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A Reflection Principle for Kripke-Feferman truth

Carlo Nicolai, Martin Fischer, and Mario Piazza

Forthcoming in The Journal of Philosophy∗

Abstract

The Kripke-Feferman theory of truth is arguably the most discussed formal approach
to primitive truth. KF is a classical axiomatization of fixed-point semantics and fea-
tures reasonable mathematical strength. However, KF has been harshly criticized:
KF can prove claims that are, according to the Kripke-Feferman theory itself, un-
sound. Examples of this phenomenon involve both logical and non-logical axioms of
KF. In a thought-provoking paper, Reinhardt acknowledges this challenge to KF and
offers strategies to overcome it. Reinhardt argues that the non-significant sentences
of KF can be justified by invoking a very interesting principle that shares several
features with set-theoretic reflection. Yet Reinhardt does not discuss the details of
this proposal. In the paper, we provide precise renderings of Reinhardt’s reflection
principle; we show that some of these renderings can be consistently incorporated
into KF, while others are provable within KF itself. We elucidate how the principles
can be used to realize Reinhardt’s project of justifying non-significant theorems of
KF.

1 The Project

The Kripke-Feferman theory of truth is arguably the most discussed formal approach
to primitive truth. It has found application in various theoretical contexts, such as
Feferman’s characterization of predicativity [Fef91], philosophy of language and seman-
tics [Gla15], analysis of the Liar paradox [Mau04, Rei86], with some forays even in the
philosophy of mind [Koe18, Ste18]. In all of these areas, the Kripke-Feferman theory
is treated both as a useful logical tool and as a way of characterizing some intuitive
features of the concept of truth itself.

Kripke-Feferman truth does not commonly refer to a single theory, but to a collection
of (slightly) different theories. For example, some versions of the theory enforce the truth
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philosophy of mathematics. Carlo Nicolai acknowledges funding from a Marie Sklodowska-Curie action
funded by the EU under the Horizon Europe Research and Innovation Programme, the PLEXUS project
(Grant agreement No 101086295) and from the UK Arts and Humanities Research Council (project
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predicate to be consistent, while others require no truth-value gaps. In this work we are
mostly concerned with a version of Kripke-Feferman that does not demand truth to be
consistent or complete. When we use the label KF, we are referring to this version. There
are good reasons for employing this version of Kripke-Feferman truth. One of them will
be discussed shortly: the consistency or completeness axioms decide some paradoxical
sentences, such as the Liar. In doing so, however, they intensify the already existing
tension between the notions of provability and truth of KF. The other reason concerns a
lack of formal robustness of the notions of consistency and completeness added to KF; as
discussed in [Nic22], consistency and completeness are theoretically equivalent over KF.

KF captures the class of fixed-point ω-models as defined in [Kri75], and serves as an
axiomatization of fixed-point semantics. Notably, it is a classical axiomatization of a
natural, type-free notion of truth. As demonstrated in Feferman’s work, this feature
endows KF with reasonable mathematical strength. This has been shown to be closely
linked to the classicality of the theory, since the mathematical power of non-classical
axiomatizations of fixed-point semantics is more limited [HN18].

For the philosophical understanding of truth, two further features of KF stand out.
The first is that KF delivers a principled restricted version of the T-schema to sentences
that are, in the terminology employed by [Rei86, p. 231], significant:

(1) S(⌜A⌝) → (T⌜A⌝ ↔ A),

Here S(x) is a defined predicate for ‘x is true or ¬x is, while x and ¬x are not both true’;
it expresses that x has a determinate truth value. (1) can be seen as a realization of
Kripke’s original idea that the T-schema needs to be restricted to “meaningful” sentences.
In addition, S validates entirely plausible principles. The second feature relates to the
axiomatic approach itself; if axioms are given instead of a model-theoretic construction,
one does not need to ascend to a more expressive metalanguage, nor is one required to
restrict quantifiers to a specific set.1

Kripke-Feferman truth has also been harshly criticized. A well-known problem con-
cerns the provability of theorems that are in a sense incompatible with its truth predicate.
For example, in a version of Kripke-Feferman featuring a consistent truth predicate, one
can prove sentences that are deemed untrue by the theory. The Liar sentence λ is an
example: by proving λ, one also proves ¬T⌜λ⌝. McGee [McG91, p. 106] summarizes the
problem as follows:

If we accept the Kripke-Feferman theory, this simple connection between
truth and proof will be broken. In the Kripke-Feferman theory, we can prove
things that are, according to the Kripke-Feferman theory, untrue.

In KF, the situation is less dramatic. KF only derives some counter-intuitive claims, such
1For a more extensive discussion of this point, see [Hor11, Ch. 2].
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as the disjunction

(2) (λ ∧ ¬T⌜λ⌝) ∨ (¬λ ∧ T⌜λ⌝)

Each horn of the disjunction witnesses, again, an asymmetry between proof and truth.
Prima facie, (2) does not appear to be worrisome. After all, any theory T that proves

the diagonal lemma, and for which a provability predicate ProvT (x) satisfies the usual
meaning postulates,2 will entail

(3) (γT ∧ ¬ProvT (⌜γT ⌝)) ∨ (¬γT ∧ ProvT (⌜γT ⌝)),

where γT is a Gödel sentence for T . (3) can hardly be regarded as breaking the link
between internal and external provability for a mathematical theory.

A stronger version of the objection is as follows. McGee’s thesis that provability should
be a guide to truth can be expressed in the language of KF by means of a reflection
principle

(4) everything provable in KF is true.

The combination of (2) with (4) and the KF axioms leads to inconsistency (see Fact 1).
This results in an outright contradiction if one assumes the consistency axiom, whereas in
KF it leads to an internal inconsistency, meaning the existence of sentences that are both
true and false. So, the objection goes, KF cannot be closed under standard soundness
assertions. That being said, there are soundness assertions that are compatible with KF.
One is obtained by reformulating (4) as

(5) every significant theorem of KF is true.

We are not advocating (5) in this paper, although it appears to be a promising alterna-
tive to standard proof-theoretic reflection in the context of KF, as well as an interesting
starting point for a plausible reaction to (this form of) the unsoundness challenge.

The phenomenon affects not only the Liar and other well-known paradoxical sentences.
Any universally quantified claim that is provable in KF, but has non-significant instances,
cannot itself be significant in KF. This sense of “universally quantified” can be quite
broad, encompassing both meta-theoretical quantification over instances of schemata
and object-theoretical quantification. This category includes both logical and non-logical
axioms of KF. An unsoundness affecting the theory’s axioms is particularly worrysome.
The Liar and other paradoxical sentences may be seen as quirks or singularities to be
properly contained. The KF-axioms, however, lie at the heart of Kripke-Feferman truth.
Anyone who advocates KF as a theory of truth should be prepared to justify the axioms
of KF in light of their paradoxical instances. This is one of the main tasks of this paper.

2One does not formally require any principle for ProvT to be derivable in the theory, but it makes
sense for our discussion that T knows something about ProvT .
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In the insightful paper [Rei86], Reinhardt recognizes many of these challenges to KF and
proposes strategies to justify some of its fundamental consequences. He initially proposes
an instrumentalist reading of KF-theorems: the internal or provably true statements of
KF are regarded as the significant ones. This proposal has been extensively studied,
but it also has well-known drawbacks: as shown in [HH06], the provably true sentences
of KF rely essentially on the non-significant axioms of KF for their proofs.3 To provide
a justification for the non-logical axioms of KF, Reinhardt puts forward an additional
proposal, which is less well-known and will be the focus of our discussion. Reinhardt
argues that the non-significant sentences of KF can be justified by invoking a principle
that is similar to set-theoretic reflection:

If A, then there is an internal interpretation of the truth predicate of A which
makes A true. [. . . ] The principle is a reflection principle: because something
is true (in the absolute sense, a partial predicate), there are models (with
ordinary, total predicates) which reflect this. ( [Rei86], p. 237.)

Reinhardt does not discuss the details of this proposal; he also does not indicate whether
this reflection principle can be expressed in the language of KF.

However, Reinhardt’s principle captures some fundamental features of KF that can
be used to justify its axioms. The intended range of the truth predicate of KF is the
collection of grounded sentences, i.e. those sentences whose truth or falsity only depends
on arithmetical facts (more on this in Section 6).4 In addition, the statements provably
true in KF are guaranteed to be grounded. Although the KF axioms as they stand are not
grounded, a suitable regimentation of Reinhardt’s principle will enable us to extract the
grounded content from the KF axioms, thereby providing formal and conceptual tools
for their justification. In the paper, we provide different formulations of Reinhardt’s
reflection principle; we show that some formulations can be consistently added to KF,
and others are provable in KF. We then explain how the principles can be used to justify
the non-logical axioms of KF and appropriate restrictions of the logical ones. We consider
our results and subsequent discussion as a vindication of KF against the unsoundness
charges described above.

2 Kripke-Feferman and its “Unsoundness”

We start with the language of arithmetic with its standard signature {0, S,+,×}. We
then extend this language by adding a finite number of predicates and function symbols
for primitive recursive functions and properties. The primitive predicates are intended
to be shorthand for the corresponding characteristic primitive recursive functions. This
expanded language is referred to as LN. In particular, we will need primitive predicates

3There are strategies of defending Reinhardt’s use of the provably true sentences of KF. See for
instance [Nic17,CS23].

4This is recognized by Feferman himself, cf. [Fef12].
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SentLT(x) to denote the notion of a sentence in the language LT := LN ∪ {T}, and
ct(x) to denote the notion of a closed term in LN. We will write val(x) for a suitable
formula expressing in LT a primitive recursive evaluation function of these finitely many
additional primitive functions. We will also assume function symbols for the numeral
and substitution functions whose properties can be verified in Peano Arithmetic (PA),
our theory of syntax: PA ⊢ val(num(x)) = x and PA ⊢ ⌜A(t)⌝ = ⌜A(v)⌝(⌜t⌝/⌜v⌝).
We broadly follow the conventions in [Hal14], including the dot notation for formal
syntactic functions and operations. The expression ⌜φ(ẋ)⌝ abbreviates the result of
substituting, in ⌜φ(v)⌝, the variable ⌜v⌝ by the code for the x-th numeral. We abbreviate
quantified expressions such as ∀x(SentLT(x) → ... and ∀x(ct(x) → ... by ∀φ(... and ∀t(...,
respectively.

We work with a Hilbert-style calculus for classical predicate logic with equality where
Modus Ponens is the only rule of inference [End01]. Our assumptions mean that the ax-
ioms of PA include the primitive recursive equations for the additional primitive recursive
functions, as well as an induction schema.

(IND(LT)) A(0) ∧ ∀y(A(y) → A(S(y))) → ∀y A(y) for A(v) ∈ LT.

The Kripke-Feferman system KF we will be concerned with is formulated in the lan-
guage LT. It extends classical logic with equality with the basic axioms of PA (including
recursive equations for finitely many primitive recursive functions not in {0, S,×,+})
and IND(LT). The truth-theoretic axioms of KF amount to the clauses of the positive
inductive definition of the Strong-Kleene truth-conditions:

∀φ∀s, t(φ = (s̸=. t) → (T(φ) ↔ val(s) ̸= val(t)))(KF1)
∀φ∀s, t(φ = (s=. t) → (T(φ) ↔ val(s) = val(t)))(KF2)
∀φ(T⌜Tφ̇⌝ ↔ Tφ)(KF3)
∀φ(T⌜¬Tφ̇⌝ ↔ T¬.φ)(KF4)
∀φ∀ψ(T(φ∧.ψ) ↔ (Tφ ∧ Tψ))(KF5)
∀φ∀ψ(T¬. (φ∧.ψ) ↔ (T¬.φ ∨ T¬.ψ))(KF6)
∀v∀φ(T∀.vφ ↔ ∀t (SentLT(φ(t/v)) → Tφ(t/v)))(KF7)
∀v∀φ(T¬. ∀.vφ ↔ ∃t (SentLT(φ(t/v)) ∧ T¬.φ(t/v)))(KF8)
∀x(T(x) → SentLT(x))(KF9)
∀φ(T(¬. ¬.φ) ↔ Tφ)(KF10)

The axiomatization of KF provided differs from the usual formulation given for instance
in [Hal14], mainly due to the formulation of KF3 and KF4, which are now restricted
to sentences only. However, our version is proof-theoretically equivalent to Halbach’s
version. Therefore, for our purposes we can safely reason with the restriction to KF3 and
KF4. It can be shown that our version of KF is able to define all Tarskian truth predicates
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up to any ordinal α smaller than ε0 – compare with [Hal14, Lemma 15.24]. Therefore,
our version of KF proves at least the same arithmetical sentences as the version of KF
with the general version of KF3 and KF4. Moreover, it is easy to see that it cannot prove
more, as our version of KF is a subtheory of the one with unrestricted KF3 and KF4.

The internal theory of the version of KF we presented, that is the class of LT-sentences
A such that KF ⊢ T⌜A⌝, is governed by a four-valued logic called First-Degree Entailment
FDE [AB63].5 In other words, the truth predicate of KF allows for interpretations of T
that admit truth-value gaps or gluts. To force only gaps or only gluts, one needs to add,
respectively,

∀φ(T¬φ → ¬Tφ),(CONS)
∀φ(¬Tφ → T¬φ).(COMP)

KF axiomatizes fixed-point semantics in the sense of [Kri75]. In particular, the version
of KF we are considering is sound with respect to the four-valued models obtained by
applying the Tarski-Knaster theorem to the monotone operator associated with the
Kleene evaluation schema – see for instance, [Hal14, p. 206] – and to the complete lattice
given by P(ω) of possible extensions of T. The sense in which KF axiomatizes a suitable
class of fixed points is customarily explained with reference to a form of “completeness”,
or N-categoricity [FHKS15]:6

(6) (N, S) ⊨ KF iff S is a fixed point of the Kleene operator.

The minimal and maximal elements of the lattice of fixed points – that we dub I and
G, respectively – amount to natural models of KF + CONS and KF + COMP, respectively.
It will be useful later on to look at the ordinal “stages” of the construction of I, the
collection of all grounded sentences of LT in the sense of Kripke; I can in fact be seen as
the result of the closure of the empty set under the Kleene operator. With Φα standing
for α-many iterations of such an operator, we have

I =
⋃

α∈Ord
Φα,

where
Φα = Φ(Φ<α) and Φ<α =

⋃
β<α

Φβ.

For A a sentence of LT, its inductive norm |A|Φ is defined as the minimal stage for which
A ∈ Φα – and it is set to be ωCK

1 , the first non-recursive ordinal, if A /∈ I.7

5A full proof of this claim can be found in [Nic17], where it is shown that the internal theory of KF
is identical to the FDE-version of the theory PKF from [HH06] extended with a suitable rule of transfinite
induction.

6This fact was already observed in [Fef91].
7It is worth remarking that no grounded sentence in the sense of [Kri75] can have ordinal norm ωCK

1 ,
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In Section 1 we claimed that KF is affected by forms of unsoundness. The next obser-
vation provides a first assessment of this unsoundness phenomenon, as it tells us that KF
is incompatible with standard, formal soundness assertions.

Fact 1.

(i) Some instances of the logical axiom schemata cannot be proved true in KF;8

(ii) KF cannot prove the truth of any of KF3-KF8, KF10;9

(iii) KF cannot establish that Modus ponens (and with it that the material conditional)
is truth preserving. That is, there are some sentences A,B of LT such that, within
KF:

T ⌜A⌝, T(⌜A → B⌝) ⊬ T ⌜B⌝

(iv) KF cannot prove that all instances of INDLT are true.

As an immediate corollary, we obtain that the result of extending KF with each of the
following principles

∀φ(ProvKF(φ) → Tφ)(GRP(KF))
∀φ(AxKF(φ) → Tφ)(ARP(KF))
if KF ⊢ φ, then ⊢ Tφ.(NEC)

results in internal inconsistency.10

Beside these forms of “unsoundness” of KF, there are also (restricted) soundness as-
sertions that are fully compatible with it. As mentioned, the internal theory of KF is

IKF = {A ∈ LT | KF ⊢ T⌜A⌝}.

IKF is sound in the sense that every A that KF proves to be true is in the extension of the
minimal fixed point with |A|Φ < ε0. In fact, Reinhardt already mentions the possibility
of consistently adding a reflection principle for IKF to KF [Rei86, p. 234]. He notices that
even the truth of the following proof-theoretic reflection for IKF,

(7) ∀x(ProvIKF(x) → T(x)),

because of general facts concerning inductive definability.
8More formally, if Φ(A1, . . . ,An) is a logical axiom schema of the Hilbert-style calculus assumed–

where Φ(·) is the schema template, and the Ai’s are a meta-variables for LT formulae –, then there are
formulae A1, . . . , An such that Φ(A1/A1 . . . , An/An) cannot be proved true by KF. This generalizes to
other natural Hilbert-style axiomatizations of classical logic.

9KF1, KF2, by contrast, are provably true.
10The proof of all claims is analogous. Since (GRP(KF)) entails (ARP(KF)) and (NEC), it suffices to

establish the claim for the latter principles. For (NEC), one reasons as in item (i) of the previous Fact.
For (ARP(KF)), we can reason as in (ii) in Fact 1.
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can be consistently added to KF. It is fairly straightforward to check that the addition of
(7) to KF does not exclude any ω-model. In fact, the restriction to significant sentences
discussed in the previous section reduces to (7). Let

S(x) :↔ (Tx ∨ T(¬x)) ∧ ¬(Tx ∧ T(¬x)).

Then:

(8) ∀φ(ProvKF(Sφ̇ ∧ φ) → Tφ)

is provably equivalent over KF to (7): the equivalence follows directly from the formal-
ization in KF of (1); that is, KF proves that

(9) ∀φ ProvKF(Sφ̇ → (Tφ̇ → φ)).

3 KF and Reinhardt’s proposal

Reinhardt’s project in [Rei86] is to address the logical and semantic paradoxes. He
is inspired by scattered remarks made by Gödel, who suggested reconsidering the as-
sumption that concepts like truth or predication can be meaningfully applied to all
arguments [Göd95]. This idea is already implicit in the theory of types, but Gödel be-
lieved that typing was ultimately inadequate as it would omit some “intuitive” logical
claims.11

To implement Gödel’s idea, Reinhardt employs Kripke’s theory of truth as outlined
in [Kri75]. Reinhardt highlights that, within Kripke’s fixed-point models, truth functions
as both a partial predicate and total class. In the classical metatheory in which fixed-
point semantics is formulated, the sentences

T⌜A⌝ ∨ T⌜¬A⌝(10)
T⌜A⌝ ∨ ¬T⌜A⌝(11)

are not equivalent. Take for instance I: (10) may not be satisfied by the model (N, I)
– so, T can be seen as partial –, whereas (11) trivially is – so, T can also be seen as
total. It is this phenomenon that gives rise to the possibility of axiomatizing Kripke’s
construction externally, via KF, and internally, via theories in nonclassical logic such as
Halbach and Horsten’s PKF.12

11For instance, as reported by Hao Wang, according to Gödel
[the type-theoretic hierarchy] cannot satisfy the condition of including the concept of con-
cept which applies to itself or the universe of all classes that belong to themselves. To
take such a hierarchy as the theory of concepts is an example of trying to eliminate the
intensional paradoxes in an arbitrary manner. [Wan96, p. 278]

12Actually, nonclassical axiomatizations fixed point semantics based on FDE and variants thereof may
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Reinhardt’s idea is to employ KF to provide a theory whose theorems are all significant.
This theory is IKF, introduced earlier. The emphasis on ‘theory’ is key: by looking at
axiomatic systems, Reinhardt attempts to sidestep the need for a set-theoretic, classical
meta-theory. By selecting only sentences that are provably true in KF, IKF addresses the
mismatch between proof and truth affecting KF. Halbach and Horsten [HH06] have shown
that the use of some non-significant axiom of KF is required to obtain IKF. Another
feature of IKF is that it does not come with a natural recursive axiomatization in classical
logic. One way to extract a recursive set from the recursively enumerable definition of
IKF is via Craig’s reaxiomatization theorem. However, it is far from clear that such
a re-axiomatization renders the classical principles of KF eliminable, just like Craig’s
theorem does not make superfluous the theoretical terms of a scientific theory [Put65].
It should also be mentioned that Nicolai in [Nic17] has shown that PKF with the addition
of transfinite induction for any ordinal smaller than ε0 is a rather natural nonclassical
axiomatization of IKF.

However, we are interested in another proposal contained in Reinhardt’s paper. After
introducing IKF, the significant core of KF, he attempts to justify also the non-significant
consequences of KF. Among the non-significant consequences of KF, there are of course
the logical and non-logical axioms of KF. Here is the relevant passage from Reinhardt’s
paper:

But we all know that formalists are tricky folks, always tending to sneak
in some interpretation by the back door, while pretending to make merely
formal manipulations. Don’t we assign some truth to the axioms of KF, for
example? [. . . ] In particular, what justifies the use of such sentences, along
with classical syntax and logic in the formal theory? (Especially since the ap-
plication of classical logic and syntax to sentences involving partial predicates
already leads to such non-significant sentences, for example ∀x(Tx ∨ ¬Tx).)
There may in this case be some subtle proof theoretic justification; this is
an interesting question. I wish to suggest a simple general principle, how-
ever. The principle is a reflection principle: because something is true (in
the absolute sense, a partial predicate) there are models (with ordinary total
predicates) which reflect this. I do not attempt to state this precisely and
significantly here.13 Here I only wish to state the following formal principle
which may be added to our formal theory. Writing AT0,F0 for the result of
replacing T by T0, etc. in A, the principle is

(II) A → ∃T0, F0(total)AT0,F0

not be fully faithful to the reasoning available in fixed points. In PKF, one has inferences of form λ ⇒ λ
that involve non-significant sentences. Some sub-structural options fare better; [NR23] develop a sub-
structural version of PKF, called RKF, in which every step in a proof is significant.

13Our emphasis.
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[...] Since all total predicates have total truth predicates, this means that

A → ∃T0, F0T [AT0,F0 ]

Thus the formal theory allows for its own significant interpretation (at least
piecewise). ( [Rei86], p. 237)

In what follows, we continue Reinhardt’s project, and state precisely and significantly
the principle (II).

Our guiding intuition is as follows. A substantial class of non-significant theorems of
KF – following Reinhardt’s terminology – display some significant content. By refining
Reinhardt’s principle, we can, in favorable cases, extract the significant content from
these non-significant theorems. These favorable cases are the ones involving a uniform
distribution of truth-theoretic content such as the non-logical axioms of KF.

More specifically, when introducing KF, we stated that the intended range of its truth
predicate is the collection of grounded sentences. In a general claim such as axiom KF10,
quantification over sentences ranges over grounded instances as well as ungrounded ones.
Those grounded instances can be extracted by means of a regimentation of Reinhardt’s
principle to yield a restricted quantified principle that features only total truth pred-
icates. More generally, the procedure implicit in our version of Reinhardt’s principle
(II) will uncover significant content by restricting quantifiers in suitable KF-theorems
to their grounded instances. The procedure just sketched crucially employs total truth
predicates: these will take the form of type-free adaptations of Tarskian truth predicates
that keep track of the dependency structure of semantic content from basic arithmetical
facts.

4 From Set Theory to Arithmetic

Reinhardt’s principle is inherently set-theoretic, and it displays a striking similarity
with a reflection principle due to Bernays.14 In this section, we will elaborate on the
connection between (II) and class-theoretic reflection to arrive at our formulation of (II)
in LT, which will then be developed in the next section.

Reinhardt explicitly refers to the principle (II) as a set- or class-theoretic reflection
principle. Reflection principles in set theory embody the idea that the universe of sets
cannot be characterized by a unique property expressible in the language of set theory
(including its higher-order extensions), in the sense that any A true in V is already true
in some Vα. By restricting our attention to second-order parameters only, this idea can

14See [Ber76]: the class-theoretic reflection principle in question is,

AX → ∃x(transitive x and AP(x)(X ∩ x)).

Here AP(x) relativizes class quantifiers in A to subsets of x.
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be expressed by the schema:

(12) V ⊨ A(X) ⇒ ∃β Vβ ⊨ AVβ (X ∩ Vβ),

where AVβ relativizes quantifiers in A to Vβ and Vβ+1 (if second-order quantification is
allowed), respectively. All instances of first-order reflection (with second-order parame-
ters) are provable in ZF. If A is taken to be second-order, one can derive the existence
of large cardinals.15

Reinhardt does not make the full extent of the analogy between (II) and reflection
principles in set theory explicit. In footnote 12 of his paper, he mentions a principle
‘closely related’ to (II) and expressed in a set-theoretic language:

(13) (Vκ,∈, Tκ) |= A → ∃α AVα,Tκ∩Vα ,

for A a sentence of a set-theoretic language featuring a truth predicate. In (13), κ is
an inaccessible cardinal and Tκ is the result of carrying out a fixed-point construction
over Vκ. The claim is a consequence of the strong “reflective” properties of inaccessibles:
satisfaction in (Vκ,∈, Tκ) can always be approximated by an unbounded sequence of
models based on Vα’s, for α < κ.16 In the footnote Reinhardt continues with a cryptic
remark about the totality of the sets Tκ∩Vα versus the inability of the model to recognize
the totality of the corresponding predicate ‘T (x) ∧ x ∈ Vα’. It is unclear what notions of
totality are at play for Reinhardt. In a straightforward interpretation, the partial nature
of Kripke’s minimal fixed point justifies immediately the non-totality of the predicate
T (x) ∧ x ∈ Vα, whereas any set, including Tκ ∩ Vα, is total because set-membership is.
However, this interpretation is problematic because it could have been already applied
to Tκ, so (13) would become superfluous in the analysis.

In addition, it is difficult to see how Reinhardt’s principle (13) in its current form
could help to justify the axioms of KF, or a suitable version of it formulated in a set-
theoretic language. For instance, let A be KF3. Since A is true in (Vκ,∈, Tκ), by (13) its
relativization to Tκ∩Vα should also be true. However, in one interpretation of (13) which
echoes the worry above, the truth predicate will be interpreted via Tκ and quantifiers
will be restricted to Vα. So, although the relativization of KF3 will also be satisfied,
Vα will contain codes of many ungrounded sentences, so Tκ ∩ Vα will fail to be total
in the strong sense required, contrary to the original motivation. On another reading,
Tκ ∩ Vα will restrict Tκ itself to the level α. However, on this interpretation, some care
is required to make sure that the internal structure of codes of sentences is handled via
a suitable translation. For instance, let φ be the code of a sentences with parameters
from Vα, then

(Tφ → T⌜Tφ̇⌝)Tκ∩Vα

15The proof of first-order reflection can be found in any standard set theory textbook, whereas for the
claim about second-order reflection, see [Kan09, Ch. 1,§6].

16Compare Kanamori [Kan09], Lemma 6.1 p.57.
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won’t be satisfied by (Vκ,∈, Tκ) unless one suitably restricts also the range of sentences
to which the truth predicate can apply: in T⌜Tφ̇⌝ the external truth predicate is now
Tα, but the internal one would be unrelativized.

At any rate, Reinhardt’s analogy specifically pertains to the language of set theory, and
it becomes desirable to establish the non-significant consequences of KF independently
of the base theory. We see Reinhardt’s (II) as offering a general recipe that should also
be applicable within the arithmetical setting of Kripke’s original work. This certainly
shares some fundamental intuition with set-theoretic reflection, but it also needs to be
faithful to the specific challenges one faces in the standard truth-theoretic setting.17

It is well known that a truth predicate can reproduce set- or class-membership in
certain contexts by understanding u ∈ X as TφX(u̇), where φX is a formula of LT with
one free variable – intuitively, φX is true of u. So, a certain amount of class-membership,
directly employed in (12) and in (13), can be mimicked in LT; this also shows that
(definable) second-order parameters, implicitly used in the reflection strategy, can be
handled adequately.

However, reference to inaccessible cardinals, with their strong closure properties, is
clearly out of reach for the arithmetical language. It is instead more illuminating to focus
on ωCK

1 , the first non-recursive ordinal, as a suitable replacement. In fact, ωCK
1 resembles

the least inaccessible in several ways. It is the least recursively regular ordinal and has
strong closure principles, and it represents the “limit” of the inductive construction of
one of the intended models of KF, the minimal fixed point.

It is then plausible to adapt the template (12) to the language LT. By defining u ∈ X

via TφX(u̇) as prescribed above, (12) becomes

(14) I ⊨ A(X) ⇒ ∃α < ωCK
1 Φα ⊨ A(X)

In words: if A(X) is true in the minimal fixed point, then there is some stage in the con-
struction of the minimal fixed point that satisfies A(X). As with (13), (15) cannot hold
in general without further adjustments. Again, sentences such as ∀φ(Tφ → T(T(φ))),
which are satisfied in I, cannot be satisfied by any of the Φα.

A way to address this issue is, of course, to not only reflect satisfaction in the minimal
fixed point to satisfaction in a stage of its construction, but to relativize the quantifiers
over sentences as well. By writing Aα for the result of restricting sentential quantifiers
in A to sentences that contain at most α embeddings of T,

(15) I ⊨ A(X) ⇒ ∃α < ωCK
1 Φα ⊨ Aα(X)

Of course, a uniform method to generate the appropriate restriction Aα(X) in (15)
involves some additional adjustments, which will be explained shortly.

At any rate, it is evident that (15) is essentially formulated in the metalanguage. This
17That being said, the project of clarifying the scope and feasibility of Reinhardt’s remark within a

set theoretic framework is worthwhile and remains unexplored.
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is not satisfactory, since having a truth predicate in someone’s object-language should
enable them to express semantic facts in it (or at least all semantic facts that can be
expressed in the object-language, should be expressed in it). The language of set theory
can express principles in the vicinity of an object-linguistic formulation of (15), which
do not require the existence of inaccessibles. Some of them may seem to provide a
direct route towards an object-linguistic formulation of (15). More specifically, in the
context of admissible set theory, a significant role is played by the so-called principle of
Σ-reflection18

(16) A → ∃aA(a)

The principle states that if A is a formula of a suitable restricted complexity (Σ refers to
the presence of one unrestricted existential quantifier in A, not necessarily the outermost
one as in Σ1-formulae), then there is a set a such that A(a), i.e. the result of restricting all
quantifiers in A by a, holds.19 Σ-formulae display a strong connection to the expressive
resources of LT: The sets definable by partial predicates in the language of type-free
truth over the minimal fixed point are the same as the sets definable by a Σ1-formula of
set theory over the admissible set HYPN, i.e. the collection of all hyperarithmetical sets.
Moreover, we have that sets definable by total predicates in the language of type-free
truth correspond to the elements of HYPN.20

Although this points towards an object linguistic reflection principle, not relying ex-
plicitly on the ordinals, it quickly becomes clear that (16) only provides a restricted
form of reflection for LT-sentences, which does not suffice for an adequate regimentation
of Reinhardt’s (II). To see this, we have just mentioned that the assertion made by an
LT-sentence of form Tφ(n) – namely that n belongs to the set defined by φ – can be
replicated by a Σ-sentence of the language of set theory. Thus, by (16), this set-theoretic
claim can be reflected down, so that an object-linguistic version of (15) in LT could be
achieved along the following lines:

(17) Tφ → ∃ψ(tot(ψ) ∧ TφTψ).

In (17), tot(ψ) := ∀x(Tψ(ẋ)∨T¬ψ(ẋ)) and TφTψ expresses that Tφ is relativized by Tψ.21

In short, one is allowed to reflect down truth ascriptions, but not all formulae.
So, a full regimentation of Reinhardt’s principle (II) in the object-language is a non-

trivial matter. In the next section we will show that such a regimentation is indeed
possible. Our principle (rrγ) will incorporate the desiderata just discussed and extend

18Compare Barwise [Bar75], p.16. [Bar75] is also a standard reference for admissible set theory.
19The principle (16) is provable in Kripke-Platek set theory (KP) for Σ-formulae of the language of set

theory.
20These claims were first stated in [Kri75], made more explicit in [Bur86] and then generalized to

nonstandard models in [Can89].
21In the relativization the formula Tψ(ẋ) plays the same role as the hyperarihmetic set a in (16) and

is intended to restrict the quantifiers in Tφ accordingly.
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the truth-theoretic version of Σ-reflection. In particular, it will feature the key reflection
step from partial to total truth predicates prescribed by (II), while restricting the range
of sentences truth applies to as in (15). The principle will then be used in the final
section to provide additional justification for the axioms of KF.

5 A Formal Proposal

This section contains the formal results of the paper. To regiment Reinhardt’s (II), we’ll
employ Tarskian truth predicates definable in KF. We then provide effective translations
taking a formula A of LT to one in which occurrences of the partial predicate T are
translated into occurrences of Tarskian ones; the translations also restrict quantifiers
over sentences of LT in a uniform way. We will show that, under our understanding of
(II), the principle becomes consistent and even provable for natural classes of sentences
of LT. This provides a precise formal rendering to the informal procedure of extracting
the significant content from KF-theorems outlined above.

We start with defining the Tarskian sub-languages of LT. We will start with a general
definition for arbitrary recursive ordinals. In order to guarantee uniformity we choose
a path through Kleene’s O such that, for every γ on this path, ≺γ—the restriction
of the natural ordering of recursive ordinals to γ—is recursive. Later, we will focus
solely on translations for fixed ordinal notations for ε0 or Γ0, thereby removing the
noneffective aspects of the translation. Informally, the Tarskian languages are built
from the arithmetical language by ‘keeping-track’ how the well-founded iterations of the
truth predicate T are contained in the relevant formulae. Those languages don’t include
Liar or Truth-teller sentences, for instance, which cannot be obtained by a sentence of LN
by iterating T and combining it with the logical connectives. Intuitively, a language Lα
– a sub-language of LT – contains sentences involving iterations of T up to and including
the countable ordinal α. Sentα(x) will then denote the collection of sentences of the
language Lα; Sent<α(x) denotes the collection of sentences to which the “αth truth
predicate” will be applied, containing only sentences with less-than α iterations of T;
finally, the definition of the Tarskian truth predicate makes use of these sublanguages of
LT: Tα applies to a sentence φ if and only if φ is a sentence in Sent<α and Tφ. Precise
definitions can be found in Appendix A3.

[Hal97] translated the language LT into a Tarskian hierarchical language in such a way
that ‘grounded’ sentences were assigned Tarskian truth predicates matching their ordinal
norms in the Kripkean minimal fixed point. We slightly modify Halbach’s translation to
provide a precise formulation of Reinhardt’s suggestion.

For any γ on our chosen path through O we will provide a translation hγ(k,A). The
translation takes a (codified) ordinal k in γ and a formula from LT as input and provides
a formula of the Tarskian language Lγ as an output. By our previous definition the
Tarskian languages are themselves sublanguages of LT. The translation is the identity
function on arithmetical formulae and commutes with the logical symbols. As for the T-
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iterations, the translation attempts to assign a correct Tarskian level to it; if the formula
contains less-than k iterations of truth, the translation adequately reflects the sentence’s
grounded structure. If this is not possible, then the formula gets assigned an arithmetical
falsity.22 Since our chosen γ is such that ≺γ is recursive, the procedure for the iterations
is well-defined. A specific deviation from Halbach’s translation is that we take SentLT

as a primitive, translating it by Sent<k for the input k. The details of the translation
are provided in Appendix A3.

There is a slight ambiguity in our use of the translation functions hγ , which should
not cause any problems. On the one hand we intend to have a direct translation of
formulae of the type-free truth language into the Tarskian typed language. On the other
hand, we rely on an application of Kleene’s recursion theorem for the existence of the
function h. γ , which presupposes a translation function on the Gödel codes and not the
expressions themselves. Since there is a close correspondence between the use of hγ for
the two layers, the ambiguity is harmless and a disambiguation of all the occurrences in
the paper within the respective contexts is possible.

With the translations hγ in hand, we are in a position to formulate a template for a
reflection principle in Reinhardt’s sense:

Reinhardt Reflection Template. For any sentence A of LT we can find
an ordinal γ < ωCK

1 such that

(rrγ) A → (∀α)(∃β)(α ≺γ β ∧ hγ(β,A))

holds.23

Our interpretation of Reinhardt’s proposal is not only consistent, but it also has nice
models, as it is satisfied by the minimal fixed point I, one of the most natural models
of KF.

Theorem 1. For any sentence A of LT, we can find a γ < ωCK
1 such that (rrγ) is true

in (N, I), and therefore consistent with KF.

The theorem, whose proof can be found in the Appendix, also entails the consistency of
an apparently stronger claim involving truth. This turns out to be a precise formulation
in LT of a variant of the principle (II) also considered by Reinhardt [Rei86, p. 236].

Corollary 1. For any sentence A of LT, we can find a γ < ωCK
1 such that the sentence

(rr’γ) A → (∀α)(∃β)(α ≺γ β ∧ T⌜hγ(β̇, A)⌝)

can be consistently added to KF.
22Given this feature, the translation hγ(k,A) of A is not always faithful to the original content of A.
23For ease of readability, we don’t use different variables for ordinals and their codes. Strictly speaking,

in rrγ we are quantifying over codes of ordinals < γ, specifically members of a recursive set of natural
numbers codifying such ordinals. For this reason, quantifiers over α, β, . . . are implicitly bounded by γ.
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The specific formulation of (rrγ) contains some non-effective elements. Although it is
formulated schematically for formulae A, it includes a second component γ that depends
on A, making it non-effective. To see this, assume that there is a recursive set Σ of
instances of (rrγ). Then there is an arithmetical formula χ that defines the collection
of pairs (A, γ) occurring in instances of Σ. However, then the set of all γ occurring in
the instances is also arithmetically definable, and is a subset of Kleene’s O. According
to the boundedness theorem (cf. Theorem 7.2.8, p. 82 in [Poh96]), any arithmetically
definable subset of O is bounded in ωCK

1 . However, we also know, by the construction
of the minimal fixed-point I, that the set of inductive norms of grounded sentences is
unbounded in ωCK

1 .
The generality in the formulation of (rrγ) has the drawback of being too complex to

be specified explicitly. If we focus on the specific primitive recursive ordinal notation
system given by the Cantor normal form the situation changes.

By a slight adaption of Gentzen’s original argument we know that KF proves the
principle of transfinite induction for LT-properties up to any ordinal smaller than ε0:

(TIα(A)) Prog(A) ⇒ ∀ξ ≺ε0 αA(ξ), for all α < ε0, and A(v) ∈ LT,

where
Prog(A) := ∀η(∀ζ ≺ε0 η A(ζ) → A(η)).

We let TIα = {TIα(A) | A ∈ LT}.
The following lemma makes precise the claim that the translation hε0 involves sen-

tences belonging to the relevant Tarskian languages for the ordinals that are provably
well-ordered in KF. Its proof involves an easy transfinite induction.

Lemma 1. For all α < ε0, KF ⊢ ∀x(SentLT(x) → Sentα(⌜hε0(α, x)⌝)).

Although consistent, (rrγ) has not been shown to be provable. It is then natural to
ask whether we could find a version of Reinhardt’s reflection schema that is provable.
The answer turns out to be positive.

Proposition 1. KF is closed under the following rule of inference:

if KF ⊢ T⌜A⌝, then KF ⊢ (∀α)(∃β)(α ≺ε0 β ∧ T(⌜hε0(β,A)⌝)).

Proposition 1 follows from the proof-theoretic analysis of KF from [Can89], which tells
us that

KF ⊢ T⌜A⌝ ⇒ KF ⊢ Tα⌜A⌝, for some α < ε0

Since Tα⌜A⌝ and α ≺ε0 β, implies Tβ⌜A⌝ we can infer the admissibility of inference
rule in KF by Lemma 1. This proposition immediately entails that, for sentences A
that are provably significant in Reinhardt’s sense, that is such that KF ⊢ S(⌜A⌝), the
corresponding instances of (rrγ) are provable in KF.
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We now show that there are other classes of LT-formulae for which (rrγ) (for suitable
γ) becomes provable in KF. Fact 1 shows that the basic principles of KF – mainly its
logical and non-logical axioms – feature ungrounded instances: thus, such principles
cannot be significant in Reinhardt’s sense. However such claims can, in a precise sense,
be made significant by (rrγ); what’s more, such principles will be made significant by
the schema (rrε0), which fixes the specific countable ordinal ε0 in Reinhardt’s Reflection
Template thereby making the translation involved primitive recursive.

The first noticeable class of formulae to which Reinhardt’s reflection can be applied
are the non-logical axioms of KF. These even include candidate non-logical axioms such
as the axioms of consistency (CONS) and completeness (COMP), and the principle

(18) ∀φ∀ψ(T(φ → ψ) ∧ Tφ → Tψ)

expressing that Modus Ponens – the sole rule of inference in our formulation of KF – is
truth-preserving. Since, as mentioned in Section 1, the charge of unsoundness of KF is
particularly effective when involving these nonlogical axioms of KF, this amounts to a
considerable step in the direction of Reinhardt’s proposed vindication of KF.24

A second noticeable class of formulae is what we call truth-theoretic generalizations. To
motivate them, we can consider the logical axioms of the classical logical calculus we have
assumed. They involve for instance an axiom schema B → B, for B an LT-formula. It is
well-known that the truth predicate can be used to generalize over first-order schemata
and turn meta-theoretic (universal) quantification into first-order (universal) quantifica-
tion; in the case at hand, this would amount to the first-order sentence ∀φ (Tφ → Tφ).
The class of truth-theoretic generalizations extends this pattern to LT-formulae obtained
by taking LN-formulae A(P1, . . . , Pn), where P1, . . . , Pn are free second-order variables,
and replacing P1, . . . , Pn with truth-ascriptions over arbitrary LT-sentences (potentially
with parameters):

∀φ1 . . . ∀φnA(Tφ1/P1, . . . , Tφn/Pn).

Truth-theoretic generalizations include truth-theoretic formulations of the logical ax-
ioms of classical predicate logic. For a list of noticeable instances of truth-theoretic
generalizations, we refer to Appendix A2.

The formulae just presented share the feature of having grounded content – see discus-
sion in the concluding section; as such, Reinhardt’s reflection principles can separate this
grounded content from the ungrounded one. The next theorem summarizes the status
of (rrε0) in our framework; its proof can be found in Appendix A1. As mentioned, the
first item in the theorem follows immediately from Proposition 1.

Theorem 2. (rrε0) is provable in KF for:

(i) LT-formulae A(x⃗) such that KF ⊢ S⌜A( ˙⃗x)⌝;

(ii) non-logical axioms of KF, and candidate axioms such as CONS, COMP, and (18);
24Cf. also [Fie08, §7.3].
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(iii) truth-theoretic generalizations.

As a corollary, we obtain that the formulae just described in (ii)-(iii) can be in a sense
be taken to be true (via their translation), and therefore significant.

Corollary 2. (rr’ε0) is provable in KF for A belonging to the classes (i)-(iii) from
Theorem 2.

It is worth noting that the proof of Theorem 2 depends essentially on the extent of
transfinite induction for LT provable in KF. Therefore, on the background of KF one
can generalize the result to any amount of transfinite induction available in a suitable
primitive recursive ordinal notation system (O,<).

Proposition 2. Let (O,<) be a primitive recursive ordinal notation system. For any
γ ∈ O and A belonging to the classes (i)-(iii) from Theorem 2:

KF + TIγ ⊢ A → (∀α)(∃β)(α ≺γ β ∧ T(⌜hγ(β,A)⌝)).

6 Vindicating KF

6.1 Reinhardt’s Conjecture

Reinhardt’s quote reported in Section 3 ends with what we may call Reinhardt’s Con-
jecture, namely the idea that the ‘formal theory [KF] allows for its own significant inter-
pretation (at least piecewise)’ [Rei86, p.237]. We now assess the impact of our work on
the conjecture, and then connect our main findings to more traditional themes in the
philosophical justification of Kripke-Feferman truth.

We decided to test Reinhardt’s task in the original language LT in which KF is formu-
lated. Already the task proved to be non-trivial, and required sophisticated logical tools
to formulate suitable forms of reflection compatible with Reinhardt’s idea. However, our
first main finding is that Reinhardt’s conjecture can be formulated by means of suitable
reflection principles even in the language of arithmetic. Specifically, Reinhardt suggests
that the significant interpretation of a sentence of LT should be connected with a proce-
dure of replacing partial (nonclassical) truth predicates with total (classical) ones. We
have provided the details of how such a procedure can work in an arithmetical context.

Moreover, what we called Reinhardt Reflection Template (p. 15) enables one to for-
mulate different reflection principles that are relevant to Reinhardt’s Conjecture. The
Conjecture is in fact vague enough to sanction different precisifications. What does it
mean for KF to allow for its significant interpretation? In one sense, this can be made
precise by requiring a suitable incarnation of Reinhardt’s Reflection Template to be
compatible with a nice model of KF, and hence being consistent with KF. Theorem 1
clearly establishes that this version of Reinhardt’s conjecture is indeed true: the mini-
mal, closed-off fixed point model of KF is compatible with the statement (rrγ) expressing
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that if a sentence A holds, then its truth predicates can be replaced by suitably total
ones, thereby making A significant.

There may be more stringent ways for KF ‘to allow’ its own significant interpretation.
A plausible one is to require suitable instantiations of Reinhardt’s Reflection Template to
be provable in KF. In this sense, our analysis deems Reinhardt’s Conjecture false: there
are sentences A such that for no countable ordinals γ the relevant instance of (rrγ) is
provable in KF. One such A can be for instance the truth-teller sentence τ ; others consist
in classical tautologies involving ungrounded content such as τ ∨ ¬τ .

However, if by ‘formal theory’ one only focuses on the axioms of KF, then the picture
changes. Theorem 2 establishes the truth of Reinhardt’s conjecture at least for the
non-logical axioms of KF, and truth-theoretic versions of its non-logical axioms.

All in all, we believe that our results support a broadly positive outlook on Reinhardt’s
conjecture in an arithmetical context. The results also provide insights on traditional
philosophical applications of the Kripke-Feferman theories, to which we now turn.

6.2 Groundedness.

Our results suggest that, although KF cannot eliminate altogether the ungrounded con-
tent from its theorems, the theory can, in a precise sense and in a large class of rel-
evant cases, tolerate them. Reinhardt’s reflection provides a uniform way to extract
the grounded content from some noticeable consequences of KF, such as its non-logical
axioms. The principles provide insight on the nature of ungrounded theorems of KF;
theorems with exclusively ungrounded content, or singularities in Gödel’s terminology,
are the ones that cannot be reduced to theorems with exclusively grounded content via
Reinhardt reflection.

In the introduction, we reported Feferman’s idea that the intended range of the truth
predicate of KF is the collection of grounded sentences. Here’s Feferman’s quotation in
full:

First of all, the distinction between outer and inner logics is only a problem
if one conflates two notions of truth, namely the notion of grounded truth
given by Kripke’s least fixed-point construction, and our everyday notion of
truth not tied to any particular semantical construction or theory. Thus, in
KF, T(A) expresses that the sentence A is a grounded truth while A itself, if
provable, is counted as true in the informal sense. So on that reading there
is no conflict between accepting both ¬T(λ∨ ¬λ) and λ∨ ¬λ for a formal liar
sentence λ. [Fef12, p. 189]

KF is already a highly regimented reasoning environment and based on very specific
assumptions. So, even if it may well be the case that provability in KF counts as truth
‘in the informal sense’, there is something more to say to link theoremhood in KF and
the notions of groundedness and significance.
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It is here that our formulation of Reinhardt’s reflection principles – specifically (rrγ)
and (rr’γ) – enters the picture. Take the closed-off minimal fixed-point model (N, I).
Corollary 1 provides a link between sentences that hold at (N, I) and the extension I of
T: in particular, it provides a uniform procedure to extract the grounded content from
sentences satisfied at (N, I). There are some sentences, such as the Liar or truth-teller
sentences, for which there is no grounded content to extract. In such cases, Reinhardt’s
conditional is trivially satisfied because such sentences are not satisfied in the minimal
closed-off fixed point and they appear as antecedents in such a conditional. However,
and most crucially, the reflection principle is able to extract the grounded content from
many sentences of mixed status, for instance non-logical axioms of KF, in which one
quantifies both over grounded and ungrounded instances. What’s more, our formulation
of the principle enables us to capture grounded instances of such quantified claims of
arbitrary ordinal norm relative to the minimal fixed point I.25

The semantic link between satisfaction in a grounded model and membership in the
collection of grounded truths provided by Reinhardt’s reflection has a proof-theoretic
counterpart. Corollary 2 shows that, for suitably defined recursively enumerable classes
of LT-formuale, corresponding informally to collection of sentences that display some
grounded content, one can link the external and the internal theories of KF. In the
specific case of the logical and non-logical axioms of KF, this means that KF is able to
disregard their ungrounded content, mitigating considerably its alleged unsoundness.

For example, an axiom such as

(KF10) ∀φ(T(¬¬φ) ↔ Tφ)

has grounded and ungrounded content implicit in the range of the universal quantifier.
The unsoundness challenge to KF would point to the ungrounded instance T⌜¬¬λ⌝ ↔
T⌜λ⌝ of KF10. However, via Reinhardt’s reflection, KF is able to filter out “singularities”
such as T⌜¬¬λ⌝ ↔ T⌜λ⌝ and to (provably) establish a link between KF10 and its intended
range of grounded instances.

6.3 Reinhardt’s instrumentalism.

Our result can also help vindicating KF against its alleged unsoundness by means of a
fuller realization of Reinhardt’s programme. Reinhardt identified IKF as the significant
core of KF. In Reinhardt’s picture, indeed, KF serves as an indispensable tool for rea-
soning about IKF. However, the unsoundness challenge poses a threat to Reinhardt’s
programme as well since, as shown by [HH06], this necessary detour via KF also neces-
sarily involves sentences that are not in IKF and are not grounded. To address this issue,
Reinhardt introduced his principle (II) precisely to provide a ‘significant interpretation’

25Notice that this is possible because we are allowing our translations to work relative to fixed paths
through O with suitable properties. As we mentioned, this is also the source of the ineffective nature of
translations.
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for these sentences that is available within KF itself.
Our formal development in Section 5 realizes Reinhardt’s proposal by providing two

levels of justification for KF. On a first level, one can formulate in LT a full version of
Reinhardt’s reflection principle – in our notation (rr’γ) as stated in Corollary 1 – that
is consistent with KF. The sense in which (rr’γ) expresses a significant interpretation
of KF-theorems, on this first level of justification, is that the grounded model (N, I)
validates the principle.

Of course, on this first level, the link between KF-theorems and their significant content
is expressed in LT but established at the meta-theoretic level. However, by restricting
oneself to the instances of (rr’ε0) in the classes of LT-formulae (i)-(iii) from Theorem 2,
this link becomes fully accessible to KF. This is the content of Corollary 2, in which it is
shown that Reinhardt’s reflection principle (rr’ε0) bridges, via the proposed translation,
KF-provably significant formulae, non-logical axioms, and truth-theoretic generalizations.
On this second level of justification, there is a principled path from an important class
of KF-theorems to IKF. It is worth noting that, according to Reinhardt – cf. again in
Reinhardt’s passage in Section 3 –, the intended target of Reinhardt’s justification are
the axioms of KF. In this sense, our proposal fully vindicates Reinhardt’s idea. An
important consequence of (rr’ε0) is that the conjunction of axioms KF1-KF10 can always
be translated into a significant statement. So, in the proof of any KF-theorem, (rr’ε0)
provides a stable justification for the use of KF-truth axioms in proofs.

The procedure extends, in a precise sense, to noticeable classes of KF-proofs. Suppose
KF ⊢ T⌜A⌝, for some LT-sentence A. Then, not only the conjunction of the finitely
many non-logical axioms of KF, but also the instances of LT-induction and logical ax-
ioms employed in this proof can always be interpreted in accordance with (rr’ε0), so
that their use can be fully internalized within IKF. In this sense, for any concrete proof
of a significant statement, KF can offer an interpretation of its axioms used in the deriva-
tion: uniformly for non-logical truth axioms, and in a piece-wise manner for logical and
induction axioms.26

6.4 Reflective closure

A third proposed vindication of KF based on our results is closer to Feferman’s original
motivation for introducing KF. In a recent article, Cantini, Fujimoto, and Halbach
reconstruct the conceptual step underlying the transition from transfinite iterations of
Tarskian truth predicates:

From a foundational point of view, [the iterated Tarskian theories] are a very
26Another piece-wise justification of KF-proofs may be given via Cantini’s proof-theoretic analysis of

KF in [Can89]. Cantini’s asymmetric interpretation establishes that for each specific KF-proof of T⌜A⌝
one can find a specific α ≺ ε0 such that Tα can act as the “translation” of T in T⌜A⌝. However, it is worth
noting that the piece-wise justification of proofs via the principle (rr’ε0 ) is a special case of Theorem 2,
whereas the asymmetric interpretation can only be applied to the specific case of proofs of theorems of
form T⌜A⌝.
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convincing way of carrying out the programme of determining the reflective
closure of PA, that is, of characterizing the theory that makes explicit what
is implicit in the acceptance of PA. The formulation of the systems of iter-
ated truth is technically awkward. The specification of the language already
requires an ordinal notation system. Then the motivation of the terminal
ordinal ε0 or Γ0 relies on some deeper results. Moreover, it is highly specific
to PA. Feferman has made various attempts at characterizing the reflective
closure of theories in a more elegant way. The reasons for seeking a more
succinct characterization are not only of an aesthetic nature. A method
of defining the reflective closure of a theory that is less reliant on ordinal
notation systems and an explicit appeal to proof-theoretic techniques and
notions, should also be more generally applicable; moreover, it would also be
philosophically less prone to the objection that it depends on arbitrary stip-
ulation; a more elegant system would depend on a ‘natural’ ordinal notation
system and arithmetization. [CFH17, pp. 292-93]

To assess the quote, let’s focus on the simple case of the iterated Tarskian theories up
to any α < ε0, that we call CTα. A plausible way to spell out the reason why ⋃

α<ε0 CTα
may characterize the reflective closure of PA is by appeal to the PA-provable well-ordering
of such α’s. The soundness of PA is naturally expressed by the Global Reflection Principle
GRP(PA). The Tarskian theory CT1 proves GRP(PA). Given that the ordinals α less than ε0
are provably well-ordered in PA, it seems justified to iterate the process along these α’s:
consider the property ‘CTα proves GRP(CT<α)’. The property is clearly progressive. So,
since we are entitled to transfinite induction for LT – and the Tarskian truth predicates
Tα can be expressed in LT – one is justified to preserve the property up to any α < ε0.⋃
α<ε0 CTα is the limit of this process.27

The next step is to realize that KF expresses the reflective closure of PA without explic-
itly appealing to ordinal notations and their properties provable in specific base theories.
However, [Fef91] already noticed that such properties are implicit in KF; the truth predi-
cates of the theories CTα, for α < ε0, can all be defined in KF via the predicates ‘x is true
and is a sentence containing < α iterations of T’. However, Feferman’s translation does
not provide a link between the axioms of KF and the reflective closure of PA expressed in
terms of iterations. If, as presented in the passage above, KF is only a ‘nicer presentation’
of the more direct formulation of the reflective closure for PA given by ⋃

α<ε0 CTα, it seems
that its foundational relevance is only derivative. For instance, what is the relationship
of the KF axioms with the explicit presentation of the reflective closure of PA?

The principle of Reinhardt reflection (rr’ε0) introduced above helps in providing the
required link. The principle delivers a way to connect the general formulation of the
KF-axioms and their content involving the explicit presentation of the reflective closure

27If one accepts iterations along ordinals that are provably well-ordered in the CTα’s themselves, one
is allowed to iterate along any α < Γ0. We stick to ε0 for ease of presentation. Our discussion, in virtue
of Proposition 2, can be transferred to Γ0 and to the schematic formulation of KF.
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of PA. Quantification over all LT-sentences, required for the neat and parsimonious
formulation of KF, is replaced in a uniform way by quantification over sentences involved
in the formulation of the CTα’s.

6.5 Objections

Before we close the discussion we address two potential objections.

Overgeneration. One may object that our strategy overgenerates. Consider the ex-
amples of (CONS) and (COMP). Although KF is not consistent with both axioms, neverthe-
less (rr’) can be applied to both. Another way of putting the objection is that the set
collection of axioms whose grounded content can be extracted via (rr’) is inconsistent
over KF. Is this a problem for the proposal?

We don’t think so, because the principles of Reinhardt reflection are conditional, and
are intended to explain, within a specific theory that already has some independent
motivation, the link existing between a sentence and its grounded content. For instance,
in the case of KF+CONS, the relevant information in need of explanation is the relationship
between CONS and its grounded content. The fact that the translation of COMP happens
to be provable does not undermine this.

KF and groundedness. Another potential objection may concern KF and its relation-
ship with grounded sentences. It is well-known that KF is, in a sense, a theory of all
fixed points: Feferman showed that the ω-models of KF are all the fixed points of Φ
(cf. (6) above). Therefore, so the objection goes, it would be inadequate to extract the
grounded content from the KF-axioms as this would not account for the intended range
of KF-truth. Perhaps the project of employing Reinhardt reflection principles is more
suited for theories that feature a minimality condition such as Burgess’ KFµ introduced
in [Bur14].

The objection can be resisted in at least two ways. First, as we mentioned, Feferman
himself – who proved (6) – refers to the grounded truths as the intended range of the
truth predicate of KF. In fact, Feferman’s instrumentalist reading of KF as the reflective
closure of PA strongly connects KF to the iteration of Tarskian truth over PA, which are
all grounded sentences. Moreover, it is clear that the truth predicate of KF, in virtue of
(6), does have some grounded content as it is sound with respect to the minimal fixed
point of Φ, and the truths provable of KF are all grounded. Finally, our framework can
be applied to KFµ as well: Proposition 1 can be adapted without modification to yield
the consistency of (rrγ) with KFµ, and Proposition 2 entails that (rr’γ) is provable in
KFµ for suitable ordinals provably well-ordered in KFµ.
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Appendix A

A1: Proofs of Theorems

Proof of Fact 1. Let us define the Liar sentence λ as ¬Tl, where the base theory PA
proves that l = ⌜¬Tl⌝.

For (i) we can consider for example the instance λ → λ of a logical axiom. Suppose,
seeking a contradiction, that T⌜¬(λ ∧ ¬λ)⌝. The KF-axioms entail that T⌜λ⌝. By KF6
and KF10, we obtain T⌜¬λ⌝ ∨ T⌜λ⌝. Each disjunct, however, leads to T⌜λ⌝ ∧ T⌜¬λ⌝, by
KF3, KF4, and again KF10. Since (N, I) is a model of KF, this is a contradiction. By an
analogous use of the Liar sentence we can obtain internal inconsistencies, and therefore
the unprovability, of the truth of the other logical axioms.

For (ii), we can consider for instance KF3. Assuming its truth, we would have

T⌜Tl → T⌜Tl⌝⌝,

that is
T⌜¬Tl ∨ T⌜Tl⌝⌝.

We can then reason as in the previous case.
For (iii) one can consider a fixed point model (N, S) ⊨ KF where λ,¬λ ∈ S – we

know that such models exist because of (6). It is then immediate that both λ ∈ S and
(¬λ ∨ 0 = 1) ∈ S, but of course 0 = 1 /∈ S: this suffices to establish that T is not closed
under the material conditional, as prescribed by (iii).

Symmetrically for (iv) one considers a model (N, R) where λ,¬λ /∈ R – e.g. (N, I). If
all instances of induction were true, also the instance concerning the formula λ ∧ x = x

would be. However, this instance cannot be satisfied in (N, R).

Proof of Theorem 1. Let I be as above. We show that for all formulae A ∈ LT there is
a γ < ωCK

1 such that the instance of (rrγ) is validated in I by induction on the positive
complexity of A.

• If A is an identity s = t or s ̸= t, then the claim is obvious.

• If A is SentLT(t), then one employs the fact that, for any suitable path through O
γ,

N |= ∀α∀x(SentLT(x) → Sentα(h. γ(α̇, x))).

If A is ¬SentLT(t), then the claim follow from the fact that, for all suitable α,
Sentα(t) → SentLT(t).

• If A is T(t), then either tN /∈ I or tN ∈ I. If the former, then the claim is trivially
obtained. If the latter, let δ be the ordinal norm of tN. Then we can choose our γ
to be some limit ordinal, such that δ < γ < ωCK

1 . The levels of I are increasing, so
tN ∈ Iη for δ ≺γ η. Therefore, we can let β be δ, if α ≺γ δ and α+ 1 if δ ≺γ α.
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• If A is ¬T(t). If tN ∈ I the claim is trivially obtained. If tN /∈ I, we rely on the
claim

(19) tN /∈ I ⇒ ¬∃δ < ωCK
1 tN ∈ Iδ.

• If A is B ∧C, then by induction hypothesis there are γ, γ′ and so we can take the
maximum.

• If A is ∀xB, then the induction hypothesis yields, for all n ∈ N, some γn. So, for
γ = sup{γn |n ∈ N}, the claim holds. That γ < ωCK

1 follows by the fact that ωCK
1 is

recursively regular.

• If A is ¬(B ∧ C), then by induction hypothesis we have γ, γ′ for which ¬B →
∀α∃β(α ≺γ β ∧ hγ(β,¬B)) and ¬C → ∀α∃β(α ≺γ′ β ∧ hγ′(β,¬C)). Then we can
choose one of γ, γ′ and employ the definition of h.

• If A is ¬∀xB(x), then ¬B(n) is true in I for some n ∈ N. By induction hypothesis
we have a γn such that ¬B(n) → ∀α∃β(α ≺γn β ∧ hγn(β,¬B(n)). The claim then
follows by definition of h.

Proof of Theorem 2. The proof strategy is analogous for all A’s: one shows indeed that
the right-hand side of the claim is derivable in KF for all α ≺ ε0. As an example, we
verify the claim for CONS. Reasoning in KF, we want to establish

(20) (∀α)(∃β)(α ≺ε0 β ∧ hε0(β,∀φ(T¬φ → ¬Tφ))).

Fixing an arbitrary β ≺ ε0, by Lemma 1 it suffices to establish, for all δ ≺ β,

(21) Sent<β(x) → (¬Tβ⌜hε0(δ, ẋ)⌝ ↔ Tβ⌜hε0(δ,¬ẋ)⌝).

That is, for all β < ε0, the predicates Tβ are consistent and complete. Claim (21) is
obtained by a transfinite induction up to β and a sub-induction on the complexity of
sentence x. It is important to notice that, given our assumptions on the language LT,
the base case in the proof of (21) needs to include also the case in which the formula is
of form SentLT(x).

A2: Truth-Theoretic Generalizations

The class of truth-theoretic generalizations is obtained by taking LN-formulaeA(P1, . . . , Pn),
where P1, . . . , Pn are free second-order variables, and replacing P1, . . . , Pn with truth-
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ascriptions over arbitrary LT-sentences (potentially with parameters):

∀φ1 . . . ∀φnA(Tφ1/P1, . . . , Tφn/Pn).

Among some noticeable members of this class, we list the universal closure of the fol-
lowing truth-theoretic version of the axioms of classical logic:

Tφ → Tφ(22)
Tφ → (Tψ → Tφ)(23)
(Tφ → (Tψ → Tχ)) → ((Tφ → Tψ) → (Tφ → Tχ))(24)
Tφ → (Tφ ∨ Tψ)(25)
Tψ → (Tφ ∨ Tψ)(26)
(Tφ → Tψ) → ((Tχ → Tψ) → (Tφ ∨ Tχ → Tψ))(27)
Tφ ∧ Tψ → Tφ(28)
Tφ ∧ Tψ → Tψ(29)
Tφ → (Tψ → (Tφ ∧ Tψ))(30)
¬Tφ → (Tφ → Tψ)(31)
¬¬Tφ → Tφ(32)
∀xTφ(ẋ) → Tφ(ṫ) with t free for substitution(33)
∀x(Tφ(ẋ) → Tψ(ẋ)) → (∀xTφ(ẋ) → ∀xTψ(ẋ))(34)
Tφ(ẋ) → ∀xTφ(ẋ) with t free for substitution(35)
x = y → (Tφ(ẋ) → Tφ(ẏ))(36)

A3: Tarskian Languages and Translations

Definition 1. For γ < ωCK
1 , let:

SentγLT
(0, x) :↔ SentLN(x),

SentγLT
(ζ+̂1, x) :↔ SentγLT

(ζ, x) ∨
(∃y ≤ x)(x = ⌜Tẏ⌝ ∧ SentγLT

(ζ, y)) ∨
(∃y < x)(x = (¬. y) ∧ SentγLT

(ζ+̂1, y)) ∨
(∃y, z < x)(x = (y∧. z) ∧ SentγLT

(ζ+̂1, y) ∧ SentγLT
(ζ+̂1, z)) ∨

(∃v, y < x)(x = (∀.vy) ∧ SentγLT
(ζ+̂1, y)),

SentγLT
(λ, x) :↔ ∃ ζ ≺γ λ SentγLT

(ζ, x) for λ limit.
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The following abbreviations are decribed informally in the text but precisely defined
here:

Sentα(x) :↔ SentγLT
(α, x)

Sent<α(x) :↔ ∃ζ ≺ α SentγLT
(ζ, x),

Tα(x) :↔ Sent<α(x) ∧ T(x).

Let γ be on our chosen path through O, with (ONγ ,≺γ) the ordinal notation system.
We define a translation function hγ : ONγ × LT → LT.

hγ(k,A) :↔ A, if A ∈ LN

hγ(k,¬A) :↔ ¬hγ(k,A)
hγ(k,A ∧B) :↔ hγ(k,A) ∧ hγ(k,B)
hγ(k, ∀vA) :↔ ∀v hγ(k,A)

hγ(k, SentLT(t)) :↔ Sent<k(hγ. (k, t))

hγ(0, Tt) :↔ ⊥
hγ(k, Tt) :↔ Tk h. γ(ċ, t), for k = Sucγ(c)
hγ(k, Tt) :↔ ∃c ≺γ k Tk h. γ(ċ, t), for Limγ(k)
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