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Abstract

Mill’s classic argument for liberty requires that people’s exercise of

freedom should be governed by the harm principle (MHP): that is, an

action should not harm another. In this paper, we develop the concept

of a Millian harm equilibrium (MHE) in n-person games where players

maximize utility subject to the constraint of an MHP. Our main result

is in the spirit of the fundamental theorems of welfare economics. We

show that for every initial ‘reference point’ in a game the associated

MHE is Pareto efficient and, conversely, every Pareto efficient point can

be supported as an MHE for some initial reference point. This is an

important result for an old question in political philosophy over whether

the exercise of liberty is consistent with order in society and for how we

think about policy in a non-ideal world.
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1 Introduction

Is ‘order’ possible in a society where people are free to do as they please or does

anarchy in this sense always entail some kind of ‘disorder’? This is a central

question in political philosophy. Hobbes (1651) famously answered that the

disorder of ‘warre’ would result; and this provides a reason for people agreeing

to constrain their individual liberties in some respects by a Leviathan. In this

paper, we embed Mill’s (1859) harm principle in non-cooperative game theory

to provide a different and more positive conclusion regarding the prospects for

liberty.

Two separate strands of formal analysis by economists have hitherto tended

to side with Hobbes. In the social choice literature, for example, Sen (1970)

famously shows that with some types of individual preference orderings, it is

impossible to have a social choice rule that respects the liberal principle of a

person’s actions being guided by their own preferences at the same time as

generating ‘order’ in the sense of a Pareto efficient allocation of resources.

In the other strand, economists spent much of the first twenty years after

World War II establishing the conditions under which a market economy, where

agents are free to act in whatever manner they think is best for them, will gen-

erate a Pareto efficient allocation of resources. The conditions are restrictive in

ways that play into Hobbes’s argument. The economy must be ‘competitive’

and this requires, among other conditions, that property rights are sufficiently

well defined so that there are none of the externalities that cause the trouble

of ‘warre’ in Hobbes’s analysis. Agents in a competitive economy also have to

be price takers, begging a question of where such prices come from. The latter

difficulty prompted, in part, the development of non-cooperative game theory

where the dismal conclusion for liberty is a key result. A Nash equilibrium is

the standard solution concept used in game theory when rational choice agents

act freely and the Nash equilibrium in many games is not Pareto optimal: e.g.

in the famous Prisoners’ Dilemma.

In this paper, we use the game theoretic approach to the analysis of social

interaction to propose a different and more positive answer to the question re-
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garding liberty and ‘order’. In particular, we argue the exercise of individual

liberty will generate Pareto efficiency when individual liberty is understood in

the sense of JS Mill: i.e. that a person should be free to do as they please so

long as they do not cause harm to others. The difficulty with Mill’s proposal

has always turned on how to define ‘harm’ for this purpose (e.g. see Licht-

enberg, 2010). The game theoretic framework, however, provides, at least in

principle, a natural way to operationalise ‘harm’. The pay-offs to each agent

in such games are given for each possible combination of agents’ actions and

so we say that an agent who is guided by Mill’s harm principle (MHP) cannot

take an action when that action reduces the pay-off, relative to some base-

line reference point, of one or more other agents in the game. In short, harm

occurs when someone causes a reduction to another person’s pay-off. This

seems uncontentious as a definition of harm, but its actual operationalisation

will obviously depend on the choice of baseline reference point when making

this judgement. For our purpose, however, this does not matter because we

show that whichever baseline reference is chosen, the Millian harm equilibrium

(MHE) is always Pareto efficient.

To put our result in perspective, we note that there have been developments

with respect to both strands in the formal analysis of social interaction among

free agents. The closest to our result comes initially from Coase (1960). Like

us, his analysis is in the spirit of non-cooperative game theory, he takes the pay-

offs that agents enjoy in each possible outcome as given and he allows for the

troubling kinds of externalities between action that arise when property rights

are imperfectly defined and which create the kind of social dilemmas where

freedom and efficiency are opposed. He argues in a move that is later also

taken by another Nobel laureate Ostrom (2010) that the agents do not have

to accept the action sets that are specified by the game. They can conceive of

taking actions which are outside this set. For example, with Coase, provided

transaction costs are small, the agents have the scope, in effect, to internalise

the externalities through bargaining. The point is that when freely chosen

actions result in a Pareto inferior outcome, there is a prize to be gained in

moving to a Pareto efficient outcome. If the cost of bargaining is not too
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high, then the people will rationally bargain with each other so as to agree on

joint actions that secure this gain. If inefficiency results from the exercise of

freedom under this approach, then it is only because the transactions costs of

bargaining are too high. Ostrom makes, effectively, the same point, but it is

stated in terms of whether the community has the social resources that enable

them to establish and police Pareto improving joint actions.

In comparison, Pareto inferior outcomes only arise in our analysis when

people are not constrained by the harm principle in the exercise of their liberty.

When people are guided by our version of the harm principle then a Pareto

efficient outcome will result. When there is more than one Pareto efficient

outcome we cannot explain which will obtain as this will depend on what

baseline is used for judging harms. But we show in a manner that is analogous

to the second fundamental theorem of welfare economics that every Pareto

efficient outcome can be reached with a suitable choice of the baseline.

The advances in social choice theory are less relevant to us because they

focus on the conditions under which it is possible to have a well-behaved so-

cial choice function (i.e. a way of deciding between social outcomes); whereas

our concern is with the properties of the outcomes that arise from the in-

teraction of people who exercise their individual freedom. For this, the ap-

propriate framework is non-cooperative game theory. Nevertheless, there are

some interesting related results in the social choice literature. Mariotti and

Veneziani (2009; 2013; 2020) introduce a notion called “Non-Interference”

principle which roughly says that society’s preferences should not change fol-

lowing a change in circumstances that affect only one individual and for which

everyone else is indifferent. Recently, Mariotti and Veneziani (2020) show

that there is inconsistency between their “Non-Interference” principle and the

Pareto principle (i.e., if everyone in a society prefers an alternative x to y,

then society should prefer x to y) in a non-dictatorship. Our formalization of

the harm principle differs from Mariotti and Veneziani’s in that ours applies to

actions within a non-cooperative game theoretical framework whereas theirs

applies to the preferences within a social choice context.

Chung (2019) and Chung and Kogelmann (2020) are concerned with the
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possibility of a social choice function when people have perspectival disagree-

ments over how to characterise the possible outcomes in society. Although the

social choice approach is different to ours, there are several interesting points of

comparison in their approach. We focus now on the perspectival disagreements

that are possible with their approach and return to the connections between

their and our approach more generally in the Conclusion. Their exploration

takes a rights approach whereby rights establish a private sphere over which

a person can do as they like and the perspectival disagreements can relate

either to the evaluation of outcomes in the private sphere and/or to whether

particular outcomes belong in the private sphere. For example, with respect

to the latter, does having an abortion belong in the private sphere of the in-

dividual considering an abortion, where it is a matter of individual choice, or

the public sphere where constraints on taking such an action may be in place.

As they acknowledge, this perspectival difference can be alternatively cast as

a disagreement over what counts as a harm. For example, does ‘A’ having an

abortion harm ‘B’? ‘B’ thinks so and ‘A’ does not; and as a result there is a

dispute over whether having an abortion belongs in the private sphere. We

eschew the rights approach and instead work with Mill’s harm principle. Our

definition of a harm as a pay-off reduction avoids the disputes over what is

in the private sphere (or counts as a harm) but we do not, as such, remove

perspectival disputes. There is no requirement in non-cooperative game the-

ory that person ‘A’ should assess ‘B’ having an abortion in the same way that

person ‘B’ assesses ‘A’ having an abortion. All that is assumed is that when

‘A’ acts it is A’s assessment that informs their calculation of what to do for the

best and likewise when ‘B’ acts it is B’s assessment that informs their actions.

To see this point in ways that makes our contribution clear, consider Gib-

bard’s (1974) representation of the Sen’s social choice problem: ‘I want my

walls to be white but care even more that Parker’s be white; suppose Parker

wants his walls yellow, but cares even more that mine be yellow’ (p. 394).

These preferences, as set out by Gibbard, are represented in Figure 1. They

represent a particular kind of ‘nosiness’ (and hence the name of Parker),

whereby each, in effect, dislikes to see the other happy with their preferred
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colour. One could say that there is a dispute about what counts as a harm

here. Parker thinks that when Gibbard paints his wall white, it causes him

(Parker) a ‘harm’: the harm of seeing Gibbard happy. Gibbard, though does

not see this harm to Parker in painting his wall white. It is not reflected in his

preference ordering and he does not take it into account in his own decision

making. Equally, this could be cast as a perspectival dispute over each per-

son’s private sphere in the sense of Chung (2019) and Chung and Kogelmann

(2020). For instance, the same preferences could arise over Gibbard’s choice

between white and yellow not because Parker has meddlesome preferences and

hates seeing Gibbard happy but because Parker believes white paint is car-

cinogenic and yellow paint is not, while Gibbard holds no such belief about

the outcome of painting his house white.

White Yellow

Yellow 2, 2 0, 3

White 3, 0 1, 1

Figure 1: A game between Gibbard (row player) and Parker (column player)

When Gibbard and Parker act freely so as to best satisfy their preferences,

the resulting Nash equilibrium is (White, Yellow), where each causes each

other a harm; and this is Pareto inferior to (Yellow, White). This is, of course,

a Prisoners’ Dilemma interaction and so makes the connection to Hobbes’s

state of nature when it is cast in the same way.1 What we show is that in

general when people are constrained in their actions by our version of the harm

principle, outcomes that are Pareto inferior like (White, Yellow) in Gibbard’s

Prisoners’ Dilemma game, will not result from the exercise of individual liberty.

We cannot guarantee that the familiar co-operative solution to this Prisoners’

Dilemma, (Yellow, White), will obtain when people are guided by our harm

principle. There are three outcomes in this game that are on the Pareto frontier

(White, White), (Yellow, Yellow) as well as (Yellow, White) and which obtains

1See Chung (2015) for an argument that Hobbes’s state of nature should be understood
differently, although from which he draws the same conclusion of ‘disorder’.
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under our harm principle will depend on what is the baseline reference outcome

for judging whether an action causes a harm by reducing someone’s payoffs.2

Our paper proceeds as follows. In the next section, we provide an informal

introduction to the challenges posed by introducing the harm principle and

sketch how we respond to them. We then set out our approach formally in

section 3; and section 4 gives our main result. We reflect on this result in

section 5 with some further illustrations. Section 6 concludes the paper.

2 An informal sketch of the challenges of the

harm principle and our approach

The MHP does not permit a person to take an action that causes ‘harm’ to

others. Several challenges arise when deciding how to represent this principle

as a constraint on actions in non-cooperative games. In this section we offer

an informal sketch of how we respond to these challenges by making four key

assumptions.

Game theory has one advantage over the world that the judiciary addresses

when trying to decide whether someone’s actions cause a ‘harm’ to another:

game theory deals with interactions where the pay-offs, usually captured by

utility numbers, to each player in each outcome are given. With players’ inter-

ests captured in this way by their pay-offs, it seems natural and uncontentious

to say that a person suffers a ‘harm’ when their pay-offs are reduced. We delib-

erately use utility numbers to capture “pay-offs” in what follows because this

2It is worth noting that this thought process involves the players contemplating self
harm and, at first glance this may seem strange in the context of the articulation of a harm
principle where harm is to be avoided. This first thought, though, is misleading for two
reasons. First, the prospective self harm is part of a thought process in an extensive form
game and does not involve a player actually deciding to harm themselves. Second it is
clear that Mill wants the harm principle to apply only to whether a person’s actions harm
someone else and not themselves. That is the point of his argument for liberty: it puts you
in charge of yourself when your actions only affect yourself. If you cause yourself self harm,
then so be it. This is nobody’s business. Indeed, Mill plainly countenances such self harms
when noting that his sense of liberty allows individuals to engage in what he famously refers
to as ‘experiments in living’. Indeed he commends such ‘experiments in living’. The point
about all experiments is that they sometimes fail.
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allows for an encompassing definition of possible harms. They could be psy-

chological or symbolic as much as material whereas to use $ material pay-offs

would be to restrict the concept of a harm to a $ loss alone.

If a harm arises when a person’s action reduces another’s utility pay-off, a

question naturally arises: a reduction relative to what? What is the reference

point pay-off for judging whether the action causes a harm? This is the first

modelling challenge. Since games contain all the relevant available actions for

players in the setting captured by the game, we assume that the reference

pay-offs must be given by one of the outcomes in the game. We make no

argument over which outcome should be used. Any outcome might serve as

the reference. Instead, we seek to characterize in general terms the equilibria

that result when players take any of the outcomes in the game as the shared

reference point. The specific attributes of an equilibrium that satisfies the

MHP may depend on the actual reference point, but we are interested with

any general properties of such equilibria.

The next challenge arises because the MHP requires that an individual’s

action should not cause a harm to any other person and outcomes in normal

form games typically result from the joint actions of several players. We need,

therefore, some way of making sense of how an individual’s choice of action

causes an outcome in a game and so judge whether that individual’s action

causes a harm.

In the context of non-cooperative games, Brams’s (1994) seminal “Theory

of Moves” framework offers a way of responding to this challenge. It takes

one outcome in the game as the reference point (one might think of this as

the status quo) and builds an extensive form game on the basis of the possible

sequential player deviations from this reference point. In particular, at the

reference point outcome, we assume the first player in this sequence decides

between ‘passing’ their turn, ‘staying’ at the reference outcome, and ‘mov-

ing’ to an alternative outcome by changing their action so as to produce the

alternative; and each player thereafter decides in this extensive form game

between passing their turn, staying at the outcome they have inherited from

the previous decisions of others in this branch of the extensive form game and
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moving to an alternative one by changing their action. A standard interpre-

tation of this framework is that it is ‘as if’ the players in the game consider

alternatives to the reference outcome through a quasi-bargaining sequential

process whereby the first player can accept the reference outcome by ‘staying’

or propose an alternative by ‘moving’ to a different outcome, the next player

then faces a similar choice to accept what is on the table or propose another,

and so on, while ‘passing’ at any stage offers the turn to another player. To fix

this application of Brams’s Theory of Moves, consider the Prisoners’ Dilemma

game below.

C D

C 3, 3 1, 4

D 4, 1 2, 2

Suppose DD is the reference outcome and Row is the first player to consider

a deviation. The extensive form game is constructed as follows. Row can either

‘pass’ their turn to Column, ‘stay’ at DD, or ‘move’ to CD by changing their

action to C. If Row chooses to ‘pass’ at DD, then, Column faces the same

decision at the second node of this extensive form game as the one we have

just considered for Row. If Row chooses to ‘stay’ at DD, then DD remains

the outcome. If Row chooses to ‘move’ to CD, Column at the second decision

node in the extensive form game must decide between passing, staying at CD

and moving to CC by changing their action from D to C; if Column chooses to

pass at CD then Row decides between passing, staying at CD, and moving to

DD; and so on. Figure 2 captures these early decision nodes in the extensive

form game based on DD as the reference outcome.

The virtue for our purpose of adopting Brams’s Theory of Moves in this

way is twofold. First, every outcome in the normal form game can be reached

through a sequence of decisions in the extensive form game. Second, this ex-

tensive form representation of how the outcomes in the game could be reached

enables us to identify how an individual’s action can be said to cause a par-

ticular outcome. Thus, we can say in our illustration that, if Row begins by

‘moving’ to CD through a ‘move’ to C from the reference point of DD, then

9



C moves

C stays

C passes

R moves R stays
R passes

DD

CD
DD DD

CC CD CD

Figure 2: Illustration of early decision nodes in the extensive form game based
on DD as the reference outcome

Row has caused CD at this point in the extensive form game. Likewise, if Row

initially decides to ‘stay’ at DD, they have caused DD. However, when Row

‘passes’ at DD, they do not cause DD because they have exempted themselves

from decision making by passing the choice to the Column player. (In effect,

giving players an option to ‘pass’ endogenises the player order for these se-

quential deviations and so has no influence in a 2ˆ 2 symmetric game like the

Prisoners’ Dilemma. In more complicated n-player games, ‘pass’ has further

technical function of enabling every outcome to be visited through a sequence

of player deviations.)

Brams (1994) assumes farsighted or sequential rationality and solves by

backward induction the extensive form game created by his procedure of se-

quential deviations. He calls the outcome of his proposed sequential procedure

a nonmyopic equilibrium (see also Brams and Wittman, 1981, and Kilgour,

1984). We adopt the same approach of applying the subgame perfect equilib-

rium solution concept but we introduce the MHP as a constraint on play in

the extensive form game and so call the outcome a Millian harm equilibrium.3

Thus, to return to the prisoners’ dilemma with DD as the initial reference

outcome, we ask players whether the subgame perfect equilibrium of the MHP

constrained extensive form game based on DD is DD or some other outcome.

If it is DD, then DD is the Millian harm equilibrium outcome of the game. If

3For a comparison of nonmyopic equilibrium and Millian harm equilibrium, see section 5.
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it is not, then the Millian harm equilibrium with DD as the reference outcome

is whatever the subgame perfect equilibrium is in this MHP constrained ex-

tensive form game. The next challenge is, therefore, to represent the MHP in

this extensive form game. This requires three further assumptions.

One is innocuous in the sense that a well-defined finite extensive form

game requires a set of terminal nodes. One part of how we do this is by saying

that when both players decide to ‘stay’ at an outcome, then this outcome is

implemented. The intuition behind this assumption is that the first decision

to ‘stay’ is like a ‘proposal’ to implement this outcome and the second decision

to ‘stay’ amounts to an acceptance of this ‘proposal’. This naturally produces

a terminal node for some branches of the extensive from game. Likewise, if

both players decide to pass, then this naturally produces a terminal node.

However, we also need to prevent the ‘moving’ branches of the tree creating

what are infinite cycles through the possible outcomes in the game. We do

this by preventing a player repeating the same action (‘move’ or ‘stay’) twice.

Some number of finite repetitions has to be assumed if the extensive form

game formed by adopting Brams’s Theory of Moves is to be finite. So, some

restriction is necessary for the Brams approach to be meaningful (i.e. it is a

consequence of adopting that approach). Nevertheless, the choice of the precise

number of repetitions that is permitted, once in this instance, is arbitrary. For

this reason, we show in section 4.1 that our results hold irrespective of the

actual number of finite repetitions that are permitted.

To illustrate the specific once only repetition assumption, suppose, for

example, we follow the branch in the extensive form game that begins with

Row ‘moving’ to CD, Column next ‘moves’ to CC, Row then ‘moves’ to DC

and Column ‘moves’ to DD. Row cannot ‘move’ to CD again. Row can either

‘stay’ or ‘pass’ but if they choose to ‘stay’, they cannot choose to ‘stay’ again

at DD. Thus, DD is the terminal outcome either because both players ‘stay’ or

both ‘pass’ at DD for this truncated move branch of the extensive form game.

The question arises as to what outcome should be implemented if players

reach a terminal node through joint ‘passing’—either because the truncation

rule has been triggered or because players have both chosen to ‘pass’ at an

11



earlier point in the extensive form game. The terminal outcome cannot be

said to have been chosen by the players in these circumstances because neither

has decided to stay at this terminal outcome. We assume, therefore, that its

reference point is implemented because no other outcome along the path to this

terminal outcome, including the terminal outcome itself, has been consciously

endorsed by both players through ‘stay’ decisions.

The next assumption embodies the MHP: a player can only decide to ‘stay’

at an outcome if that outcome does not harm any other player relative to

the reference outcome. We apply the MHP to the ‘stay’ decision because an

individual can only contribute to causing an outcome that is implemented by

deciding to ‘stay’ at that outcome. Of course, it takes more than one decision to

‘stay’ for an outcome to be implemented. But in so far as one individual could

contribute to an outcome being implemented, they would do so by deciding

to ‘stay’ at that outcome. For the same reason, the MHP does not apply to a

‘move’ decision: the condition for implementation is two ‘stay’ decisions and so

only ‘stay’ can be said to contribute to causing and potentially implementing

an outcome. To illustrate, in the extensive form game that begins with DD as

the reference outcome in the prisoners’ dilemma, Row ‘staying’ at DD satisfies

the MHP and so does Row ‘moving’ to CD (because MHP only applies to ‘stay’

decisions).4 However, Column’s option to ‘stay’ at CD would not satisfy the

MHP (because it harms Row), but moving to CC does (because MHP does not

apply to ‘move’). Thus, the beginning of the MHP constrained extensive form

game looks like Figure 3 (with Column stays at CD faded out as an option as

compared with the unconstrained version in Figure 2).

This illustration gives an immediate insight into how sequential rationality

and the MHP might combine to make CC the MHE in this extensive form

game. The pursuit of the best option for Column at the second CD node by

‘staying’ is precluded by the MHP. At any later decision node on this branch of

the game, Row will not be able to ‘stay’ at DC for the same reason and so the

4NB although Row’s move to CD may seem like an act of self harm, it is not because
CD is not implemented. To be implemented Column would have to stay at CD and this
transgresses the MHP. To discover whether the move to CD is in the interests of Row, we
need to solve for what finally happens along this path of the extensive game.
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C moves

C stays

C passes

R moves

R stays

R passes

DD

CD
DD DD

CC CD CD

Figure 3: The beginning of the MHP constrained extensive form game where
DD is the reference outcome.

only possible terminal options along this branch will be DD (either through

Row’s initial ‘stay’ decision or through sequential ‘moves’ to this terminal

node followed by mutual ‘passes’ leading to its reference point, DD, being

implemented) and CC (through mutual ‘stay’ decisions at this point). Thus

either DD or CC will be implemented and sequential rationality will secure

CC. The details are, of course, a bit more complicated. One comment is worth

making, nevertheless.

Our MHP principle deliberately does not embody sequential rationality.

We introduce sequential rationality as a separate assumption. The applica-

tion of sequential rationality requires an assumption of common knowledge of

rationality and there is no reason to bind the MHP to such an assumption. A

‘harm’ is a ‘harm’ whether the other player is rational or not. The most that

can be said in such circumstances with respect to whether a player’s action

causes a harm, is: does that action by itself do as much as any individual can

do to causing an outcome to be implemented that harms someone else? That

is, do they choose to ‘stay’.

Two final details in our approach are worth noting at this stage. First, we

require only two stay decisions at a particular outcome for it to be implemented

in an ‘n-person’ game. This is because we wish to avoid building in Pareto

improvements through some version of unanimity rule that requires everyone

to agree on some outcome before it is implemented. Our condition for imple-
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mentation is, therefore, in general, much weaker than unanimity. However, in

a two-person game it does amount to unanimity and this supplies another part

of the intuition behind why CC emerges as the Millian harm equilibrium in

the prisoners’ dilemma illustration. In section 4.1.4, we extend our model to

the case in which any player can unilaterally implement the outcome on their

turn. These and other natural possible modifications do not affect our results.

Second, a final key assumption for more complicated games than the two

person prisoners’ dilemma is that if say player i decides to stay at an outcome

but the next player j decides to reject this proposal by moving to another

outcome, then the reference point is updated to the outcome proposed by i

through their decision to ‘stay’.5 In effect, this outcome has been endorsed by

i, it satisfies the MHP for i and it could have been implemented by j; so, it is

natural to use this as the (new) reference point for judging future deviations.

Thus, in general, the decision to ‘stay’ is also a decision to change the reference

point and this can only be done by a player when to do so satisfies the MHP.

3 The harm principle in non-cooperative games

3.1 The setup

Let G “ pAi, uiqiPN denote a normal form game in which N “ t1, 2, . . . , nu

denotes a society whose members are called players, Ai finite pure action set of

player i, ui : A Ñ R player i’s Bernoulli utility function representing strict pref-

erences over the set of action profiles A “ ˆiPNAi. Let a “ pa1, a2, ..., anq P A

denote a pure action profile in game G.6 As is standard in normal form games,

every action profile is associated with an outcome (i.e., a pay-off profile) and

vice versa. We use the terms “action profile” and “outcome” interchangeably.

A profile a Pareto dominates a1 if for all i, uipaq ě uipa
1q with at least

5This is reminiscent of ‘evolving’ status quos in dynamic bargaining and democratic
deliberation models; see, e.g., Baron (1996), Kalandrakis (2004), Bowen and Zahran (2012),
and Chung and Duggan (2020). We refer the interested reader to section 4.1.7

6Our definitions can be extended to the games with mixed strategies in a straightforward
way. We keep the current framework for its simplicity.
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one strict inequality. A profile is called Pareto optimal or efficient if there is

no other profile that Pareto dominates it. A profile is called weakly Pareto

optimal if there is no other profile in which everyone is strictly better off.

Fix a game G “ pA, uq and action profile a0 P A. Given a player function I,

we define an associated extensive form game with perfect information denoted

by Γpa0, Iq “ pN,X, I, u,Σ, Hq. We refer to this extensive form game as simply

“Γ”. The interpretation of Γ is that starting from a0, each player i sequentially

decides to ‘stay’, ‘move’ or ‘pass’ in game G until the play terminates. Table 1

summarises our notation.7

Let X denote a game tree, x P X a node in the tree, x0 the root of the

game tree, and z P Z a terminal node, which is a node that is not a predecessor

of any other node.

Name Notation Element

Players N “ t1, 2, . . . , nu i

Information set H h

Nodes X x

Terminal nodes Z z

Player function I : X Ñ N

State function S : X Ñ A

Actions at node x Aipxq aipxq

Strategy profiles Σ σ

Path of play of σ rσs xj

Terminal node of rσs rσs

Reference points of σ Rpσq

Utility of i at σ uipσq

Extensive form game Γpa0, Iq “ pN,X, I, u,Σ, Hq

Table 1: Extensive form game notation

7For a standard textbook on extensive form games, see, e.g., Osborne and Rubinstein
(1994).
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3.1.1 Player function

Let rxms “ tx0, x1, x2, ..., xmu denote the path of play between node x0 and

node xm P X where for every j “ 0, 1, ...,m´1, xj`1 is an immediate successor

of xj. Let I : X Ñ N be the player function, where Ipxq gives the “active”

player who moves at node x. The only restriction we impose on the player

function is the following. For player i, let rxmsi “ |tx1 P rxms|Ipx1q “ iu|,

i.e., the number of times player i is active during the path of play rxms. We

assume that for every player i, every player j ‰ i, and every path of play rxms,

|rxmsi´rxmsj| ď 1. In other words, if a player has been active m̄ times in some

path of play, then every other player should have been active at least m̄ ´ 1

times. This assumption ensures that every player has more or less the same

number of moves to play on every path. Beyond this assumption, notice that

the order in which players take turn is not fixed and at every non-terminal

node x the next active player may depend on the particular action chosen by

player Ipxq.

3.1.2 Actions, strategies, and information sets

Let h P H denote an information set, which is a singleton. With a slight abuse

of notation, an information set h at node x is denoted by x, i.e., h “ x. A

subgame Γ|x of a game Γ is the game Γ restricted to an information set h “ x

and all of its successors in Γ.

Next, we introduce S : X Ñ A, called the state function, that maps each

node x P X to an action profile a P A. We define S by induction. The state

at the root x0 of the game is defined as a0, i.e. Spx0q “ a0, which is the action

profile in G where the extensive form game Γ starts. Let x P X, x ‰ x0, be a

node, x1 P X the immediate predecessor of x, i “ Ipx1q, and a1
i player i’s action

that leads to node x. Assume that Spx1q “ a. Then, define Spxq “ pa1
i, a´iq.

In other words, at every node x, the state Spxq is given by the action profile

pa1
i, a´iq P A such that player i “ Ipx1q changes only the i’th component of the

state at x1.

Let Aipxq denote the set of pure actions of player i at x. For each x P X,
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Aipxq is defined as follows. First, define X 1pai, xq “ tx1 P X|ai is chosen at x1,

Spx1q “ Spxq, and x1 is a predecessor of xu. Then, Aipxq “ tai P Ai| X
1pai, xq “

∅uYtpu, where p stands for pass. For example, suppose that i “ Ipx0q “ Ipx2q,

x0 ‰ x2, and Spx0q “ Spx2q. If i chooses ai at x0, then ai R Aipx
2q because ai

has already been chosen at state Spx0q. This means once a player returns to a

state, they cannot make the same decision as they made last time they were at

this state. This is the assumption that prevents infinite cycling through always

choosing to ‘move’ at each decision node and/or through one player staying

and the other(s) passing, repeatedly at the same state. When this truncation

rule is binding at a decision node x, players can only choose to pass at x.

Let A1
i “

Ť

xPXi
Aipxq denote player i’s set of all pure actions where Xi is

player i’s set of all information sets. Let Σi “
Ś

xPXi
Aipxq denote the set of

all pure strategies of i where a pure strategy σi P Σi is a function σi : Xi Ñ A1
i

satisfying σipxq P Aipxq for all x P Xi. Let σ P Σ denote a pure strategy profile

and uipσq its (Bernoulli) utility for player i.

Let a1
i Ñ x1 denote player i’s action a1

i P Aipxq that leads to node x1 P X.

Let rσs “ tx P X|σipx
1q Ñ x for some i P N, x1 P Xu Y tx0u be the path of

play of σ and rσs be the terminal node in rσs.

3.1.3 Reference points, terminal nodes, and utility functions

For a given strategy profile σ, let

Rpσq “ ta P A|x P rσs, σipxq “ ai P Aipxq, a “ Spxqu Y ta0u

be the set of all reference points of σ. In other words, a state is called a

reference point if the player who acts at the associated node “stays” at it:

that is chooses not to change it. The initial reference point a0 is included in

Rpσq.

Note that given a profile σ, for every decision node y ‰ x0 there is a unique

reference point ay P Rpσq where Spxq “ ay for some predecessor x of y. The

unique reference point at x0 is a0 by definition. Thus, we can refer to the

reference point at every node y P X.
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We next define ‘off-path’ reference points. Let y ‰ x0 be a non-terminal

node. The set of reference points of pσ|yq, denoted by R|ypσq, is defined as

Rpσ|yq except that a0 is replaced with ay, which is the reference point at y,

ay P Rpσq. The intuition is that if we restrict a strategy profile σ to a node y,

then the initial reference point of pσ|yq should be ay and not necessarily a0.

Game Γ comes to an end under two situations. First, let x1 be a node and x

be a (not necessarily immediate) successor of x1 such that Ipx1q “ i, Ipxq “ j,

j ‰ i, and the reference point at x is Spx1q where Spx1q “ Spxq “ b. If player

i stays at b by choosing bi, making b the reference point, and player j ‰ i also

stays at b by choosing bj, then node x is called a terminal node. Second, let

tx1, x2, ..., xn, xn`1u be a path of play such that for every player i P N there

exists xm such that i “ Ipxmq where n ě m ě 1, and for every m, xm`1 is an

immediate successor of xm. Node xn`1 P X is called a terminal node if every

i chooses p (i.e., pass) at xm. In plain words, the game terminates if either (i)

two distinct players choose to stay at a state (the first one is like a ‘proposal’

to implement this state and the second one amounts to an acceptance of this

‘proposal’), or (ii) every player consecutively passes their turn.

Let σ P Σ be a strategy profile, rσs “ z its terminal node, and a P Rpσq

the reference point at z. We define the outcome of σ as a. With slight abuse

of notation we use the same utility function for uipσq and uipaq because their

outcomes, and hence their utilities are the same. In summary, for every player

i, uipσq “ uipaq, where a is the reference point at z “ rσs. Put simply, the

reference point at the terminal node is implemented as the outcome of the

relevant strategy profile under both (i) and (ii) above. The reason the refer-

ence point at the terminal node is implemented as the outcome in condition

(ii) is that no other state from the reference point to the terminal node has

been endorsed by any player through a ‘stay’ decision and that players have

consciously chosen not to stay at the terminal node. As mentioned earlier,

(ii) is in part a technical condition that prevents infinite cycling. In section 4

(proof of the main theorem), we show that there is always an MHE whose

outcome is attained under condition (i).
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An illustrative example

To illustrate our notation, we return to the prisoners’ dilemma (PD). Let

Γpa0, Iq be the extensive form game that begins this time with the reference

point a0 “ CC. Assume that Row (player 1) moves first, Column (player

2) moves second, and this sequential order strictly alternates irrespective of

players’ choices. Starting from CC players might end up at DD if they play

as follows (see Figure 4). Row unilaterally switches their action to D, hence

‘moving’ to DC. Column then moves to DD, where Row chooses D to ‘stay’

which makes DD the new reference point. Column also stays at DD, where

both players receive pay-offs of (2, 2). If, instead of staying, both Row and

Column choose to pass at DD, then the implemented outcome would be the

reference point at this node, which is CC. The difference between passing and

staying is that passing changes the order of play but does not change the

reference point.

Note that a ‘cycle’ cannot be repeated. Suppose, for example, that Row

moves to DC from CC, Column moves to DD, Row moves to CD, and Column

moves back to CC. Then, Row cannot choose D again at CC. Row can now

only either stay or pass at CC.

We have not so far imposed any restrictions on the players’ choices such as

‘rationality’ or ‘harm principle’. We next introduce the MHP.

3.1.4 The harm principle

Our specification of the harm principle applies when a player stays. We make

this assumption for two reasons. First, in a dynamic strategic setting, the

classical liberal has no reason to be concerned with the properties of any

transitional (i.e., non-reference point) states in the extensive form game, par-

ticularly if they are purely mental constructs. Second, in contrast when a

player chooses to stay, this matters for everyone because either another player

follows this by choosing to stay and this becomes the implemented outcome;

or, in so far as the play moves to another outcome, the reference point changes

through the stay decision and this conditions future play and the eventual out-
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Figure 4: An illustrative example where a0 “ CC in the PD. Row (player 1)
moves first and Column (player 2) moves second.

come. Indeed, an individual can only influence the character of the eventual

outcome either directly or indirectly by choosing to stay because this changes

the reference point. The point is that the only other way that a terminal node

is reached is by mutual decisions to pass, in which case the original or prior

reference point is implemented and the decision to pass has not affected the

implemented outcome.

Definition 1 (Harm principle). Let Γ be a game, σ a strategy profile, x P X

a non-terminal node, b P Rpσq the reference point at x, and Spxq “ a. Action

σipxq “ ai is said to satisfy the harm principle (MHP) at x if for every j ‰ i,

ujpaq ě ujpbq. Strategy profile σ satisfies the MHP at x0 if for every i and

every x as defined above, σipxq “ ai satisfies the MHP. Finally, strategy profile

σ satisfies the harm principle if for every non-terminal x1, pσ|x1q satisfies the

MHP at x1.

In plain words, a player’s stay action satisfies the MHP if their decision does

not harm others with respect to the current reference point (e.g., see Figure 3).
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Accordingly, a strategy profile satisfies the MHP if every player’s every stay

action (both on-path and off-path) under that strategy profile satisfies the

MHP.

Of note, the harm principle implies neither Pareto optimality nor even

Pareto improvement from a reference point. In section 4.1.1, we illustrate

that assuming the harm principle may lead a society to a Pareto inferior out-

come compared to the initial reference point. Even in situations in which the

MHP leads to a Pareto improvement, the outcome of the game may be Pareto

dominated as we illustrate in section 4.1.3.

3.2 The Millian harm equilibrium

We assume that players are sequentially rational—i.e., players maximize their

utility at every node given the others’ strategies—and are additionally con-

strained by Mill’s harm principle (MHP) in their action choices in Γ. More-

over, we assume that G, Γ, and the previous sentence are common knowledge

(Lewis, 1969; Aumann, 1976). First, we define subgame perfect equilibrium

(Selten, 1965; Nash, 1951).

A pure strategy profile σ P Σ in game Γ is called a subgame perfect equi-

librium (SPE) if for every player i and for every non-terminal x P X where

i “ Ipxq, uipσ|xq ě uipσ
1
i, σ´i|xq for every σ1

i|x P Σi|x. Put differently, σ is

a subgame perfect equilibrium if it constitutes a Nash equilibrium in every

subgame of Γ.

Definition 2 (Millian harm equilibrium). Let G “ pA, uq be a game. A pure

strategy profile σ˚ P Σ that satisfies the harm principle is called a Millian

harm equilibrium (MHE) in G if for every player i and for every non-terminal

x P X where i “ Ipxq

uipσ
˚
|xq ě uipσ

1
i, σ

˚
´i|xq

for every σ1
i|x P Σi|x such that pσ1

i, σ
˚
´iq P Σ satisfies the harm principle.

In plain words, a strategy profile is an MHE if at every node the active

player plays a best response under the constraint of the harm principle. Like
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subgame perfect equilibrium, in finite games Millian harm equilibria can be

computed using backward induction under the constraint of the MHP. Note

that an MHE is not equivalent to a strategy profile that is both a subgame

perfect equilibrium and satisfies the harm principle, in part because in general

there may be no SPE that satisfies the MHP, but as we show in section 4 an

MHE always exists.

An MHE in G depends, of course, on Γpa0, Iq, i.e., the initial reference

point, a0, and the player function I. But for now it is important to note that

the MHP per se does not require Pareto optimality of the outcome. Players

simply act independently and maximize their individual utility; they do not

act to maximize the pay-offs of others. They can stay wherever they want as

long as the outcome does not harm others with respect to the reference point

and there could always be other outcomes that are as good for the individual

who decides to ‘stay’ and which would be better for the other players. We

illustrate this point in section 4.1.1 with an example where the MHP by itself

does not produce a Pareto efficient outcome (see also section 4.1.3). We next

show under what conditions the MHE outcomes are Pareto optimal in n-person

games.

4 The main theorem

In this section, we first show that the MHE exists under general conditions in

normal form games.

Lemma 1 (Existence). Let G “ pA, uq be a game with strict preferences. For

every initial reference point a0 P A, for every player function I, there exists

an MHE associated to a0 in pure strategies.

Proof. We fix an initial reference point a0 and a player function I.

Notice that for every a0, the game Γ always possesses a pure subgame

perfect equilibrium. This is true because Γ is a well-defined finite extensive

form game with perfect information. To see this, notice that the root of

the game is x0 where Spx0q “ a0 and that every player function I gives a
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unique player at every non-terminal node by construction of Γ. Because there

are finitely many players and nodes, the game Γ ends after finitely many

steps. This implies that there is always a subgame perfect equilibrium in pure

strategies.

Next, we assume that players act according to the MHP, which essentially

puts a constraint on their choices in Γ. This implies that they have fewer

(finitely many) choices under the MHP than they have under Γ. Because the

MHP is common knowledge, the constrained game—i.e., the game in which all

strategy profiles satisfy the MHP—is still of perfect information. Let σ˚ be a

subgame perfect equilibrium in the constrained game, which exists by the same

arguments as above. We note that σ˚ is an MHE in Γ because σ˚ satisfies the

MHP and at every node every active player plays a best response among the

profiles that satisfy the MHP, since by construction all those profiles satisfy

the MHP. This concludes the proof that σ˚ is an MHE.

We next show under what conditions the uniqueness of the MHE outcome

is guaranteed from an initial reference point.

Lemma 2 (Uniqueness). Let G “ pA, uq be a game with strict preferences.

For every initial reference point a0 P A and every player function I, the MHE

outcome associated to a0 is unique.

Proof. Given an initial reference point a0, and a player function I, the asso-

ciated Γ possesses a pure subgame perfect equilibrium as shown in the proof

of Lemma 1. We next show that this subgame perfect equilibrium outcome is

unique. The reason is that no matter which player moves on a non-terminal

node either (i) the player has a unique pure best response or (ii) the pure best

responses all lead to the same outcome because the preferences of the players

are strict in G. Thus, the subgame perfect equilibrium outcome in Γ must

be unique. Analogously, the subgame perfect equilibrium outcome in Γ which

is constrained by the MHP must also have a unique outcome. Together with

Lemma 1, this implies that the MHE outcome must be unique.

Finally, we illustrate the relationship between the harm principle, rational-

ity, and efficiency in n-person normal form games.
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Main Theorem (Efficiency). Let G “ pA, uq be a game with strict prefer-

ences. For every Pareto optimal outcome a P A there exists an initial reference

point a0 P A such that for every player function I, the associated MHE out-

come is a. Conversely, for every initial reference point a0 P A and every player

function I, the associated MHE outcome is Pareto optimal.

The proof of this theorem is in the Appendix 6. Here we give an informal

sketch of the proof.

Given a game G with strict preferences and a player function I, we first

show that if an initial reference point a0 is Pareto optimal then it is the MHE

outcome from a0. By way of contradiction, suppose that a1 ‰ a0 is the MHE

outcome. It implies that there exists at least one player who chose to stay

(i.e., changed the reference point) in the path of play of an MHE, σ˚. Every

player who did not stay receives a strictly greater pay-off at a1 than a0 because

σ˚ satisfies the MHP. In addition, every player who did stay must, due to

sequential rationality and the MHP, receive a strictly greater pay-off at a1 than

a0. As a result, a1 Pareto dominates a0, which contradicts the supposition that

a0 is Pareto optimal.

Second, we show that for an initial reference point a0 that is not Pareto

optimal, the MHE from a0 must be Pareto optimal. By way of contradiction,

suppose that b is the MHE outcome from a0 and b is Pareto dominated by

some action profile a ‰ b. Let σ˚ be an MHE from a0 such that the first time

a player stays at b on the path of play of σ˚, the next player (say, i) also stays

at b by choosing bi, hence terminating the game. Notice that if (i) there is a

path from b to a along which the MHP is satisfied, then bi cannot be a best

response of player i because (ii) every player (including i) receives a strictly

greater pay-off at a than b by our supposition that b is Pareto dominated by

a, and (iii) no other player can stay at an action profile which harms player i

along the path to a since the MHP applies and b is the reference point. We

next show that (i) is true. First, notice that players can reach from b to a

in at most n moves by the following path of play. At every node, the active

player i plays move ai except when ai “ bi, in which case player i plays p (i.e.,

pass). The MHP is not violated along this path of play because no player
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stays. Second, this path of play does not overlap with the path of play of σ˚

because if it did, then the active player at the overlapping node would have

a profitable deviation to the path towards a. The reason is that if the state

of the overlapping node x is a, then the active player would have a profitable

deviation from σ˚ to stay at a and make a the reference point because they

are strictly better off at a and staying at a satisfies the MHP. By backward

induction, the two paths of play cannot include an immediate predecessor x1

of node x because the active player at x1 would have a profitable deviation

to x, where the next player would stay. By analogous backward induction

reasoning, one can conclude that the path of play from b to a and the path of

play of σ˚ have an empty intersection. Thus, statement (i) holds as well. As

desired, we reach a contradiction: b cannot be the MHE outcome from a0.

4.1 Discussion of the assumptions

We next discuss how different assumptions in the definition of Γ and the MHE

affect the results.

4.1.1 The harm principle

To see why the MHP is essential for the main theorem, first notice that the

MHE definition would reduce to subgame perfect equilibrium if the harm prin-

ciple were not assumed. Consider the following simple example and suppose

that the MHP is not assumed.

L R

L 4, 3 1, 4

R 2, 1 3, 2

Let the initial reference point be (1,4). Suppose that Row moves first,

Column moves second, and this order strictly alternates. Row would not

choose to pass at (1,4) because Column would then choose to pass too, making

(1,4) as the outcome. On grounds of sequential rationality, Row’s best response
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is to move from (1,4) to (3,2), where Column as well as Row would stay, making

it the outcome. To see this, first notice that Column would not gain by moving

to (2,1) from (3,2) because Row would not move to (4,3) as Row anticipates

that Column would then go back to (1,4) where Row would have to either

stay or pass. If Row stays at (1,4), then Column would simply make (1,4) the

outcome by staying too. If Row passes at (1,4), then Column would also pass,

making (1,4) the outcome. Second, notice that Row would not move back to

(1,4) from (3,2), because Column would then stay there. Thus, without the

harm principle and starting at (1,4), players would end up at (3,2), and this

is Pareto dominated by (4,3).8

4.1.2 Sequential rationality

Sequential rationality is also a necessary assumption for the main theorem

because a strategy profile might satisfy the harm principle alone and yield

a Pareto inferior outcome with respect to the initial reference point. The

following 2 ˆ 2 game provides a simple example.

L R

L 2, 2 0, 3

R 1, 0 4, 4

Suppose that the reference point is (2,2), Column moves first, Row moves

second, and this order strictly alternates. Consider the strategy profile in

which Column moves from (2,2) to (0,3) where Row stays, making (0,3) the

updated reference point. Row’s choice of L satisfies the harm principle since

it does not harm Column player. Next, Column moves back to (2,2) and Row

moves to (1,0) where first Column stays and then Row stays, making (1,0)

the outcome. Column’s decision to stay at (1,0) satisfies the harm principle

since it does not harm Row player with respect to the updated reference point

(0,3). Anticipating this and if the players were sequentially rational, Column

8We will discuss later in section 5 how one could obtain the outcome (4,3) as a nonmyopic
equilibrium outcome starting from the initial reference point (1,4), using Brams’s (1994)
“two-sidedness convention”.
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Figure 5: An extensive form game in which the MHE outcome from reference
point (1,1) is (3,2), which is Pareto dominated.

would not stay at (1,0). But in the absence of the assumption of rationality,

the aforementioned moves cannot be ruled out and it results in an outcome,

(1,0), that is strictly Pareto dominated by (2,2).

4.1.3 Normal form structure

The normal form structure of game G is also necessary for the main theorem.

We now assume both the MHP and sequential rationality and illustrate this

with the extensive form game given in Figure 5.

Suppose that the initial reference point pay-off profile is (1,1) and player 1

moves first. There is a unique MHE in this game and it is Pareto dominated.

To see this, notice that the best response of player 1 is to choose m, moving

to (3,2) because if player 1 chooses to pass (i.e., p), then the best response

of player 2 would be to move to (2,4), which would satisfy the MHP with

respect to (1,1). Thus, player 1 moves to (3,2), where player 2 stays (or

passes). The MHE outcome (3,2) coincides with the SPE outcome in this

game. Although (3,2) is a Pareto improvement over the reference point (1,1),

it is Pareto dominated by (4,3).

One reason why the MHP and sequential rationality of players do not

immediately imply Pareto optimality is that the MHP puts a mild constraint

on the behaviour of players. It restricts players from causing harm to others

relative to the reference point, but beyond that the MHP does not require

players to maximize the pay-off of others.
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4.1.4 Unilateral termination

In this section, we consider the modification of our model where each player has

the opportunity to unilaterally terminate the game. In that case, our results

would remain valid as long as the MHP applies to ‘termination’ decisions as

well. Consider the model presented in section 3 with the modifications outlined

below, holding everything else fixed. For every i and every non-terminal x, let

Aipxq Y ttu be player i’s set of available actions at node x. If a player plays

action t at x, then the terminal node is reached and the outcome is defined as

a where a “ Spxq. In section 3.1.3, drop the terminal node condition (i) where

the game terminates if two players choose to stay at a state. Add the following

line to Definition 1. Action σipxq “ t is said to satisfy Mill’s harm principle

(MHP) at x if for every j ‰ i, ujpaq ě ujpbq. Under this modification of our

model, the MHE associated with an initial node a0 may differ from the MHE

under the original setup. However, all three of our theorems would remain

valid for the analogous reasons to the ones used in the proofs of respective

theorems.

One could also consider the following modification to our model in section 3.

Suppose that the game terminates if m players (n ě m ą 2) choose to stay at

a state instead of two players as is assumed in condition (i) in section 3.1.3.

This modification would not affect the application of the main arguments in

the proofs of the three theorems. Thus, the theorems would remain valid in

under this modification too.

4.1.5 Preferences

Strict vs weak preferences

One might wonder what happens to the Millian harm equilibria when there

are indifferences between the outcomes in G. In that case, Lemma 1 would

remain valid, though Lemma 2 would no longer hold. This is because subgame

perfect equilibrium outcomes in Γ need not be unique, which implies that MHE

outcomes need not be unique either. For analogous reasons as in the proof of

the main theorem we can conclude that every Pareto optimal profile must be
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an MHE outcome, and an MHE outcome cannot be strictly Pareto dominated.

Moreover, for every initial reference point and every I there would always be

an MHE that is Pareto optimal.

Preference changes

As is standard in game theory, preferences are taken as given in our model.

Here, we briefly discuss how our results might change if players self-report

their preferences. Under this assumption, there would certainly be games

where it is beneficial to misrepresent one’s own preferences. However, all of

our results would remain valid with respect to the reported preferences, though

not necessarily with respect to the private preferences, as long as these reported

preferences are strict.

4.1.6 Repetitive moves

We next consider a modification of the basic model where a player can repeat

the same move at the same state more than once.

Recall the definition of the set of available actions at a node x: Aipxq “

tai P Ai| X
1pai, xq “ ∅u Y tpu. Now suppose that the cardinality of X 1pai, xq

is a finite number. Put differently, if player i chooses action ai at some node

x P X, then player i can choose ai at state Spxq finitely many times.

Then, the three theorems would still hold because the associated extensive

form game Γpa0, Iq would still have a finite horizon, and this is one of the key

assumptions to guarantee the existence of an MHE. None of these theorems

immediately extend to the case in which a move can be repeated infinitely

many times. In section 6, we pose an open problem in that case.

4.1.7 The player function

While the three theorems hold for any player function I, the associated MHE

would potentially be different for different I (see, e.g., the example in sub-

section 5.2). However, this does not change the conclusion of, e.g., the main

theorem that any such MHE is Pareto efficient.
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In section 3, we put a restriction on player function I that in every path

of play each player has more or less equal number of nodes at which they are

active. We next show that the main theorem would not hold in general if we

let the player function be arbitrary. Let I 1 be a player function such that for

every non-terminal node x P X, I 1pxq “ 1. Clearly, the main theorem would

not hold if the player function were I 1. To see this, consider the PD with the

initial reference point DD. Then, player 1 cannot by themself move to CC.

Thus, player 1 would stay at DD, which is Pareto dominated.

A different way to interpret the player function I is that it may be chosen

by Nature in the beginning of the game according to the stochastic process

described below. Fix a game G “ pA, uq and action profile a0 P A. Let q P ∆N

be a probability distribution over the set of playersN such that for every player

i, qpiq ą 0 and
ř

i qpiq “ 1. For a given probability distribution q P ∆N , we

define an associated extensive form game with perfect information and Nature

move denoted by Γ1pa0, qq “ pN,X 1, I 1, u1, S1, H 1q. At the root, x1
0, of Γ

1pa0, qq,

Nature randomly chooses a player function I, and then players play the game

Γpa0, Iq “ pN,X, I, u, S,Hq.

Let I 1 : X 1 Ñ N denote the player function in Γ1pa0, qq, where I 1pxq is the

active player at node x P X 1. At x1
0, Nature chooses player function I : X Ñ N ,

where X Ă X 1, according to the following process. The probability player j

is the active player at a non-terminal node xm is given by the conditional

probability P pj|xm´1q, where xm´1 is the immediate predecessor of xm, which

is defined as follows. Letm “ floorpm
n

q. If xmn`1 “ m, then P pj|xm´1q “ qpjq.

If xmn`1 ă m, then

P pj|xm´1q “

$

&

%

0, if j “ I 1pxmn`1q, or j “ I 1pxmn`2q, ..., or j “ I 1pxm´1q

qpjq
ř

i qpiq´
řm´1

i“mn`1 qpIpxiqq
, else.

Notice that the player function I defined as above satisfies the restriction

we put in section 3. Thus, irrespective of the realisation of Nature’s randomi-

sation, the three theorems would remain valid in Γpa0, Iq.
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5 Comparison with Theory of Moves and il-

lustrations

In this section, we give several illustrations of MHEs in games. Since we have

based our development of the harm principle on Brams’s (1994) game theoret-

ical framework, we focus on how our MHE differs from his alternative solution

concept of nonmyopic equilibrium—as well, of course, as the differences be-

tween MHE and the Nash equilibrium concept.

5.1 Relation to Nash equilibrium and nonmyopic equi-

librium

It is well-known that Pareto optimality and the Nash equilibrium are logically

distinct concepts in the sense that neither concept is a refinement of the other.

As we show in the main theorem the MHEs coincide with Pareto optimal

profiles. Thus, there is no logical relationship between the set of MHEs and

the set of Nash equilibria.

The nonmyopic equilibrium and MHE concepts in general give different

predictions. This can be seen in the relation that each solution concept has

with the generation of Pareto optimal outcomes. An MHE is always Pareto

optimal and every Pareto optimal outcome can be supported as an MHE with

a suitable choice of reference point. In contrast, Brams and Ismail (2022) show

that while there is always a nonmyopic equilibrium that is Pareto optimal, a)

not all nonmyopic equilibria are Pareto optimal and b) not all Pareto optimal

profiles are nonmyopic equilibria.

In Brams’s (1994, p. 217) categorization of 57 2 ˆ 2 games, a) is unusual.

It only occurs in the PD where the nonmyopic equilibria are (3,3) and (2,2).

In comparison, while (3,3) is an MHE, (2,2) is not. The main reason why

(2,2) is not supported as an MHE when (2,2) is the reference point is the

harm principle. This is because the harm principle prevents a player from

making the outcome (1,4) or (4,1). It is also instructive to sketch why (3,3)

is a nonmyopic equilibrium because it depends on a two-sidedness convention.
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If the initial reference point is (3,3), this is not necessary as it is clear that an

initial deviation will trigger a further deviation, resulting in no one benefiting.

If, however, the initial reference point is (4,1) or (1,4), the corresponding

nonmyopic equilibrium is (3,3) only because of a two-sidedness convention

(Brams, 1994, p. 28). The convention means that with a given reference

point, if one player, by moving, can induce a better outcome than by staying,

but the other player by moving can induce a Pareto-superior outcome, then

the other player’s move takes precedence. Thus, at the initial reference point

(1,4), if Row moves first to (2,2), then Column would stay at (2,2), instead

of moving to (4,1). Alternatively, if Column moves first from (1,4) to (3,3),

then Row would stay at (3,3) rather than move to (4,1) because Column

would not stay at (4,1). Since (3,3) Pareto dominates (2,2), the two-sidedness

convention applies; hence the nonmyopic equilibrium from (1,4) is (3,3). For

similar reasons, the nonmyopic equilibrium from (4,1) is also (3,3).

Returning to the example in subsection 4.1.1, we can again see the part

played by the two-sidedness convention. The game in subsection 4.1.1 has a

unique nonmyopic equilibrium, (4,3).9 While it is clear why the nonmyopic

equilibrium from the initial reference point of (4,3) is (4,3), it is not imme-

diately obvious why, from the initial reference point of (1,4), the nonmyopic

equilibrium is also (4,3). This is because, as discussed in subsection 4.1.1, if

Row moves first from (1,4), the outcome would be (3,2). If Column moves

first from (1,4), then the outcome would be (4,3). Thus, by the two-sidedness

convention, Column moves first, and hence the nonmyopic equilibrium is (4,3).

b) is not so unusual and seems likely to occur more frequently in larger

games. For example, consider the 2 ˆ 3 game below (Brams and Ismail, 2022,

p. 356).

C D E

A 6, 1 4, 4 1, 6

B 5, 2 3, 3 2, 5

9The game in subsection 4.1.2 also has a unique nonmyopic equilibrium, (4,4), but it
does not require the two-sidedness convention.
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The unique nonmyopic equilibrium in this game is (2,5), but this is only one

of five Pareto optimal outcomes.

In addition to the nonmyopic equilibrium, Brams (1994) explores the con-

cept of power and its variations in games, including threat power, order power,

and moving power. Here, we discuss threat power, as it allows for imple-

menting the outcome (3,3) in the PD. Brams (1994) formalizes two types of

threats—compellent and deterrent—following a distinction made by Schelling

(1966). Essentially, a player’s compellent threat involves committing to a

strategy to induce the opponent to play a best response to that strategy. In

contrast, a deterrent threat occurs when a player threatens to deviate from an

agreed-upon strategy if the opponent fails to play as agreed. For example, if

a player, say Row, has a deterrent threat in the PD, it would be rational for

each player to choose C because if Column deviates to D, then Row would im-

plement the threat by choosing D. Here, Row essentially deters Column from

choosing D.

5.2 A three-person illustrative example

We next illustrate the Millian harm equilibria in a three-person game presented

in Figure 6. Throughout this example, we assume that the initial reference

point is (A,D,E).

Assume that Row moves first, Column second, Matrix third, and this order

strictly alternates. Figure 7 illustrates part of the game tree where the arrows

show the on-path moves of the MHE, which can be described as follows. Row

moves to (8, 8, 4), and Column stays at (8, 8, 4), which makes it the reference

point. A best response of Matrix is to stay at (8, 8, 4), making it the outcome

of the MHE from (3, 1, 2). Notice that Matrix can move to (4, 4, 5), but

cannot stay in matrix F because this would violate the MHP with respect to

the reference point (8, 8, 4).

Now, assume that Matrix moves first, Column second, Row third, and this

order strictly alternates. The initial reference point is (3, 1, 2) as before. We

explain the on-path actions of the MHE as follows. Matrix moves to (7, 5,
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E C D

A 1, 6, 1 3, 1, 2

B 2, 7, 3 8, 8, 4

F C D

A 5, 2, 6 7, 5, 8

B 6, 3, 7 4, 4, 5

Figure 6: Millian harm equilibria in a three-person illustrative game
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R

C
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M M M

Figure 7: Part of the game tree of Γ presented in Figure 6 where the arrows
illustrate the MHE path. Row moves first, Column second, and Matrix third.
(The full game tree is not shown due to space constraints.)

8) by playing F, where both Column and then Row stay. The reason why it

is a best response for Column to stay at (7, 5, 8) is that (i) Column receives

their highest pay-off in matrix F, (ii) Matrix player would prefer to stay at any

outcome in matrix F rather than moving to matrix E, and (iii) every outcome

in matrix F satisfies the MHP with respect to the reference point (3, 1, 2).

For analogous reasons, it is also a best response for Row to stay at (7, 5, 8).

Thus, (7, 5, 8) is the outcome of the MHE from the initial reference point (3,

1, 2).

At the outset, it looks like Row and Column should be able to implement

their most preferred outcome (8, 8, 4) in the game. However, as shown above

this is not possible if Matrix is the first-mover at the initial reference point.

This three-person example illustrates that the player function I can affect the
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MHE associated with any reference point, but I does not affect the conclusion

that the MHEs are Pareto optimal.

6 Conclusion

In this paper we supply a new answer to an old question in political philos-

ophy. We show that in n-person games, when people are free to select the

action that best satisfies their preferences subject to a version of Mill’s harm

principle, the result is a Pareto efficient outcome. This is a surprising sense

of ‘order’ that the exercise of freedom produces—surprising, that is, relative

to the formal insights provided by economics on this question. For example,

game theory does not expect, in general, this exercise of freedom to produce

Pareto efficient outcomes, as is well illustrated by the standard analysis of the

famous prisoners’ dilemma game.

The difference in our analysis of prisoners’ dilemma types of situations

is the inclusion of a version of Mill’s harm principle as a constraint on the

choice of actions in games. This can be contrasted with the other explanation

from economics (e.g. from Coase and Ostrom) over how the ‘disorder’ of

Pareto inefficiency might be avoided when the players step outside the game

and agree, through bargaining or the reliance on social capital resources, on

joint actions which secure a Pareto improvement. These derivations of ‘order’

rely on institutional props or supplements, whereas Mill’s harm principle has,

since Mill’s time at least, been regarded as constitutive of what liberty means

in a liberal society. Liberty on this account has never been a licence for a

free-for-all, it has always been constrained by the harm principle. Of course,

there are always disputes over what counts as harm in liberal societies. But,

what we show is that when preferences are given, harm is understood as a

pay-off reduction and people are constrained by our version of MHP, there

can be disputes over what is a harm and Pareto efficiency will still result. In

this sense, our demonstration of Pareto efficiency is intrinsic to what freedom

means in the liberal tradition of political theory and is therefore more powerful

than Coase’s and Ostrom’s.
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It may be useful to put this result into perspective by returning to Gib-

bard’s example of him and Parker painting their walls. Both can cause each

other a harm, in our sense of a pay-off reduction, if they paint their house the

colour they like most. Our version of Mill’s harm principle constrains indi-

vidual actions so as to avoid this happening and it produces instead a Pareto

efficient outcome. This is, of course, a contrived example, not least because the

‘harms’ are not exactly publicly defensible as they arise from a kind of malev-

olence. Hobbes’s harms in the state of nature that each experiences from the

threat of others who arm themselves, and which create an equivalent of the

prisoners’ dilemma, are much less controversial. Nevertheless, this is what

makes the Gibbard example instructive because it too generates a Prisoners’

Dilemma and our result holds more generally for all such interactions.

Gibbard’s example is also useful in locating our contribution in the liter-

ature. In the game theoretic framework, we take a person’s preferences as

given, if they are ‘weird’ in a way that seeing a happy neighbour causes dis-

comfort (that registers with a lower ‘utility’ number) is ‘weird’, then so be it.

De gustibus est non disputandum in game theory. We do not require, as a

result, an agreement over what substantively causes harm to a person. There

is no need for Parker to agree with Gibbard that Parker’s happiness actually

causes Gibbard harm. In other words, there can be perspectival disagreement

in the sense of Chung (2019) and Chung and Kogelmann (2020). Their social

choice approach is different to ours. We ask what will happen when people act

rationally but are constrained by a harm principle, whereas they ask whether

there is a social choice function when there are perspectival disagreements that

satisfy a liberal conception of rights. For this purpose, they assume that lib-

eral rights define an individual’s private space where individual decisions hold

sway. Even when there is an agreement over what is in this private domain,

Chung (2019, Theorem 4) shows that perspectival disagreements over the out-

comes in that private domain are enough to produce an impossibility result

for a social choice function in these circumstances that respects the liberal’s

private sphere and satisfies (strong) Pareto efficiency. Although this is a con-

trasting result to the one we produce, from our non-cooperative perspective,
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it is not so surprising. For example, if house painting is in the private domain

when Parker and Gibbard enjoy rights, they will decide to paint their house

the Pareto inferior (yellow, white). This makes our result all the more arrest-

ing and the difference between it and theirs would appear to be not so much

due to perspectival differences as the introduction of our version of Mill’s harm

principle as compared with their conception of liberal rights that establish an

individual’s private space.

For this reason, our version of Mill’s harm principle (and the comparison

with the liberal rights in the social choice approach) is worth further comment.

To begin with our harm principle, our definition of a harm as a pay-off reduc-

tion seems attractive because it is quite general. However, our version of the

harm principle assumes that the assessment of any person’s pay-off reduction

is made according to that person’s preferences; and this could be controversial

when there are perspectival disagreements. Why should Parker’s judgement

of harm to Gibbard, for instance, be guided by Gibbard’s perspective on the

matter if Parker does not agree with that perspective?

We offer two defences to this aspect of our argument. First, Parker does

not have to accept Gibbard’s view as the correct view, but, pragmatically, in a

game theoretic context, Parker does have to anticipate how Gibbard will act;

and Gibbard will plausibly be guided in this by his own view of the situation,

including regarding how harms to him arise when he is applying the harm

principle. This is a bit like the common knowledge of rationality assumption

in standard game theory, whereby each recognises that each will act to satisfy

their preferences as they see them, and this is so, even though a particular

person’s preferences may make no sense to another person. Second, we require

that Gibbard does the same when assessing harms to Parker: that is, he accepts

Parker’s perspective as the relevant one for how harms arise for Parker. This

is for the same reason that Parker does but it reveals an additional desirable

feature of our harm principle. When there are perspectival differences, in

effect, our principle affords equal standing to each perspective. Each person’s

perspective guides their own assessment of harm to themselves. We do not

treat any perspective differently. No perspective is elevated above another in
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the definition of a harm. This is an attractive feature in any genuinely plural

(and liberal) societies where perspectival differences are to be expected. Some

will be ineluctable in liberal societies and such differences should therefore

command equal respect.

Even if these arguments for our harm principle are accepted, in practice,

our harm principle is likely to converge with a rights approach in some respects.

This is because in a non-ideal world, we cannot take people’s preferences as

given in the way that game theory does. Indeed, if people know that people

are guided by our version of the harm principle, then they will have reason,

on occasion, strategically to pretend harms/discomforts where none exist (i.e.

the principle is not strategy proof). For this reason, it is not practical always

to allow for such personal definitions of what causes discomfort outside the

ideal world of game theory and expect that Pareto efficiency will still result

from the harm principle with respect to whatever are people’s real as opposed

to their strategic preferences. Instead, in a non-ideal world, we find that in so

far as the prospect of causing harm constrains action, it is often because harms

are given a public definition and legal force through the rights that people can

expect to enjoy.

Our reliance on rights in a non-ideal world appears to move us closer to the

social choice approach, with its similar reliance, and this may seem to favour

a Chung-like impossibility result over our contrary Pareto efficiency result.

However, matters are not so simple because rights arise for us in a non-ideal

world and rights do not function exactly in the manner of the social choice

approach in such worlds. In this respect, the social choice approach, whereby

one asks whether a social choice function is possible in a world where people

have liberal rights in their sense of private spaces, is an ideal-type question. If

the comparison between their approach and ours is to be made instead on the

non-ideal terrain, then the concept of rights needs adjustment from that found

in the social choice approach. There are two respects in which this appears

potentially important.

First, rights in practice do not just establish private spheres. They may do

this but they also put constraints on actions more generally and they thereby
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also create expectations regarding other people’s behaviours. This means that

rights also affect the character of the feasible outcomes for a social choice

problem. Second, in so far as rights encode some publicly determined definition

of what a harm is, then the existence of such rights casts a questioning shadow

over whether perspectival disagreements of the Chung (2019) type should really

be a datum in the formation of public policy (and hence the non-ideal version

of the social choice problem). The point is this. The public articulation of

what is a harm through the creation of rights has become necessary in our

view because private definitions of a harm collide and they cannot be treated

as reliable indicators of people’s real preferences in some circumstances. The

purpose of the rights intervention is, in other words, to resolve those differences

in a particular way. Thus, one might argue that public policy has already

dealt with these differences and so why should they feature in a public policy

discussion of what to do in a world where such rights exist? Or to express

this slightly differently, if rights establish that painting your house is in a

person’s private domain, why should Gibbard think that his possible irritation

with Parker’s painting decision should enter into the post rights social choice

problem? Of course, there can be a dispute over whether this is the correct

assignment of rights. But, if the social choice approach takes the rights as

given, then shouldn’t Gibbard and Parker also? In short, model consistency

in a non-ideal world would seem to demand that they should, so to speak,

move on from this particular dispute.

We leave these as open questions for the social choice approach in a non-

ideal world. For our harm approach, the challenge of a non-ideal world is that

articulated or revealed preferences cannot plausibly be relied upon to define

what is a harm in all circumstances. There will be cases where ‘de gustibus est

disputandum’, not least because aspects of people’s preferences are ill-formed

and uncertain, especially in a fast changing world, and not just because they

may be subject to strategic manipulation. It is in these cases that public policy

intervention is required through Parliament and legal adjudication. In short,

the gap between the ideal world and the non-ideal that seems likely to arise

sets a particular public policy agenda in our framework.
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To put this last point slightly differently and more sharply, it is often

argued in economics textbooks, for example, that the policy agenda in our

non-ideal world is set by the existence of prisoners’ dilemma type interactions.

They are a brute fact about our social world and governments constrain our

actions in the market by devising policies, like taxes, that internalise the ex-

ternalities that create the prisoners’ dilemmas. From the perspective of this

paper, though, it is not the occurrence of prisoners’ dilemmas in social and

economic life that should occasion this retreat from liberty. Rather, it is a

retreat from the liberal conception of liberty that is responsible for making

prisoners’ dilemma interactions problematic. Such retreats may occur either

because we have lost sight of the harm principle in the constitution of liberty

or because we have failed to define adequately through legislation and legal

judgement what constitutes harm. The simple point from a policy perspective

is that it is important to get the source of the problem right.

In short, our result is important both for a fundamental question in political

theory regarding how liberty needs to be restrained for social order to result

and for guiding policy discussion in a non-ideal world.

Appendix

Proof of the main theorem

Proof of the first part. We first show that if an initial reference point a0 is

Pareto optimal, then for every player function I, the associated MHE outcome

is a0 in game Γpa0, Iq, proving the first part of the theorem.

To reach a contradiction, suppose that a0 is not the MHE outcome, and

the outcome of an MHE σ˚ from a0 is given by some a1 ‰ a0. We know that

the MHE outcome from each initial reference point is unique by Lemma 2.

Because a1 ‰ a0 and a1 is the outcome of σ˚, it must be that Rpσ˚qzta0u is

non-empty. Too see this, suppose that Rpσ˚q “ ta0u. It implies that a1 “ a0,

which is a contradiction. Thus, there exists at least one player who stayed

along the path of play of σ˚, that is, changed a reference point in Rpσ˚q.
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For every player j who did not stay along the path of play of σ˚, it must be

that ujpa
1q ą ujpa0q. This is because for every reference point a P Rpσ˚q,

ujpaq ě ujpa0q due to the fact that σ˚ satisfies the MHP. For every player i

who did stay along the path of play of σ˚, it must be that uipa
1q ą uipa0q due

to two reasons.

First, player i’s pay-off cannot be diminished before i stays because every

preceding stay decision must satisfy the MHP. To see this, let x P X be the

node such that player i stays for the first time at a P Rpσ˚q, and b be the

reference point at x. Then, it must be that uipbq ą uipa0q due to the MHP,

that is, other players could not have stayed and harmed player i.

Second, it would not be optimal for player i to stay by playing ai unless

uipa
1q ą uipa0q. That is, if i stays at a where Spxq “ a, then i eventually must

benefit from this action due to sequential rationality and the MHP. If ai is

optimal at x, i.e., σ˚
i pxq “ ai, then uipa

1q ě uipbq because otherwise player i

would not stay at a, changing the reference point b. Notice that i can move

to another state or play p, in which case the minimum pay-off i would receive

is uipbq. This is because (i) if someone else stays at a state different than b,

then i cannot be harmed, and (ii) if everyone passes, then the outcome would

be b. But we also have that uipbq ą uipa0q. Therefore, uipa
1q ą uipa0q.

As a result, it implies that for every player i1, the inequality ui1pa1q ą ui1pa0q

is satisfied, irrespective of whether i1 stays or not along the path of play of σ˚.

This contradicts to our supposition that a0 is Pareto optimal. Therefore, a0

must be the outcome of σ˚.

Proof of the second part. Next, we show that for every initial reference point

a0 P A, and every player function I, the associated MHE outcome in game

Γpa0, Iq is Pareto optimal. In the first part of the proof we already showed

that if a0 is Pareto optimal, the associated MHE outcome is Pareto optimal. It

is left to show that for an initial reference point a0 that is not Pareto optimal,

the MHE associated with a0 must be Pareto optimal. Let σ be an MHE from

a0, which exists by Lemma 1.

To reach a contradiction, suppose that the outcome of σ is b, and b is
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Pareto dominated by some action profile a ‰ b. We obtain a contradiction in

two main steps.

Step 1: Given σ, we construct an MHE σ˚ from a0 such that there exists

a player i who chooses bi at some node y in rσ˚s and makes the reference point,

b P Rpσ˚q, at y the outcome. Since b is the outcome of σ, the outcome of any

MHE from a0 must be b by Lemma 2.

Consider path of the play, rσs, of σ excluding the terminal node rσs. Note

that whether the active player at the penultimate node in rσs stayed or passed,

b must have been the reference point at some point during the path of the play

of σ. Let i1 be the player who makes b the reference point for the first time at

some node y1 P rσ˚s. Let y P rσ˚s be an immediate successor of y1 such that

σi1py1q Ñ y and i “ Ipyq be the player who moves at y. Since the outcome

of σ is b, it must be optimal (i.e., a best response under the constraint of the

MHP) for player i to stay at y and make Spyq “ b the outcome. Player i’s

stay action, bi, is available at node y because b is the reference point for the

first time at y1. In addition, choosing bi clearly satisfies the MHP because b is

already the reference point at y. We then construct σ˚ such that σ˚
i pyq “ bi.

If σipyq “ bi, then define σ˚ “ σ. If σipyq ‰ bi, then for every player m and

every non-terminal node x̂ P Xztyu define σ˚
mpx̂q “ σmpx̂q. As desired, we

have constructed an MHE σ˚ from a0 such that there is player i who makes

the reference point, b P Rpσ˚q, at y the outcome in the first opportunity.

Step 2: We next show that σ˚ and hence σ cannot actually be an MHE

because σ˚
i pyq cannot be player i’s optimal choice at y. In other words, player

i has a unilateral profitable deviation from σ˚ and this deviations satisfies the

MHP. Notice that if (i) there exists a path of play from b to a along which the

MHP is satisfied, then σ˚
i pyq cannot be optimal because (ii) for every player

m (including i) umpaq ą umpbq, and (iii) no other player can stay at an action

profile which harms player i along the path because b is the reference point.

We first show (i). Let b1 P A and a1 P A be two action profiles. We first

show that for any player function I, there is always a path of play between b1

and a1. Let rb1, a1s be the path of play from b1 to a1 with the following property.

For every node y1 in this path of play, the active player at y1, i1 “ Ipy1q, chooses
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ai1 except when ai1 “ bi1 , in which case player i1 chooses to pass, p. Notice that

if the players follow this path, then the play would reach to a1 from b1 in at

most n moves. Note that no player stays along the path of play, so no action

in the constructed path of play violates the MHP.

Now, let rb, as be the path of play from b to a constructed as above. We

next show that rb, as X rσ˚s “ H, i.e., the constructed path of play does not

overlap with the path of play of σ˚. In other words, we make sure that σ˚ does

not prescribe players to choose actions at some nodes in rσ˚s such that these

actions then make the constructed path, rb, as, infeasible due to the history of

play.

Let x P rb, as be a node such that Spxq “ a. Then, it must be that x R rσ˚s

because if x P rσ˚s, then it would be a unilateral profitable deviation for the

active player at x to stay at a and make a the reference point. This is because

umpaq ą umpbq and staying at a satisfies the MHP. To see why staying at

a satisfies the MHP, suppose (to reach a contradiction) that there exists a

player î such that uîpaq ă uîpâq, where â is the reference point at x. But we

know that the outcome of σ˚ is b and that uîpbq ă uîpaq, which implies that

uîpbq ă uîpâq. Thus, either player î harms themself by staying at b, or someone

else harms î. It implies that either the sequential rationality of î is violated

or the MHP is violated, a contradiction. As a result, if there exists a node

x P rσ˚s such that Spxq “ a, then the active player would stay at a, making

it the reference point. But if a is the reference point, then b cannot be the

outcome of the MHE σ˚ because every player is strictly better off at a. This

leads to a contradiction to our supposition that the outcome of σ˚ is b. This

establishes that x R rσ˚s.

Let y P rb, as be an immediate predecessor of x. Then, it must be that

y R rσ˚s because if y P rσ˚s, then the player at y would have a unilateral

profitable deviation by moving to a, anticipating that the next player would

stay at a as shown in the previous paragraph. Note that this deviation would

not violate the MHP by construction of rb, as. Next, let y1 P rb, as be a (not

necessarily immediate) predecessor of y. By backward induction, notice that

y1 R rσ˚s because if y1 P rσ˚s, then the player Ipy1q would have a unilateral
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profitable deviation from σ˚
Ipy1q

py1q by playing an action that leads to a node

y2 P rb, as, where y2 is an immediate successor of y1. Thus, the paths of play

rb, as and rσ˚s have an empty intersection. As a result, statement (i) holds:

there is a path of play from b to a such that no player violates the MHP, given

the path of play of σ˚.

Statement (ii) holds by our supposition that b is Pareto dominated. State-

ment (iii) holds by definition of the MHP: player i has a unilateral profitable

deviation at b by playing ai unless bi “ ai, in which case i has a unilateral

profitable deviation by playing p, entering the path from b to a as constructed

above. By the MHP, no other player in the path can reduce i’s pay-off. In

addition, no player stays in the path from b to a. Thus, player i will eventually

receive a strictly greater pay-off by deviating to the constructed path because

uipaq ą uipbq.

As a result, if the outcome b of MHE σ˚ is Pareto dominated by some a,

then player i who stays at b and make b the outcome would have a unilateral

profitable deviation from σ˚. This contradicts to our supposition that the

MHE outcome from a0 is b. As desired, this implies that the MHE outcome

from any a0 must be Pareto optimal.
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