76.42 10.53 

 

-1.85 
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Inner-city professionals (Group 1) areas are primarily located in the most central regions, with 

a few situated in sub-centres of employment, such as Canary Wharf and Central Croydon. The 

distance decay of travel patterns for these areas is the most gradual, with a value of -0.96. This 

group's profile displays relatively low percentages for car and housing ownership but has higher 

education percentages and moderate economic activity. Residents in these areas likely consist 

of younger professionals. 

Suburban renters (Group 2) areas envelop the central regions, extending towards the 

northwest (for example, Harlesden), northeast (such as Hackney), east (like Whitechapel), and 

southeast (e.g., Old Kent Road). This group's beta value is -1.26, signifying a more pronounced 

distance decay effect than in Group 1 areas, although it remains moderate. This group appears 

to have a relatively higher percentage of ethnic minorities, coupled with the lowest rates of car 

and housing ownership and education. These areas might predominantly be inhabited by a 

diverse working-class population, possibly renting in pre-gentrification zones.  

Suburban achievers (Group 3) areas span affluent southwest regions, like Fulham and 

Richmond, and northern areas like Hampstead. The distance decay effect here is slightly 

sharper than in Group 2 areas, with a beta value of -1.31. Boasting the highest Economic Active 

Percentage, these areas also have relatively high car and housing ownership rates. However, 

they have the second lowest ethnic minority percentage among all six groups. It's plausible that 

residents in Group 3 areas consist mainly of affluent locals and middle-aged professionals. 

Ethnic family life (Group 4) and blue-collar communities (Group 5) exhibit similar distance 

decay levels, with beta values of -1.68 and -1.71, respectively. Areas such as Southall, Wembley, 

and Finsbury Park typify Group 4. These regions have the highest minority proportions and, 

concurrently, relatively high car and homeownership rates. Notably, they also have the lowest 
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rates of one-person households. This suggests that immigrant families with larger household 

sizes and stable economic backgrounds primarily inhabit Group 4 areas. On the other hand, 

Group 5 areas, represented by places like Dagenham and Uxbridge, display moderate 

percentages in most metrics. The notably low higher education percentage might indicate that 

a majority of the residents in these zones belong to the working-class segment rather than the 

professional class. 

Lastly, Outer London white families (Group 6) areas are predominantly found on the outskirts 

of the Greater London Areas. These areas showcase the highest car and housing ownership 

percentages, coupled with the lowest figures for ethnic minorities and one-person households. 

This composition implies a dominant presence of stable, local white residents. 

4.3.5 Goodness of fitting comparison 

The next step is using this cluster results as the proxy of distance decay in the OSGM model. 

Table 4.4 compares the number of parameters and the performance among the four models. 

The Global gravity model encompasses just a single distance decay parameter. However, its 

performance leaves much to be desired, lagging in effectiveness. While the OSGM model 

stands out with superior performance to the other models, it demands a hefty 983 parameters 

to make its predictions. When K=2, this adaptation of the OSGM with clustering algorithm 

uses only two parameters as proxies for the localised distance decay parameters within OSGM. 

Even with very limited degrees of freedom, this algorithm can still significantly improve flow 

prediction accuracy by effectively representing London's monocentric spatial structure. When 

K=6, this algorithm uses six sets of parameters to represent the variation in distance decay in 

areas with each clustering group, promoting the goodness of fitting further and approaching 

the OSGM without clustering 
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Table 4.4 Comparison results for different gravity models 

 

Global gravity 

model 

OSGM with 

clustering (K=2) 

OSGM with 

clustering (K=6) 

OSGM  

Number of 

parameters set 

1 2 6 983  

R-Square 0.522 0.655 0.722 0.815  

RMSE 12.150 9.536 8.532 7.009  

These results confirm that utilising socioeconomic characteristics to detect social groups within 

the urban system can effectively represent the variation of distance decay at the local level, and 

this representation could significantly improve the accuracy of prediction with spatial 

interaction.  

 

4.4 Discussion for localising distance decay within urban space 

After reviewing the previous research about SI and spatial factors in past research, this research 

proposed that socioeconomic factors should be considered to improve traditional gravity 

models, which consider merely spatial arrangement. Our results in traditional OSGM confirm 

that distance decay effects vary within the city space and long-term period, significantly 

affecting the flow prediction results and considering localised distance decay parameters could 

significantly improve the performance of the spatial interaction model. At the same time, this 

variation is beyond the traditional concept of ‘boundaries’ because the space shared similar 

distance decay is spatially discontinued. By applying the two-step gravity model, the localised 



Exploring the Associations of Socioeconomic Characteristics and Distance Decay Effects in Spatial Interaction 

  
126 

distance decay effect could be well-represented with limited parameters. One obvious 

advantage of this method is reducing the complexity of computing in the calibration process. 

In addition, the calibration issue in the low-flow area is mitigated because the subset flow has 

not been separated too granularly.  In our case study, all sub-models are significant in the 

Poisson regression models, which means the calibration of local parameters is reliable. 

Another significant pro of this algorithm is it can capture the heterogeneity in distance decay 

not only due to spatial factors but also non-spatial factors. Even though the socioeconomic 

dataset is non-spatial, the clustering results still show clustering in the spatial aspect, reflecting 

that spatial factors are still one of the main factors affecting distance decay variations. 

Meanwhile, this clustering result can go beyond the continuous spatial restriction of the concept 

of 'boundary.' In some areas, the different grouping areas are staggered. These results confirm 

that non-spatial factors, especially socioeconomic characteristics, influence distance decay 

variation. By appropriately representing spatial and non-spatial factors simultaneously, this 

model significantly improves the performance of the gravity models within the urban system.    

In current spatial interaction models, there is a widespread assumption that the distance decay 

parameter remains consistent throughout the entire urban system and that its value will persist 

unchanged into the future (Batty & Milton, 2021; Lopane et al., 2023). One primary reason for 

adhering to this assumption has been the absence of effective methodologies to predict shifts 

in the distance decay parameter, especially at a localised level. This research bridges this gap 

by establishing a connection between socioeconomic status and localised distance decay effects. 

As a result, we can quantitatively evaluate how the distance decay effect could be predicted or 

policy scenarios might influence the distance decay effect, laying the groundwork for more 

robust and reliable predictive models in the future. Using socioeconomic status to group the 

area could help to solve the issues of the localised spatial interaction model. This method could 
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quickly respond to the scenario when the potential socioeconomic changes need to be 

considered (e.g., gentrification), providing more accurate prediction tools for travel flows in 

future scenarios, which will be introduced in next Chapter. 

Last but not least, the optimum k number could vary depending on urban form and spatial 

structure. London has been widely recognised as a morphologically monocentric but more 

functionally polycentric region. The two local optimum values of k, k=2 and k=6, can be seen 

as reflecting the difference between morphological and functional in London, and this could 

also be observed from the visualisation of the k-means results. Thus, the factors that affect the 

optimum value K and an automatic algorithm to determine could be interesting topics in further 

research. 

4.5 Chapter conclusion 

To tackle the current research gap for lack of a granular-level spatial interaction framework to 

predict travel flows and consider behaviour variation due to local socioeconomic characteristics, 

this Chapter adopted a localised spatial interaction model to quantitatively assess how local 

commuting behaviours decayed with distance and how this is related to socioeconomic status 

and urban spatial structure. This Chapter also proposed a two-step algorithm for improving trip 

prediction models by incorporating a clustering algorithm based on socioeconomic factors to 

reflect the socioeconomic contexts of inhabitants better. With successfully defined social 

groups in two different settings, this prediction accuracy using spatial interaction is 

significantly improved with a limited increase in computing complexity. We also discussed 

some long-standing issues in tradition and disaggregated spatial interaction models in the later 

discussion part and proposed further research direction.  
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5 Application: Predicting the Impact of 

Changes in Transport Infrastructure on 

Urban Integration 

During the last three decades, the Pearl River Delta (PRD) has been shaped by a variety of 

integration policies, including regional plans, industrial policies, and regional agendas. This 

approach emphasises the formation of city regions, which represent a novel spatial scale 

comprising clusters of cities and their surrounding hinterlands. City regions have emerged as 

significant geographical entities facilitating population growth, industrial advancement, and 

urbanisation (M. Chen et al., 2016; Zhang & Sun, 2019). These initiatives have aimed to 

restructure economic, social, and institutional intercity linkages within the region. Recently, 

the emergence of the Great Bay Area (GBA) of the Pearl River Delta emphasises the integration 

of cross-city space toward a super mega city-region as a key national development strategy.  

As mentioned in Chapter 1.5.1, the GBA has a huge population size and geographical area. 

Under the master regional plan of the super mega-city region GBA, the government also 

defines some sub-mega-city regions to indicate the direction of urban integration in the 

relatively short-term future. Shenzhen Dongguan-Huizhou (SDH) area is one mega-city region 

around the core city of Shenzhen and includes two other prefecture-level municipalities, 

Dongguan and Huizhou. In 2012, the three cities' governments published the SDH Regional 
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The "Coordinated Development Master Plan (2012-2020)" promises to launch a series of urban 

integration policies, including highway and rail transit facilities, education and public health 

services, and encourage residents of the three cities to live as one city. However, local 

governments have different goals for their plan: the Shenzhen government hopes that sharing 

the urban functions with Dongguan and Huizhou can alleviate land resource shortages and 

"control the population's excessive growth" via promoting population immigration to other 

cities’ directions. The governments of Dongguan and Huizhou hope to share in Shenzhen's 

economic growth by taking over Shenzhen's industrial and population transfer. 

Notable, these regional plans are not static, the specific delineation of mega-city regions has 

been changed multiple times since the 1990s (Zhang et al., 2018). Zhongshan, as one of the 9 

prefecture-level municipalities within the GBA, was a part of the SDH area in the master plan 

because of its location on the western coast of the bay separated by the Pearl River Estuary. 

Chinese government believes that large-scale infrastructure projects can effectively promote 

inter-city cooperation in the GBA area, and some previous qualitative research supported this 

from statement (Li et al., 2014; Xu & Yeh, 2013). The Shenzhen-Zhongshan Bridge is a key 

infrastructure development plan that  connects Shenzhen and Zhongshan by crossing the Pearl 

River Estuary and is planned to open by the end of 2024 (Figure 5.1). The 24 km long bridge 

equipped with a motorway stand would be able to cut commuting time from Shenzhen to 

Zhongshan from the current 2 hours to about 30 minutes.    Based on this infrastructure 

construction, the local governments raised the “Shenzhen-Zhongshan same city” integration 

policy in 2019 (Government, 2019).   
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Figure 5.1 Map of SDH area and Zhongshan City 

Predicting future urban structure and traffic flows in cities, especially by visually 

demonstrating the impact of urban intervention measures is critical for supporting relevant 

policy decisions about urban planning, infrastructure development and promoting sustainable 

growth. Urban simulation models offer several strengths, including their ability to simulate 

complex urban processes, explore alternative scenarios, and support evidence-based decision-

making. In this chapter, a simulation model is established to forecast the potential impacts of 

specific urban interventions on urban spatial structure, utilising the urban analytic framework 

proposed in this doctoral research. 
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5.1 Data collection 

Boeing (2017) introduced OSMnx, a Python package designed for downloading, analysing, 

and visualising street networks sourced from OpenStreetMap (OSM). With OSMnx, users can 

generate network graphs and execute network-based computation upon the generated graph. In 

this study, the road network is downloaded from the OpenStreetMap via the package OSMnx, 

and the download parameters have been set as "drive" to load the drivable road network open 

until Jan 2024 (Figure 5.2). The network does not include the proposed cross-sea bridge 

between Shenzhen and Zhongshan. Thus, the edge has been manually added to the network 

according to the polished road planning in order to calculate the future scenarios' travel costs. 

 

 

Figure 5.2 Road network downloaded from OSMnx 
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The second dataset originates from Baidu, a prominent internet search and navigation service 

provider in China. Baidu provides a range of widely used internet services and mobile 

applications. Their Location-Based Service (LBS) automatically collects and combines human 

movement data from different applications with fine granularity, encompassing all populations. 

Within the SDH region, Baidu's data covers approximately 38,270,000 residents distributed 

across 15,970,000 working and residential sites. The dataset used in this chapter is collected 

and analysed based on the one-month period in November 2020. This dataset provides a more 

comprehensive source for investigating human mobility within the mega-city region compared 

to traditional surveys. 

Moreover, Baidu's dataset includes user portrait data associated with travel information, which 

is collected by area simultaneously. This additional information allows for the analysis of 

potential connections between residents' mobility patterns and social characteristics. Although 

they can only provide aggregated data by the percentages of each attribute due to the privacy 

issue with mobility data, similar to the London census data we introduced in Chapter 4.3.1, it 

would still fulfil the data requirement for establishing the simulation model. Table 5.1 below 

lists the columns of the user portrait data and the data sample.   
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Table 5.1 Data sample of user portrait data 

Category Class Example 

Location Area Name 松岗街道  

(Songgang Street) 

Area Number 440303001 

Population Sum_all 16547 

male 12177 

female 4370 

age <18 562 

18-24 4601 

25-34 7338 

35-44 3525 

45-54 517 

55-64 4 

>=65 0 

Education High school or below 10987 

College 3996 

Bachelor or above 595 
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Category Class Example 

Income <=2499 527 

2500-3999 7378 

4000-7999 4379 

>=8000 2211 

Car Ownership (Private Car) >=1 5578 

0 10969 

5.2 Design of the simulation framework 

In this chapter, a simulation workflow is established to forecast the potential impacts of specific 

urban interventions on urban spatial structure, utilizing the urban analytic framework proposed 

in this research. Building upon the two-step spatial interaction model introduced in Chapter 3, 

the simulation model tests various policy assumptions, including population growth and 

migration, development of transport facilities, and changes in socioeconomic characteristics. 

These assumptions are incorporated into the simulation model to predict changes in travel 

behaviour within the urban area. Furthermore, the simulation model evaluates the potential 

alterations in functional spatial organization, drawing on the regionalization algorithm 

proposed in Chapter 4. This algorithm plays a crucial role in delineating urban functional zones 

and enables a comprehensive examination of how specific intervention may influence the urban 

spatial structure within the SDH regions.  The simulation model is designed as Figure 5.3 below: 
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Figure 5.3 Design of integrated simulation model 

• Step1: Generating the travel cost based on the current road map.  

Based on the road network download by OSMnx, we applied the Dijkstra's shortest path search 

algorithm to search the shortest distance for each pair of zones (Hagberg & Conway, 2020), the 

parameter of weight has been set as the travel time, which could highlight the difference in 

travel cost after the new Shenzhen-Zhongshan bridge opened. 

• Step 2 Using socioeconomic data to cluster the Shenzhen-Dongguan Huizhou three 

cities: 

Like the algorithm introduced in chapter 4, we employ the k-means method to partition 

Shenzhen-Dongguan-Huizhou (note the new area, Zhongshan, is not included) into k distinct, 

non-overlapping clusters. Determining the value of k depends on the goodness of fitting for the 

OSGM model, which calculates the Root Mean Squared Error (RMSE) of the delineated 

OSGM model to find the optimised number of k to improve the goodness of fitting, the detailed 

description of this method could refer to the section 4.2.2. 
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• Step3 predict the localised distance decay in the Shenzhen-Dongguan-Huizhou (SDH) 

After determining the optimal number of clusters (k) and identifying the social groups within 

the modelling space, the Origin-Specific Gravity Model (OSGM) is utilised to fit the distance 

decay. This involves using the localised distance-decay parameter as a proxy for the entire 

group's distance-decay parameters. 

• Step 4: Using same classifier to group areas in Zhongshan to predict the localised 

distance-decay parameters. 

In this step, an assumption has been made here is once Zhongshan joins the SDH area, the 

residents with similar socioeconomic characteristics will share similar travel behaviour with 

existing residents in the SDH area. Thus, we use the same classifier trained in the last step to 

fit areas in Zhongshan to the existing social group, estimating the localised distance-decay 

parameters. 

• Step 5: Updating the population, road network and travel cost. 

For updating the travel cost after applying the intervention, the new Shenzhen-Zhongshan 

bridge is added to the existing road network segmentally based on the transport plan (LTD, 

2014). The travel time has been calculated according to its designed speed (100km/h).  After 

adding the new edges, the Dijkstra's shortest search re-runs to derive the updated travel cost. 
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• Step 6: Generating the “synthetic” travel flows. 

With the localised distance-decay parameters in SDHZ areas and updated travel flow, we could 

generate the forecast travel flow after the intervention applied. The synthetic travel flows are 

generated from the travel flows are predicted based on the origin-specific gravity model 

introduced in section 4.2.1.   

𝑡𝑖 = ∑ 𝑡𝑖𝑗

𝑗

= 𝑂𝑖
𝛼𝑖 ∑ 𝐾

𝐷𝑗
𝛾𝑖

𝑑𝑖𝑗

𝛽𝑖
 

𝑗

(22) 

𝑇 = ∑ 𝑡𝑖

𝑖

(23) 

Where 𝑡𝑖𝑗is travel flow between zone 𝑖 and zone 𝑗,  𝑂𝑖 is observed origins totals from zone 𝑖 

and 𝐷𝑗 refers to observed destinations totals to zone 𝑗, 𝑑𝑖𝑗 is the main travel distance between 

origins and destinations, and 𝛽 is a parameter related to the distance decay.  

To The Oi and Dj could be further adjust based on the specific policy and scenarios assumptions. 

• Step 7: Regionalisation Algorithm for Delineating the Urban Functional zones (UFZs) 

for the Shenzhen-Dongguan-Huizhou-Zhongshan area. 

Once we get the “synthetic” travel flows from the last step, the final step of this urban 

simulation model is applying the novel regionalisation algorithm introduced in section 3.4.3 

for delineating urban functional zones by searching for the best partition with the best goodness 

of fitting the spatial interaction models.  

In this chapter, we adopt the second setting which allows the inter-city flows for each zone are 

dynamically updating according to the current boundaries during iteration processing. This 
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means that inter-city flows may be reclassified as intra-city flows following the iterations of 

boundary adjustments. 

The tabu search algorithm starts from the current administrative boundary of the four cities and 

the output results could indicate that future UFZs within this mega-city region consist of the 

four cities. 

5.3 Simulation results 

In this section, we will first present the urban simulation model baseline for the year 2018 in 

the SDHZ area. This baseline model will provide an overview of the current situation in the 

area before any urban interventions are applied. The baseline model primarily involves steps 

1-4 of the simulation model framework. 

Following the presentation of the baseline model, we will introduce the updated simulation 

results after interventions are applied. These results will demonstrate the impact of the 

interventions on the urban spatial structure and will reflect changes in travel behaviour, 

socioeconomic characteristics, and functional spatial organization within the SDHZ area. 
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5.3.1 Baseline in 2020 

Figure 5.4 provides an analysis of the local distance-decay parameters in the SDH area for the 

year 2020. The areas shaded in lighter blue represent smaller absolute values of the distance-

decay parameter, suggesting a gentler decline in interaction as distance increases within those 

regions. Conversely, the regions depicted in darker colours indicate a steeper distance-decay 

effect, demonstrating a more rapid decrease in interaction as distance from these zones 

increases. This pattern mirrors the spatial distribution observed in London (section 4.3.2), 

where highlighted values tend to cluster in city centre areas. Regions displaying darker colours 

are primarily located at the borders or are distant from city centres, signifying stronger distance-

decay effects. 

 

Figure 5.4 The local distance-decay parameters in the SDH area 
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In Chapter 4, the methodology and results revealed a significant correlation between the 

distance decay effect and the spatial structure, which socioeconomic factors could influence. 

We adapted and applied a similar model to the SDH area as one of the key steps in the 

simulation model. Specifically, in our case study of the SDH region, we identified that k=6 is 

the optimal value for maximising the fit of the OSGM. This optimum value effectively 

illustrates the urban spatial structure, particularly when linked with the local socioeconomic 

characteristics. The detailed results and explanations are below, alongside Figure 5.5 and Table 

5.2. 

 

Figure 5.5 The k-means cluster results for the socioeconomic characteristics in SDH areas 
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Table 5.2 The distance decay and socioeconomic characteristics for groups of areas in SDH areas  

Group 

 

Group 

Name 

Medi

an 

Age 

Average 

Income 

(RMB/Month) 

Higher 

Education 

Rate (%) 

Car 

Ownership 

(%) 

Travel 

time 

(seconds) 

Beta 

1 Central Business 

District elites 

36.78 12535.40 0.48 0.19 1309 -3.24 

2 Urban core 

areas achievers 

34.88 10695.79 0.41 0.15 1381 -3.46 

3 Shenzhen 

commuters 

32.35 9008.55 0.31 0.10 1529 -3.75 

4 Suburban 

industrial 

workers 

34.70 7456.71 0.26 0.12 1596 -3.39 

5 Outer suburbs 

residents 

32.64 6081.39 0.15 0.09 1774 -4.12 

6 Non-urban rural 

areas 

34.16 4902.50 0.12 0.07 2377 -3.94 

 

Central Business District elites (group 1) are only located in the most central regions in 

Shenzhen. They have the highest median age, average income, and higher education rate. They 

also have the highest rate of car ownership and the shortest travel time. The distance decay 

factor is lower compared to other groups, indicating less sensitivity to distance or better 

accessibility to destinations (likely due to higher income and car ownership enabling more 

efficient commuting options). This suggests that wealthier, more educated individuals have 
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better access to resources and can afford to live closer to work or have more efficient 

commuting mean. 

Urban core areas achievers (group2) are the second oldest group which has a slightly lower 

income, car ownership, and higher education rate compared to Group 1 but much higher than 

other groups. This area is located in Shenzhen's relatively central areas, as well as the most 

central single area for Dongguan and Huizhou. The distance decay is slightly higher compared 

to Group 1, this group's travel time is still short, maintaining relatively efficient travel but 

begins to show signs of reduced mobility compared to the wealthiest group. 

Group 3 is mainly for the Shenzhen commuters who live in the area surrounding the city's 

core areas. The only exception is Songshan Lake district in Dongguan, which is widely 

considered Shenzhen’s satellite area. This group is the youngest, with significantly lower 

income and education levels than the first two. Their car ownership is significantly lower, and 

their travel time has significantly increased. The distance decay is also higher than the two 

previous groups, indicating a much greater sensitivity to distance, possibly due to the inability 

to afford living closer to central areas or workplaces. However, the income of this group is still 

higher than any other group below, indicating the unique privileges of Shenzhen’s economics 

within the SDH area. 

Suburban industrial workers (group 4) see a slight increase in median age but continues the 

trend of lower income and education rates compared to Shenzhen commuters. These areas, 

mainly in Dongguan and Huizhou, surround the cities' central areas. Their car ownership 

slightly increases compared to Shenzhen commuters, but travel time also increases. This fact 

may mean they could have a mix of travel modes, making their sensitivity to travel costs 

moderate. 
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Outer suburbs residents (group 5) are younger, with the second-to-lowest income and 

education. They also have low car ownership and the second-highest travel times. This group 

likely lives in Dongguan and Huizhou areas, which are far from employment centres (or 

referring to the word "exurban"). The highest distance decay value indicates the most 

considerable distance sensitivity, reflecting this group's substantial barriers to efficient mobility. 

Non-urban rural areas (Group 6) only appear in Huizhou. Unlike Shenzhen and Dongguan, 

whose urbanisation rates are almost 100%, Huizhou has a lot of rural and mountain areas. The 

groups 6 are similar in age to Groups 2 and 4 but has the lowest income and education rates of 

all groups. They have the lowest car ownership, the longest travel times and the second-highest 

distance decay, indicating their mobility challenges. Considering the regional background, and 

more than 80% of travel flows are local flows within the same area, these areas are not a part 

of the city-region areas but are more like rural areas.  
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Figure 5.6 The k-means cluster results for the socioeconomic characteristics in SDH plus Zhongshan 

areas 

The subsequent phase in the simulation model applies the same classifier to categorise areas 

within Zhongshan to predict localized distance-decay parameters. In this model, the city centres 

of Zhongshan are classified into Group 2 (Urban core areas achievers), aligning with similar 

categorizations in Dongguan and Huizhou. Surrounding the city centre, the areas are segmented 

into Suburban industrial workers (Group 4) and Outer suburbs residents (Group 5); specifically, 

the Northern and Western areas fall into Group 4, while the Southern and Eastern areas are 

categorized into Group 5. Additionally, the northern region adjacent to Foshan is incorporated 

into the same group. The outer suburbs and coastal regions of Zhongshan are designated as 

non-urban rural areas. 
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5.3.2 Predilect the future of mega-city region in 2035 

As discussed in Section 5.1, Shenzhen is aiming to regulate its population growth, leading to a 

redistribution of migration to neighbouring cities such as Huizhou and Zhongshan. Dongguan 

tends to promote a mild increase in their population as well. In alignment with the official 

spatial master plan covering the period from 2020 to 2035, the projected data indicates that 

Huizhou and Zhongshan will undergo considerable population increases by the year 2035, with 

each city expected to see growth rates exceeding 40% as the Table 5.3 listed. Conversely, 

Shenzhen and Dongguan are anticipated to experience more moderate increases in population, 

with projected growth rates of 8.200% and 11.975% respectively. 
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Table 5.3 The population growth targets set for the four cities 

City Official Documents Current 

Residents in 

2020 (Million) 

Planned residence 

in 2035 (Million) 

Increase 

rate (%) 

Shenzhen Outline of Territorial 

Spatial Planning, Shenzhen 

(2020-2035)  

17.560 19.000 8.200 

Dongguan Dongguan City Population 

Development Plan (2020-

2035) 

9.645 10.800 11.975 

Huizhou Huizhou City Land and 

Space Master Plan (2021-

2035) 

6.042 8.500 40.682 

Zhongshan Zhongshan Population 

Development Plan (2020-

2035) 

4.418 6.200 40.335 

 

Following the adjustment based on Zhongshan City's master plan for developing the Cuiheng 

City New Centre, significant changes are anticipated for the Nanlang area. This development 

aims to transform the region into a hub for high-end manufacturing and a base for cultural and 

technological cooperation. The area, expected to house over 200,000 'high-end talent' residents, 

will undergo considerable demographic and socioeconomic changes. As a result of these 

planned changes, Nanlang's population and socioeconomic status will be significantly revised 

upwards, transitioning from Non-urban rural areas to Shenzhen commuters to reflect the 

improvement in the area's socioeconomic characteristics.  
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Thus, we adjust the origins and destinations (denoted as Oi and Dj) for each zone in accordance 

with the rate of population increase in each respective city. This adjustment is based on the 

assumption that the number of job opportunities, which is more closely related to Dj, will grow 

at the same rate as the population increases. 

5.3.2.1 Applying the urban intervention 

The edge has been manually incorporated into the network by referencing the construction plan 

of the Shenzhen-Zhongshan Bridge to facilitate the calculation of travel costs for future 

scenarios. As Figure 5.7 shows, At Zhongshan side, the first exit of the road is at Ma’an Island, 

the second exit is the Licun and the third exit is Bo’ai Road. At Shenzhen side, the only exit is 

Bao’an Airport.  

 

Figure 5.7 The exits of Shenzhen-Zhongshan bridges (image source: Baidu map) 
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The parameters for the new edges have been set according to the master plan, with the travel 

time calculated based on the designed speed of 120 km/h, the detailed number could be found 

in the Table 5.4. 

Table 5.4 Parameters of new edge 

Road Entry Exit Distance (km) Travel time (seconds) 

1 Bo’ai Road Licun 10.48 377 

2 Licun Ma’an Island 3.42 123 

3 Ma’an Island Bao’an Airport. 24.13 868 

 

After incorporating the new edge, the nearest path has been recalculated using Dijkstra's 

shortest path search algorithm to update the travel cost. This updated travel cost demonstrates 

that the distance and travel time from Zhongshan to Shenzhen have significantly decreased. 

Figure 5.8 illustrates an example of the shortest road from Nanlang to Bao'an, comparing the 

scenarios before and after the road opening. 
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Figure 5.8 The shortest road from Nanlang to Bao'an, comparing the scenarios before (left))and 

after(right) the road opening 

5.3.2.2 Generating the synthetic travel flows 

The synthetic travel flows are designed to capture the dynamics of human mobility patterns 

following the application of an intervention. These travel flows are predicted based on the 

origin-specific gravity model (OSGM) with updated travel costs. Given that the OSGM 

operates on the principle of being specific to the origin, it can be considered analogous to an 

origin-constrained gravity model. Therefore, the description and analysis of the travel flows 

will be discussed based on their origin. 
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Figure 5.9 Change of average travel time by origin in SDHZ.  

Figure 5.9 depicts the changes in average travel time originating from different areas within 

the four cities. In this figure, areas marked in red indicate an increase in average travel time 

from those locations, while areas in blue denote a decrease in average travel time. Specifically, 

the city centre areas around Shenzhen, Huizhou, and Zhongshan exhibit reduced average travel 

times. In contrast, most areas in Dongguan and the peripheral regions of Shenzhen, Zhongshan 

show increasing trends in travel time. Notably, Huizhou shows a different trend for their edge 

areas; the north-eastern areas of Huizhou exhibit a significant decrease in travel time, but other 

peripheral areas show an increase in travel time.  

5.3.2.3 Output of the regionalisation algorithm 

After getting the updated travel flow, the last output of the simulation model is outputting the 

results of delineating the urban functional zones in the SDHZ area. For comparison impact 
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between before/after the urban intervention applied, the regionalisation algorithm runs two 

time based on the different travel flows. The results are list below:   

Figure 5.10 illustrates the results from setting 1, focusing on statistical inter-city flow, which 

reveals the current functional boundaries within the SDH area. Since the synthetic travel flows 

are generated based on distance decay laws, the original statistics for goodness of fit are already 

quite high, with an R-squared value around 0.90 for the administrative boundaries. However, 

some zones still have noticeable shifts that will boost the new R-square to 0.916, indicating 

noncoincidence between administrative and functional boundaries. 

The most significant observation from the figure is the expansion of Huizhou's functional zones, 

which extend into several zones in the northwest of Shenzhen. Additionally, some areas in the 

eastern part of Dongguan have been reassigned to Huizhou. This reassignment likely reflects 

the impact of population growth control policies. While Shenzhen and Dongguan are set to 

minimise their population growth until 2035 nearly, Huizhou is expected to see a substantial 

increase in its population, enhancing its role within the SDH area. Additionally, some areas 

located near the junction of the administrative boundaries of the three cities, which originally 

belonged to Dongguan and Huizhou, will be reassigned to Shenzhen. These areas are far from 

the city centre of Dongguan/Huizhou but have convenient motorway access to Shenzhen.  

Furthermore, the northern area of Shenzhen has been reallocated to Dongguan, possibly due to 

deeper integration within the urban space. 

Despite expectations for significant population growth in Zhongshan by 2035, the Zhongshan 

areas remain separate from the SDH (figure 5.10a) area due to the lack of a cross-sea bridge 

linking it to Shenzhen and the travel time from west coast to east coast is still very high.  
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After the urban intervention of the new road applied, we re-executed the flow generating 

algorithm and regionalisation algorithm for the four cities involved. The outcomes, depicted in 

Figure 5.10b, show a significant alteration in the spatial dynamics of the region. Notably, this 

modification has shifted the affiliation of the Nanlang area from being part of Zhongshan to 

now being associated with Shenzhen, highlighting the impact of the new interventions on 

regional boundaries of urban functional zones.
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Figure 5.10(a) and Figure 5.10 (b)The delineation of unfunctional zones in the SDHZ area before intervention was applying (left); after the intervention 

applying (right) 
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5.4 Discussion and policy implication 

5.4.1 Driving factor of the urban functional zones change 

 

Figure 5.11 Simulation results without population growth 

The first driving factor of the simulation results is population change. Population growth within 

the SDH area is unsynchronised for policy and planning reasons. Figure 5.11 shows the 

simulation results without the assumed population growth. The functional zones of Shenzhen 

are extended to both the west wing and east wing of Dongguan. Meanwhile, Huizhou's 

functional zones are generally the same as its administrative boundaries. Comparing Figure 

Shenzhen

Dongguan

Huizhou

Zhongshan



Application: Predicting the Impact of Changes in Transport Infrastructure on Urban Integration 

 

 

156 

5.11 and Figure 5.10 (a), in which Huizhou extended its urban functional zones to Dongguan 

and Shenzhen, it confirms that the population growth control policies could be one of the most 

significant driving factors for the simulation results. 

Besides, the transport infrastructure is another driving factor for the simulation model. As 

illustrated in Chapter 5.4.3, applying urban intervention through the new road will promote the 

change of regional boundaries of urban functional zones. However, unlike population change, 

new transport infrastructure only has local influence on those areas that are directly linked to 

it. 

5.4.2 The debate of good commuting pattern 

The simulation results present an intriguing scenario where the average travel time increases 

after the opening of the proposed new road. This outcome appears paradoxical, as it is 

commonly believed that new transportation infrastructure would enhance the mobility of 

residents, thereby reducing travel time. However, our simulation contradicts this assumption, 

with Figure 10 clearly demonstrating that travel times have actually increased, particularly for 

areas that were expected to benefit significantly from these transport facilities. The rationale 

for this unexpected result is that the new bridge brings new job opportunities within the 

accessible travel cost to the Zhongshan zones, encouraging residents in Zhongshan to commute 

long distances.  
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Figure 5.12 The increased average travel distance after the new bridge open  

The unexpected increase in travel time could be attributed to the fact that the new road 

infrastructure, such as a bridge, may lead to new job opportunities becoming accessible within 

a reasonable travel cost for Zhongshan zones. This, in turn, encourages residents to commute 

longer distances, possibly due to better employment prospects or higher wages, leading to an 

overall increase in average travel times. 

This result could link to a long-term discussion of "what constitutes good commuting." It raises 

questions about whether the primary goal should be to minimise travel time or increase 

accessible job opportunities. Practically, this debate could relate to the specific goals that 

planners want to achieve. On the one hand, trends to reduce commuting time and create 

walkable commuting, such as the concept of a "15-minute city," have been listed as priorities 

for some governments. On the other hand, the concept of the "(super) mega city-region" and 
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"urban integration" encourages people to share industry cooperation and job opportunities in 

the larger area, boosting economic growth. 

The case of the new bridge in Zhongshan, as per the master plan, illustrates this tension between 

facilitating shorter commutes and fostering economic growth through improved regional 

connectivity. Finding the right balance between reducing travel time and expanding job 

opportunities becomes a central challenge for urban planners. This balance will significantly 

impact how transport infrastructure development priorities are reassessed, highlighting the 

need for a holistic approach that considers the diverse impacts of new transportation projects 

on urban areas. 

5.5 Chapter conclusion 

In this chapter, a novel simulation model has been established to understand how specific 

interventions affect the human mobility pattern and ultimately influence the spatial structure of 

the Shenzhen-Dongguan-Huizhou (SDH) area after the Zhongshan joined this city region in 

the future. This model echoes the last research objective of this PhD research, which connects 

the human mobility pattern, socioeconomic characteristics, and spatial structure, supporting the 

related decisions by the government and planners to predict future scenarios with specific urban 

interventions. 
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6 Discussion 

 

6.1 Improving the modelling framework for understanding urban 

spatial structure in mega city-regions  

The relationship between spatial interaction and spatial structure has been debated for over 50 

years without a clear conclusion (Griffith, 2007; Griffith & Jones, 1980; Oshan, 2020). A key 

step of the model framework proposed by this doctoral research is the investigation of localised 

variations in distance decay within spatial interactions through the calibration of an origin-

specific gravity model.  By employing two case study areas, the Greater London Area (GLA) 

and the Shenzhen-Dongguan-Huizhou (SDH) regions, this research elucidates the difference 

in describing the urban spatial structure of single-city metropolitan areas and mega-city regions 

from the perspective of distance decays in spatial interaction. This thesis suggests significant 

spatial variability in the distance decay component of the spatial interaction model, and such 

distance decay effect can reveal the functional urban spatial structure. 
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6.1.1 Incorporating socioeconomic factors when modelling travel pattern 

and urban spatial structure 

We examine the spatial distribution of the localised distance decay effect concerning 

commuting behaviours within the GLA in Chapter 4. The associated Figure 6.1(a) illustrates 

that in the central regions of London, the commuting intensity decays with distance—a 

phenomenon known as the 'distance decay effect'— which occurs more gradually compared to 

the more pronounced decay observed in the peripheral areas. One hypothesis attributes this 

pattern to the significant edge effect influencing distance decay distribution due to the distance 

from the city centre. This suggests that the observed spatial patterns in local distance-decay 

parameter estimates arise from varying distributions of distances between each origin and all 

destinations. In other words, the distance from the city centre plays a crucial role in shaping 

the decay of spatial interactions, with areas closer to the centre exhibiting different interaction 

patterns than those farther away (Clark, 1951). This framework has garnered acknowledgement 

in early studies, particularly those focusing on morphological spatial structures (Johnston, 

1973). The conventional approach to modelling this phenomenon involves quantifying the 

decay of commuting flows as a function of the distance from the 'city centre' (Halás et al., 

2014).  
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Figure 6.1 (a) and 6.1 (b) The localised distance decay in GLA area (left) and SDH area (right) 

This theory appears to appropriately explain dynamics within a single-city area, as the 

functional centre is typically located within the central areas inside the boundary—this is 

corroborated by our Greater London Area (GLA) case study. However, when the scale 

expanded to encompass a polycentric mega-city region, the application of this theory became 

more complex. Multiple functional centres exist in such regions, each with distinct functional 

roles contributing to shaping the urban structure, and the functional centres are not located in 

the geometric centre of the mega city-region.  

The Shenzhen-Dongguan-Huizhou (SDH) region is an illustrative case where Shenzhen's 

functional centre, which also is the most crucial functional centre in the SDH area, is positioned 

at the southwest corner of the SDH area. In this instance, the most pronounced distance decay 

effects are not observed near the geometric centre of the area as they are more gradual in regions 

distant from this geometric midpoint yet nearer to the functional centres at the southern end of 

the entire region. This pattern is depicted in Figure 6.1(b), emphasising the importance of 
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functional centres over geometric centrality in influencing spatial dynamics and distance decay 

within the mega-city region. The comparative findings suggest that while distance contributes 

to the distance decay effect, it is not the sole determinant influencing the intensity of 

interactions within urban systems. This observation aligns with conclusions drawn from recent 

research, indicating that other non-spatial elements also play critical roles (Park et al., 2021; 

Šveda & Madajová, 2023).  Thus, when modelling human mobility in the mega-city area, the 

functional urban spatial structure we should consider more complicated effects interplayed 

rather than single distance-related effects. 

In this thesis, we propose a novel model framework that uses residents’ socioeconomics 

characteristics to capture the local variations of the distance decay. Previous research has 

confirmed the link between travel patterns, especially commuting patterns and socioeconomic 

characteristics (Gao et al., 2024; Shen & Batty, 2019). Park et al. (2021) raised a hypothesis 

that the localised distance decay effect in travel behaviour could be associated with the 

socioeconomic characteristics of residents after calibrating distance decay parameters of travel 

flow in London. Our research validates the hypothesis that socioeconomic characteristics can 

effectively represent local variations in distance decay. The improved goodness of fit provides 

evidence in our models, which indicates a more accurate reflection of real-world travel pattern 

behaviours. Another advantage of using residents’ socioeconomic characteristics is that they 

do not separate from spatial factors. As in both case studies shown in Figure 6.1, the clustering 

results represent significant spatial autocorrelation, even though our k-means algorithm does 

not have any spatial factors involved. One possible explanation is that the decision of locations, 

especially for residents' areas, is usually related to spatial factors, e.g., accessibility. This result 

implies the interaction between the socioeconomic and spatial elements, reinforcing the 
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validity of our approach in capturing variation in travel behaviour and distance decay within 

varied urban spaces. 

6.1.2 Modelling mega city region using hierarchical vs unified system 

Another critical discussion is whether to treat the polycentric mega-city region as a unified 

system in modelling human mobility within mega-city regions. Recent research increasingly 

suggests that the concept of city boundaries is diminishing in importance as urban spaces begin 

to fuse and traditional boundaries become indistinct (Batty, 2023; Dong et al., 2024).  This 

trend aligns with the concept of a 'functional urban area' or 'metropolitan region', which 

encourages applying a holistic approach to understanding and modelling mobility patterns 

encompassing the entire mega-city region and even larger scales regions (Batty & Milton, 2021; 

Lomax et al., 2022; Lopane et al., 2023). However, our results suggest that there are still 

boundary effects in the human mobility pattern that could be observed across the urban system 

within the SDH area. The results from section 4.5.1 indicate that hierarchical modelling the 

area with a suitable boundary for sub-system could enhance the model's efficacy. Additionally, 

modelling the travel behaviours of individuals within the same functional city might improve 

the accuracy of representing the patterns of trips. Besides, the distance decays in Figure 6.1 (b) 

also show some discontinuity around the administrative boundary of Shenzhen-Huizhou and 

Dongguan-Huizhou. This discontinuity also implies the boundary effect may exist between the 

functional zones of different urban systems. Localised distance decay patterns typically emerge 

within each administrative boundary of these sprawling urban areas, transitioning from denser, 

granular centres to areas of more pronounced decay in the peripheries.  Therefore, modelling 

the mega-city region, such as the SDH areas, using a hierarchical system may offer a more 
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nuanced and effective approach than a unified model. A hierarchical system can accommodate 

the varying levels of influence exerted by different centres within the region, reflecting the 

multi-layered nature of urban interactions and mobility patterns indicate that implementing a 

suitable boundary could enhance the model's efficacy. Additionally, modelling the travel 

behaviours of individuals within the same functional city might improve the accuracy of 

representing the patterns of trips. Besides, the distance decays in Figure 6.1 (b) also show some 

discontinuity around the administrative boundary of Shenzhen-Huizhou and Dongguan-

Huizhou. This discontinuity also implies the boundary effect may exist between the functional 

zones of different urban systems. Localised distance decay patterns typically emerge within 

each administrative boundary of these sprawling urban areas, transitioning from denser, 

granular centres to areas of more pronounced decay in the peripheries.  Therefore, modelling 

the mega-city region, such as the SDH areas, using a hierarchical system may offer a more 

nuanced and effective approach than a unified model. A hierarchical system can accommodate 

the varying levels of influence exerted by different centres within the region, reflecting the 

multi-layered nature of urban interactions and mobility patterns. 

Political practices in China are another reason to promote this thesis to treat SDH areas as a 

hierarchical system rather than a continuous space. Local governments, particularly those at 

the prefecture level, have more considerable authority over urban planning and the 

development of public transportation infrastructure than Western countries’ local governments 

(Chen & Yeh, 2023). This substantial local autonomy means that urban development and 

transportation networks can significantly differ from one jurisdiction to another, contributing 

to the heterogeneity observed within the mega-city regions and leading to distinct urban 

characteristics and functional zones. Another realistic issue is that the urban administrative 
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boundaries, to some extent, reflect the power struggle over territories among local governments, 

which makes it challenging for cities to accurately and consistently represent the true spatial 

extent of urban areas (Cartier, 2022; Chen & Yeh, 2023). An interesting observation is that 

Chinese scholars are more interested in identifying urban boundaries than their colleagues in 

Europe and America (Chen & Yeh, 2022; Gu et al., 2023; Li et al., 2020). It may be associated 

with the country-specific administrative and planning framework, particularly the prefecture-

level city-led planning approach. Consequently, the spatial structure and mobility patterns in 

regions like SDH are needed to delineate boundaries of hierarchical systems and to better 

model and understand the urban dynamics in such polycentric areas. Meanwhile, delineating 

the urban functional area could better support the planning practice in China. 

6.2 Calibration spatial interaction modelling with fine granularity 

Initially, SIMs were developed as an aggregate method designed to forecast flows between 

zones using broad data indicators such as population, GDP, etc. The era of big data allows for 

the development of models based on granular spatial resolution, leading to a more accurate 

representation of real-world interactions on a large-scale (Batty & Milton, 2021). However, 

this trend also brings new challenges in calibrating the spatial interaction model.  

In section 2.1.5, some research gaps have been identified for applying spatial Interaction 

models in small zones within urban systems from previous studies. This subchapter will 

explore various considerations and methodologies for calibrating spatial interaction models, 

drawing upon empirical evidence gathered during this doctoral research. The discussion will 
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include choosing an estimation method, and trade-offs between granular resolution and 

prediction reliability. 

6.2.1 Choosing estimation methods 

Selecting the appropriate estimation method for calibrating parameters in a Spatial Interaction 

Model (SIM) is indeed crucial, as it greatly affects the model's accuracy and interpretability. 

The calibration of SIMs primarily employs two methodologies: the regression-based method 

and the iteration-based maximum likelihood estimation (MLE) calibration algorithm, as 

introduced in Section 2.1.1. While both methods are theoretically grounded in MLE theory, the 

choice between them depends on the specific characteristics of the model and the nature of the 

data at hand which may cause a significant difference in goodness-of-fitting (Fotheringham & 

O'Kelly, 1989).  

In this doctoral research, both calibration methods were applied to fit different research 

contexts: Chapter 3 utilises the iteration-based method for calibrating parameters of the 

Hierarchical Spatial Interaction Model (HSIM). In Chapters 4 and 5, the Origin-Specific 

Gravity Model (OSGM) is calibrated using the Poisson regression method. 

The calibration process for each sub-model in the Hierarchical Spatial Interaction Model 

(HISM) generally follows the calibration method utilised in the QUANT model, as outlined by 

(Batty & Milton, 2021). This iteration-based method is a more flexible framework to set the 

iteration conditions (e.g. average travel cost or difference in flows). In practical applications, it 

has been observed that this iteration-based framework typically yields a slightly better 

goodness-of-fit for predicting flows, possibly because of its good totality, compared to the same 
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constraint-condition models calibrated using the standard Poisson regression method. Table 1 

compares fitting performance between attractive-constrained iteration-based and attractive-

constrained Poisson regression-based method results in London with 2001 census data. 

However, some issues prevent us from adopting the iteration-based calibration method applied 

for all models. 

 

Table 6.1 Comparison of fitting performance between attractive-constrained gravity model using 

iteration-based method regression-based method. 

 Iteration-based 

Method 
Regression-based Method 

MAE 2.132 2.17 

RMSE 12.288 12.625 

R2 0.688 0.495 

 

The first issue concerning the use of iteration-based methods revolves around the demand for 

computational resources. As the research shifts focus more localised distance decay effects in 

Chapter 4 and Chapter 5, the necessity of running an iterative process for each relatively small 

area becomes impractical, particularly in extensive regions like the GLA, where the number of 

sub-models could approach 1000. This high number of sub-models significantly increases the 

computational burden, making the approach less feasible. 
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The second issue relates to the challenges of achieving convergence with iteration-based 

methods, which are particularly sensitive to the distance function, iteration criteria, threshold 

settings, and starting values. Typically, iteration-based methods perform well when applied to 

the entire area under study. However, issues arise when the analysis narrows down to subsets 

of travel flows, such as those originating from the same area or within the same social group. 

In these instances, it has been observed that some iterative processes fail to converge. One 

possible assumption is that the flows in the sub-areas do not follow the distance decay functions 

we set or that the increase/decrease of average travel cost does not follow the same ratio of the 

distance decay parameters (𝛽).  

One possible assumption for this lack of convergence could be that the travel flows in these 

subsets do not adhere to the predetermined distance decay functions. Alternatively, the 

variations in average travel costs might not align proportionally with the expected values 

derived from parameter b, which typically modulates the impact of distance on travel behaviour 

in spatial interaction models. This assumption gains further credence when considering that 

other researchers have identified the coexistence of different distance decay functions within a 

single urban system (Šveda & Madajová, 2023). Furthermore, the patterns illustrated in Figure 

6.2 indicate that some areas may exhibit a weak or non-existent distance decay effect which 

may cause the failure of the convergence. 
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Figure 6.2  Different distance decay formats could exist within one city (source: Šveda and 

Madajová,,2023) 

As a result, the local difference of distance decay might be hidden if only one set of general 

parameters was calibrated for the whole modelling system. This discrepancy may arise because 

sub-areas can exhibit unique travel patterns not adequately captured by universal distance 

decay parameters. This convergence issue also highlights the importance of localising the 

gravity model to reflect travel behaviours within different segments of the urban area. 
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6.2.2 Predicting zero interaction  

The issue of zero interactions between origin-destination (O-D) pairs is indeed not a new 

problem in modelling spatial interaction. Previous research raised this issue mainly because 

zero interactions would cause difficulty during the calibration process, particularly because 

logarithmic transformations are undefined at zero (Flowerdew & Aitkin, 1982; Fotheringham 

& O'Kelly, 1989; Sen & Sööt, 1981). Historically, this problem was not considered a major 

concern: when flows were aggregated over large areas, fewer instances of zero interactions 

could appear in the dataset. However, the shift towards more granular modelling units has 

exacerbated the zero-interaction issue. In finer resolution models, where the spatial units are 

smaller and the analysis more detailed, zero flows between O-D pairs become much more 

common due to the greater number of O-D pairs being considered, which naturally includes 

more pairs with no observed interactions, especially in less populated or less connected areas.  

Fotheringham and O'Kelly (1989) listed several potential solutions for this issue: One approach 

is to eliminate all zero interactions from the analysis, and another is to remove all origins and 

destinations related to zero interactions. The third approach, which is also the most widely used 

method for handling zero interactions, is adding a constant to the elements of the interaction 

matrix.  

However, all these solutions are imperfect when we apply them to our gravity models. 

Excluding zero flows from the dataset can induce biased parameter estimates, as this approach 

neglects the genuine absence or minimal interactions between specific origin-destination (O-

D) pairs. Such omissions can markedly skew regression outcomes and interpretations, 

particularly within a framework based on regression analysis. Furthermore, eliminating origins 
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and destinations linked to zero interactions is impractical in granular models, as this would lead 

to removing the whole dataset. In detailed models, it is common for nearly all areas to exhibit 

zero interactions with at least one other area. While adding a constant value to the O-D matrix 

might seem like a viable strategy to retain maximum information, this approach becomes 

problematic at the granular modelling level. For example, 63.5% of the O-D pairs recorded 

zero interactions in our GLA commuting flow data set, and the mean flow value across all 

observations was merely 2.88. Consequently, even the addition of a small constant can 

disproportionately influence the calibration outcomes, altering the distribution and magnitude 

of flow values significantly. 

Some techniques are suggested to reduce the influence of zero interactions based on empirical 

experience to establish the gravity model more granularly. Segmenting the data to isolate areas 

with high zero interactions and treating them as special cases within the model can also be a 

way to manage this issue. For instance, the HSIM model and OSGM applied in this doctoral 

study could significantly reduce the zero interactions by dividing the whole dataset into some 

sub-dataset. The zero-inflated gravity model has been widely used in economic gravity models 

to handle datasets with excessive zeros in the Poisson regression (Burger et al., 2009). 

Compared with the current method we used to predict the possibilities of travel in a single 

function, it first uses a model that predicts the occurrence of zero interaction, then uses another 

model for positive flows, offering a structured way to manage zero values (Martin & Pham, 

2020). 

In practical applications, it has been observed that the iteration-based calibration method 

exhibits greater resilience to zero interactions compared to regression-based methods, 



Discussion 

 

 

172 

primarily because it does not depend on logarithmic transformations. Nevertheless, a 

significant challenge with the iteration-based approach based on the O-D matrix is its tendency 

to overlook the underlying factors leading to the absence of flows between certain origins and 

destinations. This overlooking could result in the generation of unrealistic flows between areas 

where actual interactions should not occur. Moreover, excessive zero interactions can lead to 

convergence issues within the iteration-based method. This problem arises because a large 

presence of zeros challenges the foundational assumptions of the distance decay laws. One 

feasible solution is adjusting the value in the travel cost matrix to let the travel cost between 

the areas that are unlikely to have interactions (e.g., not accessible routes or policy prohibits) 

become extremely high, which could effectively prevent generating unrealistic flows.   

6.2.3 Errors in converting predicted flows to integers 

Low interaction presents a challenge that, while related to zero interaction, is distinct in its 

implications for spatial modelling. Given that travel flow data inherently count data, the values 

represent actual numbers of movements or interactions and, as such, should naturally be 

integers. Therefore, any flow predictions derived from iteration- or regression-based methods 

must be adjusted to integer values, as fractional values do not match real-world scenarios where 

individuals move between locations, not fractions of individuals. As discussed earlier, 

employing small geographical units with high spatial resolution in modelling tends to yield 

very low absolute flow values between most areas. This high granularity makes the data and 

subsequent operations extremely sensitive to processing or manipulation, potentially 

introducing significant errors in the analysis and modelling processes. Thus, this adjustment 
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must be conducted carefully to avoid distorting the underlying data patterns and to ensure that 

the model remains as accurate and representative of the observed phenomena as possible.  

Thus, we import an additional iteration process to check if the sum flows at the origin match 

the observed value. If not, it should continue fitting with the observed values until the 

discrepancies are reduced to a small fraction. This method could be performed better in the 

modelling practice than simply rounding up or rounding down, as the change of differences in 

the goodness-of-fitting indicators is usually less after executing this process. 

 

6.3 Uncertainty in urban modelling based on human mobility 

As George Box's renowned aphorism states, “all models are wrong"(Box, 1976). The topic of 

error and uncertainty has been a longstanding subject of discussion among scholars, especially 

within the context of urban modelling, where the complexity and dynamic nature of cities make 

it less feasible to establish a model with perfect accuracy. Understanding and addressing these 

uncertainties is crucial for establishing urban simulation models and supporting planning and 

policy decision-making.  Previous research has mentioned several factors, such as the model 

structure (Casman et al., 1999), input parameters (Ševčíková et al., 2007), and data transaction 

and processing (Yeh & Li, 2006). 

During the modelling process of this doctoral study, we identified the primary source of 

uncertainty as stemming from the human mobility of big data. In our case study of the 

Shenzhen-Dongguan-Huizhou (SDH) area, we depended heavily on mobile phone data to 
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analyse and model human mobility within this region because there is no reliable open dataset 

such as census data published by the government. Shifting from traditional survey data to 

emerging mobile big data, such as mobile phone data, is undoubtedly huge progress because 

new data mobile methods greatly reduce data collection costs and expand the sample size. 

Unlike survey data or other traditional datasets collected explicitly for research purposes, 

mobile phone data is considered 'passive data'. This term refers to data generated for purposes 

other than research and is subsequently utilised in studies without having been actively solicited 

or collected through direct inquiries (C. Chen et al., 2016).  

In the Shenzhen-Dongguan-Huizhou (SDH) area, our research employed two distinct mobile 

phone datasets provided by different operators, as detailed in Chapters 3 and 5, respectively. 

Both datasets were compiled in 2018, before the COVID-19 pandemic, and are comparable in 

size. Additionally, each data provider asserts that their dataset accurately reflects the general 

human mobility trends within the mega-city region. However, despite these similarities, notable 

discrepancies in travel behaviour patterns were observed between the two datasets. 

 

Figure 6.3 Difference of the urban functional zones when using different dataset 
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As the model's complexity increases, the dataset’s discrepancies could lead to significant 

variations in the simulation results when delineating urban functional zones. Figure 6.3 shows 

the difference between the two datasets using the same regionalisation algorithm. In the worst 

case, this uncertainty could influence stakeholders to make incorrect judgments based on the 

simulation results. Verifying the reliability of mobility big data is particularly concerning for 

urban simulation modelling. The lack of supplementary datasets for comparison or validation 

makes it challenging to ascertain the accuracy and representativeness of the big data being used. 

This situation highlights the need to add the validation process to control the uncertainty in 

data, e.g. running the model with additional data, which could enhance the reliability of the 

simulation results. 
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7 Conclusion 

7.1 Contributions of this study 

This study contributes to the field of urban analytics by proposing a comprehensive analytical 

framework to understand urban spatial structure transformation in mega-city regions from the 

human mobility perspective. Here are the key contributions: 

Improvement of Spatial Interaction Models: This research contributes in addressing the 

limitations of current spatial interaction models, which often assume uniform spatial 

distribution and neglect local variations by emphasising the importance of incorporating local 

characteristics to enhance model accuracy. This study improves spatial interaction models by 

localising the model and including local socioeconomic and spatial characteristics. In addition, 

this study also discussed some long-standing issues in applying the spatial interaction models 

and providing distinctive insight with empirical evidence of establishing gravity models in a 

more granular level. 

Delineation the Urban Functional Zones: The research proposes a novel approach to defining 

and delineating urban functional zones based on distance decay in human mobility patterns, 

moving beyond the traditional administrative boundaries. This method aims to better reflect 

the functional boundaries of urban areas, addressing the challenges of traditional models that 

fail to capture the extent and dynamics of urban spaces. 
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Analytical Framework for Urban spatial structure in Mega-city region: The research offers 

a framework to analyse urban spatial processes by integrating human mobility patterns, 

socioeconomic characteristics, and spatial structures. By establishing an integrated simulation 

model framework and testing it on the Great Bay Area, this doctoral study aims to help 

governments and planners to make informed decisions by predicting the outcomes of urban 

interventions on the spatial structure of mega-city regions over the medium to long term period. 

 

7.2 Future research direction 

Firstly, future research could focus on exploring distance decay variations in spatial interactions 

in more detail. As discussed in the discussion chapter, more than one distance decay law could 

exist within the same urban system. Therefore, developing more sophisticated models, for 

example, including multi-format distance decay functions, would better capture differences in 

spatial interaction within urban space. Meanwhile, the mechanism of how socioeconomic 

characteristics influence distance decay in spatial interactions is still unclear. Thus, more 

investigation is needed to explore the local variations in distance decay within different urban 

contexts and socioeconomic groups. 

Secondly, future research may address the challenges of modelling human mobility and spatial 

interactions within polycentric mega-city regions and delve into hierarchical modelling 

approaches that reflect the complex nature of these urban areas. The current framework is 

generally based on the assumption that multiple functional centres and their spatial influence 
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do not overlap, but the realistic situation could be more complex. Future studies could explore 

how the overlay influence of the polycentric functional centres could be reflected in human 

mobility and functional zones. 

Thirdly, tackling the specific technical challenges identified in establishing gravity models, 

especially at a granular level. These include issues related to zero interactions by applying the 

zero-inflated gravity model to predict the zeros interaction and a more detailed discussion of 

the potential reasons preventing convergence. Tackling these technical challenges effort would 

be beneficial in establishing a more reliable gravity model based on granular spatial units. 

Finally, more effort could be made to explore uncertainties in urban modelling to better 

understand the associated challenges, particularly those arising from using big data for human 

mobility analysis. This could involve validating models with additional datasets and 

developing methods to reconcile discrepancies between data sources. Future research could 

focus on methodologies for assessing and mitigating uncertainties in spatial data and model 

design, thereby improving the robustness of urban analytical frameworks. 
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Appendix A: List of Abbreviations 

GLA Great London area 

HSIM Hierarchical spatial interaction model 

LUTI Land use/Transport interaction 

MAE Mean absolute error 

MAUP Modifiable areal unit problem 

MSE Mean squared error 

O-D Origin-Destination 

OSGM Origin-specific gravity model 

POI Point of interest 

RMSE Root-mean-square deviation 

SDH Shenzhen-Dongguan-Huizhou 

SDHZ Shenzhen-Dongguan-Huizhou-Zhongshan 

SI Spatial interaction 

SIM Spatial interaction model 

UFZ(s) Urban functional zone(s) 
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Appendix B:  Data Inventory 

Datasets Year Provider Data categories Ethnics 

clarence 

needed* 

UK Census data 
2001, 

2011 

Office for 

National St

atistics (O

NS) 

Public dataset No 

Great Bay Area mobile 

phone data 
2018 

China 

Unicom 

Completely 

anonymous aggerated 

data 

No 

Great Bay Area road 

network 
2023 

OpenStreet

Map 
Public dataset No 

Great Bay Area 

residents/work location data 

and socioeconomic data 

2018, 

2020 

Baidu 
Completely anonymo

us aggerated data 
No 

*The requirement of ethics clarence is based on the research ethics guideline for the "use of 

pre-existing data" published by King's College London in October 2019 
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